THE EFFECT OF EXERCISE ON METABOLIC AND CARDIOVASCULAR PARAMETERS CHANGES IN SPRAGUE-DAWLEY RATS RECEIVING A SHORT-TERM HIGH FAT-HIGH SUCROSE DIET

Hager Omar Shogor

A dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, for the degree of Master of Science in Medicine.

Johannesburg, 2015
Declaration

I, Hager Omar Shogor, declare that this dissertation is my own, unaided work. It is being submitted for the degree of Master of Science of Medicine, in the Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa. The work in this thesis, has not been submitted for any degree or examination in this university, or any other university.

Hager Omar Shogor

Signed on the.................................day of...2015

I certify that the studies contained in this dissertation have the approval by the Animal Ethics Screening Committee of the University of the Witwatersrand, Johannesburg. The ethics approval number is 2013/51/04

Hager Omar Shogor

..

Signed on the.................................day of... 2015

... ...

Frederic Michel (supervisor) Alleta Millen (supervisor)

Date............................... Date.................................
Publications and presentations

Data presented in this dissertation have been presented at the 42st Annual Conference of the Physiology Society of Southern Africa held at the University of KwaZulu-Natal, September 2014. The title of the presentation was “Exercise does not improve diet-induced hypertriglyceridemia in young non-obese Sprague-Dawley rats”

Although during the course of my MSc I learnt the techniques of echocardiography and vascular reactivity, these are specialized techniques which require a high degree of skill which only comes with experience. Hence in the interests of collecting accurate and hence meaningful data experts collected these data.
Acknowledgements

Dr. Aletta Millen and Dr. Frederic Michel: for their supervision and all the valuable knowledge and skills they taught me. They have been good role models and inspired me a lot.

Prof. Gavin Norton and Prof Angela Woodiwiss: for their assistance in echocardiography.

Miss Monica Gomes: for her assistance in preparing the reagents that I used and for the preparing and processing of tissues for histology, and for assistance in determining plasma insulin content using the ELISA technique.

Miss Lebogang Mokotedi and Mrs Oluwatosin Tade: for their assistance with the feeding trial, experimental work and data collection.

I would like to express my most sincere gratitude to the staff of the Central Animal Services, Faculty of Health Sciences, University of the Witwatersrand, for their assistance with the care and welfare of the animals.
Abstract

Dyslipidaemia is a risk factor for cardiovascular disease. Triglycerides (TG), low density lipoprotein (LDL) and total cholesterol (TChol) concentrations are lower in physically active participants and are improved by exercise training. Whether the effect of exercise on diet-induced dyslipidaemia occurs independent of other metabolic syndrome parameters is nevertheless uncertain.

The aim of the present study was to investigate the effect of exercise training on dyslipidaemia, induced by a high-fat-high-sucrose (HFHS) diet independent of other metabolic syndrome features. 48 three-month-old Sprague-Dawley rats, selected for their ability to run in running wheels, were fed a HFHS diet or a standard chow diet (SC) for 9 weeks. Rats were randomly assigned to 4 groups: sedentary HFHS diet group (n=9); HFHS with exercise group (n=9); sedentary SC diet (n=9); and SC with exercise group (n=9). Both of the exercise groups were allowed to exercise voluntarily during the diet intervention. Fasting blood glucose (BG), insulin, glycated haemoglobin A1c (HbA1c), fasting blood triglyceride (TG) concentrations, body weight, daily food consumption, visceral adipose tissue weight, hepatic glycogen and lipid contents, liver weight, blood pressure, heart function and dimensions and vascular reactivity were measured.

After 9 weeks, body weights were significantly lower in both HFHS diet groups compared to SC diet groups (p<0.0001) despite a greater food intake in HFHS diet groups (p<0.0001). BG concentrations, insulin concentration, HbA1c, normalized visceral fat tissue, hepatic lipid contents, normalized liver weights, heart function and dimensions, and vascular reactivity were not different between the groups. Fasting TG and total cholesterol concentrations were significantly greater with a HFHS diet compared to SC groups (p<0.0001 and p=0.029, respectively). HDL concentration was significantly lower with a HFHS diet compared to SC groups (p<0.0001) Furthermore, liver glycogen contents were significantly greater with HFHS diet groups compared to SC diet groups (p<0.0001). Exercise did not change the blood lipid concentrations and the liver glycogen contents. Systolic blood pressure, but not
diastolic blood pressure, was significantly higher with a HFHS diet groups compared to SC diet groups (p=0.021 and p=0.0573, respectively). Exercise did not change the HFHS-induced increase in SBP.

In conclusion, exercise does not ameliorate HFHS diet-induced dyslipidaemia and elevated blood pressure in adult non-obese Sprague-Dawley rats without other metabolic syndrome parameter changes.
Table of contents

Declaration... i

Publications and presentations .. ii

Acknowledgments.. iii

Abstract.. iv

Table of contents .. vi

List of figures.. x

List of tables... xi

List of abbreviations .. xii

Chapter One: Introduction ... 1

1.1 Introduction.. 2

1.2 Problem statement ... 3

Chapter Two: Literature Review ... 6

2.1 Western diet ... 7

2.2 The effects of high fat-high sucrose diet on metabolic parameters... 10

2.2.1 Metabolism of balanced and excessive fat intake ... 10

2.2.2 Metabolism of balanced and excessive carbohydrate intake... 11

2.2.3 The effects of high fat-high sucrose diet on metabolic syndrome characteristics
... 12

2.2.3.1 Hyperglycaemia and insulin resistance .. 13

2.2.3.2 Obesity .. 14

2.2.3.3 Dyslipidaemia ... 15

2.2.3.4 Metabolic effects of a high fat-high sucrose diet in rats.. 16

2.3 The effects of high fat-high sucrose diet on cardiovascular parameters..................................... 23

2.4 Metabolic response to an exercise intervention .. 27

2.5 The effect of exercise on cardiovascular parameters ... 33

2.6 Aims and objectives .. 37
Chapter Three: Materials and Methods ... 38

3.1 Experimental groups and exercise protocol ... 39
3.2 Diet compositions and preparation.. 41
3.3 Measurements and procedures ... 41
3.3.1 Blood pressure measurement .. 41
3.3.2 Blood measurements .. 42
3.3.2.1 Fasting blood glucose and triglyceride ... 42
3.3.2.2 Lipid profile ... 42
3.3.2.3 Haemoglobin a1c ... 42
3.3.2.4 Serum insulin .. 42
3.4 Echocardiography .. 44
3.5 Vascular reactivity .. 46
3.6 Organs mass ... 47
3.7 Tibial length ... 47
3.8 Histology and aortic morphometric study ... 47
3.9 Measurement of liver lipid and glycogen .. 47
3.9.1 Hepatic lipid content ... 47
3.9.2 Hepatic glycogen content ... 48
3.10 Data analysis ... 50

Chapter Four: results ... 51

4.1 The effect of short term high fat-high sucrose diet and exercise on food intake,
body weights, visceral adipose tissue weights, kidney weights and liver weights.... 52
4.2 The effect of short-term high fat–high sucrose diet and exercise on cardiovascular parameters ... 56

4.2.1 The effect of short-term high fat–high sucrose diet and exercise on heart weights, dimensions and function as well as aortic wall thickness ... 56

4.2.2 The effect of short term high fat-high sucrose diet and exercise on blood pressure. .. 59

4.2.3 The effect of short term high fat-high sucrose diet and exercise on vascular reactivity ... 61

4.3 The effect of short-term high fat–high sucrose diet and exercise on metabolic parameters ... 64

4.3.1 The effect of short-term high fat–high sucrose diet and exercise on fasting blood glucose, haemoglobin a1c and insulin level ... 64

4.3.2 The effect of short term-high fat high-sucrose diet and exercise on fasting blood triglyceride and lipid profile ... 67

4.3.3 The effect of short term-high fat high-sucrose diet and exercise on hepatic glycogen and lipid contents ... 70

Chapter Five: Discussion .. 73

5.1 The effect of High fat-high sucrose diet on body weight and tibial length 74

5.2 The metabolic effects of high fat-high sucrose diet .. 76

5.2.1 Blood glucose, serum insulin, glycated haemoglobin and hepatic glycogen contents .. 76

5.2.2 Blood lipids .. 78

5.3 The effect of high fat-high sucrose diet on cardiovascular parameters 80

5.3.1 Blood pressure .. 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 Exercise effect on metabolic and cardiovascular parameters:</td>
<td>81</td>
</tr>
<tr>
<td>5.4.1 The effect of exercise on body weight of animals fed a High fat-high sucrose diet</td>
<td>81</td>
</tr>
<tr>
<td>5.4.2 Exercise effect on blood glucose, serum insulin, glycated haemoglobin and hepatic glycogen content</td>
<td>83</td>
</tr>
<tr>
<td>5.4.3 Exercise and blood lipids</td>
<td>84</td>
</tr>
<tr>
<td>5.4.4 Exercise and blood pressure</td>
<td>85</td>
</tr>
</tbody>
</table>

Chapter Six: Conclusion... 87

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Conclusions</td>
<td>88</td>
</tr>
<tr>
<td>6.2 Limitations and future studies</td>
<td>89</td>
</tr>
<tr>
<td>6.3 Uniqueness and strength the current study</td>
<td>90</td>
</tr>
<tr>
<td>6.4 Possible clinical implications and recommendations</td>
<td>91</td>
</tr>
</tbody>
</table>
List of figures

Figure 3.1: Protocol with group assignation according to dietary/exercise intervention. 40

Figure 3.2: Measurements and procedures during the diet intervention and at termination. 43

Figure 3.3: M-mode echocardiographic image of the left ventricle of a high fat-high sucrose diet fed rat..45

Figure 3.4: photomicrography of thoracic aortic wall section. .. 49

Figure 4.1: Effect of short term high fat-high sucrose diet and exercise on body weights. .. 53

Figure 4.2: Effect of short term high fat-high sucrose and exercise on food intake. 54

Figure 4.3: Effects of short term high fat-high sucrose diet and exercise on blood pressure. .. 60

Figure 4.4: Effects of short term high fat-high sucrose diet and exercise on fasting blood glucose. .. 65

Figure 4.5: Effects of short term high fat-high sucrose diet and exercise on fasting blood triglycerides. .. 68

Figure 4.6: Effects of short term high fat-high sucrose diet and exercise on lipid profile. 69
List of tables

Table 2.1: Changes in metabolic syndrome parameters in rats consuming a high fat-high sucrose diet and experiencing dyslipidaemia ... 17
Table 2.2: Effect of high fat-high sucrose diet in rats without obesity.......................... 20
Table 2.3: Effect of exercise cardio-metabolic parameters in individuals with dyslipidaemia .. 29
Table 2.4: Effect of high fat-high sucrose diet and exercise in rats............................ 32
Table 4.1: Effects of dietary intervention and exercise on tibia lengths, liver weights, right kidney weights and visceral adipose tissue weights. ... 55
Table 4.2: Effects of the dietary intervention and exercise on heart weights, left ventricular weights and right ventricular weights. .. 57
Table 4.3: Effect of short term high fat-high sucrose diet and exercise on left ventricular dimensions and functions as assessed in vivo... 58
Table 4.4: Effect of short-term high fat-high sucrose diet and exercise on vascular reactivity in mesenteric artery ... 62
Table 4.5: Effect of short-term high fat-high sucrose diet and exercise on vascular reactivity in renal artery .. 63
Table 4.6: Effects of short-term high fat-high sucrose diet and exercise on Hemoglobin A1c and insulin level. .. 66
Table 4.7: Effects of short-term high fat-high sucrose diet and exercise on Hepatic glycogen contents and Hepatic lipid contents. ... 71
Table 4.8: Non-normally distributed data.. 72
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.Ch</td>
<td>acetylcholine</td>
</tr>
<tr>
<td>APO</td>
<td>apolipoprotein (apo)</td>
</tr>
<tr>
<td>Apo-B48</td>
<td>apolipoprotein B48</td>
</tr>
<tr>
<td>BG</td>
<td>blood glucose</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart diseases</td>
</tr>
<tr>
<td>ChREBP</td>
<td>carbohydrate response element binding protein</td>
</tr>
<tr>
<td>CRP</td>
<td>C - reactive protein</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular diseases</td>
</tr>
<tr>
<td>DASH</td>
<td>dietary-approach-to stop-hypertension</td>
</tr>
<tr>
<td>Emax</td>
<td>maximum contraction response</td>
</tr>
<tr>
<td>eNOS</td>
<td>endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>EC50</td>
<td>concentration of agonist at 50% maximum response</td>
</tr>
<tr>
<td>ET-1</td>
<td>endothelin-1</td>
</tr>
<tr>
<td>FFA</td>
<td>free fatty acids</td>
</tr>
<tr>
<td>HbA1c</td>
<td>glycated haemoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>HFHS</td>
<td>high-fat-high-sucrose</td>
</tr>
<tr>
<td>IDF</td>
<td>International Diabetes Federation</td>
</tr>
<tr>
<td>KCI</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
</tbody>
</table>
LVEDD left ventricular end diastolic volume
LVESD left ventricular end systolic diameter
MDA malondialdehyde
MG monoglycerides (MG)
NAFLD non-alcoholic fatty liver disease
NEFA non-esterified fatty acid
nfTG non-fasting triglycerides
NO synthase nitric oxide synthase
OGTT oral glucose tolerance test
Phe phenylephrine
PWED left ventricular end diastolic posterior wall thickness
PWES left ventricular end systolic posterior wall thickness
RNS reactive nitrogen species
ROS reactive oxygen species
SD sprague-Dawley
SNP sodium nitroprusside
SREBBP sterol regulator element binding protein
TCA citric acid cycle
TChol total cholesterol
TG triglycerides
VLDL very low density lipoprotein
VPR volume Pressure Recording
Chapter One: Introduction
1.1 Introduction

A large amount of refined carbohydrates, in addition to a large consumption of saturated fats and a high salt intake, are characteristic of a western diet (Chilton et al., 2014). According to current nutritional guidelines, a high carbohydrate intake is considered to be > 45% of the total energy consumed per day (Feinman et al., 2015), while the amount of salt is considered high if it exceeds 2400 mg/day (Rhee et al., 2015). The western diet is also characterized by a lack of other nutrients such as vitamins, fiber, and omega 3 fatty acids (Myles et al., 2014). Consumption of a western diet in different age categories (including children) may impact on growth and may induce nutrition-related diseases (Dearth-Weasley et al., 2011; Myles et al., 2014).

Indeed, over consumption of non-nutritious food with excess caloric intake are associated with various chronic diseases such as immune-mediated diseases, obesity and its related diseases, cardiovascular diseases and disturbances in cognitive ability (Myles et al., 2014). A western diet is also one of the leading causes for the metabolic syndrome (Petkevičienė et al., 2012; Boers et al., 2014; Perez-Cornago et al., 2015). The metabolic syndrome is defined by a group of metabolic and cardiovascular risk factors including insulin resistance, dyslipidaemia, hyperglycaemia, obesity and hypertension (Grundy et al., 2005). However dyslipidaemia is also an independent risk factor for cardiovascular diseases. The prevalence of both dyslipidaemia and metabolic syndrome have increased significantly in the recent years (Jameson et al., 2013; Hong et al., 2014; Pinhas-Hamiel et al., 2015; Noubiap et al., 2015). In this regard current guidelines advocate lifestyle changes, including a healthy diet and physical activity as first line management for the prevention and management of lifestyle related metabolic and cardiovascular disease risk factors (Tur et al., 2013).

“Physical activity is defined as any bodily movement produced by the contraction of skeletal muscles that increases energy expenditure above resting levels and comprises of routine daily tasks such as commuting, occupational tasks, or household activities, as well as purposeful health-enhancing movements/activities” (Diaz et al., 2013, Pg.2).
inactivity is a well-recognized behavioural risk factor for the development of non-
communicable diseases including metabolic and cardiovascular disease (Milton et al., 2015,
Horodyska et al., 2015) and has consistently been associated with an increased risk of
mortality independent of general adiposity (Ekelund et al., 2015). Moreover, the evidence
supports that physical inactivity, characterizing the western lifestyle, is pro-inflammatory and
augments oxidative stress, whereas physical activity is anti-inflammatory (Dean et al., 2012).
In contrast, intervention studies have demonstrated that regular physical activity reduces
morbidity and mortality associated with coronary heart disease, hypertension, diabetes, and
stroke (Young et al., 2014). In this regard current research focusses on the impact of
exercise and dietary interventions in obese individuals and individuals with metabolic
syndrome. However, the effects of exercise on metabolic and cardiovascular risk markers
while consuming a westernized diet is not certain.

The current study imitated the western diet by utilizing a high fat-high sucrose (HFHS) diet
model which is characterized by the concurrent inclusion of two western dietary components
(saturated fat and sucrose). This study looked at the HFHS diet with and without exercise to
ascertain the impact of the western diet as well as exercise on body weight, cardiovascular
and metabolic parameters.

1.2 Problem statement

The worldwide shift in food patterns toward the consumption of a western diet has raised
concerns regarding this diet (Amiri et al., 2014). The collateral rise in chronic non-
communicable diseases has been connected to the western diet (Chambless et al. 1997;
Hariharan et al., 2015; Brigham et al., 2015). Although the direct nutritional deficit of a
western diet (fiber, minerals and vitamins) plays an important part, the abundance of
macronutrients is still thought to be responsible for its chronic consequences.
Recently, several epidemiological studies have documented the rise in consumption of both simple carbohydrates and saturated fat (Baker et al., 2014; Bielemann et al., 2015; de Souza et al., 2015). Previous studies have investigated the effects of only one these compositions upon metabolism and other body functions, which does not reflect the spectrum of essential components regarding the western diet. Therefore, the HFHS (both sucrose and saturated fat) diet model has been defined as the best representative model for the western diet composition and the most suitably designed model to demonstrate the impact of western diet metabolism and its subsequent effect on cardiovascular system performance.

One of the chronic metabolic sequelae induced by the western diet is a high level of blood lipids, defined as dyslipidaemia. Dyslipidaemia is not only affecting older individuals but younger populations as well (Lambert et al., 2013; Wilson et al., 2015). Some of the well-known consequences of dyslipidaemia include atherosclerosis, coronary heart disease, hypertension, chronic kidney diseases, pancreatitis and fatty liver diseases (Ewang-Emukowhate et al., 2014; Li et al., 2014). Furthermore, dyslipidaemia has been found to affect vascular reactivity and impair the endothelial function in the coronary and forearm blood vessels of dyslipidemic individuals (Lambert et al., 2013). Dyslipidaemia may present distinctively or in association with several other disturbances including hyperglycaemia, insulin resistance, obesity, and hypertension, which are collectively known as metabolic syndrome (Grundy et al., 2005). Large epidemiological data revealed that the prevalence of metabolic syndrome in western communities has reached alarming levels and negatively impacts the active working population (Morikawa et al. 2013; Lao et al., 2014; DiBello et al., 2015).

Previous studies indicated that the habitual consumption of a western diet predisposes the human body to the disturbances that constitute metabolic syndrome (Saiki et al., 2007; Zhou et al., 2014). In this regard, it is crucial to identify and differentiate the contribution of a western diet for a short duration in the pathogenesis of dyslipidaemia and metabolic syndrome characteristics. Dyslipidaemia is under-diagnosed in the clinical practice and this
may be attributed to dyslipidaemia being underrated in non-obese individuals (Liao et al., 2004). The present study is therefore designed to provide a better understanding of the effect of a western diet-induced dyslipidaemia independently of other metabolic syndrome features, mainly obesity. Indeed it is important to assess the impact of a western diet in inducing dyslipidaemia and its consequences in non-obese individuals.

The consumption of a western diet is often associated with a sedentary lifestyle and lack of physical fitness. Physical activity in western communities has been decreasing due to long working hours and accessible transport, which makes individuals prone to a higher relative risk of cardiovascular diseases (Thijssen et al., 2010). According to current guidelines, implementing lifestyle changes could be effective in improving the metabolic parameters, as well as decreasing cardiovascular disease risk factors (Chobanian et al., 2003). In addition to being attainable and economic, exercise interventions may be the simplest in the line of management of cardiovascular disease risk factors. Previous studies have reported that lifestyle interventions including exercise and weight loss can alleviate some adverse cardiovascular and metabolic effects induced by a western diet (Golbid et al., 2012; Mohr et al., 2014; Prior et al., 2014; Beavers et al., 2014). However whether exercise can slow down or even prevent the adverse effects of a western diet independently of weight loss is not currently known. In order to institute effective therapeutic strategies, we need to determine to what extent an exercise intervention can slow the progression or prevent any cardiovascular or metabolic disturbances induced by a western diet. In particular, it is crucial to evaluate the effect of an exercise intervention on diet-induced cardiovascular risk factors including dyslipidaemia and metabolic syndrome.
Chapter Two: Literature Review
This chapter focuses on a specific western diet model, a high fat-high sucrose diet (HFHS), which incorporates both saturated fat and sucrose. In this regard the metabolic and cardiovascular disturbances induced by a high fat-high sucrose diet in rats, as well as the effect of a western diet in humans, will be highlighted. Finally, this chapter briefly reviews the effect of exercise on metabolic and cardiovascular changes induced by the consumption of a western diet.

2.1 Western diet

Despite the characteristic abundance of a western diet in both refined carbohydrates and saturated fat, western diet models vary in the nature of these macronutrients and also in the proportions of these macronutrients (Soria et al., 2001; Novak et al., 2012; Martinez et al., 2012; Tremblay et al., 2013; Panet et al., 2014; Fernando et al., 2014). Western diet models have been used for different purposes, such as to investigate the mechanisms by which the diet could predispose to a certain disease (Barnard et al., 1993; Bunnag et al., 1997; Carmiel-Haggai et al., 2005; Christon et al., 2005; Bourgoin et al., 2008), to compare the effect of different compositions in different models (Buettner et al., 2006; Boqué et al., 2009; Chun et al., 2010) or to investigate the specific effect of an interventional procedure in an already established disease by the western diet (Gonçalves et al., 2004; Arias et al., 2014; Cheng et al., 2014). Importantly, the contribution of the simultaneous inclusion of multiple macronutrients in the pathogenesis of chronic metabolic diseases is the focus of recent investigations (Mariotti et al., 2008; Lomba et al., 2010; Kabel et al., 2014). The HFHS diet has then been established to investigate the effect of a western diet on several physiological functions. The HFHS diet’s composition is formulated to reflect the proportions of macronutrients in the modern western diet. In this regard, the principal fat used in the HFHS diet is saturated animal fat (Muraki et al., 2011, Ochiai et al., 2013) or vegetable fat (Rivera et al., 2006; Paulino et al., 2010) and the carbohydrate used is sucrose.
Despite recent nutritional recommendations that the consumed amount of saturated fat should not exceed 10% of total daily energy (Weech et al., 2014), there has been a considerable increase in the consumption of saturated fat in western societies (Weech et al., 2014). The current medical advice is not to decrease the fat intake, but rather change the type of fat to unsaturated fat (Benitez et al., 2015). Several studies have found that saturated fat predisposes to several diseases through its systemic inflammatory effect (Clarke et al., 2009; Mu et al., 2014) and oxidative stress (Lithander et al., 2013). Saturated fat increases the risk of metabolic disturbances (Tierney et al., 2011) and of high blood pressure (Stamler et al., 1996). Indeed, a high intake of saturated fatty acids is associated with greater low density lipoprotein (LDL), total cholesterol (TChol) and triglycerides (TG) (Esser et al., 2013; Ortega et al., 2013; Virtanen et al., 2014; Benitez et al., 2015). Saturated fat negatively affects the vascular system by preventing the beneficial anti-inflammatory role of high density lipoprotein (HDL) on the endothelium (Nicholls et al., 2008) and by decreasing vascular flow mediated dilatation (Vafeiadou et al., 2015). Saturated fat is also involved in the development and the rupture of atherosclerotic plaque (Kralova et al., 2013). In contrast, the high levels of unsaturated fat (mono or poly unsaturated fat), present in the Mediterranean diet, has shown to lower blood lipids concentrations (Kralova et al., 2013), lower coronary heart disease (CHD) risk (Eschen et al., 2004; Benitez et al., 2015), to improve vascular reactivity (Newens et al., 2011) and to normalise blood pressure (Rasmussen et al., 2006).

As described above, saturated fat, as a paramount component of the western diet, has devastating metabolic and cardiovascular effects. Another western diet component that is frequently associated with a negative health outcome is sucrose, a simple carbohydrate predominantly used in western food to enhance its sweet taste (Lowndes et al., 2014). Sucrose is a disaccharide carbohydrate composed of glucose and fructose, two monosaccharide molecules (Sørensen et al., 2014). Sucrose is hydrolyzed into its constituting monosaccharides by an enzyme, called sucrase, which facilitates the absorption
by the gastro-intestinal tract of both the glucose and fructose. The effects of sucrose start by
the absorption of glucose, a rise in blood glucose concentration, and a subsequent increase
of pancreatic insulin secretion. Additionally, over consumption of carbohydrates including
sucrose, in amounts exceeding the energy requirements and the liver’s ability for glycogen
deposition, induces de novo lipogenesis (Aarsland et al., 1997; Strable et al., 2010).
Although de novo lipogenesis can be induced by a diet high in fat, it is mainly triggered by
excess carbohydrates (Flatt et al., 19970). De novo lipogenesis converts the excessive
amounts of carbohydrate into lipids, either by incorporating the excess of FFA as TG for
storage or oxidizing it into energy (Strable et al., 2010).

The economic affordability and worldwide availability of sucrose has contributed to
maximizing its usage (Gangwisch et al., 2015). Sucrose has been recognised as being
involved in the pathogenesis of several metabolic and cardiovascular diseases (Soria et al.,
2001; Chicco et al., 2003; Harmancy et al., 2012; Mather et al., 2001; Santure et al., 2002;
Bunnag et al., 1997). Although the World Health Organisation (WHO) recommendation is to
lower sugar intake to less than 10% of the total daily energy (Rugg-Gunn et al., 2007), the
energy input from consumed sweeteners has risen in the last couple of decades (Lowndes
et al., 2014).

It is evident that the current upsurge in the consumption of both saturated fat and sucrose,
that exceeds the nutritional recommendations, has deleterious side-effects. What is
discussed above regarding the composition of the western diet justifies then the integration
of saturated fat and sucrose (among other western diet compositions) in a representative
western diet called HFHS diet. Further assessment of their excessive intake on
cardiovascular and metabolic status is discussed in next section.
2.2 Effect of high fat-high sucrose diet on metabolic parameters

The consumption of food loaded with saturated fat and refined carbohydrates may account for the negative impact of a western diet on metabolism (Riccio et al., 2015). Despite the fact that the end products of carbohydrates and fat metabolism may affect the body on the genetic, cellular and systemic levels (Riccio et al., 2015), this section focuses only on the systemic effects of these dietary components.

2.2.1 Metabolism of balanced and excessive fat intake

Dietary lipids (mostly triglycerides, TG) are absorbed in the intestine after which it is hydrolysed by the pancreatic enzymes into free fatty acids (FFA) and monoglycerides (MG). Both are combined with bile products (emulsification) to be absorbed by intestinal cells and re-synthesized into TG (Beaslas et al., 2009). TG subsequently attach to apolipoprotein in the endoplasmic reticulum of the intestinal cell to produce a chylomicron which is secreted from the intestine into the lymph and then into general circulation (Beaslas et al., 2009).

Energy demanding situations, including daily activities such as exercise and fasting induce fatty acid oxidation (defined as lipolysis). The production of acetyl CoA and energy is therefore used for the ongoing vital operations in the body such as respiration, maintaining cell structure and skeletal muscles activities (Koppo et al., 2010; Frühbeck et al., 2014). The equilibrium between fat utilization and storage usually keeps TG in a low and balanced situation, whereas, the consumption of a high amount of either simple carbohydrates or saturated fats may be responsible for metabolic disturbances (Novak et al., 2012). The lipoprotein lipase induces the storage of absorbed fatty acids in adipose tissue and other tissues for later use (Goldberg et al., 1996). The inability of enzymes (involved in fatty acid oxidation and the citric acid cycle (TCA cycle) to handle the high flux of fatty acids results in less utilization of absorbed fatty acids (Bruce et al., 2009). Overfeeding of a diet composed of a high amount of fat induces less oxidation of the absorbed fatty acids and
more storage (Horton et al., 1995, Gibson et al., 2007). In healthy individuals, ingestion of a
diet rich in fat results in greater concentrations in LDL and TChol compared to the
consumption of a low fat diet (Tremblay et al., 2013). Consuming a diet high in fat, even for a
short period of time, also leads to an increase in plasma FFA in sedentary individuals
(Edwards et al., 2010). Hence, a lack of balance between the dietary intake of fatty acid and
its processing induces an increased lipid accumulation in different organs which may result
in further metabolic disturbances such as impaired insulin secretion (Man et al., 1997),
lipotoxicity in heart muscles (Turkieh et al., 2014) and the expansion of visceral adipose
tissue (Lyer et al., 2012; Novak et al., 2012). Finally, non-alcoholic fatty liver diseases, non-
alcoholic steatohepatitis, as well as renal injury and proteinuria through obesity related-
glomerulopathy, are ultimate consequences induced by a diet rich in fat and the subsequent
elevated plasma FFA concentration (Pan et al., 2014).

2.2.2 Metabolism of balanced and excessive carbohydrate intake

Dietary carbohydrates are absorbed in the small intestine and hydrolysed by enzymes into
simple carbohydrates (Sørensen et al., 2014). Sucrose is hydrolysed by sucrase into
glucose and fructose (Sørensen et al., 2014). In turn, the resultant simple carbohydrates are
oxidized by cellular mitochondria into pyruvate (Flatt et al., 19970). Pyruvate is then oxidized
into acetyl CoA and by-product energy as adenosine triphosphate (ATP) (Aarsland et al.,
1997). In this way, the metabolised carbohydrate produces energy for basic use in the cells
and maintains the energy balance.

The surplus glucose from the metabolised excess carbohydrate will be stored as glycogen in
the liver (in a limited capacity) and in the skeletal muscles under the effect of insulin (Bollen
et al., 1998; Randle et al., 1999). Further exuberant glucose above the body’s limited
capacity to store glycogen, is directed for de novo lipogenesis (Schwarz et al., 1995; Kersten
et al., 2001; Ferré et al., 2010). Furthermore, insulin stimulates the transcriptional factors
sterol regulator element binding proteins (SREBP) and the high blood glucose level induces carbohydrate response element binding protein (ChREBP) which are both responsible transcriptional factors in the upregulation of fat synthesis (Osei-Hyiaman et al., 2008). Insulin, released by high blood glucose following high sucrose intake, induces the activation of hepatic fatty acid synthase which is one of the main enzymes in the de novo lipogenesis (Flatt et al., 19970). The excess glucose oxidation results in the accumulation of acetyl CoA. This accumulated acetyl CoA forms the main substrate for de novo lipogenesis and the formation of fatty acids which are released from the liver as triacylglycerol fatty acids (TGFA) and very low density lipoprotein (VLDL) (Schonfeld et al., 1971). The high release of secreted VLDL in the blood causes an increase in blood lipids and may be responsible for the development of dyslipidaemia (Schonfeld et al., 1971). Additionally, the excessive amount of absorbed fructose causes the dysregulation of hepatic metabolism by directing the resultant carbon into de novo lipogenesis and further accumulation of lipids in the blood (Basciano et al., 2005; Merino-Aguilar et al., 2014).

2.2.3 The effect of a high fat-high sucrose diet on metabolic syndrome characteristics

Metabolic syndrome is a cluster of cardiovascular and metabolic disease risk factors including abdominal obesity, insulin resistance, elevated blood pressure, atherogenic dyslipidaemia, pro-thrombotic state and a pro-inflammatory state (Grundy et al., 2005). Different criteria have been proposed for the diagnosis of metabolic syndrome in humans. The WHO requires a marker of insulin resistance and an additional two risk factors of the previously mentioned risk factors. The International Diabetes Federation (IDF) requires obesity as the main cornerstone for the diagnosis of metabolic syndrome in addition to a further two risk factors (Grundy et al., 2005). However in rats, consumption of a HFHS diet may induce metabolic syndrome or most of the risk factors constituting metabolic syndrome (Barnard et al., 1993; Yamamoto et al., 2006; Pranprawit et al., 2013). The concurrent consumption of large amounts of both sucrose and saturated fat by rats has been shown to
induce more profound metabolic disturbances than the consumption of a high sucrose or a high fat diet alone (Osabe et al., 2008; Ragab et al., 2015). Most of the metabolic syndrome characteristics are interrelated and can be induced by consumption of a HFHS diet.

2.2.3.1 Hyperglycaemia and insulin resistance

Blood glucose concentration is marked by the equilibrium between glucose uptake and glucose metabolism (Harber et al., 2005). The abnormally high blood glucose is defined as hyperglycaemia (Matsui et al., 2012). Hyperglycaemia has been reported previously in animal studies with different models of the western diet (Matsui et al., 2012; Martinez et al., 2012; Fernando et al., 2014). Although not all animal studies observed a change in blood glucose concentration with the HFHS diet (Ivanova et al., 2011; Medford et al., 2012) rats consuming the HFHS diet may develop hyperglycaemia (Sugatani et al., 2006; La Favor et al., 2013; Zhou et al., 2014; Zhang et al., 2015). An increased serum insulin concentration and insulin resistance have been also observed in rats fed the HFHS diet (Chun et al., 2010; Pierine et al., 2014; Cheng et al., 2014; Méndez et al., 2014; de la Garza et al., 2015). In contrast, other studies have reported no change in insulin levels (Ivanova et al, 2011; Fisher-Wellman et al., 2013; La Favor et al., 2013). Hyperglycaemia is a recognized feature of insulin resistance. A majority of the studies have reported a concurrent elevated blood glucose level with an increased insulin concentration (Sugatani et al., 2006; Zhou et al., 2014; Zhang et al., 2015). However, some studies have still reported no change in insulin concentration despite the elevated blood glucose concentration (Fisher-Wellman et al., 2013; La Favor et al. 2013). It is possible that, in these studies, the rats may not have developed insulin resistance yet. However, this could also be due to the effect of the short duration of the studies on both the glucose and insulin levels. Nevertheless, as discussed above, there is still controversy about whether a HFHS diet will result in insulin resistance and an elevated blood glucose level.
2.2.3.2 Obesity

Despite the role of a genetic predisposition, obesity is mainly attributed to high energy consumption or/and low energy expenditure which might be due to low activity (Roberts et al., 2002). An acknowledged dietary factor which influences visceral adiposity is the saturated fat content of the food (Sun et al., 2013), while the carbohydrate content of food is the main contributor to weight gain (Westman et al., 2007; Hession et al., 2009; Hite et al., 2010). Thus, obesity is a frequent consequence of the consumption of a western diet (Pratt et al., 2010; la Fleur et al., 2010; Uriarte et al., 2013; Pierine et al., 2014) and hence a cornerstone of the development of metabolic syndrome. Obesity is associated with a high incidence of chronic metabolic diseases including diabetes mellitus, dyslipidaemia, non-alcoholic liver disease and chronic kidney diseases (Kamimura et al., 2013; Noborisak et al., 2013; Belczak et al., 2014; Huetter et al., 2014). Insulin resistance, associated with obesity, may be the main contributor to the pathogenesis of these chronic diseases (Pierine et al., 2014). Increased visceral fat mass (characterizing obesity) induces inflammatory, oxidative and metabolic changes (Pierine et al., 2014). Beta-cell dysfunction and the subsequent abnormal insulin secretion, as well as inability to regulate the glucose level, are associated with obesity (Zhang et al., 2001). The accumulated adipose tissue also plays an essential role in insulin resistance through increasing the release of FFA which induces muscle to resist insulin action through impairing the insulin signalling pathway (Kelley et al., 2001; Jellinger et al., 2007). It is also well known that obesity is characterised by inflammation, which may result in insulin resistance (Pradhan et al., 2007).

In addition to insulin resistance, obesity has been found to be associated with abnormal glucose metabolism, glucose intolerance and hyperglycaemia (Pozzan et al., 1997; Edelstein et al., 1997; Stolk et al., 1997). Impaired glucose tolerance, as a phase of glucose intolerance, indicates a high risk for development of diabetes (Tuomilehto et al., 2001). Insulin resistance in individuals with a high body mass index (BMI) is more likely to progress to diabetes mellitus (Resnick et al., 1998; Matsumoto et al., 2001). Furthermore, high fasting
blood glucose in obesity indicates a higher than normal incidence of progression to diabetes (Edelstein et al., 1997; Tuomilehto et al., 2001). Chronic hyperglycaemia is known to be associated with increased protein kinase C and several biochemical pathways like protein glycation, polyol and glucose autoxidation (de Carvalho et al., 2012). These pathways subsequently increase the oxidative stress (de Carvalho et al., 2012).

2.2.3.3 Dyslipidaemia

Another metabolic syndrome feature resulting from the HFHS diet is dyslipidaemia (Sugatani et al., 2008; Bourgoin et al., 2008; Pranprawit et al., 2013; Zhou et al., 2014; Kabel et al., 2014). Dyslipidaemia is a metabolic disturbance defined by high concentrations of TChol, TG and LDL, in addition to a low HDL level (Nelson et al., 2013). Dyslipidaemia is also marked by the ratio of TChol to HDL, as it integrates information about LDL and TG (Wietlisbach et al., 2013). Dyslipidaemia can be classified as primary (genetic defect) or secondary (environmental causes) (Nelson et al., 2013; Teramoto et al., 2014). In both primary and secondary dyslipidaemia, despite the genetic susceptibility in primary dyslipidaemia, diet is still a strong predisposing environmental factor (Teramoto et al., 2014). Nevertheless, the main factor responsible for secondary dyslipidaemia is a diet rich in saturated fat and high in sugar (Bourgoin et al., 2008; Kabel et al., 2014; Zhou et al., 2014). A HFHS diet induces an increase in production and a decrease in clearance of blood lipids (Robert et al., 2004). A defect in lipoprotein lipase functioning and a decreased expression of VLDL and LDL receptors are the main contributors to the raised blood lipids concentration (Robert et al., 2002). In addition, impaired hepatic catabolism of cholesterol and abnormal hepatic enzyme activities are also responsible for the development of dyslipidaemia (Robert et al., 2004; Kabel et al., 2015). Moreover, hyperglycaemia and insulin resistance have also been associated with dyslipidaemia (Chicco et al., 2003; Harmancey et al., 2012) and elevated level of TG in the blood, in the liver as well as in the muscle (Ochiai et al., 2013). Indeed, insulin resistance affects apoprotein production and the regulation of lipoprotein lipase in the
liver which may predispose to dyslipidaemia in association to hyperglycaemia (Goldberg et al., 2001).

2.2.3.4 Metabolic effects of a high fat-high sucrose diet in rats

Despite the evidence of altered metabolic status due to a western diet in humans, a number of studies have investigated these effects in animals. A summary of the animal studies assessing the effect of a HFHS diet on metabolic syndrome parameters in rats experiencing dyslipidaemia are provided in Table 2.1. In this table, the various studies sued diets that were composed of sucrose between 20 and 65% and between 20 and 77% fat. Different rat species had been used including Sprague-Dawley, Wistar, Hanover and Fischer rats. The age of the animals varied between 4 weeks and 4 months (Sugatani et al., 2008; Ochiai et al., 2013; Zhang et al. 2015). The studies lasted between 3 weeks and 22 months with the most pronounced metabolic responses noted over the longer duration (Saiki et al., 2007; Zhou et al., 2014) and with higher carbohydrate content (Bourgoin et al., 2008; Sun et al., 2013; Pranprawit et al., 2013; Zhou et al., 2014).

In most of these studies, the HFHS diet-induced dyslipidaemia is associated with a concomitant increase in glucose concentration and secretion of insulin (Bourgoin et al., 2008; Sugatani et al., 2008; Pranprawit et al., 2013; Ochiai et al., 2013; Sun et al., 2013; Zhou et al., 2014; Kabel et al., 2014; Zhang et al., 2015). This may be attributed to the decompensation of pancreatic beta-cells. However, no changes in blood glucose concentration and plasma insulin concentration were observed in one study (Ivanova et al., 2011), which could be attributed to the beta-cell of the pancreases compensating with an increase in mass to maintain normoglycemia. According to table 2.1, dyslipidaemia may also be seen in conjunction with either obesity (Roberts et al., 2004; Bourgoin et al., 2008; Yamamoto et al., 2010; Pranprawit et al., 2013; Sun et al., 2013; Kabel et al., 2014) or without obesity (Roberts et al., 2002; Saiki et al., 2007; Sugatani et al., 2008;
Table 2.1: Changes in metabolic syndrome parameters in rats consuming high fat-high sucrose diet and experiencing dyslipidaemia

<table>
<thead>
<tr>
<th>Article</th>
<th>Strain</th>
<th>Age/B.wt</th>
<th>Diet composition</th>
<th>Duration</th>
<th>Blood lipids</th>
<th>Blood glucose</th>
<th>Insulin</th>
<th>B.wt</th>
<th>Bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al., 2015</td>
<td>Male Wistar</td>
<td>6 weeks</td>
<td>20% protein, 34% starch, 15% sucrose, 20% fat</td>
<td>8 weeks</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>--</td>
<td>##</td>
</tr>
<tr>
<td>Kabel et al., 2014</td>
<td>Wistar</td>
<td>100–150 g</td>
<td>fat emulsion (77% fat, 14% protein, 9% starch) +18% sucrose solution</td>
<td>8 weeks</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>##</td>
</tr>
<tr>
<td>Zhou et al., 2014</td>
<td>Sprague-Dawley</td>
<td>200–250 g</td>
<td>65% sucrose, 25% fat, 10% protein</td>
<td>48 weeks</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>##</td>
</tr>
<tr>
<td>Ochiai et al., 2013</td>
<td>Male Wistar</td>
<td>4 weeks</td>
<td>30% protein, 20% sucrose, 14.8 % starch, 25% fat</td>
<td>8 weeks</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>--</td>
<td>##</td>
</tr>
<tr>
<td>Pranprawit et al., 2013</td>
<td>Sprague-Dawley</td>
<td>9 weeks</td>
<td>19.6% protein, 40% fat, 41% sucrose</td>
<td>4 weeks or 8 weeks</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>##</td>
</tr>
<tr>
<td>Sun et al., 2013</td>
<td>Sprague-Dawley</td>
<td>180–220 g</td>
<td>16.89% protein, 39.39% fat, 43.7% sucrose</td>
<td>8 weeks</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>##</td>
</tr>
<tr>
<td>Ivanova et al., 2011</td>
<td>Male Wistar</td>
<td>12 weeks</td>
<td>34.7% fat, 30% sucrose</td>
<td>48 days</td>
<td>↑</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>##</td>
</tr>
<tr>
<td>Yamamoto et al., 2010</td>
<td>Male Sprague-Dawley</td>
<td>7 weeks</td>
<td>15.5% fat, 40 % sucrose, 20.5% protein</td>
<td>4 weeks</td>
<td>↑</td>
<td>#</td>
<td>#</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Bourgoin et al., 2008</td>
<td>Male Sprague-Dawley</td>
<td>6 weeks</td>
<td>21% protein, 39% fat, 41 % sucrose</td>
<td>4 weeks</td>
<td>↑</td>
<td>↑ unfasted</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Sugatani et al., 2008</td>
<td>Male Wistar</td>
<td>6 weeks</td>
<td>23.9% fat, 56.8% sucrose, 19.3% protein</td>
<td>3 weeks</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>--</td>
<td>##</td>
</tr>
<tr>
<td>Mariotti et al., 2008</td>
<td>Wistar–Hanover</td>
<td>130-140 g</td>
<td>19.25 % protein, 14.5% fat, 48.7%</td>
<td>9 weeks</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>--</td>
<td>##</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sucrase</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>--</td>
<td>##</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>--</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Saiki et al., 2007</td>
<td>Male Sprague-Dawley, female Wistar Kyoto</td>
<td>4 months, 23.4% protein, 11.0% fat, 6.3% starch, 15% sucrose solution</td>
<td>12 months</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>--</td>
<td>##</td>
<td></td>
</tr>
<tr>
<td>Roberts et al., 2004</td>
<td>Female Fischer</td>
<td>2 months, 40% sucrose, 39% fat</td>
<td>20 months</td>
<td>↑</td>
<td>##</td>
<td>##</td>
<td>↑</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Roberts et al., 2002</td>
<td>Female Fischer</td>
<td>2 months, 40% sucrose, 39% fat</td>
<td>22 months</td>
<td>↑</td>
<td>##</td>
<td>##</td>
<td>--</td>
<td>↑</td>
<td></td>
</tr>
</tbody>
</table>

(↑) increased, (↓) decrease, (--) No change, (#) not measured. B.wt, Body weight; Bp, Blood pressure.
Mariotti et al., 2008; Ivanova et al., 2011; Zhang et al., 2015). Hence, these studies suggest that a HFHS diet is one of the causes that predispose to dyslipidaemia and may be associated with other metabolic syndrome disturbances. However, the mechanism by which concomitant occurrence of dyslipidaemia and the other metabolic defects occur is still not clear. Furthermore, what is the effect of a HFHS diet on the metabolic status in absence of obesity? The relevant animal studies showing the metabolic impact of a HFHS diet without inducing obesity are summarised in Table 2.2. In these studies, the diets were composed of between 20 and 48% sucrose and 10 and 62% fat and lasted from 3 weeks up to 22 months. The rat species included Sprague-Dawley, Wistar, Hanover and Fischer rats and their ages varied between 4 weeks and 4 months with younger rats more resistant to obesity (Medford et al., 2012; La Favor et al. 2013; Fisher-Wellman et al., 2013). Insulin levels were greater in Wistar rats (Sugatani et al., 2008; Ochiai et al., 2013; Etxeberria et al., 2013; Arias et al., 2014; Zhang et al., 2015). Longer studies showed that greater glucose concentration (Robert et al., 2002; Souza et al., 2007; Saiki et al., 2007) and dyslipidaemia is noted with high carbohydrate content (Sugatani et al., 2008; Mariotti et al., 2008; Zhang et al., 2015).

From the table, it is shown that the non-obese animals consuming a western diet still showed considerable metabolic side effects. A few of these studies showed that non-obese animals (animals that did not gain a significant amount of weight) consuming the HFHS diet experienced hyperglycaemia (Saiki et al., 2007; Souza et al., 2007; Mariotti et al., 2008; Ochiai et al., 2013; Fisher-Wellman et al., 2013; Etxeberria et al., 2013; Arias et al, 2014). Most of the studies with an increased glucose concentration, report a simultaneous elevated insulin concentration (Saiki et al., 2007; Mariotti et al., 2008; Etxeberria et al., 2013; Ochiai et al., 2013; Arias et al., 2014). This suggests that hyperglycaemia and insulin resistance induced by a western diet may be present without obesity. It is also interesting to note that no change in glucose levels (Ivanova et al., 2011; Medford et al., 2012) or a glucose level lower than the control group (which may be the result of liver disease) (Hirotani et al., 2012) has also been reported in a rats fed a HFHS diet without obesity. Similarly, several studies in
Table 2.2: Effect of high fat-high sucrose diet in rats without obesity

<table>
<thead>
<tr>
<th>Article</th>
<th>Strain</th>
<th>Age/B.wt.</th>
<th>Diet composition</th>
<th>Duration</th>
<th>Blood glucose</th>
<th>Insulin</th>
<th>Blood lipids</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al., 2015</td>
<td>Male Wistar</td>
<td>6 weeks</td>
<td>20% protein, 34% starch, 15% sucrose, 20% fat</td>
<td>8 weeks</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>No difference in free fatty acids</td>
</tr>
<tr>
<td>Arias et al., 2014</td>
<td>male Wistar</td>
<td>6 weeks</td>
<td>22.5% fat, 20% sucrose</td>
<td>6 weeks.</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>--</td>
</tr>
</tbody>
</table>
| Ochiai et al., 2013 | male Wistar | 4 weeks | 30% protein, 20% sucrose, 14.8% starch, 25% fat | 8 weeks | ↑ | ↑ | ↑ after OGTT | ↑TChol --TG
<p>| Fisher-Wellman et al., 2013 | Male Sprague-Dawley | 5 weeks | 14.8% protein, 44.6% fat, 34% sucrose, 6.2% starch | 12 weeks | ↑ | -- | -- | ↓mitochondrial H₂O₂ in heart, ↑in RG |
| Etxeberria et al., 2013 | Male Wistar | 12 weeks | 20% proteins, 35% sucrose, 45% fat | 63 days | ↑ | ↑ | ↑ | Hyperleptinemia, no difference in serum total protein, ↓serum urea |
| Hirotani et al., 2012 | Male Wistar | 180-190 g | 23% protein, 25.3% sucrose, 35% fat | 12 weeks | Lower than control | ↑ | TG TChol lower than control | ↑liver weight, ↑AST, non-alcoholic fatty liver disease |
| La Favor et al., 2013 | male Sprague-Dawley | 5, 9 &13 weeks | 34% sucrose, 6% starch, 23% fat, 17.3% protein. | 12 weeks | ↑ | -- | -- | Vascular reactivity changes |
| Medford et al., 2012 | Male Sprague-Dawley | 4 weeks | 40% fat, 15% protein, 31% sucrose, 14% starch | 52 weeks | -- | ↑ | -- | ↑HbA1c, lower indices of renal function, no different in (tibia length, liver& kidney weight) |
| Ivanova et al., 2011 | Male Wistar | 12 weeks | 34% fat, 30% sucrose | 48 days | -- | -- | ↑(TG,LDL, VLDL) | No difference in heart weight and systolic BP, ↓collagen I and III in LV |
| Sugatani et al., 2008 | Male Wistar | 6 weeks | 23.9% fat, 56.8% sucrose, 19.3% protein | 3 weeks | ↑ | ↑ | ↑ | |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Sex</th>
<th>Strain</th>
<th>Weight</th>
<th>Diet/Carbohydrate/Protein</th>
<th>Duration</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roberts et al., 2002</td>
<td>Female Fisher</td>
<td>2 months</td>
<td>40% sucrose, 39% fat</td>
<td>22 months</td>
<td>↑</td>
<td># #</td>
</tr>
<tr>
<td>Mariotti et al., 2008</td>
<td>Male Hanover</td>
<td>130-140 g</td>
<td>19.25% protein, 14.5% fat, 48.7% sucrose</td>
<td>9 weeks</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Saiki et al., 2007</td>
<td>Male Wistar</td>
<td>4 months</td>
<td>23.4% protein, 11.0% fat, 6.3% starch, 15% sucrose</td>
<td>12 months</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Souza et al., 2007</td>
<td>Male Wistar</td>
<td>60-day</td>
<td>25% sucrose, 23% starch, 25% protein, 10% fat</td>
<td>4 months</td>
<td>↑ by GTT</td>
<td># #</td>
</tr>
<tr>
<td>Rivera et al., 2006</td>
<td>Male Wistar</td>
<td>300–325 g</td>
<td>32% fat, 48% sucrose, 20% protein</td>
<td>6 weeks</td>
<td># #</td>
<td>--</td>
</tr>
<tr>
<td>Grimditch et al., 1987</td>
<td>Female Wistar</td>
<td>125-150 g</td>
<td>21% protein, 40% fat, 39% sucrose</td>
<td>10-12 weeks</td>
<td>-- by IVGTT</td>
<td>↑</td>
</tr>
</tbody>
</table>

↑ increased, ↓ decrease, (--) No change, (##) not measured. B.Wt, Body weight; BP, Blood pressure, HbA1c, LPL, lipoprotein lipase
rats have not reported a change in insulin concentration (Riviera et al., 2006; Ivanova et al., 2011; Medford et al., 2012). To note, one study showed an increased in insulin concentration without a change in blood glucose concentration (Grimditch et al., 1987). From these studies we can conclude that the simultaneous occurrence of a high insulin level and hyperglycaemia (in the absence of obesity) can be attributed to the strain and the age of the rats or the duration and the composition of the diet. However, it is not clear what the main metabolic defect is that contributes to these changes.

A HFHS diet may induce dyslipidaemia with an absence of obesity (Saiki et al., 2007; Mariotti et al., 2008; Ivanova et al., 2011; Ochiai et al., 2013). A HFHS diet induces metabolic abnormalities such as lipid accumulation in the liver and abnormal liver enzymes (Ochiai et al., 2013; Saiki et al., 2007). A HFHS diet in non-obese animals has been shown to induce decreased activity of lipoprotein lipase and adiponectin, an enzyme and hormone responsible for blood lipid processing (Ochiai et al., 2013). Another noticeable consequence of consuming a HFHS diet in the absence of obesity is the increase of adipose tissue (Ivanova et al., 2011; Fisher-Wellman et al., 2013). Adipose tissue may secrete substances affecting lipid metabolism (Ivanova et al., 2011; Fisher-Wellman et al., 2013). In this respect, adipocytes are well known to produce adipocytokines and other inflammatory substances (Zhou et al., 2014), as well as an elevation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which, subsequently, can affect lipid metabolism (Boqué et al., 2009). On the other hand, some studies did not report dyslipidaemia with a HFHS diet in the absence of obesity (Medford et al., 2012; Etxeberria et al., 2013; Fisher-Wellman et al., 2013; La Favor et al. 2013). An increase in the activity of leptin, an adipocytokine secreted by adipose tissue and responsible for energy equilibrium, may explain the absence of dyslipidaemia and obesity with a HFHS diet (Etxeberria et al., 2013).

The above discussion highlights that a HFHS diet, as the model for a western diet, can induce considerable metabolic disturbances. Furthermore, the evidence from this discussion shows that controversy still exists over the occurrence of simultaneous metabolic changes
associated with dyslipidaemia in the absence of obesity. Mainly, it is not clear whether dyslipidaemia induced by a HFHS diet is associated with other metabolic syndrome defects without obesity. Therefore, it is crucial to illuminate the role of a HFHS diet in the development of dyslipidaemia with or without metabolic syndrome characteristics in animals which present no obesity.

2.3 The effect of a high fat-high sucrose diet on cardiovascular parameters

An important system affected by the consumption of a western diet is the cardiovascular system. The different components of the western diet, namely high saturated fat and high sucrose, affect the cardiovascular system in different ways. Among several causes, one factor thought to increase the prevalence and to further exacerbate cardiovascular diseases is the unhealthy composition of the western diet (Robert et al., 2004; Baumann et al., 2015). Although lifestyle intervention and dietary intervention are considered first line therapy in the management of cardiovascular disease (Folsom et al., 2015; Masset et al., 2015), it remains important to ascertain to what extent the western diet predisposes or initiates the cardio-metabolic risk factors and to determine whether HFHS diet in absence of obesity may induce dyslipidaemia and other metabolic syndrome features.

Clinical trials have shown that cardiac and metabolic risk factors are linked. For instance, a HFHS diet predispose to dyslipidaemia (Sugatani et al., 2008; Bourgoin et al., 2008; Pranprawit et al., 2013; Zhou et al., 2014; Kabel et al., 2014), which is associated with numerous cardiovascular risk factors including high blood pressure and atherosclerosis (Barnard et al., 1998; Yamamoto et al., 2006). Furthermore hypertension, one of the leading risk factors for cardiovascular disease, is strongly associated with obesity, insulin resistance and uncontrolled diabetes (Roca et al., 2005). Despite the fact that cardiovascular disease risk factors in relation to metabolic syndrome has been widely investigated, and despite the considerable effect of a western diet in inducing cardiovascular diseases, the mechanism by
which a western diet predisposes to simultaneous multiple cardiovascular risk factors is still not clear and needs to be elaborated. In this regard, a HFHS diet has been shown to induce considerable cardiovascular disturbances, including an increase in cardiac output (Seymour et al., 2015), raised atherogenic index (Kabel et al., 2014), predisposing to oxidative stress (Lomba et al., 2010; Fisher-Wellman et al., 2014), inducing vascular dysfunction (Bourgoin et al., 2008; La Favor et al., 2013), and increased blood pressure (Barnard et al., 1993; Robert et al., 2001; Bourgoin et al., 2008; Yamamoto et al., 2006; Xie et al., 2013; Kong et al., 2014).

One of the major risk factors of cardiovascular disease is hypertension. Substituting a HFHS diet with a diet low in fat and high in complex carbohydrates reversed the elevated blood pressure, which emphasises the impact of a HSFS diet on blood pressure elevation (Roberts et al., 2002). Moreover, in a dietary-approach-to-stop-hypertension (DASH) clinical trial, following a diet high in fat with a healthy diet intervention led to a lowering of blood pressure (Appel et al., 1997). In this regard, DASH study enrolled 459 individuals whose blood pressure less than 160/95 mmHg. The participants received a diet high in fruit, vegetable and low-fat dairy product and low in saturated fat (Appel et al., 1997). This diet intervention last for 8 weeks. Furthermore, several animal studies have shown the impact of a HFHS diet in the development of hypertension. The elevation of blood pressure has been reported in a longer duration (20 to 24 months) studies (Barnard et al., 1993; Robert et al., 2001; Kong et al., 2014) but also in a shorter duration (3 to 4 weeks) diet intervention with a HFHS diet (Yamamoto et al., 2006; Bourgoin et al., 2008). Dyslipidaemia and endothelial dysfunction have been found to be responsible for elevated blood pressure following consumption of a HFHS diet (Bourgoin et al., 2008). Dyslipidaemia and endothelial dysfunction are, however, not the only recognized factors in inducing the elevation of blood pressure. A HFHS diet has been found to predispose to renal injury and glomerulopathy (Kong et al., 2011) as well as oxidative stress through enhancing dietary lipid peroxidation (Roberts et al., 2002) in addition to increasing inflammatory markers which all predispose to elevate blood pressure (Robert
et al., 2005; Pierine et al., 2014). Furthermore, a HFHS diet causes atherosclerosis (Munshi et al., 2014). Inflammation is known to be involved in the pathogenesis of atherosclerosis (Koizumi et al., 2013).

Although metabolic syndrome is associated with the risk of developing cardiovascular disease, obesity is associated with the development of cardiovascular disease (Klein et al., 2004). First, there is evidence to support that obesity may be a major contributor to the development of hypertension (Harris et al., 2000). In this regard, obesity induces vascular dysfunction which results from abnormal vasomotor tone, enhanced vasoconstriction and decreased vasodilatation (Steinberg et al., 1996). Vascular dysfunction associated with obesity may be mediated by a decreased Nitric Oxide synthase (NOS) activity (Walther et al., 2015). Vascular abnormalities related to obesity are associated with inflammation and oxidative stress, which leads to endothelial dysfunction and decreased nitric oxide bioavailability (Steinberg et al., 1996). In addition, obesity causes an increased activation of the renin-angiotensin-aldosterone system, ultimately resulting in an elevated blood pressure (Hajer et al., 2008). Furthermore, obesity induces micro and macro vascular dysfunction.

Obesity leads to anatomical vascular changes, such as an increased wall to lumen ratio and the microvascular rarefaction (a decrease in the number of arterioles or capillaries) of various tissues, which contributes to an increased blood pressure (Serné et al., 2007). Obesity is associated with increased plasma FFA concentration (Brotman et al., 2002). This vascular impairment is believed to be mediated through FFA and inflammatory mediators released from the adipose tissue (de Jongh et al., 2004). Table 2.2 summarises studies of the HFHS model without obesity. HFHS without obesity is still able to induce the impairment of vascular reactivity (La Favor et al., 2013) and cause oxidative stress (Saiki et al., 2007). Other changes in the hearts of rats consuming the HFHS diet (lower collagen I and collagen III in the ventricular tissue) were noticed (Ivanova et al., 2011). Finally, a HFHS diet intervention did not elevate the blood pressure in rats without obesity (Mariotti et al., 2008; Ivanova et al., 2011). However one study reported an increase in blood pressure in the
absence of obesity (Roberts et al., 2002). The discrepancy may be attributed to the different responses from different rat species. While the studies that reported an increase of blood pressure used Sprague-Dawley and Fischer rats, the ones that did not report an increase of blood pressure used Wistar rats.

Dyslipidaemia is a well-recognized risk factor for coronary heart disease (CHD) (Fattore et al., 2014). Although a low level of HDL is an independent risk factor for anticipating cardiovascular events (Ono et al., 2012), LDL plays the most important part in the atherogenicity of blood lipids (Chan et al., 2006; Jia et al., 2008). Table 2.1 highlights the studies for rats affected with dyslipidaemia following consumption of a HFHS diet. Even though not all of the studies in tables 2.1 measured blood pressure or assess cardiovascular function, dyslipidaemia has been shown to be associated with changes in heart and vascular functions. Three studies reported an increase in blood pressure accompanied with dyslipidaemia in obese rats (Roberts et al., 2004; Bourgoin et al., 2008; Yamamoto et al., 2010). Dyslipidaemia in obese rats has been reported simultaneously with a high atherogenic index, as well as an increased insulin level or a raised C-reactive protein (CRP) concentration (Robert et al., 2004). These are all cardio-metabolic risk factors. Animals consuming a HFHS diet, but without inducing obesity, exhibit also some adverse effects on the heart and the vasculature as well (Saiki et al., 2007; Ivanova et al., 2011; Ochiai et al., 2013).

From the aforementioned investigations, it is clear that consuming a HFHS diet and obesity both have profound negative impacts on cardiovascular performance. Nevertheless, it has been shown that a HFHS diet is still able to induce cardiovascular disturbances without obesity. Despite the abundant information on the western diet effect, the mechanism by which a HFHS diet could predispose to cardiovascular disturbances in the absence of obesity is still not clear. Furthermore, we need to illuminate more on the mechanism by which a western diet induces development of concurrent cardiovascular risk factors in the absence of the obesity.
2.4 Metabolic response to an exercise intervention

The metabolic effect of various exercise training regimens has been widely investigated in different population groups, including healthy persons (Schneider et al., 2009; Oberbach et al., 2010; Stepto et al., 2012; Heinonen et al., 2012) and persons with obesity (Coker et al., 2006; Bocalini et al., 2012; Khadir et al., 2015), diabetes mellitus (Yavari et al., 2010; Kadoglou et al., 2013; Motahari-Tabari et al., 2014; Lowenstein et al., 2014; Kluding et al., 2015) or hypertension (Erikson et al., 1997; Whelton et al., 2002; Mohr et al., 2014). Although the effect of exercise training has been studied in persons with metabolic abnormalities, these studies are often confounded by weight loss, as it is well known that weight reduction is associated with an improved metabolic profile (Lang et al., 2011., Mason et al., 2011; Fisher et al., 2012; Prior et al., 2014; Beavers et al., 2014). Therefore, the effect of exercise training in persons with metabolic abnormalities in the absence of weight loss is not clear. In this section I will highlight some studies showing whether exercise can ameliorate the characteristic metabolic abnormalities in metabolic syndrome with or without weight change.

Exercise is one lifestyle intervention that may attenuate the different risk factors constituting the metabolic syndrome. The effect of exercise on the risk factors of metabolic syndrome will be discussed in relation to a change in body weight. One of those risk factors is insulin resistance. Firstly, aerobic exercise enhances insulin sensitivity independent of changes in body weight or body composition (Larsen et al., 2014). Secondly, improvement in insulin sensitivity is accompanied by an improvement in mitochondrial function in diabetics (Meex et al., 2010). Thirdly, high intensity exercise has been shown to improve insulin–stimulated glucose disposal in obese subjects without decreasing body weight (Coker et al., 2006), whereas medium intensity exercise does not (Coker et al., 2006). However, exercise accompanied with weight reduction results in a down-regulation of myostatin mRNA and improves insulin sensitivity in obese older individuals (Ryan et al., 2013). Conversely, Trachta et al (2014) reported no change in insulin levels and blood pressure following
aerobic exercise despite decreased body weight. Furthermore, exercise did not improve the insulin resistance in individuals with metabolic syndrome without loss of body weight (Stuart et al., 2013). Although there is evidence that exercise improves insulin sensitivity, there is clearly controversy on this matter. What is the evidence that exercise mitigates hyperglycaemia?

Evidence from clinical trials showed an improvement in hyperglycaemia with aerobic exercise. In this regard, aerobic exercise with concomitant weight loss in diabetics and prediabetics improved impaired glucose tolerance (Vancea et al., 2009; Malin et al., 2012; Solomon et al., 2013). This improvement is mediated through the enhancement of insulin sensitivity (Malin et al., 2013). Although some studies showed no improvement in glycated haemoglobin (HbA1c) following aerobic exercise (Vancea et al., 2009; McNeilly et al., 2012, Tunar 2012), other clinical trials showed that aerobic exercise can improve HbA1c (Sung et al., 2012; O’Neil et al., 2012; del Pozo-Cruz et al., 2014). Despite the controversial results obtained with regard to glycated haemoglobin, exercise may be effective in reducing the fasting blood glucose (Arciero et al., 1999; Vancea et al., 2009; Malin et al., 2013). Therefore, there is still a debate regarding the impact of exercise on glucose metabolism. Moreover, the effect of exercise on other metabolic disturbances, such as dyslipidaemia and obesity, need to be discussed further.

Although the effect of exercise on glucose metabolism is controversial, the effects of exercise on other metabolic syndrome characteristics, specifically obesity and dyslipidaemia, have also been investigated. There is a large amount of evidence provided by previous studies regarding the effect of aerobic exercise on dyslipidemic individuals. A summary of the studies on the effect of aerobic exercise on metabolic and cardiovascular diseases risk markers in humans is provided in Table 2.3. In this table, aerobic exercise was the only lifestyle intervention method introduced. In addition, whether exercise in dyslipidemic participants resulted in weight loss or not and whether the weight loss was associated with
Table 2.3: Effect of exercise on cardio-metabolic parameters in individuals with dyslipidaemia

<table>
<thead>
<tr>
<th>Article</th>
<th>Starting BMI/B.Wt</th>
<th>Number of participants</th>
<th>Intensity</th>
<th>Duration</th>
<th>Blood pressure</th>
<th>Glucose</th>
<th>Insulin</th>
<th>Body weight</th>
<th>Blood lipid</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficker et al., 2010</td>
<td>27±5</td>
<td>40</td>
<td>Moderate</td>
<td>4 months</td>
<td>##</td>
<td>##</td>
<td>##</td>
<td>--</td>
<td>↓ LDL ↑HDL --TG</td>
<td></td>
</tr>
<tr>
<td>Camhi et al., 2010</td>
<td>25±2</td>
<td>328</td>
<td>60-80% max HR</td>
<td>1 year</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Sixt et al., 2010</td>
<td>90-98 kg</td>
<td>23</td>
<td>80% of max HR</td>
<td>6 months</td>
<td>## ↓</td>
<td>##</td>
<td>--</td>
<td>--</td>
<td>↓ TC ↓LDL</td>
<td></td>
</tr>
<tr>
<td>Watkins et al.</td>
<td>>25</td>
<td>53</td>
<td>70-80% max HR</td>
<td>3 months</td>
<td>--</td>
<td>--</td>
<td>↓</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Green et al., 2003</td>
<td>26.8-28.8</td>
<td>75</td>
<td>70-85% max HR</td>
<td>8 weeks</td>
<td>--</td>
<td>--</td>
<td>↓</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Lewis et al., 1999</td>
<td>29</td>
<td>9</td>
<td>65% max HR</td>
<td>4 weeks</td>
<td>##</td>
<td>##</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Watt et al., 1976</td>
<td>179-183lb</td>
<td>60</td>
<td>Low intensity</td>
<td>12 weeks</td>
<td>##</td>
<td>##</td>
<td>##</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Coghill et al., 2008</td>
<td>28</td>
<td>67</td>
<td>Moderate</td>
<td>12 weeks</td>
<td>↓SBP</td>
<td>--</td>
<td>--</td>
<td>↓</td>
<td>↑TG ↓LDL ↑HDL</td>
<td></td>
</tr>
<tr>
<td>Yoshida et al., 2010</td>
<td>24.6</td>
<td>25</td>
<td>Moderate</td>
<td>16 weeks</td>
<td>##</td>
<td>##</td>
<td>##</td>
<td>--</td>
<td>↑TG ↓HLDL</td>
<td></td>
</tr>
<tr>
<td>Yoo et al., 2003</td>
<td>26</td>
<td>54</td>
<td>Aquatic</td>
<td>12 weeks</td>
<td>--</td>
<td>--</td>
<td>##</td>
<td>--</td>
<td>↑TG ↓HLDL</td>
<td></td>
</tr>
<tr>
<td>Roussel et al., 2009</td>
<td>29-35</td>
<td>153</td>
<td>60 % max HR</td>
<td>12 months</td>
<td>↓</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>↑TG ↓TC ↓LDL ↓HDL</td>
<td></td>
</tr>
<tr>
<td>Drevenhorn et al., 2007</td>
<td>28-30</td>
<td>177</td>
<td>Intermediate to high</td>
<td>15 months</td>
<td>↓SBP</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>↓ TG</td>
<td></td>
</tr>
<tr>
<td>Slentz et al., 2005</td>
<td>29.6</td>
<td>225</td>
<td>Vigorous/ moderate</td>
<td>8 months</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>--</td>
<td>↓ LDL</td>
<td></td>
</tr>
<tr>
<td>Stewart et al., 2005</td>
<td>29.4</td>
<td>104</td>
<td>60-90% max HR</td>
<td>6 months</td>
<td>↓</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>↑TG ↓TC ↓LDL ↓TG</td>
<td></td>
</tr>
<tr>
<td>Kraus et al., 2002</td>
<td>29.3</td>
<td>111</td>
<td>High /moderate</td>
<td>6-8 months</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>--</td>
<td>↓ LDL ↓TG ↓HLDL</td>
<td></td>
</tr>
<tr>
<td>Couillard et al., 2001</td>
<td>24-28</td>
<td>200</td>
<td>55-75% vo₂ max</td>
<td>20 weeks</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>↓</td>
<td>↓ TG ↑HLDL</td>
<td></td>
</tr>
</tbody>
</table>

(↑) increased, (↓) decrease, (--) No change, (##) not measured, (SBP) systolic blood pressure
changes in cardiovascular or metabolic risk factors, was highlighted. Some studies showed an improvement in TChol levels as well as LDL, TG and HDL levels following a period of aerobic exercise and significant loss of body weight (Kraus et al., 2002; Stewart et al., 2005; Drevenhorn et al., 2007; Roussel et al., 2009; Yoshida et al., 2010). In a few other studies, there was an improvement in dyslipidaemia following exercise despite an unchanged body weight (Ficker et al., 2010; Sixt et al., 2010). Yet, in some other studies, there was no improvement of dyslipidaemia and no loss of body weight following aerobic exercise (Watt et al., 1976; Lewis et al., 1999; Watkins et al., 2003; Green et al., 2003; Camhi et al., 2010). In particular, the duration and intensity of the exercise was the same in two studies (Rousell et al., 2009; and Camhi et al., 2010). However, there was no change observed in blood lipid and body weight in Camhi study whereas both lipid concentrations and body weight were improved in Rousell study. The observed difference may be attributed to the fact that the population in Camhi study was selected as metabolic syndrome while the Rousell study population were dyslipidemic individuals. The presence of metabolic syndrome characteristics could delay/prevent the improvement of blood lipids.

It is evident from these studies that the simultaneous effect of exercise and weight loss on dyslipidaemia was beneficial. This can be reflected positively in patients with metabolic syndrome in that a decrease in body weight accompanied by improved dyslipidaemia will reduce the cardiovascular risk factors in the metabolic syndrome figure. The reviewed studies showed that exercise intensity was inversely proportional to the impact on blood lipid and body weight (Stewart et al., 2005; Slentz et al., 2005; Drevenhorn et al., 2007). In the aforementioned studies the number of participants was clearly larger with committed weight reduction. Furthermore, from the studies in table 2.3, we can summarize that a greater loss of body weight is seen in individuals with a higher starting body mass index. Importantly, these studies present with a number of limitations such as the short duration of some studies that did not give enough time for exercise to induce significant changes. Also, not all the studies measured all the risk factors of metabolic syndrome and this may restrict a
comprehensive comparison with the measured parameters in the current study. Moreover, when interpreting these studies, one must take into consideration the differences between the studies with regards to in the intensity and duration of the exercise interventions. Thus, we can extract from Table 2.3 that once exercise ameliorates obesity it will improve the accompanied dyslipidaemia. On the other hand, exercise was less effective in the improvement of dyslipidaemia without decreased body weight.

The acute effect of exercise following consumption of a specific meal and postprandial hyperlipidemia was widely investigated. Postprandial hypellipidemia is attenuated following high intensity exercise (Ferreira et al., 2011; Gabriel et al., 2012). It is preferable to investigate exercise and postprandial hyperlipidemia in humans rather than intervention with a diet known to be harmful, which cannot be followed for a long time because of ethical considerations. To my knowledge there have not been many exercise studies with a western diet over a long period of time. Therefore, animal models have been developed for longer interventions in order to investigate the effect of diet and exercise on the metabolic status of rats and the results are subsequently translated for human benefit. In this regard the extent of aerobic exercise on metabolic abnormalities induced by a western diet studied in animal model of the HFHS diet is shown in Table 2.4. In these studies, the effect of a HFHS diet without exercise was compared to the effect of exercise in conjunction with a HFHS diet. The HFHS diet in this table composed of a sucrose or a sucrose and starch from the rat’s chow. A HFHS diet without exercise induced obesity (Grimditch et al., 1988; Gauthier et al., 2006; Paulino et al., 2010; Ennequin et al., 2015), high blood glucose level (De Moraes et al., 2008; La Favor et al., 2013), blood TG level (De Moraes et al., 2008; Gerbaix et al., 2013) and insulin resistance (Grimditch et al., 1988; De Moraes et al., 2008). The addition of aerobic exercise (running on a treadmill or running wheels) to the HFHS diet prevented most of these changes, including the elevated TG level (De Moraes et al., 2008; Gerbaix et al., 2013), increased blood glucose (Grimditch et al., 1988; Fisher-Wellman et al., 2013) and insulin
Table 2.4 Effect of high fat-high sucrose diet and exercise in rats

<table>
<thead>
<tr>
<th>Article</th>
<th>Strain</th>
<th>Age</th>
<th>Diet</th>
<th>Duration</th>
<th>Effect of diet</th>
<th>Effect of exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grimditch et al., 1988</td>
<td>Male Sprague-Dawley</td>
<td>10 weeks</td>
<td>40 % fat, 39 % sucrose, 21 % protein</td>
<td>10 weeks</td>
<td>↑ body weight glucose intolerance Insulin resistance</td>
<td>↓ body weight Prevent glucose intolerance Prevent insulin resistance</td>
</tr>
<tr>
<td>Gauthier et al., 2003</td>
<td>Female Sprague-Dawley</td>
<td>6 weeks</td>
<td>42 % fat, 36 % sucrose, 22 % protein</td>
<td>8 weeks</td>
<td>↑ body weight ↑ hepatic lipid</td>
<td>↓ body weight ↓ hepatic lipid</td>
</tr>
<tr>
<td>De Moraes et al., 2008</td>
<td>Male Wistar</td>
<td>10 weeks</td>
<td>26 % fat, 56 % sucrose, 18 % protein</td>
<td>12 weeks</td>
<td>↑ triglycerides ↑ glucose ↑ insulin impaired (V.R)</td>
<td>↓ triglycerides No effect on glucose ↓ insulin ↓ body weight improves (V.R)</td>
</tr>
<tr>
<td>Paulino et al., 2010</td>
<td>Male Wistar</td>
<td>4 weeks</td>
<td>54% starch, 20% fat, 20% protein, 30% sucrose solution</td>
<td>Diet for 25 weeks Exercise for 10 weeks</td>
<td>↑ body weight ↑ glucose ↑ insulin impaired (V.R)</td>
<td>↓ body weight Prevent ↓ LV fractional shortening, No effect on BP</td>
</tr>
<tr>
<td>La Favor et al., 2013</td>
<td>Male Sprague-Dawley</td>
<td>5 weeks</td>
<td>34% sucrose, 6% starch, 23% fat, 17.3% protein</td>
<td>12 weeks</td>
<td>↑ body weight ↑ glucose – insulin oxidative stress-impaired (V.R)</td>
<td>↓ body weight ↑ total cholesterol ↓ oxidative stress-improve (V.R)</td>
</tr>
<tr>
<td>Fisher-Wellman et al., 2013</td>
<td>Male Sprague-Dawley</td>
<td>5 weeks</td>
<td>14.8% protein, 44.6% fat, 34% sucrose, 6.2% starch</td>
<td>12 weeks</td>
<td>↑ fat mass ↑ fasting blood glucose – insulin Oxidative stress</td>
<td>Prevent ↑ fat mass, Prevent ↑ blood glucose, Improve oxidative stress</td>
</tr>
<tr>
<td>Gerbaix et al., 2013</td>
<td>Male Wistar</td>
<td>11 months</td>
<td>24.4 % fat, 22.2 % sucrose, 22.2% starch, 20.4% protein</td>
<td>8 weeks exercise 4 months diet</td>
<td>Obesity, ↑ triglycerides ↓ leptin ↓ adiponectin</td>
<td>↓ body weight, ↓ triglycerides ↓ leptin ↑ adiponectin ↑ NEFA</td>
</tr>
<tr>
<td>Ennequin et al., 2015</td>
<td>Male Wistar</td>
<td>7 months</td>
<td>24.4 % fat, 22.2 % sucrose, 22.2% starch, 20.4% protein</td>
<td>16 weeks + 8 weeks</td>
<td>↑ body weight, did not alter signalling pathway of neuregulin 1-no effect on glucose and insulin</td>
<td>↓ body weight, improve signalling pathway of neuregulin 1-no effect on glucose and insulin</td>
</tr>
</tbody>
</table>

(↑) increased, (↓) decrease, (--) No change, (#) not measured, ↑NEFA (non-esterified fatty acid), a (artery), LV left ventricular
resistance (Grimditch et al., 1988; De Moraes et al., 2008). Importantly however, the exercise intervention in a majority of these studies modified the metabolic status and obesity. Hence this concurrent change does not allow the assessment of the impact of exercise alone, independent of a change in body weight.

To conclude, both human and animal evidence provided by the literature argued that exercise can ameliorate metabolic disturbances. Although exercise may improve some metabolic changes, there is still debate about whether exercise can do so without a loss of body weight, in particular, if exercise can ameliorate dyslipidaemia without a loss of body weight. Therefore, it is very important to elucidate the potential role of exercise in improving dyslipidaemia in animals that does not exhibit weight loss.

2.5 Effect of exercise on cardiovascular parameters

Although it is well known that exercise has a beneficial effect on cardiovascular disease risk factors (Williams et al., 2013; Mohr et al., 2014; Rodrigues., 2014) in persons with established metabolic syndrome risk factors, it is not clear whether exercise alone can prevent the progression to cardiovascular diseases, independent of intervention with a healthy diet (Steven et al., 2002; Christou et al., 2005; Millen et al., 2014).

Nevertheless physical activity is widely recommended as an important lifestyle change that may help in the prevention of hypertension (Diaz et al., 2013; Huang et al., 2013; Brown et al., 2013). As hypertension is strongly associated with cardiovascular diseases risk, early intervention, either at the general population level or by targeting high risk populations such as overweight, physically inactive persons or those with a family history of hypertension, could lower the incidence of hypertension and its subsequent adverse effects (Erikson et al., 1997; Whelton et al., 2002; Golbid et al., 2012; Mohr et al., 2014). In this regard, several mechanisms have been suggested for blood pressure reduction as a result of exercise training including, changes in blood vessel function and structure, modulation of the renin-
angiotensin system and decreased sympathetic nervous system stimulation (Golbid et al., 2012). On the other hand, aerobic exercise interventions have shown controversial results in hypertensive individuals with other metabolic syndrome risk factors. While some studies showed no improvement in the blood pressure of hypertensives with metabolic syndrome characteristics (Arsenault et al., 2009; Lima et al., 2012), others showed a decrease in blood pressure. However, those studies that have shown an improvement in blood pressure after an exercise intervention reported an accompanied weight reduction (Malin et al., 2012; Choo et al., 2014). What is the evidence that exercise, independent of weight loss, can improve cardiovascular risk in people who already have dyslipidaemia? A summary of the most pertinent studies assessing the effect of aerobic exercise on cardiovascular disease risk factors in dyslipidemic individuals with other cardio-metabolic risk factors is provided in Table 2.3. Four studies reported that aerobic exercise in dyslipidemic individuals resulted in improved blood pressure in conjunction with weight loss (Stewart et al., 2005; Drevenhorn et al., 2007; Coghill et al., 2008; Roussel et al., 2009). However, it is not known whether it is the exercise per se or the combination of exercise and weight loss that resulted in the improved blood pressure. Moreover, there was no change in blood pressure in those dyslipidemic individuals after the aerobic exercise intervention without a change in body weight (Watkins et al., 2003; Green et al., 2003; Camhi et al., 2010). Yoo et al (2003) showed no change in blood pressure despite the improved dyslipidaemia. Furthermore, what is the evidence that exercise can improve other cardiovascular risk markers in individuals with dyslipidaemia?

In this regard Table 2.3 shows several studies with improved blood pressure in conjunction with the improvement of dyslipidaemia (Stewart et al., 2005; Drevenhorn et al., 2007; Coghill et al., 2008; Roussel et al., 2009;). The simultaneous improvement of dyslipidaemia and blood pressure following exercise may emphasise the role of high blood lipids in the pathogenesis of blood pressure. Nevertheless, Yoo et al (2003) reported that blood pressure did not decrease despite the improved dyslipidaemia in another study. Additionally, in these
studies the improvement of dyslipidaemia and blood pressure was accompanied by weight loss. Hence, the effect of aerobic exercise on blood pressure was obviously in positive association with the change in body weight, where the decrease of body weight was accompanied by an improvement of blood pressure as well as dyslipidaemia. On the other hand, the effect of exercise on dyslipidaemia and blood pressure without loss of body weight is still not clear and needs to be investigated further.

Further to cardiovascular disease risk factors, aerobic exercise is also reportedly effective in improving cardiac function in several diseases. Aerobic exercise in diabetic patients improves maximum oxygen consumption and insulin sensitivity (Schrauwen-Hinderling et al., 2011). In heart failure patients, exercise leads to a simultaneous increase in left ventricular end diastolic volume (LVEDD) and arterial volume (Sahlén et al., 2011), and increases left ventricular filling pressure (Borlaug et al., 2011) in patients with heart failure with a preserved ejection fraction. Furthermore, the effect of aerobic exercise has been investigated on several vasculatures as the renal and cerebral vasculatures (Murrel et al., 2013). Without loss in body weight, exercise has been shown to improve the endothelial function in pre-hypertensive and hypertensive individuals (Kouamé et al., 1995; Beck et al., 2014). Furthermore, exercise improves cerebrovascular reactivity and decreases stroke risk and age related cerebral atrophy (Linkis et al., 1995; Murrel et al., 2013).

Similarly, animal studies provide evidence regarding the effect of exercise on cardiovascular disease risk factors. Animal studies where an aerobic exercise intervention was implemented with a HFHS diet model, are summarized in Table 2.4. All of these studies were performed exclusively on rats. From the results, it is seen that in one study, despite the increased body weight, the blood pressure did not change with consumption of a HFHS diet and did not change with exercise, despite the loss of body weight (Paulino et al., 2010). Further to the cardiovascular disease risk factors, one study reported that the exercise intervention resulted in improved coronary artery endothelial function (La Favor et al., 2013) and two others reported a decrease in oxidative stress, a well-known contributing factor to
endothelial dysfunction (Fisher-Wellman et al., 2013; La Favor et al., 2013). Furthermore, Paulino et al (2010) studied the impact of exercise on the heart. They reported that exercise prevented the worsening of cardiac function in a long duration intervention with a HFHS diet (Paulino et al., 2010). Notably, these studies induced obesity with a HFHS diet in their animals and the exercise intervention decreased the body weight of these rats (Paulino et al., 2010; Fisher-Wellman et al., 2013; La Favor et al., 2013). Hence, the effect of exercise could be mediated through the weight reduction. Therefore, it is not clear whether the impact of exercise on the heart and vascular reactivity dysfunction induced by a HFHS diet is due to the loss of weight or due to the impact of the exercise itself. Therefore, it is essential to investigate the cardiovascular effect of exercise on animals that do not display weight loss to clarify the effect of exercise rather than the impact of weight loss.

In summary, although exercise is a well-recognized, important lifestyle modification tool which is widely recommended in the management of cardiovascular risk factors, whether or not the effect of exercise is independent from the body characteristic, metabolic and cardiovascular parameters is still not clear. Therefore, further evaluation of the metabolic and cardiovascular role of exercise in non-obese animals without the confounding impact of weight loss needs to be investigated. In this regard a number of questions that arose from the above discussion will be addressed in the following chapters. Firstly, what is the impact of exercise on the metabolic status and blood pressure, particularly with regards to dyslipidaemia, in non-obese animals? Secondly, is the impact of exercise independent of weight change? Thirdly, does exercise ameliorate the other concomitant metabolic disturbances associated with dyslipidaemia in non-obese animals, particularly the lipid status? Additionally, what is the effect of a HFHS diet on the other metabolic parameters associated with dyslipidaemia, and what is the effect of a HFHS diet on these metabolic changes in the absence of an obesity. Finally what is the effect of a HFHS diet on the cardiovascular system without a change in body weight?
2.6 Aims and objectives

The main aim of this study is to determine the impact of a westernized diet model intervention in inducing cardiovascular and metabolic changes and to investigate the effect of exercise on the cardiovascular and metabolic status in Sprague-Dawley (SD) rats.

The objectives of this project are:

1- To determine the effects of a short-term HFHS diet intervention in inducing the characteristics dyslipidaemia with or without the metabolic syndrome characteristics.

2- To determine the effects of a short-term HFHS diet intervention on body weight, lipid profile, blood glucose, insulin concentration and glycated haemoglobin in 3-month-old SD rats.

3- To determine the effects of a short-term HFHS diet intervention on blood pressure, heart functions and dimensions in 3-month-old SD rats.

4- To determine the effect of exercise on metabolic and cardiovascular changes induced by a HFHS diet.
Chapter Three: Materials and Methods
3.1 Experimental groups and exercise protocol

Rats were provided by the Central Animal Service (CAS) of The University of the Witwatersrand. The study protocol was approved by the animal ethics screening committee (AESC) of The University of the Witwatersrand (AESC number: 2013/51/04) and was conducted as shown in Figure 2.1. All rats were individually housed in rooms that were lighted between 07:00 and 19:00 with the room temperature between 23 and 26°C. Rats received the water and food ad libitum. Rats were weighed weekly using a digital scale (Snowrex Electronic Scale, Clover Scales, Johannesburg South Africa).

The selection of rats was performed at the age of 4 weeks. The rats were housed in individual cages and had free access to a running wheel through an opening between the cage and the wheel. The running wheels were designed to allow rotation in only one direction to prevent unmeasured running. Cat Eye Micro Cyclocomputers (CC-6000, Cat Eye) were used for monitoring of distance (Kilometres) and duration of exercise (hours/day) (Woodiwiss et al., 2000). The rats were chosen over a 10-day period of voluntary training selection according to their performance and ability to run 2 or more kilometres per day (Woodiwiss et al., 2000). The “non-runners” were returned to stock. Of the 92 male Sprague-Dawley (SD) rats, 48 “runners” SD male rats were selected. The rats continued to exercise until the age of 3 months for all groups.

The diet and/or exercise intervention started at the age of 3 months and continued for a period of 9 weeks. The selected “runners” were randomly assigned into 4 groups. Rats in 2 groups (group 2 and 4) continued to have free access to a running wheel and exercise whereas exercise was withheld in the other 2 groups (group 1 and 3). Activities of rats from group 1 and 3 were not assessed but their activities cannot be referred as exercise. Groups 2 and 4 were running 2.87 and 3.89 km/day, respectively (p=0.24). The rats in 2 groups (group 3 and 4) were fed a diet rich in fat and sucrose (high fat-high sucrose diet) whereas rats in the other 2 groups (group 1 and 2) continue to receive a standard rat diet.
Rats were assigned as follow:

- group 1: Standard diet (ST) without exercise (n=12)
- group 2: Standard diet (ST+E) with exercise (n=12)
- group 3: High fat-high sucrose diet (HFHS) without exercise (n=12)
- group 4: High fat-high sucrose diet (HFHS+E) with exercise (n=12).

Figure 3.1 Protocol with group assignment according to dietary/exercise intervention. ST, standard diet; HFHS, high fat-high sucrose diet; t, time; SD, Sprague-Dawley.
3.2 Diet compositions and preparation

The standard animal chow diet (Epol, Centurion, South Africa) was composed of 2.78% fat, 17.99% protein as well as 6.54% sugar and 28.76% starch. The HFHS diet consisted of 39% fat, 40% sucrose and 21% rat chow and starch (Barnard et al., 1998). The HFHS diet was composed of lecithinated fat powder (Berg+Schmidt, Hamburg, Germany), sugar (Selati, Malalane, South Africa) and the standard animal chow. Five percent water was added to the mentioned compositions. Rats ate new pellets every day; the pellets were prepared the day before and were allowed to dry and be hard enough for the animal to eat. Throughout the time of the dietary intervention, the daily amount of food consumed by each animal was determined on a daily basis using a digital scale. The daily food intake was calculated by subtracting the lifted amount of food of everyday from the total amount of the given food that day.

3.3 Measurements and procedures

3.3.1 Blood Pressure (BP) Measurement

Blood pressure (BP) was measured at mid-day using a tail-cuff technique which employs Volume Pressure Recording (VPR) technology (CODA, Kent Scientific, Torrington USA) (Feng et al., 2009) every 3 weeks (Figure 2.2). The VPR sensor utilizes a specially designed differential pressure transducer to non-invasively measure the blood volume in the tail. In a warm and calm room, conscious rats were placed in restrainers and rat tails were placed on a heating platform. Two cuffs were positioned on the tail. An occlusion cuff was positioned in the middle of the tail and a VPR-cuff was positioned near the base of the tail. Both cuffs were connected to the CODA system. Rats were habituated before the first measurement for three consecutive days, in order to enable them to adapt to the procedure. Measurements were taken at midday to avoid diurnal variation. BP determined by the mean of 10 readings.
3.3.2 Blood measurements

3.3.2.1 Fasting blood glucose and triglycerides (TG):

The rats were fasted for 12 hours (overnight) before blood glucose and triglycerides measurements were determined. Measurements were done before starting the dietary intervention and then at the 3rd, 5th and 7th week and at termination (Figure 2.2). A passively fallen drop of blood (approximately 20μl) was obtained by a pin prick (using 25 gauge needle) into the tail vein (Parasuraman et al., 2010) and a glucometer (Ascensia Elite, Bayer USA) was used to assess fasting blood glucose by using a reagent strip. Another drop of blood was obtained by a pinprick into the tail vein to assess the fasting TG using a TG meter (Accutrend Triglycerides, Roche diagnostics, Germany). The glucometer and TG meter were calibrated by the code stripes with each new package of test strips.

3.3.2.2 Lipid profile

Blood was obtained at termination by cardiac puncture. 4 ml of whole blood was centrifuged and 2 ml of serum was collected and stored at -20 °C. High density lipoprotein (HDL), non-fasting triglycerides (nfTG) and total cholesterol (TC) were measured by enzymatic colorimetric method (Cobas 6000, Roche diagnostic, Germany).

3.3.2.3 Haemoglobin A1C

Glycated haemoglobin (HbA1c) was assessed by radioimmunoassay RIA (ADIVA HbA1c, Siemens Germany) using 100-μl of whole blood (+EDTA) as described above in section 3.3.2.2.

3.3.2.4 Serum insulin

Serum insulin was measured using a solid phase two-site enzyme immunoassay (DRG Ultra-Sensitive Rat Insulin ELISA, DRG USA) Using 25-μl of serum. The Ultrasensitive Rat Insulin ELISA is based on the direct sandwich technique in which two monoclonal antibodies are directed against separate antigenic determinants on the insulin molecule.
• Once a week for every animal:
 Body weight
Running distance measurements
• Once every three weeks:
 Blood pressure measurements
• Blood sampling (measurement of
 Blood glucose and blood triglycerides); at 0, 3, 6, and 9 weeks

Figure 3.2 Measurements and procedures during the diet/exercise intervention and at termination.
3.4 Echocardiography

Echocardiography was obtained at termination (Figure 3.2) by an experienced member of the research team from the Cardiovascular Pathophysiology and Genomic Research Unit (CPGRU). Echocardiography is a non-invasive technique, conferring minimal or no pain or discomfort to the animals (Woodiwiss et al., 2001). Rats were anaesthetised 15 minutes before the procedure by intramuscular injections of ketamine (100mg.kg\(^{-1}\)) and xylazine (5mg.kg\(^{-1}\)). An ultrasonic probe was placed on the chest of the animal. Left ventricular function, intrinsic myocardial systolic function and left ventricular dimensions were determined \textit{in vivo} using two-dimensional directed M-mode imaging. During three consecutive beats (to ensure that there is no variability in vagal autonomic activity and heart rate), the internal dimensions and wall thickness of the left ventricle were measured in systole and diastole. From these dimensions, left ventricular endocardial fractional shortening (FSend), midwall fractional shortening (FSmid) and relative wall thickness (RWT) were determined using the following calculation:

\[
\text{FSend} = \frac{(LVEDD-LVESD)}{LVEDD} \times 100
\]

\[
\text{FSmid} = \frac{[(LVEDD+LVED \text{ PWT}) -(LV \text{ ESD}+PWES)]}{(LV \text{ EDD} +PWED)} \times 100
\]

\[
\text{RWT} = \frac{PWED}{(LVEDD/2)}
\]

Where PWED = left ventricular end diastolic posterior wall thickness, PWES = left ventricular end systolic posterior wall thickness, LVEDD = left ventricular end diastolic diameter and LVESD = left ventricular end systolic diameter (Anarmourlis et al., 2006; Norton et al., 2008).
Figure 3.3 Echocardiographic image of the left ventricle of a HFHS diet fed rat (M-mode). A, left ventricular end diastolic diameter (LVEDD); B, left ventricular end systolic diameter (LVESD); C, left ventricular end systolic posterior wall thickness (PWES); D, left ventricular end diastolic posterior wall thickness in systole (PWED).
3.5 Vascular reactivity

After the echocardiography, the anaesthetised rats underwent a thoracotomy and the heart was removed from the thoracic cavity. Thoracic aorta, kidneys and mesentery were also removed and placed in a cold modified Krebs-Ringer bicarbonate (control) solution (g/l: 6.89 NaCl, 0.35 KCl, 0.27 CaCl₂, 0.14 MgSO₄, 0.16 KH₂PO₄, 2.1 NaHCO₃, and 1.99 glucose). The modified Krebs solution was used in previous studies in our laboratory to preserve the tissues in a physiological environment identical to the body environment and prepared daily by the same person. Arteries were then isolated. Rings of renal and mesenteric arteries (2 mm long) were cleaned of fat and connective tissue and were suspended in a wire myograph (model 610M, Danish Myo Technology, Aarhus, Denmark). Arteries were mounted as a ring and threaded over two parallel stainless steel wires. The wires were secured to two supports or “jaws” with one support attached to a precision micrometer (allowing manual control of vessel circumference and stretch). The other support was attached to a force transducer for measurements of force/tension development. The preparation was kept in a heated chamber filled with an oxygenated physiological salt solution at 37°C. The baseline tension of mesenteric artery was 1.56±0.07 mN and of renal artery was 2.01±0.01 mN.

Vasoactive drugs were added into the chamber and the concentration-response (contractions or relaxations) curves of the preparation for the different vasoactives drugs were determined under isometric conditions (Christon et al., 2005). The following vasoactives drugs were added into the reactivity chamber in an increasing concentration-dependent manner. Contraction responses to Phenylephrine (Phe, 1 nM - 0.1mM) and Potassium chloride (KCl, 1 mM to 120mM) were recorded. Blood vessels were dilated with Acetylcholine (ACh, 0.1 nM–100 μM) and Sodium nitroprusside (SNP, 1nM-100μM) under phenylephrine-induced contraction (Phe concentration=0.3-1μM). ACh is an endothelium-dependant vasodilator whereas SNP (1μM-100μM) causes an endothelium independent relaxation.
3.6 Organs Mass:
Immediately after termination of the animals, right kidneys, liver, adipose tissue were removed and weighed. Measurements were done by using a digital scale. These organs were stored at -80 °C. The heart was removed and weighted, and then dissected. The free wall of the right ventricle was trimmed off the septum of the heart and weighed; subsequently, the left ventricle with the septum was then weighed.

3.7 Tibial length:
The Tibia was disarticulated from the femur then defleshed. The bone was dried (50 °C) for 5 days in the lab oven (Salvis lab, Switzerland) then weighed. Tibial length was measured by using a pair of Vernier calipers (Hi-impact, Djuca, South Africa). Bone density then calculated by using the tibial length and weight.
Bone density: tibial weight (mg)/ tibial length (mm).

3.8 Histology and aortic morphometric study
Thoracic aortic artery was fixed in 10% buffered formaldehyde solution then embedded in paraffin wax and sectioned. Cross-sections (5μm) were stained with haematoxylin and eosin (H&E) and stained with orcein (figure 2.4). The stained sections were viewed with the light microscope (Nikon Optiphot, JAPAN). Aortic wall thickness (AWT) was determined by mean of 3 measures of the thickness at 3 different angles, including 0, 90, and 180 °C. The commercial software AUTOCAD 2014 was used to measure the thickness.

3.9 Measurement of liver lipid and glycogen
3.9.1 Hepatic lipid content
Hepatic lipid content was determined using the procedure by Bligh and Dyer (1959). Firstly the frozen liver samples were thawed, thereafter 5-6 grams of each liver sample were immersed in 150 ml of a chloroform: methanol solution (2:1 ratio) (MERCK chemicals, South Africa). The samples were then sealed with Accu-seal and incubated at 4 °C overnight.
Following the incubation period, the samples were then filtered through filter paper (Whatmann, No. 1 size 50mm, England) into a separating funnel. 30ml of 0.9% saline solution were then added and mixed fully. The solution was then incubated at 4 °C overnight in order to separate into two distinct layers. Following the overnight incubation, the bottom layer in the separating funnel containing chloroform was titrated into a round bottom flask (SCOTT DURAN, Germany). The lipids were then extracted by evaporating the solvent obtained at 37 °C using a rotor evaporator for approximately 30 minutes (Labocon (Pty) Ltd, Krugersdorp, Transvaal, South Africa). The residual oil obtained was then made up to 20ml by adding chloroform. The 20ml solution was then extracted from the round bottom flask using a pipette and stored in a vial. Small vials were then re-dried at 50 °C for 15 minutes. To determine the percentage of lipids in each liver sample an aliquot of 2 ml was extracted from the 20ml vial solution and placed in a dry-pre-weighed vial. The vial was then re-dried at 50 degrees Celsius using an oven (Salvis R, Oakton Instruments, and USA). The vial was then weighed on a digital lab scale and the mass of the lipid obtained was multiplied by a factor of 10, and recorded as a percentage of the original liver sample weight.

3.9.2 Hepatic Glycogen Content

Hepatic glycogen was determined using the process of indirect hydrolysis that was proposed by Passonneau and Lauderdale (1974). Firstly 0.1g of the liver sample was homogenized in 1ml 0.03M hydrochloric acid using an ultra turrex homogenizer (Janke & Kunkel GmbH & Co IKA-Werk D7813, Staufen). 1 milliliter of 1M hydrochloric acid was then added in order to hydrolyse the liver glycogen. The test tubes were then sealed and placed in boiling water for 2 hours. 1ml 1M sodium hydroxide was then added to each test tube in order to neutralize the acid before determining the glucose concentration. The glucose concentration was determined using a glucose-oxidase based reaction on the Accu-Check Active Glucose meter (Roche, Germany). Glycogen concentration was recorded as the glucose equivalents in the homogenate.
Figure 3.4 photomicrography of thoracic aortic wall section. (A) Aortic wall section stained with orcein stain. (B) Aortic wall section stained with H&E (Hematoxylin and eosin).
3.10 Data analysis

Data is expressed as mean ± SD. Data analysis was performed using SAS software v. 9.3 (SAS institute Inc, Carry, NC) and GraphPad Prism 5 software (Graph-pad Software Inc., San Diego, USA). The mixed model was used to analyse parameters measured each week namely blood pressure, fasting blood glucose, fasting blood triglycerides and body weight. A two way ANOVA followed by a Tukey-Kramer post hoc analysis was used to determine the difference between groups of the parameters measured at termination; namely non-fasting blood TG, HDL cholesterol, total cholesterol, insulin level, HbA1C, echocardiography, vascular reactivity, the heart weights, hearts function, heart dimensions, liver weights, hepatic glycogen contents, hepatic lipid contents, visceral adipose tissue weights, right kidney weights and thoracic aortic wall thickness. Median and range was reported for the non-normally distributed data. Differences were considered statistically significant at P ≤ 0.05.

The mixed model used for repeated measurements including blood glucose, blood triglycerides, blood pressures and body weight are:

\[Y_{abcd} = \sum + E_a + R_b + T_C + D_d + \delta \]

\[Y_{abcd} = \text{blood glucose at time T fasting blood glucose} \]
\[\sum = \text{mean for all observations} \]
\[E_a = \text{effect of exercise on blood glucose (n=0, 2....9)} \]
\[R_b = \text{fixed effect of each rat (n=1, 2...48)} \]
\[T_C = \text{fixed effect of time on blood glucose (n=1, 2....5)} \]
\[D_d = \text{fixed effect of diet on blood glucose (n=0, 2....9)} \]
\[\delta = \text{random error} \]

The model was the same for blood triglycerides, blood pressures and body weight. The factors used in the analysis were diet, exercise and diet-exercise.
Chapter Four: Results
4.1 The effect of short term high fat-high sucrose diet and exercise on food intake, body weights, visceral adipose tissue weights, kidney weights and liver weights

Figure 4.1 shows the effect of short term HFHS diet and exercise on weekly body weight in the different groups. Body weights of rats fed with standard diet increased throughout the 9 weeks. Body weights of rats fed HFHS diet decreased in the first 2 weeks then increased until the end of the dietary intervention. Rats fed with HFHS diet were significantly lighter compared to the rats fed with standard diet by the end of first week (p<0.01) and continued to be lighter up to the ninth week (p<0.0001). Figure 4.2 shows the food intake of rats fed the HFHS diet or the standard diet with or without exercise. Food intake was significantly higher in rats fed the HFHS diet compared to the standard diet (p<0.0001). No differences in body weight and food intake were observed between the exercising and non-exercising groups (p =0.5517 and p=0.1806, respectively).

Table 4.1 shows the effect of short term HFHS diet and exercise on weights of the liver, right kidney and visceral adipose tissue as well as tibiae lengths. Liver and right kidney weights of rats fed the HFHS diet were significantly lighter than those of rats fed the standard diet (p<0.0006 and p=0.0032, respectively). Liver, right kidney and visceral adipose tissue weights relative to body weight of rats fed the HFHS diet were similar to those of rats fed the standard diet (p=0.9798, p=0.8106 and p=0.3137, respectively). No difference was observed in liver and right kidney weights of rats that were exercising compared to those that were not exercising (p=0.9165 and p=.01944, respectively). Visceral adipose tissue weight in rats fed the HFHS were similar to those of rats fed the standard diet (p=0.3392). No difference was observed in visceral tissue weights of rats that were exercising compared to those that were not exercising (p=0.0553). Tibial lengths were similar in the 4 experimental groups (p=0.7381 for diet and p=0.9927 for exercise).
Figure 4.1: Effect of short term HFHS diet and exercise on body weights. Data are expressed as means ± SD. n=12 per group. ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat high sucrose diet; HFHS+E, high fat high sucrose diet with exercise. * P < 0.05 for standard diet compared to high fat-high sucrose diet.
Figure 4.2: Effect of short term high fat-high sucrose and exercise on food intake. Data are expressed as means ± SD, n=12 per group. ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat high sucrose; HFHS+E, high fat high sucrose with exercise. * P < 0.05 for standard diet compared to high fat-high sucrose diet.
Table 4.1 Effects of dietary intervention and exercise on tibia lengths, liver weights, right kidney weights and visceral adipose tissue weights.

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>ST+E</th>
<th>HFHS</th>
<th>HFHS+E</th>
<th>Significance level</th>
<th>Diet</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL (cm)</td>
<td>4.50±0.18</td>
<td>4.51±0.14</td>
<td>4.53±0.17</td>
<td>4.52±0.1</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>LW (g)</td>
<td>16.48±1.7</td>
<td>16.03±1.3</td>
<td>14.36±1.12*</td>
<td>14.80±1.85*</td>
<td>P<0.0006</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>RKW (g)</td>
<td>1.70±0.18</td>
<td>1.82±0.21</td>
<td>1.56±0.19*</td>
<td>1.59±0.21*</td>
<td>P=0.0032</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>VATW (g)</td>
<td>6.43±1.10</td>
<td>5.41±1.87</td>
<td>7.01±2.13</td>
<td>5.84±2.73</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>LW/BWx100 (%)</td>
<td>3.27±0.28</td>
<td>3.16±0.27</td>
<td>3.21±0.28</td>
<td>3.23±0.40</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>RKW/BWx100 (%)</td>
<td>0.34±0.11</td>
<td>0.35±0.11</td>
<td>0.34±0.11</td>
<td>0.35±0.05</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>VATW/BWx100</td>
<td>1.26±0.21</td>
<td>1.06±0.36</td>
<td>1.56±0.43</td>
<td>1.26±0.56</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Data are expressed as means ± SD, n=12 per group. TL, tibia length; LW, liver weight; RKW, right kidney weight; VATW, visceral adipose tissue weight; ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat-high sucrose; HFHS+E, high fat-high sucrose with exercise. * P < 0.05 for standard diet compared to high fat-high sucrose diet. ns, non-significant.
4.2 The effect of short-term high fat–high sucrose diet and exercise on cardiovascular parameters

4.2.1 The effect of high fat–high sucrose diet and exercise on heart weights, dimensions and function as well as aortic wall thickness

Table 4.2 shows the effect of short term HFHS and exercise on heart weight (HW), right and left ventricular weights (RVW and LVW, respectively) and thoracic aortic wall thickness (AWT). At 9 weeks, HW, RVW, LVW and thoracic aortic wall thickness in rats fed with HFHS diet were similar to those of rats fed the standard diet (P=0.2727, p=0.6625, p=0.6086 and p=0.7898, respectively). HW, LVW and thoracic aorta wall thickness of rats that were exercising were similar to those rats that were not exercising, despite the dietary intervention (p=0.1520 p=0.5906 and p=0.3794 respectively). RVW of rats that underwent exercise were heavier compared to those that did not perform exercise (p=0.0462).

Table 4.3 shows the effect of short term HFHS and exercise on the left ventricular end diastolic (LVEDD) and end systolic diameters (LVESD), posterior wall thickness in diastole (PWED) and systole (PWES) and relative wall thickness (RWT). No differences were observed in LVEDD, LVESD, PWED, PWES and RWT of rats fed with HFHS diet compared to those of rats fed with standard diet (p=0.4046, p=0.4824, p=0.8115, p=0.7171 and p=0.6316, respectively) or in rats that underwent exercise compared to those rats that did not exercise (p=0.7318, p=0.6167, p=0.1742, p=4529, and p=0.3404 respectively).

Table 4.3 shows the effect of short term HFHS and exercise on the left ventricular systolic chamber function as indexed by endocardial fractional shortening (FSEND) and intrinsic myocardial systolic function as indexed by intrinsic midwall fractional shortening (FSMID). FSEND and FSMID were similar in the 4 experimental groups (p=0.7051 and 0.4224, respectively, for diet and p=0.4776 and p=0.3906, respectively, for exercise).
TABLE 4.2 Effects of the dietary intervention and exercise on heart weights, left ventricular weights and right ventricular weights.

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>ST+E</th>
<th>HFHS</th>
<th>HFHS+E</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW (g)</td>
<td>1.21±</td>
<td>1.16±0.12</td>
<td>1.18±0.10</td>
<td>1.22±0.11</td>
<td>ns</td>
</tr>
<tr>
<td>RVW (g)</td>
<td>0.25±0.03</td>
<td>0.29±0.04*</td>
<td>0.27±0.05</td>
<td>0.28±0.05*</td>
<td>ns p=0.0462</td>
</tr>
<tr>
<td>LVW (g)</td>
<td>0.96±0.12</td>
<td>0.97±0.10</td>
<td>0.90±0.11</td>
<td>0.94±0.11</td>
<td>ns</td>
</tr>
<tr>
<td>HW/BWx100</td>
<td>0.24±0.01</td>
<td>0.25±0.02</td>
<td>0.26±0.02</td>
<td>0.27±0.03</td>
<td>ns</td>
</tr>
<tr>
<td>RVW/BWx100</td>
<td>0.05±.01</td>
<td>0.06±0.01</td>
<td>0.06±0.01</td>
<td>0.06±0.01</td>
<td>ns</td>
</tr>
<tr>
<td>LVW/BWx100</td>
<td>0.19±0.01</td>
<td>0.19±0.02</td>
<td>0.20±0.03</td>
<td>0.20±0.02</td>
<td>ns</td>
</tr>
<tr>
<td>AWT (µm)</td>
<td>195±0.15</td>
<td>132±0.09</td>
<td>173±0.13</td>
<td>150±0.09</td>
<td>ns</td>
</tr>
</tbody>
</table>

Data are expressed as means ± SD, n=12 per group. HW, heart weight; RVW, right ventricular weight; LVW, left ventricular weight; AWT, aortic wall thickness; ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat-high sucrose diet; HFHS+E, high fat-high sucrose diet with exercise. * P < 0.05 groups with exercise compared to groups without exercise. ns, non-significant.
Table 4.3 Effect of short term high fat-high sucrose diet and exercise on left ventricular dimensions and functions as assessed in vivo

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>ST+E</th>
<th>HFHS</th>
<th>HFHS+E</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diet</td>
</tr>
<tr>
<td>LVEDD (mm)</td>
<td>6.78±0.66</td>
<td>6.83±0.48</td>
<td>6.76±0.26</td>
<td>6.64±0.36</td>
<td>ns</td>
</tr>
<tr>
<td>LVESD (mm)</td>
<td>3.11±0.72</td>
<td>3.16±0.75</td>
<td>3.21±0.32</td>
<td>2.95±0.35</td>
<td>ns</td>
</tr>
<tr>
<td>PWED (mm)</td>
<td>1.98±0.32</td>
<td>2.12±0.48</td>
<td>1.98±0.20</td>
<td>2.13±0.27</td>
<td>ns</td>
</tr>
<tr>
<td>PWES (mm)</td>
<td>2.94±0.40</td>
<td>2.89±0.41</td>
<td>2.8±0.29</td>
<td>2.94±0.39</td>
<td>ns</td>
</tr>
<tr>
<td>FS end (%)</td>
<td>54.18±6.6</td>
<td>53.94±8.52</td>
<td>52.57±6.3</td>
<td>55.72±4.09</td>
<td>ns</td>
</tr>
<tr>
<td>FS mid (%)</td>
<td>30.82±4.7</td>
<td>32.21±6.85</td>
<td>31.33±5.5</td>
<td>32.96±4.33</td>
<td>ns</td>
</tr>
<tr>
<td>RWT (mm)</td>
<td>0.59±0.12</td>
<td>0.63±0.15</td>
<td>0.59±0.07</td>
<td>0.64±0.08</td>
<td>ns</td>
</tr>
</tbody>
</table>

Data are expressed as means ± SD, n=12 per group. LV, left ventricle; EDD end diastolic diameter; ESD, end systolic diameter; PWED, posterior wall thickness at end diastole; PWES, posterior wall thickness at end systole; FSend, endocardial fractional shortening; FSmid, midwall fractional shortening; RWT, relative wall thickness; ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat-high sucrose diet; HFHS+E, high fat-high sucrose diet with exercise. ns, non-significant.
4.2.2 The effects of short term high fat-high sucrose diet and exercise on blood pressure.

Figure 3.3 shows the effect of short-term HFHS diet and exercise on systolic and diastolic blood pressure (SBP and DBP respectively). Figure 3.3 (A) and (B) show the SBP and DBP, respectively, in rats fed the HFHS and rats fed the standard diet at baseline (0), 3, 6 and 9 weeks. SBP of rats fed the HFHS diet was significantly higher compared to that of rats fed the standard diet at the 6th (p< 0.05) and 9th week (p<0.05). There was a trend towards significance in the DBP of rats fed the HFHS diet compared to that of rats fed the standard diet (p=0.0573).

No differences were observed in SBP or DBP between the exercising and non-exercising groups. (p=0.3954 and p=0.3954, respectively).
Figure 4.3 Effects of short term high fat-high sucrose diet and exercise on blood pressure.

Panel A shows systolic blood pressure assessed in several points of time. Panel B shows diastolic blood pressure assessed in several points of time. Data expressed as means ± SD, n=12 per group. ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat-high sucrose diet; HFHS+E, high fat-high sucrose diet with exercise. * P < 0.05 for the standard diet compared to high fat-high sucrose diet.
4.2.3 The effects of short term high fat-high sucrose diet and exercise on vascular reactivity

Table 4.4 and 4.5 show the effect of short-term HFHFS diet and exercise on vascular reactivity in renal and mesenteric artery rings. The results are expressed in Emax and EC50; Emax is the maximum contraction response and EC50 is the half maximum contraction response. No differences were observed in phenylephrine-induced contractions in mesenteric and renal arteries of rats fed the HFHS diet compared to those of rats fed the standard diet (p=0.0884 and p=0.9811 for Emax, respectively, and p=0.3728 and p=0.5232 for EC50, respectively). No differences were observed in KCl-induced contractions in mesenteric and renal arteries of rats fed the HFHS diet compared to those of rats fed the standard diet (p=0.5629 and p=0.1716 for Emax, respectively, and p=0.2222 and p=0.4591 for EC50, respectively). Phenylephrine and KCl-induced contractions in rats that underwent exercise were similar to those in rats that did not exercising (p>0.05).

Acetylcholine-induced relaxations in mesenteric and renal arteries of rats fed the HFHS were similar to those of rats fed the standard diet in (p=0.2246 and p=0.5589 for Emax, respectively, and p=0.4420 and p=0.6991 for EC50, respectively). Sodium nitroprusside-induced relaxations in mesenteric and renal arteries of rats fed the HFHS were similar to those of rats fed the standard diet (p=0.4563 and p=0.4538 for Emax, respectively, and p=0.9679 and p=0.7289 for EC50, respectively). Acetylcholine and SNP-induced relaxations in rats that underwent exercise were similar to those in rats that did not exercise (p>0.05).
Table 4.4 Effect of short-term high fat-high sucrose diet and exercise on vascular reactivity in mesenteric artery

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>ST+E</th>
<th>HFHS</th>
<th>HFHS+E</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diet exercise</td>
</tr>
<tr>
<td>Emax (mN)</td>
<td>21.02±10.15</td>
<td>16.75±7.4</td>
<td>21.41±8.00</td>
<td>25.40±5.91</td>
<td>ns</td>
</tr>
<tr>
<td>EC50 (µm)</td>
<td>1.7±6.12</td>
<td>1.03±7.1</td>
<td>1.77±12.9</td>
<td>9.83±3.00</td>
<td>ns</td>
</tr>
<tr>
<td>KCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emax (mN)</td>
<td>11.42±4.68</td>
<td>7.85±3.09</td>
<td>11.59±1.49</td>
<td>12.14±3.91</td>
<td>ns</td>
</tr>
<tr>
<td>EC50 (µm)</td>
<td>0.06±0.03</td>
<td>0.05±0.04</td>
<td>0.03±0.02</td>
<td>0.05±0.03</td>
<td>ns</td>
</tr>
<tr>
<td>ACh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emax (%)</td>
<td>31.02±18.0</td>
<td>16.2±26.08</td>
<td>17.7±21.57</td>
<td>12.45±16.1</td>
<td>ns</td>
</tr>
<tr>
<td>EC50 (µm)</td>
<td>9.36±12.89</td>
<td>1.26±14.73</td>
<td>3.06±12.81</td>
<td>1.69±11.13</td>
<td>ns</td>
</tr>
<tr>
<td>SNP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emax (%)</td>
<td>17.79±12.47</td>
<td>28.51±30.24</td>
<td>13.68±8.72</td>
<td>23.96±13.6</td>
<td>ns</td>
</tr>
<tr>
<td>Emax (µm)</td>
<td>1.66±21.46</td>
<td>5.35±4.77</td>
<td>1.41±12.03</td>
<td>7.41±7.47</td>
<td>ns</td>
</tr>
</tbody>
</table>

Data expressed as means ± SD, n=12 per group. Phe, Phenylephrine; KCl, Potassium chloride; A.Ch, Acetylcholine; SNP, Sodium nitroprusside; Emax, maximum contraction response, EC50; half maximum contraction; Emax for Phe and KCl expressed in mN; Emax for Ach and SNP expressed as % of Phe-induced contraction, EC50 expressed in µmole (µm). ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat-high sucrose diet; HFHS+E, high fat-high sucrose diet with exercise. ns, non-significant.
Table 4.5 Effect of short-term high fat-high sucrose diet and exercise on vascular reactivity in renal artery

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>ST+E</th>
<th>HFHS</th>
<th>HFHS+E</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emax (mN)</td>
<td>16.21±5.35</td>
<td>17.28±5.98</td>
<td>14.21±5.20</td>
<td>19.20±4.28</td>
<td>Diet exercise</td>
</tr>
<tr>
<td>EC50 (µm)</td>
<td>5.42±3.81</td>
<td>6.77±5.79</td>
<td>9.83±8.55</td>
<td>4.92±3.15</td>
<td>ns ns</td>
</tr>
<tr>
<td>KCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emax (mN)</td>
<td>9.88±6.76</td>
<td>21.81±12.93</td>
<td>7.88±4.92</td>
<td>14.40±5.94</td>
<td>ns ns</td>
</tr>
<tr>
<td>EC50 (µm)</td>
<td>0.04±0.02</td>
<td>0.11±0.08</td>
<td>0.07±0.10</td>
<td>0.04±0.02</td>
<td>ns ns</td>
</tr>
<tr>
<td>ACh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emax (%)</td>
<td>32.32±21.48</td>
<td>19.62±11.68</td>
<td>15.46±20.9</td>
<td>28.98±21.01</td>
<td>ns ns</td>
</tr>
<tr>
<td>EC50 (µm)</td>
<td>1.1±14.07</td>
<td>6.17±6.36</td>
<td>2.99±3.63</td>
<td>1.08±24.21</td>
<td>ns ns</td>
</tr>
<tr>
<td>SNP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emax (%)</td>
<td>25.34±18.52</td>
<td>24.48±13.32</td>
<td>26.45±11.9</td>
<td>30.62±15.35</td>
<td>ns ns</td>
</tr>
<tr>
<td>EC50 (µm)</td>
<td>2.76±5.85</td>
<td>4.59±5.52</td>
<td>1.96±4.95</td>
<td>2.29±5.43</td>
<td>ns ns</td>
</tr>
</tbody>
</table>

Data expressed as means ± SD, n=12 per group. Phe, Phenylephrine; KCl, Potassium chloride; A.Ch, Acetylcholine; SNP, Sodium nitroprusside; Emax, maximum contraction response; EC50; half maximum contraction; Emax for Phe and KCl expressed in mN; Emax for ACh and SNP expressed as % of Phe-induced contraction, EC50 expressed in µmole (µm). ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat-high sucrose diet; HFHS+E, high fat-high sucrose diet with exercise. ns, non-significant.
4.3 The effect of high fat–high sucrose diet and exercise on metabolic parameters

4.3.1 The effects of high fat–high sucrose diet and exercise on fasting blood glucose, Hemoglobin A1c and insulin level

Figure 4.4 shows the effect of short term HFHS diet and exercise on fasting blood glucose level in rats fed the HFHS diet and rats fed the standard diet at baseline (0), 3, 5, 7 and 9 weeks. Fasting blood glucose of rats fed the HFHS was similar to those of rats fed the standard diet (p=0.17). No difference was observed in fasting blood glucose of the rats that were exercising compared to those that were not exercising (p=0.84). Table 4.6 shows the effect of short term HFHS diet and exercise on hemoglobin A1C and insulin concentration in the different groups. No difference was observed in HbA1c concentration of rats fed the HFHS diet compared to those of rats fed the standard diet (p=0.61). No difference was observed in HbA1C of the rats that were exercising compared to those that were not exercising (p=0.20). Insulin level of rats fed the HFHS was similar to those of rats fed the standard diet (p=0.52) and also between the rats that were exercising compared to those that were not exercising (p=0.6).
Figure 4.4 Effects of short term high fat-high sucrose diet and exercise on fasting blood glucose. Data are expressed as means ± SD, n=12. ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat high sucrose diet; HFHS+E, high fat high sucrose diet with exercise.
Table 4.6 Effects of short-term high fat-high sucrose diet and exercise on Hemoglobin A1c and insulin level.

Data are expressed as means ± SD, n=12 per group. HbA1c, hemoglobin A1C; ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat-high sucrose diet; HFHS+E, high fat-high sucrose diet with exercise. ns, non-significant.
4.3.2 Effect of short term- high fat–high sucrose diet and exercise on fasting blood triglyceride and lipid profile

Figure 4.5 shows the effect of short-term HFHS diet and exercise on fasting blood triglycerides at baseline (0), 3, 5, 7 and 9 weeks. Fasting triglycerides of rats fed the HFHS diet were significantly higher compared to those of rats fed the standard diet on the 3rd (p<0.001), 5th (p<0.001), 7th (p<0.001) and 9th week (p<0.01). No differences were observed in fasting blood triglycerides of the rats that were exercising compared to those that were not exercising (p=0.2131).

Figure 4.6 shows the effect of short-term HFHS diet and exercise on the lipid profile in the different groups, including non-fasting blood triglycerides, TC and HDL cholesterol. Non-fasting triglycerides and cholesterol of rats fed the HFHS diet were significantly higher compared to those of rats fed the standard diet (p<0.0001 and p=0.029, respectively). HDL cholesterol of rats fed the HFHS diet was significantly lower compared to those of rats fed the standard diet (p<0.0001). No differences were observed in non-fasting triglycerides, TC and HDL of the rats that were exercising compared to those that were not exercising (p=0.41, p=0.66 and p=0.22, respectively).
Figure 4.5 Effects of short term high fat-high sucrose diet and exercise on fasting blood triglycerides. Data are expressed as means ± SD, n=12 per group. ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat-high sucrose diet; HFHS+E, high fat high sucrose diet with exercise. * P < 0.05 for standard diet compared to HFHS diet.
Figure 4.6 Effects of short term high fat-high sucrose diet and exercise on lipid profile. Data are expressed in means ±SD, n=12 per group. Panel A shows non-fasting blood triglycerides (nfBTG), panel B shows total blood cholesterol (TC) and panel C shows high density lipoprotein cholesterol (HDL). ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat high sucrose diet; HFHS+E, high fat high sucrose diet with exercise. * P < 0.05 standard diet compared to HFHS diet.
4.3.3 Effect of short term- high fat–high sucrose diet and exercise on hepatic glycogen and lipid contents

Table 4.7 shows the effect of short term HFHS and exercise on hepatic glycogen and hepatic lipid contents. Hepatic glycogen contents of rats fed the HFHS diet were significantly higher compared to those of rats fed the standard diet (p<0.02). Hepatic lipid contents of rats fed the HFHS were similar to those of rats fed with standard diet (p=0.73). No differences were observed in hepatic glycogen and lipid contents of the rats that were exercising compared to those that were not exercising (p=0.86, p=0.85, respectively).
Table 4.7 Effects of short-term high fat-high sucrose diet and exercise on Hepatic glycogen contents and Hepatic lipid contents.

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>ST+E</th>
<th>HFHS</th>
<th>HFHS+E</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycogen (GE)</td>
<td>5.56±1.59</td>
<td>5.61±1.70</td>
<td>6.65±1.40*</td>
<td>6.76±2.34*</td>
<td>P<0.02</td>
</tr>
<tr>
<td>Lipid (%)</td>
<td>5.28±2.19</td>
<td>6.01±1.35</td>
<td>6.12±2.54</td>
<td>5.68±2.59</td>
<td>ns</td>
</tr>
</tbody>
</table>

Data are expressed in means ±SD. Glycogen, hepatic glycogen contents (expressed as glucose equivalents (GE) in the liver homogenate); Lipid, hepatic lipid contents (expressed as percentage of the liver sample weight); ST, standard diet; ST+E, standard diet with exercise; HFHS, high fat high sucrose diet; HFHS+E, high fat high sucrose diet with exercise. * P < 0.05 standard diet compared to HFHS diet. ns, non-significant.
Table 4.8 Non-normally distributed data.

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>ST+E</th>
<th>HFHS</th>
<th>HFHS+E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food intake (g/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>56.17</td>
<td>29.11</td>
<td>61.55</td>
<td>55.14</td>
</tr>
<tr>
<td>Median</td>
<td>32.33</td>
<td>35.67</td>
<td>59.71</td>
<td>57.87</td>
</tr>
<tr>
<td>TG (mmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>2.58</td>
<td>1.63</td>
<td>5.2</td>
<td>5.40</td>
</tr>
<tr>
<td>Median</td>
<td>1.54</td>
<td>1.50</td>
<td>2.94</td>
<td>2.31</td>
</tr>
<tr>
<td>Glycogen (GE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>4.6</td>
<td>3.9</td>
<td>4.6</td>
<td>5.9</td>
</tr>
<tr>
<td>Median</td>
<td>5.2</td>
<td>5.2</td>
<td>6.3</td>
<td>6.6</td>
</tr>
<tr>
<td>nfTG (mmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>1.6</td>
<td>1.0</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Median</td>
<td>1.8</td>
<td>1.4</td>
<td>3.75</td>
<td>3.7</td>
</tr>
<tr>
<td>TCol (mmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.8</td>
<td>1.2</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td>Median</td>
<td>1.5</td>
<td>1.4</td>
<td>1.75</td>
<td>1.6</td>
</tr>
</tbody>
</table>

TG, fasting triglycerides; Glycogen, hepatic glycogen; nfTG, non-fasting triglycerides; TCol, total cholesterol
Chapter Five: Discussion
The discussion highlights the effects induced by feeding high fat-high sucrose (HFHS) diet for 9 consecutive weeks. The main finding of the current study is the development of dyslipidaemia and elevated systolic blood pressure accompanied by lower body weight gain in rats fed a HFHS diet for 9 weeks compared to the rats fed standard diet. Furthermore, the rats fed a HFHS diet also had a higher glycogen deposition in the liver. In addition this study showed that short-term exercise training for nine consecutive weeks did not attenuate the effects induced by the HFHS diet on blood lipids, systolic blood pressure as well as liver glycogen.

5.1 The effect of a high fat–high sucrose diet on body weight and tibial length

Studies have shown that a HFHS diet rat model has been used previously to model western diet-induced metabolic abnormalities such as obesity and metabolic syndrome (Barnard et al., 1998; Yamamoto et al., 2006; Bourgoin et al., 2008; Kong et al., 2011). Although a number of studies have reported an increase in body weight after a HFHS diet intervention (Barnard et al., 1998; Yamamoto et al., 2006; Bourgoin et al., 2008; Kong et al., 2011), not all studies that employed a HFHS diet observed a difference in the body weight gain of the rats (Arias et al., 2014, Pierine et al., 2014). In the current study, rats fed a HFHS diet weighed significantly less than the control groups. In agreement with our results, a previous study has reported that the rats that administered a HFHS diet for 12 weeks, weighed less than rats receiving a control diet (Hirotani et al., 2012). However, in this study, rats experienced liver disease. Furthermore, the results from Hirotani et al. (2012) should be interpreted carefully as the food intake of rats fed the HFHS diet was lower than the control group and hence the body weight gain of the rats was lower. Additionally, in the intervention group, lower blood glucose and triglycerides were justified by a decrease in body weight and abnormal lipid metabolism (Hirotani et al., 2012).
In the current study, the food intake of rats fed the HFHS diet was greater than that of rats fed the control diet. However, in the first two weeks of diet intervention, the body weights of rats fed HFHS diet were decreased. This could possibly be explained by that rats fed with the HFHS may have eaten less than they were supposed to eat in the first two weeks of the intervention as a result of introducing a new diet; hence rats fed the HFHS diet were lighter throughout the experiment. However, following the first 2 weeks, the growth rate was similar between the groups. Secondly, a habituation time which is suggested to adapt to a new diet (Ferraris et al., 1995; Levin et al., 2002) was not done in this study, but food intake may have corrected for the decreased body weight, where food intake in rats fed HFHS diet increased and was higher than the standard diet group. Thirdly, the HFHS diet was prepared in our laboratory and was mixed with water, in contrast to the standard diet which constituted of dry compositions only. This could have affected the percentage of vitamins and minerals in the diet, food efficiency and could have affected the caloric compositions of the diet. The essential vitamins and minerals were not added to the HFHS diet, which could lead to malnutrition of rats fed HFHS diet and subsequent lower body weight. Finally, the fat used in our diet was vegetarian fat, in contrast to the fat used in the other studies which was mainly lard (Yamamoto et al., 2002; Kong et al., 2011). It has been reported in previous studies that the diet which contains lard induces an increase of body weight more than other types of fats (Carmiel-Haggai et al., 2005; Buettner et al., 2006; Lionetti et al., 2014). All these reasons may explain the weight loss in the rats fed the HFHS diet during the first 2 weeks. Subsequent to the first two weeks, the food intake of rats fed the HFHS increased and the increase in body weight was similar between the experimental and control groups. However this increased food intake was not enough for rats fed the HFHS diet to catch up or exceed the weights of the control groups.

Tibial length, another growth parameter, was not affected by consumption of the HFHS diet. This observation suggested that the growth of animals were similar between the experimental groups. We therefore cannot assume that malnutrition occured with the HFHS
diet. We can therefore conclude that, in our model and despite some experimental bias, the rats were not obese following consumption a HFHS diet for 9 weeks. In agreement with this conclusion, the visceral adipose tissue weights were not different between the experimental groups.

5.2. The metabolic effects of a high fat–high sucrose diet

5.2.1 Blood glucose, serum insulin, glycated haemoglobin and hepatic glycogen contents

In the current study fasting blood glucose concentrations at termination were not different compared to the baseline readings in any of the groups. There are contradictory reports with regards to the effects of a HFHS diet on blood glucose with some studies reporting that such diets elevate blood glucose concentration (Barnard et al., 1998; Sugatani et al., 2006; Zhang et al. 2015) and others reporting no effect of HFHS diet on blood glucose concentration (Yamamoto et al., 2006; Chun et al., 2010; Stephenson et al., 2012). This discrepancy may be explained by the difference in the duration of the dietary intervention. Indeed, blood glucose concentration increases with the longer diet interventions (Barnard et al., 1998). In this study, the blood glucose concentrations did not change and this may be as a result of short duration of the intervention. A study by Sugatani and colleagues (2006) has shown an increase in blood glucose following short-term dietary intervention. However the percentage of carbohydrates in the former study was greater than in my study. The age of the animals at the beginning of the dietary intervention may possibly determine the incidence of increased blood glucose concentration. In the present study, the young age of the animals may allow them to handle the load of sucrose in the HFHS diet. In this study, glucose may have been transformed into lipids by de novo lipogenesis (Strable et al., 2010), thus blood glucose levels did not change.
In the current study, similar to glucose, no difference was observed in serum insulin concentration between the groups. Some studies observed similar results where no change was observed in serum insulin concentration (Sugatani et al., 2006; Yamamoto et al., 2006; Muraki et al., 2011; Cheng et al., 2014). Other studies reported contrasting results with an elevated insulin concentration following HFHS consumption (Barnard et al., 1998 and Zhang et al., 2015). This discrepancy may be explained in some case by a concurrent increase in blood glucose. Hyperglycaemia has been previously reported to compensate for the insulin resistance induced by a western diet (Commerford et al., 2001). Insulin is well known as the principle hormone responsible for glucose regulation in the blood. In the present study, the absence of change in insulin concentration may be explained in conjunction with an unchanged blood glucose concentration. As both blood glucose and serum insulin did not change with the 9 weeks consumption of HFHS diet, these findings suggest that these rats have no tendency to diabetes mellitus yet.

Haemoglobin A1C (HbA1c) explains the glycosylation of haemoglobin and it reflects the status of blood glucose for at least 3 consecutive months. In the present study no difference was observed in HbA1c concentration between the groups. HbA1c concentration was in agreement with the unchanged blood glucose and insulin concentration. Hence, the absence of change in HbA1c could be explained by the absence of hyperglycaemia. Previous investigations observed similar results where no change was observed in HbA1c (Rosety-Rodriguez et al., 2012; Cheng et al., 2014). Some studies found contrasting results with elevated HbA1c concentration when a HFHS diet was consumed (Medford et al., 2012). However in the former study the dietary intervention lasted 52 weeks which could explain the lack of change in the current study (Medford et al., 2012). Additionally in the present study, the absence of hyperglycaemia and HbA1c change may be explained by a low ambient temperature in the central animal unit. Rats fed HFHS diet may have used the glucose as an energy source for thermoregulation in order to maintain their body temperature (Balmagiva et al., 1983).
Finally, in the current study the rats fed the HFHS diet had an increased hepatic glycogen deposition. Liver is the main storage site for glucose in the form of glycogen. Previous studies have reported an increased glycogen deposition in the liver following consumption of a western diet (Mattar et al., 2010; Mousavi et al., 2012; Kjaergaard et al., 2014), whereas others found contrasting results without any change observed in hepatic glycogen deposition with HFHS diet consumption (Commerford et al., 2001; Medford et al., 2012). A diet high in simple carbohydrates has been shown to promote glycogen deposition in the liver (Garrido et al., 1996; de Castro et al., 2013; Nasri et al., 2015; Maslak et al., 2015). In my study, because insulin concentration was within normal range, it is possible that glucose handling is normal and that glucose is either stored as glycogen in the liver or converted to fat to be stored instead of resulting in altered glucose metabolism and insulin resistance.

5.2.2 Blood lipids

High concentrations of triglycerides (TG), low density lipoprotein (LDL), total cholesterol (T,Chol) and low concentrations of HDL are considered markers of dyslipidaemia (Wietlisbach et al., 2013). In the current study high fasting and non-fasting TG, high TChol and a low HDL concentrations was observed following consumption of a HFHS diet compared to the standard diet group. It is well known that a diet high in fat induces elevation of blood lipids (Tzeng et al., 2012; Kumar et al., 2014; Zhukova et al., 2014), and therefore the high fat component in the present study may be responsible for the elevated blood lipids. Dyslipidaemia can be explained by the fact that the HFHS diet is composed of 39% fat. Fat content in the diet increases apolipoprotein concentration and subsequently increases the TG, LDL and TChol concentrations and lowers HDL concentration (Barnard et al., 1998). Furthermore, a high sugar load is well known to induce de novo lipogenesis (Strable et al., 2010). Given the presence of an excessive amount of sugar that would metabolise into fat, this may be further increasing the blood lipids. On the other hand, glucose derived from metabolised carbohydrate either would be used for energy or directed to be stored in the
liver as glycogen (Foufelle et al., 2002; Ferrer et al., 2003). The large amount of glucose derived from HFHS diet exposes the liver to a large amount of glucose and would be stored it as glycogen (Bollen et al., 1998). Once the liver reaches the maximum storage capacity for glycogen the liver would use glucose for the de novo liponeogenesis and the formed lipids would be excreted as blood lipids (Foufelle et al., 2002).

However, the visceral adipose tissue weights were not different between the experimental groups. It is well-known that lipids from the diet could be stored in the form of visceral adipose tissues. In our model, ingestion of high concentrations of fat and carbohydrate resulted in an elevated blood lipid concentration but no change in the storage of fat.

Similarly to visceral adipose tissue, in the current study no change was observed in the hepatic lipid contents despite the elevated blood lipids concentration. This finding was in disagreement with findings from previous studies which reported an increased hepatic lipid contents (Sugatani et al., 2006; Muraki et al., 2011). This may be explained by the room temperature at the central animal unit which was less than the desired temperature for the rats (Maloney et al., 2014). Fat from the diet may have been used as an energy source to maintain normal body temperature (thermoregulation) of the rats (Balmagiva et al., 1983). Moreover my results could be explained by lack of obesity in the animals of the current study. In previous studies, obesity has been reported to induce an increase of lipid deposition in the liver (Uriarte et al., 2013; Kabel et al., 2014; Chu et al., 2015). Although liver weights of animals fed a HFHS diet were lower than the control group, the liver weights relative to body weights (normalized) showed no differences between the groups. These findings were similar to the findings from previous studies which found no difference in liver weights and liver weights relative to body weight following consumption of HFHS diet (Bourgoin et al., 2008 and Muraki et al., 2011, respectively). These observations (no change of the liver lipid contents and no change in liver weights) indicate that despite elevated blood lipids, the liver is well functioning. The aforementioned results suggest that the consumption
of a HFHS diet induces elevation of blood lipids without increased body weight and visceral adipose tissue and without affecting the liver function.

5.3 The effect of a high fat–high sucrose diet on cardiovascular parameters

5.3.1 blood pressure

In the current study the consumption of a HFHS diet for 9 weeks resulted in significant increase of systolic blood pressure (SBP) and there was a trend towards an increase in diastolic blood pressure (DBP) compared to the rats fed the control diet. Despite a lack of obesity, SBP still increased following the consumption of HFHS diet. In the present study, blood lipid concentration increased in conjunction with the raised SBP. The increased blood lipids could be responsible for the increased SBP as previous studies have associated the rise in blood pressure with dyslipidaemia (Barnard et al., 1998; Yamamoto et al. 2006; Bourgoin et al., 2008). An important factor that could be responsible for the raised SBP in these studies is the nature of the fat used, namely lard (saturated animal fat). Saturated fat is well known to predispose rats to hypertension (Oliveira et al., 2013). The fat used in the current study was lecithinated fat (saturated vegetable fat). Lecithinated fat is composed of phosphatidyl choline, which is metabolised by the gastrointestinal tract into TMAO (Trimethylamine-N-oxide) (Mendelsohn et al., 2013). TMAO has been recently recognised to have adverse effects on the vasculature. In this regard TMAO has shown to induce atherosclerotic changes and increase oxidative stress, both which affects blood vessels remodeling and subsequently may predispose to an increased blood pressure (Mendelsohn et al., 2013).

Inflammation is another suggested mechanism which has been linked to development of elevated blood pressure (Utimura et al., 2003; Gonçalves et al., 2004). In this regard Bourgoin et al (2013) linked the elevated blood pressure to the presence of endothelin-1 in the adipose tissue surrounding the blood vessel of animals consuming a HFHS diet. In the
current study, to determine the possible mechanism responsible for the raised blood pressure, the aortic wall thickness was measured as an indicator of vascular anatomical changes including atherosclerosis, increased wall to lumen ratio and microvascular rarefaction (Serné et al., 2007). Moreover, the reactivity of the medium-sized blood vessels was assessed to determine whether the increased blood pressure is associated with changes in vasodilation or vasoconstriction responses. No differences were observed in aortic wall thickness and vascular reactivity of the renal and mesenteric arteries between the rats fed a HFHS diet and rats fed the control diet. Hence the increased BP cannot be explained by changes in aortic wall thickness and vascular reactivity. Further investigations are therefore required to illuminate the mechanism responsible for the elevation in blood pressure.

In order to determine the effect of raised blood pressure on the heart; heart weight as well as heart dimension and function were measured. Hypertension is one of the most common causes responsible for development of heart failure (Natsume et al., 1993; Carll et al., 2011). In the current study, although the animals fed the HFHS diet had dyslipidaemia and their blood pressure were elevated, no differences were observed between the groups with regards to heart weight, heart function or dimension. These findings suggest that the hearts of these animals have no tendency to hypertrophy or progress to heart failure. The absence of cardiac remodeling is most likely as a result of the short duration of raised blood pressure induced by the HFHS diet.

5.4 Exercise effects on cardiovascular and metabolic parameters

5.4.1 The effect of exercise on body weight of animals fed high fat–high sucrose diet

Several studies have reported a decrease in body weight following exercise in animals consuming a HFHS diet (Paulino et al., 2010; La Favor et al., 2013; Ennequin et al., 2015). The present work shows that the exercise and sedentary groups had the same pattern of
change in body weight in both the control and HFHS dietary groups, suggesting that exercise for a short duration in dyslipidemic non-obese animals did not change the body weight of these animals. The discrepancy may be attributed to an increased body weight induced by the diet in the previous studies. Notably, some of the previous studies have induced obesity before starting the exercise intervention (Paulino et al., 2010; Gerbaix et al., 2013; Ennequin et al., 2015) to ensure that those animals are obese. In the current experiment, the HFHS diet did not induce obesity, despite the higher food intake in rats fed HFHS diet compared to rats fed ST diet. The higher food intake and lesser gain in body weight could be attributed to the initial weight loss and the water content of HFHS diet. Although the HFHS diet composed of a higher proportion of two macronutrients (fat and carbohydrates), it composed of a lower protein compared to the standard diet. The low protein content of the HFHS diet could affect the metabolism and caused a lower body weight as a result of protein energy malnutrition despite the higher food intake (de Melo Montenegro et al., 2012; Malta et al., 2014). Secondly a (slightly) shorter duration in my study compared to prior studies may have impacted the change in body weight. Furthermore, all selected rats have the ability to run voluntarily (runner). This particular feature may protect the rats from diet induced obesity (Ruegsegger et al., 2015).

Furthermore, in the current study, no differences were observed in the visceral adipose tissue weights between the exercise and sedentary groups. Additionally, exercise did not change the food intake pattern for the exercise groups in comparison to the sedentary groups. These observations suggest that exercise did not modify the animals’ appetite as well as body weight regulation mechanism which subsequently did not change the body weight.

Consumption of HFHS diet, obesity (Zernicke et al., 1995) and loss of body weight (Bodnar et al., 2012) are recognized factors that may predispose to negative impacts on bone characteristics. In the current study, exercise for 9 weeks did not change the bone length or bone mineral density in both dietary groups compared to the sedentary groups (data not
shown). This finding could be justified by the fact that the animals in the current study were not obese and also did not lose weight by exercise intervention. Data from these observations suggest that 9 weeks of exercise in non-obese animals did not change the growth pattern of the exercise groups. Human studies showed controversial results regarding the effect of exercise on body weight. Some studies found similar findings to our finding that exercise did not lower the body weight (Watt et al., 1976; Lewis et al., 1999; Green et al., 2003). In these studies, the absence of loss in body weight could be attributed to the effect of exercise on the muscular compartment. Green et al (2003) recognised an increase of lean body mass (muscle mass) which indicated by decreased the percentage of body fat and no change in total body weight. In contrast, other human studies reported that exercise resulted in decreased body weight (Slentz et al., 2005; Drevenhorn et al., 2007; Roussel et al., 2009). The discrepancy in the resulted body weight could be attributed to the differences in the exercise protocol used in these studies with different intensity, duration and the concurrent diet consumed by the participants. Therefore, the effect of exercise in conjunction with HFHS diet needs further investigation.

5.4.2 Exercise effect on blood glucose, serum insulin, glycated haemoglobin and hepatic glycogen contents

Exercise is known to affect the control of blood glucose concentration. Exercise has been shown to ameliorate the raised blood glucose in animals fed HFHS diet (Fisher-Wellman et al., 2013), improved hyperinsulinemia (Grimditch et al., 1988) and to lower the high HbA1c concentrations in rats fed high fat diet (Heo et al., 2013). In the current study, fasting blood glucose, insulin and HbA1c concentrations were the same in both exercising groups and the sedentary groups, regardless of the diet consumed. Our findings are in agreement with those of previous studies showing that exercise did not change these parameters. Indeed, in animals fed HFHS diet, exercise did not change blood glucose (De Moraes et al., 2008) and insulin (La Favor et al., 2013) concentrations. However in these studies the blood glucose
(De Moraes et al., 2008) and insulin (La Favor et al., 2013) concentrations were increased with a HFHS diet. However, the length of the intervention was 10 weeks in Grimditch (1988) study and 12 weeks in both De Moraes (2008) and Fisher-wellman (2013). While the length of intervention in a study by Heo et al (2013) was 4 weeks. Nevertheless, we can assume that, similar to these studies, exercise did not drop blood glucose, insulin as well as HbA1c concentrations. Additionally, in my study the rats did not develop insulin resistance or increased blood glucose, hence with a normal glucose metabolism, exercise is unlikely to alter the metabolic pathways.

In addition to the unchanged glucose, insulin and HbA1c exercise for 9 weeks in non-obese animals did not ameliorate the elevated liver glycogen content in the animal fed HFHS diet. Gluconeogenesis induced by exercise is known to utilize different substrates to synthetize the glucose including lipid, glycogen or lactate (Turcotte et al., 1990). In particular, the use of the dietary glucose as substrate for gluconeogenesis could be the cause of sparing the blood glucose and the subsequent prevented glycogenolysis of the elevated hepatic glycogen that induced by HFHS consumption. These observations suggest that exercise for 9 weeks did not change the glucose metabolism of the non-obese animals and did not ameliorate the hepatic glycogen content.

5.4.3 Exercise and blood lipids

Previous animal studies have shown that exercise can ameliorate the raised blood lipids induced by HFHS diet consumption (De Moraes et al., 2008; Gerbaix et al., 2013; La Favor et al., 2013). In contrast to the previously mentioned studies, the results of the current study suggest that an exercise intervention for 9 weeks did not modify the blood lipid profile of the dyslipidaemic rats. This discrepancy can be explained by the fact that both De Moraes et al (2008) and La Favor et al (2013) reported decreased blood lipids in conjunction with decreases of body weight. Indeed, previous human studies have reported that a decrease in
blood lipid concentration is more likely to occur in conjunction with weight loss (Coghill et al., 2008; Roussel et al., 2009; Yoshida et al., 2010). In my study, the animals did not lose body weight in response to exercise which may explain the absence of improvement of blood lipids. However the rats in the current study did not have an increased body weight regardless of diet. Hence it is unlikely that they will lose even more weight. The findings from several exercise studies in rats consuming a high fat diet were in agreement with our findings that exercise training did not change the elevated blood lipids (Cambri et al., 2011; Teixeira de Lemos et al., 2011; Delghingaro-Augusto et al., 2012). Similarly, previous studies in humans did not record improvement of blood lipids following exercise (Arsenault et al., 2009; Lima et al., 2012). Thus, the findings from the current study suggest that exercise for 9 weeks; despite a low body weight did not ameliorate dyslipidaemia induced by HFHS diet consumption.

5.4.4 Exercise and blood pressure

Exercise training is known to decrease BP in humans, especially in individuals with a high baseline BP (Coghill et al., 2008; Roussel et al., 2009). Moreover, in individuals with dyslipidaemia exercise training results in a decreased BP when accompanied by a decrease in blood lipids and body weight (Stewart et al., 2005; Drevenhorn et al., 2007; Coghill et al., 2008; Roussel et al., 2009). In contrast to these findings in the current study, exercise did not alter the elevated blood pressure induced by consumption of the HFHS diet. The discrepancy may be explained by the fact that exercise did not induce weight loss and did not decrease blood lipids; therefore exercise did not improve the elevated blood pressure induced by HFHS diet consumption. Similarly, a previous study in rats fed a HFHS diet showed no change in BP in the absence of a change in lipids and body weight after exercise training (Paulino et al., 2010). Moreover, several human studies reported similar results whereby blood pressure was unchanged (Watkins et al., 2003; Green et al., 2003; Camhi et al., 2010). These observations suggest that exercise for 9 consecutive weeks without loss of
body weight and without decrease of blood lipid did not improve the elevated blood pressure induced by HFHS diet consumption.
Chapter Six: Conclusion
6.1 Conclusion

The current study investigated the effect of 9 weeks of HFHS diet consumption and exercise on 3-month-old rats. The metabolic and cardiovascular parameters investigated were blood glucose, insulin concentration, glycated haemoglobin, fasting and non-fasting blood lipids, hepatic glycogen and lipid content as well as blood pressure, vascular reactivity and heart dimensions and functions. Findings of the current study showed that 9 weeks of HFHS diet consumption had induced dyslipidaemia and increased liver glycogen content and that was without inducing obesity in these animals. While HFHS diet did not induce obesity, it also did not induce an increase in adipose tissue or organ weight. Furthermore, dyslipidaemia was not associated with other metabolic disturbances such as hyperglycaemia, insulin resistance or a change in the hepatic lipid content. In addition to the metabolic changes, short-term HFHS diet consumption resulted in elevated blood pressure in non-obese animals. There were no changes in heart dimension and function as well as vascular reactivity associated with the high blood pressure during the time of the study. These observations suggest that HFHS diet consumption for 9 weeks induced elevated BP without inducing the complications associated with hypertension. We can conclude from the current study that short-term consumption of HFHS diet induced dyslipidaemia and elevated hepatic glycogen content in non-obese animals without further metabolic disturbances. Additionally, HFHS diet induced elevated blood pressure in non-obese animals without further impact on vascular reactivity and wall thickness. The elevation in BP may be linked directly to the increased in blood lipids concentration.

Additionally, the current study evaluated the impact of 9 weeks of exercise on the metabolic and cardiovascular changes induced by the short term HFHS diet. Indeed, exercise for 9 weeks without weight loss did not ameliorate dyslipidaemia or the high hepatic glycogen content in the animals consuming the HFHS diet. In addition exercise did not change the adipose tissue weight, blood glucose, glycated HbA1c or insulin concentrations in both dietary interventions. Moreover, exercise did not change the bone length or bone density or
organs weight. Furthermore, exercise did not drop the elevated blood pressure and did not induce changes in the heart function and dimensions or vascular reactivity. Hence exercise alone is not effective in combatting the adverse effects of a HFHS diet.

6.2 Limitations and future studies

The possible limitations of the current study are as follow: firstly, the most important limitation is the lack of recommended vitamins and minerals in the diet compositions. The vitamins and minerals are essential micro-compositions required for the animal’s wellbeing, general health and growth. In this regard, in future studies an additional group is suggested to be added for better comparison between the animals’ growth in rats consuming the HFHS diet with or without essential vitamins and minerals. Secondly, the aim of this study was to investigate the effect of a HFHS diet for a short duration. However, a HFHS diet administration for longer duration may have resulted in more adverse outcomes. Therefore, the effect of a long duration dietary intervention need to be further investigated to compare the findings from the current study to the impact of chronic consumption of HFHS diet. Thirdly, the present study investigated the effects of a HFHS diet and exercise in males only. Future studies needs to include female rats to compare diet and exercise effect in both genders. Fourthly, the mechanism responsible for the concurrent development of dyslipidaemia and high blood pressure needs further investigation, as neither inflammatory markers, quantitative measurements of oxidative stress substances or molecular technology were measured in this study. Additionally, low room temperature in the animal unit is another limitation to be considered, because at higher temperature an increased body weight and hence an altered glucose metabolism may have been observed. Another limitation in the current study is that we did not measure the liver enzymes. Therefore, we could not investigate the effect of HFHS diet on the liver functions. On the other hand, further studies need to include a high fat diet group and a high sucrose diet group to be investigate the effects of each component independently and to compare it to the HFHS diet effects.
Furthermore, the current study did not investigate the effect of exercise on the musculature which has an important role in insulin sensitivity and glycogen storage capacity. Therefore, the effect of a HFHS diet and exercise in the muscle need to be investigated. In addition to the previously mentioned limitations, all the selected rats were runners and exercised voluntarily. Therefore, the effect of exercise needs to be investigated in the runners compared to non-runners animals to eliminate the effect of the period of exercise in the non-exercising group. Finally, the exercise intervention in dyslipidemic animals did not ameliorate the dyslipidaemia and blood pressure. Further studies are needed with different interventions to elucidate this finding.

6.3 Uniqueness and strength of current study

The uniqueness of current project is in studying the effect of HFHS diet without the confounding effect of obesity and its associated disturbances. In non-obese animals, a HFHS diet elevated liver glycogen content, induced dyslipidaemia and elevated blood pressure. Additionally, this study investigated the impact of exercise on the metabolic and cardiovascular disturbances induced by HFHS diet consumption without the confounding effect of weight loss. In this regard to my knowledge there are limited studies that investigated the effect of exercise in a HFHS diet model and that have evaluated the effect of exercise in non-obese animals without the confounding effect of weight loss.

The study design of this research where there was a control group for each interventional variable, made it possible to evaluate the effect of each variable independently. While the standard diet groups acted as a control for the HFHS diet groups, the sedentary groups served as a control for the exercising groups.
6.4 Possible clinical implications and recommendations

The findings from this study could be translated to humans. In this regard the HFHS diet model imitated the consumed western diet. The short-term HFHS diet intervention induced elevated liver glycogen content, dyslipidaemia and elevated blood pressure in non-obese animals. These findings suggest that a western diet for even a short period of time can predispose lean individuals to metabolic and cardiovascular disturbances. Therefore, public education and awareness about the side effects of a western diet and the encouragement of healthy eating habits should take priority.

In the current study an exercise intervention did not ameliorate the metabolic and cardiovascular changes induced by the HFHS diet in non-obese animals. Therefore it can be suggested that exercise training alone may not be sufficient in counteracting the negative effects of a western diet, even in lean individuals. More aggressive management such as an intense lifestyle intervention or pharmacological therapy may be suggested in lean individuals with the elevated blood pressure associated with dyslipidaemia.
REFERENCES

Camhi SM, Stefanick ML, Katzmarzyk PT and Young DR (2010). Metabolic syndrome and changes in body fat from a low-fat diet and/or exercise randomized controlled trial. Obesity. 18(3):548-54.

Etxeberria U, de la Garza AL, Martinez JA and Milagro FI (2013). Diet-induced hyperinsulinemia differentially affects glucose and protein metabolism: a high-

Lang HF, Chou CY, Sheu WH and Lin JY (2011). Weight loss increased serum adiponectin but decreased lipid levels in obese subjects whose body mass index was lower than 30 kg/m². *Nutrition Research.* (5):378-86.

Méndez L, Pazos M, Molinar-Toribio E, Sánchez-Martos V, Gallardo JM, Rosa Nogués M, Torres JL and Medina I (2014). Protein carbonylation associated to high-fat, high-

of hypertension and hyperaldosteronism in a rodent model of life-long obesity.

overweight, obesity and metabolic syndrome components in children, adolescents and young adults with type 1 diabetes mellitus. *Diabetes/ metabolism research and reviews*. 31(1):76-84.

Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A and Vaziri ND (2005). A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant...

Ruegsegger GN, Toedebusch RG, Braselton JF, Roberts CK, Booth FW (2015). Reduced metabolic disease risk profile by voluntary wheel running accompanying juvenile

Solomon TP, Malin SK, Karstoft K, Kashyap SR, Haus JM and Kirwan JP (2013). Pancreatic β-cell function is a stronger predictor of changes in glycemic control after an aerobic

Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. *Cell.* 105(6):745-55.

