THE CORRELATION BETWEEN PRE-TEST PROBABILITY AND V/Q SCAN RESULTS IN PATIENTS PRESENTING WITH SUSPECTED PULMONARY EMBOLISM

ABDUL BASIT RAHMANI

A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science (MSc), in Emergency Medicine.

JOHANNESBURG, 2016
DECLARATION
I declare that this is my own unaided work. It is being submitted for the degree of Master of Science (MSc), in Emergency Medicine, to the University of the Witwatersrand. It has not been submitted before for any other degree or examination at this or any other University.

______________________ _______________________
Abdul Basit Rahmani Date
ETHICS COMMITTEE APPROVAL

Approval for this study was granted by the Human Research Ethics Committee, University of the Witwatersrand (Clearance Certificate Protocol Number – M090903 / Reference Number R14/49).
DEDICATION

This work is dedicated to my family and all my educators.
ABSTRACT

Pulmonary embolism (PE) is a major diagnostic challenge facing emergency medicine physicians. It affects over 900,000 patients every year. Only two-thirds of the patients affected are alive one month after the diagnosis, while only half live to about a year.

The exact aetiology is not known, but several risk factors have been implicated in the aetio-pathogenesis of the disease. Furthermore, as this disease has no definitive symptoms or signs, the diagnosis in patients suspected of harbouring a PE is only confirmed or excluded after special investigations.

Although anticoagulation is an effective treatment, it has its inherent side-effects and associated morbidity. Thus, it is prudent to utilize clinical scoring systems to direct diagnostic pathways prior to instituting treatment. In this regard, several clinical decisions have been promoted to assist physicians in the workup of a patient with hypoxia. One well advocated rule is the Wells criteria, which consists of seven components, each of which is given a score. All the scores are then added up to give a total, i.e. the Wells score. Based on the Wells score, the clinician is then able to assign a clinical pre-test probability of the patient having PE – i.e. low, medium or high risk.

Although a pulmonary angiography offers the only definitive means of establishing a diagnosis of PE, it is not practical to employ such an invasive and expensive technique as a screening test. The V/Q scan has been widely used instead; and, has been shown to be an effective non-invasive procedure for the detection of PE.

Patients referred for a ventilation-perfusion scan (V/Q scan) are categorised as having no typical evidence of PE, or very low probability, low probability, intermediate probability or high probability of having a PE.

Objective: The study set out to determine the correlation between the probability given by the Wells score and the probability obtained from the V/Q scan results.
Methods: The study entails a retrospective analysis of 120 adult patients (>18 years of age), who were referred for a V/Q scan for suspected pulmonary embolism at Charlotte Maxeke Johannesburg Academic Hospital and Chris Hani Baragwanath Academic Hospital over a 16 month period.

Clinical notes were obtained to ascertain risk factors, presenting symptoms and other data to determine pre-test probability of having a pulmonary embolus. This pre-test probability was categorised according to the Wells score into low, moderate or high risk to provide a more objective measure. The V/Q scan results were obtained from the Nuclear Medicine Department at the health care facility, and these results were subsequently compared to the Wells score in order to establish a correlation between the two parameters, i.e. pre-test probability vs V/Q scan results.

Results: The sample population comprised of patients from various age groups, ranging from 18 years to 86 years of age. The median age was 55 years, with almost half of the patients being in the 6th and 7th decades of life.

Significant risk factors in our setting were found to be advanced age, history of immobilisation and acute medical illnesses. In the younger population, a history of immobilisation due to trauma or post surgery, and HIV/AIDS were found to be the most significant risk factors.

Based on the history, and presenting signs and symptoms, all the patients were initially categorised into low, moderate or high pre-test probability based on the Wells score. The majority of the patients were categorised as moderate risk (59%). Thirty percent (36 patients) were categorised as low risk, and the remainder (11%) as high risk for having a PE.

On the V/Q scan results, a total of 74% of patients scanned fell into the low probability, very low probability or no typical evidence category. For the purposes of statistical analysis, these three categories were combined into one category, labelled simply as low probability. Thirteen percent of the patients were classified as
intermediate probability and the remaining thirteen percent as high probability on the V/Q scan.

On analysis of the data, 80% of patients that were initially categorised as low risk based on the Wells score were also classified as low probability on the V/Q scan results (this category included the low probability, very low probability or no typical evidence categories as mentioned earlier). Of the patients classified initially as high risk on the Wells score, only 15% were also classified as high probability on the V/Q scan results.

Conclusion: Of the 120 patients studied, only 15 patients (13%) turned out to have a high probability of PE on the VQ scan. Our study demonstrated good agreement between patients with low risk of PE on the Wells score compared to the low probability of PE on the V/Q scan results. Practically this implies that if a physician finds himself in a health care centre lacking a nuclear medicine facility, he may safely base management decisions in patients with a low pre-test risk of PE on the Wells score. However, there was poor agreement between the moderate and high risk patients compared to the intermediate and high probability of PE on the V/Q scan results, respectively. These patients would require a V/Q scan to guide management decisions.

Many factors may have contributed to this poor agreement in our setting. The first factor is the diagnostic workup and inappropriate investigation of patients in the public sector hospitals. Since the patients were referred based solely on presenting signs and symptoms, it is possible that some patients were referred inappropriately for V/Q scans. We do acknowledge that this diagnosis is not always easy clinically in light of the non-specific signs and symptoms. It is for this very reason that clinical decision rules, such as the Wells prediction rule, have been developed in an attempt to improve implicit clinical judgement. The patients in our sample population may not have been referred for a V/Q scan primarily based on the Wells score. Instead, the Wells score was often calculated in retrospect by the investigating departments.
Furthermore, this being a retrospective analysis, no formal diagnostic pathways were followed prior to requesting a V/Q scan. It seems from the results however, that some patients had been subjected to a V/Q scan unnecessarily, despite having a low pre-test probability as well as negative D-dimer results. The V/Q scan could have been entirely avoided in these patients and thus prevented unnecessary radiation exposure. A further prospective study with a larger patient base may yield more conclusive results.
ACKNOWLEDGEMENTS

I would like to sincerely thank the following people:-

i. My supervisor and mentor, Professor M Patel, for his assistance, guidance, valuable advice, and the support that he provided throughout the study

ii. My co-supervisor, Professor MDTWH Vangu, for his guidance and valuable advice

iii. Professor E Kramer, Head of Emergency Medicine, University of the Witwatersrand for his foresight, support, guidance and teaching

iv. The Departments of Nuclear Medicine at both Charlotte Maxeke Johannesburg Academic Hospital and Chris Hani Baragwanath Hospital, for allowing me access to patient records

I would also like to thank all those who contributed in any way to this project, but whom I failed to acknowledge personally. Last but not least, I would like to express my sincere gratitude to the patients whose records were used for this study. Most of all, I would like to thank the Almighty God for making all this possible.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ETHICS COMMITTEE APPROVAL</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1

1. LITERATURE REVIEW 1
 1.1 Introduction 1
 1.2 Pathophysiology 2
 1.3 Risk factors 4
 1.4 Clinical signs and symptoms 8
 1.5 Risk stratification 13

 1.6 Investigations 18
 1.6.1 Blood tests 19
 1.6.1.1 Arterial blood gas 19
 1.6.1.2 Troponin levels 20
 1.6.1.3 Brain-type natriuretic peptide 21
 1.6.1.4 D-dimers 22
 1.6.1.5 Ischaemia Modified Albumin 23

 1.6.2 Ancillary tests 25
 1.6.2.1 Chest x-ray 25
 1.6.2.2 Electrocardiogram 26
1.6.3 *Diagnostic imaging*
1.6.3.1 Pulmonary angiography
1.6.3.2 Computed Tomography and CT Pulmonary Angiography
1.6.3.3 Ventilation-perfusion scans (V/Q scan)
1.6.3.3.1 V/Q scan agents
1.6.3.3.2 Usefulness of V/Q scan
1.6.3.3.3 V/Q scan interpretation criteria
1.6.3.3.4 Utility of V/Q scans
1.6.3.3.5 V/Q scan with SPECT technique
1.6.3.3.6 Advantages of V/Q SPECT over planar V/Q scintigraphy
1.6.3.3.7 V/Q SPECT/CT
1.6.3.3.8 V/Q vs CTPA
1.6.3.3.9 V/Q PET/CT
1.6.3.4 Magnetic Resonance (MR) Imaging and MR angiography
1.6.3.5 Echocardiography

1.6.4 *Auxiliary investigations*

1.7 *Treatment*
1.7.1 Anticoagulation
1.7.1.1 NOACs
1.7.1.2 Vitamin K antagonists (VKA)
1.7.1.3 Low-molecular-weight heparin therapy
1.7.1.4 Aspirin
1.7.2 Thrombolysis
1.7.3 Pulmonary thromboendarterectomy

1.8 Supportive care
1.9 Prognosis
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Distribution of patients from the two hospitals</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Female-to-male ratio</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Distribution of patient numbers over the various age groups</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Risk stratification of patients according to the Wells score</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Graphical representation of the VQ scan results</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Virchow’s triad and its association with clinical risk factors in the development of DVT and PE</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Risk factors of PE classified into either hereditary or acquired</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Criteria of Wells et al, 2000, for assessment of pre-test probability for PE</td>
<td>14</td>
</tr>
<tr>
<td>1.4 Traditional interpretation of Wells score</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Geneva score</td>
<td>16</td>
</tr>
<tr>
<td>1.6 Revised Geneva score</td>
<td>17</td>
</tr>
<tr>
<td>1.7 Interpretation of revised Geneva score</td>
<td>17</td>
</tr>
<tr>
<td>1.8 Interpretation criteria for the diagnosis of pulmonary embolism based on the ventilation-perfusion scan with or without a chest x-ray</td>
<td>38</td>
</tr>
<tr>
<td>3.1 Acquired risk factors in the sample population of 120 patients</td>
<td>58</td>
</tr>
<tr>
<td>3.2 Results of the Wells score</td>
<td>60</td>
</tr>
<tr>
<td>3.3 Results of the V/Q scan</td>
<td>62</td>
</tr>
<tr>
<td>3.4 Correlation of Wells score with VQ scan results</td>
<td>65</td>
</tr>
<tr>
<td>3.5 Statistical correlation of Wells score with V/Q scan results</td>
<td>67</td>
</tr>
<tr>
<td>3.6 Interpretation of kappa values</td>
<td>68</td>
</tr>
<tr>
<td>3.7 Kappa statistics</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ABC – Airway, Breathing, Circulation
ACCP – American College of Chest Physicians
AHA – American Heart Association
AIDS – Acquired Immuno-Deficiency Syndrome
aPTT – activated Partial Thromboplastin Time
BNP – Brain-type natriuretic peptide
CCF – Congestive Cardiac Failure
CHBAH – Chris Hani Baragwanath Academic Hospital
CMJAH – Charlotte Maxeke Johannesburg Academic Hospital
COPD – Chronic Obstructive Pulmonary Disease
CT – Computed Tomography
CTPA – Computed Tomography Pulmonary Angiogram
DVT – Deep Vein Thrombosis
ECG – Electrocardiogram
ECHO – Echocardiography
ED – Emergency Department
ELISA – Enzyme-Linked Immunosorbent Assay
FDA – Food and Drug Administration
HIV – Human Immunodeficiency Virus
IMA – Ischemia-Modified Albumin
INR – International Normalised Ratio
IVC – Inferior Vena Cava
LMWH – Low–Molecular Weight Heparin
MDCTA – Multidetector-row Computed Tomography Angiography
M:F – Male to Female ratio
MI – Myocardial Infarction
MR – Magnetic Resonance
NFD – Nephrogenic fibrosing dermopathy
NSF – Nephrogenic systemic fibrosis
NT-pro-BNP - N-terminal pro-Brain Natriuretic Peptide
PA – Pulmonary Angiogram
PE – Pulmonary embolism
PIOPED – Prospective Investigation of Pulmonary Embolism Diagnosis
UFH – Unfractionated heparin
US – United States
V/Q scan – Ventilation perfusion scan
VTE – Venous Thrombo-Embolism