THE RELATIONSHIP BETWEEN PAIN AND SLEEP IN SPINAL CORD INJURY PATIENTS

Diana Subramony Pillay

Dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Medicine

2015
DECLARATION

I, Diana Subramony Pillay declare that this dissertation is my work. It is being submitted for the degree of Master of Science in Medicine in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

_____________________.

Date
ABSTRACT

Spinal cord injury (SCI) is a devastating injury affecting many South Africans.

The purpose of the study was to investigate the relationship between SCI pain and sleep issues during acute inpatient rehabilitation. Seventeen participants were recruited. There were 2 interviews in the study; the 1st interview was done on the day participants were recruited. The 2nd interview was conducted a day before participants were discharged. The time elapsed between the first and second interview was 7.9±2.4. The patients were discharged from the Auckland Rehabilitation hospital (Hope ward). In the 2nd interview the questionnaires for pain, sleep and mood measures were repeated, and two additional questions were asked and the answers recorded for analysis of content.

The key findings were; majority of the participants were Black, male (82%). The main cause of traumatic SCI was motor vehicle accident (59%). The common sites of injury were in the legs and neck/shoulder areas in both assessment (admission and discharge). The verbal descriptors that were commonly chosen in both assessments were, “sharp, shooting and tight.” Below level neuropathic pain, followed by musculoskeletal pain were the common types of pain reported. Pain interference was reported greatest in sleep and on average pain intensity was moderate (4-6 on 11-point Numerical Rating Scale). Strong correlations and positive relationships between Pain Catastrophizing Scale and subscales, and with the
Pittsburgh Insomnia Rating total scale and subscales were reported in this study. Environmental factors were reported to affect sleep. A high incidence of Restless Leg Syndrome was reported in this study (24%). Depression was commonly reported by participants in both assessments.

No significant association was found for the measures of sleep, Restless Leg Syndrome, depression and quality of life and the injury characteristics that were assessed. Significant associations were found at the 95% confidence levels for pain scores and injury characteristics (completeness of injury, level of injury and pain sites).

Further studies in this area of pain and sleep management is warranted. It is important that clinicians and researchers in this area find appropriate management for secondary issues which have a severe impact on the daily activities of SCI people, decreasing their quality of life.

Key words: SCI pain, sleep disturbances, mood
ACKNOWLEDGEMENTS

Firstly, I would like to thank the Lord for giving me the strength to cope during this study.

I would also like to express my deep gratitude to Professor Peter Kamerman and Dr Alison Bentley, my supervisors, for their guidance, encouragement and useful critiques of this dissertation. I would also like to thank Dr V Wilson, for her advice and assistance in this study. My grateful thanks are also extended to staff of the Hope ward for assisting me in in this study. Thanks to Petra Gaylard for her assistance in data analysis.

I am grateful for the funding provided from the University of Witwatersrand Medical Research Endowment Fund.

I also express my gratitude to my friends and all who contributed in one way or the other in the course of the study.

I wish to thank my parents and in-laws for their support and encouragement throughout my study. I would like to thank my husband and son for bearing with me and supporting me as I completed this dissertation.

Last but not least a special thanks to the patients of the Hope ward that participated in this study, your interest and willingness to assist me in gaining knowledge of the relationship between SCI pain and sleep in the early stages of your injury is highly appreciated.
RESEARCH OUTPUTS

07th Canadian IBRO-School Neuroscience, Montreal, QC & Toronto May 13-21 D Pillay: Oral Presentation: The relationship between pain and sleep in spinal cord injury in a South African population

7th Annual Canadian Neuroscience Meeting 2013, Toronto May 22-24 D Pillay: Poster presentation: The relationship between pain and sleep in the acute phase in spinal cord injury patients

TABLE OF CONTENTS

DECLARATION ... ii

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... v

RESEARCH OUTPUTS ... vii

TABLE OF CONTENTS .. vii

APPENDICES ... xii

LIST OF FIGURES ... xiii

LIST OF TABLES ... xv

ABBREVIATIONS ... xvii

CHAPTER 1- LITERATURE REVIEW .. 1

1.1. Introduction ... 2

1.2. Morphology and Physiology of normal spinal cord 3

1.3. Injury of the spinal cord ... 5

1.3.1. Classification of spinal cord injury 5

1.3.2. Epidemiology .. 9

1.3.3. Changes that occur soon after spinal cord injury 14
1.3.4. Level of injury 16

1.3.5. Secondary complications after spinal cord injury 17

1.4. Associated disorders of spinal cord injury 20

1.4.1. Pain 20

1.4.2. Sleep 34

1.4.3. The psychological impact of spinal cord injury-related pain and sleep disturbance 41

1.4.4 Quality of life in SCI 43

1.4.5. The general interaction of pain, sleep and mood 45

1.4.6. Conclusion of literature review 47

CHAPTER 2-METHODOLOGY 48

2.1. Site of study 49

2.2. Study participants 49

2.3. Ethics 50

2.4. Study protocol 50

2.5. Study instruments 51

2.5.1. Pain tools 52

2.5.2. Sleep instruments 55
3.6. Associations between pain intensity, pain interference, sleep and psychological measures 74

3.7. Second assessment 75

3.7.1. Pain 75

3.7.2. Pain sites 75

3.7.3. Pain classification 77

3.7.4. Pain intensity 77

3.7.5. Pain quality 77

3.7.6. Pain interference 79

3.7.7. Neuropathic pain 79

3.7.8. Pain catastrophizing 81

3.8. Sleep 81

3.8.1. Sleep disturbances 81

3.8.2. Restless leg syndrome 85

3.9. Mood 86

3.10. Change in measures of pain, sleep, RLS, depression and quality of life between admission and discharge 86
3.11. Associations between pain intensity, pain interference, sleep and psychological measure 87

3.12. Qualitative analysis 87

CHAPTER 4- DISCUSSION AND CONCLUSION 91

4.1. Summary of findings 92

4.2. Discussion and conclusion 92

4.3. Limitations of study 101

4.4. General conclusions 102

4.5. Future studies 103

5. References 104
APPENDICES

Appendix A: Consent form and information sheet 127
Appendix B. Assessment tools: Pain, sleep and mood 128
Appendix C. Ethics 129
LIST OF FIGURES

Figure 1.1: Anatomical representation of incomplete lesions of the spinal cord 7

Figure 1.2: Anatomical representation of the conus medullaris and cauda equine syndrome 8

Figure 3.1: Pain sites as reflected in the body charts. Total percentage was greater than 100% as patients indicated multiple pain sites 63

Figure 3.2: Pain intensity at the time of the interview on an 11 Likert scale, and on average, at its least and at its worst in the past week 67

Figure 3.3: The verbal descriptors patients chose from McGill Pain Questionnaire to describe their quality of pain 67

Figure 3.4: Box and whisker plots of pain interference scores for individual items and the average score across all six items. Pain interference score measured on 11-point NRS from BPI 68

Figure 3.5: Pain intensity on an 11-point NRS to measure six pain qualities on the NPS 68

Figure 3.6: Box and whisker plots of pain catastrophizing subscales and total score 69

Figure 3.7: Box and whisker plots of descriptive information of sleep according to PIRS subscales 70
Figure 3.8: Pain sites as reflected in the body charts (n=14). Total percentage was greater than 100% as patients could indicate multiple sites.

Figure 3.9: Intensity of pain at its worst, least and average in the past week, and pain at the time of the interview. Outliers account for the patients that were pain free at the time of the assessment (n=14). The box whisker plot at worst has the median and IQR all at 7 therefore it appears as a squashed box.

Figure 3.10: Verbal descriptors the patients chose from MPQ to describe their quality of pain.

Figure 3.11: Box and whisker plots of pain interference scores for individual items and the average score across all six items on an 11-likert scale.

Figure 3.12: Pain intensity on an 11-point NRS to measure six pain qualities on the NPS.

Figure 3.13: Box and whisker plots of pain catastrophizing subscales and total score during assessment 2.

Figure 3.14: Box and whisker plots of descriptive information of sleep according to PIRS subscales.
LIST OF TABLES

Table 1.1: Sensory and motor spinal tracts 4
Table 1.2: ASIA Classification A-E, type of SCI and depression 5
Table 1.3: The neurological level of injury and areas that are affected in reference to spinal levels 17
Table 1.4: Current Classification system of SCI pain 22
Table 1.5: Classification of SCI (Siddall et al., 2000) 23
Table 3.1: Demographic characteristics of the seventeen patients with acute SCI 61
Table 3.2: Injury characteristics reported by participants with regards to: completeness, level and cause of SCI 62
Table 3.3: Pain medication treatment of the respondents 69
Table 3.4: Descriptive analysis of the sleep parameter subscale questions from the PIRS questionnaire 71
Table 3.5: Correlation matrix between pain, sleep, and mood. The correlation coefficients are on the top row in each block with the p-value underneath 75
Table 3.6: Wilcoxon signed-rank test to test for differences between assessment 1 and 2 regarding pain location 76
Table 3.7: Descriptive analysis of the sleep parameter subscale questions from the PIRS questionnaire 83
Table 3.8: Wilcoxon signed-rank sum test testing for change in the measures

Table 3.9: Participants’ concerns regarding SCI after discharge
Abbreviations

SCI Spinal cord injury
RLS Restless-leg syndrome
AISA American Spinal Cord Injury Association
NSCISC National Spinal Cord Injury Statistical Centre
QASA Quadpara Association of South Africa
ISCIPC International Spinal Cord Injury Pain Classification
IASP International Association for the Study of Pain
REM Rapid eye movement
NREM Non-rapid eye movement
EEG electroencephalogram
TMD Temporomandibular disorder
MPQ McGill Pain Questionnaire
NWC Number of words chosen
PPI Present pain intensity
PPI(now) Present intensity now
PRI Present rating index
BPI Brief Pain Inventory Interference Scale
PCS The Pain Catastrophizing Scale
PIRS The Pittsburgh Insomnia Rating Scale
IRLSSG The International Restless Leg Syndrome Study Group.
CES-D Centre for Epidemiological Studies-Depression Scale
IQR Inter-quartile range
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOI</td>
<td>Neurological level of injury</td>
</tr>
<tr>
<td>NRS</td>
<td>Numerical Rating Scale</td>
</tr>
<tr>
<td>PSQI</td>
<td>Pittsburgh Sleep Quality Index</td>
</tr>
</tbody>
</table>