EFFECT OF PRACTICE SETTING ON CLINICAL LEARNING AMONG
FIRST YEAR STUDENT NURSES

JUDITH CHARMAIGNE MIRTEL BRUCE

Degree awarded with distinction 3 December 1992
A Dissertation submitted to the Faculty of Medicine,
University of the Witwatersrand, Johannesburg, for the
Degree of Master of Science in Nursing.

JOHANNESBURG 1992
ABSTRACT

Advanced technology and an increasing awareness of ethical-legal responsibility and accountability in terms of patients' rights, are among the main reasons for a more discriminate use of the patient care setting for teaching and practising psychomotor skills in nursing. The college laboratory, alternatively known as the simulated clinical laboratory became the answer. However, the environmental contrast it presents in relation to the patient care setting has lead nurse educators to question the efficiency and the validity of the college laboratory in the teaching-learning process. This dissertation studies the practice settings for learning selected psychomotor skills and skill-related knowledge among first year student nurses. The purpose of the research was to determine and compare the performance of nursing subjects in two different practice settings namely, simulated and non-simulated. Subjects were randomly assigned to either group A or group B for clinical learning in the aforementioned settings. Data on psychomotor performance were collected by direct observation using structured checklists. Objective tests were used to collect data on cognitive performance. Results of between-group comparison and statistical tests showed no significant difference in cognitive and psychomotor learning.
DECLARATION

I declare that this dissertation is my own unaided work. It is being submitted for the degree of Master of Science in Nursing in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

[Signature]

JUDITH CHARMAIGNE MIRTEL BRUCE

DATE 30-3-92
DEDICATION

IN LOVING MEMORY OF MY DEAR PARENTS

JOHN PETER McKAY

(1932 - 1990)

and

LETTIE AMELIA McKay

(1922 - 1991)
ACKNOWLEDGEMENTS

Completing a project of this nature could only be accomplished with the diverse contributions by the following persons and groups whom I wish to acknowledge with sincere thanks and appreciation:

* my promoter, Professor B. Robertson, Head of the Department of Nursing, University of the Witwatersrand, for her invaluable guidance and consultancy during this research project.

* my co-promoter, Miss V.J. Pinkney-Atkinson, for sharing my difficulties, doubts and despairs but most of all, showing me how to overcome.

* my daughters and my husband Derek, just for being there and encouraging me especially during the last few months of personal setbacks.

* Janssen Pharmaceutica and the South African Nursing Association for financial assistance during different stages of the research.

* Dr. S.G. Reinach, from the Institute of Biostatistics of the South African Medical Research Council for computer analysis of the research data.
Cheyl Nikodem, research midwife at the University of the Witwatersrand (Coronation Hospital), who expertly assisted me with the daunting task of interpreting and presenting the data.

Professor G. Mitchell, Professor J. Mine and Professor M. Muller for their guidance in technical aspects of MCQ's, BP monitoring and validation of standards respectively.

my colleagues for their invaluable assistance and support during the data collection phase.

and finally my students, whose perseverance and commitment made it all the more worthwhile.
ABBREVIATIONS

TPR - Temperature, pulse rate and respiratory rate

BP - Blood pressure

PPC - Pressure parts care

MCQ's - Multiple choice questions

OSCE - Objective structured clinical examination

CVI - Index of content validity

LD - Lecture demonstration
TABLE OF CONTENTS

ABSTRACT .. 1
DECLARATION .. 2
DEDICATION .. 3
ACKNOWLEDGEMENTS ... 4
ABBREVIATIONS ... 5
TABLE OF CONTENTS ... 6
LIST OF TABLES .. 7
LIST OF FIGURES ... 8
APPENDICES ... 9

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION .. 10
1.2 PURPOSE OF THE RESEARCH .. 11
1.3 HYPOTHESIS ... 12
1.4 MOTIVATION FOR THIS STUDY .. 13
1.5 DEFINITIONS ... 14
1.6 SUMMARY .. 15

CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION .. 16
2.2 SIMULATION .. 17
 2.2.1 Historical overview ... 17
 2.2.2 Nature and use of simulation ... 18
 2.2.3 Types of simulation .. 19
 2.2.4 Advantages of simulation .. 20
 2.2.5 Limitations of simulation .. 21
 2.2.6 Validity of simulation as an educational strategy 22
2.3 THE OPEN AND CLOSED MOTOR SKILLS THEORY 23
 2.3.1 Main constructs of this theory ... 23
 2.3.2 Application to simulated and non-simulated practice settings 24
 2.3.3 Application to Gentile’s model of skill acquisition 25
 2.3.3.1 Cognitive stage ... 25
 2.3.3.2 Fixation/diversification ... 26
2.4 PRACTICE SETTINGS ... 27
 2.4.1 The college laboratory .. 27
 2.4.2 The patient care setting .. 28
TABLE OF CONTENTS

2.5 CLINICAL LEARNING

2.5.1 Psychomotor skills
- 2.5.1.1 Classification of psychomotor skills
- 2.5.1.2 Acquisition of psychomotor skills
- 2.5.1.3 Conditions for learning psychomotor skills
- 2.5.1.4 Taxonomy of psychomotor skills

2.5.2 Cognitive skills
- 2.5.2.1 Conditions for cognitive learning

2.6 CLINICAL EVALUATION

2.6.1 Problems in clinical evaluation

2.6.2 Approaches to clinical evaluation

2.6.3 Methods of evaluation

2.6.4 Environment for clinical evaluation

- 2.6.4.1 The college laboratory
- 2.6.4.2 The patient care setting

2.7 PREVIOUS RESEARCH

2.8 SUMMARY

CHAPTER 3 RESEARCH DESIGN

3.1 INTRODUCTION

3.2 RESEARCH METHOD

3.3 INSTRUMENT DEVELOPMENT AND VALIDATION

- 3.3.1 Instruments for psychomotor performance

- 3.3.1.1 The format
- 3.3.1.2 The scoring system
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2 Instruments for cognitive performance</td>
<td></td>
</tr>
<tr>
<td>3.3.2.1 The format</td>
<td>66</td>
</tr>
<tr>
<td>3.3.2.2 The scoring system</td>
<td>67</td>
</tr>
<tr>
<td>3.4 RELIABILITY TESTING OF INSTRUMENTS</td>
<td>67</td>
</tr>
<tr>
<td>3.4.1 Checklist for psychomotor performance</td>
<td>67</td>
</tr>
<tr>
<td>3.4.2 Tests for cognitive performance</td>
<td>69</td>
</tr>
<tr>
<td>3.5 SAMPLING METHOD</td>
<td>70</td>
</tr>
<tr>
<td>3.6 THE RESEARCH ASSISTANTS</td>
<td>71</td>
</tr>
<tr>
<td>3.6.1 Criteria for selection</td>
<td>71</td>
</tr>
<tr>
<td>3.6.2 Preparation of research assistants</td>
<td>72</td>
</tr>
<tr>
<td>3.6.3 Allocation of research assistants</td>
<td>73</td>
</tr>
<tr>
<td>3.7 THE RESEARCH SETTING</td>
<td>73</td>
</tr>
<tr>
<td>3.7.1 The classroom</td>
<td>73</td>
</tr>
<tr>
<td>3.7.2 The college laboratory</td>
<td>74</td>
</tr>
<tr>
<td>3.7.3 The patient care setting</td>
<td>74</td>
</tr>
<tr>
<td>3.8 THE PILOT STUDY</td>
<td>75</td>
</tr>
<tr>
<td>3.9 DATA COLLECTION</td>
<td>76</td>
</tr>
<tr>
<td>3.9.1 Phase 1</td>
<td>76</td>
</tr>
<tr>
<td>3.9.2 Phase 2</td>
<td>78</td>
</tr>
<tr>
<td>3.10 ETHICAL CONSIDERATIONS</td>
<td>80</td>
</tr>
<tr>
<td>3.11 SUMMARY</td>
<td>81</td>
</tr>
<tr>
<td>CHAPTER 4 ANALYSIS OF DATA</td>
<td></td>
</tr>
<tr>
<td>4.1 INTRODUCTION</td>
<td>82</td>
</tr>
<tr>
<td>4.2 ANALYSIS OF DEMOGRAPHIC DATA</td>
<td>82</td>
</tr>
<tr>
<td>4.3 STATISTICAL ANALYSIS OF INSTRUMENT VALIDITY AND RELIABILITY</td>
<td>84</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Instruments for psychomotor skills</td>
<td>84</td>
</tr>
<tr>
<td>4.3.2 Instruments for cognitive skills</td>
<td>89</td>
</tr>
<tr>
<td>4.4 ANALYSIS OF RESEARCH DATA</td>
<td>92</td>
</tr>
<tr>
<td>4.4.1 Analysis of psychomotor performance</td>
<td>93</td>
</tr>
<tr>
<td>4.4.2 Analysis of cognitive performance</td>
<td>98</td>
</tr>
<tr>
<td>4.5 DISCUSSION OF RESULTS</td>
<td>103</td>
</tr>
<tr>
<td>4.6 ADDITIONAL FINDINGS</td>
<td>105</td>
</tr>
<tr>
<td>4.7 SUMMARY</td>
<td>106</td>
</tr>
</tbody>
</table>

CHAPTER 5 SUMMARY, IMPLICATIONS, RECOMMENDATIONS, AND CONCLUSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 SUMMARY</td>
<td>107</td>
</tr>
<tr>
<td>5.1.1 Purpose</td>
<td>108</td>
</tr>
<tr>
<td>5.1.2 Hypotheses</td>
<td>109</td>
</tr>
<tr>
<td>5.1.3 Methodology</td>
<td>109</td>
</tr>
<tr>
<td>5.2 IMPLICATIONS AND RECOMMENDATIONS</td>
<td>118</td>
</tr>
<tr>
<td>5.3 LIMITATIONS AND DELIMITATIONS</td>
<td>120</td>
</tr>
<tr>
<td>5.4 CONCLUSION</td>
<td>122</td>
</tr>
</tbody>
</table>

REFERENCES: .. 123
<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>TYPES AND USES OF SIMULATION</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>CLASSIFICATION OF PSYCHOMOTOR SKILLS IN NURSING</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>ASSIMILATION BETWEEN TWO MODELS FOR MOTOR SKILL LEARNING</td>
<td>37</td>
</tr>
<tr>
<td>2.4</td>
<td>TAXONOMY OF PSYCHOMOTOR SKILL PERFORMANCE</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>EXAMPLE OF A PERFORMANCE CRIP FOR LEVELLING A PSYCHOMOTOR SKILL - OXYGENATION</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>RELIABILITY COEFFICIENTS OF PSYCHOMOTOR INSTRUMENTS</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>MEAN SCORES AND RELIABILITY COEFFICIENTS OF COGNITIVE INSTRUMENTS</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>EVALUATION ACTIVITIES, PHASES AND TECHNIQUES</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>DEMOGRAPHIC VARIABLES OF THE SAMPLE</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>VALIDATION RESULTS - ITEMS IN TPR CHECKLIST</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>VALIDATION RESULTS - ITEMS IN B. CHECKLIST</td>
<td>86</td>
</tr>
<tr>
<td>4.4</td>
<td>VALIDATION RESULTS - ITEMS IN PPC CHECKLIST</td>
<td>88</td>
</tr>
<tr>
<td>4.5</td>
<td>ITEM ANALYSIS FOR MCQ ON TPR</td>
<td>90</td>
</tr>
<tr>
<td>TABLE</td>
<td>ITEM</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>4.6</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td>4.9</td>
<td>4.10</td>
<td>4.11</td>
</tr>
<tr>
<td>4.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIST OF TABLES

<p>| TABLE 4.6 | ITEM ANALYSIS FOR MCQ ON BP | 91 |
| TABLE 4.7 | ITEM ANALYSIS FOR MCQ ON PPC | 92 |
| TABLE 4.8 | COMPARISON OF PSYCHOMOTOR PERFORMANCE | 94 |
| TABLE 4.9 | MEAN PSYCHOMOTOR SCORES: STANDARD DEVIATION AND t-TEST RESULTS | 95 |
| TABLE 4.10 | COMPARISON OF COGNITIVE PERFORMANCE | 99 |
| TABLE 4.11 | MEAN COGNITIVE SCORES: STANDARD DEVIATION AND t-TEST RESULTS | 104 |
| TABLE 4.12 | WITHIN-GROUP COMPARISON: PSYCHOMOTOR LEARNING | 106 |
| FIGURE 2.1 | MODEL FOR THE INITIAL STAGE OF SKILL ACQUISITION | 25 |
| FIGURE 2.2 | MODEL FOR THE LATER STAGE OF SKILL ACQUISITION | 27 |
| FIGURE 2.3 | CURRENT PROBLEMS IN CLINICAL EVALUATION | 51 |
| FIGURE 4.1 | MEAN PSYCHOMOTOR PERFORMANCE IN ORIGINAL PRACTICE SETTING (phase 1) | 96 |
| FIGURE 4.2 | MEAN PSYCHOMOTOR PERFORMANCE IN PATIENT CARE SETTING (phase 2) | 97 |
| FIGURE 4.3 | MEAN PRETEST SCORES | 100 |
| FIGURE 4.4 | MEAN POSTTEST 1 SCORES | 101 |
| FIGURE 4.5 | MEAN POSTTEST 2 SCORES | 102 |</p>
<table>
<thead>
<tr>
<th>APPENDICES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Instructions for validation</td>
<td>137</td>
</tr>
<tr>
<td>B - Validation of standards: TPR</td>
<td>138</td>
</tr>
<tr>
<td>C - Validation of standards: BP</td>
<td>142</td>
</tr>
<tr>
<td>D - Validation of standards: PPC</td>
<td>146</td>
</tr>
<tr>
<td>E - Checklist for TPR</td>
<td>150</td>
</tr>
<tr>
<td>F - Checklist for BP</td>
<td>152</td>
</tr>
<tr>
<td>G - Checklist for PPC</td>
<td>154</td>
</tr>
<tr>
<td>H - TPR test</td>
<td>156</td>
</tr>
<tr>
<td>I - BP test</td>
<td>159</td>
</tr>
<tr>
<td>J - PPC test</td>
<td>162</td>
</tr>
<tr>
<td>K - Clearance certificate</td>
<td>165</td>
</tr>
<tr>
<td>L - Consent form</td>
<td>166</td>
</tr>
<tr>
<td>M - Letter to the Superintendent</td>
<td>167</td>
</tr>
<tr>
<td>N - Letter to the Matron</td>
<td>168</td>
</tr>
</tbody>
</table>
CHAPTER 1

1.1 INTRODUCTION

The need for a simulation system to prepare nursing students for clinical work and competence has given origin to the demonstration room or college laboratory for teaching and practising psychomotor skills. The use of such a system by nurse educators has become more and more popular, because contemporary clinical nursing units may not always be conducive to formal clinical teaching and learning.

These units may not meet the essential requirements for students to practise to become competent in psychomotor and cognitive skills.

At the Nursing College under study, 90% of clinical learning is done using simulation in a college laboratory. But does it prepare nursing students adequately for clinical work in the patient care setting?

While the use of the college laboratory has to a large extent facilitated the teaching - learning process, the environmental contrast when compared with the patient care setting, must be taken into consideration.

The college laboratory offers a well - controlled, relaxed, static learning environment where the students can practise mainly their psychomotor
skills with less emotional and ethical stress. The patient care setting on the other hand, is dynamic with uncontrolled factors and constraints which may influence skill learning. Since the practice of nursing occurs in clinical/patient care areas, alternative learning environments eg. the college laboratory should resemble the patient care area as closely as possible for effective clinical learning.

Thus to ensure efficiency, effectiveness and the validity of the college laboratory as a learning environment for psychomotor skills, it must include those factors which the student would encounter in the patient care setting.

Inclusion of such factors are necessary for students to pay selective attention to environmental stimuli and to formulate an appropriate motor plan during the process of skill learning. It can be deduced therefore that the absence of realism in the learning environment may interfere with essential phases of motor skill learning. Inclusion of all clinical environmental factors in the college laboratory is an essential yet formidable task. It seems more appropriate and practical a task to study the performance of psychomotor and cognitive skills in these two
different practice settings namely, the college laboratory (simulated practice setting) and the patient care setting (non-simulated practice setting).

1.2 PURPOSE OF THE RESEARCH

This study compares and describes two practice settings for learning psychomotor nursing skills and skill-related knowledge among nursing students. The purpose is to determine and compare the performance of the subjects in these two different practice settings viz., the college laboratory and the patient care setting, henceforth called setting A and setting B respectively. In so doing, this study addresses the following research questions:

- do student nurses who practise in the college laboratory (setting A) perform psychomotor skills at a significantly higher level than those who practise in the patient care setting (setting B).

- does the level of skill-related knowledge differ between subjects who practise in setting A and setting B.

All fundamental nursing skills to be taught during the first week of the semester block were categorised as either "open" or "closed" skills. From the open skills three were randomly selected for the study.
Skills selected were: taking of temperature, pulse rate and respiratory rate (TPR), measurement of arterial blood pressure (BP) and pressure parts care (PPC). While the researcher acknowledges the existence of an affective domain of learning, a literature survey indicated that this domain is not subjected to the same pedagogic actions as the psychomotor and cognitive domains. For this reason, the affective domain was excluded from the study. It should not be construed to be of lesser importance, but rather too complex and extensive for the scope of this study.

1.3 HYPOTHESES

In an attempt to answer the research questions, the following hypotheses have been formulated:

1.3.1 There will be no significant difference in the performance of selected psychomotor skills (TPR, BP and PPC) by nursing students who practise in setting A and in setting B.

1.3.2 There will be no significant difference in skill-related knowledge by students who practise in setting A and in setting B tested immediately after the lecture-demonstration and eight weeks later.

1.4 MOTIVATION FOR THIS STUDY

This study was prompted by the paucity of research
investigating the practice settings for psychomotor nursing skills. While the literature is replete with descriptions of simulations and instructional simulation, only two studies to date have drawn comparisons between student performance in simulated and non-simulated practice settings. (Gomez and Gomez, 1987 and Megai, Wilken & Volcek, 1987). Findings in these two studies, although different, offered useful recommendations for future research. Recommendations with reference to sample size, additional nursing skills and transfer of learning have been acknowledged in this research project.

Exponents of the open and closed motor skills theory maintain that different motor skills require different practice settings. Those skills performed in a stable, uncontrolled and unchanging environment (closed skill) can be practiced in a college laboratory. Since most nursing skills are classified as open skills normally performed in a variable, dynamic environment, their viability in the college laboratory must be researched.

An additional motivating factor is the statement by Gomez and Gomez (1984:37) that:

"... research on transfer of learning has relatively neglected the environmental context in
which the skills are performed. Perhaps, as a result, a pervasive assumption exists among nurse educators that transfer of learning from practice to "real" setting is automatic ..."

Indeed, this suggests that little or no empirical evidence exists regarding skill performance is the original practice setting and the patient care setting.

While the cognitive component has been given much attention in studies related to computer-assisted instruction, (a part of simulation) few studies to date dealt with the cognitive component in relation to the environmental context in which the psychomotor skill is being practised. Of particular interest to the researcher is the subject's level of skill related knowledge.

1.5 OPERATIONAL DEFINITIONS

CLINICAL LEARNING

Is the acquisition of cognitive and psychomotor nursing skills by student nurses.

COLLEGE LABORATORY/SIMULATED CLINICAL LABORATORY

A place on the hospital or college premises that is equipped with simulated material for nursing students to practice aspects of patient care.
- 7 -

EFFECT

Is the outcome of cognitive and psychomotor learning as assessed by objective tests (MCQ) and structured checklists respectively.

PATIENT-CARE SETTING/CLINICAL AREA

A place where nursing students are in contact with patients/clients for the purpose of patient care.

PHYSICAL/REFERENTIAL SIMULATION

Presents information about the real world by means of models eg. dolls which are difficult to distinguish from real life counterparts.

PRACTICE SETTING

An area where cognitive and psychomotor skills are acquired through active involvement of the student.

PSYCHOMOTOR SKILLS

Are those nursing actions which include muscular action and require neuromuscular coordination.

SIMULATION

A carefully controlled, simplified version of reality in which physical and social elements are represented.

SIMULATED PATIENT

A person who poses as a patient eg. a fellow student.
STUDENT NURSE
A person in his/her first year, registered for the four year Diploma in Nursing Science (general, community and psychiatric) and Midwifery at a Nursing College.

1.6 SUMMARY
The introductory statement of this chapter gave an overview of two different settings for practising nursing skills. The purpose, hypotheses and motivation for this study have been described. A subsection of definitions has been included in this chapter for the purpose of explaining and clarifying terminology used in subsequent chapters of the research report.
CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter, the nature and scope of simulation is described after the available literature was studied. It covers physical, environmental and theoretical aspects related to psychomotor learning, cognitive learning and clinical evaluation. Practice settings are discussed in context with the open and closed motor skills theory for motor skill learning (Gentile, 1972;3). Particular emphasis is placed on the priorities of the learner and that of the patient. Previous research conducted in this area is described briefly with specific reference to the influence it has had on this study.

2.2 SIMULATION

In an attempt to differentiate between simulated and non-simulated practice settings, it necessitated an overview of simulation in nursing education.

2.2.1 HISTORICAL OVERVIEW

The use of simulation as a teaching strategy dates back to the year 500 A.D. when the game of chess was invented in India. Since then, simulation as a teaching strategy has extended into the fields
of aviation, space aviation, marine, mining and less than twenty five years ago, formal education.

In early nursing education, clinical teaching and learning was achieved through the use of live patients. The majority of learning took place through observation, or by trial and error. As the body of nursing knowledge and technology burgeoned and the right of the patient to quality care became well recognised, the education of nurses changed. Simulation became the answer and the "college laboratory" was established.

Simulation in nursing education is now not only used for teaching nursing skills, but also to facilitate learning through practice and supervision. As an evaluation strategy, simulation has been used extensively in the form of an objective structured clinical examination (OSCE) to assess clinical competence in nursing.

2.2.2 NATURE AND USE OF SIMULATION

Simulation is used today for teaching, learning and evaluating. By definition, simulations are representations of reality and offer students valuable learning experiences during simulated decision-making and actions.
As a didactic tool, simulations can be used to teach students about practical aspects they are likely to encounter in the "real" setting. It encourages active student participation in the teaching-learning process and affords the student opportunities for creative, analytical thinking to solve a particular problem. As a strategy to facilitate student learning, simulations occupy an invaluable place in education. In psychomotor skill learning, the use of manikins, three-dimensional models and simulated patients afford the student frequent learning opportunities to practise particular skills. Learning becomes individualized, as students have the advantage of manipulating variables which may interfere with their learning.

Simulations can also be used as an evaluation strategy with reference to all domains of learning viz., psychomotor, cognitive and affective.

Objective structured clinical examination (OSCE), in the college laboratory and pen and paper simulations are examples of assessing psychomotor and cognitive learning respectively.

As its use and application become more diverse and complex, attempts have been made by several authors to describe and clarify the nature of
simulation. Early writings in 1957 by Thomas and Deemer define simulations as...

obtaining the essence of something without all aspects of reality.

Later writing by Klein (1978:14) emphasises that parts of reality must be included so as to allow participants to act as they would in the real situation. This gave a more refined meaning to the nature of simulation. Taylor (1978:3) describes simulation as ...

a carefully controlled very simplified model or representation of a more complex physical or social reality.

While being controlled and simplified, Miller (1987:35) emphasises the importance of the reality element in simulation. He states that ...

effective simulations parallel reality and as such provide a means for the "practice of life" situations that should be a part of the educational experience of every health professional.

Common to all these definitions is the use of simulation to simplify and facilitate the teaching-learning process by creating an artificial setting which mimics the practical
aspects of the real situation. To comprehend fully the nature of simulation, it is important to embark on a further discussion of its types, advantages, limitations and validity as an educational strategy.

2.2.3 TYPES OF SIMULATION

According to Miller (1987:35) there are five categories of simulations. On presentation a variety of formats can be used depending on the degree of fidelity required. The term "fidelity" is used to describe how true to life the learning experience must be to accomplish the learning objectives. Table 2.1 depicts Miller's simulation types with their corresponding degrees of fidelity and examples of use. For the purpose of the Study, 3-D models and simulated patient types were used.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>EXAMPLE</th>
<th>FIDELITY</th>
<th>TYPICAL USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Written simulation</td>
<td>Paper and Pen Latent image</td>
<td>Very Low</td>
<td>To teach knowledge and assessment skills eg. patient care and diagnosis</td>
</tr>
<tr>
<td>2. Three-dimensional models</td>
<td>Manikins</td>
<td>Low</td>
<td>For demonstration and practise of skills eg.erval toilet.</td>
</tr>
<tr>
<td>4. Multi-media simulation</td>
<td>Computer-linked video discs</td>
<td>High</td>
<td>To teach complex skills eg. CPR using Resuscit-Anna.</td>
</tr>
<tr>
<td>5. Simulated patient</td>
<td>Trained individual</td>
<td>Very high</td>
<td>To teach interpersonal and assessment skills eg. a simulated mother.</td>
</tr>
</tbody>
</table>
2.2.4 ADVANTAGES OF SIMULATION

While it must be acknowledged that the real situation is in all probability superior to and more ideal for educational purposes, simulation has definite advantages over the real situation. These can be summarised as follows:

- firstly, simulation has the advantage of time compression. Clinical or patient events which may take days, weeks or months to develop in actuality can be compressed into a matter of minutes in simulation (Miller, 1984: 40).

- secondly, simulation lends consistency in providing learning opportunities. It makes it possible for all students to engage in learning at the same basic level of understanding and problem-solving.

- similar to the above, simulation as an evaluation strategy also standardizes criteria against which the students' behaviours are assessed. Different students are exposed to the same patient stimuli and can consequently be assessed using the same criteria (Evans and Curtis, 1983: 894).

- active student commitment to decision-making is another advantage. Simulations allow
students to make important decisions regarding patient care issues and face the consequences of their decision without the actual legal and ethical effects.

- Finally, if simulation is used effectively, it is advantageous in the sense that it increases student participation in the learning process by stimulating interest and motivation. (Wittich and Schuller, 1979: 291).

2.2.3 LIMITATIONS OF SIMULATION

While simulation as an educational strategy has its merits, there are certain limitations. These limitations should be seen as deficiencies in the choice of simulation and its format rather than deficiencies inherent in the strategy itself. Decisions to utilize simulation should be made after careful scrutiny of the learning and teaching objectives and by the fidelity it provides.

Other limitations may be cited as follows:

- It may be time-consuming to prepare and requires considerable expertise during the planning phase depending on the degree of complexity;
three-dimensional models require craftsmanship for local construction; they are usually expensive and easily damaged; it is never the same as performing skills on the live patient. In this regard Guilbert (1977: 223) cautions against wrong learning.

2.2.6 VALIDITY OF SIMULATION AS AN EDUCATIONAL STRATEGY

In terms of whether simulation does what it purports to do, Miller (1984: 40) identifies three types of validity, namely, instructional validity, content validity and concurrent validity. In the first instance simulation must conform to standards as set out by the objectives of the learning programme so as to ensure that the learner attains specific learning objectives.

If simulation conforms to the programme objectives and specific objectives, it is said to have instructional validity.

With reference to content validity, a simulated programme must include all reality elements. Its content validity can be judged by the extent to which there is overlap between simulation and reality. (Miller, 1984: 40).

For example, if no elements from reality are omitted, then it can be stated that the programme has perfect content validity.
Critique by Gomez and Gomez (1987: 20) suggests that it is impossible to bring all reality elements into a simulated programme for psychomotor skill learning and therefore the content validity of simulation is questionable in this domain of learning. For example, during catheterization of the bladder on a manikin or pelvic model, reality elements such as locating the urethral meatus, degree of bladder distention, patient cooperation etc., cannot be included or guaranteed in a simulated programme. If one considers the content validity of such a programme against the supposition of Miller (1984: 40), then simulation is not valid for some aspects of psychomotor learning.

Concurrent validity as applied to simulation, requires that the learner's performance during simulation be validated against some external criteria of performance. This is comparative to performance of the student in the real setting and in essence can be construed as transfer of learning. If the student can transfer what has been learnt in simulation to the "real" setting, with a high correlation between performance in simulation and that in reality, the programme is said to possess concurrent validity. A validation study conducted by Holzerer, Schleutermann,
Farrand and Miller (1981: 139) showed little evidence to support the validity of simulations. They assessed nurses' problem-solving ability by using patient management problems (PMP) of the paper and pencil simulation variety. This study of Holzemer et al. (1981: 140) tends to negate concurrent validity of written simulations in particular. By assessing the subject's psychomotor performance in the patient-care setting, this study would determine the concurrent validity of physical simulation and simulated patients.

2.3 THE OPEN AND CLOSED MOTOR SKILLS THEORY

According to exponents of the open and closed motor skills theory, nursing skills can be categorized according to the environmental context or practice setting in which they are performed (Gentile, 1972: 6). The origin of this theory lends itself to the earlier writings of several psychologists on man's adaptation to the environment in which he lives. They emphasise in particular the moulding of man's movements or actions in accordance with spatial, structural and temporal demands in the environment. For example, a child attempting to climb onto a chair, must learn to formulate a movement pattern that conforms to the height of the
chair, its shape etc. The child's movement pattern which will yield effective goal-attainment, is thus controlled by environmental characteristics surrounding the chair (Nash, Stoch and Harper, 1990: 179). Central to this theory, however, is the abundance of stimuli, relevant and irrelevant, present in man's environment.

From these stimuli, he has to select those relevant for goal attainment and formulate his movement pattern accordingly. The relevant stimuli are also referred to as regulatory factors and irrelevant stimuli as non-regulatory factors.

Having looked at the origin of this theory, it is important to discuss its main constructs and its relevance to the learning of psychomotor skills.

2.3.1 MAIN CONSTRUCTS OF THIS THEORY

Practice settings are dichotomized into dynamic and stationary. A dynamic setting is unstable, changing and varied. It is characterized by a complex stimulus population comprising both regulatory and non-regulatory factors from which the individual in a skill learning situation has to select from to formulate a movement pattern (motor plan). On the contrary, a stationary setting is stable and unchanging. It has a less complex stimulus population comprising fixed,
regulatory factors and no or very few non-regulatory factors. It is theorized further that activities which occur in a dynamic setting are called open skills and those occurring in a stationary setting, closed skills.

2.3.2 APPLICATION TO SIMULATED AND NON-SIMULATED PRACTICE SETTINGS

As cited earlier, simulated conditions provide a safe, controlled and stable setting for practising motor skills. Non-simulated conditions are synonymous to the real situation, where the learner is confronted with the ethical and legal issues of reality. In a complex environment such as a hospital or patient care setting, the stimulus population is diverse, changing and unpredictable and thus nursing skills performed here may be categorized as open skills. The majority of nursing skills fall in this category (Gomez, 1984: 37), including those selected for this study. Only a very few nursing skills with limited interactional ability, can be categorized as closed skills for example making an unoccupied bed and urinetesting. Several authors agree that simulated conditions are ideal for teaching and practising closed skills since the absence of non-
regulatory factors and the stationary practice setting facilitates the rapidity of skill acquisition. (Gentile, 1972: 6, Gomez and Gomez, 1984: 37 and Gomez and Gomez, 1987: 20). The use of simulated practice settings for teaching and practising open skills has drawn criticism from several authors (Gentile, 1972:13, Klein, 1978:15 and McDonald, 1987:290) with the main emphasis on over-simplification of reality and impairing the selective attention stage of skill learning. However, these authors suggest the inclusion of all regulatory factors within the simulated setting in order to learn selective attention and a repertoire of movements necessary to attend to the regulatory factors. But, is this possible? If at all, it were possible, would the learner be able to contend with these complex stimuli in the simulated setting?

2.3.3 APPLICATION TO GENTILE'S MODEL OF SKILL ACQUISITION

2.3.3.1 STAGE 1. COGNITIVE OR EXPLORATORY STAGE

(a) The goal

Learning a motor skill starts with a goal. The learner organizes a motor pattern to solve a particular problem or to change something in the environment i.e. to reach a set goal. For goal attainment, the
learner now has to adopt specific movements to match the demands in the practice setting. For example taking the temperature of a patient requires the student nurse to take cognisance of factors in the environment which may influence her task.

(b) Population of stimuli
This includes sensory stimuli plus environmental characteristics, however not all of these are relevant for goal-attainment. When learning a closed skill where the stimulus population is fixed and unchanging, less mental energy is used in the case of learning an open skill. Learning an open skill requires the learner to recognise only those regulatory factors for goal-attainment and pay specific attention to them.

(c) Selective attention
The learner is required to discern and attend to stimuli in the practice setting to form a motor pattern. In a complex stimulus setting this may not always be a simple task for the learner. In stationary practice settings this task is
somewhat easier for the learner. Selective attention is crucial for the performance of open skills and thus the practice of open skills in a stimulating, dynamic environment is appraised favourably by these authors.

(d) The motor plan
The motor plan comprises a pattern of movements which must conform to the practice setting demands. If all regulatory factors in the setting have not been selectively attended to, an ineffective motor plan will be formulated. This is a risk inherent in practice settings which do not include all regulatory factors for open skills.

(e) Execution, feedback, decision and response
Performance of the motor plan provides feedback to the learner about whether the pattern was performed as planned and whether or not the goal was attained. Based on this, the learner takes a decision to refine and retain the motor pattern (fixation) or alter it (diversification) in the next stage. See Figure 2.1.
2.3.3.2 STAGE II: FIXATION/DIVERSIFICATION

Having acquired a general idea of the motor pattern which is effective for goal-attainment, the learner proceeds either to fixate on this motor pattern or alter it to produce a desirable outcome.
For closed skills, in which the regulatory factors are constant and controlled, there is fixation of a motor pattern very similar or the same as in Stage I. Modification of the original motor pattern is characteristic of open skills because of the dynamic and changing nature of its practice setting. Each time the regulatory factors are changed, the learner must alter his motor pattern for goal attainment. For example, level of consciousness of a patient is a changing, regulatory factor when performing the skill of back and pressure parts care. The student nurse is required to develop a repertoire of motor patterns to meet the demands posed by patients with varying degrees of consciousness. Thus, what is required of a learner during Stage II for an open skill is different than for a closed skill. Instead of fixing a specific motor pattern, the learner in an open skill situation needs to attend to several relevant stimuli in order to learn a number of motor patterns to attain the same goal. Does the simulated setting or college laboratory meet the learning demands of an open skill? Figure 2.2 presents the researcher's interpretation of Stage II of skill acquisition.
2.4 PRACTICE SETTINGS

Within the nursing context, clinical learning takes place in two distinct and separate practice settings viz. simulated and non-simulated. The college laboratory, also referred to as the demonstration room, represents the simulated setting and the patient care area, the non-simulated setting. These two practice settings will now be discussed separately.

2.4.1 THE COLLEGE LABORATORY

For most nursing colleges and nursing education institutions, the existence of a demonstration room or college laboratory is not a new concept.
However, its use on the basis of feasibility and desirability may vary from one institution to another. With the exclusion of isolated preferences, a literature survey indicates an increase in the use of the college laboratory to simulate the patient care setting. (Hallal and Welsh, 1984: 35, Cook and Hill, 1985: 344, McDonald, 1987: 290, Megal, Wilken and Volcek, 1987: 288, Gomez and Gomez 1987: 20).

According to Hallal and Welsh (1984: 34) the college laboratory is more economical since the instructor could effectively teach and supervise a greater number of students than in the patient care setting.

Also, students are not exposed to the continuous stimulation of the patient care setting and it eliminates violation of patients' rights by the student.

Environmental stressors are minimized in the college laboratory and students therefore experience less anxiety during the performance of nursing skills.

This in turn can improve the student's ability to concentrate and to receive and process information necessary for skill learning.

The essence of using a college laboratory is so that students learn to perform skills safely and
competently and the laboratory experience fosters accountability and self-responsibility. In contrast to this, the college laboratory may offer experiences devoid of ethical and legal consequences of student performance. Gomez and Gomez (1984: 35 and 1987: 20) argue against the use of the college laboratory for learning, using Gentile's open and closed motor skills theory as premise (1972: 3). They maintain that a stable, unchanging, controlled environment as in the case of the college laboratory, is suitable for learning closed skills, for example making an unoccupied bed. On the other hand, when learning an open skill, all those stimuli or factors which may influence the skill must be included in the learning environment and thus should be created or brought into the college laboratory by the teacher. For example, when taking a patient's blood pressure, factors such as noise, poor lighting, patient's arm width etc., should be brought into the college laboratory, but this is a formidable task for the teacher. With the increased emphasis on patients' rights, ethical concerns regarding the use of human subjects and current manpower shortages in Public institutions, should a patient care setting be used as a learning environment?
The researcher concudes that the patient care setting does have an important role in the learning experiences of nursing students, however ethical issues related to its use cannot be ignored. Rather, these should be explored to develop improved guidelines for effective use of the patient care setting.

2.4.2 THE PATIENT CARE SETTING

Experiential educationists tend to be in favour of the patient care setting as an effective learning environment as opposed to the college laboratory.

According to Quinn (1988:187) most clinical learning takes place in the patient care setting and it might well be argued that experiential learning is taking place all the time. But experiential learning should not be synonymous with undergoing an experience in the patient care setting, since little or no learning may result. However, the emphasis should be placed on how the learner utilizes the experience to promote growth in general. (Corcoran, 1977: 772, Quinn, 1988: 188).

It is evident from the above that experiential learning is student-centered, goal-directed and has its main priority as that of learning. Are these aspects reconcilable with the emphasis,
purpose and priorities of the patient care setting? The author aligns herself with the following summations on the patient care setting for clinical learning:

- the emphasis in the patient care setting is patient-centered rather than student-centered and it may be construed that patients' rights take precedence over students' rights. On using the patient care setting, the possibility of a shift of emphasis onto the student does exist, however preservation of patients' rights may be entrenched in the ethical and philosophical foundations of the Nursing College.

- the purpose of the patient care setting is to provide quality service to clients, effectively and efficiently as opposed to a learning environment with its main purpose to promote academic and professional growth of the learner. Growth of the clients toward personal and social integrity could be evaluated in the event of using the patient care setting for clinical learning.

- thirdly, the priority of a patient care setting is service (to patients) and the priority of a learning laboratory is learning, i.e. the students' needs are subordinate to
the patient's needs. When using the patient care setting for clinical learning, service may be provided in the process, but compromising the client's needs and quality of service rendered.

On the contrary, there are several arguments to justify the use of the patient care setting. Some educational principles can be used as a point of departure for argumentation in favour of the patient care setting. Firstly, classroom learning is reinforced in the patient care setting by the nature of clinical opportunities it offers. Health problems are exemplified in patients and this should afford the learner the opportunity to restructure his knowledge and thus promote transfer of learning.

Secondly, the principle of continuity is maintained when the student utilizes his previous and present experiences and knowledge, developing it into a more organised, professional skill in the patient care setting. Finally, the principle of interaction is maintained by the patient care setting providing variable and complex stimuli to which the learner is exposed to and required to interact with. Interaction with role models (effective as well as ineffective) and other
health professionals are important determinants of professionalism within a health team.

2.5 CLINICAL LEARNING

For the purpose of this study clinical learning is the acquisition of psychomotor and cognitive skills by nursing students. These components of clinical learning are described below.

2.5.1 PSYCHOMOTOR SKILLS

When one reflects momentarily on nursing care, motor skills form part of many fundamental and advanced nursing activities. The word "skill" has many usages. Butterfield, (1983:15) defines skill as ...

a particular, more or less complex activity which require a period of deliberate training and practise and which often has some recognized, useful function.

The word skill can also be used in relation to the person’s level of performance. The person is then said to be "skilled" or "having skill". Although its usage and semantics may differ, the common factor underlying a skill is movement or activity, hence the term "motor skill". Quinn (1988 : 90) goes further to state that procedural knowledge is an essential part of motor skills,
constituting the mental part of motor skills namely psychomotor skills.

2.5.1.1 **CLASSIFICATION OF PSYCHOMOTOR SKILLS**

The conditions necessary for skill acquisition will be determined largely by the type of skill and the nature of practice. Three classifications of skills are noted in the literature. These are summarised in table 2.2. The skills being assessed in this research project are all classified as manual skills.

TABLE 2.2 CLASSIFICATION OF PSYCHOMOTOR SKILLS IN NURSING

[Adapted from Keil & Deerman (1985:179)]

<table>
<thead>
<tr>
<th>SKILL TYPE</th>
<th>DESCRIPTION</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Motor</td>
<td>* require muscular coordination</td>
<td>* wound suturing</td>
</tr>
<tr>
<td></td>
<td>* involving precision-oriented tasks</td>
<td>* removal of sutures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* administration of injection</td>
</tr>
<tr>
<td>Manual</td>
<td>* require eye-hand coordination</td>
<td>* BP measurement</td>
</tr>
<tr>
<td></td>
<td>* manipulative tasks</td>
<td>* physical assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* bedbath</td>
</tr>
<tr>
<td>Gross Motor</td>
<td>* require movement of body</td>
<td>* LPR</td>
</tr>
<tr>
<td></td>
<td>* using large muscles</td>
<td>* Patient positioning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* ambulation</td>
</tr>
</tbody>
</table>
2.5.1.2 ACQUISITION OF PSYCHOMOTOR SKILLS

Unlike other forms of learning, psychomotor skills require practice in order to be learnt or acquired. Practise consists of repetition of movements/actions of a procedure under specific conditions. Given these practice sessions and specific conditions, the acquisition of psychomotor skills is characterised by three consecutive phases:

- **the cognitive phase** which is concerned with the actual learning of the procedure. The duration of this phase is directly related to the complexity of the skill. The more complex the skill, the longer this phase will last.

- **the associative phase** which is characterized by progress and refinement of the skill or parts of the skill and the ability to eliminate irrelevant, interfering stimuli.

- **the autonomous phase** in which the skill becomes automatic and occurs without thinking.

These phases of skill acquisition are reconcilable with those of Gentile (1972:10) who has dichotomized skill acquisition into two stages.
- Stage I: Cognitive or exploratory stage
during which the individual "gets an idea of
the movement". A motor pattern is organised
to solve a particular problem. Any informa-
tion resulting from his motor pattern
(feedback) can be utilized by the learner
for refinement or alteration of the skill in
the next stage.

- Stage II: Fixation or diversification oc-
curs when the learner progresses by refining
and perfecting movements necessary for goal
attainment.

With continued practice, a highly stereotyped,
automatic movement organization becomes
evident, referred to by Gentile (1972:11) as
becoming "habitual". This stage is in
congruence with the autonomous phase of motor
skill learning. Table 2.3 shows the
researcher's assimilation between these two
models producing three stages in motor skill
learning.
TABLE 2.3 ASSIMILATION BETWEEN TWO MODELS FOR MOTOR SKILL LEARNING

<table>
<thead>
<tr>
<th></th>
<th>STAGE I</th>
<th>STAGE II</th>
<th>STAGE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitts and Posner</td>
<td>Actual learning of the procedure.</td>
<td>Refinement of skill. Irrelevant interfering</td>
<td>Movement becomes automatic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stimuli are eliminated</td>
<td></td>
</tr>
<tr>
<td>Gentile</td>
<td>Organizes a motor pattern.</td>
<td>Refining and perfecting movements.</td>
<td>Movement becomes habitual with practise.</td>
</tr>
</tbody>
</table>

2.5.1.3 CONDITIONS FOR LEARNING PSYCHOMOTOR SKILLS

For the learning of any skill and particularly psychomotor skills, certain prerequisite conditions are needed to enhance learning. These conditions may be described as follows:

- Goal-setting and preparation

Students must know what they are expected to do. Goal-setting and physical presentation of the skill to be learnt are important aspects to ensure goal-directed actions and knowledge of what is to be done. Audiovisual presentation of the skill can take the form of a lecture-demonstration, film, video recording and other instructional programmes.
- Presentation of the skill

Most motor skills comprise a number of subskills which must be mastered before the student can perform the total skill. (Ewen and White 1987:75 and Quinn, 1988:93). For example, shaking down a mercury thermometer is a subskill and is an essential activity in temperature taking. Each of the component subskills must be presented to the student in any of the forms mentioned earlier so that the student’s attention can be drawn to specific aspects for effective performance and goal attainment.

- Practice conditions

As stated earlier, practice forms an integral part of motor skill learning. Of importance in practice conditions is the frequency and spacing of practice sessions. Two patterns of spacing have been identified namely massed (continuous) practice and distributed practice. Massed practice sessions are characterized by little or no rest for the learner from the beginning to end of practice. If resting is permitted, it is usually less than the length or duration of the practice session.
In distributed practice, there are rest periods equal to or greater than the length of the practice session. Research studies reported by Reilly and Oerman (1985:186) found that distributed practice sessions were received more favourably by educators. With reference to the length of the practice session, short sessions in the early stages of skill learning are more profitable. This is particularly so for learning gross motor skills e.g. cardiopulmonary resuscitation where learner fatigue may become problematic. There are apparently no prescribed conditions for learning fine motor and manual skills, however, research suggests that gross motor skills are learnt more efficiently and rapidly with more frequent practise sessions spaced over a period of time.
- Performance feedback

The term feedback refers to the information received by the learner concerning the performance of a psychomotor skill. Such feedback must be immediate and may be received during the performance of the skill or on completion. Butterfield (1983:18), basing her statement on the learning theory of reinforcement, emphasises that feedback is essential particularly during the first few practice sessions of learning a new skill. Knowledge of success or improved performance acts as a reinforcer and serves to perpetuate improved performance in the learner. Similarly, errors in performance can be corrected immediately and repetition of undesirable performance will be eliminated. The implications of performance feedback on motor skill learning, is that they enable modification of the learner’s behaviours for goal attainment. For the purpose of this study, presentation of the
skill and its subskills took the form of a lecture demonstration. Four practice sessions were allocated and distributed over a four week period, during which performance feedback was given by trained research assistants.

2.5.1.4. TAXONOMY OF PSYCHOMOTOR SKILLS

Several taxonomies, i.e., hierarchies of behaviours have been developed to identify the psychomotor progress of a student from novice to expert. In particular Anderson, Conklin, Watson, Hirst and Hoffman (1983:41) have used Dave's taxonomy for psychomotor skill performance. This taxonomy includes five levels of psychomotor performance. In level 1 (P1.0) and level 2 (P2.0) the student's psychomotor behaviour is generally uncoordinated and less accurate. These two levels may be attained in the college laboratory. Level 3 (P3.0) is divided according to the practice setting: P3.1 is psychomotor learning in the college laboratory and P3.2 is in the patient care setting. In both, the performance behaviour is more logical and coordinated. In level 4 (P4.0), coordination is at a high level in consideration with time and speed dimensions. In level 5 (P5.0), the student's psychomotor
behaviour is automatic and reflects professional competence (Reilly and German, 1985:196). Table 2.4 presents the five levels of skill performance and the expected student behaviours for each level. This taxonomy is applicable in the teaching, practise and evaluation of psychomotor skills in nursing. Not all psychomotor skills applicable to nursing practice should be developed to the level of naturalization (P5.0). Reasons for this have been cited as the large quantity of skills the nurse practitioner has to contend with and the variability in the use of certain skills. Decisions for levelling of psychomotor skill performance should be based on the curricular content, stage objectives, situational need, frequency of skill in usual practice and the availability of practise opportunities. In addition, the level at which the student is expected to perform i.e. the outcome level, must be realistic in terms of its potential for attainment by all students. A psychomotor performance grid can be used to provide a framework for decisions about appropriate levels of performance for each skill.
<table>
<thead>
<tr>
<th>LEVEL</th>
<th>PERFORMANCE CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1.0 Imitation</td>
<td>- observed actions are followed</td>
</tr>
<tr>
<td></td>
<td>- movements are gross</td>
</tr>
<tr>
<td></td>
<td>- coordination lacks smoothness</td>
</tr>
<tr>
<td></td>
<td>- errors are present</td>
</tr>
<tr>
<td></td>
<td>- time and speed based on learner need</td>
</tr>
<tr>
<td>P2.0 Manipulation</td>
<td>- written instructions are followed</td>
</tr>
<tr>
<td></td>
<td>- coordination of movements is variable</td>
</tr>
<tr>
<td></td>
<td>- accuracy is consistent with written prescriptions</td>
</tr>
<tr>
<td></td>
<td>- time and speed are variable</td>
</tr>
<tr>
<td>P3.0 Precision (3.1) (3.2)</td>
<td>- logical sequence of actions</td>
</tr>
<tr>
<td></td>
<td>- coordination is at a high level</td>
</tr>
<tr>
<td></td>
<td>- errors are minimal; not critical</td>
</tr>
<tr>
<td></td>
<td>- time and speed are variable</td>
</tr>
<tr>
<td>P4.0 Articulation</td>
<td>- logical sequence of actions</td>
</tr>
<tr>
<td></td>
<td>- coordination is at a high level</td>
</tr>
<tr>
<td></td>
<td>- errors are limited</td>
</tr>
<tr>
<td></td>
<td>- time and speed are within reasonable expectations</td>
</tr>
<tr>
<td>P5.0 Naturalization</td>
<td>- sequence of actions is automatic</td>
</tr>
<tr>
<td></td>
<td>- coordination is consistent at a high level</td>
</tr>
<tr>
<td></td>
<td>- time and speed are within reality</td>
</tr>
<tr>
<td></td>
<td>- performance reflects professional competence</td>
</tr>
</tbody>
</table>

P = Psychomotor domain
P3.1 = Psychomotor learning in the college laboratory
P3.2 = Psychomotor learning in the patient care setting
Levelling of psychomotor skills do not form part of the programme of the College under study and therefore the use of a psychomotor performance grid was not employed during this research project.

Table 2.5 illustrates a performance grid based on oxygenation skills.

TABLE 2.5 EXAMPLE OF A PERFORMANCE GRID FOR LEVELING A PSYCHOMOTOR SKILL - OXYGENATION

[Adapted from Anderson et al (1995:42)]

<table>
<thead>
<tr>
<th>SKILLS</th>
<th>OUTCOME</th>
<th>1ST YEAR</th>
<th>2ND YEAR</th>
<th>3RD YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>assessment of respiration; auscultation for breath sounds</td>
<td>P5.0</td>
<td>P4.0</td>
<td>P5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P4.0</td>
<td></td>
<td>P3.2</td>
<td>P4.0</td>
</tr>
<tr>
<td>positioning to facilitate breathing</td>
<td>P5.0</td>
<td>P3.1</td>
<td>P5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suctioning:</td>
<td>P4.0</td>
<td>P3.1</td>
<td>P4.0</td>
<td>P3.1</td>
</tr>
<tr>
<td>- oropharyngeal</td>
<td>P4.0</td>
<td>P3.2</td>
<td>P3.2</td>
<td>P4.0</td>
</tr>
<tr>
<td>- tracheostomy</td>
<td>P4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>assist with coughing and deep breathing</td>
<td>P5.0</td>
<td>P3.1</td>
<td>P4.0</td>
<td>P5.0</td>
</tr>
<tr>
<td>postural drainage</td>
<td>P3.0</td>
<td>P3.2</td>
<td>P3.1</td>
<td>P3.2</td>
</tr>
<tr>
<td>O2 therapy:</td>
<td>P4.0</td>
<td>P3.1</td>
<td>P4.0</td>
<td>P3.2</td>
</tr>
<tr>
<td>- mask and canula</td>
<td>P4.0</td>
<td>P3.2</td>
<td>P3.2</td>
<td>P4.0</td>
</tr>
<tr>
<td>- croupette</td>
<td>P4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.5.2 **COGNITIVE SKILLS**

The term cognition refers to those internal mental processes such as thinking, learning, problem-solving, remembering and perceiving. Cognitive, relating to the function of cognition, is often used synonymously with the term "knowledge". (Quinn, 1988:8).

The same author also differentiates between declarative knowledge and procedural knowledge. The former comprises factual information which can be transmitted verbally to others and the latter concerns the knowledge of how to perform something e.g. bedbathing a patient. From this can be inferred that different strategies need to be implemented to evaluate the two types of knowledge. Procedural knowledge can be assessed by the person giving a return demonstration and the evaluator rating the learner's performance against predetermined criteria. Declarative knowledge on the other hand, can be assessed by various formats of written and oral tests. Despite its difference in types and in evaluation strategies required, knowledge is often viewed as the theoretical component of practice. Thus it forms an integral part of psychomotor skills and its performance in clinical nursing. However, this does not mean that the cognitive component
should be interjected while psychomotor skill learning is in process. Psychomotor learning is interfered with because of divided attention between the skill being practised and the question being asked. Studies conducted by Brown, Tickner and Simmonds (as quoted by Reilly and Oerman, 1985;193) demonstrated that judgement and control skills were affected adversely while subjects were asked theoretical questions during skill performance. In addition, subject responses were less reliable and correct. In this study the cognitive component related to the psychomotor skill were evaluated separately in order to control variables which may interfere with skill learning. It can be deduced that while cognitive learning requires separate evaluation opportunities and strategies, it al requires specific conditions in which to take place. For the purpose of this Study, the conditions for cognitive learning will be discussed based on the writings of Ewan and White (1987:71).

2.5.2.1 CONDITIONS FOR COGNITIVE LEARNING

- Students must be presented with information in a form they can understand.

The essence in this statement is that familiar vocabulary and concepts must be
used. Technical terms in nursing need to be clarified in order for the student to understand their relevance in forming a conceptual base for nursing actions.

- **Students must be able to store information in a way which facilitates its functional retrieval.**

Incorporating new information into existing general principles already known to the student, will simplify the learning process. The student will now have to learn only specific details, as the general details or principles have already been registered in the long-term memory and only needs to be recognized and retrieved.

- **Students must be able to use information they have learnt to perform tasks or to solve problems.**

In terms of cognitive learning, rehearsal or practice is essential to aid retention of knowledge, as it is essential to aid competence in psychomotor skills. To fulfill this requirement, only relevant or essential elements for effective practice must be taught. Redundant and "nice-to-know" elements should be excluded, as these
Students must know the effectiveness of their use of information.
Feedback on the students’ use of cognitive strategies is important in order to reinforce strengths and correct weaknesses. Feedback should be specific and aimed at improved utilization of knowledge by the student.

2.6 CLINICAL EVALUATION

Evaluation in nursing relates to the perception of nursing acts and/or events judged against the professional standards and values determined by the evaluator (Forgan Morley, 1984:80). With reference to psychomotor skills in nursing, evaluation is concerned with nursing actions toward patient care and is often referred to as clinical evaluation. Clinical evaluation forms an integral component in the learning experience cycle of the student nurse. It offers information both to the learner and teacher about performance and attainment of learning objectives.

2.6.1 PROBLEMS IN CLINICAL EVALUATION

Several problems have been identified in the evaluation process itself and those inherent in the instruments used to evaluate psychomotor
skills. Evaluation in nursing is complicated by the fact that it is concerned not only with the exactness of the technical aspects of the skill, but also with the effectiveness of the nursing action performed. This can be translated into Pavlish's model for clinical evaluation which observes two essential elements: processes and products. Process evaluation refers to the exactness and sequence of steps followed in doing a task. Product evaluation refers to the effectiveness of the outcome of the task performed. It is therefore essential that any evaluation tool addresses both the processes and products of the nursing action.

Establishing measurable criteria, is also one of the major concerns in evaluation. Formulation of criteria for nursing actions provide a standard against which results or behavioural outcomes can be measured. In addition the degree of success determined by these criteria, provide feedback to the learner. The evaluation tools used in this study were designed to address both processes and products, based on the scientific principles of nursing care. Concrete and descriptive criteria were developed to measure processes and products. A third problem lends itself to the fact that clinical evaluation is based on direct
observation. Since human observation is a subjective process, bias and subjectivity are inherent problems. It would appear from the literature, that there is a perpetual search for objective criteria in order to eliminate subjective judgement. Efforts should be directed to the evaluation tool where the interpretation of grading standards by different evaluators, is one of the major sources of subjectivity. For this reason, a checklist as opposed to a rating scale was developed for this Study.

The environment in which the student is being evaluated may complicate the evaluation process significantly. This aspect will be discussed later in this section. Because of the skewed student-teacher ratio, the evaluation of an individual student's performance is inevitably based on a sample of the student's total clinical experience in the nursing unit. It is not only impossible but also uneconomical to achieve a constant 1:1 observation period with a student while student-teacher ratios may be equal to or higher than 1:8 (Wood, 1982:12). Figure 2.3 depicts the researcher's illustration of the conditions of clinical evaluation and the problems they create.
Evaluation environment

<table>
<thead>
<tr>
<th>(a)</th>
<th>Measurable criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>Inconsistent results and feedback if leading</td>
</tr>
<tr>
<td>(c)</td>
<td>Subjective process; increased possibility for bias</td>
</tr>
<tr>
<td>(d)</td>
<td>Evaluation environment</td>
</tr>
<tr>
<td>(e)</td>
<td>Student-teacher ratio</td>
</tr>
</tbody>
</table>

FIGURE 2.3 CURRENT PROBLEMS IN CLINICAL EVALUATION
2.6.2 APPROACHES TO CLINICAL EVALUATION

With reference to the time of evaluation in relation to learner maturity, two approaches to evaluation have been identified. These approaches are described as follows:

(a) Formative evaluation

Formative evaluation occurs during the learning experience when learner maturity is low. It provides feedback about the student's progress toward the learning objectives. It is an assessment of that which "forms" learning by reinforcing strengths and identifying weaknesses in clinical performance. Based on androgogical principles of learning, formative evaluation is best achieved through self-assessment by the student. (Dolphin and Holtzclaw, 1983:143). It is here where the taxonomy of psychomotor performance criteria, described earlier, is most applicable.

(b) Summative evaluation

In this type of evaluation, performance is evaluated at the end of the educational programme. It occurs during high learner maturity and evaluates the student's achievement of the learning objectives. It "sums up" how well the learning objectives were met.
According to Beare (1985:75), not all evaluation must take place within the patient care setting; formative evaluation occurring in the college laboratory prior to the student's clinical experience. In the patient care setting, both formative and summative evaluation should be done to assess attainment of clinical learning objectives.

2.6.3 METHODS OF EVALUATION

Methods of evaluating learning have been identified in the literature as criterion-referenced and norm-referenced. The criterion-referenced method of evaluation utilizes specific predetermined criteria or standards against which student performance is judged (Pavlisch, 1987:339). These criteria relate to the learning objectives and each student is rated by his ability to demonstrate chosen behaviour according to the established criteria. This method of evaluation has the advantage that precise achievement in direct relation to specified behaviours is demonstrated and the student has knowledge of his/her progress (Forgan-Morley, 1984:82).

The normative method reveals the performance of an individual student in relation to other
students following the same course (at the same level). In this instance the group score is regarded as the norm or standard against which individual performance is judged. Such performance may be expressed in marks or grades eg. A, B, C system or by levels of competency eg. good, above average, unacceptable etc.

Regardless of the method of evaluation, difficulties often lie in the choice of a grading system which is compatible with the theoretical framework of the nursing education institute. According to Forgan-Morley (1984:83), the educational philosophy of a particular institute should serve as a guideline in the choice of the evaluation method and grading. However, there is a tendency to the simultaneous use of more than one method in nursing education. For the purpose and comparative nature of this study, both evaluation methods were employed. Set standards were used against which to judge students' clinical learning; expressed as percentages to enable group comparisons.

2.6.4 ENVIRONMENT FOR CLINICAL EVALUATION

For the purpose of this study, environments for the evaluation of psychomotor skills will be confined to the college laboratory and the patient care setting.
2.6.4.1 THE COLLEGE LABORATORY

During the early stage of the student's clinical learning experience, learner maturity is usually low and the cognitive (exploratory) phase of skill learning is the focal point. Formative evaluation is ideal during this stage of skill learning accompanied by constructive performance feedback by the teacher. The ideal setting would be a simulated one, since it provides a non-threatening milieu where learners can receive formative evaluation as they progress through their practice sessions. (Reilly and Oerman, 1985:189). Germain to the evaluation of psychomotor skills in the college laboratory, is the level at which the student is expected to perform. Such performance expectations are based on the taxonomy of psychomotor skills as described earlier. Minimum acceptable levels of performance must be established prior to evaluation and must be communicated to the student. According to Anderson et al. (1985:43), performance at the level of precision (P3.0) or the level of articulation (P4.0) should be evaluated in the college laboratory. Consequently the student will have to perform at the designated achievement level before performing the skill on an actual patient.
2.6.4.2 The Patient Care Setting

Once students have achieved the predetermined level of performance under simulation, they will proceed to the patient care setting for further practise and evaluation. Wood (1982:12) highlights two major problems when evaluating psychomotor skills in the patient care setting. Firstly, students have to contend with a multitude of variables which may have both positive and negative effects on learning and complicate evaluation significantly. The student has to adjust to clients, staff and environmental demands of the unit during the four to six week allocation period. At the same time she is applying what has been learnt in the college laboratory. During this adjustment and learning period, she is also being evaluated; a less than ideal situation, as it may not represent a true reflection of the student’s clinical performance. These and other stressors in the patient care setting complicate evaluation of skills significantly. A second problem arises when comparable learning experiences are to be devised for each student. Because of the dynamics and diversity in the patient care setting, it is impossible for the teacher to evaluate different students
in similar settings. Acknowledgement of this dilemma has introduced the OSCE in an attempt to standardise evaluation opportunities.

2.7 PREVIOUS RESEARCH

A similar study was designed by P. mez and Gomez in 1987, to investigate practice conditions when learning a psychomotor skill in a Baccalaureate degree program in nursing. Subjects were randomly assigned to one of two groups for practice viz. the college laboratory or patient care setting. The skill being practised was BP taking. Subjects were required to practise this skill eight consecutive times in their predetermined practice settings. While these researchers were generous in terms of the number of practice sessions, the aspect of supervised practices lends itself to critique. In this study, feedback by a trained instructor was given only after the fourth and seventh practice session.

With reference to the learning theory of reinforcement and several articles on the acquisition of psychomotor skills, feedback is absolutely essential particularly during the first few practice sessions. Performance errors in the first two to three trials tend to persist in subsequent practice sessions. This makes "unlearning" of performance errors more difficult and prolongs the
practice sessions unduly. While alternative forms of extensive feedback do exist, no mention of the utilization thereof was made in the research done by Gomez and Gomez. This has led the author to believe that feedback during practice trials were inadequate for learning a psychomotor skill. With reference to the spacing of practice trials, Gomez and Gomez have selected massed practices as opposed to distributed practices. While research in this field of psychomotor learning notes no difference in the amount of learning between massed and distributed practice, several authors tend to favour distributed practice sessions in view of practical considerations such as avoiding learner fatigue and lowered motivation. This raises the question whether the final evaluation of the students subjected to continuous practice sessions is both fair and valid. Furthermore, the 1-5 scale used to evaluate the subjects' degree of confidence demonstrated during BP taking, depended solely on the rater's opinion and judgement. Although having a high interrater correlation coefficient, it does not preclude rater subjectivity and bias. A similar study conducted by Megal, Wilken and Volcek later in 1987 evaluated nursing students' performance during the administration of injections in the College laboratory and the clinical area. The
purpose of the study was to determine the accuracy of nursing students' administration of injections and the relationship of performance errors to students' anxiety. The author believes that important extraneous variables were not sufficiently controlled in this study and therefore could have had a confounding influence on the findings of the research. To begin with, the sampling procedure forms the weakest aspect of this study. A non-probability sampling plan was used in which a convenient sample was selected. Thirty five subjects from a target population of one hundred and thirty volunteered to participate in the study. This fact has alerted the author to sampling bias and that the subjects (volunteers) might be atypical of the population with regard to the critical variables being measured. These subjects might already have possessed greater confidence and lower anxiety than their non-participating colleagues, misleading the researchers regarding their levels of confidence and anxiety. In the methodology, the lack of standardizing the initial instruction/demonstration of the skill and the control over the number of the practice trials, has led the author to speculate on the influence of extraneous variables. The subjects seemingly were allowed independent study of material provided by the
faculty. In addition, the number of practice trials ranged from 1 to 10 with a mean of 4. Subjects were therefore not exposed to "standardized" conditions of practice and has led the reader to believe that subjects who had deficient trials committed the most errors in skill performance. Perhaps the significance lies in the relationship between performance errors and number of practices rather than between performance errors and the practice environment.

2.8 SUMMARY

This chapter gave a descriptive overview of the literature consulted and its relevance to this study. In particular it addressed all those aspects which influence the acquisition, performance and evaluation of psychomotor skills both directly and indirectly. Cognitive skills, although seen as an integral component of psychomotor skills, were discussed separately in this chapter and researched independently of the motor skill component. The main constructs of Gentile's open and closed skills theory were described with its application to psychomotor learning in nursing. Previous research in this area, was discussed critically, with due cognisance of factors relevant for this study.
CHAPTER 3
THE RESEARCH DESIGN

3.1 INTRODUCTION

The performance of first year student nurses during cognitive and psychomotor learning was investigated to determine whether a significant relationship exists between the level of skill performance and the setting in which the skill was learnt. Evaluation of student performance was done both in the original practice setting and the patient care setting to determine whether they performed significantly better or not.

3.2 RESEARCH METHOD

This is a descriptive multimethod study, involving
- instrument development and validation
- reliability testing of instruments
- data collection on cognitive and psychomotor performance utilizing the above instruments.

Subjects' performance of psychomotor and cognitive skills were assessed using checklists and MCQ's designed for three nursing skills. These skills were randomly selected after being sorted out as oper. skills to be taught during the first week of the subjects' semester block:
- measurement of temperature, pulse rate and respiratory rate (TPR)
3.3 INSTRUMENT DEVELOPMENT AND VALIDATION

3.3.1 INSTRUMENTS FOR PSYCHOMOTOR PERFORMANCE

During the development phase, applicable standards (construct variables) for each of the nursing skills being studied had been drawn up by the standardization committee of the campus hospital and college after a comprehensive literature study. Content validity was based on recent literature and the expert judgement of five clinical tutors. Statistical analysis of the validity (quantification) of these standards necessitated the use of a 4-point scale to calculate an index of content validity (CVI). A 4-point ordinal Likert grading scale as used by Muller (1987:227) was implemented to determine the CVI for each standard. The key to the grading scale was as follows:

1 = standard not applicable
2 = standard not clear, application questionable; possible reword
3 = standard applicable
4 = standard most applicable and well formulated

These standards and instructions for validation were dispatched to six nurse educators at different local educational institutes (appendix A, B, C and D). On return of these records, the average score of each item / standard was calculated to obtain the index of content validity. According to Lynn (1968:335), an item is valid, when it obtains an average CVI of 3 to 4. This is dependent upon the degree of consensus reached by the persons validating the standards. The standard deviation (SD) was also calculated to confirm the degree of consensus.

All valid items were reorganized to form the checklists (Appendix E, F and G), described below. Statistical calculation of content validity is discussed and tabulated in Chapter 4.

3.3.1.1 THE FORMAT

A standard applicable to the nursing skill is stated at the beginning of the instrument to serve as a measure with which the outcome / student performance is compared. The objectives on the instrument are competency objectives. These objectives are directly related to the student behaviours marked with an
asterix (*). These are called critical behaviors as they are absolutely essential or critical for the student to attain the competency objectives.

The instrument (checklist) design was based on the nursing process. The assessment phase checks whether the student has assessed the situation and factors which may have an influence on her subsequent actions. The planning phase evaluates the student's ability to prepare the patient, the environment, the requirements and herself for the nursing skill. The student's ability to perform the nursing skill in a logical sequence and with accuracy, is evaluated during the implementation phase. The evaluation phase tests the student's ability to record the nursing action and any observations which may stem from it.

3.3.1.2 THE SCORING SYSTEM

The choice of a checklist as opposed to a rating scale (5 point scale) was an attempt to reduce bias and subjectivity which were inherent in the evaluation tools used at the time of the research. Restrictions of time and resources to re-train research assistants in the use of the rating scale further necessitated the use of a checklist. The
scoring system may be summarized as follows:
- All student behaviours have a value of one (1) point each except the critical behaviours (×) which have a value of five (5) points each.
- Behaviours which are not applicable (N/A) are subtracted from the maximum score before obtaining the student's score.
- All behaviours which are correctly performed are added to obtain the student's score.
- If one to two critical behaviours are incorrectly performed or omitted the student fails summarily with 45 %.
- If three to four critical behaviours are incorrectly performed or omitted the student fails with 35 %.
- If five to six critical behaviours are incorrectly performed or omitted the student fails with 25 %.

The index of discrepancy which appears on the TPR and BP checklist served as a control measure for the researcher, to compare accuracy between the subject's and the evaluator's readings.

3.3.2 INSTRUMENTS FOR COGNITIVE PERFORMANCE

A test comprising fifteen multiple choice questions (MCQ's), was compiled for each of the
aforementioned skills, to determine students’ skill-related knowledge. (Appendix H, I and J) MCQ’s were chosen by the researcher as these are best suited for the assessment of factual recall and interpretation of data (Mitchell, 1985:7). Secondly, MCQ’s meet three basic criteria for good assessment namely, objectivity, validity and reliability. Correct and incorrect responses were decided in advance and were therefore not subject to the researcher’s whim and bias. The contents of the objective tests were derived from the curricular stage objectives and student study guides. The tests were validated by recent literature and a discussion with experts in the setting of MCQ’s. Final content validation was done by an expert and author of a book on MCQ’s, at a local university.

3.3.2.1 THE FORMAT

The cognitive instruments each consisted of fifteen concise, factual statements or questions. Each question in turn has five responses from which the student has to select the correct response/responses by ticking the appropriate box/boxes. As stated previously, correct and incorrect responses were determined in advance and remained permanent throughout cognitive assessment.
3.3.2.2 THE SCORING SYSTEM

The perennial problem of students' guessing was eliminated by subtracting marks proportional to the marks for a correct response (all positive marks equal all negative marks within a question). This penalty was introduced to prevent students from scoring 100% in the event of them ticking all statements as correct. However, the researcher did not employ negative marking and thus the range of scores was 0 to 100%. The total value of each question was 1.2 marks and thus a total of 18 marks would be 100%.

3.4 RELIABILITY TESTING OF INSTRUMENTS

3.4.1 CHECKLISTS FOR PSYCHOMOTOR PERFORMANCE

Testing the checklists for reliability involved the characteristics stability, equivalence and internal consistency. To determine stability of the instruments, the test-retest method was used. This test was done on 26 subjects of the target population, with retesting after two weeks. A correlation coefficient (Pearson r) between the test and retest scores were computed. Reliability coefficients above 0.70 are considered satisfactory according to Polit and Hungler (1987:388) and suggests a reliable instrument. The Pearson r values for TPR, BP and
PPC were 0.79, 0.93 and 0.77 respectively. Consult table 3.1. Inter-rater reliability for the equivalence of the instruments was determined by comparing the scores of two raters who simultaneously observed students' performance in all three nursing skills. A correlation coefficient using Pearson r was once again calculated. High interrater reliability was reflected by r-values of 0.85, 0.97 and 0.98. The internal consistency of the instruments was determined by the split half method. Pearson r was calculated and all three values were above 0.70 suggesting reliable instruments. Table 3.1 reflects the reliability coefficients of the psychomotor instruments (checklists).

<table>
<thead>
<tr>
<th>TABLE 3.1</th>
<th>RELIABILITY COEFFICIENTS OF PSYCHOMOTOR INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKILLS</td>
<td>RELIABILITY TESTING</td>
</tr>
<tr>
<td></td>
<td>TEST RETEST</td>
</tr>
<tr>
<td>TPR</td>
<td>0.79</td>
</tr>
<tr>
<td>BP</td>
<td>0.93</td>
</tr>
<tr>
<td>PPC</td>
<td>0.77</td>
</tr>
</tbody>
</table>
3.4.2 TESTS FOR COGNITIVE PERFORMANCE

Reliability was determined statistically by the test-retest method to assess stability and hand calculated item (factor) analysis to determine the internal consistency of the instruments. In the test-retest method, reliability was reflected in similar mean scores for each of the aforementioned skills. High correlation coefficients (0.96, 0.67 and 0.83) between the two sets of scores were found. All three tests were considered reliable as their r-values were above 0.70. Consult table 3.2 for the test, retest and correlation values.

In this study, item analysis addressed two basic elements in objective test construction as follows:

- ITEM DIFFICULTY, which refers to the percentage of respondents correctly answering a given item. The lower the percentage the more difficult the item. Using Nunnaly's criteria, MCQ's with four or more alternatives (as those used in this study) should have a range of 35% - 80% or 0.35 - 0.80 for it to be reliable in terms of item difficulty. (Jenkins and Michael, 1986:11).

- ITEM DISCRIMINATION, measures the extent to which an item discriminates between high and low scores. A discrimination index ranges from...
-70-

-1 to +1. The higher the index, the more discriminating the item.

Statistical analysis of items in the objective tests is discussed in Chapter 4.

TABLE 3.2 MEAN SCORES AND RELIABILITY COEFFICIENTS OF COGNITIVE INSTRUMENTS

<table>
<thead>
<tr>
<th>SKILLS</th>
<th>MEAN SCORES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEST</td>
</tr>
<tr>
<td>TPR</td>
<td>51</td>
</tr>
<tr>
<td>SP</td>
<td>44</td>
</tr>
<tr>
<td>PPC</td>
<td>53</td>
</tr>
</tbody>
</table>

3.5 SAMPLING METHOD

The target population comprised all first year nursing students (group 1) who registered for the Diploma in Nursing Science and Midwifery at a Nursing College (N=42). Subjects with prior nursing experience were excluded from the study because of their existing knowledge and skills which could interfere with the study. Only two subjects were found to have previous nursing experience and were excluded from the sample. The remaining students constituted the sample (n=40) and were randomly assigned to Group A and Group B. Demographic variables of the subjects such as age,
gender and scholastic achievement were documented, because of their possible extraneous effects on the findings.

3.6 THE RESEARCH ASSISTANTS

The design of the study necessitated the employment of research assistants. Their functions were to supervise the practice sessions for psychomotor learning and to evaluate the students' performance during the final return demonstration in the original practice setting and then in the patient care setting.

3.6.1 CRITERIA FOR SELECTION

Eight research assistants were selected for these functions. They were carefully matched for academic qualifications and area of subject specialization. All research assistants were nurse educators (tutors) registered with the South African Nursing Council and specialized in the teaching of General Nursing Science. Since the clinical teaching department has been incorporated into the Nursing College for the past five years, these tutors have had equal exposure to and experience in student assessment in the clinical units and in the college. The development, testing and utilization of evaluation instruments in conjunction with the associated
University form an integral part of their job description. To eliminate researcher bias, the researcher was not directly involved with the assessment of psychomotor skills, but rather controlled and coordinated activities during this stage of data collection.

3.6.2 PREPARATION OF THE RESEARCH ASSISTANTS

The assistants were informed in writing about the nature and purpose of the research and also the procedures they were required to follow. This information was structured in point form and was accompanied by a timetable reflecting the skill content, time schedules and area allocation. The research assistants were each issued with the standardized procedures and evaluation instruments for the three nursing skills being studied. Interrater reliability for six of the research assistants was obtained through concurrent observation by the researcher during the months prior to the study. The remaining two assistants had taken part in the pilot study and were therefore not subjected to the same scrutiny. No formal training was indicated by these observations. Assessment of these tutors’ clinical teaching and evaluation abilities was done by the Head of the Clinical Teaching Department and therefore competency was implied by her evaluation reports.
3.6.3 **ALLOCATION OF THE RESEARCH ASSISTANTS**

Groups A and B were divided into subgroups of 5 students each. Each research assistant was randomly assigned to a group of five students. The assistants were required to alternate the practice sessions between Group A and Group B to reduce the propensity to group bias or favoritism. The research assistants allocated to Group B used selected wards for practice sessions and those allocated to Group A used the college laboratory for practice sessions. The allocation of the research assistants was done by the researcher who also exercised control by rotating between the assistants during each practice session.

3.7 **THE RESEARCH SETTING**

Data were collected in the college classroom, the college laboratory and the patient care setting.

3.7.1 **THE CLASSROOM**

A classroom, with a capacity for about 80 students, equipped with desks and chairs, adequate lighting and ventilation, was used to test the cognitive component of learning. Here, students were required to complete the pretest and posttests, and hand them in to the researcher before leaving the classroom.
3.7.2 THE COLLEGE LABORATORY (Setting A)

This locale consisted of two large and two smaller rooms with equipment and supplies comparable with the patient care setting. An exception was the presence of four 3-D models on which the students would perform the nursing skill PPC. The skills TPR and BP would be performed on fellow colleagues. The college laboratory was used for the practice of psychomotor skills by group A.

3.7.3 THE PATIENT CARE SETTING (Setting B)

Four medical wards were selected for the subjects in group B to practise psychomotor skills. These wards were chosen because of their environmental uniformity for each of the groups of five students. Also, the selected nursing skills were routinely performed in these wards, thus little or no disruption of ward routine was intended. The registered nurse in charge of the ward was informed by the Matron about the proposed study in her unit and was provided with a time-table similar to that of the research assistants. The patients on whom the nursing skills were performed, were selected by the researcher on the morning before commencement of the practice session. A full explanation was given to the patient by the researcher and a verbal agreement on the part of the patient implied permission to carry out the nursing skill.
3.8 THE PILOT STUDY

A pilot study was conducted using ten (10) first year student nurses who registered for the Diploma in Nursing Science and Midwifery in the year preceding the study. These subjects possessed similar characteristics to those used for the major study. Two research assistants were employed, each being assigned to a group of five students. The nursing skills selected for the pilot study were: BP and PPC. One group practised in the college laboratory and the other group in the patient care setting. Research assistants were rotated between the two groups, with the researcher acting as co-observer at each practice session. As a result of the pilot study the following changes were brought about:

- the third nursing skill, namely taking of temperature, pulse and respiratory rate was introduced. The same procedure (described in the methodology) was applied for skill selection,

- the time limit of one week, for the evaluation of psychomotor learning in the patient care setting, was reduced to two days. This meant that the subject had to be evaluated immediately during her FIRST TWO DAYS of being allocated to the patient care setting in order to minimize the influence of intervening variables. This was also a precautionary measure to exclude the
possibility of extra practice to attain competency which the student might not have attained with only the predetermined number of practice sessions.

The major study could only be implemented one year after the pilot study because of the current student intake policy at the institution.

3.9 DATA COLLECTION

Information relating to the three nursing skills was given by means of a lecture-demonstration to all the subjects simultaneously on three consecutive days during the first week of the semester block. Data collection took place in two phases viz. phase 1 and phase 2.

3.9.1 PHASE 1

During this phase, data on students' knowledge were collected by administering tests that contained MCQ's pertaining to the nursing skills, TPR, BP and PPC. The tests were given during the semester block according to the teaching timetable. A pretest was administered immediately before the subjects received information related to the aforementioned nursing skills through a lecture-demonstration (LD). The purpose of the pretest was to determine the knowledge base already possessed by the subjects and to equate
groups A and B in terms of their knowledge level. A posttest, containing the same items as the pretest, was administered immediately after the lecture—demonstration, to assess their cognitive gains in each of the three skills (hereafter called posttest 1). After receiving an initial lecture—demonstration, students were given the opportunity to practise these skills in their previously assigned groups. For manageable purposes, subjects were further assigned to eight groups of five each. A research assistant was in control of each of the five students during a practice session. While the assistants rotated between the student groups at each different practice session, the groups themselves remained permanent throughout the study. Practice sessions were scheduled on four consecutive Friday afternoons from 13:00 to 16:00. During this time period, students were instructed to practise each skill at least once. The purpose of the research assistant was to supervise each individual student, giving meaningful, constructive feedback and guidance during skill performance. To collect data on the psychomotor performance, direct observation (with checklists) was used during the fourth (final) practice session. The research assistants evaluated the
students' performance, during a return demonstration, in each of the aforementioned nursing skills. The appropriate checklists were completed and handed to the researcher on the same day. The final practice session marked the end of their semester block after which they were allocated to their respective patient care areas.

3.9.2 PHASE 2

This phase of data collection was done during the first two days of the students being allocated to the patient care setting in order to control the influence of extraneous variables on the students' performance. Students were evaluated once again by the research assistants, using the same checklists for the nursing skills being studied. This phase of data collection enabled the researcher to compare the two groups' psychomotor performance in the patient care setting. To compare their cognitive performance, the second posttest (posttest 2) could be administered for practical reasons, only 8 weeks later when both groups returned to the college. The researcher acknowledges this factor as a limitation to the study.

Table 3.3 reflects activities during the data collection phase.
TABLE 3.3 Evaluation, activities, phases and techniques

<table>
<thead>
<tr>
<th>TIME</th>
<th>TEACHING -- LEARNING VENUE</th>
<th>STUDENT ACTIVITY</th>
<th>TARGET GROUP</th>
<th>EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Domain</td>
<td>Instrument</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Evaluation</td>
<td></td>
</tr>
<tr>
<td>WEEK 1 day 2</td>
<td>Classroom</td>
<td>TPR L-D by Tutor A</td>
<td>Group A (n = 20)</td>
<td>TPR Pretest & Posttest 1</td>
</tr>
<tr>
<td></td>
<td>and</td>
<td>BP L-D by Tutor B</td>
<td>and</td>
<td>BP Pretest & Posttest 1</td>
</tr>
<tr>
<td></td>
<td>College</td>
<td></td>
<td>Group B (n = 20)</td>
<td>PPC Pretest & Posttest 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEEK 2 day 3</td>
<td>Setting A</td>
<td>Supervised practices:</td>
<td>Group A</td>
<td>psychomotor no formal</td>
</tr>
<tr>
<td>WEEK 2 day 5</td>
<td>Setting B</td>
<td></td>
<td>(4 groups of 5)</td>
<td>(practical) evaluation</td>
</tr>
<tr>
<td>WEEK 3 day 5</td>
<td>Setting A</td>
<td>Student return demonstrations:</td>
<td>Group B</td>
<td>Structured</td>
</tr>
<tr>
<td>WEEK 4</td>
<td></td>
<td></td>
<td>(4 groups of 5)</td>
<td>checklists</td>
</tr>
<tr>
<td>WEEK 6</td>
<td>day 1 or day 2</td>
<td>Student return demonstrations:</td>
<td>Group B</td>
<td>structured</td>
</tr>
<tr>
<td></td>
<td>(depends on duty roster)</td>
<td></td>
<td>(practical)</td>
<td>checklists</td>
</tr>
<tr>
<td></td>
<td>Setting B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEEK 14 day 1</td>
<td>Classroom</td>
<td>In College for semester block</td>
<td>Group A</td>
<td>Knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(written test)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PPC Posttest 2</td>
</tr>
</tbody>
</table>
3.10 ETHICAL CONSIDERATIONS

In an attempt to conform to the moral, ethical and legal standards of a scientific investigation, certain procedures were embarked upon prior to the major study. These can be described as follows:

- The study involved the direct use of human subjects and required clearance of the research protocol by the Committee for Research on Human Subjects. A copy of the clearance certificate can be seen in Appendix K.

- Written informed consent was obtained from subjects (students) through the attached consent form (Appendix L).

- Informed consent was obtained from the patient on whom the nursing skills were performed. A verbal agreement on the part of the patient implied permission to perform the nursing skills.

- Application was made to the Superintendent of the local Hospital for permission to conduct research in the medical wards of the hospital (Appendix M).

- Application was made to the Matron-in-charge of patient care via the Chief Matron to permit subjects of Group B to practise nursing skills on designated patients in the medical wards (Appendix N).
Permission from the Principal to use the college laboratory for Group A was obtained verbally and confirmed on a weekly basis during the research project.

Research assistants were recruited on a voluntary basis, provided they fulfilled the selection criteria. Their willingness to participate, implied consent, and their continuance were guaranteed by financial remuneration in accordance with current rates specified by the local University.

3.11 SUMMARY

This chapter addressed the research and sampling methods for the purpose and nature of this study. Data collection techniques were discussed with special emphasis on the development of instruments used and the role of the research assistants. The research setting was delineated with application to the procedures employed in each area. Significant changes in the major study, as a result of the pilot study were described as well as the ethical issues pertinent to the Study. Reliability and validity of the instruments used were discussed, however, statistical analysis thereof was not dealt with in this chapter.
4.1 INTRODUCTION

All data collected from subjects were hand sorted and categorised into the three nursing skills being studied; group A and group B data being kept separately. Research data were summarised using descriptive statistics. To test the null hypotheses, inferential statistics were used. The data were presented in two classes, in accordance with the two domains of learning that were studied:
- data related to the psychomotor performance of subjects were analysed using descriptive and inferential statistics followed by
- an analysis of data related to the cognitive performance (knowledge level) of subjects.

4.2 ANALYSIS OF DEMOGRAPHIC DATA

Although not consistent with the purpose of the research, it was intended to collect and analyse demographic variables of the sample, to assess their possible effect on the research findings. This data comprised age, gender, type of school (public or private) and level of senior certificate expressed in symbol aggregate. The mean ages for group A and B were 19 and 19.5 respectively. Female students comprised 98% of the sample; the only
male student belonging to group B. Subjects who have attended public schools constituted 95% of the sample and the remaining 5% (which belonged to group A) attended private schools. Fifteen percent of students in group A obtained an overall C-symbol (80-69%) on school leaving as opposed to 5% in group B. Both groups had an equal number of D-symbols (50-59%), constituting 85% of the subjects. Fifty percent of students in group A and 60% in group B obtained an overall C-symbol (40-49%) matriculation certificate.

Consult table 4.1 for an analysis of demographic data in both Group A and Group B. (N = 20 for each group).

Table 4.1 Demographic Variables of the Sample

<table>
<thead>
<tr>
<th>SUBJETS</th>
<th>MEAN AGE</th>
<th>GENDER</th>
<th>TYPE OF SCHOOL</th>
<th>LEVEL OF SENIOR CERTIFICATES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FEMALE</td>
<td>PUBLIC</td>
<td>PRIVATE</td>
</tr>
<tr>
<td>Group A</td>
<td>19</td>
<td>0.20</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Group B</td>
<td>19.5</td>
<td>0.19</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>
4.3 STATISTICAL ANALYSIS OF INSTRUMENT VALIDITY AND RELIABILITY

4.3.1 INSTRUMENTS FOR PSYCHOMOTOR SKILLS

As discussed previously, a 4-point ordinal Likert grading scale was used to calculate the index of content validity (CVI). The key to the grading scale was as follows:

1 = standard not applicable
2 = standard not clear, application questionable, possibly reword
3 = standard applicable
4 = standard most applicable and well formulated.

A mean score of the respondents' grading for each item (standard) was calculated to obtain the CVI. According to Lynn (1986: 335), an item is valid when it obtains an average CVI of 3.0 - 4.0; content validity being dependent upon the degree of consensus between the respondents. For the purpose of this study, a mean CVI of 3.5 - 4.0 was used to accept an item as valid. To determine the degree of consensus between the respondents, the standard deviation (SD) was calculated.

4.3.1.1 MEASUREMENT OF TPR

This instrument consisted of 14 items. The validation results are shown in Table 4.2. All
items except 1.1 and 3.9 were accepted as valid. On account of their CVI of 2.83 and 3.33 respectively, these items were omitted from the instrument.

TABLE 4.2 VALIDATION RESULTS - ITEMS IN TPR CHECKLIST

<table>
<thead>
<tr>
<th>Item</th>
<th>CVI</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ASSESSMENT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Identify the patient</td>
<td>2.83</td>
<td>0.753</td>
</tr>
<tr>
<td>1.2 Observe factors which may influence nursing action</td>
<td>3.66</td>
<td>0.516</td>
</tr>
<tr>
<td>2. PLANNING:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Collect requirements</td>
<td>4.00</td>
<td>0</td>
</tr>
<tr>
<td>2.2 Inform patient about nursing action</td>
<td>4.00</td>
<td>0</td>
</tr>
<tr>
<td>3. IMPLEMENTATION:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Ensure that Hg column is below 35°C</td>
<td>3.66</td>
<td>0.516</td>
</tr>
<tr>
<td>3.2 Place thermometer under patient's tongue</td>
<td>4.00</td>
<td>0</td>
</tr>
<tr>
<td>3.3 Place middle & index finger lightly over radial pulse</td>
<td>3.83</td>
<td>0.408</td>
</tr>
<tr>
<td>3.4 Count accurately the number of pulsations for 1 minute</td>
<td>3.82</td>
<td>0.408</td>
</tr>
<tr>
<td>3.5 Count accurately the number of breaths for 1 minute</td>
<td>4.00</td>
<td>0</td>
</tr>
<tr>
<td>3.6 Remove thermometer after 2 minutes</td>
<td>3.89</td>
<td>0.408</td>
</tr>
<tr>
<td>3.7 Wipe off with swab from distal end to bulb</td>
<td>3.50</td>
<td>0.548</td>
</tr>
<tr>
<td>3.8 Read temperature from thermometer accurately</td>
<td>4.00</td>
<td>0</td>
</tr>
<tr>
<td>3.9 Clean thermometer</td>
<td>3.33</td>
<td>0.516</td>
</tr>
<tr>
<td>4. RECORDING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Complete record accurately</td>
<td>4.00</td>
<td>0</td>
</tr>
</tbody>
</table>
4.3.1.2 MEASUREMENT OF ARTERIAL BP

The validation results of each of the 23 items of the instrument are shown in Table 4.3. Items 1.1 and 3.12 were rejected because of their low CVI. (CVI = 3.33 and 2.66 respectively).

<table>
<thead>
<tr>
<th>TABLE 4.3 VALIDATION RESULTS: ITEMS IN BP CHECKLIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ASSESSMENT</td>
</tr>
<tr>
<td>1.1 Identify the patient</td>
</tr>
<tr>
<td>1.2 Check nursing prescription</td>
</tr>
<tr>
<td>1.3 Observe factors which influence nursing action</td>
</tr>
<tr>
<td>2. PLANNING</td>
</tr>
<tr>
<td>2.1 Inform patient about nursing action</td>
</tr>
<tr>
<td>2.2 Collect requirements</td>
</tr>
<tr>
<td>2.3 Place sphygmomanometer on horizontal surface</td>
</tr>
<tr>
<td>2.4 Position patient comfortably</td>
</tr>
<tr>
<td>3. IMPLEMENTATION</td>
</tr>
<tr>
<td>3.1 Expose upper arm</td>
</tr>
<tr>
<td>3.2 Extend arm with palm facing upwards</td>
</tr>
<tr>
<td>3.3 Position/support arm at heart level</td>
</tr>
<tr>
<td>3.4 Apply cuff correctly by:</td>
</tr>
<tr>
<td>a) placing rubber bag over upper brachial artery</td>
</tr>
<tr>
<td>b) approximately 2cm above the antecubital space</td>
</tr>
<tr>
<td>3.5 Palpate brachial/radial pulse</td>
</tr>
<tr>
<td>3.6 Obtain preliminary systolic BP</td>
</tr>
<tr>
<td>3.7 Position stethoscope firmly over brachial artery in antecubital space</td>
</tr>
<tr>
<td>3.8 Reinflated cuff +/- 20mmHg above systolic BP</td>
</tr>
</tbody>
</table>
4.3.1.3 PRESSURE PARTS CARE

This instrument consisted of 20 items of which one item was not accepted as valid. On the grounds of its CVI of 3.15, item 1.1 was eliminated from the instrument.

Consult Table 4.4 for the validation results.
<table>
<thead>
<tr>
<th>TABLE 4.4 VALIDATION RESULTS - ITEMS IN PPC CHECKLIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ASSESSMENT:</td>
</tr>
<tr>
<td>1.1 Identify the patient</td>
</tr>
<tr>
<td>1.2 Check nursing prescription</td>
</tr>
<tr>
<td>1.3 Observe factors which influence nursing action</td>
</tr>
<tr>
<td>1.4 Assess bed linen, bed attire etc</td>
</tr>
<tr>
<td>2. PLANNING:</td>
</tr>
<tr>
<td>2.1 Inform patient about the nursing action</td>
</tr>
<tr>
<td>2.2 Collect basic requirements</td>
</tr>
<tr>
<td>2.3 Collect additional requirements</td>
</tr>
<tr>
<td>2.4 Prepare environment by:</td>
</tr>
<tr>
<td>a) closing nearby window/door</td>
</tr>
<tr>
<td>b) removing bed accessories onto chair/stool</td>
</tr>
<tr>
<td>c) fold bed linen down, except burry blanket</td>
</tr>
<tr>
<td>3. IMPLEMENTATION:</td>
</tr>
<tr>
<td>3.1 Screen the bed</td>
</tr>
<tr>
<td>3.2 Position patient laterally or according to assessment</td>
</tr>
<tr>
<td>3.3 Expose only pressure points to be attended to</td>
</tr>
<tr>
<td>3.4 Attend to appropriate pressure points</td>
</tr>
<tr>
<td>3.5 Dry skin thoroughly</td>
</tr>
<tr>
<td>3.6 Attend to bed linen appropriately</td>
</tr>
<tr>
<td>3.7 Reposition patient comfortably</td>
</tr>
<tr>
<td>3.8 Replace bed accessories and other aids</td>
</tr>
<tr>
<td>4. EVALUATION:</td>
</tr>
<tr>
<td>4.1 Evaluate patients comfort</td>
</tr>
<tr>
<td>4.2 Record/report appropriately</td>
</tr>
</tbody>
</table>
4.3.2 INSTRUMENTS FOR COGNITIVE SKILLS

Statistical analysis of reliability of items comprising the MCR's addressed the two elements item difficulty and item discrimination. To determine the difficulty of an item, student scores were ranked in descending order (N = 39). The number of correct responses from both the upper and lower thirds of the ranked scores were added and then divided by the total number of responses in the analysis (N = 26). Using Nunnaly's criteria as discussed in Chapter 3, an item is reliable in terms of its degree of difficulty, when it has a range of 35% - 80% or 0.35 - 0.80. The index of item discrimination was determined by subtracting the number of correct responses in the lower third from the number of correct responses in the upper third. This value was then divided by one half the total number of scores in the analysis (N = 13). A discrimination index may range from -1 to +1. The higher the index, the more discriminating the item. An index of 0 indicates that the item does not discriminate and it can therefore be accepted that an index higher than 0 renders an item statistically reliable. (Jenkins and Michael, 1986: 12).
<table>
<thead>
<tr>
<th>ITEM NUMBER</th>
<th>INDEX OF DIFFICULTY</th>
<th>INDEX OF DISCRIMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.50</td>
<td>0.4</td>
</tr>
<tr>
<td>2.</td>
<td>0.41</td>
<td>0.2</td>
</tr>
<tr>
<td>3.</td>
<td>0.52</td>
<td>0.3</td>
</tr>
<tr>
<td>4.</td>
<td>0.50</td>
<td>0.3</td>
</tr>
<tr>
<td>5.</td>
<td>0.66</td>
<td>0.3</td>
</tr>
<tr>
<td>6.</td>
<td>0.77</td>
<td>0.3</td>
</tr>
<tr>
<td>7.</td>
<td>0.56</td>
<td>0.4</td>
</tr>
<tr>
<td>8.</td>
<td>0.58</td>
<td>0.4</td>
</tr>
<tr>
<td>9.</td>
<td>0.75</td>
<td>0.5</td>
</tr>
<tr>
<td>10.</td>
<td>0.70</td>
<td>0.5</td>
</tr>
<tr>
<td>11.</td>
<td>0.73</td>
<td>0.4</td>
</tr>
<tr>
<td>12.</td>
<td>0.62</td>
<td>0.4</td>
</tr>
<tr>
<td>13.</td>
<td>0.64</td>
<td>0.4</td>
</tr>
<tr>
<td>* 14.</td>
<td>* 0.86</td>
<td>* 0.1</td>
</tr>
<tr>
<td>* 15.</td>
<td>0.68</td>
<td>0</td>
</tr>
</tbody>
</table>

Item 14 in Table 4.5 can be regarded as an easy item because of its high value of 0.86 or 86%. It also discriminates marginally poor (index = 0.1) between students' higher and lower scores. Item 15 has a good index of difficulty, however it does not discriminate. If an item does not discriminate, its index of difficulty is of little value (Jenkins and Michael, 1986: 12). Both items 14 and 15 were subject to revision.
<table>
<thead>
<tr>
<th>ITEM NUMBER</th>
<th>INDEX OF DIFFICULTY</th>
<th>INDEX OF DISCRIMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.61</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.76</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>0.60</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td>0.45</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>0.45</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>0.66</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>* 0.89</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>0.56</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.63</td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>0.65</td>
<td>0.4</td>
</tr>
<tr>
<td>12</td>
<td>0.72</td>
<td>0.5</td>
</tr>
<tr>
<td>13</td>
<td>0.70</td>
<td>0.3</td>
</tr>
<tr>
<td>14</td>
<td>0.78</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>* 0.96</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Item 4 in the above table does not discriminate between higher and lower scores, even though it has a fairly good index of difficulty (0.45). Item 8 and 15 discriminates marginally poor (indices = 0.1) and have poor indices of difficulty as reflected in the high percentage of student's choice (89% or 0.89 and 96% or 0.96) respectively. These three items were reviewed.
Table 4.7 Item Analysis for MCM on PPC

<table>
<thead>
<tr>
<th>ITEM NUMBER</th>
<th>INDEX OF DIFFICULTY</th>
<th>INDEX OF DISCRIMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.75</td>
<td>0.2</td>
</tr>
<tr>
<td>2.</td>
<td>0.70</td>
<td>0.3</td>
</tr>
<tr>
<td>3.</td>
<td>0.77</td>
<td>0.4</td>
</tr>
<tr>
<td>4.</td>
<td>0.77</td>
<td>0.2</td>
</tr>
<tr>
<td>5.</td>
<td>0.68</td>
<td>0.5</td>
</tr>
<tr>
<td>6.</td>
<td>0.63</td>
<td>0.5</td>
</tr>
<tr>
<td>7.</td>
<td>0.43</td>
<td>0.3</td>
</tr>
<tr>
<td>8.</td>
<td>0.65</td>
<td>0.3</td>
</tr>
<tr>
<td>9.</td>
<td>0.83</td>
<td>0.2</td>
</tr>
<tr>
<td>10.</td>
<td>0.63</td>
<td>0.2</td>
</tr>
<tr>
<td>11.</td>
<td>0.63</td>
<td>0.4</td>
</tr>
<tr>
<td>12.</td>
<td>0.71</td>
<td>0.4</td>
</tr>
<tr>
<td>13.</td>
<td>0.72</td>
<td>0.4</td>
</tr>
<tr>
<td>14.</td>
<td>0.74</td>
<td>0.3</td>
</tr>
<tr>
<td>15.</td>
<td>0.68</td>
<td>0.3</td>
</tr>
</tbody>
</table>

On the basis of Nunnaly's criteria, item 9 in table 4.7 was reviewed in terms of its degree of difficulty. Its high index of difficulty (83% or 0.83) renders item 9 an easy item, even though it discriminates between high and low student scores.

4.4 Analysis of Research Data

Non-parametric statistics namely the Mann-Whitney U test was used to determine whether the one group has significantly higher scores than the other in their psychomotor and cognitive abilities. Each hypothesis was tested by means of a t-test for significant differences between the group means. All comparisons were evaluated by a two-tailed test since the hypotheses were non-directional. The
level of statistical significance had been set at 0.05. A summary of data on psychomotor and cognitive performance is presented in Tables 4.8 to 4.12.

4.4.1 ANALYSIS OF PSYCHOMOTOR PERFORMANCE

Data on psychomotor performance are presented in Table 4.8 and Figures 4.1 and 4.2. The mean scores for TPR, BP and PPC were calculated for Group A and Group B in setting A and setting B respectively. There were no significant differences between the groups with reference to TPR and PPC during phase 1 and phase 2. However, the skill BP measurement reflected a significantly higher mean score in group A during phase 1 in setting A (U = 110,5, p < 0.05). The high score by Group A could possibly be explained by the relative absence of dynamic patient factors such as arm width, position in bed and other environmental stimuli with which the student in the simulated setting has to contend. Thus selective attention was less complex and more confined to the subskills of BP measurement. However, when both group A and B were assessed in the patient care setting during phase 2, they reflected similar mean scores of 72 and 74 respectively, group B improving from a mean score of 60.
During phase 2, Group B obtained higher mean scores in all three skills when assessed in setting B. However, these differences were not statistically significant (p > .05). Consult table 4.8 and figure 4.2.

TABLE 4.8 COMPARISON OF PSYCHOMOTOR PERFORMANCE

<table>
<thead>
<tr>
<th>PSYCHOMOTOR SKILLS</th>
<th>MEAN SCORES</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GROUP A</td>
<td>GROUP B</td>
<td>U-VALUE</td>
<td>P-VALUE</td>
<td></td>
</tr>
<tr>
<td>TPR</td>
<td>75.4</td>
<td>69.8</td>
<td>183.0</td>
<td>0.534</td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td>78.5</td>
<td>85.7</td>
<td>234.1</td>
<td>0.335</td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>78.4</td>
<td>60.5</td>
<td>110.5</td>
<td>0.013 *</td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td>71.6</td>
<td>74.0</td>
<td>203.0</td>
<td>0.333</td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPC</td>
<td>71.3</td>
<td>74.8</td>
<td>235.0</td>
<td>0.334</td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td>78.0</td>
<td>84.5</td>
<td>241.0</td>
<td>0.253</td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results of the t-tests performed on the mean psychomotor scores in phase 1, indicated no significant differences between Group A and Group B for all three skills (df = 38; p > .05). Similarly, t-test results were not significant in phase 2 with reference to the group mean psychomotor scores. (df = 38; p > .05). Consult table 4.9.
TABLE 4.9 MEAN PSYCHOMOTOR SCORES: STANDARD DEVIATION
& t-TEST RESULTS

<table>
<thead>
<tr>
<th>PHASES AND GROUPS</th>
<th>TPR</th>
<th>PSYCHOMOTOR SKILLS</th>
<th>BP.</th>
<th>PPC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>t</td>
<td>M</td>
</tr>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>75.4</td>
<td>27.8</td>
<td>0.57</td>
<td>78.4</td>
</tr>
<tr>
<td>Group B</td>
<td>68.6</td>
<td>27.8</td>
<td></td>
<td>60.5</td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>79.5</td>
<td>25.3</td>
<td>-0.95</td>
<td>71.6</td>
</tr>
<tr>
<td>Group B</td>
<td>83.7</td>
<td>21.3</td>
<td></td>
<td>74.0</td>
</tr>
</tbody>
</table>

M = Mean
SD = Standard Deviation
t = t-test results
Table 4.9: Mean Psychomotor Scores: Standard Deviation & t-Test Results

<table>
<thead>
<tr>
<th>PHASES AND GROUPS</th>
<th>PSYCHOMOTOR SKILLS</th>
<th>TPR</th>
<th>M</th>
<th>SD</th>
<th>t</th>
<th>BP</th>
<th>M</th>
<th>SD</th>
<th>t</th>
<th>PPC</th>
<th>M</th>
<th>SD</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>75.4</td>
<td>27.8</td>
<td>0.57</td>
<td>78.4</td>
<td>26.1</td>
<td>2.07</td>
<td>71.3</td>
<td>23.3</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B</td>
<td>69.0</td>
<td>27.8</td>
<td></td>
<td>60.5</td>
<td>26.2</td>
<td></td>
<td>74.8</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>79.5</td>
<td>25.3</td>
<td>-0.95</td>
<td>71.6</td>
<td>27.1</td>
<td>-0.25</td>
<td>75.0</td>
<td>24.1</td>
<td>-1.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B</td>
<td>85.7</td>
<td>21.3</td>
<td></td>
<td>74.0</td>
<td>25.6</td>
<td></td>
<td>84.5</td>
<td>17.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M = Mean
SD = Standard Deviation
t = t-test results
FIGURE 4.1 MEAN PSYCHOMOTOR PERFORMANCE IN ORIGINAL PRACTICE SETTINGS (PHASE I)
Mean %

TPR BP PPO

GROUP B GROUP A

Figure 4.2 Mean Psychomotor Performance in Patient Care Setting (Phase 2)
4.4.2 ANALYSIS OF COGNITIVE PERFORMANCE

The initial knowledge base of the two groups were assessed using the pretests. Table 4.10 and figure 4.3 reflect the mean scores for each of the skills being studied. There was a significant difference in the TPR knowledge base, Group A showing a better performance \(U = 118,0; p < .05 \). In the TPR posttest 1 there was a significantly better performance by group A \(U = 114,0; p < .05 \). Also this group performed slightly better in the BP and PPC posttests as reflected in their means, however this difference was not statistically significant \(p > .05 \). Consult table 4.10 and figure 4.4 for the group mean in posttests 1.

Figure 4.3 reflects the mean scores of both groups when posttest 2 was administered eight weeks later. The TPR and PPC posttest 2 results for Group A showed slightly higher mean scores, but these were not statistically significant \(p > .05 \). The mean BP posttest 2 scores for Group A and Group B were 53.7 and 49.1 respectively with \(p = .002 \). Group A thus had a significantly better cognitive performance than Group B. Of great concern, is the low range of scores (49% - 57%) in the second posttests for all three skills. Statistical analysis of their index of difficulty, rendered all three tests reliable and therefore these tests were not too difficult.
<table>
<thead>
<tr>
<th>COGNITIVE SKILLS</th>
<th>MEAN SCORES</th>
<th>U-VALUE</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GROUP A</td>
<td>GROUP B</td>
<td></td>
</tr>
<tr>
<td>TPR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretest</td>
<td>27.0</td>
<td>19.3</td>
<td>118.0</td>
</tr>
<tr>
<td>Posttest 1</td>
<td>44.2</td>
<td>34.6</td>
<td>114.0</td>
</tr>
<tr>
<td>Posttest 2</td>
<td>53.3</td>
<td>50.2</td>
<td>147.5</td>
</tr>
<tr>
<td>BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretest</td>
<td>12.7</td>
<td>10.7</td>
<td>182.5</td>
</tr>
<tr>
<td>Posttest 1</td>
<td>33.0</td>
<td>31.4</td>
<td>156.5</td>
</tr>
<tr>
<td>Posttest 2</td>
<td>53.7</td>
<td>49.1</td>
<td>87.5</td>
</tr>
<tr>
<td>PPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretest</td>
<td>13.7</td>
<td>21.5</td>
<td>212.5</td>
</tr>
<tr>
<td>Posttest 1</td>
<td>42.0</td>
<td>47.0</td>
<td>189.5</td>
</tr>
<tr>
<td>Posttest 2</td>
<td>57.3</td>
<td>56.2</td>
<td>188.0</td>
</tr>
</tbody>
</table>
Figure 4.3

Mean Pretest Scores

- **TPR**: Group B has a higher mean score compared to Group A.
- **BP**: Group A has a higher mean score compared to Group B.
- **PPG**: Group A has a higher mean score compared to Group B.
Figure 4.4: Mean Posttest 1 Scores

Mean %

TPR | BP | PPC

GROUP B | GROUP A

Figure 4.4 MEAN POSTTEST 1 SCORES
FIGURE 4.5
MEAN POSTTEST 2 SCORES
Table 4.11 reflects results of t-tests performed on the mean cognitive scores of subjects' performance in TPR, BP and PPC. Results of the t-test for three cognitive variables (TPR pretest, TPR posttest 1 and BP posttest 2) showed a significant difference between the groups; the t-values being 2.42, 2.50 and 2.70 respectively. The remaining six cognitive variables showed no significant difference between the groups.

4.5 DISCUSSION OF RESULTS

The major findings of the study were as follows:
- there was no significant difference between the groups in psychomotor learning.
- there was no significant difference between group A and group B in cognitive learning.

The hypotheses were stated as follows:
- **Hypothesis I**
 There will be no significant difference in the performance of selected psychomotor skills by nursing students who practise in setting A and setting B.
- **Hypothesis II**
 There will be no significant difference in skill-related knowledge by nursing students who practise in setting A and setting B.

In terms of the first null hypothesis, results of the statistical test fell short of significance to support the hypothesis. Hypothesis I was therefore
<table>
<thead>
<tr>
<th>TESTS AND GROUPS</th>
<th>TESTS AND GROUPS</th>
<th>TPR</th>
<th>BPR</th>
<th>PPC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>SD</td>
<td>t</td>
</tr>
<tr>
<td>Pretest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td></td>
<td>27,0</td>
<td>10,4</td>
<td>2,42</td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td>19,3</td>
<td>10,5</td>
<td></td>
</tr>
<tr>
<td>Posttest 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td></td>
<td>44,2</td>
<td>10,5</td>
<td>2,50</td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td>35,4</td>
<td>12,1</td>
<td></td>
</tr>
<tr>
<td>Pretest 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td></td>
<td>55,3</td>
<td>8,3</td>
<td>1,06</td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td>50,2</td>
<td>9,6</td>
<td></td>
</tr>
</tbody>
</table>

M = Mean
SD = Standard Deviation
t = t-test results
accepted (p > .05). Although three out of nine cognitive variables showed a significant difference, the t-test results were inadequate to reject the second null hypothesis. On this basis, hypothesis II too, was accepted (p > .05).

4.7 ADDITIONAL FINDINGS

Although not consistent with the research questions, within-group comparisons were made to determine whether learning had taken place in either of the groups. The apparently wide range in the difference of the psychomotor mean scores of Group B in particular, has prompted this comparison. The t-test was applied to determine whether the amount of learning in each group was significant. With reference to TPR, Group B who practised in the patient care setting, learnt significantly more (t = 2.357; df = 19; p < .05) than Group A (t = 0.422; df = 19; p > .05). With reference to the skill BP and PPC, neither of the groups learnt significantly, although the trend observed in Group B was in the direction of significance (see table 4.12).
Table 4.12 Within-Group Comparison: Psychomotor Learning

<table>
<thead>
<tr>
<th>SKILLS</th>
<th>GROUP A</th>
<th></th>
<th>GROUP B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D.M.</td>
<td>S.E.M.</td>
<td>t</td>
<td>D.M.</td>
</tr>
<tr>
<td>TPR</td>
<td>18,61</td>
<td>6,72</td>
<td>2,357</td>
<td>3,10</td>
</tr>
<tr>
<td>BP</td>
<td>14,80</td>
<td>7,34</td>
<td>1,975</td>
<td>-6,75</td>
</tr>
<tr>
<td>PPC</td>
<td>9,75</td>
<td>6,49</td>
<td>1,502</td>
<td>3,65</td>
</tr>
</tbody>
</table>

DM = difference in means (phase 1 & 2)
S.E.M. = standard of the mean
t = t-test result

4.7 Summary

Statistical methods used to analyze data and to test the null hypotheses were discussed in this chapter. Data on instrument validity and reliability and the statistical analysis thereof were tabulated, followed by a brief discussion of items not accepted as valid or reliable. Cognitive and psychomotor data obtained from the two groups were analyzed, tabulated and discussed with reference to significant findings differentiating the two groups. The major findings were described in relation to the null hypotheses.
5.1 SUMMARY

While the use of the college laboratory has to a large extent facilitated the teaching-learning process, the environmental contrast when compared with the patient care setting is an important consideration. The college laboratory offers a well-controlled, static learning environment where nursing students can practise mainly their psycho-motor skills with less emotional and ethical stress. The patient care setting on the other hand, is dynamic with uncontrolled factors and constraints which may influence skill learning. When planning practice sessions for skill learning, the environmental setting in which the skill eventually will be performed, must be taken into account (Gomez and Gomez, 1987:20). Using Gentile's (1972:3) open and closed motor skills theory as premise, the same authors state that skills performed in a dynamic, varied environment (open skills) such as the patient care setting, require a different practice setting as compared to skills performed in stable, unchanging environments (closed skills). Since most nursing skills are categorized as open skills, it is essential that
the practice setting closely resembles the eventual area for nursing care. It is therefore incumbent upon nurse educators to include essential clinical environmental factors in the college laboratory as a practice setting. But is this at all possible? As an alternative response, it seemed more appropriate and practical to study the performance of psychomotor and cognitive skills in these two different practice settings namely, the college laboratory (simulated practice setting) and the patient care setting (non-simulated practice setting).

5.1.1 PURPOSE

The purpose of this study was to investigate the effect of practice setting on clinical learning among first year student nurses. Two practice settings, namely the college laboratory (Setting A) and the patient care setting (Setting B), were utilized, to assess and compare students' performance in cognitive and psychomotor nursing skills. These nursing skills were randomly selected for the study in accordance with the first year curriculum. Hence the students' performance in the skills TPR, BP and PPC were assessed in the college laboratory and the patient care setting. In so doing, this study addressed the following research questions:
- do students who practise in the college laboratory (Setting A) perform psychomotor skills at a significantly higher level than those who practise in the patient care setting (Setting B)?
- does the level of skill-related knowledge differ between students who practise in setting A and setting B?

5.1.2 HYPOTHESES
Given two groups of students (group A in Setting A and group B in Setting B), two hypotheses were developed:

- **Hypothesis I**
 There will be no significant difference in the performance of selected psychomotor skills by nursing students who practise in setting A and setting B.

- **Hypothesis II**
 There will be no significant difference in skill-related knowledge by nursing students who practise in setting A and setting B.

5.1.3 METHODOLOGY
This study necessitated a descriptive multi-method design involving:
- instrument development and validation
- reliability testing of instruments
- data collection by direct observation and written tests using the above mentioned instruments.

5.1.3.1 SUBJECTS

The subjects were 40 first year student nurses (from a population of 42), registered for the Diploma in Nursing Science (general, community, psychiatric) and Midwifery at a Nursing College. Subjects with prior nursing experience were excluded from the sample. The subjects were randomly assigned to group A or group B to practise their nursing skills in setting A and setting B respectively (N = 20 for each group). Each group in turn formed 4 subgroups of 5 students; each subgroup being supervised by a trained research assistant during practise.

The subjects demographic data were as follows:
mean age = 19, female = 98% of sample, 95% attended public schools versus private schools.
The groups' academic achievement on school leaving was as follows:
15% in group A obtained an overall C-symbol (60 - 69 %) as opposed to 5% in group B.
35% of both groups obtained P; overall D-symbol (50 - 59 %).
50% of group A and 60% of group B obtained an overall E-symbol (40 - 49%) matriculation certificate.

5.1.3.2 RESEARCH SETTINGS

(a) The classroom
A classroom, equipped with desks and chairs for approximately 80 students, was used to assess the cognitive component of learning. Here, subjects were required to complete the pretest and posttests, and submit it to the researcher before leaving the classroom.

(b) The college laboratory (Setting A)
This setting consisted of 4 rooms fitted with necessary equipment and 3-D models on which the subjects practised PPC. The skills BP and TPR were practised on fellow students who posed as simulated patients. The college laboratory was used for practice by group A.

(c) The patient care setting (Setting B)
This setting comprised 4 medical wards in the campus hospital and were used by subjects in group B. These wards were selected because of their environmental uniformity they present for each of the 5 subgroups of students. Also, the nursing
skills being studied were routinely performed in these wards, thus no disruption of patient care and ward routine was intended.

5.1.3.3 INSTRUMENTS

(a) Psychomotor skills

All nursing skills to be taught during the subjects' first semester block (week 1) were categorized as either open or closed skills. Three skills were randomly selected from those classified as open skills. These were: measurement of temperature, pulse rate and respiratory rate (TPR), measurement of arterial blood pressure (BP) and pressure parts care (PPC).

Instrument development and validation culminated in checklists, which were used to assess the subjects' psychomotor performance in the aforementioned nursing skills.

The choice of a checklist as opposed to a 5-point rating scale, was to reduce bias and subjectivity which were inherent in the evaluation tools used at the time of this research. The format of the instrument was based on the nursing process, incorporating the phases of
assessment, planning, implementation and evaluation. (See appendix E, F and G). Content validity of the instruments was based on recent literature and the expert judgement of five clinical tutors. Statistical analysis of items in the checklists was done using a 4-point ordinal Likert grading scale to calculate the index of content validity (CVI). A mean CVI of 3.5 - 4.0 was used to accept an item as valid. Reliability testing of the instruments involved the characteristics stability, equivalence and internal consistency. The test - retest method, interrator testing and the split-half method were used to assess the above characteristics respectively. A correlation coefficient (Pearson r) was calculated for each reliability test. A coefficient value above 0.70 rendered the instrument reliable.

(b) Cognitive skills
Objective tests comprising fifteen multiple choice questions (MCQ's), were compiled for each of the aforementioned skills to determine subjects' skill-related knowledge (Appendix H, I and J). The reason for
selecting MCQ's as opposed to other cognitive tests, was its suitability to assess factual recall and interpretation of data (Mitchell, 1985:17). Content validity was based on recent literature and discussions with experts in the setting of MCQ's at a local University. Reliability was determined statistically by the test - retest method to assess stability and hand-calculated item analysis to assess item difficulty and item discrimination. A correlation coefficient of above 0.70 for each of the tests rendered the test reliable. A range of 0.35 - 0.80 was used to accept an item reliable in terms of item difficulty. A discrimination index between 0 and 1 was used to accept an item as reliable in terms of item discrimination.

5.1.3.4 PROCEDURE

A pilot study was done using subjects similar to those of the major study. As a result of the pilot study, the third nursing skill, namely measurement of temperature, pulse rate and respiratory rate (TPR) was introduced. All subjects simultaneously received information relating to the skills TPR, BP and PPC via a
lecture demonstration (LD) on three consecutive
days during the first week of the semester
block. However, assessment of their cognitive
and psychomotor skills took place in their pre-
viously assigned groups in two distinct phases
namely phase 1 and phase 2.

(a) Phase 1

Data on the subjects' knowledge base prior
to the lecture demonstration (LD) were
collected by means of a pretest (MCQ) for
each nursing skill. Immediately after the
LD, posttest 1 (same as pretest), was
administered to assess their cognitive
gains in each of the three nursing skills.
After the LD, subjects were given the op-
opportunity to practise these skills on four
consecutive Friday afternoons in their
respective groups: group A practiced in
setting A and group B practiced in setting
B. Each group formed 4 sub-groups of 5
which were each supervised by a trained
research assistant. Data on the subjects' psychomotor performance were collected on
the fourth practice during a return demon-
stration to the research assistant. Di-
rect observation was used and appropriate
checklists were completed simultaneously
by the research assistants. The final practice session marked the end of the subjects' semester block after which they were allocated to their respective patient care areas.

(b) Phase 2

To compare the psychomotor performance of group A and group B in the patient care setting (setting B), the same checklists were completed by the research assistants during the subjects' return demonstration. These data were collected during the first two days of the subjects being allocated to the patient care setting in order to control the influence of extraneous variables e.g. extra practice sessions, wrong learning etc.

To compare the subjects' cognitive performance, posttest 2 was administered 8 weeks later when both groups returned to the college.

5.1.3.6 RESULTS

The major findings of the study were as follows:

- There was no significant difference between the groups in psychomotor learning
there was no significant difference between group A and group B in cognitive learning.

The hypotheses were stated as follows:

- **Hypothesis I**
 There will be no significant difference in the performance of selected psychomotor skills by nursing students who practise in setting A and setting B.

- **Hypothesis II**
 There will be no significant difference in skill-related knowledge by nursing students who practise in setting A and setting B.

In terms of the first null hypothesis, results of the statistical test fell short of significance to support the hypothesis. Hypothesis I was therefore accepted ($p > .05$). Although three out of nine cognitive variables showed a significant difference, the t-test results were inadequate to reject the second null hypothesis. On this basis, hypothesis II too, was accepted ($p > .05$). Additional findings of within-group comparison, indicated that Group B had learnt significantly more ($t = 2.357; df = 19; p < .05$) than Group A ($t = 0.422; df = 19; p > .05$) in psychomotor aspects of TPR. Although neither of the groups learnt
significantly in the skills BP and PPC, the trend observed in Group B was in the direction of significance. It is the researcher’s assumption that the patient care setting could effect a significant amount of learning in a shorter period of time than the laboratory setting.

5.2 IMPLICATIONS AND RECOMMENDATIONS

With reference to Gentile’s open and closed motor skills theory, acceptance of both null hypotheses holds several implications. In the first instance, the nursing skills used in the study were classified as "open skills" according to Gentile’s theory. Thus they are not suitable for practise in the college laboratory unless this setting closely mimics the patient care setting. Hence, the student learns to contend with all patient care factors incorporated into the college laboratory. The findings imply that the contemporary college laboratory does not differ significantly from the patient care setting provided it is equipped and utilized with the same determination as the patient care setting. The college laboratory thus has an important role in psychomotor learning and in particular, formative evaluation of such learning. Summative evaluation should ideally be conducted in the patient care setting by virtue of the humanis-
tic nature of nursing. While the above is practised only at certain educational institutions, it should be entrenched in the philosophy and curriculum of all institutions concerned with nursing education. This further implies the use of a taxonomy of student learning behaviours which reflect levels of competency to be reached in a specific practice setting. Levelling of learning behaviours similar to those of Anderson et al. (1985:42), as discussed in Chapter 2, must be specified in the stage objectives of the educational institution and the study guide or clinical learning objectives of the student. With reference to the additional findings of this research, it is further recommended that a bigger sample be used to determine whether subjects learn significantly more in the patient care setting than in the college laboratory. By increasing the sample size to > 40, the standard error can be decreased. (In this research project, the sample was drawn from a total population of 42). The greatest challenge in clinical learning lies in the acquisition of affective nursing skills in simulated versus patient care settings. The affective domain is a significant force in nursing practice, for it provides for the humanistic expression of the theories and skills which are germane to nursing (Reilly, 1980:54).
It is therefore a major recommendation of this study that the effect of practice setting on affective learning be researched in order to utilize the college laboratory without reservation.

5.3 LIMITATIONS AND DELIMITATIONS

The scope of this study has been delimited to the following:

Firstly, simulation has not been referred to in its broad context, but rather confined to the practice setting in which clinical learning takes place. Of relevance to this study, was the use of medical manikins and simulated patients in the college laboratory setting. Secondly, while the researcher acknowledges the three domains of learning namely, cognitive, affective and psychomotor, only cognitive and psychomotor learning were included in this study.

The affective skills should not be construed as irrelevant, but the measurement of all three was considered too complex and extensive for the scope of this study. In summary, the research was delimited to the current day "demonstration room" and clinical nursing units where cognitive and psychomotor skills of nursing students were practised and assessed. Limitations to this research varied from deficiencies inherent in most observational studies to restrictions imposed by curricular demands, time
limits and the number of nursing skills to be practised and assessed. The curriculum and classroom teaching programme coupled with the block system at the college, restricted the researcher in the selection of nursing skills and the number of practice sessions. Fundamental nursing skills taught during the first week of the semester block were randomly selected for the purpose of this study; the remaining four weeks being utilized for the one three-hour practice session per week. A further limitation, in the assessment of subjects’ cognitive performance (during phase 2) after 2 weeks when the subjects returned to the college. Although its purpose was served, cognitive assessment would have been more meaningful in the patient care setting. In addition, the 8-week period may have contributed to poor retention of knowledge as reflected in the low range of scores (49 – 57 %) in the second posttests.
5.4 CONCLUSION

This chapter concludes the research report with a brief discussion of the major findings and its implications for nursing education at local level. Recommendations for further research in learning and evaluating affective nursing skills have been offered with specific reference to the effect of practice setting. Factors which placed limitations on the research project have been identified and described in this chapter. Delimitations to the scope of the study have been discussed and served as premise for the researcher's recommendations regarding affective learning.
REFERENCES

CONTENT VALIDITY OF STANDARDS

INSTRUCTIONS FOR VALIDATION

1. Kindly view the proposed standards for each of the following nursing actions for content validity:
 - pressure part care
 - measurement of arterial blood pressure
 - measurement of oral temperature, pulse and respiratory rate.

2. Evaluate each standard and its sub-standard by placing an (X) in the most appropriate box. The scale for evaluating is as follows:

 1. Standard not applicable

 2. Standard not clear; applicability questionable; possibly reworded

 3. Standard applicable

 4. Standard most applicable and well formulated.

3. If a standard is rated at 3 or 4, please indicate if this standard should be critical or non-critical by placing an (X) in the appropriate box.

 [Critical standards are those essential for competency and non-critical standards are those not essential for competency.]

4. Spaces are provided for comments if it is deemed necessary.
MEASUREMENT OF ORAL TEMPERATURE, PULSE RATE AND RESPIRATORY RATE

1. Assessment
 1.1 Identifies the patient
 The patient is identified correctly when the student:
 - compares the patient's name and hospital number on his identification band with the hospital folder
 - confirms correctness with the evaluator
 - asks the patient's name if unsure.

 Comments: ____________________________

1.2 Assesses the patient's needs/condition
 The patient's needs/condition are assessed when the student:
 - enquires about and responds to the patient's elimination needs
 - observes any factors which may influence nursing actions eg. exercise, hot drinks etc.

 Comments: ____________________________

2. Planning
 2.1 Collects requirements
 The student collects the following requirements:
 - thermometers in plastic container marked "clean"
 - container for "used" thermometers
 - cotton wool swabs; paper bag for soiled swabs

 Comments: ____________________________

2.2 Informs/explains to patient
 The student informs the patient:
 - what is to be done and why it is necessary
the purpose of the evaluator's presence

Comments: ____________________________

3. Implementation

3.1 Correct handling of thermometer
The thermometer is handled correctly when it is:
- held at the distal end between the index finger and thumb
- shaken down until the mercury column is below 38°C

Comments: ____________________________

3.2 Correct placement of thermometer
The thermometer is correctly placed when it is:
- under the patient's tongue
- held in place by the patient's lips in a closed position

Comments: ____________________________

3.3 Select/locate pulse
The pulse is correctly located when the student:
- places three middle fingers lightly over appropriate pulse area e.g. radial pulse

Comments: ____________________________

3.4 Obtains pulse rate accurately
The pulse rate is obtained accurately by:
- counting the number of pulsations for 1 minute

Comments: ____________________________
3.5 Obtains respiratory rate accurately

The respiratory rate is obtained accurately by:
- counting the number of breaths for 1 minute
- while keeping the fingers on pulse area after counting pulse rate (patient is unaware)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
</table>

Comments:

3.6 Correct removal of thermometer

The thermometer is removed correctly by:
- allowing 2 minutes to pass (during which pulse and respiratory rate was counted)
- wiping thermometer with cotton wool from distal end to mercury bulb

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
</table>

Comments:

3.7 Obtains thermometer reading accurately

The thermometer is read accurately by:
- holding it horizontally at eye level
- rotating thermometer until mercury column is visible
- read the point on calibrated scale at which the mercury column rests

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
</table>

Comments:

3.8 Cleans thermometer

The thermometer is cleaned correctly by:
- washing it carefully with soap and water
- rinsing it under cold running water
- soaking it in Chlorhexidine for 3 minutes
- removing and drying it thoroughly

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
</table>

Comments:
4. Evaluation

4.1 Record accurately

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
</table>

Recording is done accurately when:
- the patient's documents reflect the exact temperature, pulse and respiration measurements obtained.

Comments: __
BLOOD PRESSURE MEASUREMENT (ARTERIAL)

1. Assessment
1.1 Identifies the patient
The patient is correctly identified when the student:
- compares the patient's name and hospital number on his identification band with his hospital folder
- confirms correctness with the evaluator
- asks the patient's name if unsure

Comments:

1.2 Checks nursing prescription
The student checks nursing prescription to:
- determine the frequency (interval) for measuring the BP eg. 1 hourly
- determine any specification in positioning eg. sitting or supine position

Comments:

1.3 Assesses the patient's needs/condition
The patient's needs and condition are assessed when the student:
- inquires about and responds to the patient's elimination needs
- determines factors in the patient's condition which may influence the nursing action

Comments:

2. Planning
2.1 Informs/explains to the patient
The student informs the patient about:
- what is to be done and why it is necessary
- the purpose of the evaluator's presence
2.2 Collects the requirements

The student collects the following:
- a stethoscope, baumanometer and the correct size cuff

Comments:

2.3 Prepares the apparatus

The apparatus is prepared correctly if the student:
- places the baumanometer in an upright position on a level surface
- as close to the arm as possible

Comments:

2.4 Prepares the patient

The patient is prepared correctly if the student:
- places the patient in the supine position or in accordance with assessment in 1.2 and 1.3
- allows the patient to rest/be still before taking the BP.

Comments:

3. Implementation

3.1 Exposes the arm

The arm is exposed correctly if the student:
- rolls up the sleeve until the upper arm is completely visible or slips off the sleeve if too constricting

Comments:

3.2 Positions the arm

The arm is positioned correctly if it is:
- in extension and supination

Comments:
3.3 **Applies the cuff**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The cuff is applied correctly when it is:
- wound evenly but not loosely around upper arm with rubber bag over brachial artery
- approximately 2cm above antecubital space
- secured by tucking in the end of the cuff.

Comments:

3.4 **Obtains preliminary systolic BP**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The preliminary systolic BP is correctly obtained by:
- palpating the brachial or radial pulse
- inflating the cuff until the pulse disappears
- deflating the cuff completely.

Comments:

3.5 **Positions the stethoscope**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The stethoscope is correctly positioned when it is:
- placed over the brachial artery in the antecubital space and held in position.

Comments:

3.6 **Re-inflates the cuff**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The cuff is re-inflated correctly when:
- the screw valve is closed and the cuff inflated until the mercury column rises approximately 20mm above preliminary reading.

Comments:
3.7 Obtains the systolic BP | 1 2 3 4 | Non critical | Critical |

The systolic BP is correctly obtained when:
- screw valve is opened carefully allowing the mercury to drop at a rate of 2mm/second.
- the height of the mercury column at which the first sound is heard, is noted.

Comments: ____________________________

3.8 Obtains the diastolic BP | 1 2 3 4 | Non critical | Critical |

The diastolic BP is obtained correctly when:
- the height of the mercury column at which the pulsating sound changes abruptly, becoming dull, is noted.

Comments: ____________________________

3.9 Disassembles the apparatus | 1 2 3 4 | Non critical | Critical |

The apparatus is disassembled correctly when:
- the cuff is unfolded from the arms
- and secured appropriately with the manometer

Comments: ____________________________

3.10 Assists patient with comfort | 1 2 3 4 | Non critical | Critical |

The patient is assisted with:
- rolling down his sleeve or replacing removed clothing
- actions necessary to relieve discomfort.

Comments: ____________________________

4. Evaluation
4.1 Records accurately | 1 2 3 4 | Non critical | Critical |

Recording is done accurately when:
- the patient's document reflects the exact systolic and diastolic BP that has been obtained.
PRESSURE PART CARE

1. Assessment

1.1 Identifies the patient

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The patient is identified correctly when the student:
- compares the patient's name and hospital number on his identification band with his hospital folder
- confirms correctness with the evaluator
- asks the patient's name if unsure

Comments:

1.2 Checks nursing prescription

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The student checks the nursing prescription to:
- determine the frequency for pressure part care and repositioning
- implement any special treatments or devices eg. splints

Comments:

1.3 Assesses the patient's needs

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The patient's needs are assessed when the student:
- enquires about and responds to the patient's elimination needs
- observes factors in the patient's condition which may influence the nursing action
- observes condition of bed linen, bed attire, pressure points etc.

Comments:

2. Planning

2.1 Informs/explains to the patient

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The student informs the patient about:
- what is to be done and why it is necessary
The purpose of the evaluators presence

Comments: __________________________

2.2 Collects requirements

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The student collects the following basic requirements:
- basin with warm water, soap and towel
- any other requirements eg. clean linen in accordance with assessment in 1.3

Comments: __________________________

2.3 Prepares the environment

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The environment is correctly prepared when the student:
- closes windows and door near the bed
- removes bed accessories onto a chair or bed stool
- fold bedlinen except bunny blanket, to footend or remove it in accordance with assessment in 1.3

Comments: __________________________

3. Implementation

3.1 Maintains privacy

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The student maintains privacy by:
- screening the patient's bed
- exposing only those body parts which will be treated (one at a time)

Comments: __________________________

3.2 Turns/positions patient

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Non critical</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The patient is positioned:
- laterally (with back facing student) or in accordance with assessment in 1.3
- with appropriate action to maintain safety eg. support, enlisting the help of a second person etc.

Comments: __________________________
3.3 Attends to appropriate pressure areas

Skin care is appropriately and correctly done when the student:

- washes the pressure area eg. the back using soap and water
- massages the pressure points in accordance with
 1.3 EXCEPT when there is redness or an existing pressure sore
- dries the skin thoroughly

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NC</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

3.4 Attends to bedlinen

Bedlinen is attended to correctly when the student:

- correct recture (in the bedding) which predisposes to pressure lesions eg. straighten creases and folds, removing crumbs, replacing damp linen etc.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NC</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

3.5 Repositions the patient comfortably

The patient is repositioned comfortably when:

- placed in an alternate position in relation to his condition/health problem
- with adequate support eg. extra pillows if necessary.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NC</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

3.6 Replaces bed accessories/aids

Bed accessories and other aids are replaced correctly when:

- it relieves pressure or reduces friction in appropriate areas eg. ring cushion under heels and sheepskin under back.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NC</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:
4. Evaluation

4.1 Evaluates patient's comfort

The student evaluates the patient's comfort by:
- enquiring about and responding to patient's discomfort.

Comments:

2.1 Record/reports

The student records/reports in the nursing records:
- what has been done for the patient
- the condition of the patient's skin and pressure points.

Comments:

General comments and information:

JCSB
1989 09 25
CHECK LIST:
MEASUREMENT OF ORAL TEMPERATURE, PULSE & RESPIRATORY RATE

STANDARD
The student measures the oral temperature, pulse rate and respiratory rate accurately.

OBJECTIVES FOR COMPETENCY
1. Measure the patient's temperature accurately.
2. Obtain the pulse and respiratory rate with reasonable accuracy (a difference of no more than 2 beats/minutes between evaluator and student).
3. Complete the appropriate record accurately.

SCORING SYSTEM
1. All behaviours have a value of one (1) point each except the critical behaviours (*) which have a value of five (5) points each.
2. Behaviours which are not applicable (N/A) are subtracted from the MAXIMUM SCORE before obtaining the student's score.
3. All behaviours which are correctly performed are added to obtain the student score.
4. If one to two critical behaviours are incorrectly performed or omitted, the student fails summarily with 45%.
5. If three to four critical behaviours are incorrectly performed or omitted, the student fails summarily with 55%.
6. NOTE: The incorrect performance or omission of one behaviour may influence another eg. 3,4 may influence 4,1.
Nursing Action: Measurement of HR

<table>
<thead>
<tr>
<th>STUDENT'S BEHAVIOR</th>
<th>BEHAVIOR PERFORMED</th>
<th>BEHAVIOR NOT PERFORMED</th>
<th>SPECIFIC COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct</td>
<td>Incorrect</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1. Assessment
1. Observe factors which may influence nursing action (ask student)

2. Planning
2.1 Collect requirements viz.
- Thermometer in clean tray
- Sticks
- Container for used thermometers and sticks
2.2 5' from patient about the nursing action

3. Implementation
3.1 Ensure that 10°, column 2 below 35°
3.2 Place thermometer under the patient's tongue
3.3 Place middle and index fingers lightly over radial pulse (note not thumb)
3.4 Count accurately the number of pulsations for 1 minute
3.5 Count accurately the number of breaths for 1 minute
3.6 Remove thermometer after 2 minutes
3.7 Wipe off with used from distal end to bulb
3.8 Read temperatures from thermometer accurately

4. Recording
4.1 Complete record accurately

<table>
<thead>
<tr>
<th>MAXIMUM SCORE</th>
<th>30</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>STUDENT SCORE:</th>
<th>____________</th>
<th>PERCENTAGE:</th>
<th>____________</th>
</tr>
</thead>
</table>

Index of Competency

<table>
<thead>
<tr>
<th>SUBJECT:</th>
<th>T⁰</th>
<th>P</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluator:</td>
<td>____________</td>
<td>____________</td>
<td>____________</td>
</tr>
</tbody>
</table>
CHECK LIST: MEASUREMENT OF ARTERIAL BLOOD PRESSURE

STANDARD
The student measures the arterial blood pressure (BP) accurately.

OBJECTIVES FOR CONSISTENCY
1. Obtain the preliminary systolic BP correctly.
2. Measure the systolic and diastolic BP with reasonable accuracy (a difference of not more than 5 mmHg.
 between the evaluation & student for either reading)
3. Record the BP accurately.

SCORING SYSTEM
1. All student behaviours have a value of one (1) point each except the critical behaviours (*)
 which have a value of five (5) points each.
2. Behaviours which are not applicable (N/A) are subtracted from the MAXIMUM SCORE before obtaining the
 student's score.
3. All behaviours which are correctly performed are added to obtain the student's score.
4. If one to two critical behaviours are incorrectly performed or omitted the student fails summarily
 with 40%
5. If three to four critical behaviours are incorrectly performed or omitted the student fails
 with 30%
6. NOTE: The incorrect performance or omission of one behaviour may influence another eg. 3.6 may
 influence 3.10 and 4.1
<table>
<thead>
<tr>
<th>STUDENT'S BEHAVIOR</th>
<th>BEHAVIOR PERFORMED</th>
<th>BEHAVIOR NOT PERFORMED</th>
<th>SPECIFIC COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ASSESSMENT:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Check nursing prescription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Observe factors which influence nursing action (ask student)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PLANNING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Inform patient about the nursing action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Collect requirements viz.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- sphygmomanometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- appropriate cuff size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Place sphygmomanometer on a horizontal surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Position patient comfortably</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. IMPLEMENTATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Expose upper arm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Extend arm with palm facing upward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Position/support arm at heart level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Apply cuff correctly by:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- placing rubber bag over upper brachial artery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- approximately 2cm above the antecubital space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 Palpate brachial/radial pulse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*3.6 Obtain preliminary systolic BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7 Position stethoscope firmly over brachial artery in the antecubital space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8 Reinflatable cuff ±20 mmHg above systolic BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9 Deflate cuff at rate of 2mmHg per second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*3.10 Obtain systolic BP accurately</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*3.11 Obtain diastolic BP accurately</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.12 Dissemble the apparatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13 Assist patient with comfort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. RECORDING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*4.1 Record the BP accurately</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM SCORE = 39

**STUDENT SCORE: **

**PERCENTAGE: **

INDEX OF DISCREPANCY

<table>
<thead>
<tr>
<th>SUBJECT:</th>
<th>SYSTOLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EVALUATOR:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
CORONATION NURSING COLLEGE

CLINICAL TEACHING DEPARTMENT

CHECK LIST:

PRESSURE CARE

STANDARDS
The student provides pressure point care safely and correctly.

OBJECTIVES FOR COMPETENCY
1. Provide pressure care to appropriate pressure points.
2. Ensure safety and comfort of the patient throughout.
3. Attend to immediate factors predisposing to pressure lesions.

SCORING SYSTEM
1. All student behaviours have a value of one (1) point each except the critical behaviour (*) which have a value of five (5) points each.
2. Behaviours which are not applicable (N/A) are subtracted from the maximum score before obtaining the student's score.
3. All behaviours which are correctly performed are added to obtain the student's score.
4. If one to two critical behaviours are incorrectly performed or omitted, the student fails summarily with 45%.
5. If three to four critical behaviours are incorrectly performed or omitted, the student fails summarily with 35%.
6. If five to six critical behaviours are incorrectly performed or omitted, the student fails summarily with 25%.
NURSING ACTION: PRESSURE PAINT CARE

<table>
<thead>
<tr>
<th>STUDENT'S BEHAVIOR</th>
<th>BEHAVIOUR PERFORMED</th>
<th>BEHAVIOUR NOT PERFORMED</th>
<th>SPECIFIC COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Correct</td>
<td>Incorrect</td>
</tr>
</tbody>
</table>

1. **ASSESSMENT**
 1.1 Check nursing prescription
 1.2 Observe patient factors which may influence nursing action (ask student)
 1.3 Assess bedlines, bed cots, etc.

2. **PERPLANNING**
 2.1 Inform patient about the nursing action
 2.2 Collect basic requirements:
 - warm water
 - soap
 - face cloth
 - one towel
 2.3 Collect additional requirements according to assessment
 2.4 Prepare environment by:
 - closing nearby window/door
 - removing bed accessories onto chair/stool
 - fold bedding down bunny blanket

3. **IMPLEMENTATION**
 3.1 Screen the bed
 3.2 Position patient laterally or according to assessment
 3.3 Expose only pressure areas to be attended to
 3.4 Attend to appropriate pressure areas
 3.5 Dye the skin thoroughly
 3.6 Attend to bedding appropriately
 3.7 Reposition patient comfortably
 3.8 Replace bed accessories and other aids

4. **EVALUATION**
 4.1 Evaluate patient's comfort by enquiring
 4.2 Record/report appropriately

NOMINA SCORE = 46
INSTRUMENT TO TEST KNOWLEDGE RELATED TO TEMPERATURE, PULSE AND RESPIRATION

NAME: ___________________________ ID NO.: ___________________________ SCORE: ___________________________

FOR OFFICE USE

PHASE OF DATA COLLECTION
PRETEST POSTTEST

QUESTIONS

1. Body temperature is the
 (a) quantity of heat present in the body
 (b) balance between heat production and heat loss
 (c) actual amount of heat produced in the body
 (d) amount of heat lost from the body
 (e) difference between heat gain and heat loss

2. Which of the following is the normal temperature range for an adult?
 (a) 37° - 38°C
 (b) 35° - 37°C
 (c) 36° - 37°C
 (d) 35.5° - 37.1°C
 (e) 36° - 36.5°C

3. A temperature state of 38.2°C is called
 (a) hyperpyrexia
 (b) pyrexia
 (c) hyperthermia
 (d) hyperthermia
 (e) normothermia

4. Which of the following may increase heat production
 (a) shivering
 (b) physical exertion
 (c) sweating
 (d) starvation
 (e) absorption of ultraviolet rays from the sun

5. When heat production is greater than heat loss
 (a) the amount of body heat decreases
 (b) less sweat will be secreted
 (c) it results in a fever
 (d) the skin blood vessels will dilate
 (e) the person will have rigors
6. The oral route for temperature taking should _not_ be used in
 (a) unconscious patients
 (b) confused patients
 (c) patients with breathing problems
 (d) uncontrolled epileptics
 (e) babies

7. A pulse can be
 (a) felt where an artery crosses a bone
 (b) felt where an artery lies near a firm body structure.
 (c) palpated in arteries and veins
 (d) heard using a stethoscope
 (e) palpated in the veins only

8. The pulse rate in an adult
 (a) increases due to a rise in body temperature
 (b) decreases due to blood loss
 (c) is between 60-80 beats per minute (BPM)
 (d) is between 90-100 beats per minute (BPM)
 (e) increases during exercise.

9. Tachycardia is
 (a) a pulse rate less than 60 BPM in adults
 (b) a pulse rate more than 100 BPM in adults
 (c) a faster than normal rate in babies
 (d) an abnormality in the rhythm of the pulse
 (e) an abnormality in the volume of the pulse

10. Which of the following may influence the pulse rate
 (a) certain drugs
 (b) age
 (c) hypertension
 (d) fear
 (e) unconsciousness.

11. Which of the following sites are used for taking the pulse in the lower limbs.
 (a) radial
 (b) brachial
 (c) femoral
 (d) popliteal
 (e) tibial

12. Respiration
 (a) involves the intake of oxygen
 (b) ensures delivery of nutrients to the cells
 (c) is controlled by the respiratory centre
 (d) involves excretion of carbon dioxide
 (e) ensures removal of wastes from the cells
13. A respiratory rate of 16-20 per minute is
(a) slower than normal in an adult
(b) normal for an adult
(c) slow for a newborn baby
(d) called tachypnoea in an adult
(e) adequate for oxygen intake in a resting adult

14. Shallow breathing is called
(a) bradypnoea
(b) apnoea
(c) hypoventilation
(d) hyperventilation
(e) dyspnnoea

15. Which of the following increases the respiratory rate
(a) an increase in body temperature
(b) an increase in blood pressure
(c) exposure to cold
(d) a decreased O₂ supply to the cells
(e) increased activity
1. Which of the following best describes the meaning of arterial blood pressure (BP)
 (a) pressure exerted by the heart on the blood
 (b) pressure exerted by the arterial walls on the blood
 (c) pressure within the blood circulation.
 (d) pressure exerted by the blood on the arterial walls
 (e) pressure of the blood within the arteries.

2. The pressure within the aorta during contraction of the heart is known as the:
 (a) pulse pressure
 (b) systolic pressure
 (c) diastolic pressure
 (d) arterial pressure
 (e) central venous pressure

3. The normal systolic BP for a 30-year old is:
 (a) 80 mmHg
 (b) 65 mmHg
 (c) 110 mmHg
 (d) 125 mmHg

4. The normal diastolic BP for a 30-year old is:
 (a) 50 mmHg
 (b) 65 mmHg
 (c) 70 mmHg
 (d) 80 mmHg
 (e) 120 mmHg

5. A normal arterial BP is essential for the following reasons:
 (a) for a constant supply of oxygen to the tissues
 (b) for normal cell functioning
 (c) for a continuous blood circulation
 (d) to provide nourishment to the tissues
 (e) for a normal cardiac output.
6. A BP reading of **140/95** for a 75 year old may be interpreted as:
 (a) high diastolic pressure
 (b) high systolic pressure
 (c) low systolic pressure
 (d) normal diastolic pressure
 (e) normal systolic pressure

7. The pulse pressure is:
 (a) the difference between the systolic and diastolic BP
 (b) the pulsation felt in the arteries
 (c) between 60-80 mmHg
 (d) between 30-50 mmHg
 (e) none of the above

8. Which of the following patient factors influence BP:
 (a) age
 (b) sex
 (c) exercise
 (d) position
 (e) body temperature

9. A drop in BP may be due to:
 (a) a decrease in cardiac output
 (b) haemorrhage
 (c) dilation (widening) of the blood vessel
 (d) an increase in blood viscosity (thickness)
 (e) dehydration

10. Which of the following may increase the BP
 (a) fever
 (b) increased blood volume
 (c) external heat
 (d) loss of arterial elasticity
 (e) anxiety

11. When the blood vessels are constricted (narrowed) the following occurs:
 (a) peripheral resistance increases
 (b) blood pressure decreases
 (c) blood pressure increases
 (d) blood volume decreases
 (e) cardiac output decreases

12. An increase in blood viscosity will:
 (a) cause a slower pulse rate
 (b) result in a slower blood flow
 (c) increase the blood pressure
 (d) cause the blood to be more resistant to flow
 (e) increase the blood flow.
13. When the cardiac output drops
 (a) less blood is pumped out by the heart
 (b) less oxygen is delivered to the cells
 (c) the systolic BP drops
 (d) the diastolic BP drops
 (e) the blood volume drops

14. A BP reading of 80/50 could be obtained from
 (a) a newborn baby
 (b) an 18 year old
 (c) a 2 year old
 (d) a shocked patient
 (e) a bleeding patient

15. A person with BP lower than normal is said to be
 (a) fainting
 (b) shocked
 (c) hypotensive
 (d) hypertensive
 (e) normotensive

MAXIMUM SCORE: 18
STUDENT'S SCORE: ___
PERCENTAGE: ___
INSTRUMENT TO TEST KNOWLEDGE RELATED TO PRESSURE SORES AND ITS PREVENTION

NAME: __________________________

FOR OFFICE USE

<table>
<thead>
<tr>
<th>PHASE OF DATA COLLECTION</th>
<th>PRETEST</th>
<th>POST TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID. NO. $</td>
<td>SCORE:</td>
<td></td>
</tr>
</tbody>
</table>

QUESTIONS

1. Which of the following best describes a pressure sore
 (a) a small superficial ulcer
 (b) a localized area of tissue necrosis (death)
 (c) a lesion resulting from pressure ischaemia
 (d) tissue necrosis due to bedrest
 (e) a deep gangrenous lesion

2. In the supine position (on the back) the following body parts are subjected to pressure:
 (a) heels
 (b) scapula
 (c) iliac crest
 (d) sacrum
 (e) knees

3. In which of the following positions are the iliac crest and the ankles subjected to pressure at the same time
 (a) supine
 (b) prone (on the stomach)
 (c) semi prone
 (d) left lateral
 (e) right lateral

4. Which of the following shows the complete sequence of how a pressure sore develops
 (a) preceding burning pain followed by redness followed by excoriation
 (b) redness followed by excoriation and pain
 (c) redness followed by a burning pain followed by excoriation
 (d) congestion followed by redness followed by a burning pain
 (e) a preceding burning pain followed by congestion followed by excoriation

5. Prolonged pressure on tissues
 (a) irritates the skin
 (b) impairs the oxygen supply to tissue cells
 (c) compresses the lumen of its blood vessels
 (d) causes skin abrasions
 (e) leads to tissue necrosis.
6. Pressure may be relieved by
 (a) using a bed cradle
 (b) two-hourly turning
 (c) massaging the pressure points
 (d) using a ring cushion
 (e) applying a pressure dressing

7. Prolonged dampness on the skin
 (a) creates a good growth medium for microbes
 (b) lowers the body's resistance
 (c) causes maceration of the skin
 (d) causes the skin to cool down
 (e) lessens the bloodflow to the skin

8. A sheepskin may be used to
 (a) prevent skin injuries
 (b) reduce friction against the skin
 (c) reduce the effects of dampness on the skin
 (d) promote blood circulation
 (e) relieve pressure by redistributing it

9. Which of the following factors place a patient at risk to develop pressure sores
 (a) tiredness
 (b) obesity
 (c) unconsciousness
 (d) paralysis
 (e) soiled linen

10. The elderly patient is more prone to developing pressure sores because of
 (a) restlessness
 (b) incontinence
 (c) dry inelastic skin
 (d) thinning of the skin
 (e) possible poor nutritional state

11. Injury of the skin
 (a) offers entry to micro-organisms
 (b) leads to skin infection
 (c) may be caused by restlessness in bed
 (d) may be due to creases in bed linen
 (e) reduces skin sensation

12. Principles in the prevention of pressure sores include
 (a) protecting the skin from injury
 (b) softening the skin
 (c) promoting blood circulation to the skin
 (d) protecting the skin from moisture
 (e) providing adequate rest

13. Bloodflow to devitalised tissues may be improved by
 (a) passive exercise
 (b) massaging the skin
 (c) bedrest
 (d) giving an adequate diet
 (e) two-hourly turning
14. Which of the following can be used to improve the skin's resistance to pressure sores
 (a) waterproof ointments (barrier creams)
 (b) skin drying agents
 (c) moisturizers
 (d) antisecic agents
 (e) hot water.

15. The use of a water mattress to reduce the incidence of pressure sores is based on the following scientific principle
 (a) for every action there is an equal opposite reaction
 (b) pressure exerted on the water is transmitted undiminished throughout the mattress
 (c) pressure exerted by the patient is spread evenly throughout the water to all parts of his body in contact with the mattress
 (d) the patient is supported by a force equal to his weight
 (e) none of the above

MAXIMUM SCORE: 18
STUDENT'S SCORE:
PERCENTAGE:

PROJECT: SIMULATION: ITS INFLUENCE ON CLINICAL LEARNING AMONG FIRST YEAR STUDENT NURSES AT CORONATION NURSING COLLEGE

INVESTIGATOR/S: MRS J C M BRUCE

DEPARTMENT: NURSING EDUCATION, CORONATION NURSING COLLEGE

DATE CONSIDERED: 27/10/89

RECOMMENDATION OF COMMITTEE:

APPROVED

Committee felt that your study was too simplistic for a postgraduate degree.

Date: 30/10/89

CHAIRMAN: Professor F E Cleaton-Jones

Guidelines for written "Informed Consent" attached where applicable.

DECLARATION BY INVESTIGATOR/S
To be completed in duplicate and ONE copy returned to Miss S M Boshoff, Office of the Deputy Registrar (Research), Room 10002, 1C'h Floor, Senate House, University.

I/we fully understand the conditions under which I am/we are authorised to carry out the abovementioned research and I/we guarantee to ensure compliance with these conditions.

Should any departure be contemplated from the research procedure as approved I/we undertake to resubmit the Protocol to the Committee.

DATE: 4/12/89 SIGNED: J Bruce
UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

COMMITTEE FOR RESEARCH ON HUMAN SUBJECTS
(REF. R14/49)

CLEANANCE CERTIFICATE

PROJECT:
SIMULATION: ITS INFLUENCE ON CLINICAL LEARNING AMONG FIRST YEAR STUDENT NURSES AT CORONATION NURSING COLLEGE

INVESTIGATOR/S:
MRS J C M BRUCE

DEPARTMENT:
NURSING EDUCATION, CORONATION NURSING COLLEGE

DATE CONSIDERED: 27/10/89

RECOMMENDATION OF COMMITTEE:

APPROVED [X]

Committee felt that your study was too simplistic for a postgraduate degree.

Date: 30/10/89
CHAIRMAN: [Signature]

Guidelines for written "Informed Consent" attached where applicable.

DECLARATION BY INVESTIGATOR/S
To be completed in duplicate and ONE copy returned to MISS S M Boshoff, Office of the Deputy Registrar (Research), Room 10002, 10th Floor, Senate 3e, University.

I/we fully understand the conditions under which I am/we are authorised to carry out the abovementioned research and I/we guarantee to ensure compliance with these conditions.

Should any departure be contemplated from the research procedure as approved I/we undertake to resubmit the Protocol to the Committee.

DATE: 4/12/89
SIGNED: [Signature]
CONSENT FORM

PURPOSE OF THE STUDY: To evaluate the performance of student nurses when practising certain nursing procedures.

WHAT IS EXPECTED OF YOU: To practise the nursing procedures below under the supervision of a tutor.

(a) Procedures: BF, TPR and pressure part care.
(b) Frequency of procedure: Once a week for four weeks.
(c) Length of time: Between 13:00 - 18:00 on Fridays.

RISKS INVOLVED: None.

BENEFITS: You will become competent and confident in these procedures.

CONFIDENTIALITY AND ANONYMITY: Findings will be published in a research report, however personal results will be confidential.

RIGHT TO NON-PARTICIPATION OR WITHDRAWAL: Once you have registered and signed, you may not withdraw.

I, the undersigned have read the information above and hereby agree to participate in the study:

SIGNATURE OF SUBJECT: ___________________________ DATE: ____________

SIGNATURE OF WITNESS: ___________________________ DATE: ____________

SIGNATURE OF RESEARCHER: _________________________ DATE: ____________
CONSENT FORM

PURPOSE OF THE STUDY: To evaluate the performance of student nurses when performing certain nursing procedures.

WHAT IS EXPECTED OF YOU: To practice the nursing procedures below under the supervision of a tutor.

(a) Procedures: BP, TPR and pressure part care
(b) Frequency of procedure: Once a week for four weeks
(c) Length of time: Between 13:00 - 16:00 on Fridays

RISKS INVOLVED: None

BENEFITS: You will become competent and confident in these procedures.

CONFIDENTIALITY AND ANONYMITY: Findings will be published in a research report, however personal results will be confidential.

RIGHT TO NON-PARTICIPATION OR WITHDRAWAL: Once you have registered and signed, you may not withdraw.

I, the undersigned have read the information above and hereby agree to participate in the study:

SIGNATURE OF SUBJECT __________________________ DATE __________________

SIGNATURE OF WITNESS __________________________ DATE __________________

SIGNATURE OF RESEARCHER __________________________ DATE __________________
IN REPLY PLEASE QUOTE
No.

All correspondence must be addressed to the Superintendant.

Mrs J Bruce
Senior Tutor
CORONATION HOSPITAL

RE: REQUEST TO CONDUCT A RESEARCH PROJECT AT CORONATION HOSPITAL

Your letter dated the 16th August 1988 refers.

Permission is granted for you to conduct the abovementioned research project for a Master of Science degree in Nursing.

Recognition must be given to the Coronation Hospital, and all personal information must be treated as confidential.

I wish you well in your project.

[Signature]

DR M H E KALMYN
FOR SUPERINTENDENT
/cba
Dear Mrs Bruce

I am in receipt of your letter dated 16th January 1989 for which I thank you and wish you every success with the pilot study.

Ward one will be available to you for the duration of your study.

Please be assured of our support.

Best wishes and good luck.

V Palm
for SUPERINTENDENT