7.0 CONCLUSIONS

7.1 So-called organ projection areas (OPA) do exist on the skin surface. Pathology of a particular organ causes a related OPA to rectify electrical currents, once the resistance ‘breakthrough effect’ has been induced in the skin. Pathology of an internal organ also increases the impedance of corresponding OPA. The degree of rectification or difference in impedance is proportional to the extent of the pathological process within this organ.

7.2 Organ electrodermal diagnostics (OED) which utilizes the abovementioned electrical phenomena of the skin, is a reliable bioelectronic method of non-invasive medical diagnostics, with high rates of sensitivity, specificity and predictive values. OED may detect diseased organs and estimate the extent of pathological process activity.

7.3 The OED results are affected neither by the type nor aetiology of disease, i.e. OED cannot directly explain the cause of pathology.

7.4 For DC diagnostic measurements the highest amplitude of the measurement stimulus, that is safe and does not cause uncomfortable sensations, is the most suitable. For AC diagnostic measurements low frequency and high amplitude are most suitable.