LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>66</td>
</tr>
<tr>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>16</td>
<td>68</td>
</tr>
<tr>
<td>17</td>
<td>69</td>
</tr>
<tr>
<td>TABLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>18</td>
<td>Age distribution of Paediatric patients diagnosed as having Hodgkin's disease at the Baragwanath and Johannesburg General Hospitals from January 1989 to December 1993</td>
</tr>
<tr>
<td>19</td>
<td>Age distribution of Adult patients diagnosed as having Hodgkin's disease at the Baragwanath and Johannesburg General Hospitals from January 1989 to December 1993</td>
</tr>
<tr>
<td>20</td>
<td>Global comparison of Hodgkin's disease vs EBV in the Paediatric Age Group</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EBV in Hodgkin's Disease</td>
</tr>
<tr>
<td>2</td>
<td>Composition of Tris Buffer Saline (TBS)</td>
</tr>
<tr>
<td>3</td>
<td>Method for preparation of DEPC Water</td>
</tr>
<tr>
<td>4</td>
<td>Composition of Phosphate Buffer Saline (PBS)</td>
</tr>
<tr>
<td>5</td>
<td>Method for preparation of DAB substrate</td>
</tr>
<tr>
<td>6</td>
<td>Method for Microwave Pretreatment</td>
</tr>
<tr>
<td>7</td>
<td>2x2 Summary Table Summarizing the distribution of Age/Race in the Study Group</td>
</tr>
<tr>
<td>8</td>
<td>2x2 Summary Table Summarizing the distribution of Histological Subtype in the Study Group</td>
</tr>
<tr>
<td>9</td>
<td>2x2 Summary Table Summarizing the distribution of Histological Subtype According to Age/Race in the Study Group</td>
</tr>
<tr>
<td>10</td>
<td>2x2 Summary Table showing the distribution of LMP-1 positivity in each Age/Race Subgroup</td>
</tr>
<tr>
<td>11</td>
<td>2x2 Summary Table showing the distribution of LMP-1 positivity according to Histological Subtype</td>
</tr>
<tr>
<td>12</td>
<td>2x2 Summary Table showing the distribution of Bel-2 positivity in Age/Race Subgroups</td>
</tr>
<tr>
<td>13</td>
<td>2x2 Summary Table showing the distribution of Bel-2 positivity according to Histological Subtype</td>
</tr>
<tr>
<td>14</td>
<td>2x2 Summary Table Summarizing the distribution of LMP-1 and Bel-2</td>
</tr>
<tr>
<td>15</td>
<td>Details of Treatment and Outcome in the Study Group</td>
</tr>
<tr>
<td>16</td>
<td>Distribution of Age/Race, Average Age and Male:Female Ratio in the Epidemiology Group</td>
</tr>
<tr>
<td>17</td>
<td>Distribution of Histological subtype according to Age/Race in the Epidemiology Group</td>
</tr>
</tbody>
</table>
5.2 Prevalence of EBV in Hodgkin's Disease at Baragwanath and Johannesburg General Hospitals 85
5.3 Comparison of EBV vs LMP-1 - Technical Considerations 89
5.4 The role of EBV in Hodgkin's Disease 90
5.5 Apoptosis 97
6.0 CONCLUSION 99
7.0 REFERENCES 100
1.9.1 Epidemiological and Seroepidemiological Data 25
1.9.2 Molecular Studies 26
1.9.3 Histological Subtype 27
1.9.4 Age 28
1.9.5 Prognosis 29
1.9.6 Developed vs Developing Countries 29
1.9.7 The Association of EBV and Hodgkin’s Disease in Immunosuppressed Patients 30
1.9.8 Familial Hodgkin’s Disease 31
1.9.9 HHV-6: Another Viral Candidate in Hodgkin’s Disease 31

2.0 AIMS AND OBJECTIVES OF STUDY 33

3.0 MATERIALS AND METHODS 34

3.1 Epidemiological Data 34

3.2 Study Group - Archival Material 34

3.3 *In situ* Hybridisation for EBV RNA (EBERs) 35

3.4 Immunohistochemistry for LMP-1 37

3.5 Immunohistochemistry for Bcl-2 41

3.6 Estimation of the Apoptotic Index on H & E 44

3.7 Estimation of the Apoptotic Index on APOPTAG 44

3.8 *In situ* Apoptosis Detection 44

3.9 Statistical Analysis 47

4.0 RESULTS 49

4.1 Study Group 49

4.2 Apoptotic Index 63

4.3 Epidemiology 75

5.0 DISCUSSION 83

5.1 Epidemiology 83
TABLE OF CONTENTS

DECLARATION I
ACKNOWLEDGEMENTS II
ABSTRACT III
TABLE OF CONTENTS V
LIST OF TABLES VIII
LIST OF FIGURES X
LIST OF ABBREVIATIONS XII

1.0 INTRODUCTION 1
1.1 History of Epstein-Barr Virus 1
1.2 Classification of EBV 2
1.3 Viral Structure 3
1.4 Genome Structure 3
1.5 Viral Infection 4
 1.5.1 Latent infection 5
 1.5.2 Latency Types I, II and III 6
 1.5.3 Viral Gene Expression in Latent Infection 10
 1.5.4 Latent Infection Proteins 11
 1.5.4a EBNA1 11
 1.5.4b EBNA2 12
 1.5.4c EBNAa 3,4,6 12
 1.5.4d EBNA5 12
 1.5.4e LMP-1 13
 1.5.4f LMP-2A and 2B 14
 1.5.5 EBERs 14
 1.5.6 Viral Gene Expression in Lytic Infection 15
 1.5.6a Immediate early genes 15
 1.5.6b Early genes 16
 1.5.6c Late genes 16
1.6 Cell Mediated Immune Response in EBV Carriers 17
1.7 Detection of EBV in Human Tissue using Molecular Genetic Techniques 19
 1.7.1 Southern Blot Analysis 20
 1.7.2 Immunohistochemistry 22
 1.7.3 In Situ Hybridisation 22
 1.7.4 Polymerase Chain Reaction 22
1.8 Epidemiology of Hodgkin's Disease 23
1.9 EBV and Hodgkin's Disease 25
No correlation between LMP-1 and bcl-2 expression was demonstrated.

No significant difference in Apoptotic Index between LMP-1 (+ve or -ve); Bcl-2 (+ve or -ve) or histological subtypes could be demonstrated.

2) A retrospective epidemiological study of patients presenting to these hospitals with a diagnosis of Hodgkin’s disease, over the 5 year time period was also conducted (n=175). This included patients in whom archival tissue was not available. These were analysed according to age, race, sex and histological subtype using data from relevant patient files.

Black, White and Asian children (≤15 years of age) showed a similar average age of presentation (average: 9yr 7m). Only the Black paediatric group showed the expected increased male:female ratio. Mixed cellularity subtype was commonest in the Black paediatric group, while White paediatric cases were predominantly nodular sclerosis subtype. In Asian children 3/5 and 2/5 cases were mixed cellularity and nodular sclerosis subtype respectively.

Both Black and White adults presented predominantly with nodular sclerosis Hodgkin’s disease. Both groups showed a male:female ratio of ~ 1:1. White adults presented at a slightly older average age (41yr 6m vs 32yr 7m). One Asian adult case was of nodular sclerosis subtype.
ABSTRACT

The association between Epstein-Barr Virus (EBV) and Hodgkin’s disease, has prompted numerous studies over the last decade. Earlier reports from Europe and North America indicated a prevalence of EBV positive Hodgkin’s disease of around 40-50%, especially with mixed cellularity subtype. Recently, the prevalence of EBV in Hodgkin’s disease in developing countries was found to be higher. No data had been published from South Africa, where, for historical reasons distinct racial communities exist.

1) The prevalence of EBV in Hodgkin’s disease in 61 paediatric and adult patients at the Baragwanath and Johannesburg Hospitals over a 5 year period (1989-1993), was investigated using immunohistochemistry and in situ hybridisation.

Immunohistochemistry for bcl-2 was also performed since upregulation of bcl-2 by EBV Latent Membrane Protein (LMP-1) had previously been postulated as EBV’s pathogenetic role in Hodgkin’s disease. These findings were then related to Apoptotic Index, using morphological assessment, and in-situ end labelling of fragmented DNA.

We found an overall prevalence of EBV positive Hodgkin’s disease of 52%, similar to that reported in Europe and North America, and confirmed a strong association with mixed cellularity subtype. Children <10 years of age showed a particularly high prevalence of EBV positive Hodgkin’s disease (81%), with the following racial distribution: 10/13 (76.9%) Black, 2/2 White, 1/1 Asian. 11/23 (47.8%) Black and 8/22 (36.3%) White adult cases were positive for EBV.
ACKNOWLEDGEMENTS

I would like to express my sincere thanks to the following people:

My supervisor Prof. K. Cooper for his endless help, patience and support.

Prof. B. Mendelow, Head of Haematology Department SAIMR for his help, support and encouragement.

Zenobia Haffjee for all the help, teaching and support, and to Louise Taylor, who helped me out on numerous occasions.

Prof. J. Fresen for his assistance with statistical analysis.

Drs J. Poole, R. Schwzyer, K. Strahlendorf, M. Patel and Prof Bezwoda for allowing me access to Oncology Clinic files.

Ms M. Moorcroft for her assistance with the typing and preparation of this research report.

Marion, Eva and Charlotte for their endless encouragement and good humour.

Isadora and Carol for their assistance with the illustrations.
DECLARATION

I declare that this dissertation on the histological subtyping of the Hodgkin's Disease, is my own unaided work. It is being submitted for the degree of Master of Medicine (in the branch of Haematology) to the University of the Witwatersrand. It has not been submitted for any degree or examination in any other University.

Linda Kathleen Erasmus

August 1997
This research was approved by the Ethics Committee for Research on Human Subjects, University of the Witwatersrand (Clearance Certificate No. 9/11/88).
A COMPARATIVE STUDY OF HODGKIN'S DISEASE AT
BARAGWANATH AND JOHANNESBURG GENERAL HOSPITALS

LINDA KATHLEEN ERASMUS

A dissertation submitted to the Faculty of Medicine, University of the
Witwatersrand, Johannesburg in partial fulfilment of the requirements for the
degree of Master of Medicine in the branch of Haematology.

JOHANNESBURG, 1997
The fact that in vitro EBV induced growth transformation of any B cell is associated with Type III Latency gene expression, suggests that the co-ordinate action of multiple virus latent proteins are required for growth transformation.

Exactly what determines the pattern of gene expression in a given cell is uncertain, although cell transcriptional factors probably play a role. Different growth conditions may also influence differential activity of different promoters (Sinclair et al, 1994a).

Some cells seem to switch between latency types. Burkitt lymphoma cells show a characteristic Latency 1 gene expression on initial culture in vitro, but may switch to Type III Latency gene expression on serial passage (Rowe et al, 1987).

Reverse transcriptase PCR has shown that in healthy persons, a subpopulation of EBV-infected peripheral blood B lymphocytes, show Type I latency gene expression (Chon et al, 1995). As cellular and humoral responses to the full spectrum of latent proteins are stably maintained, some switching to Latency III must also occur (Murry et al, 1992a).

1.5.3 Viral Gene Expression in Latent Infection

EBNA 5 and EBNA 2 are the first viral proteins expressed in B lymphocyte infection. EBNA 2, in turn, transactivates cell genes (CD21 and CD23) and viral genes, including LMP-1 and LMP-2. CD23 in its full length is a B cell growth factor receptor, and in its truncated form is a B cell growth factor. Thus, up regulation of CD23 results in an autocrine growth loop. LMP-1 leads to expression of a number of cell adhesion and activation molecules including LFA 1, IFA 3, ICAM-1, CD21, CD40 and CD44 (see Figure 3). Cell DNA synthesis follows LMP-1 expression.
It is possible that the growth advantage conferred on Burkitt Lymphoma cells by virtue of deregulation of the c-myc oncogene, eliminates the need for expression of numerous EBV latent genes with growth transforming potential. Recent work has suggested that efficient expression of c-myc from certain Burkitt Lymphoma derived c-myc/Immunoglobulin gene fusions, may be EBNA 1 dependent (Magrath et al, 1992).

Latency II is found in HD and Nasopharyngeal carcinoma, and is characterised by expression of:

1. The EBER's.
2. EBNA 1 mRNA using the FQp promoter (as in Latency I).
3. LMP-1 and/or LMP-2A and/or LMP-2B mRNAs.
4. Bham H1A transcripts.

It is interesting that the levels of LMP-1 found in Reed-Sternberg cells are normally toxic to cells; suggesting that Reed-Sternberg cells are unusually tolerant.

Type III Latency is noted in lymphoblastoid cell lines as well as Post transplant B-cell lympholiferative disorders. It is characterised by expression of all the latency genes viz:

1. EBERs.
2. EBNA1-6.
3. LMP-1, LMP-2A and LMP-2B.
4. Bham H1A transcripts.
Latency I, is the most limited expression of EBV genes yet known. It was first described in EBV positive Burkitt lymphoma cells, but can also be reproduced by fusing lymphoblastoid cell lines with certain EBV negative hematopoietic cell lines.

The essential characteristics of Latency I are:

1. Expression of EBER's.
2. Transcripton of EBNA 1, with activation of the FQp promoter; and silencing of the Cp Wp promoter which is active in Latency III.
3. Abrogation of LMP-1, 2A and 2B expression through silencing of the LMP promoters.
These patterns include expression of some or all of the following:

1. Two EBER's or EBV encoded RNA's. Small, nonpolyadenylated, noncoding transcripts. These are expressed in abundance. Approximately 10^6 per single viral copy (Clemens, 1993). Their function in EBV infection remains to be clarified.

2. Six EBV Nuclear Antigens (EBNAs) - encoding mRNA's expressed from either the Wp, Cp or PpQp promoter. The individual mRNA's encoding EBNAs 1-6, are generated from long primary transcripts by differential splicing. (Wolfschlaeger et al, 1989). EBNA 2 is a transactivator of viral and cell gene products, and is essential for transformation. EBNAs 3 and 6 are also thought to be essential for virus mediated growth transformation.

3. mRNA's encoding the virus Latent Membrane Proteins; LMP-1, LMP-2A and LMP-2B. LMP-2B represents an N-terminal deleted form of LMP-2A. The same promoter region which controls expression of the leftward running predominant LMP-1 transcript, also controls that of the rightward running LMP-2B mRNA. The more abundant LMP-2A mRNA is expressed from another promoter (Laux et al, 1989). LMP-1 is essential for B lymphocyte growth transformation (Kaye et al, 1993).

4. A complex family of spliced, polyadenylated Bam H1A RNAs. It is uncertain whether these mRNA's are ever translated (Smith et al, 1993).
synthesis of RNA, expression of activation and adhesion molecules and secretion of immunoglobulin.

Initial data concerning the initial growth requirements for *in vitro* EBV infected cells (viz high serum concentration, feeder layers, cell density) suggests that these cells produce and are dependent on autostimulatory substances to promote cell growth. With continued cell proliferation these growth requirements diminish.

The initial growth requirements of EBV infected cells are similar to those of B lymphocytes stimulated to proliferate by antigen or cytokines. However, in B lymphocytes stimulated to proliferate for a short time *in vitro* by polyclonal B cell activators, EBV transformed B lymphocytes proliferate indefinitely in cell culture (Kieff, 1996).

1.5.2 Latency Types I, II and III

EBV latent infection is divided into 3 types, determined by characteristic patterns of latent gene expression. Each type of latency is in turn found in specific conditions (see Figure 2). EBV does not encode an RNA polymerase and uses host RNA polymerase II for transcription of viral mRNAs.
Evidence suggests that continued epithelial infection (manifest as lifelong viral shedding) may depend on seeding from the lymphoid reservoir (Gratama et al., 1988). The virus carrying B cell pool appears to be generalised throughout the body. *In situ* hybridisation of lymphoid tissue with EBER specific probes, shows that EBV carrying cells tend to be localised in extra follicular areas (Niedobitek et al., 1992).

In vitro, these latently infected B lymphocytes will either proliferate into long term lymphoblastoid cell lines or will undergo initial lytic infection. Virus released from the lytic infection will then transform other primary B lymphocytes in the culture (Kieff, 1996).

1.5.1 Latent Infection

In latent infection, EBV penetrates the cell, and remains present either as circular episomal DNA (formed through fusion of the terminal repeats) or, much less frequently, as linear DNA integrated into the host DNA. During mitosis, these episomes which are present in the host cell in low copy number, are copied by host cell DNA polymerase and passed to daughter cells. Latent EBV infection of B lymphocytes is associated with an ordered sequence of virus latent gene expression and results in continuous cell proliferation. The standard model of latent EBV infection is provided by *in vitro* transformed lymphoblastoid cell lines.

CD21 is the receptor for the C3d component of complement. EBV binds to CD21 on the B lymphocyte cell surface via the major EBV outer envelope glycoprotein gp 350/220 (Frade et al., 1985). It is thought that an early event in EBV infection, possibly CD21 engagement, may activate the B lymphocyte before viral DNA transcription. This results in enlargement of the cell,
1.5 Viral Infection

Two forms of cellular infection are recognised: latent and lytic/replicative. In primary EBV infection, infection of the oropharyngeal epithelial cells, and epithelial cells lining the parotid duct, results in viral replication and release of infectious viral particles. Viral shedding is sustained for months after initial infection, then gradually diminishes, but is never completely eliminated (Morgan et al., 1979; Sixbey et al., 1983; Sixbey et al., 1984). Immunocompromised individuals show higher rates of viral shedding (Sumaya et al., 1986). It is unclear whether mucosal epithelium is the primary target for infection by orally transmitted virus or whether initial amplification in locally infiltrating B lymphocytes is required.

From its initial site of replication in the oropharynx, EBV then infects peripheral blood B lymphocytes. During acute infection, at least 1 in 10^4 circulating B lymphocytes is infected with EBV; these numbers diminish with time, but healthy EBV sero-positive individuals still carry approximately 1 in 10^6 EBV infected peripheral blood B lymphocytes (Rocchi et al., 1977). Infection of the B lymphocytes is predominantly latent, although some cells must at times be permissive for viral replication.
1.3 Viral Structure

Similarly to other herpes viruses, EBV consists of a protein core surrounded by DNA, an icosahedral capsid, and an outer envelope with external glycoprotein spikes. A protein tegument is found between the nucleocapside and the envelope. The most abundant EBV envelope and tegument proteins are 350/220 and 152kd respectively (Kieff, 1996).

1.4 Genome Structure

The EBV genome is a linear, double stranded molecule of approximately 172,000 bp. A variable number of reiterated terminal repeats are situated at each end, and reiterated internal repeats divide the genome into short and long unique sequence domains. (See Figure 1).

When EBV establishes a latent infection in a proliferating cell, the terminal repeats fuse to form an extra-chromosomal episome. The number of terminal repeats is characteristic of that cell, and will be copied by host cell DNA polymerase and passed to daughter cells during mitosis. This provides a means of identifying monoclonal EBV in a cell population, as all progeny derived from a cell with a characteristic single viral fusion event, will have the same number of terminal repeats on restriction fragment length analysis. (Raab-Traub; Flynn, 1986).

The genome encodes an estimated 100 genes, but complicated differential splicing of RNA transcripts may result in production of many more proteins. (Kieff; Liebowitz, 1991).
In contrast, in the USA and Western Europe, primary EBV infection may be delayed until adolescence or adulthood, sometimes resulting in the clinical syndrome of infectious mononucleosis (Henle et al, 1968 and 1970).

1.2 Classification of EBV

EBV is a member of the gamma herpes virus subfamily which includes both the *lymphocryptovirus* and *rhadinovirus* genera. Humans are the exclusive natural host for EBV (the prototype *lymphocryptovirus*), while closely related lymphocryptoviruses infect other old world primate species. Gamma herpes viruses establish latent infection in lymphocytes and are associated with cell proliferation (Kieff, 1996).

Two strains of EBV (Type 1 and 2) circulate in human populations. They differ structurally in the sequences of some of the latent viral genes (EBNA’s 2, 3, 4, 6; and to a lesser extent EBNA5) and biologically in their ability to immortalize B cells. (Rickinson et al, 1987; Sixbey et al, 1989). The genetic differences between EBV Type 1 and 2 are reflected in type common and type specific epitopes for antibody (Rowe, 1989).

EBV 1 appears to be more common in developed societies, and most EBV immune sera from these communities react preferentially or exclusively EBV 1 EBNA genes. Sera from African subjects show reactivity to EBV 1 and 2 epitopes in more equal proportions (Zimber et al, 1986; Sixbey et al, 1989). Although EBV 2 DNA can frequently be detected from oropharyngeal secretions in developed countries, recovery of EBV 2 from peripheral blood samples in these countries is unusual. This may reflect the less aggressive growth of EBV 2 - infected lymphocytes *in vitro* (Zimber et al, 1986; Young et al, 1987).
1.0 INTRODUCTION

1.1 History of Epstein-Barr Virus

Much of the interest in Epstein-Barr Virus (EBV) is fuelled by the virus's association with malignancy. Initially discovered in cultured lymphoblasts from samples of African Burkitt's lymphoma, EBV has subsequently been shown to be linked with a range of tumours, including Post transplant B-cell lymphoproliferative disorders, Nasopharyngeal Carcinoma (especially in Africa and China) and Hodgkin's disease (HD).

Despite serological and molecular evidence of an association between EBV and HD, the exact role of EBV in the aetiology of HD remains to be clarified. Patterns of viral latent gene expression differ between tumour types. In malignancies such as HD, where EBV expresses only a limited subset of latency genes, it is likely that EBV is just a contributing factor in the malignant process. On the other hand in Post transplant B-cell lymphoproliferative disorders, with a wider latency gene expression, EBV is likely to be the sole driving force behind malignant proliferation of cells.

Denis Burkitt, a missionary doctor working in East Africa in the 1950's, postulated the role of an infectious agent in the aetiology of Burkitt's lymphoma. Burkitt sent fresh tumour biopsies to Tony Epstein in London for screening of virus particles using electron microscopy. No virus could be demonstrated in freshly excised tumour biopsies, but Herpes virus like particles were subsequently identified in cultured cell lines (Rickinson and Kleff, 1996).

Subsequent seroepidemiological studies showed EBV to be widespread in human populations, with most adults having antibodies to the virus (Henle et al, 1969). In developing communities, primary EBV infection is usually an asymptomatic event, occurring within the first 3 years of life.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr Virus</td>
</tr>
<tr>
<td>EBER</td>
<td>EBV Encoded RNA</td>
</tr>
<tr>
<td>EBNA</td>
<td>EBV Nuclear Antigen</td>
</tr>
<tr>
<td>HD</td>
<td>Hodgkin’s Disease</td>
</tr>
<tr>
<td>HHV-6</td>
<td>Human Herpes-Virus 6</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HLA</td>
<td>Human Leucocyte Antigen</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>ISH</td>
<td>In-situ hybridisation</td>
</tr>
<tr>
<td>LMP</td>
<td>Latent Membrane Protein</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>rt-PCR</td>
<td>Reverse Transcriptase Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>Tdt</td>
<td>Terminal deoxyribonucleotidyl transferase</td>
</tr>
<tr>
<td>TRAF</td>
<td>Tumor Necrosis Factor Receptor Associated Factor</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>18</td>
<td>Box and Whisker Plots of Apoptotic Index on H & E by subtype and LMP-1</td>
</tr>
<tr>
<td>19</td>
<td>Box and Whisker Plots of Apoptotic Index on H & E by subtype and Bcl-2</td>
</tr>
<tr>
<td>20</td>
<td>Box and Whisker Plot of Apoptotic Index on ApopTag by subtype and LMP-1</td>
</tr>
<tr>
<td>21</td>
<td>Box and Whisker Plots of Apoptotic Index on ApopTag by subtype and Bcl-2</td>
</tr>
<tr>
<td>22</td>
<td>Scatterplot of Apoptotic Index for ApopTag and H & E</td>
</tr>
<tr>
<td>23</td>
<td>Scatterplot of difference vs mean for the Apoptotic Index for ApopTag and H & E</td>
</tr>
<tr>
<td>24</td>
<td>Evolution of Epstein-Barr Virus positive and negative Hodgkin's Disease</td>
</tr>
</tbody>
</table>
1.7.2 Immunohistochemistry

This technique uses labelled monoclonal antibodies to stain individual cells for the presence of viral proteins. The ability to localise the viral product is obviously an advantage. In addition paraffin embedded tissue, even several years old can be used for immunohistochemistry (Pallesen et al., 1991). The commonest antibody is directed against LMP-1.

1.7.3 In-situ Hybridisation

In situ hybridisation also has the advantage of precise localisation of EBV within the cell. The technique uses labelled nucleic acid probes to bind to complementary viral DNA or RNA and can be performed on frozen or formalin fixed paraffin embedded sections (Khan et al., 1992). Although viral DNA was the initial target, the abundance of EBER transcripts (\(\pm 10^5-10^6\) copies of EBER for every EBV genome) makes the signal to noise ratio more favourable despite the relative instability of RNA. The probes do not need to be radioactive for EBER. Another advantage of probing for EBER is that purely lytic infections are not detected (Gilligan et al., 1990).

Chromosome *in situ* hybridisation using fluoresceinated probes to viral DNA can be used to identify the extremely rare event of integration into host chromosomal DNA (Gulley et al., 1992). This is of little practical relevance.

1.7.4 Polymerase Chain Reaction

PCR amplification of viral DNA can be performed on paraffin sections and fine needle aspirations. PCR of viral DNA has two major disadvantages: viz that it is almost *too sensitive* and localisation of the EBV product is not possible. With a sensitivity of 1 or 2 target DNA sequences in
FIGURE 4: SOUTHERN BLOT ANALYSIS OF EPSTEIN-BARR VIRUS DNA STRUCTURE (adapted from Gulley, Raab-Traub, 1993).

This technique is based on varying numbers of terminal repeat sequences (hatch marks) at the end of linear viral DNA when digested with restriction enzymes, electrophoresed, transferred onto a nylon membrane and hybridized with a probe to be right terminus (bars). Linear infectious DNA is seen as a ladder array of small fragments (left). In contrast, Epstein-Barr virus-associated tumors contain viral episomes in which the terminal repeat sequences have fused to form a larger restriction fragment that is identical in all clonal progeny. Monoclonal tumors contain a single fused terminal fragment (center), while oligoclonal tumors contain multiple bands whose size depends on the number reiterations of the terminal repeat sequences (right). kb indicates kilobase.
1.7.1 Southern blot analysis

Southern blotting involves nucleic acid hybridisation of size fractionated DNA that has been immobilised on to nylon filter, and permits detection of viral DNA amongst the host DNA in a sample of human tissue.

The sensitivity of southern blotting depends on which region of the EBV genome is probed in the hybridisation step. At best, the sensitivity is approximately 1 EBV molecule for every 100 cells in the specimen. This allows for detection of EBV in EBV-associated tumors (e.g. post-transplant lymphoproliferative disorders) as well as in tissues containing abundant replicative virus. One of the advantages of southern blotting is that it can be used to determine the clonality of EBV-infected cells. This is based on the principle that the number of terminal repeats present in the fused terminus of the EBV episome is unique to that cell, and will be passed onto its progeny.

Following digestion with a restriction enzyme, probes are used to detect the immobilised terminal restriction fragment of EBV DNA (Raab-Traub; Flynn, 1986). See Figure 4.

Infected tumours are represented by a single fused terminal restriction fragment, implying only that the virus was present before transformation and not necessarily that it drove the transformation process. Linear viral DNA characteristic of replicative infection is represented as a ladder-like arrangement of terminal restriction fragments.
Some cytotoxic T cell responses are EBV type specific, indicating that subtle changes in peptide sequence may abrogate recognition.

Occasionally sequence polymorphisms affecting cytotoxic T lymphocyte epitope regions, can occur between viral strains of the same type. A fascinating example is the HLA-A11 restricted epitope in EBNA 4 which is conserved among most Type 1 strains worldwide. However, in South East Asian populations and those of Papua New Guinea coastal regions, where the HLA A11 allele is unusually prevalent, all the Type 1 EBV strains are specifically mutated in key residues in this epitope. These mutant peptide sequences do not bind to HLA A11 molecules and cannot be recognised by HLA-A11 restricted cytotoxic T cells. It is tempting, therefore to speculate that virus with these mutations enjoyed a selective advantage in these populations. However, studies have detected similar mutations in virus isolates from the highlander population of Papua New Guinea in which the HLA A11 frequency is very low. It is thus possible that these mutations represent a founder effect rather than the result of selective pressure from the immune system (de-Campos-Lima et al, 1993; 1994).

1.7 Detection of EBV in Human Tissues using Molecular Genetic Techniques

Traditionally infectious EBV was detected by its ability to immortalise naive blood lymphocytes obtained from umbilical cord blood.

Recent developments in the application of DNA technology to detect EBV in human tissue, have contributed tremendously to new advances in the understanding of EBV related disease. These include immunohistochemistry as well as nucleic acid hybridisation techniques such as Southern blot analysis, in situ hybridisation to viral DNA or RNA and the polymerase chain reaction (PCR).
Current evidence suggests that CD8 positive T cells are important in limiting the expansion of latently infected B cells and may also target infected cells expressing lytic antigens, although much less is known about the latter.

Experiments from almost two decades ago (Moss et al, 1978) showed that cytotoxic T lymphocytes from EBV seropositive donor's circulating memory pool, reactivated in vitro were able to suppress the growth of lymphoblastoid cell lines. As expected, this cytotoxic T cell response was HLA class 1 restricted.

Any of the EBV antigens expressed in lymphoblastoid cell lines are potential sources of immunogenic peptide. It has been previously documented that the identity of peptide epitopes is significantly influenced by HLA type. Studies of a panel of virus immune donors showed that most individuals have strong cytotoxic T cell responses to more than one EBV latent antigen. In a high proportion of individuals, this response appears to be directed against epitopes from EBNAs 3, 4 and 6 latent proteins and in some donors also LMP-1 and LMP-2. To some extent, (but not entirely) this reflects epitope selection by HLA types common in Caucasian populations (Khanna et al, 1992; Murry et al, 1992a). In several of these studies, the specificity of large numbers of EBV specific cytotoxic T lymphocyte clones could not be identified, suggesting that other viral target antigens remain to be identified.

Interestingly enough, surveys of over 30 virus-immune donors failed to show any response against EBNA 1 epitopes. Whether this is an effect of study design, or EBNA 1 is truly protected from host immune response remains to be clarified.
responses. These include the BLLF1 gene which encodes gp 350/220 - the dominant external virus glycoprotein that mediates virus binding to the B lymphocyte receptor. gp350/220 is also the most abundant viral protein in the lytically infected cell plasma membrane and most of the human EBV neutralising antibody response against this protein. The other late gene of interest is BCRF1 which shares nearly 90% co-linear identity in amino acid sequence with the human Interleukin 10 gene (Hsu et al, 1990).

BCRF1 is expressed only in late EBV replication, and although it has B cell growth factor activity, it appears to have no effect on growth transformation nor maintenance of latent infection (Swaminathan et al, 1993). However, these mutant BCRF1 recombinant infected cells differ from wild type recombinant infected cells in their inability to block gamma interferon release in cultures of permissively infected lymphoblastoid cell lines incubated with autologous human peripheral blood mononuclear cells. Thus, the role of BCRF1 in latent infection is probably to dampen natural killer and T cell cytotoxic response to EBV infection (Moore et al, 1990; de Waal-Malefyt et al, 1991).

1.6 Cell-mediated Immune Responses in EBV Carriers

Antibody responses to EBV in primary infection as well as in viral carriers are well described. It is unlikely that any of these antibodies play a role in the control for persistent infection once the carrier status has been established. However, anti-gp 350 antibodies are active against many EBV strains, and may contribute to protecting the host from a second EBV infection.
BZLF1 can down-regulate the EBNA Cp promoter—possibly facilitating the transition from latent to lytic infection. (Kenney et al., 1989). EBNA1 continues to be expressed as an early lytic infection gene product, under control of a down-stream promoter. BZLF1 also appears to associate with p53 and may inhibit p53 induced apoptosis in response to lytic EBV DNA replication. (Zhang et al., 1994).

1.5.6b Early Genes

This class includes several genes that are linked to DNA replication: including those encoding for DNA polymerase (BALF5), major DNA binding protein, (BALF2), thymidine kinase (BXLF1) and others.

BHRF1 gene encodes an abundant EBV early protein, HRF1. HRF1 shows extensive co-linear homology with bcl-2, (Cleary et al., 1986) and is thought to prevent apoptotic cell death in lytic EBV infection (Henderson et al., 1993). Deletions of BHRF1 ORF or stop codons early in BHRF1 does not affect the ability of the resultant mutants to initiate or maintain cell growth transformation (Marchini et al., 1991; Lee et al., 1992).

Similarly to some of the immediate early gene products, two EBV early gene products, two EBV proteins (BSML1 and BMRF1) may also transactivate expression of other early EBV genes.

1.5.6c Late Genes

Most of the known late EBV genes encode structural viral proteins required for successful packaging of viral DNA and formation of the virion. All the viral glycoprotein genes identified to date are also late genes. These are of interest because of their potential role in eliciting antibody
Two possible roles for EBERs have been proposed, based on structural similarities between Adenovirus VA and cell RNA V6 and the known functions of the latter two molecules viz. direct inhibition of an interferon induced protein kinase that would block translation or involvement in RNA splicing. No strong experimental evidence exists to support either of these theories (Swaminathan et al, 1992; Sharp et al, 1993).

1.5.6 Viral Gene Expression in Lytic Infection

In replicative infection, complete viral particles are released from cells which are lysed and die. In *in vitro* models of EBV infection all 3 forms of latency can be induced directly into lytic cycle. Chemical inducers such as phorbol are commonly used. In contrast to the latent phase of infection, when only a limited number of proteins are expressed, activation of the EBV lytic cycle is characterised by the presence of up to 80 virus specific RNA species.

Some virus genes are expressed early after induction, and are independent of new protein synthesis. These are classified as immediate early. Early lyt: virus genes are expressed slightly later, and their expression is not affected by inhibition of viral DNA synthesis. Proteins are formally categorised as late, if inhibition of viral DNA synthesis results in a marked reduction in their expression. They are also sequentially expressed late.

1.5.6a Immediate Early Genes

These include BZLF1, BRLF1 and BFLF4 whose protein products are transactivators of early EBV lytic gene expression.
membrane, enables LMP-1's cytoplasmic domain to interact with growth factor receptor pathways resulting in constitutive activation. Experiments have shown that the LMP-1 cytoplasmic domain interacts with the tumour necrosis factor receptor signalling pathways (Mosialos et al, 1995).

1.5.4 LMP-2A and 2B

LMP-2A and 2B are sometimes referred to as terminal proteins 1 and 2 because their transcripts cross the terminal repeats. EBNA 2 is able to transactivate both LMP 2A and LMP 2B expression.

LMP-2 appears to co-localise with LMP-1 in the plasma membrane of latently infected B lymphocytes. LMP-2 expression in Burkitt Lymphoma lymphoblasts blocks the calcium mobilisation that normally follows cross-linking of surface immunoglobulin, CD19 or MHCII. This effect appears to be mediated through LMP-2A's interaction with B lymphocyte src family tyrosine kinases, particularly "fyn" and "lyn" (Miller et al, 1993). LMP-2A expression is also found to block the effect of surface immunoglobulin crosslinking on activation of lytic EBV infection presumably through a similar mechanism (Miller et al, 1994). This is probably critical in maintaining EBV persistence in humans.

1.5.5 EBER's

Although EBERs are by far the most abundant RNA species in latently infected cells, their role in infection remains to be clarified. EBER's are not translated and do not appear to be essential for transformation.
for EBNA 5 in directly/indirectly up regulating expression of autocrine growth factors essential for lymphoblastoid cell line outgrowth.

It has been shown that EBNA 5 together with EBNA 2 can induce G0-G1 transition. However, the exact mechanism involved, and its association of any with induction of a growth factor is unknown (Sinclair et al., 1994b):

1.5.4e LMP-1

LMP-1 is an integral membrane protein that is expressed in both latent and lytic infection.

LMP-1 can transform rodent fibroblasts, rendering them tumorigenic in nude mice (Wang et al., 1985). In addition, it can transform human keratinocytes and inhibit human epithelial cell differentiation (Fahraeus et al., 1990; Dawson et al., 1990). LMP-1 induces the expression of several lymphocytic activation markers and adhesion molecules (Wang et al., 1988) and is also essential for primary B lymphocyte growth transformation (Kaye et al., 1993). LMP-1 has been shown to protect infected B lymphocytes from apoptosis through up regulation of bcl-2 (Henderson et al., 1991).

LMP-1 constitutively forms discreet patches in the plasma membrane, similar to those formed by growth factor receptors in response to ligand binding (Liebowitz et al., 1986).

The isolation of EBV recombinants specifically mutated in LMP-1 has allowed detailed analysis of the role of LMP-1 and its various domains, in B lymphocyte growth transformation. The current model for LMP-1's mechanism of action, suggests that LMP-1 patching in the plasma
EBNA 1 and LMP-1 are the only latent proteins that are also expressed during lytic infection.

1.5.4b EBNA 2

Many years ago, a transformation incompetent, laboratory mutant EBV was isolated, and shown to have a deletion of the DNA encoding EBNA 2 and the last two exons of EBNA 5 (Wang et al., 1987). Subsequent genetic analysis confirmed EBNA 2's essential role in B lymphocyte growth transformation (Cohen et al., 1989). As mentioned previously, EBNA 2 is specific transactivator of both cell and viral gene expression, and upregulates expression of LMP-1. Molecular genetic studies have shown a correlation between EBNA 2 sequences that are important for transformation and those that are important for transactivation of the LMP-1 promoter (Cohen et al., 1989).

Differences in EBNA 2 between EBV types 1 and 2, may account for their differing ability to transform B lymphocytes (Cohen et al., 1989; Rickinson et al., 1987).

1.5.4c EBNA's 3, 4 and 6

Molecular studies suggest that EBNA's 3 and 6 are essential for virus mediated lymphocyte growth transformation, but that EBNA 4 is not (Tomkinson et al., 1992; Tomkinson et al., in press). EBNA 6 upregulates CD21 mRNA and protein in non-EBV infected Burkitt Lymphoma cell lines in vitro.

1.5.4d EBNA 5

The exact role of EBNA 5 is not yet fully clarified. Its unusual nuclear localisation suggests that it may play a role in EBV RNA transcription or processing. Molecular genetic studies imply a role
Subsequent expression of EBNA1, 3, 4 and 6 occurs. This may be related to the effects of EBNA 2 on EBNA 2 response elements. EBER expression lags behind that of the other latent proteins.

Figure 3: Effects of EBNA1, 2, 6 and LMP-1 (adapted from Kilc, 1996).

EBNA 1 binds to ori-p and enables the EBV episome to be replicated during S phase.
EBNA 2 specifically trans-activates CD23, CD21 and the LMP promoters.
EBNA 6 upregulates CD21 mRNA and protein.
LMP-1 patches in the cell plasma membrane, upregulates ICAM1, LFA1 and LFA3, and induces activation markers HLA II, CD21, CD23, CD40 and CD44.
LMP-2A associates with LMP-1 and with lyn and lyn and blocks calcium mobilization in response to cross-linking of B lymphocyte surface molecules.

1.5.4 Latent Infection Proteins

1.5.4a EBNA 1

EBNA 1 binds to a viral origin of replication called ori-p and is necessary for episome persistence and replication in latently infected cells (Yates et al, 1984).
3.0 MATERIALS AND METHODS:

3.1 Epidemiological Data

Data regarding the number of patients admitted to the Johannesburg and Baragwanath Hospital Oncology units between January 1989 and December 1993, with a diagnosis of HIV, was obtained retrospectively from relevant clinic files. Both paediatric and adult patients were included to give a total of 175 patients. Frequency tables were used to summarise the epidemiological data on these patients including age, race, sex and histological subtype, which was also obtained from these files.

3.2 Study Group: Archival Material

Formalin-fixed, paraffin embedded lymph node biopsies from the time of diagnosis were available on 61 of the above patients. These formed the study group.

For each of these cases, the histological subtype was jointly reviewed by 2 pathologists from the Anatomical Pathology Department, using immunohistochemistry when indicated. Both pathologists were blinded to the initial biopsy report.

These biopsies were then investigated for the presence of EBV products (LMP-1 and EBERs), as well as bcl-2 protein, using the techniques outlined below. Sections were only considered EBV or bcl-2 positive if Reed-Sternberg/Mononuclear variant cells were identified as containing these products. For both bcl-2 and LMP-1 expression, positivity was dependent on whether <10%, 10-50% or 50% of the Reed-Sternberg/Mononuclear variant cells present were positive.
2.0 AIMS AND OBJECTIVES OF STUDY

1(a) To investigate the prevalence of EBV in children and adults with HD at Baragwanath and Johannesburg General Hospitals from January 1989 to December 1993, using:
 a) Immunohistochemistry for detection of Latent Membrane Protein 1 (LMP-1) expression; and
 b) In situ hybridisation for isolation of Epstein-Barr encoded RNAs (EBERs).

1(b) and to correlate LMP-1 positivity with Bcl-2 expression and apoptosis.

2) An epidemiological study of the above patients was conducted to establish the distribution of age, sex, race and histological subtype.
An early study using southern blot analysis failed to detect HHV-6 DNA sequences in cases of HD (Gledhill et al, 1991).

A more recent study showed a high prevalence of HHV-6 infection in HD using PCR, but, in situ hybridisation showed that the HHV-6 positivity was restricted to lymphocytes while Reed-Sternberg cells and mononuclear variants were consistently negative (Valente et al, 1996).

It therefore seems unlikely that HHV-6 plays a specific role in the pathogenesis of HD.
(increased numbers of neoplastic cells). A 30-base-pair deletion in the carboxy-terminal domain of the LMP-1 gene was found in 89% of HIV infected patients vs 32% of ordinary HD. This deletion has been previously described and is thought to affect the rapid turnover of LMP-1, leading to accumulation of the protein within the cell (Sandvej et al, 1994).

Several investigations have shown that paediatric transplant patients undergoing primary EBV infection post transplant run a higher risk of developing Post transplant B-cell lymphoproliferative Disorders than patients who were EBV sero-positive prior to transplant (Savoie et al, 1994). It will be interesting to see whether HIV positive patients in developing countries, who are likely to have been EBV sero-positive prior to HIV-related immunosuppression, show a different incidence of HD and/or different prevalence of EBV positivity when compared with HIV positive patients in developed countries.

1.9.8 Familial Hodgkin's Disease

An interesting recent study of cases of Familial Hodgkin's disease suggested that although serologically, Familial HD's patients had higher geometric mean antibody titres to viral capsid antigen and early antigen D, the lack of concordance of EBER1 expression and EBV serology among Familial HD cases within the same family, probably indicates that EBV does not play an important role in Familial HD (Lin et al, 1996).

1.9.9 HIV-6 : Another Viral Candidate in Hodgkin’s Disease

Another candidate virus for involvement in HD is Human Herpes Virus 6 (HHV-6). Two studies reported elevated HHV-6 antibody levels in HD, one of which was a case control study (Biberfeld et al, 1988; Clark et al, 1990).
The prevalence of EBV positive HD in China and Malaysia was intermediate between that of Western and developing countries viz 60.7% and 61% respectively (Zhou et al, 1993; Peh et al, 1997). A further study of a Chinese population in Hong Kong showed a prevalence of 65% EBV positive HD (Chan et al, 1995).

Very few studies have addressed the influence of ethnic origin on EBV positivity. In Ambinder's series (1993), 3/4 children of Hispanic origin in the USA sample, showed EBV positivity. Multivariate analysis of a study of EBV positivity in 125 cases of HD from USA, Mexico City and Costa Rica, showed that the strongest predictor of EBV positivity was mixed cellularity histology, and that Hispanic ethnicity was strongly and independently associated with EBV positivity (Gulley et al, 1994). A study from Malaysia suggested that HD in Indians is more often EBV associated than other ethnic groups, but this was not statistically significant (Peh et al, 1997). This issue warrants further investigation. If ethnic differences do occur, they may be related to recognition of specific viral epitope different HLA types.

1.9.7 The Association of EBV and Hodgkin's disease in Immunosuppressed Patients

Whether immunosuppression, particularly in Human Immunodeficiency Virus (HIV) positive patients results in any marked elevation in the incidence of HD remains to be seen. There is, however, evidence to suggest that those tumours which do arise in immunosuppressed patients are more frequently EBV positive (Uccin et al, 1990; Audoin et al, 1992).

In 1996, Bellas et al published a series of 24 HIV positive HD. These showed EBV positivity in 100% of cases. Compared with 56 cases of "ordinary" HD, the HIV-associated HD showed a higher prevalence of unfavourable histological subtype, and more aggressive morphology.
1.9.5 Prognosis

At least two series suggest that EBV positivity in HD does not affect prognosis (Vestlev et al., 1992; Armstrong et al., 1992a; Oudejans et al., 1997). However, a recent study shows that EBV positivity may confer a more favourable prognosis in childhood HD (Sinclair-Smith et al., 1997).

1.9.6 Developed vs Developing Countries

Most of the early studies of EBV positive HD were done in Europe and North America. An interesting question is whether the prevalence of EBV positive HD would be different in less developed countries where asymptomatic primary EBV infection occurs at a much younger age. Initial data suggests that these areas have a higher prevalence of EBV positivity: A study from Peru of a primarily paediatric patient group, showed increased prevalence of EBV positivity in all age groups (94% overall) (Chang et al., 1993). Similar results were found in adult Mexican patients: 70% of HD were EBV positive, and all histological subtypes appeared to be strongly associated (Quintanilla-Martinez et al., 1995). Comparison of EBV positivity in nodal lesions of adult HD in French and Algerian patients demonstrated a higher rate of positivity in Algerian patients (72% vs 33%), with a stronger association with mixed cellularity than other histological subtypes (Belkaid et al., 1995). Paediatric HD in Honduras and the United States showed 100% and 36% EBV positivity respectively; both shared a strong association between EBV positivity and mixed cellularity subtype. However, in contrast to the USA, in Honduras other histological subtypes also showed a strong association with EBV positivity (Ambinder et al., 1993).
1.9.4 Age

Initial data reflecting the association of EBV positive HD and age, was conflicting. Some investigators failed to find any association between EBV positivity and age (Coates et al, 1993; Khan et al, 1993). In 1991, Gledhill et al found a statistically significant trend for an increase in EBV positivity with age. This prompted a larger study which also showed a significant association between age and HD with a peak incidence at 25-30 years and a second rise beyond the age of 45 years (Jarrett et al, 1991). These differences may reflect statistical errors due to small sample size, variations in methodology, or possibly geographical variation.

There are now a number of studies from various countries showing that EBV positive HD is common in the paediatric (<16 years) age group, particularly in children <10 years of age (Chan et al, 1995; Andrike et al, 1997; Peh et al, 1997). One series included 55 cases from the United Kingdom, Brazil and Saudi-Arabia, and showed no significant difference in EBV positivity by country (Armstrong et al, 1993). Others have suggested that paediatric cases of HD from developing countries have much higher rates of positivity than those quoted for Europe and North America (Ambinder et al, 1993; Chang et al, 1993; Weinreb et al, 1996a).

A recent study of childhood HD from 10 different countries, showed a range of EBV positivity from 50% in the United Kingdom, Egypt and Jordan to 88% from Iran, 90% from Greece and 100% from Kenya (Weinreb et al, 1996b).
TABLE 1: EBV IN HODGKIN’S DISEASE

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Cases</th>
<th>Method of Detection</th>
<th>% EBV Positive</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>21</td>
<td>Southern blotting</td>
<td>19% (all mono-oligoclonal)</td>
<td>Weiss et al., 1987</td>
</tr>
<tr>
<td>1989</td>
<td>16</td>
<td>Southern blotting</td>
<td>19% (all monoclonal)</td>
<td>Weiss et al., 1989</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>ISH for EBV Nucleic Acids</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>28</td>
<td>Southern blotting</td>
<td>29%</td>
<td>Struhl et al., 1989</td>
</tr>
<tr>
<td>1991</td>
<td>48</td>
<td>PCR</td>
<td>67% (30 amplification cycles)</td>
<td>Knotel et al., 1991</td>
</tr>
<tr>
<td>1991</td>
<td>84</td>
<td>IHC for LMP-1</td>
<td>48%</td>
<td>Pallesen et al., 1991</td>
</tr>
<tr>
<td>1991</td>
<td>47</td>
<td>IHC for LMP-1</td>
<td>38%</td>
<td>Herbst et al., 1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCR</td>
<td>68%</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>23 - Typical HD</td>
<td>PCR, ISH for EBV DNA</td>
<td>52%</td>
<td>Weiss et al., 1991</td>
</tr>
<tr>
<td></td>
<td>13 - LP subtype</td>
<td>PCR, ISH for EBV DNA</td>
<td>47.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCR</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>48</td>
<td>IHC for LMP-1, ISH for EBV DNA</td>
<td>29%</td>
<td>Lauritzen et al., 1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCR</td>
<td>44%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCR</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>6</td>
<td>Single-cell PCR</td>
<td>66.6%</td>
<td>Rui et al., 1994</td>
</tr>
<tr>
<td>1994</td>
<td>8</td>
<td>ISH for EBV DNA</td>
<td>87.5%</td>
<td>Valente et al., 1994</td>
</tr>
<tr>
<td>1994</td>
<td>172</td>
<td>IHC for LMP-1</td>
<td>27.9%</td>
<td>Pinkus et al., 1994</td>
</tr>
</tbody>
</table>

1.9.3 Histological Subtype

One group found a statistically significantly association between EBV positivity and mixed cellularity subtype, (Pallesen et al., 1991) and this subtype has tended to have high rates of positivity (up to 90%) in most series (Desol et al., 1992; Murray et al., 1992b). Approximately 30% of nodular sclerosis cases are EBV positive. As nodular sclerosis subtype occurs most commonly in young adults the age group where there is most epidemiological evidence for the aetiological infectious agent, this could militate against EBV being a candidate. The lymphocyte predominant histological subtype, now recognised as a separate B cell entity, generally has a negligible rate of EBV prevalence (Weiss et al., 1991).
al, 1974). In addition, a retrospective study of patients with HD revealed that normal individuals with elevated antibody to EBV have an increased risk of developing HD (Mueller et al, 1989). Although these data raise the possibility that EBV is directly involved in the pathogenesis of HD, it remains possible that these studies reflect an underlying immune defect or are a marker for infection by another virus.

1.9.2 Molecular Studies
Molecular studies provided the key evidence to irrevocably link EBV with HD. In 1987, Weiss and colleagues reported the detection of EBV genomes in 4/21 cases of HD using Southern blot analysis. Subsequent studies using a variety of techniques, have shown that overall, 40-50% of HD in the Western World are EBV positive. (See Table 1). The majority appear to involve Type I virus.

The ability of in situ hybridisation and immunohistochemical techniques to enable specific localisation of the EBV products to the Reed-Sternberg and mononuclear variant cells, adds credibility to the association between EBV and HD. It is probable that the few background EBV positive reactive lymphocytes detected in some HD specimens, contributed to the high rates of EBV positivity noted in some PCR studies (Wu et al, 1990). In addition, several studies addressed the clonality of EBV genomes within HD by examining the viral terminal repeat sequences (Anagnostopoulos et al, 1989; Staal et al, 1989; Weiss et al, 1989). Although there were some conflicting results, in the majority of cases, the infected cells were found to be clonal with respect to EBV, suggesting that EBV infected a single cell which subsequently underwent clonal expansion.
1.9 EBV and Hodgkin's Disease

1.9.1 Epidemiological and Seroepidemiological Data

The above epidemiological findings formed the basis for 2 hypotheses regarding the etiology of HD:

1. Multiple etiology hypothesis, proposed by MacMahon (1966) suggests that HD represents a heterogeneous group of diseases (at least 3 entities) with distinct etiologies, and further suggested that HD in young adults may be caused by an infectious agent.

2. Delayed exposure hypothesis suggests that the development of HD is related to late infection with a common childhood pathogen (Gutensohn; Cole, 1977).

Despite initial studies with negative or inconclusive results, recent data suggests that there is evidence for weak clustering of HD cases (Glaser, 1990). This could be consistent with an etiology involving a virus with a long latent period, or alternatively, delayed exposure to a common but not ubiquitous virus (Jarrett, 1992).

In 1977, Paffenbarger et al, found that the risk of developing HD was lower in persons who had experienced more common contagious illnesses in childhood.

The findings of a case control study is, that cases with HD had twice the rate of infectious mononucleosis, not only lent support to an infectious etiology but implicated EBV as a possible agent (Gutensohn; Cole, 1980).

Several studies have shown that patients with HD frequently have abnormally high levels of antibody to EBV-Viral-Capsid antigen and early antigens (Levine et al, 1971; Langenhuiysen et
temperate zones south of the equator (Bezwoda et al., 1995). In South Africa, data from the National Cancer registry (Sitas, 1992) suggests that HD has a lower frequency in the black population. However, this may be affected by underreporting as well as poor access to health care amongst this population group.

MacMahon (1966) drew attention to the biomodal nature of the age incidence curve for HD. The shape of this curve varies in different communities. In developing countries, a Type I pattern is seen; the first peak of the biomodal distribution occurs in childhood, with a second peak in older age groups. There is a low incidence in the third decade. The Type III pattern is seen in developed countries and is characterised by low rates in childhood, a pronounced peak in young adults and a second peak in older adults. An intermediate Type II pattern is found in Central Europe, rural areas of developed countries and in the Southern USA. This is thought to represent a transition between type I and III, probably as a result of improved socio-economic conditions (Correa and O’Conor, 1971).

The incidence rate of HD is higher in males than females, being most pronounced in childhood. This ratio decreases to below one in the young adult years, then increases with age to the late fifties. The ratio is substantially lower for the nodular sclerosis subtype than for other histological subtypes (Glaser and Jarret, 1986). Histological subtypes of HD also vary with age. Nodular sclerosis accounts for the young adult peak in incidence, while other subtypes grouped together show a gradually increasing incidence with increasing age. The majority of childhood cases in developing countries are of mixed cellularity subtype.
approximately 10^5 cells. PCR should pick up the occasional positive cell present in virtually all healthy EBV immune individuals. However, most series using PCR for the detection of EBV in lymphomas report fairly clear cut differences between reactive lymph nodes and EBV related tumors (Telenti et al, 1990).

Probably a bigger limitation is the inability to localise viral product, as EBV DNA in the occasional background lymphocyte may be amplified. Hopefully this will be overcome by the development of EBV specific in-situ PCR techniques.

PCR can also be used to distinguish different EBV strains (Jilg et al, 1990). A promising, relatively new technique for analysing gene expression is reverse transcriptase PCR (rt-PCR). Using the reverse transcriptase enzyme cDNA copies are made from viral RNA templates. These relatively stable DNA products are subsequently amplified by PCR. cDNA is distinguished from native DNA by designing primers that span splice sites (Brooks et al, 1992).

Each of these techniques has its advantages and disadvantages. While very sensitive, EBER in situ hybridisation is technically fairly difficult. It is likely that in the future rt-PCR may prove to be the quickest, easiest and cheapest method of detecting EBV.

1.8 Epidemiology of Hodgkin's Disease

HD is an uncommon malignancy. In the USA, it had an annual age-adjusted rate of 2.8/100 000 for 1987-91. Other than in Asia, where the incidence of HD appears to be much lower, HD incidence rates ranges from 1.5-4.5/100 000 for males, and from 0.9-3.0/100 000 for females (Glaser and Jarrett, 1996). HD appears to increase in frequency from the equitorial to the more
FIGURE 10: LYMPH NODE; HODGKIN'S DISEASE. MUMMIFIED CELLS ON H & E STAINING (X40)

FIGURE 11: LYMPH NODE; HODGKIN'S DISEASE. APOPTAG (ONCOR, USA) SHOWING AN APOPTOTIC CELL ON THE LEFT AND A NECROTIC CELL ON THE RIGHT
After deparaffinisation, 4μm tissue sections cut onto silanized slides were digested with proteinase-K solution (200μg/ml in PBS; BOEHRINGER MANNHEIM, GERMANY) for 15 minutes at room temperature, then washed in water and quenched in 2% H₂O₂ in PBS buffer.

After application of equilibrium buffer for 1-30 minutes, Tdt enzyme (ONCOR, USA) was applied. The slides were covered with a plastic coverslip and left for 1 hour at 37°C. The slides were then incubated for a further 30 minutes in pre-warmed working strength stop/wash buffer, then washed in PBS.

Following application of anti-digoxigenin peroxidase for 30 minutes at room temperature, the slides were washed in PBS and stained with 0.1% DAB solution. After further washing in distilled water, slides were counterstained in methyl-green, dehydrated through 2x absolute ethanol and mounted in entellan mounting medium.

Diffuse brown staining of nuclear apoptotic bodies against a light green background was interpreted as a positive result.

Neutroic cells can in some instances contain stainable concentrations of DNA ends, but staining appears more diffuse than in their Apoptotic counterparts (see Figures 10 and 11).

Sections noted to have numerous apoptotic bodies on ApopTag were subsequently used as positive control. For the negative control, the Tdt enzyme was omitted. Controls were included in each batch.
3.6 ESTIMATION OF THE APOPTOTIC INDEX ON H&E

H&E stained tissue sections were scanned to identify areas with maximum numbers of mummified cells. Five such fields were then examined under 40x power, and the number of mummified cells and viable Reed-Sternberg/Mononuclear variant cells counted. The Apoptotic Index was calculated as the number of mummified Reed-Sternberg/Mononuclear variants divided by the total number of such cells multiplied by 100.

This process was repeated 3 times and an average figure calculated.

3.7 ESTIMATION OF THE APOPTOTIC INDEX ON APOPTAG

The areas identified on H & E as having many mummified cells, were marked on the corresponding ApopTag stained slide. The number of malignant cells identified by the stain as Apoptotic were then counted in 5 high power fields. This process was repeated 3 times and the Apoptotic Index calculated. Morphology of cells which were negative for ApopTag, were sometimes difficult to identify. Therefore, it was assumed that the denominator in the Apoptotic Index would be identical to that determined in the H&E sections.

3.8 IN-SITU APOPTOSIS DETECTION

In-situ apoptosis detection involves direct immunoperoxidase detection of digoxigenin-labelled genomic DNA. Residues of digoxigenin-labelled nucleotide are catalytically added to the numerous 3'-OH DNA ends generated during apoptosis by the enzyme Terminal deoxynucleotidyl transferase (TdT). Standard immunoperoxidase detection techniques are implemented for visualisation.
FIGURE 8: LYMPH NODE; FOLLICULAR B-CELL LYMPHOMA.

IMMUNOHISTOCHEMICAL STAINING FOR BCL-2. POSITIVE CONTROL (X40).

FIGURE 9: LYMPH NODE; HODGKIN'S DISEASE. IMMUNOHISTOCHEMICAL STAINING FOR BCL-2 (X40) SHOWING POSITIVE STAINING IN THE TUMOUR CELLS AND OCCASIONAL BACKGROUND LYMPHOCYTES.
TABLE 6: METHOD FOR MICROWAVE PRETREATMENT

| **Solution A:** 0.01M Citric acid | 10.5g Citric acid in 500ml distilled water |
| **Solution B:** 0.1M Sodium citrate | 2.94g Sodium citrate in 100ml distilled water |

- 9ml of Solution A and 41ml of Solution B were mixed and made up to 500ml with distilled water (pH 6.0).

- Slides were placed in solution and boiled for 2 x 5 minutes in microwave at medium power.

- Slides were allowed to cool in solution for 20 minutes and then rinsed in PBS buffer at pH 7.6.
3.5 IMMUNOHISTOCHEMISTRY FOR BCL-2

Immunohistochemistry was performed using monoclonal antibody directed against bcl-2 oncoprotein clone 124 (DAKO, DENMARK). As with LMP-1, 3% goat serum was used as a blocking agent and visualisation was achieved with a standard immunoperoxidase detection method.

4\mum sections were dewaxed, rehydrated and microwave pretreated for antigen retrieval method (see Table 6).

After quenching with 3% \text{H}_2\text{O}_2 \text{ in methanol, and rinsing,} \text{ slides were incubated with goat’s serum, then incubated with anti Bcl-2 monoclonal antibody for 1 hour at room temperature. After rinsing with PBS, the slides were incubated with strep -Avadin-Biotin Complex/Horse radish Peroxidase kit (DAKO DENMARK). DAB was used as a substrate. The slides were counterstained with haematoxylin, dehydr and mounted on entellan (MERCK, GERMANY).}

Positive cells show strong brown granular cytoplasmic/membranous staining against a pale blue background (see Figure 9).

Positive and negative controls were included in each batch. A section of a Follicular lymphoma known to be bcl-2 positive, was used as a positive control (see Figure 8). For the negative control the primary antibody was omitted.
FIGURE 6: NASOPHARYNGEAL CARCINOMA. IMMUNOHISTOCHEMICAL STAINING FOR LMP-1. POSITIVE CONTROL (X40).

FIGURE 7: LYMPH NODE; HODGKIN'S DISEASE. IMMUNOHISTOCHEMICAL STAINING FOR LMP-1 (X40) SHOWING POSITIVE STAINING IN THE TUMOUR CELLS.
TABLE 4: COMPOSITION OF PHOSPHATE BUFFER SALINE (PBS)

<table>
<thead>
<tr>
<th>PBS pH 7.6 was used over 48 hours.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>16g</td>
</tr>
<tr>
<td>Na,HPO₄</td>
<td>3.5g in 2 litres distilled water</td>
</tr>
<tr>
<td>KCl</td>
<td>0.4g</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.4g</td>
</tr>
</tbody>
</table>

To ↑ pH add Na₂HPO₄

To ↓ pH add NaH₂PO₄

METHOD FOR PREPARATION OF DAB SUBSTRATE

- Prepared 10 minutes before use.
- Mask and gloves were always utilised as DAB is carcinogenic.
- 0.1g DAB in 100mls PBS buffer was mixed on stirrer.
- 3 Drops of H₂O₂ was mixed in 100mls distilled water. DAB solution was added before staining slides.
- Slides were incubated in DAB/H₂O solution for 5 minutes then rinsed in running tap water for 10 minutes.
- After staining the remaining DAB solution was neutralised in 5% bleach solution, left overnight and then discarded.
After rinsing in Phosphate Buffer Saline (PBS) buffer (see Table 4), slides were rinsed in 5% normal goat serum for 20 minutes, drained and then incubated with anti-LMP-1 monoclonal antibody (1:50; DAKO, DENMARK) for 1 hour and washed in PBS buffer.

The sections were then incubated with a biotinylated goat anti-mouse secondary antibody for 30 minutes. After rinsing in PBS buffer, Strept Avadin Biotin Complex/Horse Radish Peroxidase Duet kit (DAKO, DENMARK) was applied to the slides for a further 30-60 minutes. After washing, the slides were placed in Diamino-Benzidine-Tetrahydrochloride (DAB) solution (0.1% SIGMA, USA) (see Table 5), washed counterstained with haematoxylin, dehydrated and mounted with entellen (MERCK, GERMANY).

Interpretation of positive cells was achieved with brown cytoplasmic and/or membrane staining. A section of nasopharyngeal carcinoma known to be positive for both LMP-1 and EBER was used as a positive control (see Figures 6 & 7). For the negative control primary antibody was omitted and substituted with normal goat serum. These controls were included in each batch.
FIGURE 5: LYMPH NODE; HODGKIN'S DISEASE. *IN SITU* HYBRIDISATION FOR EBERS (X40) SHOWING A POSITIVE REACTION IN A MONONUCLEAR VARIANT CELL AND OCCASIONAL BACKGROUND LYMPHOCYTE.

3.4 IMMUNOHISTOCHEMISTRY FOR LMP-1

Immunohistochemistry was performed using DAKO-EBV LMP-CSI-4 mouse monoclonal antibody directed against EBV latent membrane protein 1 (LMP-1). Visualisation was achieved using a standard immunoperoxide detection technique.

4\mu m sections were dewaxed and rehydrated, then “digested” in pre-warmed trypsin solution (0.1% in PBS, SIGMA, USA) for 15 minutes at 37°C. The reaction was halted by rinsing in cold water. The slides were then incubated in quenching solution (3% H₂O₂ in methanol) for 30 minutes when necessary. This process removed any endogenous peroxidase.
positive for both EBV (LMP1 DAKO, Denmark) and EBER was used as a positive control. For
the negative control oligonucleotide probe was omitted. These controls were included in each
batch. All glassware, plastic ware and distilled water used for washing had to be free of
contamination from RNase. This was achieved by washing in Diethyl Pyrocarbonate (DEPC)
treated water and baking overnight at 180°C (Table 3).

TABLE 2: COMPOSITION OF TRIS BUFFER SALINE (TBS)

<table>
<thead>
<tr>
<th>TBS (0.05M Tris, 0.15 NaCl), pH 7.6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.057g Tris (hydroxymethyl) amino methane.</td>
</tr>
<tr>
<td>8.766g NaCl in 1l distilled water.</td>
</tr>
</tbody>
</table>

TABLE 3: METHOD FOR PREPARATION OF DEPC WATER

- 1ml of DEPC was mixed in 1 litre sterilized water.
- DEPC solution was left overnight in a fume cupboard.
- Autoclaved for 20 minutes to inactivate the DEPC.
- TBS buffer was made up using DEPC treated water and was autoclaved once made.
In addition, an "Apoptotic Index" was estimated using morphological assessment of H & E sections complemented with special techniques (APOPTAG; ONCOR, USA).

3.3 **IN-SITU HYBRIDISATION FOR EBV RNA (EBERs)**

Each of the *in-situ* hybridisation and immunohistochemical techniques, utilized 4μm sections of the paraffin embedded, formalin-fixed tissue block.

The EBV RNA *in-situ* hybridisation studies were performed using oligonucleotides complementary to portions of the two nuclear EBER RNA's which are present in high copy numbers (~10^6) in EBV infected cells. The oligonucleotides are a mixture of 5 30-mer's, labelled with Fluorescein-isothiocyanate (FITC). 4μm sections were de-paraffinized, rehydrated and digested with proteinase K (500μg/ml; Boehringer Mannheim, Germany), in a humid incubator at room temperature for 20 minutes. After washing with pure water and 95% ethanol, the sections were then hybridised with the commercially prepared oligonucleotide probe (DAKO, Denmark) and incubated for 2 hours at 37°C. After washing the sections with Tris buffer saline (TBS), (see Table 2) signal was visualised using anti-Fluorescein-isothiocyanate-alkaline phosphatase (anti FITC/AP) detection kit using preprepared 5-bromo-4-chloro-3-indolyl phosphatase/Nitro blue tetrazolium (BCIP/NBT) Levisinsofa as a substrate (DAKO, Denmark, RNA detection kit). The sections were then washed and lightly counterstained with haematoxylin and mounted with entellen (MERCK, Germany).

A strong blue, black or blue/black colour in the nucleus/cytoplasmi over background levels was considered a positive reaction. (see Figure 5) Clumping and margination against the nuclear membrane and nucleolus is sometimes noted. A section of nasopharyngeal carcinoma known to be
TABLE 15 (Continued)
BLACK PAEDIATRIC GROUP (≤15 Years)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Sex</th>
<th>LMP1</th>
<th>Subtype</th>
<th>Stage</th>
<th>Rx</th>
<th>Default</th>
<th>Outcome</th>
<th>Refractory/Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black paediatric</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td>3</td>
<td>Chemo complete</td>
<td>-</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td>2</td>
<td>Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td>-</td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Male</td>
<td>Positive</td>
<td>LD</td>
<td>4</td>
<td>Died before treatment</td>
<td>Not applicable</td>
<td>Died before Rx</td>
<td>N/A</td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Female</td>
<td>Positive</td>
<td>MC</td>
<td>2</td>
<td>Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td>-</td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>4</td>
<td>Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td>-</td>
</tr>
</tbody>
</table>

SUBTYPES:
- MC: Mixed Cellularity
- NS: Nodular Sclerosis
- LD: Lymphocytes Depleted

TREATMENTS:
- DXT: Radiotherapy
- ABMT: Autologous Bone Marrow Transplant
TABLE 15: DETAILS OF TREATMENT AND OUTCOME IN THE STUDY GROUP

BLACK PAEDIATRIC GROUP (< 15 Years)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Sex</th>
<th>LMP1</th>
<th>Subtype</th>
<th>Stage</th>
<th>Rx</th>
<th>Default</th>
<th>Outcome</th>
<th>Relapse/Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black paediatric</td>
<td>Female</td>
<td>Positive</td>
<td>MC</td>
<td>2</td>
<td>Chemo complete</td>
<td>*</td>
<td>Alive</td>
<td></td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>4</td>
<td>Incomplete chemo & DXT</td>
<td>*</td>
<td>Dead - unrelated</td>
<td></td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Male</td>
<td>Positive</td>
<td>NS</td>
<td>2</td>
<td>Chemo complete</td>
<td>*</td>
<td>Alive</td>
<td></td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td>2</td>
<td>Chemo complete</td>
<td>*</td>
<td>Alive</td>
<td></td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Male</td>
<td>Positive</td>
<td>NS</td>
<td>4</td>
<td>Chemo complete</td>
<td>*</td>
<td>Dead - unrelated</td>
<td>Refractory</td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Male</td>
<td>Positive</td>
<td>NS</td>
<td>3/4</td>
<td>Chemo complete</td>
<td>*</td>
<td>Alive</td>
<td></td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Male</td>
<td>Positive</td>
<td>NS</td>
<td>2</td>
<td>Chemo, DXT, ABMT</td>
<td>*</td>
<td>Alive</td>
<td>Refractory</td>
</tr>
<tr>
<td>Black paediatric</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td>3</td>
<td>Chemo complete</td>
<td>*</td>
<td>Alive</td>
<td></td>
</tr>
</tbody>
</table>

SUBTYPES:
- MC: Mixed Cellularity
- NS: Nodular Sclerosis
- LD: Lymphocyte Depleted

TREATMENT:
- DXT: Radiotherapy
- ABMT: Autologous Bone Marrow Transplant
Statistical analysis of outcome in LMP-1 positive and LMP-1 negative cases was not possible primarily due to small sample size exacerbated once stage and histological subtype was taken into account. The high loss to followup in certain centres and irregular clinic attendance/treatment further complicated the issue. Further, treatment policies differed somewhat between centres.

Data was available on 52 of the 61 patients in the study group and is summarised in Table 15.

In the paediatric group: 3 patients were EBV negative: 1 died of sepsis, (stage IV) 1 relapsed with refractory disease (stage II) and required autologous bone marrow transplant and has been alive and disease free for 6 months, and 1 (stage IV) has been alive for 7 years. Of the EBV positive cases 10 are alive and disease free: 7 stage II, 3 stage III (average time ~ 4 years 2 months) 1 was lost to follow up, 1 died before treatment started, and another had refractory disease and died of sepsis.

Of the adult cases, information was available on 36 of the 45 patients in the study group. 9 defaulted and were lost to follow up before their chemotherapy was completed.

Of the remaining 18 EBV negative patients: 8 (5 stage II, 3 stage III) are alive and disease free; 3 (1 stage II, 2 stage III) died of unknown causes; 6 had refractory disease/relapse (1 stage I, 3 stage II; 1 stage III; 1 stage IV) 3 are still alive, 2 lost to follow up and 1 died cause unknown. 1 refused hospital treatment and died presumably due to disease. Of the EBV positive cases, 3 completed chemotherapy and were still alive at least 6 months past therapy (2 were subsequently lost to follow up) 2 stage II and 1 stage III. 4 relapsed/had refractory disease (1 stage I, 2 stage II, 1 unknown); 2 of these were lost to follow up one is alive and 1 died (cause unknown).
Statistical analysis of outcome in LMP-1 positive and LMP-1 negative cases was not possible primarily due to small sample size exacerbated once stage and histological subtype was taken into account. The high risk to follow up in certain centres and irregular clinic attendance/treatment further complicated the issue. Further, treatment policies differed somewhat between centres.

Data was available on 52 of the 61 patients in the study group and is summarised in Table 15.

In the paediatric group: 3 patients were EBV negative; 1 died of sepsis, (stage IV) 1 relapsed with refractory disease (stage II) and required autologous bone marrow transplant and has been alive and disease free for 6 months, and 1 (stage IV) has been alive for 7 years. Of the EBV positive cases 10 are alive and disease free, 7 stage II, 3 stage III (average time ~ 4 years 2 months), 1 was lost to follow up, 1 died before treatment started, and another had refractory disease and died of sepsis.

Of the adult cases, information was available on 36 of the 45 patients in the study group. 9 defaulted and were lost to follow up before their chemotherapy was completed.

Of the remaining 18 EBV negative patients; 8 (5 stage II, 3 stage III) are alive and disease free; 3 (1 stage II, 2 stage III) died of unknown cause, 6 had refractory disease/relapse (1 stage I, 3 stage II; 1 stage III; 1 stage IV) 3 are still alive, 2 lost to follow up and 1 died cause unknown. 1 refused hospital treatment and died presumably due to disease. Of the EBV positive cases, 3 completed chemotherapy and were still alive at least 6 months past therapy (2 were subsequently lost to follow up) 2 stage II and 1 stage III. 4 relapsed/had refractory disease (1 stage I, 2 stage II, 1 unknown); 2 of these were lost to follow up, one is alive and 1 died (cause unknown).
<table>
<thead>
<tr>
<th>Bcl-2</th>
<th>MC</th>
<th>NS</th>
<th>LD</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2 Positive</td>
<td>13</td>
<td>20</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>Bcl-2 Negative</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>Totals</td>
<td>27</td>
<td>32</td>
<td>2</td>
<td>61</td>
</tr>
</tbody>
</table>

MC = Mixed Cellularity
NS = Nodular Sclerosis
LD = Lymphocyte Depleted

TABLE 14: 2X2 SUMMARY TABLE SUMMARISING THE DISTRIBUTION OF LMP-1 AND BCL-2 POSITIVITY

<table>
<thead>
<tr>
<th>LMP-1</th>
<th>Bcl-2 Positive</th>
<th>Bcl-2 Negative</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP-1 Positive</td>
<td>15</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>LMP-1 Negative</td>
<td>19</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Totals</td>
<td>34</td>
<td>27</td>
<td>61</td>
</tr>
</tbody>
</table>
TABLE 11: 2X2 SUMMARY TABLE SHOWING THE DISTRIBUTION OF LMP-1 POSITIVITY ACCORDING TO HISTOLOGICAL SUBTYPE

<table>
<thead>
<tr>
<th>LMP-1</th>
<th>MC</th>
<th>NS</th>
<th>LD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP-1 Positive</td>
<td>21</td>
<td>10</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>LMP-1 Negative</td>
<td>6</td>
<td>22</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>32</td>
<td>2</td>
<td>61</td>
</tr>
</tbody>
</table>

MC = Mixed Cellularity NS = Nodular Sclerosis
LD = Lymphocyte Depleted

TABLE 12: 2X2 SUMMARY TABLE SHOWING THE DISTRIBUTION OF BCL-2 POSITIVITY IN AGE/RACE SUBGROUPS

<table>
<thead>
<tr>
<th>Bcl-2</th>
<th>BA</th>
<th>BP</th>
<th>WA</th>
<th>WP</th>
<th>AP</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2 Positive</td>
<td>15</td>
<td>7</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Bcl-2 Negative</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>13</td>
<td>22</td>
<td>2</td>
<td>1</td>
<td>61</td>
</tr>
</tbody>
</table>

BA = Black Adult BP = Black Paediatric
WA = White Adult WP = White Paediatric
AP = Asian Paediatric
TABLE 9: 2X2 SUMMARY TABLE SUMMARIZING THE DISTRIBUTION OF HISTOLOGICAL SUBTYPE ACCORDING TO AGE/RACE IN THE STUDY GROUP (n=61)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Subtype</th>
<th>Subtype</th>
<th>Subtype</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MC</td>
<td>NS</td>
<td>LD</td>
<td></td>
</tr>
<tr>
<td>Black Adult</td>
<td>8</td>
<td>15</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Black Paediatric</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>White Adult</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>White Paediatric</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Asian Paediatric</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td>22</td>
<td>18</td>
<td>2</td>
<td>42</td>
</tr>
</tbody>
</table>

MC = Mixed Cellularity
NS = Nodular Sclerosis
LD = Lymphocyte Depleted

TABLE 10: 2X2 SUMMARY TABLE SHOWING THE DISTRIBUTION OF LMP-1 POSITIVITY IN EACH AGE/RACE SUBGROUP (n=61)

<table>
<thead>
<tr>
<th>LMP-1</th>
<th>BA</th>
<th>BF</th>
<th>WA</th>
<th>WP</th>
<th>AP</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP-1 Positive</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>LMP-1 Negative</td>
<td>12</td>
<td>3</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Totals</td>
<td>23</td>
<td>13</td>
<td>22</td>
<td>2</td>
<td>1</td>
<td>61</td>
</tr>
</tbody>
</table>

BA = Black Adult
BP = Black Paediatric
WA = White Adult
WP = White Paediatric
AP = Asian Paediatric
TABLE 7: 2X2 SUMMARY TABLE SUMMARIZING THE DISTRIBUTION OF AGE/RACE IN THE STUDY GROUP (n=61)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Adult</td>
<td>23</td>
<td>37.70</td>
</tr>
<tr>
<td>Black Paediatric</td>
<td>13</td>
<td>21.31</td>
</tr>
<tr>
<td>White Adult</td>
<td>22</td>
<td>36.06</td>
</tr>
<tr>
<td>White Paediatric</td>
<td>2</td>
<td>3.27</td>
</tr>
<tr>
<td>Asian Paediatric</td>
<td>1</td>
<td>1.63</td>
</tr>
</tbody>
</table>

TABLE 8: 2X2 SUMMARY TABLE SUMMARIZING THE DISTRIBUTION OF HISTOLOGICAL SUBTYPE IN THE STUDY GROUP (n=61)

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed cellularity</td>
<td>27</td>
<td>44.26</td>
</tr>
<tr>
<td>Nodular Sclerosing</td>
<td>32</td>
<td>52.45</td>
</tr>
<tr>
<td>Lymphoysle Dupliated</td>
<td>2</td>
<td>3.27</td>
</tr>
</tbody>
</table>
Bcl-2 was noted to be positive in 34/61 (55.7%) of cases, distributed as follows: 9 (<10%) Reed-Sternberg/Mononuclear variant cells positive, 12 (10-50%) Reed-Sternberg/Mononuclear variant cells positive, 13 (>50%) Reed-Sternberg/Mononuclear variant cells positive.

The distribution of bcl-2 positivity according to age/race and subtype are depicted in Tables 12 & 13 respectively. 15/23 (65.2%) and 11/22 (50%) Black and White adult cases respectively, showed bcl-2 positivity. 7/13 (53.8%) Black, 1/2 (50%) White and 0/1 Asian paediatric cases were bcl-2 positive. Regarding histological subtype: 1/1 (100%) lymphocyte depleted, and 20/32 (62.5%) nodular sclerosing and 13/27 (48%) cases of mixed cellularity subtype were bcl-2 positive.

Table 14 depicts the interaction between LMP-1 and bcl-2. Although there appears to be a negative association between LMP-1 and bcl-2, the chi-squared test shows that this is not statistically significant (p > 0.15).

Only 3 cases show both LMP-1 positivity and bcl-2 positivity in >50% of the malignant cells.
4.0 RESULTS:

4.1 STUDY GROUP:

The study group comprised 61 patients: 23 black adults, 22 white adults, 13 black paediatric, 2 white paediatric and 1 Asian paediatric patients. (See Table 7).

27 Cases were diagnosed as mixed cellularity subtype; 32 nodular sclerosing subtype; and 2 lymphocyte depleted subtype. (See Table 8).

The distribution of the various subtypes in relation to age/race is depicted in Table 9.

52% of the cases (32/61) were LMP-1 positive; of these 4 showed positivity in <10% of the Reed-Sternberg/Mononuclear variant cells, 5 showed positivity in 10-50% of Reed-Sternberg/Mononuclear variant cells and 23 showed positivity in >50% of Reed-Sternberg/Mononuclear variant cells. The prevalence of LMP-1 positivity according to subtype and age/race is depicted in Tables 10 & 11. Mixed cellularity histological subtype showed the highest prevalence of LMP-1 positivity 21/27 (77.7%), while 1/2 (50%) cases of lymphocyte depleted and 10/32 (31.2%) cases of nodular sclerosing subtype were LMP-1 positive.

The paediatric groups showed a high prevalence of LMP-1 positivity: 10/13 (76.9%) Black, 2/2 (100%) White and 1/1 (100%) Asian paediatric cases were LMP-1 positive. Regarding the adult cases: 11/23 (47.8%) Black and 8/22 (36.3%) White adult cases demonstrated LMP-1 positivity.

EBER positivity was noted in 24/61 cases, all of these were LMP-1 positive (is 8 LMP-1 positive cases were EBER negative).
The agreement between the two methods for measuring the Apoptotic Index was assessed using the procedure outlined in Bland and Altman (1986) viz; a scatter plot of one method vs the other, and a plot of the difference vs the mean of two methods.

Epidemiological data regarding the total 175 patients was obtained retrospectively from patient files and summarised using frequency tables.

No statistical analysis of the study group regarding outcome was possible, due to the small numbers involved as well as the high rate of loss to follow up. This data is depicted in table form in the Results section.
3.9 STATISTICAL ANALYSIS

2x2 summary tables were used to summarise the distribution of the study group (n=61) with respect to age/race and subtype. Similar tables were used to summarise the prevalence of LMP-1, EBER and bcl-2 positivity in this group. LMP-1 and bcl-2 positive cases were also analysed according to the percentage of malignant cells noted to be positive.

Frequency tables were used to summarise the prevalence of LMP-1 and bcl-2 positivity within the age/race and subtype subgroups, and to summarise concordance between LMP-1 and EBER positivity.

The interaction between LMP-1 and bcl-2 was tested using the chi-squared test.

Histograms were used to summarise the distribution of the Apoptotic Index established on 61 cases by observation of mummified cells on the H&E stain, and on 42 cases using the ApopTag kit. The mean and median Apoptotic Index and standard deviation were noted.

The means of the Apoptotic Indices within each subtype and each age/race subgroup were compared using the Analysis of variance (ANOVA) and depicted graphically in box and whisker plots.

A two-way ANOVA was used to compare the means of the Apoptotic Indices by subtype and LMP-1 positivity as well as by subtype and bcl-2 positivity.
The Between group ANOVA of Apoptotic Index (on ApopTag) by Age/Race gave a p-value of 0.56.
FIGURE 16: BOX AND WHISKER PLOTS OF APOPTOTIC INDEX ON APOPTAG BY SUBTYPE

MC = Mixed Cellularity
LD = Lymphocyte Depleted
NS = Nodular Sclerosis

The Between group ANOVA of Apoptotic Index (on ApopTag) by Subtype gave a p-value of 0.33.
FIGURE 15: BOX AND WHISPER PLOTS OF APOPTOTIC INDEX ON H & E
BY RACE/AGE

1 = Black Adult
2 = Black Paediatric
3 = White Adult
4 = White Paediatric
5 = Asian Paediatric

The between group ANOVA of Apoptotic Index (on H & E) by Age/Race gave a p-value of 0.66.
FIGURE 14: BOX AND WHISKER PLOTS OF APOPTOTIC INDICES ON H & E BY SUBTYPE

MC = Mixed Cellularity
LD = Lymphocyte Depleted
NS = Nodular Sclerosis

The Between group ANOVA of Apoptotic Index (on H & E) by Subtype, gave a p-value of 0.84.
Although the box and whisker plot of Apoptotic Index (established on H&E) by subtype and LMP-1 (see Figure 18) appeared to show an interaction, the ANOVA showed that this was not statistically significant ($p = 0.13$). This may be due to the small number of cases.

In particular, there was no statistically significant difference in the Apoptotic Index (on H&E) between LMP-1 positive and LMP-1 negative cases ($p = 0.58$). Although it appears that LMP-1 does not act by inhibiting apoptosis - again, this may be related to small sample size.

The apparent interaction between Apoptotic Index (on H&E) by bol-2 and subtype on the box and whisker plot (see Figure 19) were similarly not statistically significant ($p = 0.22$) - possibly due to sample size. Contrary to expectation, Apoptotic Index on H & E did not differ significantly between bol-2 positive and negative cases ($p = 0.19$), although again this may reflect sample size.

Analysis of Apoptotic Index (established using ApopTag) by LMP-1 and subtype also shows no statistically significant interaction ($p = 0.73$) (see Figure 20). These results also apply to bol-2 and subtype ($p = 0.73$) (see Figure 21), and are possibly as a result of small sample size.

Similarly, analysis of Apoptotic Index (on ApopTag) by LMP-1 shows no statistically significant difference between LMP-1 positive and LMP-1 negative cases ($p = 0.07$). Nor is any statistically significant difference in Apoptotic Index (on ApopTag) noted for bol-2 positive and negative cases ($p = 0.45$).
FIGURE 12: HISTOGRAM OF APOPTOTIC INDICES ON H & E.

Descriptive statistics for Apoptotic Index (H & E)

<table>
<thead>
<tr>
<th>No obs</th>
<th>Mean</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>37.87</td>
<td>38.00</td>
<td>15</td>
<td>71</td>
<td>11.6</td>
</tr>
</tbody>
</table>

FIGURE 13: HISTOGRAM OF APOPTOTIC INDICES ON APOPTAG.

Descriptive statistics for Apoptotic Index (APOPTAG)

<table>
<thead>
<tr>
<th>No obs</th>
<th>Mean</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>41.88</td>
<td>39.0</td>
<td>17.0</td>
<td>100.0</td>
<td>15.85</td>
</tr>
</tbody>
</table>
4.2. APOPTOTIC INDEX (AI)

On morphological assessment of H&E stained sections, \(n = 61 \), the mean Apoptotic Index was 37.87% and the median Apoptotic Index 38% (SD = 11.5) (see Figure 12). The similarity between the mean and median suggests that the distribution of Apoptotic Index is symmetric. Figure 12 illustrates that the normal distribution provide a good fit to the data.

Figure 13 illustrates similar data for the Apoptotic Index determined on staining with ApopTag. Although the mean (41.88%) and median (39.0%) are similar in value, the histogram and fitted normal suggest that the data do not follow the normal distribution. In addition, there appears to be an outline on the right side of the distribution.

Using the Analysis of Variance (ANOVA), there appeared to be no statistical difference between the group means of Apoptotic Index determined on H&E of the various histological subtypes (\(p = 0.34 \)) or the various age/race groups (\(p = 0.66 \)). There were very few White or Asian paediatric cases for analysis. The box and whisker plots illustrate how close the median values are in comparison to the spread around each median (See Figures 14 & 15).

Similar results were obtained using ApopTag i.e. Using the ANOVA, there appeared to be no statistical difference between the group means of Apoptotic Index for the various subtypes (\(p = 0.33 \)) or the various age/race groups (\(p = 0.56 \)) (see Figures 16 & 17).
TABLE 15 (Continued)

WHITE ADULT GROUP (>15 YEARS) (CONTINUED)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Sex</th>
<th>LMP1</th>
<th>Subtype</th>
<th>Stage</th>
<th>Rx</th>
<th>Default</th>
<th>Outcome</th>
<th>Refractory/Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>White adult</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td>2</td>
<td>Chemo complete</td>
<td>•</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>White adult</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>2</td>
<td>Chemo complete</td>
<td>•</td>
<td>Alive</td>
<td>-</td>
</tr>
<tr>
<td>White adult</td>
<td>Male</td>
<td>Positive</td>
<td>NS</td>
<td>3</td>
<td>Chemo complete</td>
<td>•</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>White adult</td>
<td>Male</td>
<td>Negative</td>
<td>NS</td>
<td>2</td>
<td>Chemo complete</td>
<td>•</td>
<td>Alive</td>
<td>-</td>
</tr>
</tbody>
</table>

SUBTYPES:
- MC: Mixed Cellularity
- NS: Nodular Sclerosis
- LD: Lymphocytes Depleted

TREATMENT:
- DXT: Radiotherapy
- ABMT: Autologous Bone Marrow Transplant
TABLE 15 (Continued)
WHITE ADULT GROUP (>15 YEARS)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Sex</th>
<th>LMPI</th>
<th>Subtype</th>
<th>Stage</th>
<th>Rx</th>
<th>Default</th>
<th>Outcome</th>
<th>Refractory/Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>White adult</td>
<td>Female</td>
<td>Negative</td>
<td>MC</td>
<td>3</td>
<td>Chemo incomplete</td>
<td>-</td>
<td>Dead unknown cause</td>
<td>Unknown</td>
</tr>
<tr>
<td>White adult</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>3</td>
<td>Chemo complete</td>
<td>-</td>
<td>Lost to follow up</td>
<td>Refractory & Relapsed</td>
</tr>
<tr>
<td>White adult</td>
<td>Female</td>
<td>Positive</td>
<td>MC</td>
<td>1/2</td>
<td>Chemo complete</td>
<td>-</td>
<td>Died unknown cause</td>
<td>Refractory & Relapsed</td>
</tr>
<tr>
<td>White adult</td>
<td>Male</td>
<td>Negative</td>
<td>MC</td>
<td>4</td>
<td>Chemo, DXT</td>
<td>-</td>
<td>Alive</td>
<td>-</td>
</tr>
<tr>
<td>White adult</td>
<td>Male</td>
<td>Negative</td>
<td>NS</td>
<td>1/2</td>
<td>Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td>-</td>
</tr>
<tr>
<td>White adult</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>3</td>
<td>Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td>-</td>
</tr>
<tr>
<td>White adult</td>
<td>Male</td>
<td>Positive</td>
<td>NS</td>
<td>2</td>
<td>Chemo, SCR</td>
<td>-</td>
<td>Alive</td>
<td>Refractory & Relapsed</td>
</tr>
<tr>
<td>White adult</td>
<td>Male</td>
<td>Negative</td>
<td>MC</td>
<td>2</td>
<td>Chemo complete</td>
<td>-</td>
<td>Dead unknown cause</td>
<td>-</td>
</tr>
<tr>
<td>White adult</td>
<td>Male</td>
<td>Negative</td>
<td>MC</td>
<td>3</td>
<td>Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td>-</td>
</tr>
</tbody>
</table>

SUBTYPES:
- MC - Mixed Cellularity
- NS - Nodular Sclerosis
- LD - Lymphocytic Depressed

TREATMENT:
- DXT - Radiotherapy
- ABMT - Autologous Bone Marrow Transplant
<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Sex</th>
<th>LMP1</th>
<th>Subtype</th>
<th>Stage</th>
<th>Rx</th>
<th>Default</th>
<th>Outcome</th>
<th>Refractory/Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black adult</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>2</td>
<td>Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td>Refractory or relapsed</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Negative</td>
<td>NS</td>
<td>3</td>
<td>Chemo incomplete</td>
<td>-</td>
<td>Dead unknown cause</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Negative</td>
<td>NS</td>
<td>2</td>
<td>Chemo complete</td>
<td>Defaulted</td>
<td>Alive</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Female</td>
<td>Positive</td>
<td>NS</td>
<td>3</td>
<td>Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td></td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td>4</td>
<td>Chemo incomplete</td>
<td>Defaulted</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Female</td>
<td>Positive</td>
<td>MC</td>
<td>4</td>
<td>Chemo</td>
<td>-</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>2</td>
<td>Chemo ongoing</td>
<td>-</td>
<td>Alive</td>
<td>Refractory or relapsed</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td></td>
<td>Chemo incomplete</td>
<td>Defaulted</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Female</td>
<td>Positive</td>
<td>MC</td>
<td>5</td>
<td>Chemo, DXT</td>
<td>Defaulted</td>
<td>Alive</td>
<td>Refractory or relapsed</td>
</tr>
<tr>
<td>Black adult</td>
<td>Female</td>
<td>Negative</td>
<td>MC</td>
<td>2</td>
<td>Chemo ongoing</td>
<td>Defaulted</td>
<td>Alive</td>
<td></td>
</tr>
<tr>
<td>Black adult</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>3</td>
<td>Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td></td>
</tr>
</tbody>
</table>

SUBTYPES:
- MC: Mixed Cellularity
- NS: Nodular Sclerosis
- LD: Lymphocyte Depleted

TREATMENT:
- DXT: Radiotherapy
- ABMT: Autologous Bone Marrow Transplant
TABLE 15 (Continued)

BLACK ADULT GROUP (> 15 YEARS)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Sex</th>
<th>LMP1</th>
<th>Subtype</th>
<th>Stage</th>
<th>Rx</th>
<th>Default</th>
<th>Outcome</th>
<th>Refractory/Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black adult</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>2</td>
<td>Chemo</td>
<td>Definitied</td>
<td>Dead - unknown cause</td>
<td>Refractory or relapsed</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Negative</td>
<td>NS</td>
<td>2</td>
<td>Chemo incomplete</td>
<td>Refused Rx</td>
<td>Dead unknown cause</td>
<td>Refractory or relapsed</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td>4</td>
<td>Chemo incomplete</td>
<td>Definitied</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td>3</td>
<td>Chemo incomplete</td>
<td>Definitied</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Positive</td>
<td>MC</td>
<td>2</td>
<td>Chemo incomplete</td>
<td>Definitied</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Negative</td>
<td>NS</td>
<td>2</td>
<td>Chemo, DXT, SCR</td>
<td>Definitied</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Negative</td>
<td>NS</td>
<td>4</td>
<td>Chemo incomplete</td>
<td>Definitied</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Female</td>
<td>Negative</td>
<td>NS</td>
<td>4</td>
<td>Chemo incomplete</td>
<td>Definitied</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Positive</td>
<td>NS</td>
<td>1/2</td>
<td>Chemo complete</td>
<td>Definitied</td>
<td>Alive</td>
<td>Refractory or relapsed</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Positive</td>
<td>NS</td>
<td>2</td>
<td>Chemo complete</td>
<td>-</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
<tr>
<td>Black adult</td>
<td>Male</td>
<td>Negative</td>
<td>NS</td>
<td>2</td>
<td>Chemo complete</td>
<td>Definitied</td>
<td>Lost to follow up</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

SUBTYPES:
- **MC**: Mixed Cellularity
- **NS**: Nodular Sclerosis
- **LD**: Lymphocyte Depleted

TREATMENT:
- **DXT**: Radiotherapy
- **ABMT**: Autologous Bone Marrow Transplant
TABLE 15 (Continued)

WHITE PAEDIATRIC GROUP (≤15 YEARS)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Sex</th>
<th>LMP1</th>
<th>Subtype</th>
<th>Stage</th>
<th>Rx</th>
<th>Default</th>
<th>Outcome</th>
<th>Refractory/Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>White paediatric Male Positive MC 2 Chemo complete</td>
<td>-</td>
<td>Alive</td>
<td></td>
<td></td>
<td>-</td>
<td>Allo</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>White paediatric Male Negative MC 2 Chemo & DXT</td>
<td>-</td>
<td>Dead - unrelated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASIAN PAEDIATRIC GROUP (≤15 YEARS)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Sex</th>
<th>LMP1</th>
<th>Subtype</th>
<th>Stage</th>
<th>Rx</th>
<th>Default</th>
<th>Outcome</th>
<th>Refractory/Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asian paediatric Male Positive NS 3 Chemo</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td>Allo</td>
<td>Alive</td>
<td>-</td>
</tr>
</tbody>
</table>

SUBTYPES:
- MC - Mixed Cellularity
- NS - Nodular Sclerosis
- LD - Lymphocyte Depleted

TREATMENT:
- DXT - Radiotherapy
- ABMT - Autologous Bone Marrow Transplant
TABLE 17: DISTRIBUTION OF HISTOLOGICAL SUBTYPE ACCORDING TO AGE/RACE FOR THE CASES IN THE EPIDEMIOLOGY GROUP (n=175)

<table>
<thead>
<tr>
<th>Histological subtype</th>
<th>Black Adults (n=43)</th>
<th>White Adults (n=71)</th>
<th>Asian Adult (n=1)</th>
<th>Unknown race Adult (n=1)</th>
<th>White Paediatric (n=40)</th>
<th>Black Paediatric (n=5)</th>
<th>Asian Paediatric (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed cellularity</td>
<td>13</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>Nodular sclerosis</td>
<td>25</td>
<td>38</td>
<td>1</td>
<td>-</td>
<td>10</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Lymphocyte depleted</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Lymphocyte predominant</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>No lymph node biopsy</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Unclassifiable</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unable to find</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

No lymph node biopsy - indicates that the diagnosis was made on same other tissue.
TABLE 16: DISTRIBUTION OF AGE/RACE, AVERAGE AGE AND MALE:FEMALE RATIO IN THE EPIDEMIOLOGY GROUP (n = 175)

<table>
<thead>
<tr>
<th>Age/Race</th>
<th>Black Adults</th>
<th>White Adults</th>
<th>Asian Adult</th>
<th>Black Paediatric</th>
<th>White Paediatric</th>
<th>Asian Paediatric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>43</td>
<td>71</td>
<td>1</td>
<td>40</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Average Age</td>
<td>32yrs 7m</td>
<td>41yrs 6m</td>
<td>58yrs</td>
<td>68yrs 6m</td>
<td>9yrs 11m</td>
<td>10yrs 7m</td>
</tr>
<tr>
<td>Male:Female Ratio</td>
<td>1.04:1</td>
<td>1.03:1</td>
<td>3.4:1</td>
<td>1:1</td>
<td>0.6:1</td>
<td></td>
</tr>
</tbody>
</table>

One adult male of unstated race, aged 29 years is not included in the table.
The 1 Asian case was a male of 58 years with nodular sclerosis HD. In one case the race of the patient was not obtainable, he was a male with no lymph node biopsy. Age 29 years.

Details of the adult age distribution are summarised in Table 19.
There were 116 Adult patients.

43 of these were Black adults with an average age of 32 years and 7 months and a male:female ratio of 1.04:1.

Their histological subtype distribution was as follows:

- Mixed Cellularity = 13
- Nodular Sclerosis = 25
- Lymphocyte Predominant = 1
- No lymph node biopsy = 4

71 were white patients with an average age of 41 years and 6 months and a male:female ratio of 1.03:1.

Distribution of histological subtype:

- Mixed Cellularity = 23
- Nodular Sclerosis = 38
- Lymphocyte Depleted = 1
- Lymphocyte Predominant = 1
- No lymph node biopsy = 2
- Unclassifiable = 3
- Unable to find = 3
The distribution of subtypes were as follows:

Black children (n=40)
- **Mixed Cellularity** = 22.
- **Nodular Sclerosis** = 13.
- **Lymphocyte Depleted** = 2.
- **Lymphocyte Predominant** = 1.
- **No lymph node biopsy** = 2
 i.e. diagnosis was made on some other tissue.

White children (n=14)
- **Mixed Cellularity** = 4.
- **Nodular Sclerosis** = 10.

Asian children (n=5)
- **Mixed Cellularity** = 3.
- **Nodular Sclerosis** = 2.
4.3 EPIDEMIOLOGY

Analysis of the data available on the 175 patients with a diagnosis of HD summarised in Tables 16 & 17.

There were 59 paediatric cases (Defined as ≤ 15 years). 40 of these were Black children with an average age of 8 years and 6 months and a male:female ratio of 3.4:1. 14 were White children with an average age of 9 years and 11 months and male:female ratio 1:1. 5 were Asian children average age 10 years and 7 months and male:female ratio 0.6:1. Detailed age distribution is summarised in Table 18.
4.3 EPIDEMIOLOGY

Analysis of the data available on the 175 patients with a diagnosis of HD summarised in Tables 16 & 17.

There were 59 paediatric cases (Defined as≤15 years). 40 of these were Black children with an average age of 8 years and 6 months and a male:female ratio of 3.4:1. 14 were White children with an average age of 9 years and 11 months and male:female ratio 1:1. 5 were Asian children average age 10 years and 7 months and male:female ratio 0.6:1. Detailed age distribution is summarised in Table 18.
There appears to be very poor agreement between the two methods used to assess Apoptotic Index. This is depicted in the scatter plot of Apoptotic Index established on ApopTag vs Apoptotic Index established on H&E - (see Figure 22), and corroborated on the scatter plot of the Difference vs the Mean of the two methods (see Figure 23). The scatter of the difference between Apoptotic Index on H&E and ApopTag appears to be narrower at smaller values of the mean than at large values. The mean difference was 3.67 and the standard deviation was 15.34.

FIGURE 22: SCATTER PLOT OF APOPTOTIC INDEX FOR APOPTAG AND H & E
FIGURE 21: BOX AND WHISKER PLOTS OF APOPTOTIC INDEX ON APOPTAG
BY SUBTYPE AND BCL-2

MC = Mixed Cellularity NS = Nodular Sclerosis
LD = Lymphocyte Depleted

The two-way ANOVA of Apoptotic Index (on ApopTag) by Subtype and Bcl-2 gave a p-value of 0.73.

The ANOVA of Apoptotic Index (on ApopTag) by Bcl-2 gave a p-value of 0.45.
The two-way ANOVA of Apoptotic Index (on ApopTag) by Subtype and LMP-1 gave a p-value of 0.73.

The ANOVA of Apoptotic Index (on ApopTag) by LMP-1 gave a p-value of 0.07.
FIGURE 19: BOX AND WHISKER PLOTS OF APOPTOTIC INDEX ON H & E
BY SUBTYPE AND BCL-2

MC = Mixed Cellularity NS = Nodular Sclerosis
LD = Lymphocyte Depleted

The two-way ANOVA of Apoptotic Index (on H & E) by Subtype and Bcl-2 gave a p-value of 0.22.

The ANOVA of Apoptotic Index (on H & E) by Bcl-2 gave a p-value of 0.19.
FIGURE 18: BOX AND WHISKER PLOTS OF APOPTOTIC INDEX ON H & E

BY SUBTYPE AND LMP-1

MC = Mixed Cellularity NS = Nodular Sclerosis
LD = Lymphocyte Depleted

The two-way ANOVA of Apoptotic Index (on H & E) by Subtype and LMP-1 gives a p-value of 0.13.

The ANOVA of Apoptotic Index (on H & E) by LMP-1 gave a p-value of 0.58.
Nevertheless, there is evidence to suggest a role for LMP-1 in the pathogenesis of EBV positive HD as it is strongly expressed in concentrations that would be toxic to a normal cell. In addition, LMP-1 has been identified as being essential for immortalisation of B cells (in combination with other latent proteins), can transform human keratinocytes, and is known to have transforming potential in rat fibroblasts. Evidence suggests that, at least in HD, LMP-1 is not acting through up regulation of bel-2. A seemingly neglected article, (Mosialos et al, 1991) describes the interaction of LMP-1 with Tumour Necrosis Factor Receptor associated Factors (TRAFS). LMP-1 interacts with a novel human protein LAP-1 as well as an EBV induced human protein EB16. Both these proteins interact with the p80 Tumour Necrosis Factor Receptor, and LAP-1 also binds CD40 and the Lymphotoxin β receptor. LAP-1 is homologous to a murine protein (TRAF 2) which is implicated in growth signalling from the p80 Tumour Necrosis Factor Receptor. It is hypothesized that normally, binding of Tumour Necrosis Factor Receptor causes cross linking of the extracellular domains of the Tumour Necrosis Factor Receptor, leading to aggregation of intracellular domains with their associated TRAFs, resulting in signal transduction. As LMP-1 molecules normally form a complex at the plasma membrane, this may lead to aggregation of LMP-1 associated LAP-1 and EB16 resulting in constitutive signal transduction and increased proliferation. In addition, competition between LMP-1 and p60 Tumour Necrosis Factor Receptor binding to LAP-1, may block induction of apoptosis usually mediated by that receptor.

EBV recombinants deleted for portions of the LMP-1 carboxy terminal domain, including the amino acids which interact with LAP-1 are incapable of transforming B Lymphocytes.
As BHRF-1 (an EBV gene which shares extensive homology with bcl-2) is expressed in the lytic rather than latent phase of EBV infection, this is also unlikely to contribute to tumorigenicity.

Another possible viral target could be p53, which functions as a cell-cycle checkpoint control, leading to either growth arrest in the G1/S phase of the cell or culminating in apoptosis. It has been reported that EBNA 5 which is required for EBV induced B cell transformation, can form a complex with p53 and the retinoblastoma protein, possibly impairing their tumour suppressor function (Szekely et al, 1993). However, like BHRF-1, EBNA 5 is not characteristically expressed in EBV positive HD, and is therefore unlikely to play a role in the pathogenesis of HD. A study from Natal (Bicklhoel; Chetty, 1997) has showed that 39 of 43 EBV positive cases were negative for Retinoblastoma protein, suggesting that EBV may cause inactivation of the latter through another mechanism.

It has also been proposed that the growth of malignant cells and their interaction with other reactive cells, are mediated through cytokines. Production of several cytokines has been detected in Hodgkin’s and Non-Hodgkin’s Lymphoma. (Hsu et al, 1993).

In 1996, Klein et al demonstrated that most of the Burkitt lymphoma cell lines infected by wild type EBV or the EBV strain B95-8, produced IL8, IL10, TNFα, TNFβ, in contrast to EBV negative lines or to cell lines infected with the non-transforming EBV strain P3HR1. Although results obtained from cell lines should probably be treated with reserve, further investigations along these lines may implicate viral induced cytokines in the pathogenesis of HD.
for EBRRs (Weiss; Chang, 1992; Lauritzen et al, 1994) and is thought to have contributed to the high rates of EBV positivity obtained with PCR.

5.4 THE ROLE OF EBV IN HD

In 1991, a paper published in Cell using DNA transfection showed that LMP-1 could protect human B cells from apoptosis by up regulating the expression of bcl-2. (Henderson et al, 1991). This finding led to speculation that this process may play a role in the pathogenesis of EBV positive HD. Although 34/61 (55.7%) of the cases in our series showed bcl-2 expression in the Reed-Sternberg/Mononuclear variant cells, no positive association with LMP-1 expression was demonstrated. This lack of interaction between LMP-1 and bcl-2 has been reported by other authors. (Armstrong et al, 1992b; Jiwa et al, 1993; Jiwa et al, 1995).

In the present series 15/23 (65%) of Black adult cases 11/22 (50%) of White adult cases, and 8/16 (50%) paediatric cases were bcl-2 positive in Reed-Sternberg/Mononuclear variant cells. Nodular sclerosis subtype showed a higher rate of positivity when compared to mixed cellularity subtype (62.5% vs 48%).

One of the two cases of lymphocyte depleted subtype was bcl-2 positive.

It therefore, seems that despite the strong evidence for an association between EBV and HD, the exact pathogenetic role of the virus remains elusive.

It has been suggested that EBV may interact with bcl-2 homologues such as bcl-x. However, bcl-x expression is not specific to EBV positive HD, but is also noted in EBV negative cases of
Small numbers, variation in subtype (known to affect prognosis), and differences in clinical stage at presentation make accurate comparison of outcome in LMP-1 positive and negative cases difficult to predict in our series.

In a recent editorial (Oudejans et al., 1997) state that a group of 80 patients with nodular sclerosis or mixed cellularity HD, patients with EBV positive disease had a shorter progression free survival time. However, no differences were observed in overall survival time. Whether these patients were paediatric or adult is not specified. Similar results were observed by Vestlev et al., (1992). In contrast, the Cape Town study suggested that EBB positivity confers a more favourable outcome in childhood HD. Hence, the influence of LMP-1 on prognosis of HD remains to be resolved.

5.3 COMPARISON OF EBER vs LMP 1 - TECHNICAL CONSIDERATIONS

Contrary to other reports, in situ hybridisation for detection of EBERs, was less sensitive than Immunohistochemical detection of LMP-1. 8/32 LMP-1 positive cases, were negative for EBERs on 2 separate occasions. The reasons for this are probably related to fixation/processing of the tissue.

Since in-situ hybridisation was time consuming and technically demanding, it is therefore suggested that immunohistochemical detection of LMP-1 would be a practical option for routine diagnostic use in the laboratory. A few (3) of the cases that were positive with LMP-1 and EBERs in the Reed-Sternberg/Mononuclear variant cells, also showed positivity in occasional background small lymphocytes. Similar findings have been reported with the in-situ hybridisation
A major shortcoming of the present study was that there were insufficient White paediatric cases for comparison with Black paediatric cases. As most Black children in South Africa show EBV seroconversion at an early age, (Macdougall et al, 1993), they might have been expected to show a significantly higher prevalence of EBV positivity in HD, than White children who may only be exposed to EBV in early adulthood. Such data would obviously need to be controlled for histological subtype, as the increased incidence of mixed cellularity subtype within the Black paediatric group would also increase the rate of EBV positivity.

Similarly differences may have been expected between White and Black adult cases of HD. In our series, Black adult cases showed a somewhat higher prevalence of EBV positivity as compared with White adult cases (47.8% vs 36.3%). This was primarily due to different prevalence of EBV positivity within the mixed cellularity subtype (87.5% vs 54.5%). However, the nodular sclerosis subtype showed similar rates of positivity among Black and White adult cases (26.6% vs 20%).

A recent report from Natal showed somewhat higher prevalence for EBV positivity in HD. 43 of 71 (60.6%) cases of HD were shown to be EBV positive using immunohistochemistry for LMP-1 and in-situ hybridisation for EBERs (Bickhoo; Chetty, 1997). This included 5/9 (55.5%) cases in the <15 year age group.

Comparisons of EBV positivity in adult cases of HD from Algeria and France using in-situ hybridisation for EBB DNA and RNA, showed 72% (n=25) and 33% (n=21) positivity respectively. Positivity was more frequent in mixed cellularity than other subtypes. A study of a Mexican adult population showed 35/50 (70%) of HD, to be EBV positive (Quintanilla-Martinez et al, 1995), with all histological subtypes being associated.
There appears therefore to be fairly strong evidence supporting a role for EBV in HD in the paediatric age group, particularly <10 years. Whether this is subject to geographical or ethnic variation, will require further investigation.

TABLE 20: GLOBAL COMPARISON OF HD VS EBV IN PAEDIATRIC AGE GROUP

<table>
<thead>
<tr>
<th>Country</th>
<th>Technique</th>
<th>Age</th>
<th>EBV Positive</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK, Brazil, Saudi Arabia</td>
<td>ISH for BHBR, HIC</td>
<td>1-4 yrs</td>
<td>6/7 (85.7%)</td>
<td>Armstrong et al., 1993</td>
</tr>
<tr>
<td></td>
<td>for LMP-1 or Southern blot</td>
<td>5-9 yrs</td>
<td>18/20 (90%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-15 yrs</td>
<td>14/28 (50%)</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>ISH for BHBR, HIC</td>
<td><9 yrs</td>
<td>4/7 (57%)</td>
<td>Ambinder et al., 1993</td>
</tr>
<tr>
<td></td>
<td>for LMP-1</td>
<td>10-14 yrs</td>
<td>5/18 (27.7%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15+ yrs</td>
<td>8/8 (100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/3 (100%)</td>
<td></td>
</tr>
<tr>
<td>Haiti</td>
<td>ISH for BHBR, HIC</td>
<td><15 yrs</td>
<td>18/20 (90%)</td>
<td>Chaung et al., 1993</td>
</tr>
<tr>
<td></td>
<td>for LMP-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>ISH for BHBR</td>
<td><18 yrs</td>
<td>33/53 (100%)</td>
<td>Weinreb et al., 1996a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>HIC for LMP-1</td>
<td>0-4 yrs</td>
<td>3/3 (100%)</td>
<td>Andreas et al., 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-9 yrs</td>
<td>8/13 (61.5%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-15 yrs</td>
<td>6/26 (21.4%)</td>
<td></td>
</tr>
<tr>
<td>Natal</td>
<td>ISH for BHBR, HIC</td>
<td><10 yrs</td>
<td>3/4 (75%)</td>
<td>Diokhou, Chisty 1997</td>
</tr>
<tr>
<td></td>
<td>for LMP-1</td>
<td>11-15 yrs</td>
<td>2/5 (40%)</td>
<td></td>
</tr>
<tr>
<td>Cape Town</td>
<td>ISH for BHBR, HIC</td>
<td><15 yrs</td>
<td>32/47 (68%)</td>
<td>Shiel-smith et al., 1997</td>
</tr>
<tr>
<td></td>
<td>for LMP-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong Kong (Chinese</td>
<td>ISH for BHBR</td>
<td><15 yrs</td>
<td>4/5 (80%)</td>
<td>Chau et al., 1995</td>
</tr>
<tr>
<td>population)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>ISH for BHBR</td>
<td><12 yrs</td>
<td>4/4 (100%)</td>
<td>Zhou et al., 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>HIC for LMP-1</td>
<td><5 yrs</td>
<td>2/5 (40%)</td>
<td>Weinreb et al., 1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-10 yrs</td>
<td>12/27 (44%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-15 yrs</td>
<td>23/42 (56%)</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>ISH for BHBR, HIC</td>
<td>2-4 yrs</td>
<td>38/75 (50%)</td>
<td>Weinreb et al., 1996b</td>
</tr>
<tr>
<td></td>
<td>for LMP-1</td>
<td>5-10 yrs</td>
<td>40/82 (99%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 yrs</td>
<td>8/16 (50%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 yrs</td>
<td>6/12 (50%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 yrs</td>
<td>7/8 (88%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 yrs</td>
<td>7/14 (50%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 yrs</td>
<td>9/18 (50%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 yrs</td>
<td>11/16 (70%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 yrs</td>
<td>34/42 (81%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 yrs</td>
<td>56/56 (100%)</td>
<td></td>
</tr>
</tbody>
</table>

87
Other studies have suggested that paediatric cases of HD from developing countries have a much higher incidence of EBV positivity than figures quoted for the USA and Europe. A study comparing EBV positivity in paediatric HD in the United States and Honduras, showed 11/11 (100%) of the Honduras cases to be EBV positive vs 9/25 (36%) from the United States (Ambinder et al, 1993). 8/11 and 4/9 of these children from Honduras and USA respectively were ≤9 years of age. Recent work from Kenya (Weinreb et al, 1996a) quotes 100% EBV positivity in childhood cases of HD. A report from Peru of a largely paediatric group quotes EBV positivity in 94% of cases (Chang et al, 1993).

Investigators from the United States have now published findings of 38.6% EBV positivity in 44 paediatric cases of HD. These showed a striking age distribution: 3/3 cases LMP-1 positive in ≤4 years age group, 8/13 (61.5%) LMP-1 positive in the 5-9 year group; and 21.4% LMP-1 positive in the 10-15 year old group (Andriko et al, 1997) (See Table 20).

It is of interest that Weinreb et al (1996b), quote an EBV positive HD prevalence of 50% for South Africa in the 5-14 year age group. A recent report from Natal showed only 5/9 (55%) of cases of HD in the <15 year age group to be positive (Bickhop; Chetty, 1997).

A report from Cape Town also showed a somewhat lower prevalence of EBB in childhood HD than was noted in our series (Sinclair et al, 1997). 32/47 (68%) of cases of paediatric HD were EBB positive, with a racial distribution of 18/24 (75%) Mixed Race, 10/15 (67%) Black, 4/8 (50%) White. Similarly to our findings there was a trend for the mixed cellularity cases to be positive (4/5) when compared with the nodular sclerosis (28/42).
Data from the South African National Cancer Registry in 1988 (Sitas, 1992) in fact suggests that the overall frequency of HD is lower in Blacks of all ages, than in Whites. This may however, represent underreporting of cases, particularly from rural areas, where access to health care is limited.

Hospital based registries and studies from other African countries, including Zambia and Zimbabwe, suggest that the Type 1 epidemiological pattern predominates in these countries. (Emmanuel; Gelfand, 1975; Naik; Bhagwandeen, 1976).

5.2 PREVALENCE OF EBV IN HODGKIN'S DISEASE AT BARAGWANATH AND JOHANNESBURG GENERAL HOSPITALS

In our series the overall prevalence of EBV positivity assessed by immunohistochemical detection of LMP-1 in HD (52%) and its association with histological subtype (77.7% mixed cellularity subtype EBV positive, 31% nodular sclerosus subtype EBV positive) is similar to that reported for Europe and North America.

The prevalence of EBV was striking in the paediatric subgroup (10/13 black, 2/2 white and 1/1 Asian paediatric cases were EBV positive - 81% overall). Except for one child, all were <10 years of age, supporting Armstrong's findings that HD in this age group was particularly likely to be EBV positive. (Armstrong, et al, 1993). This latter study included 55 cases of paediatric HD from the United Kingdom, Brazil and Saudi Arabia and showed no significant difference in EBV positivity by country.
Although incidence rates cannot be calculated from this information the occurrence of HD and predominance of mixed cellularity subtype among black paediatric patients, suggests that this group may fit the Type 1 epidemiological pattern frequently noted in developing countries (viz: high rates in children and predominance of histological subtypes associated with poor prognosis) (Jarrett, 1992). It is difficult to comment whether the Black adult group comply to the expected low rate of HD in older age groups, usually noted in this pattern. Certainly within our groups these appear to be a significant number of patients (21/43) representing the 15-29 years age group which is not expected in a Type 1 epidemiological pattern.

Although no comment is possible regarding the incidence rate, white paediatric cases are reported, but these differ from the Black paediatric group in being predominantly of the nodular sclerosis subtype. 25/71 White adult patients fall into the 15-29 year age group. Although Whites are traditionally regarded as a higher socio-economic group in South Africa, our limited analysis does not show that the White patient group to fitting the classic Type III epidemiological pattern associated with developed countries (viz young adult peak, favourable prognostic histological subtype, with a second peak in older age groups). Again, this may represent bias in population groups presenting to government hospitals or may reflect bias introduced by only looking at a small portion of the total patient group.

There were insufficient Asian cases to comment on epidemiological patterns.
5.0 DISCUSSION

5.1 EPIDEMIOLOGY

Our data from 2 centres, suggests that the average age of Black (n = 40) and White (n=14) paediatric patients with HD was very similar (8 years and 6 months vs 9 years and 11 months). The few Asian children in the study (n=5), had a slightly older average age of 10 years and 7 months. Mixed cellularity subtype was more common amongst Black children than White children (55% vs 28.5%), whilst nodular sclerosis HD was the predominant subtype noted in White children (71.4% vs 32.5% in the Black paediatric population). The Black paediatric group conformed to the expected increase in male:female ratio, while the White paediatric group showed a 1:1 ratio. The latter is probably related to the predominance of nodular sclerosis subtype in this group.

In the adult group, both black and white patients showed the expected 1:1 male:female ratio, and nodular sclerosis HD was the commonest histological subtype in both groups (58% in blacks, 53.5% in whites). White patients tended to present at an older average age than Black patients (41 years and 6 months vs 32 years and 7 months).

This data obviously only represents a proportion of the HD seen in South Africa. In addition, lack of access to health care, recognition of oncology units as referral centres, particular subpopulations presenting to government hospitals rather than private oncology units etc, introduce bias into the data.
<table>
<thead>
<tr>
<th>Age</th>
<th>Black Ethnic Group</th>
<th>White Ethnic Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20yr</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>20-24yr</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>25-29yr</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>30-34yr</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>35-39yr</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>40-44yr</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>45-49yr</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>50-54yr</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>55-59yr</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>60-64yr</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>65-69yr</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>70-74yr</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>>75yr</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>43</td>
<td>71</td>
</tr>
</tbody>
</table>
TABLE 18: AGE DISTRIBUTION OF PAEDIATRIC PATIENTS DIAGNOSED AS HAVING HODGKIN'S DISEASE AT THE BARAGWANATH AND JOHANNESBURG GENERAL HOSPITALS FROM JANUARY 1989 TO DECEMBER 1993

<table>
<thead>
<tr>
<th>Age</th>
<th>Black Ethnic Group</th>
<th>White Ethnic Group</th>
<th>Asian Ethnic Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1yr</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-2yr</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3-3yr</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>4-4yr</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5-5yr</td>
<td>8</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>6-6yr</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>7-7yr</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8-8yr</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9-9yr</td>
<td>5</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>10-10yr</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>11-11yr</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>12-12yr</td>
<td>4</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>13-13yr</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>14-15yr</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40</td>
<td>14</td>
<td>5</td>
</tr>
</tbody>
</table>

REFERENCES

Ambinder, R.F., Browning, P.J., Lorenzana, I., Leventhal, B.G., Cosenza, H., Mann, R.B.,
MacMahon, E.M.E., Medina, R., Cardona, V., Grufferman, S., Olshan, A., Levin, A., Petersen,
E.A., Blattner, W., Levine, P.H. (1993) Epstein-Barr Virus and childhood Hodgkin’s Disease in

EBV genomes in Hodgkin’s disease and kl-1 positive anaplastic large cell lymphoma by combined

Disease in the United States: An analysis of histologic subtypes and association with Epstein-Barr
Virus. Modern Pathology, 10 (4), 366-371.

Jarrett, R.F. (1992b) The expression of the EBV latent membrane protein (LMP-1) is independent
of CD23 and bcl-2 in Reed-Sternberg cells in Hodgkin’s disease. Histopathology, 21, 72-73.
6.0 CONCLUSION:

This study of 61 patients with HD at the Baragwanath and Johannesburg Hospitals has shown the following:

The prevalence of EBV positive HD, using immunohistochemical detection of LMP-1 and in situ hybridisation for detection of EBERs is 52%, which is similar to figures quoted for Europe and North America.

- EBV positivity shows a strong association with mixed cellularity subtype.
- Children ≤ 10 years of age show a particularly high prevalence of EBV positive HD.
- There does not appear to be any interaction between LMP-1 and bcl-2 expression.

Although the actual incidence of HD was not determined, the Black paediatric population appear to approximate the Type 1 pattern noted in developing countries. The White population show some features of the type III Epidemiological pattern of developed countries, but is probably an intermediate pattern.

In this study, there is very poor agreement between morphological assessment of Apoptotic Index on H & E and immunohistochemical detection with ApopTag (Oncor USA).
Both methods showed no statistically significant difference in Apoptotic Index between LMP-1 positive and LMP-1 negative cases. This may suggest that LMP-1 is acting by increasing proliferation rather than inhibiting apoptosis, but could equally be attributed to the small number of cases. An unsatisfactory absence of a statistically significant difference in Apoptotic Index between bcl-2 positive and bcl-2 negative cases, was also noted on both methods, and is probably related to small case numbers.

Although on morphological assessment mummified cells appear to be more prominent in certain histological subtypes, again neither method, showed any significant difference in Apoptotic Index between histological subtype.
5.5 APOPTOSIS:

Although historically "malignancy" has been associated with increased cell proliferation, the role of anti-apoptotic events in tumourigenesis is becoming increasingly recognised. Speculation regarding the role of EBV in HD has tended to concentrate on its anti-apoptotic characteristics rather than its more obvious proliferative effects.

Investigators from Cape Town (Close et al, 1994) examined apoptosis, using ApopTag, proliferation indices and expression of p53 and bcl-2 in Reed-Sternberg/Mononuclear variant cells. They found a slight inverse correlation between Apoptotic Index and proliferation indices, and identified a subset of cases with a high percentage of cycling cells, relatively low Apoptotic Index and expression of p53 and/or bcl-2. These findings were not related to EBV LMP-1 or EBER expression. This study showed great inter-case variability in Apoptotic Index. This was confirmed in the present study, which also showed poor agreement between the two methods used to assess Apoptotic Index viz morphological assessment of mummified cells on H & E, and ApopTag (ONCOR, USA). This obviously raises questions regarding our ability to recognise apoptotic cells on H & E, and whether mummified cells are truly apoptotic.

The results showed no obvious trends but appeared to be random (i.e. Apoptotic Index was not consistently higher or lower in one or other method). Although care was taken in trying to assess the same fields on each method (especially as they shared a common denominator as ascertained on H & E), this may not have been exact, and in view of the enormous inter-area variability regarding mummified cells, could have been a major contributing factor to the poor agreement between methods.
One EBV +ve cell develops a genetic mutation - conferring a growth advantage.

Unequal distribution of episomes during division.

Results in EBV Negative Cell with growth advantage due to genetic mutation.

Figure 24: Evolution of Epstein-Barr Virus positive and negative Hodgkin's Disease
(similar to Burkitt's Lymphoma), rather than being the "final event" as it appears to be in Post transplant B-cell lymphoproliferative disorders.

Several authors interpret the findings of both EBV positive and EBV negative cases of HD, as support for MacMahon's "Multiple Aetiology Hypothesis" viz that HD is a grouping of at least 3 entities probably with quite distinct aetiologies.

Another scenario may also be plausible: it is possible that all cases of HD are initially associated with EBV. EBV would cause initial cell proliferation, but eventually the cells would develop another mutation which would confer on it a growth advantage independent of the presence of EBV. It is also possible (although it has not been described) that during cell division, unequal sharing of EBV episomes, may render such a cell EBV negative while still retaining its growth advantage, giving rise to apparently EBV negative HD.

The above process would still retain some EBV positive malignant cells: in immuno-competent individuals, LMP-1 expressed by these cells would be recognised as a target by cytotoxic T cells and removed. However, in children, and individuals with impaired immunity (age or nutrition related, or possibly related to other co-existing infections) the above events would be less efficient, leading to a higher incidence of EBV positive HD in children, HIV positive patients and developing countries (see Figure 24).

If racial differences are found to exist this could be possibly be ascribed to different HLA types favouring different viral epitopes.
alternatively that single base mutations occurring in a promoter/enhancer region could affect LMP-1 expression/effects in the absence of the 30bp deletion (e.g. by interfering with phosphorylation sites). These mutations could also act by rendering the strain non-immunogenic.

It is not only the pathogenetic role of EBV in HD that continues to frustrate investigators worldwide. Explanations (and often consensus) on the epidemiological patterns of EBV positivity also remain elusive. Overall, it appears that Europe, North America, and now South Africa show prevalences of EBV positivity in HD of ~40-50%, with a strong association with mixed cellularity subtype.

Adults in developing countries (including Mexico and Algeria) appear to have a higher prevalence of EBV positive HD, with at least one study showing strong associations with all histologic subtypes.

There seems to be emerging consensus that paediatric HD, particularly in the ≤10 year age group, has a strong association with EBV. Some studies suggest that this prevalence is higher in developing than developed countries.

The lower prevalence of adult EBV positive HD in developed countries, as well as the weak association (~30%) between EBV positivity and nodular sclerosis subtype, which is found predominantly in young adults in these countries, argues strongly against the "Delayed Exposure Hypothesis" that development of HD is related to late infection with EBV.

It is possible that EBV's role in HD is part of a multistep process of malignant transformation.
The role of LMP-1 in the cell is ambiguous. Although it is responsible for B-cell transformation, its expression on the surface of the cell also makes it a target for cytotoxic T cell leading to cell destruction. It is interesting that at least two of the proposed pathogenetic roles for EBV in HD probably represent viral attempts to avoid destruction by the immune system viz, the above possible anti-apoptotic activity, and the production of an Interleukin-10 homologue and TNF β which inhibit cytotoxic T cells.

A naturally occurring variant of LMP-1 has been described in some cases of EBV positive HD (Sandvej et al., 1994; Bellas et al., 1996). This variant is the result of a 30bp deletion in the carboxy terminal end of the LMP-1 gene. It has been described in “ordinary HD”, and in one study, showed a particularly high prevalence in HIV associated HD (Bellas et al., 1996). The deletion appears to be associated with histologically aggressive behaviour (as implied by a high frequency of neoplastic cells). Rather than affecting interactions with the Tumour Necrosis Factor Receptor pathways, this deletion occurs in a region of LMP-1 required for rapid protein turnover and may act to prolong the half-life of the protein, leading to accumulation within the cell.

This EBV strain (CAO-BNLF1) was initially identified in the nude mouse-propagated Chinese Nasopharyngeal Carcinoma CAO cell line. The CAO-BNLF-1 gene was shown to have a 30bp deletion and 7 single base mutations, and according to tumorigenecity studies on SCID and nude mice, was more tumorigenic than the LMP-1 protein encoded by the B95.8 EBV strain. It should be noted however, that the 30bp deletion and 6 of 7 single base mutations were found in 3/9 of tonsils of acute infectious mononucleosis in Denmark and therefore also occur in non-malignant states. Sandvej et al (1994) suggest that the 30bp deletion and single base mutations may arise independently and that the single base mutations could modify the effects of the deletion, or

Targets for detection by in situ hybridisation with oligonucleotide probes. *Journal of Clinical*

Frade, R., Barel, M., Ehlin-Henriksson, B., Klein, G. (1985) gp140, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor. Proceedings of the National Academy of Sciences of the United States of America, 82, 1490-1493.

