
University of the Witwatersrand

Masters Dissertation

A Machine Learning Approach to DNA
Shotgun Sequence Assembly

Author:

Radu-Ionut Constantinescu

Supervisor:

Dr. Ling Cheng

A dissertation submitted in fulfillment of the requirements

for the degree of Master of Science in Engineering

Engineering and the Build Environment

School of Electrical and Information Engineering

CeTAS

July 2015

http://www.wits.ac.za
http://www.wits.ac.za/ebe
http://www.eie.wits.ac.za
http://www.eie.wits.ac.za/research/telecommunications

Declaration of Authorship

I, Radu-Ionut Constantinescu, declare that this thesis titled, ‘A Machine Learning Ap-

proach to DNA Shotgun Sequence Assembly’ and the work presented in it are my own.

I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

UNIVERSITY OF THE WITWATERSRAND

Abstract

School of Electrical and Information Engineering

Engineering and the Build Environment

Master of Science in Engineering

A Machine Learning Approach to DNA Shotgun Sequence Assembly

by Radu-Ionut Constantinescu

DNA sequencing and assembly is becoming increasingly prevalent in the field of bioin-

formatics. It is used in a variety of fields such as forensics and genetic engineering in

order to sequence DNA of a species or specific individuals. The high computational

complexity associated with DNA sequencing and assembly makes the process expensive

to implement. In order to help reduce this complexity, a read grouping machine learning

approach, which breaks the problem of assembly into multiple smaller sub-problems, is

proposed. The shotgun sequencing process was performed on a 50456 base pair portion

of the Drosophila Melanogaster (fruit fly) genome. The sequencing and assembly pro-

cess was simulated under varying conditions of read size, coverage depth and sequencing

error rates. The greedy and de Bruijn algorithms were first implemented as stand-alone

assemblers and their performance was compared. Thereafter, a neural network system

was implemented together with each of the two assemblers in order to investigate the

effects a read grouping approach has on assembly performance. The performance of each

of the four assemblers was then compared in terms of computational complexity and as-

sembly accuracy using information theoretic principles along with a proposed coverage

metric. It was found that the simulation time of the stand-alone greedy assembler was

significantly improved when combined with the neural network read grouping approach.

However, due to the higher relative complexity associated with the neural network train-

ing and grouping process, the same can not be said about the de Bruijn assembler. In

order for the de Bruin assembler to benefit from this “divide and conquer” approach,

faster grouping techniques need to be implemented.

http://www.wits.ac.za
http://www.eie.wits.ac.za
http://www.wits.ac.za/ebe

Acknowledgements

First and foremost, I would like to thank my research supervisor Dr. Ling Cheng.

You inspired me to undertake this journey and your contribution to this research was

invaluable. I will always be grateful for our many discussions and the advice you gave

me. I owe so much to you.

I would like to thank CeTAS and the School of Electrical and Information Engineering

at the University of the Witwatersrand for enabling my research by providing me with

the valuable facilities and equipment.

I also like to acknowledge and thank the contribution of Edward Steere to this research,

whose insight and input regarding the field of bioinformatics was immensely valuable.

Last but not least, I would like to thank my loving family. To Florina Constantinescu,

who always encouraged and supported me during my studies, and to Emma Jane Wal-

land, whose support and valuable input helped me get over the finishing line.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables xi

Symbols xii

1 Introduction 1

1.1 Research Aims and Objectives . 4

1.2 Research Resources, Scope and Dissertation Layout 5

2 Literature Review 7

2.1 The Origin of DNA Sequencing . 7

2.2 Shotgun Sequencing Technologies . 9

2.3 Assembly Techniques . 10

2.3.1 Overlap Assembly . 10

2.3.2 k-mer Assembly . 13

2.4 Clustering Reads Using Machine Learning 14

2.5 Information Theoretic Analysis . 15

2.6 Literature Review Summary . 16

3 Information Theoretic Background and Assembler Fundamentals 17

3.1 Entropy for Information Measure . 17

3.2 Assembly Lower Bounds . 18

3.3 Information Theoretic Analysis of Greedy Algorithms 20

3.4 k-mer Assembly . 23

3.5 Supervised Neural Networks and the Backpropagation Algorithm 27

3.6 Summary . 34

iv

Contents v

4 The Greedy and de Bruijn Assembly Schemes 35

4.1 The Greedy Assembler . 35

4.2 The de Bruijn Assembler . 39

4.3 Summary . 45

5 The Neural Network Assembly Scheme 46

5.1 The Complexity and Edit Distance Problem 46

5.2 Neural Network Structure and Read Tracking 48

5.3 Read Grouping . 52

5.4 Neural Network Assembler . 54

5.5 Summary . 56

6 Results and Analysis 57

6.1 Research Paradigm and Setting . 57

6.2 Simulation Methodology . 58

6.2.1 Shotgun Sequencing . 58

6.2.2 Assembly Strategies . 60

6.2.3 Information formatting . 62

6.3 Evaluating Assembly Performance . 62

6.4 Simulation Results . 64

6.4.1 Coverage Statistics . 65

6.4.2 Adjusted Coverage Performance 66

6.4.3 Results Evaluation Based on Adjusted Coverage 67

6.5 Results Discussion . 69

7 Conclusion 75

A Coverage statistics 77

B Adjusted Coverage 86

C Assembly Errors 95

Bibliography 104

List of Figures

1.1 (a) The regular DNA sequencing and assembly step. The sequencing
step generates small read sequences which the assembly step assembles
together; (b) The DNA sequencing, grouping and assembly step. The
extra grouping step classifies reads generated from the sequencing step
into separate groups. Assembly is then applied to each group and then
again on the outputs from each group. 2

1.2 An example target sequence with repeat regions. (a) Shows the reads
generated by the shotgun sequencing process; (b) Shows the layout overlap
graph created from the reads; (c) Shows the de Bruijn graph created from
the reads. This example is adapted from Pevzner et al [1]. 3

3.1 An overlap graph showing a Hamiltonian path approach to DNA sequence
assembly. Adapted from [2]. In this case the k-mers represent vertices
within the graph. 24

3.2 A de Bruijn graph showing the Eulerian path approach to DNA sequence
assembly. Adapted from [2]. In this case the k-mers represent edges
within the graph. 25

3.3 An example of a repeat path within the de Bruijn graph and a set of
overlapping read-paths which help remove the ambiguity associated with
the repeat. Adapted from Pevzner et al [1]. 26

3.4 The supervised machine learning training process applied to a neural net-
work. 28

3.5 A three layer feed-forward neural network with I input neurons, J hidden
neurons and K output neurons. 30

3.6 Illustration of the backward propagation flow and the δ values associated
with each unit within the neural network topology. 32

3.7 Three layer recurrent neural network with I input neurons, J hidden
neurons and K output neurons. The connections between hidden nodes
implement a time delay of 1. 33

4.1 The contig overlap merging process shows how two similar matching reads
are merged together into one contig. 36

4.2 Example of the correlation process comparing two different sized sequences
together. The smaller sequence is compared in a sliding window fashion
to the larger sequence and the overlap score is recorded. 37

4.3 Block diagram of the greedy assembler showing the assembler components. 38

vi

List of Figures vii

4.4 Erroneous merging of contig-read pair due to the presence of repeat re-
gions within the target sequence. In this example, the contig containing
region A should be merged with the read containing region B. However,
due to the repeat regions, erroneous merging may occur by merging the
read containing region C with the contig instead. 40

4.5 Block diagram of the de Bruijn assembler showing the assembler com-
ponents. The de Bruijn assembler implements an instance of the greedy
assembler in order to piece together multiple overlapping output contigs
obtained from the path finding algorithm, if they exist. 40

4.6 Read path information used to resolve repeats within the de Bruijn graph. 43

4.7 An example of a bubble within a k = 3 de Bruijn graph (k-mers cor-
respond to edges in a de Bruijn graph). The solid line represents the
correct path through the graph, while the dashed line represents an erro-
neous path through the graph. 44

4.8 An example of a tip within a k = 4 de Bruijn graph (k-mers correspond
to edges in a de Bruijn graph). The solid line represents the correct path
through the graph, while the dashed line represents an erroneous path
through the graph. 44

4.9 Assembly performance of a de Bruijn assembler using a read size of L =
500 and a coverage depth of c = 20 at varying k values. 45

5.1 (a) Two contiguously similar contigs which should be merged. (b) Two
non-contiguously similar contigs which should not be merged. 48

5.2 Neural network output after read tracking is completed. (a) shows correct
tracking. (b) shows erroneous read tracking where base pairs are incor-
rectly predicted. (c) shows erroneous read tracking where neuron outputs
do not correspond to any particular base pair. 49

5.3 Effect that β has on the sigmoid function which limits the neuron outputs
between −1 and 1. 51

5.4 Preliminary experimental results relating to (A) the grouping threshold
τ and (B) the neural network training complexity. 53

5.5 Block diagram showing the input and output sequences to a neural net-
work. NNa is a neural network tracking read A. Aa is the output sequence
from the neural network NNa given an input sequence A. Ba is the output
sequence from the neural network NNa given an input sequence B. 54

5.6 Block diagram of the neural network assembler. Phase 1 and 2 assembly
blocks implement either the greedy or de Bruijn assemblers. 55

6.1 Assembler block diagrams. 61

6.2 Three cases of varying assembly outputs. All three achieve a total cover-
age of 95% of the target sequence, however the size and number of contigs
vary. 63

6.3 Adjusted coverages of best performing simulations at 5 times coverage
depth. The plot shows performance at both 0% and 1% sequencing error
rates along with the success rate of each assembler. 70

6.4 Adjusted coverages of best performing simulations at 10 times coverage
depth. The plot shows performance at both 0% and 1% sequencing error
rates along with the success rate of each assembler. 71

List of Figures viii

6.5 Adjusted coverages of best performing simulations at 15 times coverage
depth. The plot shows performance at both 0% and 1% sequencing error
rates along with the success rate of each assembler. 72

6.6 Adjusted coverages of best performing simulations at 20 times coverage
depth. The plot shows performance at both 0% and 1% sequencing error
rates along with the success rate of each assembler. 73

6.7 Simulation times of each assembler at 5, 10, 15 and 20 times coverage
depths. 74

A.1 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 5 times coverage depth and 0% sequencing error rate . . . 78

A.2 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 5 times coverage depth and 0.01% sequencing error rate . . 78

A.3 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 5 times coverage depth and 0.1% sequencing error rate . . 79

A.4 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 5 times coverage depth and 1% sequencing error rate . . . 79

A.5 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 10 times coverage depth and 0% sequencing error rate . . . 80

A.6 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 10 times coverage depth and 0.01% sequencing error rate . 80

A.7 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 10 times coverage depth and 0.1% sequencing error rate . . 81

A.8 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 10 times coverage depth and 1% sequencing error rate . . . 81

A.9 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 15 times coverage depth and 0% sequencing error rate . . . 82

A.10 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 15 times coverage depth and 0.01% sequencing error rate . 82

A.11 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 15 times coverage depth and 0.1% sequencing error rate . . 83

A.12 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 15 times coverage depth and 1% sequencing error rate . . . 83

A.13 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 20 times coverage depth and 0% sequencing error rate . . . 84

A.14 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 20 times coverage depth and 0.01% sequencing error rate . 84

A.15 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 20 times coverage depth and 0.1% sequencing error rate . . 85

A.16 Total contig coverage, correct contig coverage and largest contigs at vary-
ing read sizes, 20 times coverage depth and 1% sequencing error rate . . . 85

B.1 Adjusted coverage at 5 times coverage depth and 0% sequencing error rate 87

B.2 Adjusted coverage at 5 times coverage depth and 0.01% sequencing error
rate . 87

B.3 Adjusted coverage at 5 times coverage depth and 0.1% sequencing error
rate . 88

B.4 Adjusted coverage at 5 times coverage depth and 1% sequencing error rate 88

B.5 Adjusted coverage at 10 times coverage depth and 0% sequencing error rate 89

List of Figures ix

B.6 Adjusted coverage at 10 times coverage depth and 0.01% sequencing error
rate . 89

B.7 Adjusted coverage at 10 times coverage depth and 0.1% sequencing error
rate . 90

B.8 Adjusted coverage at 10 times coverage depth and 1% sequencing error rate 90

B.9 Adjusted coverage at 15 times coverage depth and 0% sequencing error rate 91

B.10 Adjusted coverage at 15 times coverage depth and 0.01% sequencing error
rate . 91

B.11 Adjusted coverage at 15 times coverage depth and 0.1% sequencing error
rate . 92

B.12 Adjusted coverage at 15 times coverage depth and 1% sequencing error rate 92

B.13 Adjusted coverage at 20 times coverage depth and 0% sequencing error rate 93

B.14 Adjusted coverage at 20 times coverage depth and 0.01% sequencing error
rate . 93

B.15 Adjusted coverage at 20 times coverage depth and 0.1% sequencing error
rate . 94

B.16 Adjusted coverage at 20 times coverage depth and 1% sequencing error rate 94

C.1 Assembly and sequencing errors at 5 times coverage depth and 0% se-
quencing error rate . 96

C.2 Assembly and sequencing errors at 5 times coverage depth and 0.01%
sequencing error rate . 96

C.3 Assembly and sequencing errors at 5 times coverage depth and 0.1% se-
quencing error rate . 97

C.4 Assembly and sequencing errors at 5 times coverage depth and 1% se-
quencing error rate . 97

C.5 Assembly and sequencing errors at 10 times coverage depth and 0% se-
quencing error rate . 98

C.6 Assembly and sequencing errors at 10 times coverage depth and 0.01%
sequencing error rate . 98

C.7 Assembly and sequencing errors at 10 times coverage depth and 0.1%
sequencing error rate . 99

C.8 Assembly and sequencing errors at 10 times coverage depth and 1% se-
quencing error rate . 99

C.9 Assembly and sequencing errors at 15 times coverage depth and 0% se-
quencing error rate . 100

C.10 Assembly and sequencing errors at 15 times coverage depth and 0.01%
sequencing error rate . 100

C.11 Assembly and sequencing errors at 15 times coverage depth and 0.1%
sequencing error rate . 101

C.12 Assembly and sequencing errors at 15 times coverage depth and 1% se-
quencing error rate . 101

C.13 Assembly and sequencing errors at 20 times coverage depth and 0% se-
quencing error rate . 102

C.14 Assembly and sequencing errors at 20 times coverage depth and 0.01%
sequencing error rate . 102

C.15 Assembly and sequencing errors at 20 times coverage depth and 0.1%
sequencing error rate . 103

List of Figures x

C.16 Assembly and sequencing errors at 20 times coverage depth and 1% se-
quencing error rate . 103

List of Tables

6.1 The minimum number of reads and coverage depths needed at varying
read sizes in order for reads to fully cover the target sequence of 50456
base pairs with a probability of 99% (ε = 0.01). 65

6.2 Assembler normalised coverage depths without the presence of sequencing
errors. 68

xi

Symbols

a neuron activation

A adenine base pair

c coverage depth

cmin minimum normalised coverage depth

c̄ normalised coverage depth

C cytosine base pair

D edit distance

E error function

G guanine base pair

G target DNA sequence length

HShannon Shannon entropy

Hα Renji entropy

I number of input neurons

J number of hidden neurons

k size of k-mer

K number of output neurons

L read length

L̄ normalised read length

Madjusted coverage adjusted coverage metric

Mlargest contig largest contig metric component

Msquared average squared average metric component

N number of reads

Ncov read number coverage lower bound

Nmin read number assembly lower bound

O big O limiting function

xii

Symbols xiii

p probability

P message probability set

s sub-sequence

S sequence

t output neuron target

T thymine base pair

T minimum overlap threshold

T neural network training set

w neuron connection weight

W neural network weight vector

x input neuron input

X neural network input set

XA adenine input mapping

XT thymine input mapping

XG guanine input mapping

XC cytosine input mapping

y output neuron output

Y neural network output set

YA adenine output mapping

YT thymine output mapping

YG guanine output mapping

YC cytosine output mapping

z hidden neuron activation

α scaling factor

β sigmoid function gradient

δ error gradient

ε error tolerance

η learning rate

γ sequence transformation function

φ fractional overlap

σ sigmoid function

τ neural network grouping threshold

θ time epoc

Chapter 1

Introduction

Deoxyribonucleic acid (DNA) is a molecule which encodes for genetic information in bi-

ological organisms. It achieves this by using a sequence of nucleotides, namely; Adenine,

Thymine, Guanine and Cytosine, referred to by the letters A, T, G and C respectively

[3]. In modern day medicine, DNA plays a major role in a number of important fields

such as forensics, bioinformatics and genetic engineering. With the completion of the

Human Genome Project and other similar projects aiming to sequence genomes for a

variety of organisms, a major challenge for the past decade has been to digitise ge-

netic information. This digitisation is achieved through the process of DNA sequencing

and assembly and it opens the possibility to explore a new set of medical applications

previously inaccessible. These applications include discovering genetic variations across

different species, or members of the same species. It is possible to sequence an individ-

ual’s genome and identifying genes affected by mutations caused by cancer. The benefits

of such applications introduce new areas to the field of medicine, such as the ability to

identify predispositions for certain diseases in individuals and the ability to produce

tailor made personalised medicine based on an individual’s genetics.

Current DNA sequencing and assembly technologies are unable to sequence entire genomes

in one go. As a result the sequencing of large genetic information is split into two steps

namely; the sequencing and assembly steps. The sequencing step is responsible for gen-

erating, or sequencing, multiple short length clones of the target being sequenced using

gel-electrophoresis technologies [4, 5]. The assembly step is then responsible for piecing

together these digital clones, also referred to as reads, in order to reconstruct the tar-

get sequence. Some examples of the DNA sequencing technologies used to generate the

reads include the Sanger platform, 454 machines, Illumina and SOLiD [6, 7]. These tech-

nologies produce reads uniformly distributed across the target DNA sequence and which

vary in length based on the sequencing technology used to generate them. Due to the

1

Chapter 1. Introduction 2

distribution of reads across the target sequence, this technique of sequencing is referred

to as shotgun sequencing [8]. In shotgun sequencing, enough reads are produced such

that there exists a large degree of overlap between reads. This overlap then introduces

a redundancy of information which is available to reconstruct the target sequence. The

assembly step makes use of this redundancy in order to correctly assemble the pieces

together. Figure 1.1 (a) shows the system block diagram of the DNA sequencing and

assembly process. Figure 1.2 (a) shows an example of the shotgun sequencing procedure.

For the case of human whole genome sequencing, target sequences have in the order

of 109 nucleotides (or base pairs) and the DNA sequencing technologies generate reads

ranging between 100 − 1000 base pairs in length [6–8]. For this reason, depending on

the average length of reads, DNA assembly is required to piece together somewhere

around 108 reads in order to reconstruct the original DNA target. Traditional assem-

bly techniques compare reads and merge them if they are found to overlap with one

another. More modern techniques, which use the overlap-layout-consensus paradigm,

Sequening Step Assembly Step

Target DNA
Sequence

Reads Re-assembled
DNA SequenceSequencer Assembler(a)

Sequening Step Assembly Step

Target DNA

Sequence

Re-assembled

DNA SequenceSequencer
Assembler

Final(b)

Assembler

Group

Assembler

Group

Classifier

ReadReads

Grouping Step

Figure 1.1: (a) The regular DNA sequencing and assembly step. The sequencing step
generates small read sequences which the assembly step assembles together; (b) The
DNA sequencing, grouping and assembly step. The extra grouping step classifies reads
generated from the sequencing step into separate groups. Assembly is then applied to

each group and then again on the outputs from each group.

Chapter 1. Introduction 3

Region A Repeat Region B Repeat Region C

Region A

Repeat

Region B

Region C

(a)

(b)

(c)

Figure 1.2: An example target sequence with repeat regions. (a) Shows the reads gen-
erated by the shotgun sequencing process; (b) Shows the layout overlap graph created
from the reads; (c) Shows the de Bruijn graph created from the reads. This example is

adapted from Pevzner et al [1].

convert this assembly process into a graph problem and solve it using graph theoretic

principles [1]. An example of an overlap graph can be found in Figure 1.2 (b). These

techniques typically use a greedy approach, or greedy algorithm, for assembling reads

together by finding reads with the largest matching overlap and merging them [8–10].

However, due to the extremely large number of reads needed to sequence targets of such

a magnitude, the assembly problem becomes incredibly complex and computationally

expensive to solve in this manner. These techniques therefore only remain viable options

for localised sequencing cases where only specific and much smaller areas of a genome

or chromosome are sequenced.

The most recent techniques implement graph theoretic principles in order to solve the

assembly problem. They make use of de Bruijn graphs, where vertices within these

graphs are created by breaking reads into smaller pieces known as k-mers. Vertices are

then connected together by edges if they are found to overlap with one another. This

interconnectivity between vertices is what makes up the de Bruijn graph and allows

one to re-assemble a sequence. The assembly problem is solved by using the Eulerian

Chapter 1. Introduction 4

algorithm which finds a path, also known as the Eulerian path, through the de Bruijn

graph. A Eulerian path is a path which visits every edge of the graph exactly once [1].

An example of a simplified de Bruijn graph can be found in Figure 1.2 (c). The de

Bruijn graph technique solves the assembly problem in a more efficient manner which

reduces the time complexity of the assembly process.

Another approach to reducing the time complexity of the assembly process is to first

place reads into similar groups by introducing an additional step between the sequencing

and assembly steps. In this pre-assembly step, a clustering machine learning approach

for grouping reads is introduced. This grouping technique, inspired by Angeleri et al [11],

attempts to reduce complexity for the assembly techniques by implementing a “divide

and conquer” approach. Figure 1.1 (b) shows how the overall sequencing and assembly

process is modified with the introduction of this new step. The research explores this

grouping approach and implements it together with existing assembly algorithms.

1.1 Research Aims and Objectives

The aim of this research is to tackle the problem of DNA sequence assembly by combining

a machine learning approach with commonly used assembly techniques. In particular,

an artificial neural network system is implemented which divides reads into separate

groups with the aim of reducing the overall complexity for the assembly process. Both

overlap and de Bruijn graph assembly techniques are implemented with and without the

machine learning grouping approach and the performance of each assembly approach is

then compared.

The research purpose is to compare the performance of these assembly approaches using a

thorough analysis from an information theoretic perspective. The research will determine

if the “divide and conquer” approach, by grouping reads, will reduce computational

complexity and improve the performance of DNA assembly techniques. The performance

of each approach is presented using a new metric which takes into account both the

number and accuracy of the assembled outputs. This will be achieved with the following

objectives in mind:

• Establish a good foundation based on information theoretic principles for analysis

of the assembly techniques;

• Simulate the overlap assembly technique using the greedy algorithm;

• Simulate the k-mer assembly technique using the de Bruijn graph and a path

finding algorithm;

Chapter 1. Introduction 5

• Develop a clustering artificial neural network which places reads into separate

groups and then implement it together with the two assembly techniques;

• Using an appropriate measure of performance, compare each assembly approach in

terms of computational complexity (time complexity) and performance (accuracy)

of assembly.

According to the standards defined by the National Human Genome Research Institute,

for a reconstruction to be deemed successful, at least 95% of the original DNA target

sample sequence must be reconstructed [12]. With this in mind, and with the aid

of an information theoretic analysis, the research question attempts to determine the

following: for a given DNA sample, which of the two proposed assemblers (greedy and

de Bruijn) achieves the most accurate assembly and at what computational complexity

cost? Additionally, how does a read grouping neural network assembly scheme affect

the overall assembly process and the outputs of each of the assemblers?

1.2 Research Resources, Scope and Dissertation Layout

The assembly techniques, along with the machine learning approach, are implemented

by means of a C++ simulation. In order to speed up the simulation process a number

of simulation machines have been provided by the CeTAS research group at the school

of Electrical and Information Engineering. The target DNA sequence data has been

obtained from the FlyBase database [13]. This data consists of an already sequenced

portion of the Drosophila Melanogaster (fruit fly) genome, however some preprocessing

is required in order to convert this data into a usable format. The shotgun sequencing

process is then simulated on this data in order to generate the multiple reads. The

assembly approaches are simulated and the resulting reconstructed DNA sequence is

verified according to the known FlyBase sequenced genome. The shotgun sequencing

simulations are implemented with the following assumptions:

• All reads are generated from the same single DNA strand;

• All reads are generated at the same specified size.

These assumptions are implemented in order to limit the scope and complexity of the

research.

The rest of this dissertation is structured as follows. A literature review covering im-

portant sources is performed in Chapter 2 in order to better establish the research

Chapter 1. Introduction 6

context. Chapter 3 provides more fundamental detail on the concepts being researched

and implemented. Chapter 4 covers the implementation of existing assembly techniques.

Chapter 5 covers the implementation of the machine learning approach to the DNA se-

quencing and assembly problem. In Chapter 6 all results are provided and analysed.

Finally, Chapter 7 will conclude the research.

Chapter 2

Literature Review

Large advances have been made in the field of DNA sequencing and assembly which

has helped in reducing the time and cost associated with the process. This chapter

investigates literature related to DNA sequencing and assembly. Both legacy and current

state-of-the-art techniques in DNA sequencing and assembly are investigated. This

chapter also explores the Information theory and machine learning in the context of the

DNA sequencing and assembly problem and helps to lay down the foundation of the

research. Through analysis of the literature it is shown that the feasibility of accurate

assembly depends largely on the complexity of the target and the size and coverage

depths used in the sequencing process. Additionally, it is found that a gap in the

literature remains with regards to combining the clustering machine learning approach

with more modern k-mer assembly techniques.

2.1 The Origin of DNA Sequencing

The field of DNA sequence assembly has been created due to the increasing need for

sequencing genetic information. The Human Genome Project and other similar projects

have created this demand. They seek to increase the rate of DNA sequencing while

reducing its cost. Obtaining the genetic information of a particular species or individual

plays a vital role in a number of applications. It is an important tool which helps

in the biological analysis of organisms and the prevention of diseases. This genetic

information is expressed by genes located at various regions within chromosomes. These

chromosomes typically consist of three regions namely; heterochromatic, euchromatic

and centromere regions [3]. While all three regions play a role in the encoding of genetic

information, the euchromatic region is regarded as the most gene rich as it consists of

around 93% of the human genome [14] and around 66% of the fly genome [15]. Further

7

Chapter 2. Literature Review 8

study of the human and fly genome has revealed the presence of repeated regions. These

regions consist of perfect, or near perfect, repeats of regions within the genome. Repeat

regions mostly exist within heterochromatic regions of the genome however a small

amount of such regions, around 5 − 6% of the human genome and significantly less for

the fly genome, have also been found in the euchromatic regions [15, 16]. These regions

present a problem to the sequencing process as it introduces ambiguity in the assembly

process leading to the highest potential for causing mis-assembly. It is therefore critical

for modern day assemblers to overcome the presence of repeats within the genome of a

target sequence.

One of the early predecessors to modern day DNA sequencing was a technique known

as sequencing by hybridisation. This technique made use of DNA arrays, or sequenc-

ing chips, to determine the sequence of a single stranded DNA target. These arrays

consist of small DNA l-tuples, also known as probes, which bind (or hybridise) to the

complimentary sub-strings if they exist within the target sequence [17]. Once all the

l-tuples present in the target DNA are identified this data can then be used to assemble

the target sequence. This assembly problem is also referred to as the super-string prob-

lem which uses the overlap-layout-consensus paradigm [1] and has been shown to be an

NP-complete problem [18]. This high complexity cost associated with solving the super-

string problem prompted the need for more efficient ways of solving the DNA sequence

assembly problem. This was achieved by P. A. Pevzner whose proposed solution laid the

foundations for the modern day assembly techniques covered later in this chapter [19].

His approach solved the problem by constructing de Bruijn graphs and finding Eulerian

cycles through them in order to reconstruct the target sequence.

Other approaches to generating sequence data using polymerase chain reactions and

electrophoresis techniques led to the creation of the shotgun sequencing process [5, 6].

This process generates clones, or reads, of the target sequence instead of using DNA

arrays as in the sequencing by hybridisation process. The size and number of these

reads varies depending on the sequencing technology being used and is further discussed

in Section 2.2 of this chapter.

As the field of DNA sequence assembly grew a common set of symbols and lexicon has

become established within the field. Based on popular literature the following list of

symbols have become synonymous with DNA sequence assembly;

• G = Target DNA sequence length (in base pairs);

• L = Read length (in base pairs);

• N = Number of reads taken;

Chapter 2. Literature Review 9

• c = LN
G = Coverage depth (redundancy of coverage).

The coverage depth c is an important term associated with DNA sequence assembly

which greatly affects the performance and ability of assemblers to reconstruct the target

sequence. It also plays an important role and is a critical component in the information

theoretic analysis performed in Section 2.5 of this chapter. The term “contig” is used in

popular literature to refer to a contiguous fragment which consists of the combination

of one or more sequenced reads [8]. In the context of this research the term contig is

used to refer to an output from an assembler in the DNA assembly step. Typically,

output contigs consist of multiple merged reads, however in some situations they may

consist of only a single read. It is also common to produce multiple output contigs from

a single assembly round [20]. In such cases the contigs are disjoint from one another

and are referred to as “islands”. The gaps between these contigs, which are gaps in the

sequenced target, are known as “oceans”.

2.2 Shotgun Sequencing Technologies

The invention of newer sequencing technologies using polymerase chain reactions and

electrophoresis has led to the introduction of the shotgun sequencing process for creating

read data. The success of the shotgun sequencing methods is due to the larger read sizes

which can be generated with the newer sequencing technologies. These technologies are

able to create much larger reads when compared to the sequencing by hybridisation

approach. Reads used in sequencing by hybridisation are in the range of 8 − 25 base

pairs [17] whereas newer technologies generate reads ranging between 25 − 1000 base

pairs [5–7]. By creating large sets of such reads much higher coverage depths can be

achieved which significantly improves the accuracy for a given reconstruction.

The first generation of shotgun sequencing technologies known as the Sanger machines

created reads ranging between 100− 1000 base pairs in length. As DNA sequencing and

assembly evolved newer shotgun sequencing technologies began to focus on generating

much smaller reads. The 454 machines produced an average read length of 250 base pairs

while the Illumina and SOLID technologies produced reads in the range of 25− 35 base

pairs [7]. The feasibility of using smaller reads in the sequencing process was analysed

by Whiteford et al [21] where it was shown that reads ranging between 25 − 50 base

pairs in length were adequate in the sequencing of bacterial targets, however for larger

and more complex targets, larger read sizes are required. Since every base pair increases

the complexity of a sequence by a factor of four [22], observing a unique sequence

significantly reduces when reducing the read length below 20 base pairs. Additionally,

Chapter 2. Literature Review 10

achieving maximal uniqueness within the read set depends on the size and complexity

of the target being sequenced [21]. Recent technologies such as Velvet [23] have however

improved upon the performance of short read length assemblers in the assembly of

mammalian target sequences.

The shotgun sequencing process generates reads which are uniformly distributed across

the target sequence [8] with a typical error rate of 1% per base pair and below [23, 24].

Typically, between 10− 60 times coverage depths is needed in order to ensure there are

no gaps, or oceans, for a given target sequence [8]. For whole genome assembly, where

large target sequences are used, shotgun sequencing generates around 27 × 106 reads

[16]. This large number of reads introduces the complexity issues associated with the

assembly step of DNA sequence assembly.

2.3 Assembly Techniques

There are two popular and widely accepted approaches when it comes to the assembly

step of the DNA sequence assembly problem. The first compares overlapping regions

between reads in order to establish a degree of similarity. Contigs are created and

extended if the overlapping prefix or suffix regions between reads are found to be similar

[8]. The second approach breaks reads into smaller k-mers which are used to create

a de Bruijn graph. The problem of assembly is then solved using a graph theoretic

approach making use of path finding algorithms to find Eulerian cycles through the

graph [1]. These two assembly techniques are discussed in Section 2.3.1 and Section 2.3.2

respectively.

2.3.1 Overlap Assembly

The overlap assembly techniques solve the DNA sequence assembly problem by identi-

fying similar reads using an appropriate similarity measure and merging them to create

contigs. These techniques find a similarity between overlapping regions of reads by using

an overlap score as defined by Lander and Waterman [20]. This overlap score is defined

as the number of similar base pairs between similar regions of two reads. These regions

correspond to either the prefix or suffix areas of reads and are required to be above some

minimum overlap threshold value defined as

• T = Minimum amount of base pairs needed to detect an overlap;

• φmin = T
L = Minimum read fraction needed to detect an overlap.

Chapter 2. Literature Review 11

Another popular measure of similarity is the edit distance metric [25]. This edit distance,

also known as the Levenshtein distance, is defined as the minimum number of insertions,

deletions or substitutions required to transform one string, or read, into another [26].

Hence, the lower the edit distance cost between two reads, the greater their degree of

similarity. Edit distance comparison was first applied to protein sequences by Needleman

and Wunsch [27] and has since been extended to DNA sequences. Work by Chang

and Lawler [28] has shown how finding the edit distance between two strings can be

done using Dynamic Programming [29]. Smith and Waterman [30] also discuss the use

of a similarity matrix when comparing sequences. This matrix identifies areas within

sequences which are considered most similar, taking into account insertions, deletions

and mismatches between base pairs.

A number of popular assemblers implementing an overlap assembly approach have been

developed. These assemblers find reads which are considered similar and merge them

together to form contigs in a greedy manner. This approach has been implemented by

assembler technologies such as the TIGR [31], PHRAP [8] and CAP series of assemblers

[9, 10] which make use of a greedy strategy in order to piece together contigs in a

parallel fashion. Some other overlap assemblers such as the SSAKE [22], VCAKE [32]

and SHARCGS [24] assemblers use a sequential greedy strategy for assembling contigs.

These assemblers are presented in the paragraphs that follow.

The TIGR assembler claims to overcome several obstacles associated with the shotgun

sequencing assembly of large target sequences. The most important of which is its ability

to deal with the presence of repeat regions in the target sequence. The TIGR assem-

bler identifies repeat regions by separating reads into repeat and non-repeat categories.

Reads are classified by measuring the possible overlaps with all other reads once a pair-

wise comparison of every read has been performed. A threshold is used to differentiate

between repeat and non-repeat reads. This threshold is biased towards over-labeling

reads as repeat reads in order to minimise the chance of erroneous merges with con-

tigs. TIGR first creates and extends contigs by only using non-repeat reads until the

ends of contigs only have potential overlaps with repeat reads. Lower coverage regions

are assembled only if there are no other reads with stronger overlap data. These lower

coverage regions occur due to the randomness of the shotgun sequencing process where

some reads have overlap possibilities below the median of other reads. The TIGR assem-

bler has been used to correctly assemble the Haemophilus influenzae and Mycoplasma

genitalium genomes [31].

The CAP series of assemblers perform the assembly process in several steps. After

a pairwise comparison between each read is completed, reads with erroneous or no

overlaps are removed. A dynamic programming algorithm is also used to compute an

Chapter 2. Literature Review 12

overlap alignment score based on the Smith-Waterman algorithm [30]. This overlap

score measures the degree of similarity between reads and is used in a greedy manner to

merge similar reads into contigs [9, 10]. For the case of CAP3, an additional consensus

step is performed which makes corrections to contigs. This consensus also evaluates

the quality of the contigs by assigning a quality value to each base pair. These quality

values are then used to remove poor quality areas from contigs when performing pairwise

overlap comparison between reads and contigs [10].

The SSAKE assemblers are designed to operate on high coverage short length reads [22].

They are used in the sequencing of short length targets in the region of 30k base pairs.

The SSAKE assembly algorithm makes use of a hash table which is keyed by the first

11 unique base pairs within each read, with the number of times they occur. A prefix

tree is then used to sort the sequences according to their occurrence. Starting with an

11-mer base pair window, the ends of the assembly contig are compared with the ends

of the reads populating the hash table. The search time for this process is significantly

reduced using prefix tree sorting. When a match is found, the remaining unmatched

portion of the read is appended to the assembly contig and the read is removed from the

hash table and prefix tree. If no matches are found then the k-mer window is reduced

in size. This process is repeated until a user defined minimum is reached for the k-mer

window. A limitation of the SSAKE assembler is that it operates on only error-free

reads. This is considered unrealistic due to the error rates associated with modern day

sequencing technologies.

The VCAKE assembler improves upon the SSAKE algorithm by introducing a tolerance

to error introduced in the shotgun sequencing process [32]. VCAKE achieves this by in-

troducing two primary changes to the SSAKE algorithm. Firstly, the VCAKE assembler

makes use of larger coverage depths compared to SSAKE. Secondly, matches between

reads and the assembly contig are recorded and stored in an array instead of greedily

merging the first match. A majority vote is then used to merge the most likely correct

read with the assembly contig.

The SHARCGS assembler is another short read assembler which assembles reads between

25 and 40 base pairs in length [24]. Similar to the CAP3 assembler, it makes use of a

quality score to rate the quality of reads. The assembly process then filters out poor

quality reads before the assembly contigs are created and extended by the reads. Once

the poor quality reads have been removed from the pool of reads, a pairwise comparison

is performed to join the remaining reads to the assembly contig. The process of extending

a contig also involves creating a verification region. This consists of a read sized portion

of the contig suffix and the non-matching remaining portion of the read to be appended

to the contig. This verification region is then used to generate all possible sub-strings of

Chapter 2. Literature Review 13

a predefined minimum length from within this region. If all reads containing these sub-

strings as prefixes have a matching overlap with the verification region, then the read

to be appended is merged with the assembly contig. This process is also repeated in

the reverse compliment in order to extend the prefix of the assembly contig in a similar

manner.

The assemblers discussed in this section follow the overlap-layout-consensus paradigm.

They make use of the overlap step to perform a pairwise comparison between every

read. The layout step then merges the reads together, and finally error correction is

performed in the consensus step. If this approach had to be analysed using graph

theoretic principles, the overlap step can be represented by creating an overlap graph

as in Figure 1.2 (b). Every read corresponds to a vertex in this graph and two vertices

are connected by an edge if they overlap with one another. Assembly is then performed

by finding a Hamiltonian path through the graph where every vertex is visited exactly

once [1]. The issue with this overlap approach to the DNA sequencing and assembly

problem is that there is no polynomial time solution for the Hamiltonian path problem

and regardless of the strategy used, the overlap approach has been shown to have O(N2)

complexity [8, 18], where N is the number of reads taken during the shotgun sequencing

process.

2.3.2 k-mer Assembly

Work done by Idury and Waterman [33] and Pevzner [19] has since extended the se-

quencing by hybridisation problem and has introduced more modern approaches to the

DNA sequence assembly problem. They propose the construction of de Bruijn graphs

to help in the sequence assembly process. The approach attempts to solve the assembly

problem by dividing the reads into smaller k < L pieces [1, 8, 34]. These pieces are

then represented as edges of a de Bruijn graph where an edge between two (k − 1)-mer

vertices exists if they are adjacent to one another in a particular k-mer. The assembly

problem then becomes a task of finding the Eulerian path through the graph, where this

path represents the reconstructed DNA sequence [1, 8]. A number of different de Bruijn

graph algorithms exist. The most recent are applied by the Velvet series of assemblers

[23]. Additional algorithms such as the DEBRUIJN, SIMPLEBRIDGING and MULTI-

BRIDGING are also presented by Tse et al [34] while Pevzner et al [1] introduce the

EULER algorithm. These k-mer assembly techniques are presented in the paragraphs

to follow.

The Velvet assembler is one of the most successful de Bruijn graph assemblers. Un-

like overlap-layout-consensus assemblers, Velvet performs the error correction as one of

Chapter 2. Literature Review 14

the first steps [23]. After the de Bruijn graph is created, simple and non-ambiguous

connections are first resolved by merging vertices together. Two error correcting steps

are then implemented to remove “tips” and “bubbles” from the graph caused by the

sequencing process. The final step involves resolving repeats present within the graph

such that correct Eulerian paths through the de Bruijn graph can be found. Because of

the short read nature of Velvet, output contigs consist of between 2k to 3k base pairs

in length for mammalian targets [23]. For this reason, other methods such as those im-

plemented by overlap assemblers, need to be combined with Velvet in order to perform

whole-genome-assembly [21, 23].

The EULER assembler proposed by Pevzner et al [1] is another de Bruijn graph approach

which abandons the overlap-layout-consensus paradigm. Similar to Velvet, EULER

attempts to simplify and resolve the de Bruijn graph before a Eulerian path can be

found. It does this using “detachment” and “cut” techniques which make use of read

information to create sub-paths within the graph and remove unwanted edges between

vertices [1].

Another example of k-mer assembly is the ARACHNE assembler which is capable of

whole genome assembly [35]. This is a hybrid assembler which sorts k-mers into map

containers and then uses dynamic programming to find overlaps between reads. Because

of the overlap assembly approach this assembler implements, it still suffers from time

complexity issues. The ARACHNE assembler requires up to 8 days to sequence the

genome of a mouse which demonstrates the need to improve upon the time complexity

of such overlap assemblers [35].

The de Bruijn graph series of assemblers have introduced a more efficient means of

performing the assembly phase of DNA sequencing and assembly. The complexity asso-

ciated with the k-mer de Bruijn graph assemblers has been shown to be O(N logN) [34]

which is a considerable improvement over the O(N2) complexity of the overlap assembly

techniques.

2.4 Clustering Reads Using Machine Learning

An alternative approach to reducing the overall computational complexity of the DNA

sequence assembly problem is to pre-allocate reads into similar groups before the as-

sembly step is implemented. This clustering of reads can be performed with the use of

machine learning.

Machine learning is a branch of artificial intelligence which aims at learning from given

data. It has various applications such as pattern recognition, classification and clustering

Chapter 2. Literature Review 15

[36]. A system is first trained using appropriate features from a given data set, and once

trained, the system can be used to generalise other inputs. The term machine learning

is a general term used to refer to a variety of different models and algorithms [36].

The accuracy of generalisation for a trained system depends greatly on the model and

algorithms used in the machine learning process. Artificial neural networks and support

vector machines are examples of some popular machine learning models.

The “divide and conquer” approach is being investigated in order to determine if there is

any potential in reducing complexity and improving performance to the DNA assembly

problem. An edit distance analysis could be used to sort reads into similar groups. How-

ever, the calculation for this edit distance requires Dynamic Programming techniques

and can become expensive for a large read length L [25, 28]. An alternative approach

proposed by Angeleri et al [11] makes use of machine learning to train neural networks

to recognise, or track, specific reads and then group reads according to these tracked

reads. This machine learning approach implements a recurrent 3-layer perceptron neu-

ral network which uses the backpropagation through time learning algorithm in order

to cluster reads into similar groups [37]. This system makes use of five input nodes in

the first layer (one for each possible base pair, plus a fifth in order to accommodate for

the possibility of ambiguity caused by errors in the reads), 27 nodes in the hidden layer,

and 4 nodes for the output layer (one for each possible base pair). In the literature, the

CAP3 assembler was used to assemble each group [11], and the output from each group.

However, a gap remains in the research, as potentially any assembly technique may be

used instead of CAP3.

The use of a recurrent neural network, as opposed to a regular feed-forward neural

network, introduces memory to the system [37]. This is justified by the need to address

previous elements of a specific read in order to more accurately track it. There is a

trade-off between accuracy and complexity regarding the number of nodes in the hidden

layer; more nodes results in a more accurate but more complex system with slower

computation, while less nodes results in a less accurate and less complex system with

faster computing times [36]. Based on this principle, the number of nodes used in the

work presented by Angeleri et al [11] was determined using trial and error.

2.5 Information Theoretic Analysis

The successful assembly of a target sequence greatly depends on the number and size of

the reads (coverage depth) generated by the shotgun sequencing process. A number of

works have been done in order to determine optimal values for these parameters. The

work by Lander and Waterman established the mathematical foundation and bounds

Chapter 2. Literature Review 16

necessary for the overlap approach to the DNA assembly problem [20]. It showed how

the number of islands, oceans, and average contigs per island can be calculated. This led

to works by Tse et al [8] and Pervzner et al [34] which established critical lower bounds

on the number of reads needed for successful reconstruction of a target sequence of a

given size.

It was further discovered that the repetitive nature of the genetic information present

within the genome of organisms also has a great impact on the size of reads generated

by shotgun sequencing [8, 34]. It was shown that for successful reconstruction, repeats

within the target sequence need to be fully covered by reads [8, 34]. These repeats

further complicated the assembly process and need to be carefully considered when

choosing appropriate assembly algorithms.

2.6 Literature Review Summary

Large advancements have been made in the field of DNA sequencing and assembly which

has helped in reducing the time and cost associated with the process. Through analysis

of the literature it has been shown that the feasibility of assembly depends largely on

the complexity of the target and the size and coverage depths used in the sequencing

process. However, given the greedy and de Bruijn graph assembly algorithms along with

the clustering (read grouping) technique implemented using neural networks, there still

remains a gap in research when combining these techniques together.

Chapter 3

Information Theoretic

Background and Assembler

Fundamentals

In this chapter, a more in depth analysis on important concepts is performed. These

concepts are vital to the implementation and analysis of the assembly and grouping

techniques discussed in this research. An information theoretic analysis is performed in

order to determine under which conditions assembly is achievable. A k-mer approach

to the DNA assembly problem is presented which promises to significantly reduce com-

putational complexity in the assembly process. Additionally, a background into neural

networks and the backpropagation training algorithm is also presented in order to sup-

port Chapter 5 which deals with the machine learning approach to the DNA assembly

problem.

3.1 Entropy for Information Measure

Before analysis on the assembly techniques can begin, it is important to determine what

information in the context of DNA assembly means. The early and well known work

by Shannon [38] in the field of information theory defines information as a measure of

freedom one has in selecting a message from a possible set. This relates to the concept

of entropy to a large degree. The greater the freedom of choice, the greater the entropy

in the system. Hence, entropy can be seen as a measure of Information by measuring

the randomness within a system. In a binary case, Shannon defines information as the

base two logarithm of the number of available choices that can be represented using

binary bits [38, 39]. For example, a system with four possible messages; (00), (01), (10)

17

Chapter 3. Information Theoretic Background and Assembler Fundamentals 18

and (11), the measure of information is log2 4 = 2. In the case of Shannon entropy, one

needs to look at the occurrence probability for each message in addition to the number

of available choices. Hence, for a stochastic system, the Shannon entropy is given as

follows

HShannon(p) =

m∑
i=1

−pi log2 pi (3.1)

where P = {p1, p2, · · · , pm} is the set of probabilities for each possible message. For the

case of DNA there are only four possible message choices corresponding to each base

pair A, T, C and G. Additionally, base pairs are not uniformly distributed across the

genome of a species [3]. For example, the distribution of base pairs in humans is given

as

A = 30.3% T = 30.3% G = 19.5% C = 19.9%

while the distribution for the common fly is as

A = 27.33̇% T = 27.66̇% G = 22.5% C = 22.5%

Using Equation (3.1) and the given distributions, the greatest achievable Shannon en-

tropy when sequencing a human genome is HShannon(p) = 1.967. For the fly genome it

is given as HShannon(p) = 1.993.

Another measure of information used in the work by Tse et al [8] is the Renyi entropy,

a generalisation of the Shannon entropy [39]. The Renyi entropy is given as follows

Hα(p) =
1

1− α log2

m∑
i=1

pαi (3.2)

where α > 0 and α 6= 1. It is shown that if α = 1 then the Renyi entropy becomes

the Shannon entropy which indicates that the Shannon entropy is a special case of

the Renyi entropy, where HShannon(p) = H1(p) [39]. The importance of this entropy

measure becomes apparent when the coverage and read size lower bounds are established

in the later sections.

3.2 Assembly Lower Bounds

An information theoretic approach to the DNA sequence assembly problem helps to

establish some necessary bounds related to the assembly process. These bounds are

useful in determining important properties such as the number and size of the reads

needed to successfully assemble a given target sequence. This analysis is established

using principles from DNA sequencing theory [40].

Chapter 3. Information Theoretic Background and Assembler Fundamentals 19

An important lower bound was first established in the work by Lander and Waterman

[20]. This bound Ncov, defines the minimum number of reads needed in order to cover

the entire target DNA sequence with a probability of at least 1 − ε, where ε is some

error tolerance. This bound is significant as it ensures that no gaps, or oceans, are

present in the coverage of a target sequence. The presence of gaps is undesirable as they

lead to disjoint islands in the assembly process. The Ncov lower bound is given by the

approximation

Ncov(ε,G, L) ≈ G

L
ln

(
G

Lε

)
(3.3)

where G is the target sequence length and L is the read length [8]. Equation (3.3)

therefore acts as an absolute lower bound on the number of reads needed in the assembly

process regardless of the assembly algorithm being used.

Another important bound is based on Ukkonen’s condition which states that for a given

target sequence S and set of reads, if there exists two interleaved repeats or a triple

repeat whose copies are not fully covered by a read, then there exists another sequence

S
′

which can be reconstructed [41]. The condition imposes a lower bound on the read

length L [34].

L > lcrit := max{linterleavied, ltriple}+ 1 (3.4)

This bounds addresses the issue of repeats which occur within DNA. It requires that

the read length be greater than the largest repeat such that it can cover, or bridge, the

repeats. This condition is further confirmed in the analysis by Pevzner et al [1], where

it is shown that even for the de Bruijn graph assembly techniques, it is a requirement

that reads fully bridge repeats. Therefore, for reconstruction of the target sequence to

be successful, all interleaved and triple repeats need to be bridged.

In this research repeats are defined in a similar manner as in [34]. Let slt denote a

read of length l at position t within a DNA sequence S. A repeat is a read of length

l appearing twice at some positions t1 and t2. Therefore slt1 = slt2 and the following

is true: s(t1 − 1) 6= s(t2 − 1) and s(t1 + l) 6= s(t2 + l). Similarly, a triple repeat is a

read appearing three times at positions t1, t2 and t3, where slt1 = slt2 = slt3 and where

s(t1 − 1) 6= s(t2 − 1) 6= s(t3 − 1) and s(t1 + l) 6= s(t2 + l) 6= s(t3 + l). A pair of repeats,

the first at t1 and t3 and the second at t2 and t4, is interleaved if t1 < t2 < t3 < t4 or

t2 < t1 < t4 < t3.

It is shown in [34] that the existence of unbridged interleaved or triple repeats occurs

with the following probability

P unbridgedl := P [length l subseqence is unbridged]

= e
N
G

(L−l−1)
(3.5)

Chapter 3. Information Theoretic Background and Assembler Fundamentals 20

Because an unbridged repeat will result in an erroneous assembly Equation 3.5 shows

the probability of making an error. Hence, if PUnbridgedl ≤ ε, then the lower bound for

the number of reads can be given as

Nbridge ≥
G

(L− lrepeat − 1) ln (1
2ε)

(3.6)

where Nbridge is the minimum number of reads needed to ensure that all repeats are

bridged [34].

3.3 Information Theoretic Analysis of Greedy Algorithms

Satisfying the lower bound given in Equation (3.3) ensures that the entire target sequence

is covered. This however does not guarantee the successful reconstruction of the target

sequence. The true number of reads required for successful reconstruction depends on

the assembly algorithm being used and is at least equal to Ncov, i.e.

Nmin ≥ Ncov (3.7)

Tse et al [8] proposed that the minimum number of reads required for successful recon-

struction using the greedy algorithm satisfies the bound

Nmin ≤
G

L
ln (GL3) (3.8)

It was shown that the assembly error rate ε tends to zero as the number of reads tends

to Nmin [8]. Hence, the minimum number of reads Nmin needed for successful recon-

struction of a target sequence using the greedy overlap algorithm is at most bound by

Equation 3.8. It is important to note that the value of Nmin differs when applying

k−mer assembly techniques.

Further analysis done by Tse et al [8], identifies an additional bound on the read length

L needed to successfully reconstruct the target sequence using the greedy algorithm.

This bound is obtained using the ratio between the minimum number of reads needed

for successful reconstruction Nmin and the number of reads needed to cover the sequence

Ncov. This ratio is asymptotically analysed as the read length L and sequence length G

tend to infinity. This ratio is known as the minimum normalised coverage depth and is

given by

cmin(L̄) = lim
G→∞,L=L̄ log2G

Nmin(ε,G, L)

Ncov(ε,G, L)
(3.9)

Chapter 3. Information Theoretic Background and Assembler Fundamentals 21

where ε ∈ (0, 1
2) is some error tolerance and L̄ is a normalised parameter given by

L̄ =
L

log2G
(3.10)

Using the Renyi entropy as a measure of information, it can be shown that

cmin(L̄) =

 ∞ if L̄ ≤ 2
H2(p)

1 if L̄ > 2
H2(p)

(3.11)

where H2(P) is the Renyi entropy of order 2 defined as

H2(p) = − log2

∑
i

p2
i (3.12)

pi is the probability of each symbol (A, T, G, C) in the DNA sample sequence [8].

Equation (3.11) defines the threshold 2
H2(p) . It states that reconstruction is only possible

if L̄ > 2
H2(p) , otherwise if L̄ < 2

H2(p) then reconstruction is impossible. The derivation

and proof for this theorem can be found in [8]. Subsequently, the greedy assembly

algorithm is successful only if the threshold defined in equation (3.11) is overcome.

Tse et al [8] defines the greedy algorithm based on the contig grouping technique pro-

posed by Lander and Waterman [20]. This algorithm, shown in Algorithm 1, requires the

threshold in equation (3.11) to be met. Meeting this bound ensures no gaps, or oceans,

are present in the assembled sequence. In other words, if L̄, and therefore L, does not

satisfy the lower bound 2
H2(p) , then there will exist gaps between assembled contigs and

the target DNA sequence cannot be fully sequenced. This bound therefore ensures that

the required coverage redundancy c is met since the number of islands depends on this

coverage depth [20].

The greedy algorithm forms contigs by joining reads together in stages of l according

to an overlap score starting from φ down to 0. It was shown that the majority of the

errors occurred either at stage φ or at stage 0 [8]. Errors at stage φ are caused mostly

by the presence of repeats in the target DNA sequence, while the errors at stage 0 are

Algorithm 1: The High Level Parallel Greedy Assembly Algorithm

1. Input the set of length L reads;

2. Initialise all input reads as contigs;

3. Find and merge two contigs with the highest overlap score;

4. Repeat step 3 until no more contigs can be merged;

Chapter 3. Information Theoretic Background and Assembler Fundamentals 22

Algorithm 2: The High Level Sequential Greedy Algorithm

1. Input the set of length L reads;

2. Initialise the first read in the set as the starting contig;

3. Find a contig and read pair with the largest overlap score and merge them into
one contig;

4. Repeat step 3 until no more reads can be merged.

caused by poor coverage depth. The later case is dealt with by the coverage condition

cmin(L̄) = 1 that requires L̄ > 2
H2(p) . In order to deal with the repeats, the read length

L must also meet the bound imposed by equation (3.4). The greedy algorithm fails if

there exist any unbridged repeats.

By merging contigs with the highest overlap score first, the greedy algorithm effectively

grows the contigs in parallel, until they all merge and only one contig remains repre-

senting the original target DNA sequence. Other contig grouping assemblers such as the

SSAKE [22], VCAKE [32] and SHARCGS [24] assemblers, use a sequential greedy algo-

rithm instead [8]. The sequential algorithm varies by growing one contig sequentially by

appending reads which have the largest overlap score with the contig. The sequential

greedy algorithm is shown in Algorithm 2.

The minimum normalised coverage depth given in (3.9) corresponds to the most optimal

assembly possible where the minimum number of reads needed for successful reconstruc-

tion is the same as the minimum number of reads needed to ensure coverage of the entire

target sequence. A normalised coverage depth given by

c̄ =
c

ccov
(3.13)

where ccov is given by

ccov =
LNcov

G
(3.14)

can hence be used to measure the performance of an assembler relative to the optimal

lower bound imposed on the minimum number of reads Ncov needed to fully cover the

entire target sequence G. This normalised coverage depth is useful for establishing which

assemblers can achieve successful reconstruction of the target sequence using the lowest

amount of reads.

Chapter 3. Information Theoretic Background and Assembler Fundamentals 23

3.4 k-mer Assembly

The k-mer based algorithms are an alternative to the overlap based algorithms which

use the greedy algorithm. At first glance they seem an unintuitive approach to the

DNA assembly problem because they further divide reads into smaller k-mer, or k-

tuple, subsequences. These k-mer subsequences are then used to construct a de Bruijn

graph in order to reconstruct the target DNA sequence. This approach allows the DNA

sequence assembly problem to be solved using graph theory techniques [2].

Two graph theoretic approaches to the DNA assembly problem exist [1, 2]. The first

creates an overlap graph where all k-mers correspond to a vertex. Two vertices are then

connected by an edge if the suffix of one vertex is the same as the prefix of another. This

is shown in Figure 1.2 (b). The reconstruction of the target DNA sequence is then done

by finding a Hamiltonian path through the graph, where each vertex within the graph

needs to be visited exactly once. The issue with this approach is that it does not scale

well for a large number of reads as this technique has been shown to be NP-complete

[1, 2]. For this reason, a second k-mer technique using de Bruijn graphs was developed.

This second approach assigns the k-mer subsequences as edges in the graph instead of

vertices as is shown in Figure 1.2 (c). These edges then connect (k − 1)-mer vertices

where the first is a prefix belonging to a k-mer sequence, while the second is the suffix

within the same sequence. The assembly process is then achieved by finding the Eulerian

path through the graph, where each edge has to be visited exactly once. Compared to

the Hamiltonian path problem, the Eulerian path problem is easy to solve because there

exist linear-time algorithms for solving this problem [1].

Based on the examples presented in [2], for a small circular genome ATGGCGTGCA

with reads ATGGCGT , GGCGTGC, CGTGCAA, TGCAATG and CAATGGC and

choosing k=3, the graphs implementing a Hamiltonian and Eulerian path solution can

be seen in Figures 3.1 and 3.2 respectively. The k-mers associated with both of these

approaches are given as ATG, TGG, GGC, GCG, CGT , GTG, TGC, GCA, CAA and

AAT . For the case of the Hamiltonian solution, these k-mers correspond to the vertices

present within the graph. By connecting the vertices together with edges based on the

overlap between two k-mer subsequences, the Hamiltonian path through the graph can

be found. For example, due to the overlap between subsequences ATG and TGG, the

edge ATGG is created between the two subsequences. As shown in Figure 3.1, there

exists more than one path through the graph. This is due to the small repeated sequences

TG and GC present in the genome which causes the ambiguity in the assembly process.

In order to deal with this, the edges, or (k+1) subsequence, connecting two vertices need

to be verified if they exists within the read set. In doing so the incorrect Hamiltonian

path (shown with dotted lines in Figure 3.1) can be eliminated. The target genome is

Chapter 3. Information Theoretic Background and Assembler Fundamentals 24

ATG

TGG

GGC

GCG

CGT

AAT

CAA

GCA

TGC

GTG

Figure 3.1: An overlap graph showing a Hamiltonian path approach to DNA sequence
assembly. Adapted from [2]. In this case the k-mers represent vertices within the graph.

then assembled by taking the first letter from each vertex visited within the Hamiltonian

path.

Alternatively, the Eulerian de Bruijn graph approach shown in Figure 3.2 represents the

k-mers as edges within the graph instead of vertices. In doing so, the vertices of the

graph become (k − 1)-mer subsequences. Two vertices are then connected by an edge

if the first exists as a (k − 1)-mer prefix within the edge, while the second exists as a

(k− 1)-mer suffix within the edge. For example, the vertices AT and TG are connected

by the edge ATG. Again, the target genome is then assembled by taking the first letter

from each vertex visited from the Eulerian path. It has been shown by Euler that such

a Eulerian path exists within a connected directed graph, such as in Figure 3.2, if and

only if it is balanced [2]. In other words, a Eulerian path exists if and only if the number

of edges entering each vertex within the graph equals the number of edges exiting the

vertex. This condition was first discovered by Euler when trying to solve the “seven

bridges of Königsberg” problem [2]. However, due to the presence of repeats, certain

edges within the graph will be visited multiple times (a Chinese postman problem).

This Chinese postman problem can be easily converted into a Eulerian path problem by

Chapter 3. Information Theoretic Background and Assembler Fundamentals 25

AT

TG

GG

GC

AA

CA

GT

CG

AAT

ATG

TTG

GGC

GCG

GCA

GTG

TGC

CGT

CAA

Figure 3.2: A de Bruijn graph showing the Eulerian path approach to DNA sequence
assembly. Adapted from [2]. In this case the k-mers represent edges within the graph.

simply introducing a multiplicity l to the edges within the graph [1]. Where l are the

number of times an edge is visited in the Chinese postman path. This Eulerian path

problem approach to DNA sequence assembly has been implemented by the EULER

algorithm discussed in the literature [1].

When breaking down the reads of length L into smaller length k-mers, some information

about the target DNA is lost. This loss is minimal if a large enough value for k is chosen.

This loss is also compensated for by the performance increase from using the de Bruijn

graph approach. As is shown in Tse et al [8], there are some conditions imposed on the

size of k. Firstly, k should be large enough to bridge all repeats within the target DNA

[8, 34]. This will ensure that a Eulerian path connects k-mers that physically overlap.

Similarly, as with the bound imposed on the read length L in the greedy algorithm, the

bound on k is determined by
k

log2G
>

2

H2(p)
(3.15)

where H2(p) is the Renyi entropy defined by (3.12) [8]. The second condition requires

all successive reads to overlap by at least k base pairs [8]. This implies that successive

Chapter 3. Information Theoretic Background and Assembler Fundamentals 26

reads need to have a spacing less than L−k base pairs. Using the Poisson approximation

as in [20], the expected number of successive reads with spacing L − k is shown to be

Ne−λ(L−k). In order to ensure this value is small, the following is used

N >
G lnG

L−K (3.16)

and hence by using Equations (3.10), (3.15) and (3.16), the following is obtained

N

Ncov
>

L̄H2(p)

L̄H2(p)− 2
(3.17)

This is the minimum normalised coverage depth required for the successful implemen-

tation of the k-mer de Bruijn graph technique [8, 34].

The EULER assembly algorithm recovers information lost from breaking reads into k-

mers by using read-paths within the graph. These read-paths correspond to the paths

each read creates through the graph. The EULER algorithm, shown in Algorithm 3,

attempts to find the Eulerian path through the graph that is consistent with all read-

paths, which is analogous to the Eulerian superpath problem [1]. A problem when

attempting to find the Eulerian superpath arises due to the presence of repeats within

the de Bruijn graph as these repeats cause ambiguity. A path which visits the edges

connecting the vertices v1, v2,. . . ,vn, is regarded as a repeat if indegree(v1) > 1 and

outdegree(vn) > 1. Where indegree and outdegree are the number of edges entering

and exiting a vertex respectively. Figure 3.3 shows an example of a repeat along with

the ambiguity associated with it. As can be seen, it is unclear whether the superpath

consists of subpaths R1 and R4 or R3 and R4. In this particular case, the read-path

R5 helps to resolve this ambiguity. Pevzner highlighted that when repeats are not fully

covered by read-paths, multiple Eulerian paths through a de Bruijn graph exist [42].

v1 v2 vn−1 vn

R1 R2

R3

R4

R5

Figure 3.3: An example of a repeat path within the de Bruijn graph and a set of
overlapping read-paths which help remove the ambiguity associated with the repeat.

Adapted from Pevzner et al [1].

Chapter 3. Information Theoretic Background and Assembler Fundamentals 27

Algorithm 3: The High Level EULER path finding algorithm within a de Bruijn graph.

1. Pick a starting vertex at random;

2. Pick an outgoing edge consistent with the read-path information for which to
exit the vertex;

3. Traverse the selected edge to move to the next vertex;

4. Remove the traversed edge from the graph;

5. Repeat 2, 3 and 4 until the final vertex is reached and the Eulerian path is found.

3.5 Supervised Neural Networks and the Backpropagation

Algorithm

Neural network systems are a popular and powerful machine learning technique which

learns from data in order to perform a specific task [36]. A supervised neural network

system is trained according to a set of training data (X1,T1), (X2,T2), · · · , (Xn,Tn),

where for a given input Xn = {x1, x2, · · · , xd}, the system is told what output, or target

Tn = {t1, t2, · · · , tk}, to expect. How well the system performs is based on how well

the system output Yn = {y1, y2, · · · , yk} approximates Tn. One can think of a neural

network as a system consisting of multiple layers of more primitive machine learning

units known as perceptrons. Perceptrons are used to perform simple linear classification,

however when combined together into multiple layers, they may be used to perform more

complex non-linear classifications [36]. This concept is what makes the neural network,

also known as a multilayer perceptron system, so powerful.

On its own, each unit within the network performs a weighted sum of its inputs in order

to produce an output. In a regular feed-forward neural network, inputs to a particular

unit are always obtained from units belonging to the previous layer within the network.

Hence, the outputs from the neural network system are obtained by propagating the

system inputs according to a simple product summation at each unit. This sum, also

referred to as an activation, is defined as

outputm =
∑
i

wim ∗ inputi + bias (3.18)

where wim is the weight associated with an input to a particular perceptron m within a

layer. The machine learning process, or training, of a supervised neural network system

is achieved through the modification of such system weights. This is done by completing

forward and backward propagation, or passes, of information within the system. The

first, or forward pass, produces the outputs Yn for a given system input Xn. The second,

Chapter 3. Information Theoretic Background and Assembler Fundamentals 28

Input Data System Topology

Error

Target Data

Training Algorithm

x0

x1
...
xd

t1
t2
...
tk

∆W

Forward Propagation:

Backward Propagation:

Output Data

y0
y1
...
yk

Figure 3.4: The supervised machine learning training process applied to a neural
network.

or backward pass, modifies the weights within the system based on the error obtained by

comparing the system output Yn with the target Tn. These steps are then repeated N

times with different inputs from the training set Xn. The goal is that after training has

been performed, the system is be able to generalise for inputs which were not necessarily

included in the training set. The neural network training process is shown in Figure 3.4

and also defined in Algorithm 4.

An example of a three layer feed-forward neural network is shown in Figure 3.5. This

topology consists of (I + 1) input layer units, (J + 1) hidden layer units, and K output

layer units. Equation (3.18) is applied at each neuron to propagate forward all inputs in

Algorithm 4: Feed-forward neural network training algorithm.

1. Define the network topology;

2. Initialise all system weights;

3. Perform forward pass;

4. Perform backward pass;

5. Update weights;

6. Repeat steps 3, 4 and 5 n times in order to train the system.

Chapter 3. Information Theoretic Background and Assembler Fundamentals 29

order to obtain the system outputs. However, for the hidden and output layer units, an

additional non-linear transformation known as an activation function is performed on

the activation from each unit. This function limits the outputs according to a specific

bound. A commonly used activation function is the sigmoid function given as

σ(a) =
2

1 + e−βa
− 1 (3.19)

which in this case limits the outputs, or activation, between 1 and −1. With equations

(3.18) and (3.19) in mind, the unit activations from the hidden and output layers are

calculated according to

zj = σ

((
I∑
i=1

wijxi

)
+ w0j

)
(3.20)

yk = σ

 J∑
j=1

wjkzj

+ w0k

 (3.21)

where zj is a hidden layer activation, yk is an output layer activation and σ(∗) is the

sigmoid function. The w0j and w0k terms in equation (3.20) and (3.21) represent a bias

term in the summation. If x0 = 1 and z0 = 1 is set, then the overall neural network

system forward propagating equation, as seen at the output, can be rewritten as

yk(X,W) = σ

 J∑
j=0

wjkσ

(
I∑
i=0

wijxi

) (3.22)

Where X is the input vector and W is the weight vector containing all weights from

each layer. Based on the modification leading to equation (3.22), equation (3.18) can be

rewritten as follows

am =
∑
i

wimzi (3.23)

where am represents the activation output at a unit m within any layer of the neural

network. In this case zi may either represent an activation from another unit in a

previous layer, or an input to the neural network from the input set X. Hence, using a

sigmoid function such as the one defined in (3.19), the following is obtained

zm = σ(am) (3.24)

again, am may represent the activation output from a unit within any of the layers.

The backward pass of the neural network involves changing the weight vector in order to

train the system. A popular approach in which to modify the weight vector is with the

gradient descent optimisation method together with some error calculation [36]. The

gradient descent approach consists of small changes in W until a minima, or optimal

Chapter 3. Information Theoretic Background and Assembler Fundamentals 30

Inputs Hidden layer Outputs

x0

x1

xI

z0

z1

zJ

y1

yK

wij wjk

Figure 3.5: A three layer feed-forward neural network with I input neurons, J hidden
neurons and K output neurons.

value, is found. The gradient descent formula is given as

W(θ+1) = W(θ) − η∇E(W(θ)) (3.25)

where η is some learning rate and θ is an iteration, or epoch number, used to distinguish

between one forward and backward propagation instance from another. A popular error

function is the squared error given as

E(W(θ)) =
K∑
k=1

(
yk(X

(θ),W(θ))− t(θ)k
)2

(3.26)

where X(θ), W(θ) and t(θ) are values specific to each epoch. When using gradient descent

optimisation, it is important to observe how this error changes with respect to the system

weights. The derivative of the error with respect to w is given as

∇E :=
∂E

∂wij
= 2 (yj − tj)xi (3.27)

An efficient way in evaluating the gradient of an error function for a regular feed-forward

neural network is with the use of the backpropagation algorithm. Backpropagation

Chapter 3. Information Theoretic Background and Assembler Fundamentals 31

makes use of the chain rule which allows us to redefine equation (3.27) as

∂E

∂wij
=
∂E

∂aj

∂aj
∂wij

(3.28)

By using useful notation along with equations (3.23) and (3.24), the following can be

written
∂E

∂aj
= δj (3.29)

∂aj
∂wij

= zi (3.30)

Substituting these into (3.28) the following is obtained

∂E

∂wij
= δjzi (3.31)

Equation (3.31) indicates that in order to obtain the required derivative, the δ on the

output end of the weight is multiplied with the activation z on the input end of the

weight. Each δ within the network is required to be calculated in order to obtain the

change in weights. This is achieved with the use of the following backpropagation formula

[36]:

δj = σ
′
(aj)

∑
k

wjkδk (3.32)

Hence in order to calculate δ in a particular layer, all the δ values in the preceding layer

need to be known. For this reason backpropagation starts at the output, where δk can

be calculated from the system output and the target, and works backwards to calculate

the hidden layer δ values throughout the network. This concept is illustrated in Figure

3.6. As shown in [11] and [36], δk at the output layer units can be calculated using

δk = σ
′
(aj)2(yk − tk) (3.33)

Once all necessary δ values have been calculated using equations (3.33) and (3.32), the

weights within the network can then be modified. In the case of the three layer feed-

forward neural network system, the weights connecting the hidden and output layers are

calculated using

w
(θ+1)
jk = w

(θ)
jk − ηδkzj (3.34)

while the weights connecting the input and the hidden layers are calculated using

w
(θ+1)
ij = w

(θ)
ij − ηδjxi (3.35)

This modification of the system weights is repeated N times until a weight vector W

producing minimal error at the output layer is found.

Chapter 3. Information Theoretic Background and Assembler Fundamentals 32

δ1

δk

δj wkjwji
zi

zj

Figure 3.6: Illustration of the backward propagation flow and the δ values associated
with each unit within the neural network topology.

In the case of a recurrent neural network, the hidden layer units are connected with other

units within the same layer as shown in Figure 3.7. These connections, unlike the regular

feed-forward connections, are applied with an epoch delay. This allows for information

from previous epochs to affect the current output of the system. This introduction of

memory into the system will hence change the mechanics within the system. In order

to accommodate for this change, the forward and backward propagations need to be

modified. In a regular feed-forward network, the system is trained by applying the

forward passes and then backward passes N times. However, the training of a recurrent

neural network requires that all N forward passes occur before the N backward passes

are implemented. It is therefore necessary to modify the standard backpropagation

algorithm in order to accommodate for memory. This new algorithm, known as the

backpropagation through time algorithm [37], is shown in Algorithm 5. In order to

implement this algorithm some modifications also need to be made to existing equations.

Firstly, in the forward pass, the unit summation within the hidden layer given in (3.20)

changes to

a
(θ)
j =

I∑
i=0

wijx
(θ)
i +

J∑
i=0

wijz
(θ−1)
i (3.36)

where θ in this case indicates the current input from the input set X. z(0) = 0 is set for

θ = 1. Secondly, when processing the backward passes, equation (3.32) needs to change

in order to accommodate for memory as follows

δ
(θ)
j = σ

′
(a

(θ)
j)

(
K∑
i=1

wijδ
(θ)
i +

J∑
i=0

wijδ
(θ+1)
i

)
(3.37)

Chapter 3. Information Theoretic Background and Assembler Fundamentals 33

Inputs Hidden layer Outputs

x0

x1

xI

z0

z1

zJ

y1

yK

wij wjk

Figure 3.7: Three layer recurrent neural network with I input neurons, J hidden
neurons and K output neurons. The connections between hidden nodes implement a

time delay of 1.

Additionally, the weights connecting the units within the hidden layer also need to be

modified according to

w
(θ+1)
ij = w

(θ)
ij − ηδjz

(θ−1)
i (3.38)

where in this case both i and j are indices of J (the number of hidden units).

The drawback to this recurrent approach is the requirement of extra memory in order

to store intermediate information. The N forward passes need to be processed and

the outputs stored to memory in order for the N backward passes to have enough

Algorithm 5: Recurrent neural network training algorithm.

1. define the network topology;

2. initialise all system weights;

3. perform the forward passes N times;

4. perform the backward passes and update the weights N times.

Chapter 3. Information Theoretic Background and Assembler Fundamentals 34

information. When very large and complex network topologies are used, this need for

storing memory does not scale well. However, for smaller topologies, the ability to better

predict future values based off previous patterns is beneficial for the tracking of DNA

sequences.

3.6 Summary

The information presented in this chapter is used as a foundation for the rest of this

dissertation. An information theoretic analysis was performed in order to determine

if assembly is achievable and under which conditions. A k-mer approach to the DNA

assembly problem was presented which promises to significantly reduce computational

complexity in the assembly process. Additionally, a background into neural networks

and the backpropagation training algorithm was presented in order to support Chapter 5

which deals with a machine learning approach to the DNA assembly problem.

Chapter 4

The Greedy and de Bruijn

Assembly Schemes

In this chapter, the methodology of the greedy and de Bruijn assemblers is presented

and discussed. These two assemblers are based on existing assemblers presented in the

literature review in Chapter 2. The greedy assembler makes use of a greedy overlap

assembly algorithm inspired by the CAP series of assemblers [9, 10], while the de Bruijn

assembler, inspired by the EULER assembler [1], makes use of de Bruijn graphs and

a simple path finding algorithm to perform DNA sequence assembly. These two as-

semblers have been implemented in this research in order to highlight and compare the

differences in their computational complexity and assembly accuracy. Additionally, they

were selected in order to investigate their performance when combined with a machine

learning grouping approach (which is discussed in Chapter 5).

4.1 The Greedy Assembler

The greedy assembler implements a greedy and naive strategy to the DNA sequencing

problem. The greedy algorithm is a brute force approach at assembly by performing a

pairwise comparison between all possible read sequences until a matching pair is found.

It searches for areas of similarity between reads by comparing the prefix and suffix of

reads with one another. When two reads containing an area of overlap is found, the two

reads are merged together to form a larger contig. This overlap merging procedure is

depicted in Figure 4.1. Unlike the modern overlap assemblers discussed in Chapter 2,

the greedy assembler does not implement any error correcting or consensus steps. By not

implementing these extra steps in the assembly algorithm, the focus remains solely on

the overlap assembly step and how it is affected by the read grouping strategy discussed

35

Chapter 4. The Greedy and de Bruijn Assembly Schemes 36

non-similar region:Similar region:

Figure 4.1: The contig overlap merging process shows how two similar matching reads
are merged together into one contig.

later in Chapter 5. For this reason, the greedy assembler establishes a performance

baseline with which to compare the rest of the assembly strategies implemented in this

research.

The greedy algorithm is implemented in a sequential manner, growing a single read, or

contig. When this is no longer possible, the contig is stored and a new contig is selected

for assembly. This process is repeated until no reads remain. For each possible contig-

read comparison, the overlap between the two is varied until either a match is found or

until a minimum threshold is reached. The overlap fraction φ varies according to

φmin < φ < φmax (4.1)

where the upper bound, or maximum overlap, of φ is limited by the size of the read as

follows

φmax = L− 1 (4.2)

The lower bound φmin, or minimum overlap, is an important factor affecting the perfor-

mance of the greedy assembly algorithm and needs to be carefully chosen. This factor

corresponds to the stringency of the assembly process. If this threshold is set too high,

the similarity criteria becomes too stringent, resulting in potentially similar contig-read

pairs not being merged together. On the other hand, if the threshold is set too low,

there will be an increased chance for erroneous merges at very low overlap instances.

The probability for erroneous mergers between a contig-read pair calculated in [8] is

given by

Perroneous merger = 2−φH2(p) (4.3)

This shows that as the overlap φ decreases, the probability for erroneously merging an

overlapping contig-read pair increases. It is therefore important to set φmin at a large

enough value in order to prevent comparing contig-read pairs at smaller overlaps. In

the work by Lander and Waterman, it was shown that selecting φmin to be 20% the

Chapter 4. The Greedy and de Bruijn Assembly Schemes 37

size of the maximum overlap φmax produced good results [20]. For this reason, the

minimum overlap used for comparing contig-read pairs in the greedy algorithm was set

to φmin = 0.2φmax. This ensures that contig-read pairs are not erroneously merged

when the probability of error as shown in (4.3) is large.

Establishing the similarity between reads and the assembly contig at each overlap value

is performed using a correlation function. This function implements a sliding window

comparison between two sequences. At each overlap position, an overlap score is recorded

for each base pair found to match between the two sequences. A correlation factor, given

as

correlation factor =
overlap score

max size{sequence1, sequence2} (4.4)

is used to quantify the similarity between two sequences. In addition to being used

as a measure for similarity between the overlapping regions of contig-read pairs, the

correlation function is also used to determine if a particular sub-sequence exists within

a larger sequence. This process is displayed in Figure 4.2. The correlation function

is used to filter out duplicate reads in the greedy assembly algorithm as well as to

compare the final assembled contigs to the known target sequence. In the case of the

greedy assembler, the function is always used to compare sequences of the same size

A T G G C G T

G C G T G
Overlap 1:

Overlap 2:

Overlap 3:

Overlap 4:

Overlap 5:

Overlap 6:

Overlap score: 1

Overlap score: 2

Overlap score: 1

Overlap score: 5

Overlap score: 0

Overlap score: 2

G C A

A T G G C G T

G C G T G

G C A

A T G G C G T

G C G T G

G C A

A T G G C G T

G C G T G

G C A

A T G G C G T

G C G T G

G C A

A T G G C G T

G C G T G

G C A

Figure 4.2: Example of the correlation process comparing two different sized se-
quences together. The smaller sequence is compared in a sliding window fashion to the

larger sequence and the overlap score is recorded.

Chapter 4. The Greedy and de Bruijn Assembly Schemes 38

Contigs

Correlation

Function

Output

Greedy Assembler

Greedy

OverlapReads
Algorithm

Figure 4.3: Block diagram of the greedy assembler showing the assembler components.

(determined by the current overlap value) which produces only a single possible overlap

score. By merging only contig-read pairs which generate correlation factors over 95%, the

greedy assembler incorporates an error tolerance in the assembly process. Having a high

error tolerance ensures that overlapping sequences will not be erroneously merged, while

still tolerating the occasional single base pair error caused by erroneous reads generated

by the sequencing process. The block diagram in Figure 4.3 shows the components

used by the greedy assembler. The reads provided as an input to the greedy assembler

are processed by the greedy overlap matching algorithm presented in Algorithm 6. The

greedy algorithm then makes use of the correlation function to find matching contig-read

pairs in order to produce the final assembled output contigs.

Analysis of the greedy algorithm shows that it is of O(N2) complexity. For each assembly

contig, the algorithm has to search through N reads in order to find a contig-read pair

with the highest matching overlap. When no matches are found, a new assembly contig

is selected from the remaining N reads. This validates the analysis done by Tse et al [8].

This O(N2) complexity is a major drawback to the greedy assembly algorithm and is

responsible for the introduction of other assembly algorithms which attempt to reduce

this complexity.

A further pitfall to this algorithm is its poor performance when dealing with repeats

within the target sequence. The algorithm is greedy because it merges the largest

overlapping contig-read pair it finds. This may not always be the correct solution.

An example showing this problem can be seen by studying Figure 4.4. In this example,

two reads are found to overlap with the current assembly contig which covers region A

and the first repeat region. The correct assembly scenario would be to merge the read

Chapter 4. The Greedy and de Bruijn Assembly Schemes 39

Algorithm 6: The greedy overlap algorithm implemented by the greedy assembler.

Select first read from read pool, assign it as a contig and remove it from the pool;

while read pool is not empty do

Set the recorded largest overlap to zero;

for read in read pool do

Determine the maximum and minimum possible overlap bounds relative to the
current contig and read sizes;

for overlap from maximum bound to minimum bound do

Determine prefix and suffix overlap scores using correlation function;

if correlation factor is over 95% and overlap is larger than current recorded
largest overlap then

Record the matching overlap as largest overlap;

Merge contig and read with the largest recorded matching overlap;

if no match found then

Store current contig;

Select first read from read pool, assign it as a contig and remove it from the
pool;

covering region B with the assembly contig. However, because the read covering region

C is found to have a higher overlap with the assembly contig, it is erroneously merged

instead.

4.2 The de Bruijn Assembler

The de Bruijn assembler makes use of graph theoretic principles which approach the

DNA sequence assembly problem differently in order to reduce complexity. It is based

on the work by Idury and Waterman [33] and Pevzner [19]. The assembler takes an

unintuitive approach to solving the problem by first breaking down the reads generated

in the sequencing process into smaller pieces. These smaller k-mers are used as build-

ing blocks to construct the de Bruijn graph, discussed in Chapter 3, which maps the

relationships between reads. The assembler then reconstructs the target sequence by

attempting to find a Eulerian path through the graph. Finally, the assembler imple-

ments a greedy overlap algorithm, the same as the one used in the greedy assembler, in

order to piece together the final set of contigs generated by the de Bruijn path finding

algorithm. The de Bruijn assembler block diagram presented in Figure 4.5 shows the

components within the de Bruijn Assembler.

Chapter 4. The Greedy and de Bruijn Assembly Schemes 40

Non-similar region:Overlap region:Repeat region:

Region A Region B Region C

A

B C

A

A

A

B

B

C

C

Figure 4.4: Erroneous merging of contig-read pair due to the presence of repeat
regions within the target sequence. In this example, the contig containing region A
should be merged with the read containing region B. However, due to the repeat regions,
erroneous merging may occur by merging the read containing region C with the contig

instead.

Algorithm 7 presents the graph construction process. This includes generating all the

edges and vertices extracted from the reads as well as finding all possible starting vertices

within the graph. Each k-mer subsequence corresponds to an edge within the graph,

while each (k-1)-mer corresponds to a vertex. Each read therefore corresponds to a small

subsection, also known as a read-path, of the de Bruijn graph. Information from these

read-paths is then used when creating the de Bruijn graph. The number of times each

Contigs
Output

de Bruijn Assembler

de Bruijn

GraphReads
Path

Finding

Greedy

Assembler

Figure 4.5: Block diagram of the de Bruijn assembler showing the assembler compo-
nents. The de Bruijn assembler implements an instance of the greedy assembler in order
to piece together multiple overlapping output contigs obtained from the path finding

algorithm, if they exist.

Chapter 4. The Greedy and de Bruijn Assembly Schemes 41

k-mer edge subsequence is found within the reads, and from which read it is found, is

recorded. This information is then used to help determine the correct Eulerian path

through the de Bruijn graph. Studying Algorithm 7 shows that creating the de Bruijn

graph from a set of reads is of order O(N) complexity. Generating a (k-1)-mer subse-

quence is of order O(L − (k − 1)) while finding the starting vertices involves searching

through all vertices, which is bound by O((L − k)N) [34]. The total complexity of the

graph construction process is therefore of order O((L− k)N).

The path finding algorithm responsible for finding the Eulerian path through the con-

structed de Bruijn graph can bee seen in Algorithm 8. Finding a Eulerian path within

a directed graph requires that all vertices are balanced. In other words, the number of

input edges to a vertex must equal the number of output edges [2]. This is true for all

vertices except for the starting and ending vertices. Finding the starting vertex for the

Eulerian path is important for finding the entire Eulerian path. A path is created by

starting at each vertex in the graph which has an indegree smaller than its outdegree.

The path continues traversing the graph visiting each edge only once and ends when it

reaches a vertex which has no more traversable edges. Multiple disjoint paths within the

graph may be found if there are gaps in the coverage of the target sequence. Erroneous

reads may also create extra starting and ending vertices. These erroneous vertices nega-

tively affect the path finding algorithm by causing it to select incorrect starting locations

or terminate prematurely. For this reason, multiple sub-paths within the graph may be

found for each possible starting vertex. The complexity associated with the path finding

algorithm is at most of order O((L−k)N) since every traversed edge belonging to every

Algorithm 7: The de Bruijn graph construction algorithm.

for each read in read pool do

for each (k-1)-mer within read do

if vertex with (k-1)-mer sequence does not exist then

Create vertex with (k-1)-mer subsequence;

Add leading k-mer subsequence as an input edge to the vertex;

Add lagging k-mer subsequence as an output edge to vertex;

else
Add leading k-mer subsequence as an input edge to the vertex;

Add lagging k-mer subsequence as an output edge to vertex;

for each vertex in de Bruijn graph do
if number of output edges is greater than the number of input edges then

Mark vertex as a starting vertex;

Chapter 4. The Greedy and de Bruijn Assembly Schemes 42

Algorithm 8: de Bruijn graph path finding algorithm.

for each starting vertex do

Reset all traversed edges;

while current vertex has traversable edge do

Append the first base pair of current vertex to the current assembly path;

Use read-path information to select traversable edge;

Move to next vertex by traversing selected edge while marking it as traversed;

Append remaining base pairs within the current vertex to current assembly path;

Store current assembly path as an output contig;

vertex has to be reset when there are multiple starting vertices.

The size of the k-mers relative to the read size L is important when it comes to finding

the correct path through the graph when there are repeat regions present in the target

sequence. As shown in Figure 1.2 (c) in Chapter 1, these repeat regions create loops

within the de Bruijn graph which need to be resolved. The read-paths within the graph

provide information on how to resolve these loops. They provide the direction which a

path must take when there are multiple output edges at a given vertex along the current

assembly path. Selecting a smaller value for k will increase the relative size of these

sub-paths compared to the size of each edge, ensuring more information is available to

the path finding algorithm. For example, selecting a small k value ensures more k-mers

can be found within each read. This increases the number of edges covered by each

read and therefore more information is available regarding which path to take within

the graph. This can be seen in Figure 4.6. In case (a), the read-paths are too small to

cover the entire repeat, and the correct path through the repeat can not be resolved. In

case (b), the read-paths do cover the entire repeat, and the correct exit edge from the

repeat section is selected based on which read-path the edge entering the repeat region

was from.

Erroneous reads produced in the sequencing process are also responsible for creating

multiple paths through a de Bruijn graph. Figures 4.7 and 4.8 show how two phenom-

ena, bubbles and tips, are caused from a single substitution error present within a read.

Bubbles cause two possible paths through a graph which presents the path finding al-

gorithm with the challenge of deciding the correct one. Tips on the other hand, cause

dead ends within a graph to occur. In such cases, the graph is no longer balanced, which

causes the path finding algorithm to prematurely terminate and create incomplete as-

semblies. Bubbles occur from errors present in the center of reads, while tips occur from

errors present on the edges of reads. Additionally, tips are more likely to occur when

larger k-mers are used relative to the read size. In order to deal with these issues, the

Chapter 4. The Greedy and de Bruijn Assembly Schemes 43

(a)

P1

(b)

P1

P2

P2

P3

P5

P4

Figure 4.6: Read path information used to resolve repeats within the de Bruijn graph.

path finding algorithm makes use of an occurrence rate for each edge when traversing

the graph. This information, which is obtained when creating the graph, helps to detect

erroneous edges. It was shown in literature [23], that the expected number of occurrences

for each edge can be calculated using

E(occurance rate of edge) = C
L− k + 1

L
(4.5)

Erroneous edges will have an occurrence rate far below the expected value obtained

from (4.5) and will therefore be ignored by the path finding algorithm when the next

traversable edge is being chosen.

Preliminary experiments were performed in order to determine the optimal value for the

size of k. They showed that at read sizes ranging from between L = 50 and L = 500, the

most successful de Bruijn assemblers used k-mers of size k = 0.4L. Figure 4.9 shows the

coverage performance of an assembler using reads of size L = 500 and a coverage depth

of c = 20. The figure shows that assembly is unsuccessful for higher values of k. The

reason for this is due to the read-paths being relatively smaller when compared to the

k-mers when large k values are used. This implies that at higher k values, read-paths

Chapter 4. The Greedy and de Bruijn Assembly Schemes 44

AT TT

TC

TG

CC

GC

CA AT

Correct path obtained from read ATTCCAT:

Incorrect path obtained from erroneous read ATTGCAT:

Figure 4.7: An example of a bubble within a k = 3 de Bruijn graph (k-mers correspond
to edges in a de Bruijn graph). The solid line represents the correct path through the

graph, while the dashed line represents an erroneous path through the graph.

ATT TTC TCC CCA CAT

CCG

CGT

Correct path obtained from read ATTCCAT:

Incorrect path obtained from erroneous read ATTCCGT:

Figure 4.8: An example of a tip within a k = 4 de Bruijn graph (k-mers correspond
to edges in a de Bruijn graph). The solid line represents the correct path through the

graph, while the dashed line represents an erroneous path through the graph.

cover fewer edges and therefore provide less information to the Eulerian path finding

algorithm. Conversely, for small values of k, the overlap between adjacent vertices

becomes too small to bridge repeats present in the target sequence. This then creates

loops within the graph which the Eulerian path finding algorithm can not resolve.

In cases when multiple output contigs are generated at the end of the path finding

algorithm, the greedy overlap algorithm is implemented in order to combine them. At

the very least, when a single large output contig can not be generated, the path finding

algorithm significantly reduces the input to the greedy overlap algorithm. This is because

the number of output contigs from the path finding algorithm is significantly less than

the number of reads generated by the read sequencing process. In such cases the de

Chapter 4. The Greedy and de Bruijn Assembly Schemes 45

●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

20
40

60
80

10
0

K factor

C
ov

er
ag

e
(%

)

Figure 4.9: Assembly performance of a de Bruijn assembler using a read size of
L = 500 and a coverage depth of c = 20 at varying k values.

Bruijn graph approach acts as a filter to the greedy overlap algorithm which reduces the

size of the dominating factor affecting its complexity.

4.3 Summary

The greedy and de Bruijn assemblers have been implemented in order to highlight the

differences in their computational complexity and assembly accuracy. These assembly

strategies were selected in order to investigate the effect of the machine learning grouping

approach (discussed in the next chapter) has on the different assembly algorithms used

in each assembler.

Chapter 5

The Neural Network Assembly

Scheme

This chapter provides a rationale for applying a divide and conquer approach to address

the complexity problem associated with comparing large amounts of reads in the DNA

sequencing and assembly problem. Secondly, a neural network approach to grouping

reads is presented which introduces a new, and more accurate, similarity metric µ for

grouping reads when compared to more traditional methods. Lastly, the implementation

of the neural network scheme together with the greedy and de Bruijn assemblers is

discussed.

5.1 The Complexity and Edit Distance Problem

Modern day applications of DNA sequencing typically target large areas of a genome.

It is often necessary to sequence an entire genome, as in whole genome sequencing,

where all chromosomes need to be sequenced [35]. The average size of a typical human

chromosome is about 1.5 × 108 base pairs [3]. Therefore, depending of the sequencing

technology being used, the number of reads (N) needed to accurately assemble a target

sequence is between 109 to 1010. It was shown in Chapter 3 that N is the dominating

factor in the complexity of any assembly algorithm. Reducing the size of N for an

assembly algorithm will reduce the time taken to complete the assembly. By introducing

a “divide and conquer” approach it is possible to break the assembly problem into

multiple and much smaller groups. In doing so, the dominating factor in complexity

(N) for the assembly of each group is reduced. For the case of the greedy and de Bruijn

algorithms, which have O(N2) and O(N logN) complexities respectively [8, 34], this is

46

Chapter 5. The Neural Network Assembly Scheme 47

shown mathematically by the fact that for large N :

N2 >> m×
(
N

m

)2

for large m (5.1)

N log (N) >> m×
(
N

m

)
log

(
N

m

)
for large m (5.2)

This approach however introduces a new problem of sorting, or classifying, reads into

similar groups. One solution to this classification problem is to use a similarity measure

when comparing reads with one another. If reads are considered similar then they are

placed in the same group. This same similarity measure is used by common overlap as-

sembly algorithms such as the greedy algorithm. These similarity measures use a metric

known as an edit distance (D(s1, s2)) to measure the difference, and hence the similarity,

between two sequences [25]. This metric originates from the work of Levenshtein when

comparing binary codes [26]. One can interpret this edit distance as a series of insertion,

deletion or substitution transformations γ acting on a sequence s1 of DNA in order to

transform it into another sequence s2 [11].

s2 = γi(. . . γ2(γ1(s1))) (5.3)

The value i represents the number of steps needed to change one sequence into another.

Hence, the edit distance between two sequences is then given by

D(s1, s2) = i (5.4)

An issue with this type of similarity measure is that it does not account for the structure

of the sequences being compared. The grouping process will place reads in a group if the

edit distance is below a certain threshold. However, two reads might be erroneously con-

sidered similar if their edit distance is below the threshold and the differences between

them are interleaved throughout the reads. This is a problem because overlap assem-

bly algorithms look for overlaps, or similarity, between the ends of particular reads. It

is therefore desirable to have reads placed in similar groups only if contiguous regions

within the reads are found to be below the edit distance threshold. This principle is

depicted in Figure 5.1. Both (a) and (b) show cases which are below the edit distance,

however only case (a) has a contiguous region below the edit distance threshold. A clas-

sification technique is therefore needed which can measure the similarity in a contiguous

fashion by recognizing patterns in the sequences being compared.

The field of machine learning provides pattern recognition techniques capable of per-

forming classification [36]. One such technique makes use of neural networks to achieve

this [11]. Using a neural network, a new measure for similarity is provided which will help

Chapter 5. The Neural Network Assembly Scheme 48

b) Non-contiguous Similarity:

a) Contiguous Similarity:

Non-similar Region:Similar Region:

Figure 5.1: (a) Two contiguously similar contigs which should be merged. (b) Two
non-contiguously similar contigs which should not be merged.

deal with the misclassification problem shown in Figure 5.1. With the use of the back-

propagation through time algorithm a neural network is able to recognise the pattern

of base pairs within a read. This classification technique provides a more appropriate

measure of similarity in the context of overlap assembly algorithms as reads will be

placed in the similar groups only if they are found to be contiguously similar.

5.2 Neural Network Structure and Read Tracking

In order to successfully perform classification using a neural network, a network is first

trained to track a particular read. This read, referred to as a seed, is fed into the network

one base pair at a time. For each base pair input, the network attempts to predict the

next base pair in the seed sequence. When the neural network reaches the last base pair

within the seed, it predicts the first base pair of that sequence instead. This is achieved

using a three layer recurrent neural network. The network consists of four input, four

output and twenty hidden neurons connected in a feed-forward orientation. Additionally,

all hidden neurons are interconnected with a time delay of one. This general structure

for this type of network is shown in Figure 3.7 in Chapter 3. Each neuron from the

input and output layers corresponds to one of the possible base pairs (A, T, G, C). A

particular base pair is represented by setting the state of its corresponding neuron to

approximately equal 1, and the other neurons to approximately equal −1. The inputs

Chapter 5. The Neural Network Assembly Scheme 49

and outputs of the neural network are hence mapped according to

XA,YA :=


x1, y1

x2, y2

x3, y3

x4, y4

 ≈


1

−1

−1

−1

 XT,YT :=


x1, y1

x2, y2

x3, y3

x4, y4

 ≈

−1

1

−1

−1



XG,YG :=


x1, y1

x2, y2

x3, y3

x4, y4

 ≈

−1

−1

1

−1

 XC,YC :=


x1, y1

x2, y2

x3, y3

x4, y4

 ≈

−1

−1

−1

1



(5.5)

Where XA and YA, XT and YT , XG and YG, and XC and YC correspond to inputs and

outputs representing the A, T, G and C base pairs respectively. Figure 5.2 shows output

examples after the read tracking process has been completed. Case (a) shows an example

of successful read tracking where proceeding base pairs are correctly predicted. Case

(b) shows an example of erroneous read tracking where base pairs have been incorrectly

predicted. Finally, case (c) also shows an example of erroneous read tracking where the

predicted base pairs are unknown. This occurs then the output yi from each output

neuron does not correspond to any of the mapped states as defined in (5.5).

A T G G C G TInput Sequence: G C A

AT G G C G T G C AOuput Sequence:
a)

A T G G C G TInput Sequence: G C A

AT G G A A T G C AOuput Sequence:
b)

A T G G C G TInput Sequence: G C A

AT G G E E T G C AOuput Sequence:
c)

Figure 5.2: Neural network output after read tracking is completed. (a) shows correct
tracking. (b) shows erroneous read tracking where base pairs are incorrectly predicted.
(c) shows erroneous read tracking where neuron outputs do not correspond to any

particular base pair.

Chapter 5. The Neural Network Assembly Scheme 50

Training is achieved by performing a series of forward and backward propagations re-

sponsible for modifying the weights associated with each connection between neurons

within the network. For a given input, forward propagation obtains the outputs, while

the backward propagation obtains the change in the weight vector W. The backpropa-

gation through time algorithm modifies the standard backpropagation equations given

in Chapter 3 by introducing memory into the system. The forward and backward prop-

agation equations are hence given in Equations (5.6) to (5.9) [37].

a
(θ)
j =

I∑
i=0

wijx
(θ)
i +

J∑
i=0

wijz
(θ−1)
i (5.6)

σ(a) =
2

1 + e−βa
− 1 (5.7)

δ
(θ)
j = σ

′
(a

(θ)
j)

(
K∑
i=1

wijδ
(θ)
i +

J∑
i=0

wijδ
(θ+1)
i

)
(5.8)

w
(θ+1)
ij = w

(θ)
ij − ηδjz

(θ−1)
i (5.9)

Due to the recurrent nature of the network, the standard implementation of the forward

and backward propagations is changed. Standard implementation of the backpropaga-

tion algorithm involves performing forward and backward propagations in pairs for each

input within a given input vector. In the case of backpropagation through time, all

forward propagation is first performed on each input within the input vector and the

outputs stored in memory. All backward propagations then follow in series for each out-

put stored in memory. Performing backpropagation in this manner allows for previous

inputs to the network to influence the propagation of present inputs. This modification

to the algorithm is ideal for pattern recognition and hence the tracking of reads for this

particular application [36, 37].

The sigmoid function shown in Equation (5.7) is used in order to cap outputs from each

neuron to 1 or −1. It is used in order to avoid using a binary hard decision as this

would reduce the resolution of the network outputs. The sigmoid function achieves this

by acting as a linear function for small inputs and as a hard decision function for larger

inputs. The β parameter is responsible for how steep the gradient is for the linear portion

of the function. The effect of changing the β value can be seen in Figure 5.3. Setting

β = 6 is desirable because it provides a suitably sized linear region while still capping

larger values. A learning rate of η = 0.0001 was chosen in order to minimise the changes

made to W and therefore increasing its resolution. A small η value therefore improves the

training precision, however it increases the number of forward and backward iterations,

or epochs, needed for W to converge. The number of hidden neurons also affects the

ability of the network weights to converge to the desired value. More hidden neurons

Chapter 5. The Neural Network Assembly Scheme 51

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

a) β = 6

Input: x

O
ut

pu
t:

σ(
x)

−1.0 −0.5 0.0 0.5 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

a) β = 1

Input: x

O
ut

pu
t:

σ(
x)

Figure 5.3: Effect that β has on the sigmoid function which limits the neuron outputs
between −1 and 1.

allow the network to track more complex sequences. Increasing the length of the reads

therefore requires an increase in the number of hidden neurons needed to successfully

track a read. However, having too many hidden neurons will introduce the problem

of over-fitting if the input sequence does not require such higher complexity. Twenty

hidden neurons was chosen as an adequate number for tracking reads of length fifty base

pairs. The bias terms x0 and z0 in Equation (5.6) were set to zero since the network

outputs are bound between 1 and −1. The starting weight values of W were initialised

to values ranging between 0.05 and −0.05.

The training process is performed until the changes in W between consecutive epochs

are considered small enough. This happens when the error function used to compare

the network output with the desired output reaches a minimum value below specified

convergence threshold (a very small number). In such a situation the output from the

network at every time interval corresponds to the input read shifted cyclically to the

left by one base pair. If the output sequence does not represent the shifted input, either

not enough time was provided for the network to converge to the correct W or a local

minimum in the error function was discovered and the network converged to an incorrect

set of weights in W. If a network does not converge within a specified number of epochs,

or it converges incorrectly, then training is reset by initializing a new set of weights in

W.

Chapter 5. The Neural Network Assembly Scheme 52

5.3 Read Grouping

In machine learning, and in this case neural networks, the training process is performed

on a training data set. How well classification performs on inputs from a given training

set is referred to as in-sample performance. Once trained, a neural network is be able

to generalise inputs other inputs which are not within the training data set. How well

the network performs on non-training data is known as out-of-sample performance [36].

In this case, training is performed on a training set consisting of a single element, the

seed for a number of epochs until the in-sample performance converges to an acceptable

level. Testing the network with other reads (non-training data) is then done in order to

group reads [36]. The membership of a read to a group is determined by whether its

out-of-sample performance is above a certain threshold defined as τ [11].

Preliminary experiments have shown that the size and number of groups is dependent

on τ . If the value of τ is too high, then the similarity between seed and read needs

to be great for a read to be placed in the same group as the seed. A larger amount

of groups containing fewer reads will be created in this case. On the other hand, if τ

is too low then fewer but much larger groups are created. It is important to find the

right balance as both cases are undesirable. The grouping threshold used by the neural

network grouping scheme was set to τ = 0.4 which is consistent with the value used

by Angeleri et al. [11]. Figure 5.4a shows the effects that the grouping threshold has

on the assembly process. It shows that at lower values, the grouping criteria is very

strict which leads to many groups consisting of few reads. In such a case, the second

assembly round of the neural network assembler resembles the situation where grouping

is performed. On the opposite side of the scale, the grouping criteria is so loose that

all reads are placed in the same group, or a very small set of groups. In this case the

first assembly round resembles the pre-grouping situation (placing all reads in one group

does not divide reads). The trough found in the middle of the scale is present due to

reads being erroneously placed into groups. The grouping threshold τ was chosen at the

knee of the curve in Figure 5.4a as this represents the highest simulation coverage using

the largest amount of groups [11].

The neural network grouping assembly scheme is introduced to partition reads into

groups before assembly takes place. Once grouped, either the greedy or de Bruijn

assemblers are implemented in order to piece together the groups of reads. However,

the performance of these assemblers depends on the ability of the neural network to

correctly and efficiently place the read sequences into groups. Preliminary experiments

have shown the neural network training process to be quadratic in time with respect

to the length of the read being tracked. This can be seen in Figure 5.4b. In order to

overcome the quadratic nature of the training process a segmented approach to the

Chapter 5. The Neural Network Assembly Scheme 53

● ● ● ●

●

●

●
● ●

●

0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Grouping threshold

C
ov

er
ag

e
(%

)

(a) The effect which the neural network
grouping threshold has on the assembly per-

formance.

a

●

●

●

●

●

50 100 150 200 250

0
10

20
30

40

Read size (base pairs)

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Full read tracking
Segmented read tracking

(b) Complexity of the read tracking process
based on read length. This is the time it takes

to train a neural network to track a seed.

Figure 5.4: Preliminary experimental results relating to (A) the grouping threshold
τ and (B) the neural network training complexity.

training process is proposed, larger sequences can be segmented (broken down into

smaller chunks) where each segment is used to train a unique neural network. This

segmented approach employs multiple neural networks to track a read sequence where

each neural network will be responsible for tracking a subsequence, or segment, of the

entire read sequence. Figure 5.4b shows a dramatic decrease in training time for larger

sequences when implementing this segmented read tracking approach. This approach

deviates from that proposed by Angeleri et al. [11] in that it splits the training process

into multiple smaller training processes. This new approach is further described in the

next section (Section 5.4)

Using machine learning and neural networks, a new similarity measure metric µ between

reads, as described by Angeleri et al. [11], is introduced. This metric is arrived at by

first selecting a seed A on which a neural network NNa is trained. This network then

acts as a discriminating function used by other fragments to determine their similarity

to A using the following definitions. First, for two sequences of the same length, d(A,B)

is defined as the ratio between the number of symbol differences between the sequences

and their length. Second, if Aa is defined as the output of network NNa tracking input

A and Ba is the output of network NNa tracking input B, then read B belongs to the

same group as A if d(Ba, B) is below the threshold τ . This is depicted in Figure 5.5. In

order to clean up notation, the similarity measure µ is then defined as

µ(B,A) := d(Ba, B) (5.10)

Chapter 5. The Neural Network Assembly Scheme 54

NNa

NNa

A

B Ba

Aa

Figure 5.5: Block diagram showing the input and output sequences to a neural net-
work. NNa is a neural network tracking read A. Aa is the output sequence from the
neural network NNa given an input sequence A. Ba is the output sequence from the

neural network NNa given an input sequence B.

which measures the degree of membership of sequence B to the cluster tracking seed A.

Therefore a read B belongs to the same group as A if

µ(B,A) < τ (5.11)

The network NNa attempts to predict the sequence within read B and if this is achieved

well enough it is said that B belongs to the same group as A. The similarity measure

µ(B,A) is preferable over similarity measure D(A,B) described in Section 5.1 due to its

ability to group reads that are contiguously similar with one another [11]. Additionally,

differences in read sizes are well handled by this grouping approach. This is due to

the read grouping process being based on a comparison between sequences of the same

length, since µ(B,A) in (5.10) is a measure of difference between sequences B and Ba,

which are the same size. If the neural network NNa is trained on a seed a of different

length compared to read B, then the difference between B and Ba will be greater, and

the threshold criteria of (5.11) will be more difficult to satisfy if B is to belong to the

same group as A.

5.4 Neural Network Assembler

The ability of the neural network to classify and place reads into different groups is

important as it divides the assembly problem into multiple smaller scale problems [11].

This is desirable as it reduces assembly complexity as shown in Section 5.1. After

the assembly problem has been reduced into smaller groups, the greedy or de Bruijn

Chapter 5. The Neural Network Assembly Scheme 55

DNA
Contigs

Read

Grouping

Shotgun

Sequencing

Phase 1

Assembly

Phase 2

Assembly

Output
Target

Neural Network Assembler

Greedy/Eulerian

Figure 5.6: Block diagram of the neural network assembler. Phase 1 and 2 assembly
blocks implement either the greedy or de Bruijn assemblers.

assembly algorithms are then applied in order to assemble the target sequence. This

scenario is depicted in Figure 5.6. The crux of the neural network assembler therefore

lies in the classification process of read sequences. This process consists of training one

or multiple neural networks to track a single seed sequence selected at random from the

read set. This neural network, or collection of multiple sub-neural networks (if more

that one neural network is used to track a particular seed) will be used to classify other

reads into the group tracked by the seed. This process is repeated until no more seeds

and reads remain.

For example, if reads of size 200 base pairs are segmented into chunks of size 50 base

pairs, four neural networks will be used to track each seed (one for each segment). In

this case the neural network NNa tracking seed A, as shown in Figure 5.5, consists of

multiple sub-neural networks NN1a, NN2a, NN3a and NN4a. When another read B is

tested against NNa, it too is split into four segments B1, B2, B3 and B4 such that each

segment will be tested in a sliding window fashion with each sub-neural network in NNa.

Each result is recoded and if the average sum of any of the results meets the requirement

of (5.11), then read B will be placed in the same group as seed A. The algorithm for

this segmented machine learning assembly scheme is presented in Algorithm 9.

The success of the machine learning assembly scheme depends on the accuracy and effi-

ciency of the read grouping process [11]. If read grouping, steps 2, 3 and 4 of Algorithm

9, is too time consuming or if grouping is too inaccurate then assembly becomes infea-

sible. The complexity of the grouping step is also of O(N2) complexity, however the

training of networks can be parallelised in order to help speed up the grouping process.

Furthermore the individual group assembly can also be parallelised to reduce the over-

all assembly time. The machine learning assembly scheme therefore allows for faster

assembly based on the amount of processing cores available.

Additionally, the first round of assembly in the neural network assembler does not pro-

duce contigs of the same size. This is because the number of reads in a group and the

accuracy of assembly within the group varies due to a number of factors. These include

Chapter 5. The Neural Network Assembly Scheme 56

Algorithm 9: Neural Network Assembly Scheme Algorithm

while more than 2% of original reads remain in read set do

Select a seed S at random from the read set;

Split seed into n segments;

for i < n do

Train a neural network set NNSi to track the seed segment Si

for each read in the read set do

Select a read R;

Split R into n segments;

for each alignment j = n+ (n− 1) of R in a sliding window with NNS do

Test segments with corresponding neural network to generate µk, where k is
the number of neural networks being tested (k = 1, 2, ..., j);

Generate µave =
∑
µk
k ;

if µave < τ , place R into the same group as S;

Apply assembly phase 1 one every group to create a new pool of contigs;

Apply assembly phase 2 on the pool of contigs to obtain the final assembly output.

gaps in the target sequence coverage and the error rates associated with the shotgun

sequencing process. Because the inputs to the greedy assembly may now vary in size, the

maximum overlap associated with the greedy assembly algorithm needs to be adapted

as follows

φmax = min(x− 1, y − 1) (5.12)

where x and y are the lengths of the contig and read being compared respectively.

5.5 Summary

In this section the idea of breaking the assembly problem into multiple but smaller sub-

problems was discussed. We showed that in doing so the overall assembly complexity

is reduced. A new similarity metric µ was introduced which was shown to more accu-

rately place reads into the correct groups compared to the edit distance metric D. A

neural network grouping approach which uses this new metric was discussed and a new

assembly scheme was presented.

Chapter 6

Results and Analysis

The DNA sequencing and assembly problem introduced in the earlier chapters was sim-

ulated using the aforementioned algorithms and techniques. The Greedy and de Bruijn

assembly algorithms were implemented together with the neural network grouping tech-

nique in various combinations in order to establish several assembly strategies, or as-

semblers. The performance of these strategies is compared to determine if the ‘divide

and conquer’ approach of the neural network technique helps to reduce the overall com-

plexity and improve the accuracy of the assembly algorithms. This chapter discusses the

research paradigm and the approach taken with regard to data generation and the im-

plementation of the assembly algorithms. All simulation components were implemented

in the C++ environment.

The simulation results are presented and analysed in this chapter. The performance of

all three assembly strategies are compared with one another and justified. A complexity

analysis for each strategy is presented to support the results. The optimal operating

conditions for each strategy are also identified along with their strengths and weaknesses.

6.1 Research Paradigm and Setting

This research aims to answer the research question by means of computer simulations

implementing real-world assembly algorithms. A pre-assembled (target) DNA sequence

is used to test each simulation strategy. These simulations will provide empirical data

measuring both the time complexity of algorithms and the accuracy of the assembly out-

puts. This analysis is aided by information theoretic principles in order to optimise the

assembly process by determining the strategies which produce the highest reconstruc-

tion accuracy using the lowest amount of reads. Additionally, the trade-off between

57

Chapter 6. Results and Analysis 58

accuracy and time complexity for each assembly strategy is investigated. Hence, this

research implements both quantitative and qualitative means of analysis in addressing

the research problem.

Due to the DNA assembly problem being a notoriously difficult problem to solve, some

assumptions have been made in order to simplify the research problem. Firstly, a target

DNA sequence with length of 50456 base pairs (G ≈ 50000) was selected in order to

reduce simulation times. The target length is therefore small enough such that the

simulations do not become a high performance computing problem while still being a

large enough sample for analysis. It was found that some practical assembly scenarios

are of this order of magnitude [10]. Secondly, the double stranded nature of DNA has

been ignored and it was assumed that all input data was generated from only a single

DNA strand. While we know that this is not the case for practical real-world situations,

this decision was made in order to reduce complexity of the problem. The issue of noise

(errors) in the input generation, which is a common occurrence [8], was also taken into

consideration and tests were performed on both error and error-free cases.

Prior to implementing any simulation, the target sequence must first be determined. A

50456 base pair portion from the Fruit Fly genome was selected as the target sequence.

The gene was obtained from the FlyBase gene database [13] and exported to a text

file. The file is then parsed in order to remove all meta-data and extract the 50456

base pair sequence. This specific target sequence was chosen due to its size and repeat

characteristics as it contains repeats which are two hundred base pairs in length.

6.2 Simulation Methodology

The simulations were implemented in three phases, namely sequencing, assembly and

information formatting. These steps are responsible for generating input data to the

assemblers, implementing the assembly strategies, and formatting the output informa-

tion from the assemblers such that it may be easily interpreted. The accuracy of each

assembler is determined by comparing its output to that of the known target sequence.

Obviously, this luxury is not afforded in real-world assembly applications.

6.2.1 Shotgun Sequencing

The shotgun sequencing process was implemented by a stand-alone program. The pro-

cess generated sub-sequences (reads) of a predetermined size at random locations across

the target sequence and with a uniform distribution. These reads were treated as string

Chapter 6. Results and Analysis 59

variables by the simulation program and consist of characters representing the A, T, G

and C base pairs.

The number of reads taken is based on the size of the reads and the coverage depth

according to

N =
G c

L
(6.1)

In practice, the coverage depth varies based on the sequencing technology being used

and may range from five to sixty times coverage [1, 23]. Based on the results from this

research, it was found that coverage depths larger than 20 were unnecessary for the size

of the selected target sequence. The simulations were performed using four coverage

depths

c = {5, 10, 15, 20}

Different read sizes were also taken in the range consistent with popular sequencing

technologies. Sanger sequencers create reads of size anywhere between 100 − 1000 [8]

while more modern sequencers such as Illumina generate reads of 250 base pairs average

length [7]. In order to be consistent with existing sequencers and to investigate the effect

that varying read sizes has on the assembly process, the simulations used six difference

read sizes

L = {50, 100, 200, 300, 400, 500}

The assumption that all reads generated by the sequencer are of equal length was made in

order to simplify the simulation process. In this way, the research can identify differences

in complexity and performance between assemblers under ideal read conditions. In

reality, as discussed in Section 2.2, sequencers generate reads of varying length. This

may effect read grouping, and hence, the performance of the neural network assembly

scheme proposed in Chapter 5, however, as discussed in Section 5.3, the proposed scheme

will still be able to handle varying read sizes.

The Velvet assemblers use reads of size 25 − 35 base pairs [23]. The simulations were

not performed with such small read sizes since the de Bruijn assembler implemented in

this research did not make use of any of the improvements made to the de Bruijn graph

approach as was the case in the Velvet assembler.

The shotgun sequencing process was performed using four separate error rates in order

to evaluate the performance of the assembly strategies at varying read qualities. These

error rates are as follows

error rate = {0, 0.0001, 0.001, 0.01}

Chapter 6. Results and Analysis 60

The read sets generated by the shotgun sequencing process obeyed the minimum bounds

described in Chapter 3 needed for complete coverage of the target sequence. However,

due to the nature in which reads are generated by the shotgun sequencing program, the

head and tail ends of the target sequence are very rarely covered. This is because for a

given target sequence size G, the probability of covering the head or tail of the sequence

is given by

P (covering head) = P (covering tail) =
N

G
(6.2)

In most simulation scenarios, the size of G is considerably larger than the size of N . For

this reason, 100% assembly is unlikely to occur at any of the coverage depths and read

sizes used in the simulations.

The choice to perform simulations at varying read sizes, coverage depths and error rates

provides a total of 96 different simulation scenarios. The assemblers were applied to

each of these scenarios in order to establish trends and give insight into the parameters

which most affect the various assembly strategies. This will also provide information as

to how each assembly strategy performs under such varying conditions. For each given

size and coverage depth, the reads generated are stored in intermediate text files to be

parsed by the assemblers at a later stage.

6.2.2 Assembly Strategies

Assembly of the target sequence takes place after sequencing is completed. The size

and number of the reads, and hence the coverage depth, is determined from the read

file selected as an input to the assembler. Once the reads have been obtained, four

assemblers are implemented in parallel. The assemblers are as follows:

• The greedy assembler implements the greedy assembly algorithm;

• The de Bruijn assembler implements the Eulerian path finding assembly algorithm;

• The greedy neural network assembler implementing read grouping followed by the

greedy assembly algorithm;

• The de Bruijn neural network assembler implements read grouping followed by the

Eulerian path finding assembly algorithm.

The first two assemblers implement the popular de Bruijn and greedy assembly algo-

rithms. The de Bruijn assembler implements the modern approach to the DNA assembly

problem and is expected to have a better time complexity performance compared to the

greedy assembler [1, 8]. The final two assemblers introduce the neural network grouping

Chapter 6. Results and Analysis 61

Contigs
Read

Grouping

1st Round

Assembly

2nd Round

Assembly

Output

Neural Network Assembler

Greedy/Eulerian assembler

DNA
Contigs

Shotgun

Sequencing

Output
Target

Eulerian Assembler

ContigsAssembly

Output

Greedy Assembler

Eulerian

Assembly

Round

Greedy

Assembly

Round

Greedy

Phase 1 Phase 2 Phase 3

Phase 2Phase 1

Phase 1

Figure 6.1: Assembler block diagrams.

as an extra step prior to the implementation of the assembly algorithms. The aim of

this extra step is to reduce the time complexity of assembly and potentially improve ac-

curacy. The neural network assemblers are implemented in three phases. Firstly, phase

one groups similar reads together. Secondly, phase two assembles the reads within each

group in order to form group contigs. Finally, phase three assembles the group contigs

together to generate the final output contigs. Figure 6.1 shows a block diagram overview

of each of these strategy scenarios.

Both the greedy and de Bruijn assembly algorithms generate a number of contigs as

outputs depending on the degree of success of the assembly process. If assembly is

successful, a single contig representing the target sequence is generated. However, if the

target sequence is not fully reconstructed, multiple contigs which cover various areas

within the target sequence are generated. For the case of the de Bruijn assembler, it is

common for the de Bruijn algorithm to generate many output contigs as only sub-paths

within the de Bruijn graph can be found [23]. In these situations, it is necessary to

Chapter 6. Results and Analysis 62

implement a final round of greedy assembly in order to piece these contigs together.

Similarly, for the case of the de Bruijn neural network strategy, the greedy algorithm

is implemented on the outputs from the de Bruijn algorithm in the third phase of the

assembler.

Multiple simulations were performed with each assembler under the 96 different condi-

tions in order to obtain an average and determine the success rate of each assembler.

Due to time complexity being an issue, and with the limited computing power available,

only 20 assemblies for each input scenario were simulated using the de Bruijn, greedy

neural network and de Bruijn neural network assemblers. For the case of the stand-

alone greedy assembler, only 10 simulations were performed at each input scenario due

to its O(N2) time complexity. These decisions were made in order to obtain results in a

reasonable amount of time. While the low number of simulations might be of concern,

they were enough to show the trend in assembly performance across the four assemblers

being simulated. A higher number of simulations would be preferred, and recommended,

if larger amounts of computational power is obtainable.

6.2.3 Information formatting

The assemblers generate output files containing the assembly statistics which measure

the coverage information, the number of contigs created, the average contig size, the

percentage error, and the time taken to complete the assembly. Once the assemblers

have finished generating the output files, a third program is used to parse these files and

provide input to a plotting program. The R software environment was used to generate

the assembler performance plots and sequence dot plots which are presented later in this

chapter.

6.3 Evaluating Assembly Performance

Keeping in mind that the target sequence is known, the performance of each strategy can

be measured against the known target sequence. The output contigs generated by the

assemblers are correlated against the target sequence using a sliding window approach

in order to determine how much of the target sequence they cover. Hence, a contig’s

coverage is defined as the maximum number of base pairs which correlate against the

target sequence. The total coverage of an assembler is therefore determined by summing

together the coverage of each output contig. However, an issue arises when using total

coverage to evaluate the performance of assemblers which generate a different number

of output contigs. Some assemblers produce a single output contig while others produce

Chapter 6. Results and Analysis 63

Target sequence

Assembler 2 contigs

Assembler 1 contigs

Target sequence

Case 1

Case 2

Target sequence

Assembler 3 contigs

Case 3

95% total coverage

95% total coverage

95% total coverage

Figure 6.2: Three cases of varying assembly outputs. All three achieve a total coverage
of 95% of the target sequence, however the size and number of contigs vary.

multiple ones. For example, Figure 6.2 shows three cases where assemblers produce the

same total coverage with varying amount of contigs at varying sizes. One can argue

that the outputs from cases one and two are superior when compared to the outputs

from case three. Similarly the output from case one is superior to that of case two.

This is because larger contiguous output contigs provide more meaningful information

compared to the many disjoint output contigs. While case three might produce the

same total coverage compared to case one and two, the output contigs do not provide

the same level of information about the target sequence. In reality, one does not know

which portion of the target sequence each output contig represents. Therefore a new

metric, other than the total coverage, which takes into account the varying number of

output contigs and their size is needed to appropriately compare assemblers.

A new performance metric is proposed which produces an adjusted coverage score based

on the assembler’s output statistics. Instead of simply adding together the coverage

from each contig, the performance metric is composed of two components. The first

component represents the largest contig produced by the assembler while the second

consists of a scaled squared average of the coverage from all contigs, including the largest.

Chapter 6. Results and Analysis 64

This performance metric is defined as

Madjusted coverage = Mlargest contig + αMsquared average (6.3)

where α is the scaling factor acting on the squared average component. The components

Mlargest contig and Msquared average along with the scaling factor α are obtained using

Mlargest contig = max{x1, x2, . . . , xn} (6.4)

Msquared average =

√
x2

1 + x2
2 + · · ·+ x2

n

n
(6.5)

α =
(
∑n

i=1 xi)−Mlargest contig

100
(6.6)

where x and n represent the assembly contig coverage and number of output contigs

respectively.

The scaling factor α is a normalised sum of the total coverage obtained from all but the

largest contig. The squared average component is used in order to produce an average

which has a bias towards larger contigs produced by the assembler. This combination of

components ensures that the performance metric generates an adjusted coverage which

lies between the largest contig and the total coverage. This approach to measuring

the performance metric ensures that assemblers which produce larger contigs with the

same overall coverage are scored higher than assemblers which produce multiple contig

outputs with a smaller individual coverage.

In order to avoid counting unassembled reads, or contigs consisting of only a few assem-

bled reads, towards the total coverage and adjusted coverage performance metric, only

contigs larger than 1.5 times the size of the original reads were considered as output con-

tigs. This is necessary since all reads would otherwise contribute to the total coverage

and all assemblers would achieve 100% coverage.

6.4 Simulation Results

All simulations were performed using the input parameters presented in Section 6.2.1

of this chapter. Based on the cardinality of the input conditions, the four assemblers

were simulated under 96 different conditions. These parameters ensure that the min-

imum bounds required to fully cover the target sequence at a specified read size are

met. These minimum bounds are shown in Table 6.1 and are defined by Equation (3.3)

in Section 3.2. While these bounds are necessary, they do not guarantee successful re-

construction and therefore the values used for N , and hence c, in the simulations are

Chapter 6. Results and Analysis 65

Table 6.1: The minimum number of reads and coverage depths needed at varying
read sizes in order for reads to fully cover the target sequence of 50456 base pairs with

a probability of 99% (ε = 0.01).

Read size: Ncov ccov
L = 50 11513 11.51

L = 100 5410 10.82

L = 200 2532 10.12

L = 300 1620 9.72

L = 400 1179 9.43

L = 500 921 9.21

much higher than the lower bounds shown in Table 6.1. The relationship between these

two parameters is dependent on the target size G and read size L, and is given as

ccov = LNcov
G . Additionally, The size of the target sequence also imposes a lower bound

on the read size. This was discussed in Section 3.3 and is given as

L̄ >
2

H2(p)
(6.7)

For the fruit fly genome and a target sequence of 50456 base pairs in size, this bound

requires that L ≤ 15.7, which is satisfied by all six read sizes used in the simulations.

6.4.1 Coverage Statistics

The plots found in Appendix A contain the simulation results showing the coverage

statistics at the varying coverage depths, read sizes and error rates for each assembler.

These figures, which will be discussed in more detail, show; 1) the total coverage of

all contigs, 2) the total coverage of only the correct contigs (correct coverage), 3) the

number of contigs and 4) the size of the largest contig obtained from each assembly

simulation. This information is used to determine the coverage performance along with

the adjusted coverage performance metric defined in Section 6.3 for each assembler.

The total coverage consists of the summed total of all contig coverages generated by the

assembler. Some of these contigs, which contribute to the total coverage, are erroneously

merged. These contigs are identified by correlating each contig with the target sequence;

if more than 5% of the contig does not match the target, it is given an erroneous

status. The correct coverage is then calculated by ignoring contigs with an erroneous

status. These erroneous contigs occur due to the presence of repeats within the target

sequence as discussed in Section 4.1. The difference between the total coverage and

correct coverage is used to establish the assembly error of each assembler.

Chapter 6. Results and Analysis 66

The results in Appendix A show that the total coverage lies above 70% for the greedy

and greedy neural network assemblers regardless of the coverage depth, read size, and

error rate used. This is because in most cases, the assemblers produce many small output

contigs which range between 1− 5% of the target sequence in size. As was discussed in

Section 6.3, this does not reflect the true performance of an assembler. When larger read

sizes are used, these assemblers produce a similar total coverage with fewer but larger

contigs (which is desirable). Additionally, increasing the error rates did not negatively

affect the correct coverage and largest contig sizes for the greedy assemblers. It does

however increase the number of contigs generated when using smaller read sizes and in

some cases causes the total coverage to exceed 100%. As discussed in Chapter 4.1, this

occurs when the fractional overlap between contigs is smaller than the minimum overlap

threshold φmin. In such cases, contigs that should otherwise be merged together are left

un-merged, which then contribute to the total coverage.

Unlike the greedy and greedy neural network assemblers, the de Bruijn and de Bruijn

neural network assemblers produce a smaller total coverage at higher error rates. Ad-

ditionally, they also produce more numerous and smaller contigs. This is due to the

differences in which each assembler handles the contig creation process. Unlike the

greedy assembler, where contig-read pairs are merged together, the de Bruijn assembler

finds a path through the de Bruijn graph. When errors from the sequencing process

causes bubbles and tips to occur with a graph, finding the correct path can become an

issue. In cases when read-path information can not resolve a bubble or tip, the path find-

ing algorithm generates incorrect paths or terminates prematurely resulting in smaller

output contigs.

Repeats present in the target sequence are also resolved using read-path information.

As discussed in Chapter 4.2, repeats are resolvable only if the size of the k-mers are

large enough to cover the repeat regions. In the case of the de Bruijn assemblers,

discrepancies between the total and correct coverage still exist due to the final round of

the de Bruijn algorithm implementing an instance of the greedy overlap algorithm (as

shown in Figure 6.1).

6.4.2 Adjusted Coverage Performance

The adjusted coverage performance metric was introduced as a more appropriate com-

parison between the coverage performance of each assembler (as discussed in Section 6.3).

Figures 6.3, 6.4, 6.5 and 6.6 show the coverage performance of each assembler at 5, 10,

15 and 20 times coverage depths respectively. They show the adjusted coverage using

the proposed performance metric at each read size, however they only show the results

Chapter 6. Results and Analysis 67

from the 0% and 1% error rate simulations. The rest of the adjusted coverage results,

with error rates of 0.01% and 0.1%, can be found in Appendix B. The plots show the

adjusted coverage performance from only the most successful simulations performed by

each assembler under the given input conditions. Additionally, the number of successful

simulations (simulations with over 95% adjusted coverages) are also displayed to give

an indication of the success rate of each assembler.

Several observations can be made from Figures 6.3, 6.4, 6.5 and 6.6 along with those

in Appendix B. The first, and most intuitive, is that the coverage performance of each

assembler increases when the read size is increased. Increasing the size of reads increases

the number of unique possible reads by a factor of four for each base pair added (since

there are only four possible nucleotides; A, T, G and C) [22]. Having a larger set of

unique reads significantly decreases the occurrence of redundant reads which then de-

crease the probability of erroneous merging. Having larger reads also accommodates for

larger overlaps by providing more information to the assembly algorithms. The second,

and also intuitive, observation is that increasing the coverage depth also increases the

coverage performance of all assemblers. Naturally, having more pieces to reconstruct

the target sequence increases the likelihood of covering the entire sequence and hence

having the information available for reconstruction. Hence, decreasing the coverage

depth reduced the assembler’s performance. Studying Figure 6.3, it can be seen that no

successful simulations occurred due to the coverage depth being too low. Thirdly, intro-

ducing sequencing errors into the reads decreases the performance of all assemblers at

all coverage depths and read sizes. However, the two de Bruijn based assemblers are sig-

nificantly more affected when compared to the two greedy based assemblers. Regardless

of the coverage depth, the de Bruijn assemblers produced no successful reconstructions

at error rates of 1%. Additionally, not one assembler achieved 100% coverage. As ex-

plained in Section 6.2.1 of this chapter, this is due to the low probability of covering the

head and tail ends of the target sequence.

6.4.3 Results Evaluation Based on Adjusted Coverage

The most optimal performance of each assembler can be calculated using the normalised

coverage depth given in (3.14) from Chapter 3. Because the success rates (achieving

above 95% adjusted coverage) of each assembler varies, only assemblers with 50% and

above success rates were used in determining optimality. This was calculated using the

lowest coverage and read size where an assembler achieved successful reconstruction and

the ccov value corresponding to the matching read size in Table 6.1. Using this approach,

Table 6.2 shows the normalised coverage depth for each assembler without sequencing

errors. Due to the limited number of simulations performed for each assembler, these

Chapter 6. Results and Analysis 68

values may not be 100% accurate. They do however give an indication that the greedy

type assemblers perform closer to the optimal bound (c̄min = 1) when compared to the

de Bruijn type assemblers. This is consistent with the analysis done by Tse et al [8].

The greedy assembler along with the greedy neural network assembler were able to

achieve successful reconstruction at 10, 15 and 20 times coverage depths. Introducing

sequencing errors in the shotgun sequencing process did not affect their performance.

This is due to the error tolerance incorporated into the greedy assembly algorithm. Due

to the grouping process of the neural network assembler, increasing the coverage depth

seems to have a negative impact on the assembler’s success rate. Since more reads are

generated at higher coverage depths, there is a higher chance for erroneously classifying

reads into incorrect groups. The benefit to using the greedy neural network assembler

comes from the significant improvement in the computational complexity. This can be

seen in Figure 6.7 where the neural network grouping scheme significantly improved

simulation time of the greedy assembler.

The de Bruijn assembler also achieved successful assemblies at 10, 15 and 20 times

coverage depths. However they require higher coverage depths in order to achieve higher

success rates when compared to the greedy assemblers. It is desirable to keep the value

of k to a minimum as this will reduce the coverage depth needed for successful assembly

[34]. However, it is also important to keep the size of k large enough such that repeats

present in the target sequence are still resolvable by the Eulerian path finding algorithm.

As was discussed in Chapter 4, the size of the k-mers was chosen as k = 0.4L. Because

the de Bruijn assembler creates these smaller k-mers, it performs significantly worse at

lower read sizes when compared to the greedy assemblers. As can be seen in Figure 6.7,

the benefit from using the de Bruijn assembler comes from the significant improvement

in computational time needed for assembly. Unfortunately, this significant improvement

in computational complexity is lost when combining the neural network grouping scheme

with the de Bruijn assembler. While the de Bruijn neural network assembler performs

on par in terms of coverage with the standard de Bruijn assembler, it is slower due to the

added overhead associated with the neural network training and read grouping process.

For this reason implementing the de Bruijn neural network assembler is undesirable.

Table 6.2: Assembler normalised coverage depths without the presence of sequencing
errors.

Assemblers Coverage Read size c̄

Greedy assembler 10 300 1.03

de Bruijn assembler 15 200 1.48

Greedy neural network assembler 10 300 1.06

de Bruijn neural network assembler 15 200 1.48

Chapter 6. Results and Analysis 69

6.5 Results Discussion

Studying the simulation results reveals a number of important findings. Firstly, the

greedy and greedy neural network assemblers had a better coverage performance at

smaller read sizes when compared to the de Bruijn assembler. This is expected since

information is lost when breaking down reads into the smaller k-mers [34]. Secondly,

the coverage performance of the de Bruijn assemblers were significantly reduced when

introducing higher error rates in the shotgun sequencing process. This is due to the lack

of a consensus or validation step within the de Bruijn assembly algorithm as in assemblers

such as Velvet [23]. These steps would help eliminate the effect that bubbles and tips,

caused by sequencing errors, have on the construction of the de Bruijn graph [23].

Thirdly, implementing the neural network grouping scheme together with the greedy

algorithm does not negatively impact the coverage performance of the greedy assembler.

Instead, the neural network grouping significantly improved the computation time, and

in some cases even the coverage performance, of the greedy assembly algorithm. This is

consistent with the results obtained by Angeleri et al [11]. However, unlike the greedy

assembler, implementation of the neural network together with the de Bruijn assembler

is infeasible. As discussed in Section 5.4, a neural network is trained to track each seed

selected to represent a group. Additionally, once each neural network is trained, the

remaining reads are tested against it in order to determine their candidacy to the group.

This overhead significantly slows down the de Bruijn assembler since the training and

grouping process was shown to be of a higher complexity compared to the de Bruijn

assembly algorithm. Lastly, at lower error rates, the de Bruijn assemblers achieved

more consistent successful assemblies (coverage over 95%) when compared to the greedy

assembler operating under the same conditions.

With the above findings in mind, due to the high computational complexity associ-

ated with the stand-alone greedy assembler, it is recommended that the neural network

grouping is always implemented together with the greedy assembler. However, even

with the reduction in computational time provided by the read grouping process, the

de Bruijn assembler still significantly outperforms the greedy neural network assembler

in terms of computational complexity. It is therefore recommended that the de Bruijn

assembler be used when sequencing large targets, if good quality reads can be obtained.

In situations where good quality reads can not be obtained, or when sequencing smaller

targets, the greedy neural network assembler is a suitable assembler as it produces a

more accurate coverage.

Chapter 6. Results and Analysis 70

Assemblers

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

50
10

0
20

0
30

0
40

0
50

0

Adjusted coverage (%) at 0% error rate

Adjusted coverage (%)

R
ea

d
si

ze

0 20 40 60 80 100

6.3

8.1

7.1

7.5

19.3

22.6

21

11.3

29.9

32.1

36.2

25.7

43.2

71.6

54.5

30.7

54.2

64.5

61

46.8

59.8

86.3

59.8

56.8

Successful assemblies:

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

50
10

0
20

0
30

0
40

0
50

0

Adjusted coverage (%) at 1% error rate

Adjusted coverage (%)

R
ea

d
si

ze

0 20 40 60 80 100

1.8

3.9

2.7

4.1

3.4

14.6

3.7

8.8

3.6

47.4

3.7

27.5

4.2

42.2

4.2

29.4

4.9

72.6

4.9

48.7

2.9

85.1

2.9

51.4

Successful assemblies:

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

Figure 6.3: Adjusted coverages of best performing simulations at 5 times coverage
depth. The plot shows performance at both 0% and 1% sequencing error rates along

with the success rate of each assembler.

Chapter 6. Results and Analysis 71

Assemblers

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

50
10

0
20

0
30

0
40

0
50

0

Adjusted coverage (%) at 0% error rate

Adjusted coverage (%)

R
ea

d
si

ze

0 20 40 60 80 100

18.1

36

22.6

40.3

45.5

73.4

36.6

60.8

71.2

99.9

76.7

95.4

89.7

99.8

98.5

99.7

98.6

99.9

98.6

99.9

98.7

99.9

98.7

99.9

Successful assemblies:

9
7
17
4

3
3
10
2

5
2
9
0

2
0
6
0

0
0
0
0

0
0
0
0

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

50
10

0
20

0
30

0
40

0
50

0

Adjusted coverage (%) at 1% error rate

Adjusted coverage (%)

R
ea

d
si

ze

0 20 40 60 80 100

1.9

7.8

4

11.8

4.4

53.3

6.6

55.3

5.8

98.7

10.9

94.5

6.7

99

10

98.8

5.9

98.9

6.2

98.9

5.5

99.1

7

99.1

Successful assemblies:

8
0
13
0

4
0
7
0

3
0
12
0

0
0
3
0

0
0
0
0

0
0
0
0

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

Figure 6.4: Adjusted coverages of best performing simulations at 10 times coverage
depth. The plot shows performance at both 0% and 1% sequencing error rates along

with the success rate of each assembler.

Chapter 6. Results and Analysis 72

Assemblers

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

50
10

0
20

0
30

0
40

0
50

0

Adjusted coverage (%) at 0% error rate

Adjusted coverage (%)

R
ea

d
si

ze

0 20 40 60 80 100

24

43.1

20.5

42.6

35.9

98.4

22.1

94.7

98.5

99.8

98.5

99.5

98.5

99.9

98.5

99.7

98.6

99.9

98.6

99.9

98.7

99.9

98.7

99.9

Successful assemblies:

10
19
16
19

9
18
12
17

7
20
15
18

1
11
6
10

0
0
2
0

0
0
0
0

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

50
10

0
20

0
30

0
40

0
50

0

Adjusted coverage (%) at 1% error rate

Adjusted coverage (%)

R
ea

d
si

ze

0 20 40 60 80 100

2.5

11.1

5.2

16

5.4

91.2

10.5

69.2

10.7

99.3

16.7

98.6

7.8

99.7

13.7

98.8

7

99

12.5

98.9

8.5

99

8.7

98.9

Successful assemblies:

10
0
15
0

9
0
9
0

9
0
13
0

3
0
6
0

0
0
0
0

0
0
0
0

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

Figure 6.5: Adjusted coverages of best performing simulations at 15 times coverage
depth. The plot shows performance at both 0% and 1% sequencing error rates along

with the success rate of each assembler.

Chapter 6. Results and Analysis 73

Assemblers

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

50
10

0
20

0
30

0
40

0
50

0

Adjusted coverage (%) at 0% error rate

Adjusted coverage (%)

R
ea

d
si

ze

0 20 40 60 80 100

23.6

68.6

18.5

39.7

35.3

99.6

0

94.7

98.5

99.3

98.5

99.1

98.5

99.9

98.5

99.8

99.5

99.9

98.6

99.9

98.7

99.9

98.7

99.9

Successful assemblies:

10
20
12
19

8
20
8
19

8
20
7
20

3
20
3
20

0
0
6
0

0
0
0
0

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

50
10

0
20

0
30

0
40

0
50

0

Adjusted coverage (%) at 1% error rate

Adjusted coverage (%)

R
ea

d
si

ze

0 20 40 60 80 100

2.5

15.7

6

19.1

4.9

84.8

12

93.3

8.7

99.7

22.5

98.6

10.5

99

20.6

98.8

9

99.4

15.2

99

9

99

9.9

99

Successful assemblies:

8
0
14
0

9
0
13
0

6
0
10
0

8
0
7
0

0
0
0
0

0
0
0
0

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

(10)
(20)
(20)
(20)

Figure 6.6: Adjusted coverages of best performing simulations at 20 times coverage
depth. The plot shows performance at both 0% and 1% sequencing error rates along

with the success rate of each assembler.

Chapter 6. Results and Analysis 74

50
10

0
20

0
30

0
40

0
50

0

Simulation time at 5 time coverage

Simulation time (seconds)

R
ea

d
si

ze

0 50000 100000 150000 200000

3254
3435

29
1764

3390
3717

26
1400

4106
4450

31
1162

4073
4471

28
782

4122
4430

24
744

4111
4382

21
1114

50
10

0
20

0
30

0
40

0
50

0

Simulation time at 10 time coverage

Simulation time (seconds)

R
ea

d
si

ze

0 50000 100000 150000 200000

4239
5383

11
39034

5523
10998

10
31034

6284
8864

17
12641

5923
7519

12
11381

5895
6981

11
5428

5799
6544

9
6835

50
10

0
20

0
30

0
40

0
50

0

Simulation time at 15 time coverage

Simulation time (seconds)

R
ea

d
si

ze

0 50000 100000 150000 200000

4980
8820

2
85246

10340
20932

4
79088

5813
8022

3
23353

7538
9186

2
12455

7279
8432

3
9444

7027
7954

2
9583

50
10

0
20

0
30

0
40

0
50

0

Simulation time at 20 time coverage

Simulation time (seconds)

R
ea

d
si

ze

0 50000 100000 150000 200000

5659
9485

2
182850

12983
27888

4
128075

7001
10350

2
48324

9018
11323

2
16487

8663
9860

2
9817

8329
9366

2
12542

Assembly simulation time

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure 6.7: Simulation times of each assembler at 5, 10, 15 and 20 times coverage
depths.

Chapter 7

Conclusion

The DNA sequencing and assembly problem was simulated under varying read size, cov-

erage depth and error rate conditions on a 50456 base pair sequence obtained from the

Fruit Fly (Drosophila Melanogaster) genome. A shotgun sequencing process was simu-

lated to generate the reads used for assembly. Thereafter, four assembly strategies were

simulated. The four assembly strategies were the greedy assembler, the de Bruijn assem-

bler, the greedy neural network assembler and the de Bruijn neural network assembler.

The simulations were performed in order to determine which of these assembly strate-

gies achieved the highest coverage accuracy and with what computational complexity.

Additionally, the research investigates the potential benefits of implementing a “divide

and conquer” approach together with the greedy and de Bruijn assembly algorithms.

There are some limitations associated with this research. Firstly, the target sequence

used was relatively small when compared to real-world assembly scenarios [6–8]. Sec-

ondly, the double stranded nature of DNA was ignored in order to simplify the research

problem. Lastly, no validation or error correcting features, as found in the Velvet as-

sembler [23], were used. However, a major strength of this research was the introduction

of information theoretic principles which assist in establishing the correct parameters

for successful assembly. A new adjusted coverage metric was also proposed which more

accurately measures the assembly accuracy of each assembly strategy.

It was shown that under ideal conditions (low error, large reads and high coverage

depths), the de Bruijn assembler outperforms the greedy assembler in terms of compu-

tational complexity and performs on par with the greedy assembler in terms of coverage

performance. However, the introduction of high error rates to the shotgun sequencing

process significantly reduced the coverage performance of the de Bruijn assembler. The

greedy assembler on the other hand was more resilient to the introduction of this error

75

Chapter 7. Conclusion 76

and should therefore be used in the presence of higher sequencing error rates. note:

when compared to the other one and recommended

Additionally, it was shown that the computational performance of the greedy assem-

bler can be significantly improved when implementing it together with the “divide and

conquer” machine learning approach. Moreover, this increase in computational perfor-

mance resulted in only a slight drop in assembly accuracy. Therefore, in situations when

there are high error rates associated with the shotgun sequencing process, applying the

neural network grouping together with the greedy assembler is always recommended as

the slight drop in accuracy is negligible when compared to the increase gained in the

complexity performance.

Implementing the neural network grouping scheme together with the de Bruijn assem-

bler was deemed infeasible due to the training and grouping process introducing a higher

complexity into the algorithm. For this reason, there remains opportunity for future re-

search by investigating ways of reducing the complexity associated with the training and

grouping process. More specifically, research can be done on unsupervised clustering ma-

chine learning algorithms in order to determine if a complexity of O(N) is achievable. If

the neural network training and read grouping process can be achieved in an O(N logN)

complexity or lower, then the overhead introduced will not significantly compromise the

computational complexity of the de Bruijn assembly algorithm. Future work can also

exploit the parallelisable nature of the neural network grouping scheme. In this manner,

the neural network and grouping process can benefit from the abundance of computing

power available in today’s world.

Appendix A

Coverage statistics

The figures contained in this appendix display all supporting results presented and

discussed in Chapter 6.

77

Appendix A. Coverage statistics 78

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−−
−

− −−−− −
−−− −−−− −−−−

−
−

−
−

==== ====
==== =

=
=

= ==
=

= ==

=
=

Total number of contigs generated:
95.5
101.05
115.7
121.6

45.7
38.3
33.3
40.7

22.1
18.2
15.4
19.4

15.2
10.85
9.45
12.1

10.1
8.25
7.2
9.15

8.9
7.25
6.3
7.75

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.1: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 5 times coverage depth and 0% sequencing error rate

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−
−

−
−

−

−−−
−−−−

−
−−− −−−−

−

−
−

−

====
====

===
= ==

=
=

==
=

=
==

=

=

Total number of contigs generated:
100.8
105.65
117.4
124.1

45.1
40.3
33
42.55

22.1
17.5
14.65
19

15.1
12.8
9.6
14.35

11.7
9.7
7.9
11.05

9.1
8.9
6.4
9.7

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.2: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 5 times coverage depth and 0.01% sequencing error rate

Appendix A. Coverage statistics 79

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−
−

−
−

−
−

−
−

−
−−

−

−

−
−

−

−

−

−

−

−

−

−

−

====
==

=
=

=
=

=

=

=
=

=

=

=
=

=

=

=
=

=

=

Total number of contigs generated:
95.6
115.95
119.65
136.75

46.1
55.15
35.95
60.25

24.7
29.65
16
32.9

13.8
22.75
9.55
24.35

12
18.55
7.85
20.6

10.4
17.4
6.55
18.05

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.3: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 5 times coverage depth and 0.1% sequencing error rate

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
====

==
=

=
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Total number of contigs generated:
179.3
247.1
220.9
249.2

62.5
121.45
54.6
121.15

24.3
53
18.25
50.3

17.1
26.85
10.75
25.1

11.3
12.45
8.8
11.55

9.1
4.7
6.3
4.6

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.4: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 5 times coverage depth and 1% sequencing error rate

Appendix A. Coverage statistics 80

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−−

−
−

−−
−

−

−

−

−

−

−
−

−

−
−

−
−

−
−

−
−

−

=
=

=
=

==
==

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Total number of contigs generated:
13.2
12.55
18
19.95

7.5
6.05
5.4
6.95

3.5
3.45
3.5
3.7

2.3
2.8
2.3
3.05

2.5
2.05
2.2
2.3

1.5
1.8
1.7
1.95

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.5: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 10 times coverage depth and 0% sequencing error rate

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−
−−

−−

−

− −

−

−

−
−−

−

−

−

−−
−

−

−
−

−

===
=

=
===

==
=

=

=

==

=

=

=
=

=

=

=

=

=

Total number of contigs generated:
12.5
13.6
18.4
21.45

6.2
8.55
5.2
9.4

4
3.95
3.35
5.55

2.7
3.65
2.45
4.7

2
2.6
1.9
4.3

1.3
3.05
2.1
3.6

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.6: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 10 times coverage depth and 0.01% sequencing error rate

Appendix A. Coverage statistics 81

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−−
−

−

−

−

−

−

−
−−

−
−−

−

−

−−
−

−

−−
−

==
=

=

=

=
=

=

==

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Total number of contigs generated:
15.3
27.95
22
43.4

6.8
15.65
5.65
29.6

3.7
10.5
2.55
23.15

2.4
7.8
2.15
18.4

1.9
7.15
1.85
14.1

1.4
6.05
1.8
14.1

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.7: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 10 times coverage depth and 0.1% sequencing error rate

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−
−

−

−

−

−
− −−−

−

−

−

−

−

−

−

−

−

−

−

−

−

=
===

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Total number of contigs generated:
85.9
177.5
122.65
224.55

13.6
93.75
14.55
123.2

4.1
53.3
4.1
58.4

2.1
37.05
1.95
36.85

2.2
25.05
2.2
22.85

1.4
12.9
1.5
11.8

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.8: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 10 times coverage depth and 1% sequencing error rate

Appendix A. Coverage statistics 82

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−

−− −

−

−

−

−

−

−

−
−

−

−

− −−

−

− −−

−

−

=

=

==
=

=

=

=

=

=

=

= =

=

=
=

==

=

=
==

=

=

Total number of contigs generated:
9.6
2.4
9.25
8.45

5.6
1.65
4.6
2.05

2.9
1.5
3.25
1.55

1.8
1
2.15
1.2

1.2
1.1
1.75
1.15

1.4
1.05
1.75
1.05

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.9: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 15 times coverage depth and 0% sequencing error rate

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−
−

−
−

−
−

−
−

−

−

−
−

−

−

−− −

−

−

−

−
−

−
−

=
==

=
=

=

=
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Total number of contigs generated:
9.7
7.6
10.55
11.15

4.8
3.95
5.25
5.9

2.5
2.35
2.7
4.35

2.6
2.3
2.4
3.7

1.8
2.2
1.9
3.25

1.4
2.55
2.05
3.1

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.10: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 15 times coverage depth and 0.01% sequencing error rate

Appendix A. Coverage statistics 83

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−

−
−

−

−

−

−
−

−

−
−

−−

−

−

−

−

−

−

−

−

−

−

==
=

=

==
=

=

=

=
=

=

=

=
=

=

=

=
=

=

=

=

=

=

Total number of contigs generated:
9.8
12.6
10.7
32.2

5.5
9.2
4.75
26.4

2.5
5.55
2.95
21.5

2
3.7
2.5
17.55

1.2
3.2
1.8
15.3

1.1
2.9
1.6
13.1

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.11: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 15 times coverage depth and 0.1% sequencing error rate

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−−

−

−

−

−

−

−

−

−

−

−

−−

−

−

−
−−

−

−

−

−

=
==

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Total number of contigs generated:
97.9
132.45
103.45
227.3

11.3
65.4
12.4
122.05

2.8
39.95
3.35
55.9

1.5
33.8
2
37.6

1.1
28.2
1.8
28.6

1.1
20.25
1.4
18.1

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.12: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 15 times coverage depth and 1% sequencing error rate

Appendix A. Coverage statistics 84

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−

−

−
−

−

−

−

−

−

−

−
−

−

−

− −−

−

− −−

−

−

=

=

=
= =

=

=

=

=

=

=

=
=

=

=

= ==

=

= ==

=

=

Total number of contigs generated:
9.3
1.4
8.25
5.6

5.3
1.05
4.45
1.65

2.6
1
3.3
1

1.7
1
2.9
1

1.5
1
2.2
1.05

1.3
1
1.95
1

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.13: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 20 times coverage depth and 0% sequencing error rate

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−

−

−
−−

−−

−

−

−
−

−
−

−

−

−−

−−

−−

−
−

=
=

=

= ==
=

=

=

=

=

=

=
=

=
=

==

=

=

==

=

=

Total number of contigs generated:
10.1
6.4
8.7
7.8

4.9
3.45
4.8
4.55

2.7
2.15
2.7
3.4

1.7
2.05
2.2
3.4

1.3
1.95
1.9
3.45

1.1
2.5
1.7
3.45

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.14: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 20 times coverage depth and 0.01% sequencing error rate

Appendix A. Coverage statistics 85

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−

−

−

−

−

−

−

−

−

−

− −−

−

−

−

−

−

−

−

−−

−

===

= =

=
=

=

=
==

=

=

=
=

=

=

==

=

=

==

=

Total number of contigs generated:
10
12.8
7.95
30.55

5.2
7
4.6
22.8

2.8
3.45
2.95
18.85

2.4
2.65
2.6
15.45

1.5
3.1
2.15
13.5

1
2.25
1.9
11.55

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.15: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 20 times coverage depth and 0.1% sequencing error rate

50 100 200 300 400 500

Read size (base pairs)

C
ov

er
ag

e
of

 la
rg

es
t c

on
tig

 (
%

)

0
20

40
60

80
10

0

−

−−

−

−

−

−

− −−

−
−

−
−

−

−

−

−−

−

−

−

−

−

=
=

=
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Total number of contigs generated:
122.8
154.7
112.6
234.75

12.9
59.1
13.65
118.85

2.2
31.3
3.05
53.4

1.8
29
2.1
37.65

1.3
28.5
1.65
29.35

1.2
23.1
1.6
21.4

Total assembly coverage

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

−
=

Markers

Correct coverage
Largest contig

Figure A.16: Total contig coverage, correct contig coverage and largest contigs at
varying read sizes, 20 times coverage depth and 1% sequencing error rate

Appendix B

Adjusted Coverage

The figures contained in this appendix display all supporting results presented and

discussed in Chapter 6.

86

Appendix B. Adjusted Coverage 87

Figure B.1: Adjusted coverage at 5 times coverage depth and 0% sequencing error
rate

Figure B.2: Adjusted coverage at 5 times coverage depth and 0.01% sequencing error
rate

Appendix B. Adjusted Coverage 88

Figure B.3: Adjusted coverage at 5 times coverage depth and 0.1% sequencing error
rate

Figure B.4: Adjusted coverage at 5 times coverage depth and 1% sequencing error
rate

Appendix B. Adjusted Coverage 89

Figure B.5: Adjusted coverage at 10 times coverage depth and 0% sequencing error
rate

Figure B.6: Adjusted coverage at 10 times coverage depth and 0.01% sequencing
error rate

Appendix B. Adjusted Coverage 90

Figure B.7: Adjusted coverage at 10 times coverage depth and 0.1% sequencing error
rate

Figure B.8: Adjusted coverage at 10 times coverage depth and 1% sequencing error
rate

Appendix B. Adjusted Coverage 91

Figure B.9: Adjusted coverage at 15 times coverage depth and 0% sequencing error
rate

Figure B.10: Adjusted coverage at 15 times coverage depth and 0.01% sequencing
error rate

Appendix B. Adjusted Coverage 92

Figure B.11: Adjusted coverage at 15 times coverage depth and 0.1% sequencing
error rate

Figure B.12: Adjusted coverage at 15 times coverage depth and 1% sequencing error
rate

Appendix B. Adjusted Coverage 93

Figure B.13: Adjusted coverage at 20 times coverage depth and 0% sequencing error
rate

Figure B.14: Adjusted coverage at 20 times coverage depth and 0.01% sequencing
error rate

Appendix B. Adjusted Coverage 94

Figure B.15: Adjusted coverage at 20 times coverage depth and 0.1% sequencing
error rate

Figure B.16: Adjusted coverage at 20 times coverage depth and 1% sequencing error
rate

Appendix C

Assembly Errors

The figures contained in this appendix display all supporting results presented and

discussed in Chapter 6.

95

Appendix C. Assembly Errors 96

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.1: Assembly and sequencing errors at 5 times coverage depth and 0% se-
quencing error rate

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.2: Assembly and sequencing errors at 5 times coverage depth and 0.01%
sequencing error rate

Appendix C. Assembly Errors 97

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.3: Assembly and sequencing errors at 5 times coverage depth and 0.1%
sequencing error rate

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.4: Assembly and sequencing errors at 5 times coverage depth and 1% se-
quencing error rate

Appendix C. Assembly Errors 98

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.5: Assembly and sequencing errors at 10 times coverage depth and 0%
sequencing error rate

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.6: Assembly and sequencing errors at 10 times coverage depth and 0.01%
sequencing error rate

Appendix C. Assembly Errors 99

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.7: Assembly and sequencing errors at 10 times coverage depth and 0.1%
sequencing error rate

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.8: Assembly and sequencing errors at 10 times coverage depth and 1%
sequencing error rate

Appendix C. Assembly Errors 100

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.9: Assembly and sequencing errors at 15 times coverage depth and 0%
sequencing error rate

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.10: Assembly and sequencing errors at 15 times coverage depth and 0.01%
sequencing error rate

Appendix C. Assembly Errors 101

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.11: Assembly and sequencing errors at 15 times coverage depth and 0.1%
sequencing error rate

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.12: Assembly and sequencing errors at 15 times coverage depth and 1%
sequencing error rate

Appendix C. Assembly Errors 102

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.13: Assembly and sequencing errors at 20 times coverage depth and 0%
sequencing error rate

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.14: Assembly and sequencing errors at 20 times coverage depth and 0.01%
sequencing error rate

Appendix C. Assembly Errors 103

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.15: Assembly and sequencing errors at 20 times coverage depth and 0.1%
sequencing error rate

50 100 200 300 400 500

Read size

To
ta

l e
rr

or
 c

ov
er

ag
e

(%
)

0
20

40
60

80
10

0

Total assembly error

Greedy assembler
de Bruijn assembler
Neural network greedy assembler
Neural network de Bruijn assembler

Figure C.16: Assembly and sequencing errors at 20 times coverage depth and 1%
sequencing error rate

Bibliography

[1] P. A. Pevzner, H. Tang, and M. S. Waterman. An Eularian Path Approach to DNA

Fragment Assembly. PNAS, 98(17):9748–9753, 2001.

[2] P. Compeau, P. Pevzner, and G. Tesler. How to Apply De Bruijn Graphs to Genome

Assembly. Nat Biotech, 29(11):987–991, 2011.

[3] N. A. Campbell and J. B. Reece. Biology, chapter 16, pages 293–308. Pearson

Education International, seventh edition, 2005.

[4] E. W. Myers. Toward Simplifying and Accurately Formulating Fragment Assembly.

Journal of Computational Biology, 2(2):275–290, 1995.

[5] A. M. Maxam and W. Gilbert. A New Method for Sequencing DNA. Biotechnology,

(2):99–103, 1992.

[6] F. Sanger, S. Nicklen, and A. R. Coulson. DNA Sequencing With Chain-terminating

Inhibitos. Proc. natn. Acad. Sci. USA, (74):5463–5467, 1977.

[7] J. Shendure and H. Ji. Next-generation DNA Sequencing. Nat Biotech, 26(10):

1135–1145, 2008.

[8] A. S. Motahari, G. Bresler, and D. Tse. Information Theory of DNA Sequencing.

CoRR, abs/1203.6233, 2013.

[9] X. Huang. A Contig Assembly Program Based on Sensitive Detection of Fragment

Overlaps. Genomics, 14(1):18 – 25, 1992.

[10] X. Huang and A. Madan. CAP3: A DNA Sequence Assembly Program. Genome

Research, 9(9):868–877, 1999.

[11] E. Angeleri, B. Apolloni, D. De Falco, and L. Grandi. DNA Fragment Assembly

Using Neural Prediction Techniques. International Journal of Neural Systems, 9

(6), 1999.

[12] NIH National Human Genome Research Institute. Human genome sequence quality

standards, 2012. URL http://www.genome.gov/10000923. Accessed: 28-05-2013.

104

http://www.genome.gov/10000923

Bibliography 105

[13] FlyBase. A Database of Drosophila Genes and Genomes, 2014. URL http://

flybase.org/reports/FBgn0267428.html. Accessed: 26-11-2014.

[14] International Human Genome Sequencing Consortium. Finishing the Euchromatic

Sequence of the Human Genome. Nature, 431(7011):931–945, 2004.

[15] M. D. Adams et al. The Genome Sequence of Drosophila melanogaster. Science,

287(5461):2185–2195, 2000.

[16] S. Xinwei et al. Shotgun Sequence Assembly and Recent Segmental Duplications

Within the Human Genome. Nature, 431(7011):927–930, 2004.

[17] R. Arritia, D. Martin, G. Reinert, and M. S. Waterman. Poisson Process Ap-

proximaiton for Sequence Repeats, and Sequencing by Hybridization. Journal of

Computational Biology, 3(3):425–463, 1996.

[18] J. Gallant, D. Maier, and J. A. Storer. On Finding Minimal Length Superstrings.

Journal of Computer and Sustem Sciences, (20):50–58, 1980.

[19] P. Pevzner. 1-tuple DNA sequencing: computer analysis. Journal of Biomoleculare

Structure, (7):63–73, 1989.

[20] E. S. Lander and M. S. Waterman. Genomic Mapping by Fingerprinting Random

Clones: A Mathematical Analysis. Genomics, 2:231–239, 1988.

[21] N. Whiteford et al. An Analysis of the Feasibility of Short Read Sequencing. Nucleic

Acids Res., 33(19):e171, 2005.

[22] R. L. Warren, G. G. Sutton, S. J. Jones, and R. A. Holt. Assembling Millions of

Short DNA Sequences Using SSAKE. Bioinformatics, (23):500–501, 2007.

[23] D. R. Zerbino and E. Birney. Velvet: Algorithms for de Novo Short Read Assembly

Using de Buijn Graphs. Genome Research, 18(18):821–829, 2008.

[24] C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer. SHARCGS, A Fast and

Highly Accurate Short-Read Assembly Algorithm for de Novo Genomic Sequencing.

Genome Res., (17):1697–1706, 2007.

[25] P. Somboonsak and M. Munlin. A New Edit Distance Method for Finding Similarity

in DNA Sequence. World Academy of Science, Engineering and Technology, 58,

2011.

[26] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions, and

Reversals. Soviet Physics - Doklady, 10(8), February 1966.

http://flybase.org/reports/FBgn0267428.html
http://flybase.org/reports/FBgn0267428.html

Bibliography 106

[27] S. B Needleman and C.D. Wunsch. A General Method Applicable to the Search

for Similarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol., 48:

443–453, 1970.

[28] W. I. Chang and E. L. Lawler. Approximate String Matching In Sublinear Expected

Time. In Foundations of Computer Science, 1990. Proceedings., 31st Annual Sym-

posium on, volume 1, pages 116–124, Oct 1990.

[29] R. Bellman. The Theory of Dynamic Programming. Bull. Amer. Math. Soc., 60:

503–515, 1954.

[30] T. F. Smith and M. S. Waterman. Identification of Common Molecular Subse-

quences. J. Mol. Biol., 147:195–197, 1981.

[31] G. G. Sutton, O. White, M. D. Adams, and A. Kerlavage. TIGR Assembler: A

New Tool for Assembling Large Shotgun Sequencing Projects. Genome Science and

Technology, (1):9–19, 1995.

[32] W. R. Jeck, J. A. Reinhardt, D. A. Balatrus, M. T. Hickenbotham, V. Magrini,

E. R. Mardix, J. L. Dangl, and C. D. Jones. Extracting Assembly of Short DNA

Sequences To Handle Error. Bioinformatics, (23):2942–2944, 2007.

[33] R. M. Idury and M. S. Waterman. A New Algorithm for DNA Sequence Assembly.

Journal of Computational Biology, 2(2):291–306, 1995.

[34] G. Bresler, M. Bresler, and D. Tse. Optimal Assembly for High Throughput Shot-

gun Sequencing. CoRR, abs/1301.0068, 2013.

[35] S. Batzoglou and D. B. Jaffe et al. ARACHNE: A Whole-Genome Shotgun Assem-

bler. Genome Research, 12:177–189, 2002.

[36] C. M. Bishop. Pattern Recognition and Machine Learning, chapter 7. Springer,

2006.

[37] P. J. Werbos. Backpropagation Through Time: What It Does and How to Do It.

Proceedings of the IEEE, 78(10), 1990.

[38] C. E. Shannon. A Mathematical Theory of Communication. BSTJ, 27:379–423,

1948.

[39] A. Renyi. On Measures of Entropy and Information. In University of Califor-

nia Press, editor, In Proc. Fourth Berkeley Symposium, volume 1, pages 547–562,

1960.

Bibliography 107

[40] M. S. Waterman. Introduction to Computational Biology: Maps, Sequences and

Genomes. Chapman and Hall/CRC Interdisciplinary Statistics Series. Chapman &

Hall/CRC, 1995.

[41] E. Ukkonon. Approximate String-matching With q-grams and Maximal Matches.

Theoretical Computer Science, 92:191–211, 1992.

[42] P. A. Pevzner. DNA physical mapping and alternating Eulerian cycles in colored

graphs. Algorithmica, 13(1-2):77–105, 1995.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Symbols
	1 Introduction
	1.1 Research Aims and Objectives
	1.2 Research Resources, Scope and Dissertation Layout

	2 Literature Review
	2.1 The Origin of DNA Sequencing
	2.2 Shotgun Sequencing Technologies
	2.3 Assembly Techniques
	2.3.1 Overlap Assembly
	2.3.2 k-mer Assembly

	2.4 Clustering Reads Using Machine Learning
	2.5 Information Theoretic Analysis
	2.6 Literature Review Summary

	3 Information Theoretic Background and Assembler Fundamentals
	3.1 Entropy for Information Measure
	3.2 Assembly Lower Bounds
	3.3 Information Theoretic Analysis of Greedy Algorithms
	3.4 k-mer Assembly
	3.5 Supervised Neural Networks and the Backpropagation Algorithm
	3.6 Summary

	4 The Greedy and de Bruijn Assembly Schemes
	4.1 The Greedy Assembler
	4.2 The de Bruijn Assembler
	4.3 Summary

	5 The Neural Network Assembly Scheme
	5.1 The Complexity and Edit Distance Problem
	5.2 Neural Network Structure and Read Tracking
	5.3 Read Grouping
	5.4 Neural Network Assembler
	5.5 Summary

	6 Results and Analysis
	6.1 Research Paradigm and Setting
	6.2 Simulation Methodology
	6.2.1 Shotgun Sequencing
	6.2.2 Assembly Strategies
	6.2.3 Information formatting

	6.3 Evaluating Assembly Performance
	6.4 Simulation Results
	6.4.1 Coverage Statistics
	6.4.2 Adjusted Coverage Performance
	6.4.3 Results Evaluation Based on Adjusted Coverage

	6.5 Results Discussion

	7 Conclusion
	A Coverage statistics
	B Adjusted Coverage
	C Assembly Errors
	Bibliography

