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ABSTRACT 

Exploratory data analysis (EDA) methods such as Principal Component Analysis (PCA) play an 

important role in statistical analysis.  The analysis assumes that a complete dataset is observed.  If the 

underlying data contains missing observations, the analysis cannot be completed immediately as a 

method to handle these missing observations must first be implemented.  Missing data are a problem 

in any area of research, but researchers tend to ignore the problem, even though the missing 

observations can lead to incorrect conclusions and results.  Many methods exist in the statistical 

literature for handling missing data.  There are many methods in the context of PCA with missing data, 

but few studies have focused on a comparison of these methods in order to determine the most 

effective method.  In this study the effectiveness of the Expectation Maximisation (EM) algorithm and 

the iterative PCA (iPCA) algorithm are assessed and compared against the well-known yet flawed 

methods of case-wise deletion (CW) and mean imputation.  Two techniques for the application of the 

multiple imputation (MI) method of Markov Chain Monte Carlo (MCMC) with the EM algorithm in a 

PCA context are suggested and their effectiveness is evaluated compared to the other methods.  The 

analysis is based on a simulated dataset and the effectiveness of the methods analysed using the sum of 

squared deviations (SSD) and the Rv coefficient, a measure of similarity between two datasets.  The 

results show that the MI technique applying PCA in the calculation of the final imputed values and the 

iPCA algorithm are the most effective techniques, compared to the other techniques in the analysis.     
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1. INTRODUCTION 

1.1 Background 

Many researchers and analysts use statistical analyses to answer research questions and make 

important decisions based on the results from the analyses.  Behrens (1997, p.132) states that the 

role of a data analyst is: “to listen to the data in as many ways as possible until a plausible 

‘story’ of the data is apparent”.  According to Jeffers (1994) it is important to start with an 

exploratory data analysis (EDA) as a first step in any statistical analysis.  One EDA technique 

used frequently is principal component analysis (PCA).  Wold, Esbensen and Geladi (1987, p.46) 

state that PCA is: “recommended as an initial step of any multivariate analysis to obtain a first 

look at the structure of the data, to help identify outliers [and] delineate classes”.  PCA as an 

EDA technique has many attractive features such as the ease of reducing a high dimensional 

dataset into a lower dimensional dataset (Chen, 2002).  This is done in order to simplify the 

structure of a dataset with many variables to analyse, making it difficult to extract all the 

information given in the variables (Bro and Smilde, 2014).  Focusing only on the simplified 

structure of the data can reveal relationships between variables that were overlooked when the 

full dataset was observed (Johnson and Wichern, 1998).  Another advantage of PCA is that it 

requires no distributional assumptions regarding the data (Chen, 2002). 

 

However, these advantages are only useful if the dataset is complete, without any missing 

observations.  The presence of missing data causes a loss in efficiency when estimating 

parameters since there are fewer observations to analyse (Rubin, 1987).  Furthermore, missing 

data may cause biased results since observed data are often systematically different from 

unobserved data (Barnard and Meng, 1999).  The major problem of missing data in the context 

of PCA, however, is that PCA as a standard complete-data method cannot be immediately used 

to evaluate the results as the method was not designed to take missing observations into 

consideration (Schafer and Graham, 2002), and it is unclear how to handle missing values in the 

case of PCA (Chen, 2002).  The output of a PCA model is also required to be complete as PCA 

is usually applied as an intermediate tool before performing other statistical analyses such as 

regression analysis or a cluster analysis (Johnson and Wichern, 1998).  Despite this, Schlomer, 
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Bauman and Card (2010) state that many researchers are still unaware of the importance of 

correctly dealing with missing data. 

 

A number of different approaches exist for dealing with missing data, and the most widely used 

methods, according to Schlomer et al (2010), include case-wise deletion (CW), single imputation 

(SI) and multiple imputation (MI).  CW discards all observations with at least one missing value 

across the variables and as such is easy to implement but also causes a loss of observations (Knol 

et al, 2010).  Mean imputation is an example of a SI method which replaces the missing 

observations with a single value, the mean of the observed values in this case.  Known SI 

methods used explicitly in a PCA framework include the Expectation Maximisation (EM) 

algorithm (Dempster, Laird and Rubin, 1977) and the iterative PCA (iPCA) algorithm (Josse and 

Husson, 2012a).  The drawback of SI methods, however, is that these methods are known to 

underestimate the variance since the single imputed value is assumed to be the only possible 

value of the missing observation (Little and Rubin, 2002).  A well-known method used to 

overcome this shortcoming is MI, developed by Rubin (1987).  This method replaces the missing 

value with a set of plausible values so as to account for the uncertainty of what the missing value 

should be, resulting in multiple datasets.  Rubin (1987) provides formulae for combining the 

multiple datasets into a single dataset, but this is only defined for the calculation of means, 

variances and regression parameters. The practical application of these formulae in the context of 

PCA is not mentioned.     

 

1.2 Problem Statement 

The objective of this study is to investigate how the missing data problem can be addressed in 

the context of PCA by considering five imputation algorithms, namely CW, mean imputation, 

the EM algorithm, iPCA and MI.  The EM algorithm is an effective method known to have 

changed the way statisticians handle missing data (Schafer and Olsen, 1998).  iPCA is a more 

recently proposed algorithm, with the effectiveness compared to other methods still to be 

determined (Josse and Husson, 2012a).  MI will be explored as an alternative method that has not 

yet been applied in PCA, and different ways to combine the sets of output are investigated.  CW 
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and mean imputation are included only as benchmarks to compare the other methods against 

since the drawbacks of these methods are well documented (Schafer and Graham, 2002). 

 

In order to assess the effectiveness of the algorithms, a simulated dataset is used as the baseline 

dataset and different scenarios of missing data (with the percentages of missingness varying from 

10% to 40%) are introduced.  The values are then imputed by applying the five aforementioned 

imputation algorithms, and PCA is performed on the baseline data, as well as the imputed 

datasets.  From the different PCA models, the cumulative proportion of variation explained, the 

eigenvalues and the resultant output principal components (PC) are calculated.  The results are 

then evaluated by looking at the descriptive statistics and the sum of squared deviations (SSD) of 

the baseline PC’s compared to the imputed PC’s.  The sets of PC’s are also compared using the 

RV coefficient (Escoufier, 1973), a measure of similarity between two datasets such that a value 

of 1 indicates complete similarity and 0 indicates complete dissimilarity.   

    

The specific research objectives addressed in this study are: 

1. Is there an effective way to combine the PCA results from MI? 

2. How efficient are the EM algorithm, iPCA and MI methods for handling missing data in 

PCA compared to CW and mean imputation? 

3. Which of the methods under consideration are the most effective?  This is evaluated by 

assessing which of the methods result in the lowest SSD and a RV coefficient closest to 1? 

 

1.3 Structure of the report 

The report is structured as follows:  Chapter 2 presents a review of the literature concerning 

PCA, missing data, imputation algorithms and the application of imputation algorithms in PCA.  

Chapter 3 outlines the methodology for the data simulation, the imputation methods and the 

evaluation of the effectiveness of the imputation algorithms.  The results of these analyses are 

presented and discussed in Chapter 4, with conclusions and recommendations in Chapter 5.   
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2. LITERATURE REVIEW 

This chapter reviews some of the published literature on the concept of PCA, missing data and 

how to deal with missing data especially in the context of PCA.  Section 2.1 outlines the history, 

derivation and applications of PCA as an EDA technique with the more recent studies described 

in Section 2.2.  Section 2.3 provides a description of the causes of missing data related to 

Rubin’s missing data mechanisms (Rubin, 1987).  An overview of the most common methods for 

handling missing data as well as some of the problems associated with these methods are given 

in Section 2.4 with specific focus on methods used specifically for PCA in Section 2.5.  Finally, 

a synthesis of the literature review is presented in Section 2.6. 

 

2.1. History of Principal Component Analysis 

PCA is defined as the calculation of linear combinations of the variables from a dataset, termed 

principal components (PC’s), such that further analyses can be performed on the PC’s instead of 

the original variables (Jolliffe, 2002).  Through the use of PCA, a dataset with many variables 

that are highly correlated with each other, can be represented by a fewer number of variables that 

retain the same information as the original variables (Bro and Smilde, 2014).   

 

The total number of PC’s that can be constructed is equal to the number of variables in the 

dataset, but the main use of PCA is data reduction, in which only a selected number of PC’s are 

retained for further analyses (Jolliffe, 2002).  Shlens (2014) refers to data reduction as a 

challenge for experimenters to extract the most meaningful information from the data, so as to 

reveal any hidden data structures, without filtering out the noise as well.  Dimension reduction 

techniques, such as PCA, are used to compare individuals from a multidimensional viewpoint, 

detect the relationship between variables and use the variables to describe the individuals (Josse 

and Husson, 2012a).  According to Wold et al (1987) other goals of PCA include: simplification, 

modelling, outlier detection, variable selection and prediction.      

 

Over the years, numerous research articles on PCA have been published, with the earliest 

research deriving the technique of singular value decomposition (SVD), which was done 
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independently by both Beltrami (1873) and Jordan (1874) as noted by Jolliffe (2002).  The idea 

of SVD is that any arbitrary matrix can be decomposed into three matrices consisting of two 

orthogonal matrices and one diagonal matrix (Shlens, 2014).  In the context of PCA, these 

orthogonal matrices refer to the PC’s and the eigenvectors whereas the diagonal matrix contains 

the singular values, also termed the eigenvalues (Shlens, 2014).  The eigenvectors are defined as 

the matrix indicating the weights of the linear combinations in the PC’s (Jolliffe, 2002) and the 

eigenvalues are a vector indicating the amount of variation each PC explains multiplied by the 

number of variables in the dataset (Wold et al, 1987).  The research on SVD later developed into 

one of the techniques used to calculate the PC’s from a dataset (Shlens, 2014).  Jolliffe (2002) 

notes, however, that the importance of SVD not only lies in the calculation of the PC’s, but also 

in being an aid to understanding what PCA does, providing geometric and algebraic ways of 

presenting the results.    

 

The derivation of the SVD represents the start of the journey with the actual technique of PCA 

being introduced by Pearson (1901) through means of a geometric explanation followed by an 

algebraic derivation given several years later by Hotelling (1933).  Pearson’s analysis focuses on 

finding the optimal fit of lines and planes to a set of points in a p-dimensional space while 

Hotelling’s analysis focuses on finding the optimal linear combinations of the original p 

variables, termed PC’s, that maximise the contribution to the variances of the p variables.  

Hotelling was the first to introduce the term “principal component” such that it is not confused 

by the term “factor” used in mathematics (Jolliffe, 2002).  Hotelling (1933) also defines the 

principal axes property which states that the first calculated PC will explain most of the variation 

of the original variables and the variation then decreases from the second PC onwards (Bro and 

Smilde, 2014).  Being able to quantify the contribution  that each dimension of the dataset adds 

to the variability of the dataset is stated by Shlens (2014) to be the most important benefit of 

PCA.   

 

In order to determine the PC’s, Hotelling’s (1933) research proceeds to define the power method 

as a method to determine the PC’s with a faster version of the method given in Hotelling (1936).  

The power method consists of calculating the first PC by determining the largest eigenvalue of a 
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covariance or correlation matrix and the resultant eigenvector.  Morrison (1976) presents an 

adjustment to the power method such that either the first few PC’s or the last few PC’s can be 

calculated and also provides some worked out examples.  Although this is a simple method for 

finding the first few PC’s, the method becomes problematic if the eigenvalues for the PC’s are 

very close to each other and becomes less accurate the more PC’s have to be calculated (Jolliffe, 

2002).   

 

If all the PC’s have to be calculated, Wilkinson (1965) recommends the QL-algorithm which is 

based on the idea that any non-singular matrix can be written as the product of an orthogonal 

matrix Q and a lower triangular matrix L.  By iteration, the non-singular matrix will then 

converge to a diagonal matrix with the diagonal consisting of the eigenvalues in decreasing order 

(Jolliffe, 2002).  The eigenvectors are then calculated by adding the transformations in the QL-

algorithm as is done by Smith et al (1976).  Jolliffe (2002) notes that, similar to the power 

method, convergence of the QL-algorithm will depend on the distance between consecutive 

eigenvalues.   

 

As mentioned before, SVD also provides a method for calculating the PC’s and is recommended 

by Chambers (1977) as well as Gnanadesikan (1977).  Mandel (1982) states that SVD is 

especially beneficial if the PCA is followed by a regression analysis since the SVD presents the 

PC scores as an output that would otherwise have to be calculated before applying the regression 

analysis.  Other methods for calculating the PC’s that are documented by Jolliffe (2002) consist 

of the EM algorithm that is used especially in the presence of missing data (Tipping and Bishop, 

1999) and neural networks that are used for datasets that require regular updates such that the 

PC’s have to be re-calculated every time (Diamantaras and Kung, 1996).  Neural networks 

provide a variety of different algorithms depending on a number of factors including whether the 

first few PC’s or last few PC’s are calculated and the number of PC’s to be calculated (Jolliffe, 

2002).   

 

An important question to answer at this stage is that of the number of PC’s that should be 

extracted in order to produce an effective PCA model.  The selection of the number of PC’s, 
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denoted by S, to use in PCA is a very important part of the analysis, as it would have an 

influence not only on the model but also on the analyses performed such as outlier detection (Bro 

and Smilde, 2014).  Audigier, Husson and Josse (2013) note that if S is too small, relevant 

information is lost whereas if S is too large, unwanted noise is introduced into the model, which 

could influence the model results.  Many different methods for selecting S exist in literature but 

the methods do not always produce definite results of what S should be (Bro and Smilde, 2014).  

Due to the many uses of PCA and the variety of different underlying data structures, there is no 

single method for selecting S that is preferred above the other (Josse and Husson, 2012a) and 

sometimes even a combination of the different methods are used in order to determine the most 

effective S to use (Bro and Smilde, 2014).   

 

According to Jolliffe (2002), the cumulative percentage of variation explained by the PC’s is 

considered the most obvious criterion to determine S, where the percentage of variation 

explained is calculated as the sum of variations that the individual PC’s explain, divided by the 

number of variables. The criterion states that, for a selected threshold of the percentage of 

variation explained, S is selected to be the smallest number of PC’s for which the accumulated 

percentage variation explained is greater or equal to the threshold.  The threshold usually ranges 

between 70% and 90% (Jolliffe, 2002).   

 

A visual method for selecting S is a scree plot test, which consists of a plot of the eigenvalues on 

the Y-axis against the number of PC’s on the X-axis.  S is then selected to be the value at which 

the graph forms an “elbow” such that the curve is steep to the left of S and forms an almost 

horizontal line to the right of S (Jolliffe, 2002).  The method was developed by Cattel (1966) and 

is based on the assumption that the relevant information given by the data is more than the 

random noise and as such the size of the variation of the random noise tends to smooth out 

linearly as S increases (Bro and Smilde, 2014).  Jolliffe (2002, p.116) notes  that the name of the 

plot originated from having a similar shape as “the accumulation of loose rubble, or scree, at the 

foot of a mountain slope”.  If the eigenvalues are too large to distinguish an “elbow”, an 

alternative is to plot the logarithm of the eigenvalues instead of the actual eigenvalues (Farmer, 
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1971).  It is, however, still difficult to determine S if the eigenvalues decrease gradually (Jolliffe, 

2002).   

An additional method that also depends on the eigenvalues is Kaiser’s rule (Kaiser, 1960), that 

selects S as the number of PC’s that have eigenvalues greater than one.  The rule is based on the 

argument that every PC would have an eigenvalue of one if all the variables are orthogonal.  As 

such an eigenvalue greater than one indicates that the PC explains the variation of more than one 

variable (Bro and Smilde, 2014).  In practice, however, it is sometimes possible for PC’s to have 

eigenvalues below one and still make a significant contribution to the model (Bro and Smilde, 

2014). 

     

The aforementioned criteria are all ad-hoc methods that are very subjective, rather than based on 

statistical principles (Jollife, 2002).  Often there exists a requirement for S to be determined more 

accurately than simply based on subjective criteria (Bro and Smilde, 2014).  For example, when 

a PCA model is applied to detect outliers, the model will produce different results for different 

number of components and as such it is important to select the correct number of components.  A 

popular method to use is cross-validation.  This was initially developed by Mosier (1951) but 

introduced in the context of PCA by Wold (1978).  The idea of cross-validation methods is to 

leave out part of the data, build a PCA model on the data that are left and then apply the model to 

predict the left-out observations.  The SSD between the actual and predicted observations is then 

calculated and S is selected to be the number of PC’s in the model with the lowest SSD (Josse 

and Husson, 2012b).   

 

2.2. Recent Studies 

Apart from the few literature references such as Girshick (1939), who focused on a study of the 

asymptotic sampling distribution of the coefficients and variances of the PC’s, it is only from the 

1960’s that the literature in PCA expanded.  Jolliffe (2002) comments that this expansion 

coincides with the advances in computer technology and quotes four important references that 

have contributed to the advancement in PCA, namely Anderson (1963), Rao (1964), Gower 

(1966) and Jeffers (1967).  Anderson (1963) adds to the work done by Girshick (1939) by 
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studying the asymptotic sampling distribution of the coefficients and variance of the sample 

PC’s.  Rao (1964) introduces many alternative uses, interpretations and extensions of PCA, 

including the use of PCA in cluster determination and significance testing.  Rao (1964) also 

provides a clear distinction between PCA and factor analysis.  Gower (1966) links the use of 

PCA with other statistical techniques such as principal coordinate analysis.   

 

Jeffers (1967) offers a more practical study of PCA with the aim to provide the practical 

objectives that can be achieved with PCA as well as a clearer understanding of the interpretation 

underlying the outcome of PCA.  In Jeffers’ (1967) study PCA is applied as more than a 

reduction tool in two case studies.  For the first case study, the aim of the analysis is to determine 

whether pit props cut from Corsican pine in East Anglia are strong enough to be used in the 

mines.  PCA is applied to a dataset consisting of 13 highly correlated variables and 180 

observations, in order to reduce the dataset to 5 significant PC’s.  The PC’s are then applied in a 

regression analysis, known as principal component regression, to determine the strength of the 

pit props.  In the second case study, the analysis focuses on determining the number of distinct 

taxa within a sample of 40 winged aphids, with 19 variables measuring different characteristics 

of the insects.  Based on the results of PCA, the dataset is reduced to 2 significant PC’s which, 

when plotted, indicate 4 different groups of insects.   

 

Jolliffe (2002) provides an in-depth summary of the history, the derivations and the uses of PCA.  

Abdi and Williams (2010) claim that PCA can most likely be seen as the most popular 

multivariate statistical technique that is used across many different statistical fields.  They also 

commend PCA on its versatile nature mentioning the use of PCA in neural network models, 

correspondence analysis, multiple factor analysis and many more.  PCA can therefore be seen as 

a very important and widely-used methodology.  To give an illustration of the versatile uses of 

PCA, three recent studies each applying PCA in a different context will now be discussed. 

 

Ndiaye and Gabriel (2011) focus on principal component regression in order to determine the 

electricity consumption of housing units in Oshawa, Canada, which help local electricity 

distribution companies to better develop conservation and demand management projects.  The 
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data consist of 59 highly correlated variables and 62 observations, gathered from energy audits, 

phone surveys and smart meter readings.  Applying PCA results in 9 PC’s extracted and a linear 

regression model is then applied to the PC’s with the annual electricity consumption per square 

foot of floor area as the dependent variable.  The model yields an R
2
 value of 79% indicating the 

good fit.  All the parameter estimates are significant at the 5% level of significance. 

 

In a different study by Tomazzoni et al (2014), PCA is used in a classification analysis to aid in 

diesel quality control.  Fuel alterations are sometimes made by adding low value-added products 

in order to make illegal financial profits and the authors suggest the use of a fluorescence 

spectrophotometer in gas stations or fuel distributors, due to its practicality, cost effectiveness 

and reliability.  The fluorescence spectrophotometer, however, only produces effective results in 

differentiating between pure samples containing no mixture and as such the application of PCA 

to the results from the fluorescence spectrophotometer is recommended in order to differentiate 

the pure samples from the mixtures.  Their analysis is based on three different samples of data, 

each consisting of the 1136 variables measured by the fluorescence spectrophotometer and 17 

different mixtures of diesel, oil and biodiesel including a pure diesel mixture.  PCA is then 

applied to the different datasets and the results indicate the successful classification according to 

the type of product and concentration of oil or biodiesel added to it.          

 

The third study includes outlier detection with the aid of PCA done by Bro and Smilde (2014).  

Their data consist of 44 different samples of red wine (Cabernet Sauvignon), produced from the 

same grape variety, distributed as follows: 6 from Argentina, 15 from Chile, 12 from Australia 

and 11 from South Africa.  Fourteen different characteristics, such as the ethanol content and the 

density, are then measured for each wine using the Foss WineScan instrument.  PCA is then 

applied for different types of analyses including outlier detection.  The authors identify outliers 

as unusual observations not similar to the majority of the observations and identify these outliers 

by visual inspection with the aid of score plots, score contribution plots and influence plots.  The 

results indicated one outlier from South Africa with very high levels of volatile and lactic acids.  
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2.3. Missing Data 

One of the requirements, before PCA can be applied, is that the dataset must be complete, since 

PCA is a multivariate statistical technique based on all the observations in the dataset and thus 

cannot be directly applied if missing values are present (Rubin and Schenker, 1991).  The 

presence of missing data, however, is a well-known problem across all areas of research (Horton 

and Lipsitz, 2001).   

 

Groves et al (2009) define two main types of missing data, namely unit non-response and item 

non-response.  Unit non-response follows when all the information for a unit or object is 

missing.  For example, when a respondent cannot be contacted to complete a survey due to 

incorrect contact information, it is classified as unit non-response.  Item non-response is when 

only some information for the unit is missing, such as a half completed survey due to the 

respondent’s lack of knowledge on the subject of the survey.  The two types are analysed 

differently as both of them have different reasons for the nonresponse and are different problems 

with different solutions (Wagner and Kemmerling, 2010).  Durrant (2005) notes that the general 

methods for handling unit non-response are weighting methods, while the methods for item non-

response include weighting methods, imputation methods and maximum likelihood based 

methods such as the EM algorithm.  Since imputation and maximum likelihood are the topics of 

this study, the focus will be on item non-response only.   

 

Item non-response is caused by what Rubin (1987) mathematically defines as the three missing 

data mechanisms: 

 Missing Completely At Random (MCAR) 

 Missing At Random (MAR)  

 Missing Not At Random (MNAR)   
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2.3.1. Missing Completely At Random 

Missing observations are said to be MCAR when the missing observation is completely random 

with respect to the variable being measured as well as the other variables (Rubin, 1987).  The 

missing values occur completely by chance and not because of a specific reason.  For example, 

in survey research, the interviewer may accidentally turn over two pages instead of just one and 

thus cause a whole page of missing observations.  The advantage of missing observations being 

MCAR is that almost any method for handling these missing observations will produce effective 

results (Bennett, 2001).  Although MCAR does occur, Stuart, Azur, Frangakis and Leaf (2009) 

note that missing observations are generally more likely to be MAR than MCAR. 

 

2.3.2. Missing At Random 

Missing observations are MAR when the missing observation does not depend on the variable 

being measured but depends on another variable (Rubin, 1987).  In this case there is a specific 

reason why an observation is missing, but the reason is unrelated to the variable that contains the 

missing value.  For example, males tend to know more about cars than females.  If a female is 

asked a technical question about the inner workings of an engine, she may leave that question 

unanswered.  Here the reason for the non-response has nothing to do with the question asked but 

rather with the lack of knowledge of the female population regarding the particular subject area. 

 

2.3.3. Missing Not At Random 

Missing observations will be MNAR if the missing observation depends on the variable being 

measured (Rubin, 1987).  For example, a person refuses to answer a question about personal 

income as he/she feels uncomfortable in disclosing such information.  In this example, the non-

response is explicitly because of the question asked.  According to Nakagawa and Freckleton 

(2010), MNAR is the mechanism with the most problems but no general method exists to 

appropriately deal with data that are MNAR (Donders, Van der Heijden, Stijnen and Moons, 

2006). 
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MCAR and MAR are considered to be ignorable in the sense that the distribution of the 

missingness caused by either of these mechanisms does not need to be modelled, since the 

distribution has no effect on the analysis (Rubin, 1987).  With MNAR, however, the missing data 

are influenced by the distribution of the missingness and must thus be modelled before the 

missing data can be handled.  MNAR is therefore termed as non-ignorable. 

 

The distinction between the underlying missing data mechanisms is important when dealing with 

missing data, since if the mechanism can be correctly identified then the researcher will be able 

to identify which strategy is the most appropriate to use (Nakagawa and Freckleton, 2010).  In 

practice it is possible to determine whether missing data are MCAR or not MCAR by using 

either statistical tests (Little, 1988) or visual inspection (Nakagawa and Freckleton, 2010).  The 

distinction between MAR and MNAR, however, is more difficult (Nakagawa and Freckleton, 

2010) since MNAR requires more information regarding the distribution of the missing data, in 

order to be distinguished from MAR (Schafer, 1997).   

 

Little (1988) proposes that each variable with missing values be split into the observed part and 

the missing part.  A series of t-tests are then performed, comparing the differences in the means 

of the other variables within these two groups.  If no significant difference exists, then the 

missing data can be classified as MCAR, otherwise it is classified as not MCAR.  Nakagawa and 

Freckleton (2010) suggest a simpler method of distinction, by recoding the data matrix into 

binary variables to indicate whether the observation is missing or observed.  It is then possible to 

visually assess whether the missing observations are MCAR or not MCAR from the data patterns 

of the bivariate plots between the binary variables and the variables on the original scale.   
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2.4. Handling Missing Data 

2.4.1. Case-wise deletion 

In this section commonly used techniques to handle missing data are discussed.  The most 

commonly used method for handling missing data that is implemented in most software 

packages as the default procedure is CW, also known as complete-case analysis (Knol et al, 

2010).  CW discards all observations with at least one missing value and as such results in a 

dataset with fewer observations to analyse.  A major concern with CW is the fact that 

information is lost in the process, which leads to a loss in the statistical power of the analysis 

(Little and Rubin, 2002).  Also, if missing observations are not MCAR, CW can produce biased 

parameter estimates leading to incorrect conclusions for the analysis (Klebanoff and Cole, 2008).  

As such, Jolliffe (2002) notes that CW in the context of PCA is only acceptable if there are a few 

missing values, with no specific threshold value indicated.   

 

2.4.2. Single Imputation 

In order to avoid deletion of observations and hence reducing the number of observations, an 

alternative method is to impute or replace the missing observations with a certain value.  This 

method is known as SI, and found its origin in survey research (Little and Rubin, 2002).  SI is 

computationally easy to use and available in most standard software packages (Schlomer et al, 

2010).  Since important information is retained instead of deleted, SI is known to perform better 

than CW (Schafer and Graham, 2002).  The advantage of SI in the context of PCA is that the 

output is a single dataset which can easily be used in further analyses.  However, the substitution 

of a single value for the missing observation completely ignores the uncertainty of what that 

missing value should be, causing overconfident precision and biased parameter estimates (Little 

and Rubin, 2002, Donders et al, 2006).  Three of the most widely used methods of SI include 

mean substitution, regression substitution and hot-deck imputation (Schlomer et al, 2010). 
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Mean Imputation 

In mean imputation, the missing observations are replaced by the mean of the observed data.  

This method produces biased means if missing observations are not MCAR (Bennett, 2001).  

Researchers strongly advise against the use of mean imputation, as it underestimates the variance 

even in the case where missing observations are MCAR (Bennett, 2001; Schafer and Graham, 

2002).   

 

Regression Substitution 

Regression substitution predicts the value of the missing observation using a regression analysis 

that models the (generally linear) relationship between the variable containing missing data (Y) 

and one or more other variables (X).  Even though regression substitution produces unbiased 

means for MCAR and MAR (Schlomer et al, 2010), it still has the disadvantage of 

underestimating the variance (Bennett, 2001).  The main concern with regression substitution, 

however, is that this method cannot be used if the covariance or correlation between the variables 

are analysed, as regression substitution is known to overemphasize the strength of the 

relationship between them (Schafer and Graham, 2002).   

 

Hot-deck Imputation 

Hot-deck imputation is a nonparametric method in which the values of the missing observations 

are predicted by using other ‘similar’ observations.  For example, in survey research, a person 

that has the same response to the answered questions as another person, will tend to have the 

same response as that person for the questions he/she did not respond to (Rubin, 1987).  Even 

though this method produces biased results when missing observations are MNAR, it produces 

less biased results than CW and mean substitution (Bennett, 2001).  However, hot-deck 

imputation also underestimates the variance (Rubin, 1987). 
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2.4.3. Multiple Imputation 

To overcome the problem of the variance being underestimated, Rubin (1987) developed the 

method of MI which is recommended above all other methods by researchers such as Klebanoff 

and Cole (2008) and Janssen et al (2010).  Instead of replacing the missing observations with a 

single value, MI consists of replacing every missing observation by a vector of plausible values 

(Rubin, 1987).  This vector of multiple values takes the uncertainty of what the missing value 

should be into consideration, and thus produces more accurate and efficient estimates of the 

variance (Little and Rubin, 2002). 

 

The first step in the MI process is the imputation step, where missing values are imputed using 

an appropriate imputation method.  This step is replicated m times in order to impute each 

missing observation with m plausible values.  With modern computing power it is not much 

effort to make m as large as possible, but Rubin (1987) shows that usually m between 3 and 10 is 

sufficient.  Collins, Schafer and Kam (2001) show that m = 5 produce results that are efficient 

enough.  Parametric Bayesian models or nonparametric methods are typically used to impute 

missing values.  After the imputation step, each of the m datasets is analysed using the normal 

complete-data methods in the analysis step.  The final step in the process is termed the pooling 

step, where the m sets of estimates are combined using the formulae developed by Rubin (1987) 

in order to produce a single set of estimates that are easy to understand and interpret.   

 

Parametric Bayesian Models 

Little (2011) states that Bayesian models, in particular, can be used to handle missing data.  The 

parametric Bayesian model (Rubin, 1987, Schafer, 1999) is based on using the observed data 

(Xobs) and the prior distribution of the vector of unknown parameters (θ) to compute the posterior 

distribution of θ using Bayesian theory.  The missing observations (Xmis) are then imputed by 

simulating values from this posterior distribution.  An example of this method is the Markov 

Chain Monte Carlo (MCMC) with the EM algorithm.   
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MCMC originated in the 1950s as a means for physicists to study molecules (Yuan, 2000), but 

the technique was not used in Bayesian inference until the 1980s (Tanner and Wong, 2010).  The 

MCMC algorithm requires starting values as initial estimates.  According to Yuan (2000) the 

parameters from the EM algorithm, a model first formulated by Dempster et al (1977), are good 

starting values to use for MCMC.  MCMC and the EM algorithm are known for their flexibility 

and reliability when dealing with missing data (Schafer, 1997).  However, Nakagawa and 

Freckleton (2010) state that MCMC is not widely used due to implementation difficulties and 

slow convergence speed.   

 

Nonparametric Methods 

In contrast to parametric Bayesian models, nonparametric methods require minimal information 

about the distribution of θ.  These methods are known to work well for large samples (Schafer, 

1999) as long as the between-imputation variance is taken into account (Rubin, 1987).  One 

example of a nonparametric method is the Approximate Bayesian Bootstrap imputation method, 

where missing values are imputed by sampling with replacement, as discussed in Rubin (1987).   

 

Many researchers have studied the effects of using MI for different percentages of missingness 

according to the three missing data mechanisms.  Although the methods of MI used were 

different, they all reached similar conclusions regarding the effectiveness of MI. 

 

Knol et al (2010) compare CW with MI for missing observations that are MCAR and MAR, 

according to five different percentages of missingness ranging from 2.5% to 30%.  Five variables 

are selected from the Dutch part of a European prospective cohort study aimed at developing a 

multifactor risk algorithm for onset of major depression (n = 1075).  CW produces unbiased 

results for all five percentages of MCAR.  For MAR, the results are unbiased only if there is less 

than 5% missing data.  MI, however, results in effective, unbiased estimates for both 

mechanisms and for all percentages and is thus identified as the method of choice.  
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Janssen et al (2010) use 500 simulated datasets from a cross-sectional study among 804 adult 

patients with suspicion of deep venous thrombosis, with percentages of missingness ranging 

from 10% to 90%.  They show that MI performs better than CW when considering missing 

observations that are MAR.  Donders et al (2006) compare MI with SI on 1000 simulated 

samples of 500 observations with approximately 40% MAR missingness and confirm that MI is 

better. 

 

Marshall, Altman and Holder (2010) investigate the MAR mechanism by looking at five 

percentages of missingness ranging from 5% to 75% and applying the methods of CW, SI and 

MI.  Using a dataset consisting of 7507 patients from a randomised colorectal cancer trial 

between May 1994 and September 2003, they obtain 500 replications of 1000 observations each 

by sampling with replacement from this dataset, according to the MAR mechanism.  They 

conclude that for 5% of missingness there are very few differences between the three methods.  

For percentages of missingness greater than 10%, they advise against the use of both CW and SI.  

MI proves to be the most useful method for handling 10% to 50% MAR missingness.  However, 

for percentages greater than 50% even MI leads to biased and misleading results.  

 

Burns et al (2011) use MI to estimate the missing Mini-Mental State Examination results for 

17303 participants drawn from the Dynamic Analyses to Optimise Aging Project.  The data were 

collected between 1990 and 2006.  For percentages of missingness ranging from 0.5% to 95% 

under the MAR mechanism, the researchers show that MI is only effective for up to 50% MAR . 

 

MI, just as any other method, has its disadvantages.  A possible limitation of the MCMC 

algorithm is that the algorithm assumes that data are from a multivariate normal distribution.  

However, Schafer (1997) produces evidence that valid inferences will be obtained even if the 

assumption of normality is violated.  The EM algorithm, on the other hand, assumes that the 

missing observations are ignorable, i.e. either MCAR or MAR.  Also, MI can become 

computationally intensive (Schlomer et al, 2010).  However, the increasing number of articles on 

the method of MI, and the practical implementation thereof, have made this method more 

accessible (Knol et al, 2010). 
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After the missing observations are imputed using a suitable MI method, the intended analysis 

(such as regression analysis) is then performed on each imputed dataset and the results combined 

using formulae developed by Rubin (1987).  A drawback of MI in the context of PCA is that the 

output consists of multiple datasets that should ideally be pooled or combined for use in possible 

subsequent analyses such as PCA or cluster analysis. 

 

2.4.4. Maximum Likelihood Approaches 

Except for MI, Josse and Husson (2012a) state that the other group of highly recommended 

methods for dealing with missing data are the maximum likelihood (ML) approaches. A ML 

based approach known for its effectiveness, under the assumption of multivariate normality, is 

the EM algorithm first introduced by Dempster et al (1977).  The EM algorithm is a method that 

calculates the ML estimates of parameters in the case of missing observations.  Based on the ML 

estimates, the missing observations are then imputed using the expected log-likelihood.  Since 

the missing observations are imputed with a single value, the EM algorithm can also be seen as 

an SI method (Little and Rubin, 2002).   

 

2.5. Algorithms Specifically for PCA 

Considering missing data algorithms used specifically for PCA, Jollife (2002) notes that most 

research articles generally do not consider missing data in PCA but rather focus on the 

estimation of the covariance or correlation matrix in the presence of missing data.  This allows 

for the derivation of PCA models, but the resultant PC’s for individual respondents cannot be 

determined due to the observations still being missing.  A range of methods handling missing 

data in the context of PCA have been studied in the past, each with their own advantages and 

disadvantages.  Jolliffe (2002) and Ilin and Raiko (2010) provide a general overview of the 

missing data algorithms used historically in PCA, with Ilin and Raiko (2010) focusing more on 

Bayesian methods.     
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2.5.1. The Non-linear Iterative Partial Least Squares Algorithm 

The problem of missing data in PCA was first considered by Dear (1959) whose analysis is 

based on the minimum mean-square error (MSE) formulation of PCA derived by Young (1941).  

Dear (1959) splits the data matrix into the observed values and the missing values.  The PC and 

loadings from a one component PCA model based on the observed values are then used to 

estimate the missing values.  As an equivalent to Dear’s (1959) method, Wold (1966) develops 

the non-linear iterative partial least squares (NIPALS) algorithm, first defined by Fisher and 

Mackenzie (1923), for a single PC model.  Starting with an initial value for the PC, say the 

variable with the highest variance, the NIPALS algorithm consists of estimating the eigenvector 

and normalising it to length one.  The PC is then re-estimated given the normalised eigenvector 

and the process is repeated until a measure of convergence is reached, for example when the 

SSD between the elements of two consecutive PC’s is 0 or below a certain threshold.  Wold et al 

(1987, p.50) suggest that the iteration should be stopped if convergence is not reached within 25 

iterations as the data will then be “almost (hyper)spherical with no strongly preferred direction 

of maximum variance”.   

 

Christofferson (1970) extends the NIPALS algorithm to handle missing values and mentions the 

application for two PC’s.  The extended algorithm to calculate more than one PC is given in 

Wold et al (1987) and is based on estimating the PC’s on a sequential basis.  The first PC is 

calculated using the NIPALS algorithm and the residuals are estimated by subtracting the single 

PCA model estimates from the dataset.  The second PC is then calculated by applying the 

algorithm to the residuals instead of the original dataset and the process is then repeated for the 

following PC’s.  Josse, Husson and Pagès (2011) note that the NIPALS algorithm consists of 

alternating two weighted simple regression models, namely the regression of the eigenvector on 

the PC and the regression of the PC on the eigenvector.  Wold et al (1987) comment that the 

NIPALS algorithm is a faster alternative for calculating PC’s compared to the SVD method if 

only the first few PC’s are calculated, but if all the PC’s have to be calculated, SVD is more 

efficient.     
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Although the NIPALS algorithm is a commonly used algorithm for handling missing data in 

PCA (Josse et al, 2011), there are many literature studies that criticise the algorithm including 

Gabriel and Zamir (1979), Grung and Manne (1998) and Josse and Husson (2012a).  The 

criticism includes that the algorithm produces different solutions for different software programs 

(Grung and Manne, 1998), the algorithm does not always converge to a solution especially if 

many missing observations are present (Josse and Husson, 2012a), and the algorithm only 

produces reasonable results for a few missing values (Josse et al, 2011). 

 

2.5.2. Criss-cross Multiple Regression 

Due to the shortcomings of the NIPALS algorithm, researchers such as Grung and Manne (1998) 

and Kroonenberg (2008) suggest the use of criss-cross multiple regression developed by Gabriel 

and Zamir (1979).  The criss-cross multiple regression is an extension to the NIPALS algorithm 

in the sense that instead of using two weighted simple regression models, the method uses two 

weighted multiple regression models that are alternated until convergence (Josse et al, 2011).  

While the NIPALS algorithm proceeds dimension by dimension, the criss-cross multiple 

regression considers all the dimensions at once (Gabriel and Zamir, 1979).          

 

2.5.3. The Iterative PCA Algorithm 

As an alternative to criss-cross multiple regression, Kiers (1997) studies the method of iPCA.  In 

the EDA framework, Josse et al (2011) note that iterative imputation was first proposed in 

correspondence analysis by Nora-Chouteau (1974) and Greenacre (1984).  Their work is based 

on the missing data method designed by Healy and Westmacott (1956) to handle missing 

observations in block experiments.  The method consists of proposing initial values for the 

missing observations and then running the analysis on the completed data matrix for a 

predetermined number of PC’s.  The missing observations are then imputed based on the output 

from the model and the model is re-estimated given the new completed data matrix.  This 

process is repeated until the total change in the matrix is less than a certain threshold level.  The 

iPCA algorithm is also considered to be an SI method (Josse and Husson, 2012a). 

 



22 

 

Kiers (1997) compares the iPCA algorithm to the criss-cross multiple regression method and 

concludes that both methods provide similar results.  In Kiers’ (1997) study, 30 datasets 

consisting of 20 variables each are simulated from a uniform distribution with parameters -0.2 

and 0.8 with the number of observations selected as either 100 or 500 and the number of 

dimensions set to either 3 or 6.  The weight matrix used for the criss-cross multiple regression 

method is simulated from a uniform distribution with parameters 0 and 1 such that the weights 

are all greater than 0.  A PCA model is then fitted to the datasets using both the iPCA algorithm 

and the criss-cross multiple regression method and the final loss function value, i.e. the sum of 

the squared differences between the actual and predicted values, recorded.  The results show that 

there are no significant differences between the loss function values of the two methods in 29 out 

of the 30 cases.  For the last case, the loss function value for the iPCA algorithm is more than 1% 

lower than that of the criss-cross multiple regression method. 

 

A study by Walczak and Massart (2001) applies the iPCA algorithm for different percentages of 

missingness ranging from 2% to 25% that are removed from the data based on the MCAR 

missing data mechanism.  Their complete dataset consists of 10 variables and 45 observations.  

The number of PC’s is set to 2 which accounts for 96.7% of the variation in the data.  Score plots 

of the PC’s, comparing the scores from the complete dataset to the scores from the imputed 

datasets, indicate that for low percentages of missingness (2% to 9%) the imputed scores are very 

similar to the complete scores.  For high percentages of missingness (≥ 22%) the differences 

between the imputed and complete scores are more evident but the data pattern is still preserved.   

 

As sourced from Josse and Husson (2012a), Josse, Husson and Pagès (2009) present a 

regularised iPCA algorithm by introducing a shrinking parameter in the imputation step of iPCA 

algorithm.  The shrinking parameter is used to reduce the effect of noise in the model and thus to 

reduce the problem of overfitting.  In a simulation study they determine the effectiveness of the 

regularised iPCA algorithm by comparing it against the normal iPCA algorithm, the NIPALS 

algorithm, the EM algorithm and the mean imputation method.  A dataset comprising of 7 

normalised variables and 21 observations is simulated from a two dimensional signal model with 

a noise component added that is simulated from a normal distribution with a mean of 0 and a 
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variance of 𝜎2, 𝜎2 ranging from 0.1 to 0.75.  Missing observations are introduced according to 

the MCAR mechanism with the missingness varying between 10% and 40%.  The number of 

PC’s to be used in the iPCA algorithms is selected a priori to be either 2 or 3 PC’s.   

 

In their study, Josse et al (2009) conclude that the regularised iPCA algorithm outperforms the 

other algorithms, especially for noisy data with a high percentage of missingness.  When there is 

no noise in the data, the regularised iPCA algorithm is similar to the normal iPCA algorithm.  If 

the incorrect number of PC’s is selected, the regularised iPCA algorithm still presents acceptable 

results as opposed to the incorrect results from the EM algorithm.  The NIPALS algorithm is 

shown to be very unstable for high percentages of missingness.   

 

Josse et al (2011) provide an MI version of the iPCA algorithm to account for the variability due 

to the missing observations.  In their study, they create multiple imputed datasets from the 

generated PCA model, but do not combine the results into a single dataset.  Instead they project 

the multiple possibilities onto a reference configuration, in order to visually observe the 

uncertainty of the missing values.  In other words, they plot the first two PC’s from an SI iPCA 

algorithm and then overlay the multiple predicted observations from the MI iPCA algorithm onto 

these observations.  The multiple values are then summarised using ellipses or convex hulls and 

the bigger, the ellipse the more variability is caused by the missing observations.  Although the 

effectiveness of the methodology still needs to be tested (Josse and Husson, 2012a), the authors 

comment that the proposed MI iPCA algorithm can be considered as an alternative to other MI 

methods such as the MCMC algorithm by Schafer (1997). 

 

Further recent developments for the iPCA algorithm include multi-level simultaneous component 

analysis (Timmerman, 2006), multiple factor analysis (Escofier and Pagès, 2008), multiple 

correspondence analysis (Josse and Husson, 2012a; Josse, Chavent, Liquet and Husson, 2012) 

and an algorithm to impute mixed data (Audigier et al, 2013). 
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2.5.4. The EM Algorithm 

The EM algorithm (Dempster et al, 1977) is a widely used missing data algorithm that can also 

be used in the context of PCA (Jolliffe, 2002).  Popov (2006) presents such an analysis in which 

the EM algorithm is compared to mean substitution.  The analysis is based on a real-world 

biomedical dataset consisting of blood tests with 35 measured variables for 26 patients, before 

and after taking treatment.  An incomplete dataset is constructed by deleting 20% of the 

observations using MCAR.  A visual analysis, comparing the complete dataset with the imputed 

datasets, is then performed.  The results indicate that the EM algorithm performs better than the 

mean substitution.   

 

Schafer and Olsen (1998, p.546) note that the importance of the EM algorithm goes beyond the 

implementation of the algorithm as “the ideas underlying EM signalled a fundamental shift in 

the way statisticians viewed missing data”.  They comment that, before the EM algorithm was 

developed, missing observations were either deleted or imputed, whereas the EM algorithm now 

provided a method of averaging over the predictive probability distribution calculated from the 

observed values. 

 

Since the development of the EM algorithm, there has been an increase in the number of missing 

data algorithms that make use of the EM algorithm.  For example, in the robust estimation of the 

mean and covariance matrix (Little, 1988), the regularised EM algorithm is used specifically if 

the number of variables exceeds the number of observations (Schneider, 2001), and the robust 

PCA model developed for datasets containing missing observations as well as outliers (Serneels 

and Verdonck, 2008).  Other examples include a parallel factor analysis model in the presence of 

missing data (Tomasi and Bro, 2005) as well as a robust parallel factor analysis model (Hubert, 

Van Kerckhoven and Verdonck, 2012).  These are only a few of the adaptations of the EM 

algorithm in order to indicate the versatile application of the algorithm.  
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2.6. Synthesis of the Literature Review 

PCA is a widely known EDA method used for multiple purposes including data reduction, 

outlier detection and variable selection.  In many instances, PCA is used in an initial analysis, 

before applying other statistical analyses such as regression analysis or cluster analysis.  Hence, a 

complete dataset is required as an outcome of the PCA in order to do the subsequent analyses.  

The presence of missing data, however, makes it impossible for PCA to be applied and since 

missing data are in most cases unavoidable, a suitable solution for handling these missing values 

needs to be found. 

 

Many different methods exist to handle missing observations but only some of these methods are 

used specifically for PCA.  The EM algorithm is known for its effectiveness but has the 

disadvantages of requiring the data to be multivariate normally distributed and underestimates 

the variance by imputing the missing observations with a single value.  The more recently 

proposed iPCA algorithm is quite well researched by authors such as Josse et al (2009) and has 

the advantage of requiring no assumptions regarding the data.  However, the effectiveness of the 

iPCA algorithm compared to other effective methods such as the EM algorithm still needs to be 

determined and the algorithm is still an SI method.   

 

Although SI methods underestimate the variance, the methods produce a single, complete dataset 

that can be easily and directly applied in subsequent analyses such as cluster analysis.  In order to 

overcome the underestimation of the variance, MI methods can be applied but the disadvantage 

is that the methods produce multiple datasets.  It is, however, unclear which dataset should 

essentially be used or how to combine the datasets in order to have a single, complete dataset.  

The important research question thus becomes whether the variation in the imputed observations 

is of such importance to make it worth the extra effort of finding an effective method to combine 

the multiply imputed datasets from an MI method. 
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3. METHODOLOGY 

This analysis consists of four parts, namely data simulation, handling of missing data, PCA and 

evaluation of the results.  A number of different techniques are used to deal with the missing 

data, either through exclusion or through imputation.  The SVD method is used to derive the 

eigenvalues and eigenvectors in the PCA.  A detailed discussion of PCA is given in Section 3.1 

and the imputation algorithms are outlined in Section 3.2.  Section 3.3 describes the specific 

analytic approach followed in the analysis, with a summary of the expected results given in 

Section 3.4. 

 

3.1. Principal Component Analysis 

3.1.1. Complete Dataset 

Consider a data matrix X with n observations and p variables.  The goal of PCA is to determine 

the best linear transformation of the p variables into S new variables, S ≤ p, such that the variance 

of the p variables is maximised (Ilin and Raiko, 2010).  Mathematically, PCA consists of 

approximating X as the product of two smaller dimensional matrices V (n x S) and U
t
 (S x p) that 

contain the most relevant data patterns of X (Jolliffe, 2002).  Using the method of least squares, 

this amounts to finding V and U that minimises the following criterion (Josse et al, 2011): 

𝐶 =  ‖𝑋 − 𝐴 − 𝑉𝑈𝑡‖2 

     =  ∑ ∑ (𝑋𝑖𝑗 −  𝑎𝑗 −  ∑ 𝑉𝑖𝑠𝑈𝑗𝑠

𝑆

𝑠=1

)

2𝑝

𝑗=1

                                                         (1)

𝑛

𝑖=1

 

Where A = (𝑎1, 𝑎2, … , 𝑎𝑝) and 𝑎𝑗 is a n x 1 vector with the mean of variable j, j = 1,2,…,p.   
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Given the additional constraints that the columns of U are orthogonal and of unit form, SVD is 

used to obtain �̂� and �̂�, where (Josse et al, 2011):  

�̂� = The principal components (or score matrix) such that the variance of each column equals the 

corresponding eigenvalue.  

�̂� = Eigenvectors (or loadings matrix) of the correlation matrix.  

 

Singular Value Decomposition 

Given the data matrix X with n observations and p variables, the following quantities are defined 

(Shlens, 2014): 

 �̂�𝑖
∗ =  {�̂�1, �̂�1, … , �̂�𝑝} is the set of orthonormal p x 1 eigenvectors with corresponding 

eigenvalues {𝜆1, 𝜆2, … 𝜆𝑝} for the symmetric  matrix X
T
X:  

𝑋𝑡𝑋 �̂�𝑖 =  𝜆𝑖 �̂�𝑖   

 𝜎𝑖 =  √𝜆𝑖 are the singular values 

 𝑣𝑖
∗ =  {𝑣1, 𝑣1, … , 𝑣𝑛} is the set of n x 1 vectors such that: 

𝑣𝑖 =  
1

𝜎𝑖
 𝑋 �̂�𝑖   

 

The singular values are then ordered from the largest value to the smallest value: 

𝜎1̃ ≥ 𝜎2̃ ≥ ⋯ ≥ 𝜎�̃� 

The diagonal matrix Σ is constructed by placing the ordered singular values on the diagonal from 

left to right.  Similarly the matrices U and V are constructed: 

𝑈 =  [�̂�1̃
∗, �̂�2̃

∗ , … , �̂��̃�
∗ ] 

𝑉 =  [𝑣1̃
∗, 𝑣2̃

∗, … , 𝑣�̃�
∗ ] 

 

 Hence, SVD is the decomposition of the data matrix X into: 

𝑋𝑈 = 𝑉Σ 

 

Since matrix U is orthogonal, the equation can be written as:  

𝑋 = 𝑉Σ𝑈𝑇 
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Assumptions 

Even though PCA has the advantage of being non-parametric, Shlens (2014) notes the following 

three assumptions that must hold for PCA: 

 PCA assumes linear combinations of the variables in calculating the PC’s so as to restrict 

the number of possible transformations and thus simplifying the calculation slightly  

 PC’s with larger variances (and thus larger eigenvalues) are assumed to contain important 

information while PC’s with smaller variances represent noise 

 The assumption of orthogonality when calculating PC’s based on SVD 

 

3.1.2. Incomplete Datasets 

When missing observations are present in the data matrix X, the criterion 𝐶 in Equation 1 cannot 

be calculated directly (Josse et al, 2011).  Given that some of the observations are missing, a 

weight matrix (W) is introduced such that Wij = 0 if Xij is missing and Wij = 1 otherwise.  The 

criterion to minimise is then expressed as: 

𝐶𝑚𝑖𝑠𝑠 =  ∑ ∑ 𝑊𝑖𝑗 (𝑋𝑖𝑗 −  𝑎𝑗 −  ∑ 𝑉𝑖𝑠𝑈𝑗𝑠

𝑆

𝑠=1

)

2𝑝

𝑗=1

𝑛

𝑖=1

 

 

Contrary to the complete dataset, there exists no explicit solution to minimise 𝐶𝑚𝑖𝑠𝑠 and as such 

an iterative algorithm is necessary (Josse and Husson, 2012a).  One such algorithm is the iPCA 

algorithm (Section 3.2.2) that proceeds to determine the missing observations and the parameters 

of the PCA model simultaneously.  Alternatively, imputation methods can be applied before 

calculating 𝐶 as the imputation will result in a complete dataset.    
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3.2. Missing Data Algorithms 

3.2.1. EM Algorithm 

The EM algorithm is a method that calculates the maximum likelihood estimates of parameters 

when dealing with incomplete data and consists of two steps, namely the expectation step and the 

maximisation step (Dempster et al, 1977):   

 Expectation step: Given a current estimate θ
(k)

 at iteration k, the expected values for Xmis 

are calculated by finding the expected complete-data log-likelihood (𝑄(𝜃|𝜃(𝑘))) if θ were 

θ
(k)

 

𝑄(𝜃|𝜃(𝑘)) = 𝐸[ℓ(𝜃|𝑋)] 

                    = ∫ ℓ(𝜃|𝑋)𝑓( 𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, 𝜃 = 𝜃(𝑘))𝒹𝑋𝑚𝑖𝑠 

   

 Maximisation step: θ
(k+1)

, the estimate of 𝜃 at iteration k+1 is calculated by maximizing 

the complete-data log-likelihood     

𝑄(𝜃(𝑘+1)|𝜃(𝑘)) ≥ 𝑄(𝜃|𝜃(𝑘)), for all 𝜃 

    

Starting with an arbitrary value for θ, as suggested by Schafer (1997), and iterating between the 

expectation and maximisation steps until the parameter estimates converge, leads to the required 

parameter estimates (Little and Rubin, 2002).  The imputed dataset will be the dataset based on 

the parameter estimates from the last maximisation step after convergence has been reached.    

The only assumption of the EM algorithm is that the data should be multivariate normally 

distributed. 
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3.2.2. iPCA Algorithm 

The iPCA algorithm is an iterative algorithm for calculating the PCA model in the presence of 

missing data.  The algorithm consists of an estimation step where the PCA parameters are 

estimated and the imputation step where the missing values are imputed given the PCA model:  

 Estimation step: Given initial values for the missing observations, such as the mean of the 

variables (Josse and Husson, 2012a), and the dimension S, the parameter estimates of the 

PCA model, namely: �̂�𝑘, �̂�𝑘, �̂�𝑘 are calculated for iteration k 

 Imputation step: The missing observations are imputed with the fitted values based on the 

estimated PCA model calculated as follows: 

�̂�𝑘 =  �̂�𝑘 +  �̂�𝑘�̂�𝑡𝑘 

     

The new imputed dataset is constructed by: 

𝑋𝑘 = 𝑊 × 𝑋 + (1 − 𝑊) × �̂�𝑘 

  

The algorithm iterates between the estimation and imputation step until convergence is reached 

and the imputed dataset is the dataset from the last imputation step. 

 

The iPCA algorithm can be seen as an EM algorithm and is often referred to as the EM-PCA 

algorithm (Josse et al, 2011).  The expectation step of the EM algorithm corresponds to the 

imputation step of the iPCA algorithm by imputing the expectation of the missing observations 

given the observed observations and the estimated parameters at iteration k: 

�̂�𝑖𝑗
𝑘 =  ∑ �̂�𝑗

𝑘−1 +  𝑣𝑖𝑠
𝑘 �̂�𝑗𝑠

𝑘

𝑆

𝑠=1

 

    

Furthermore, maximising the complete likelihood in the maximisation step of the EM algorithm 

corresponds to estimating the PCA model on the imputed dataset in the estimation step of the 

iPCA algorithm.  As opposed to the EM algorithm, the iPCA algorithm does not have any 

assumptions regarding the data. 
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3.2.3. Multiple Imputation 

MI consists of three steps, namely the imputation step, the analysis step and the pooling step 

(Rubin, 1987).  In the imputation step, the missing observations are imputed by applying a 

Bayesian MCMC with the EM algorithm.  Bayesian imputation methods use the prior 

distribution of θ, 𝜋(𝜃), and the likelihood of Xobs, 𝐿(𝜃|𝑋𝑜𝑏𝑠), to determine the posterior 

distribution of Xobs: 

𝑃(𝜃|𝑋𝑜𝑏𝑠)  ∝  𝜋(𝜃) × 𝐿(𝜃|𝑋𝑜𝑏𝑠) 

 

Simulating from this posterior distribution consists of an imputation step and a posterior step 

(Schafer, 1997):     

 Imputation step: Given a current value θ
(k)

 for θ at iteration k, values for Xmis are drawn 

from the conditional predictive distribution of Xmis 

𝑋𝑚𝑖𝑠
(𝑘+1)

 ~ 𝑃(𝑋𝑚𝑖𝑠|𝑋𝑜𝑏𝑠, 𝜃(𝑘)) 

 Posterior step: The values from the imputation step are used to draw values for θ from 

the complete-data posterior 

𝜃(𝑘+1) ~ 𝑃(𝜃|𝑋𝑜𝑏𝑠, 𝑋𝑚𝑖𝑠
(𝑘+1)

) 

 

According to Schafer (1999), the complete-data posterior is not always one of the standard 

distributions that are easy to apply and draw values from.  As such, MCMC is used as a method 

for approximating draws from the posterior distribution.  An initial estimate for θ, θ
(0)

, is 

obtained by means of the EM algorithm (Section 3.2.1).  The MCMC algorithm then iterates 

through the imputation and posterior step to form a Markov Chain consisting of the estimates for 

θ and the imputed values for Xmis:  

{(𝜃(𝑘), 𝑋𝑚𝑖𝑠
(𝑘)

) ∶  𝑘 = 1,2, … } 

 

The process is iterated until the Markov Chain converges, i.e. the difference between the values 

of two successive iterations is very small (Gilks, Richardson and Spiegelhalter, 1996).  The 

missing observations are then imputed by the observations from the last imputation step.    
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The imputation step is replicated five times, in order to impute each missing observation with 

five plausible values, and each of the imputed datasets is then analysed using PCA.  The results 

from the five PCA models are then combined according to two techniques.  The first technique 

(denoted MI Ave) is based on Rubin’s (1987) methodology of applying a simple average to the 

five estimates: 

�̂�𝑖𝑠 =  
1

𝑀
∑ �̂�𝑖𝑠

𝑚

𝑀

𝑚=1

 

Where  �̂�𝑖𝑠
𝑚 is the (i, s)

th
 observation of the estimated score matrix at imputation m, m = 1,2,…,M 

with i = 1,2,…,n and s = 1,2,…,S. 

 

The second technique (MI PCA) applies the idea of taking an average of the five estimates, but 

instead of a simple average, the technique calculates a weighted average with the weights (𝑤𝑚) 

determined by a one component PCA model: 

�̂�𝑖𝑠 =  
1

𝑀
∑ 𝑤𝑚�̂�𝑖𝑠

𝑚

𝑀

𝑚=1

 

Where  �̂�𝑖𝑠
𝑚 is the (i, s)

th
 observation of the estimated score matrix at imputation m, m = 1,2,…,M 

with i = 1,2,…,n and s = 1,2,…,S. 

 

Since MI makes use of the EM algorithm to determine the initial values of the algorithm, MCMC 

with the EM algorithm also requires the assumption of multivariate normally distributed data. 

 

3.3. Analytic Approach 

3.3.1. Data Simulation 

A baseline dataset is simulated using a multivariate random normal simulation function 

(mvrnorm) in the MASS library (Venables and Ripley, 2002) of the R software package 

(www.R-project.org).  A multivariate normal distribution is selected in order to ensure that the 

EM algorithm’s assumption of multivariate normality holds.  The mvrnorm function uses the 

mean vector and covariance matrix as input.  An arbitrary total of n = 300 observations across  

http://www.r-project.org/
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p = 6 variables are simulated from a standard normal distribution, f(X1, X2, …, X6), with a mean 

vector μ = 0 and covariance matrix structured such that the 6 variables will yield two PC’s when 

the PCA model is applied, as shown in Table 3.1.  Typically a low correlation refers to a value 

lower than 0.35 in absolute terms and a high correlation to a value higher than 0.7 in absolute 

terms.  Fixing the number of PC’s to be extracted allows for a comparative assessment across the 

different PCA models that result from the imputation algorithms.  Since the variables are 

standard normally distributed, it follows that the covariance matrix is also the correlation matrix. 

Table 3.1: Structure of the correlation matrix for the baseline dataset 

  X1 X2 X3 X4 X5 X6           

X1 1 High High Low Low Low           

X2 High 1 High Low Low Low   

X3 High High 1 Low Low Low   

X4 Low Low Low 1 High High   

X5 Low Low Low High 1 High           

X6 Low Low Low High High 1           

 

A requirement for using the mvrnorm function is that the covariance matrix has to be positive 

definite.  This can be checked using the is.positive.definite function in the corpcor library 

(Schaefer et al, 2011) of R, and changed, if necessary, using the make.positive.definite function, 

also in the corpcor library (Schaefer et al, 2011).   

 

The baseline dataset is then subjected to the influence of the missing data mechanisms by 

deleting randomly selected observations based on three possible scenarios according to the 

definition of each of the three missing data mechanisms.  Let pmiss = (0.1, 0.2, 0.3, 0.4) indicate 

the proportion of missing data that will be removed from the baseline dataset.  The process of 

removing observations is then defined as follows: 

 

Missing Completely At Random 

 Assume Xi is the variable to be subjected to missing data 

 Randomly select pmiss% observations from variable Xi 

 Remove selected observations 
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Missing At Random 

 Assume Xi is the variable to be subjected to missing data based on variable Xj 

 Define Set A = {Xi: Xj > 0} and Set B = {Xi: Xj   0} 

 Randomly select 80% of pmiss% observations from Set A 

 Randomly select 20% of pmiss% observations from Set B 

 Remove selected observations 

 

Missing Not At Random 

 Assume Xi is the variable to be subjected to missing data 

 Define Set C = {Xi: Xi > 0} and Set D = {Xi: Xi   0} 

 Randomly select 80% of pmiss% observations from Set C 

 Randomly select 20% of pmiss% observations from Set D 

 Remove selected observations 

 

The cut-off value of zero used to define the subsets for MAR (A vs. B) and MNAR (C vs. D) 

ensures that there are enough observations (approximately 150) available for deletion.  The 

reason for deleting only 80% of pmiss% observations for MAR and MNAR is because the 

missing observations do not always occur according to only one specific mechanism.  Eighty 

percent is an arbitrary percentage selected to effectively represent the corresponding mechanism 

but also account for observations caused by another mechanism. 

 

The three possible scenarios that are being considered in this study are defined in Table 3.2 and 

consist of a scenario applicable to each of the three missing data mechanisms.  In all three 

scenarios it is assumed that the missing data are not only as a result from one specific missing 

data mechanism and hence the variables X1 and X4 are subjected to an arbitrary 15% MCAR 

missingness.  It is also assumed that the missingness can only occur within the two defined PC’s 

meaning that the MAR missingness for X2 is based on X3 and X5 is based on X6.  The variables 

X3 and X6 are left complete with no observations missing. 
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Table 3.2: Missing data scenarios under consideration in this study 

 

X1 X2 X3 X4 X5 X6 

Scenario 1: MCAR 15% MCAR MCAR - 15% MCAR MCAR - 

Scenario 2: MAR 15% MCAR MAR|X3 - 15% MCAR MAR|X6 - 

Scenario 3: MNAR 15% MCAR MNAR - 15% MCAR MNAR - 

 

This process is repeated 1000 times for each each percentage of missingness such that a total of 

4000 incomplete datasets are simulated per scenario.   

  

3.3.2. Analysis 

In the analysis, the missing values of each incomplete dataset are imputed using CW, mean 

imputation, the EM algorithm, the iPCA algorithm and MI imputation, applying MCMC with the 

EM algorithm.  CW is applied in R using the function na.omit in the stats library (R Core Team, 

2012).  For mean imputation, the missing values for each variable are determined using the is.na 

function and imputed with the mean of the observed values for that variable using the mean 

function, with both functions found in the base library (R Core Team, 2012).  The EM algorithm 

is located in the norm library (Schafer, 2010) and consists of R manipulating the data with the 

function prelim.norm as an input to the function em.norm and imp.norm that are used to calculate 

the ML estimates of the algorithm and impute the missing values.  The missMDA library 

(Husson and Josse, 2013) contains the iPCA algorithm and is applied using the imputePCA 

function.  Similarly to the EM algorithm, the MCMC algorithm for MI is found in the norm 

library (Schafer, 2010) and applies the EM algorithm as an intermediate step to obtain initial 

values that are then used in the da.norm and imp.norm functions that perform the MCMC 

imputation.  Except for MI, all the algorithms produce a total of 4000 imputed datasets for each 

scenario.  MI produces a set of 5 imputed datasets for each incomplete dataset and thus a total of 

20000 imputed datasets for each scenario. 

 

PCA is then performed on the baseline dataset and each of the imputed datasets using the 

princomp function in the stats library (R Core Team, 2012).  For MI this results in 5 sets of 

results for each imputed dataset, which are then combined into a single set of results by applying 
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two different techniques.  MI Ave applies the mean function in the base library (R Core Team, 

2012) and MI PCA the princomp function in the stats library (R Core Team, 2012).  This 

produces 4000 sets of results for each scenario and each missing data algorithm.    

 

The next step is to compare the baseline results with the imputed results in order to determine the 

most effective imputation algorithm.  According to Peres-Neto, Jackson and Somers (2003) there 

are two problems that need to be considered before the results of the PCA models can be 

compared, namely axis reflection and axis reordering.  Axis reflection involves the situation 

where the signs of the eigenvectors are arbitrarily swapped around and results in a positive value 

being compared to a negative value, when the values should be similar.  Axis reordering involves 

the change in the order of the eigenvectors such that the first PC in the one simulation is not 

comparable to the first PC in another simulation, but rather the second or the third PC.  In order 

to overcome these problems, Peres-Neto, Jackson and Somers (2003) make use of the correlation 

matrices between two sets of eigenvectors in the sense that the sign will indicate whether the 

PC’s are reflected or not and by multiplying the reflected eigenvectors with a factor of -1, the 

problem is solved.  Also, the maximum absolute value of the correlations will indicate whether 

the PC’s are reordered and the correct PC’s can be compared with each other.  Similar to the 

approach used by Peres-Neto, Jackson and Somers (2003), correlation matrices are applied in 

this study.  However, instead of using the eigenvectors, the correlations are determined between 

the resultant PC’s since the eigenvectors only consist of 6 observations and can thus cause the 

correlations to be distorted and lead to incorrect results. 
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3.3.3. Evaluation  

In the comparison analysis of the baseline and imputed results, the results to be evaluated are 

threefold:  

 PCA model results: Analysis of the cumulative proportion of variation explained by the 

PC’s and the eigenvalues of the PCA model to determine the number of PC’s extracted 

 PCA output results: A variable level comparison regarding the descriptive statistics of the 

imputed PC’s compared to the baseline PC’s 

 Goodness-of-fit results: A respondent level comparison in order to assess the overall 

effectiveness of the imputed PCA models compared to the baseline PCA model. 

 

PCA Model 

As mentioned in Section 2.1, an important parameter considered in the PCA model is the number 

of PC’s, S, to extract.  In this study, S is determined by the two criteria cumulative proportion of 

variation explained (Jolliffe, 2002) and Kaiser’s rule (Kaiser, 1960).   

 

The cumulative proportion of variation explained by the first S PC’s is calculated as: 

𝑐𝑢𝑚𝑃𝑉𝑎𝑟𝑆 =  
100

𝑝
 ∑ 𝑙𝑘

𝑆

𝑘=1

 

Where 𝑙𝑘 is the variance of the k
th

 PC and the sum of the variances of the PC’s equals the sum of 

the variances of the p variables in the data matrix X.  S is then selected to be the smallest number 

for which 𝑐𝑢𝑚𝑃𝑉𝑎𝑟𝑆 ≥ 80% (Jolliffe, 2002).  The proportion of variation accounted explained 

by each PC is calculated using the princomp function in the stats library (R Core Team, 2012). 

 

Kaiser’s rule considers the eigenvalues as calculated by the SVD composition explained in 

Section 3.1.1 and selects S as the number of PC’s for which the eigenvalues are ≥ 1.  The 

eigenvalues for each PC is calculated using the eigen function in the base library (R Core Team, 

2012).  Both the criteria are calculated for the baseline dataset as well as the imputed datasets.  

An effective imputation algorithm must result in the same value for S as the baseline dataset. 



38 

 

PCA Output 

The effectiveness of the imputation algorithms on a variable level is analysed by comparing the 

descriptive statistics of the imputed PC’s to the descriptive statistics of the baseline PC’s using 

the sum of the squared deviation (SSD).  The SSD for the kth PC is calculated as follows: 

𝑆𝑆𝐷𝑑,𝑘 = ∑(𝑑𝑖𝑘
𝑏𝑎𝑠𝑒 −  𝑑𝑖𝑘

𝑖𝑚𝑝)
2

𝑛

𝑖=1

  

Where 𝑑𝑏𝑎𝑠𝑒 is the descriptive statistic of the baseline PC,  𝑑𝑖𝑚𝑝 the descriptive statistic of the 

imputed PC and k = 1,2,…,S. 

 

The descriptive statistics under consideration include the median and the standard deviation.  A 

lower SSD implies that the predicted descriptive statistic is closer to the actual descriptive 

statistic and thus results in a more effective imputation algorithm.   

 

Goodness-of-fit 

The effectiveness of the imputation models is also analysed on a respondent level by using the 

goodness-of-fit measures consisting of the RV coefficient and the SSD.   The RV coefficient is 

a measure of similarity introduced by Escoufier (1973) to study the relationship between two sets 

of variables given that they have the same number of observations.  Let 𝑉𝑏𝑎𝑠𝑒 denote the 

baseline PC’s and 𝑉𝑖𝑚𝑝 the imputed PC’s.  The RV coefficient is then defined as: 

𝑅𝑣 =  
𝑡𝑟{𝑉𝑏𝑎𝑠𝑒 𝑉𝑏𝑎𝑠𝑒𝑇 𝑉𝑖𝑚𝑝 𝑉𝑖𝑚𝑝𝑇}

√𝑡𝑟{(𝑉𝑏𝑎𝑠𝑒 𝑉𝑏𝑎𝑠𝑒𝑇)2} × 𝑡𝑟{(𝑉𝑖𝑚𝑝 𝑉𝑖𝑚𝑝𝑇)2}
 

Where 𝑡𝑟{. } denotes the sum of the diagonal elements of the matrix. 

 

The values of the RV coefficient ranges between 0 and 1 where 0 implies that all the variables of 

V is uncorrelated to the variables of V and 1 implies that the structures are similar (Josse, Husson 

and Pagès, 2008).  In order to test the statistical significance of the RV coefficient, Josse et al 

(2008) applies a Pearson type III distribution (or gamma distribution) which is implemented in 

the FactoMineR library (Husson, Josse, Le and Mazet, 2013) in R.  Both the RV coefficient and 

the p-value are calculated using the function coeffRV. 
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The SSD comparing the baseline PC’s to the imputed PC’s is as follows: 

𝑆𝑆𝐷 = ∑ ∑(𝑉𝑏𝑎𝑠𝑒𝑖𝑗 −  𝑉𝑖𝑚𝑝𝑖𝑗)
2

𝑆

𝑗=1

𝑛

𝑖=1

  

 

A more effective imputation algorithm will have a RV coefficient that is significant at a 

significance level of 1% and closer to 1 than the other imputation algorithms.  The algorithm 

should also have a lower SSD between the imputed PC’s and the baseline PC’s. 

 

3.4. Expected Results 

The comparison of the effectiveness of the EM algorithm, the iPCA algorithm and MI in the 

context of PCA has not been documented in the past.  However, since research has proven the 

success of the three methods in their own right, even if not in the context of PCA, it is possible 

for all three methods to handle missing data in PCA effectively. 

 

The effectiveness of the EM algorithm as a missing data algorithm not only in the context of 

PCA but in general as well is commended by many researchers.  As such it is expected that the 

results will indicate the superiority of the EM algorithm compared to the other algorithms.  The 

iPCA algorithm has only recently received attention in literature.  Although MI is known to 

perform well as an imputation algorithm, there is no study that indicates the performance of MI 

in the context of PCA.  It can therefore be expected that the iPCA algorithm and MI will perform 

better than CW and mean imputation as these algorithms are known for their drawbacks.  

However, it is unclear whether the performance will exceed that of the EM algorithm.      

 

Many literature studies indicate that missing observations that are MCAR and MAR can be 

imputed effectively for as high as 50% missingness and as such, irrespective of the imputation 

algorithm, the imputation should be satisfactory for all percentages of MCAR and MAR 

missingness.  It can be expected that the missing observations that are MNAR will only be 

imputed effectively for the low percentages of missingness, if at all.  
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4. ANALYSIS 

Section 4.1 describes the simulation of the complete baseline dataset with application to a real-

world example from Psychology and the baseline PCA.  Section 4.2 provides the results from a 

single execution using 40% MAR missingness.  This serves as an illustration of how the 

simulation, imputation algorithms and evaluation of results are performed.  The overall 

simulation with the corresponding results for the different percentages of missingness and the 

different missing data scenarios are given in Section 4.3.  Section 4.4 completes this section with 

a summary of all the results. 

 

4.1. Baseline Data Simulation 

The baseline data is simulated based on a practical application in Psychology regarding extrinsic 

and intrinsic motivation (Lepper, Corpus and Iyenger, 2005).  The research involves identifying 

factors that have an influence on the motivation of school learners to do their schoolwork.  These 

factors can either be externally related factors such as motivation from the teacher or the parents 

(extrinsic motivation), or internally related factors where the learner motivates himself or herself 

to work (intrinsic motivation).  An example of these factors taken from Lepper et al (2005) is 

given in Table 4.1 as well as the possible survey question underlying the corresponding factor. 

 

Table 4.1: Practical application in Psychology research of simulated baseline dataset  

Motivation Factors Possible questions related to factors 

Extrinsic 

Easy work Do you like school subjects where it’s easy to just learn the 

answers? 

Pleasing teacher Do you do your schoolwork because your teacher tells you to? 

Dependence on 

teacher 
When you make a mistake, do you like to ask the teacher how 

to get the right answer? 

Intrinsic 

Challenge Do you like difficult problems because you enjoy trying to 

figure them out? 

Curiosity Do you work really hard because you like to learn new things? 

Independent 

mastery 
When you make a mistake, do you like to figure out the right 

answer by yourself? 
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Since it is known that extrinsic and intrinsic motivation are weakly, negatively correlated 

(Lepper et al, 2005), the data are simulated using the mean vector μ and correlation structure as 

discussed in Section 3.3.1 such that the bounds for the correlation structure are defined as 

follows: 

 Low: [-0.35; -0.15] 

 High: [0.7; 0.8] 

 

The resultant sample mean vector and sample correlation matrix are given in Table 4.2 and Table 

4.3 with the colours in Table 4.3 indicating the high correlations within the two defined factors.  

The required distribution of extrinsic versus intrinsic motivation is thus reflected in the sample as 

is evident from the scatter-plot matrix in Figure 4.1.  From the figure it follows that there exists a 

strong linear relationship between the variables within the same motivational subset and a weak 

negatively linear relationship between the variables from different subsets.   

 

Table 4.2: Means of baseline dataset 

X1 X2 X3 X4 X5 X6 

0.049 0.048 0.016 0.070 0.037 0.092 

 

Table 4.3: Covariance matrix of baseline dataset 

 
X1 X2 X3 X4 X5 X6 

X1 1 0.826 0.742 -0.329 -0.285 -0.260 

X2 0.826 1 0.708 -0.209 -0.337 -0.179 

X3 0.742 0.708 1 -0.335 -0.304 -0.170 

X4 -0.329 -0.209 -0.335 1 0.784 0.813 

X5 -0.285 -0.337 -0.304 0.784 1 0.788 

X6 -0.260 -0.179 -0.170 0.813 0.788 1 
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Figure 4.1: Scatter-plot matrix of baseline dataset 

 

In order to test the assumption of separating the baseline dataset into two PC’s, Table 4.4 

presents the results from the selection criteria of the cumulative proportion of variation and 

Kaiser’s rule.  The values highlighted in red indicate that the assumption holds and a PCA model 

with two PC’s can be fitted to the dataset.   

 

Table 4.4: Selection criteria of the number of PC’s for the baseline dataset  

 
PC1 PC2 PC3 PC4 PC5 PC6 

Cumulative proportion of variation 57.32% 84.63% 90.70% 95.36% 98.24% 100% 

Eigenvalues 3.44 1.64 0.36 0.28 0.17 0.11 

 

The eigenvectors of the estimated PCA model for the baseline data are given in Table 4.5.  The 

table shows that the first PC is a differentiation between the extrinsic and intrinsic motivational 

factors whereas the second PC is a weighted average of the different factors.  Table 4.6 presents 

the rotated loadings matrix of the baseline PCA model as a visual illustration of the factors 

underlying the two PC’s.  
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Table 4.5: Eigenvectors of the estimated PCA model for the baseline dataset  

 
PC1 PC2 

X1 0.4258 -0.3967 

X2 0.4027 -0.4220 

X3 0.3907 -0.4084 

X4 -0.4116 -0.3991 

X5 -0.4223 -0.3744 

X6 -0.3952 -0.4453 

 

Table 4.6: Rotated loadings matrix for the baseline PCA model  

 
PC1 PC2 

X1   -0.581 

X2   -0.583 

X3   -0.565 

X4 -0.573   

X5 -0.564   

X6 -0.594   

 

The estimated median and standard deviation of the resulting baseline PC’s are given in Table 

4.7.  These values will be used in the comparison analysis between the imputed datasets and the 

baseline dataset. 

 

Table 4.7: Descriptive statistics for the baseline PC’s 

 
PC1 PC2 

Median -0.0375 0.0268 

Standard Deviation 1.8576 1.2823 
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4.2. Single Simulation Analysis 

As discussed in Section 2.3, missingness within the survey can occur according to three different 

missing data mechanisms.  The differences between the three mechanisms are illustrated in 

Figure 4.2, Figure 4.3 and Figure 4.4 for 40% missingness.  The observed values and the missing 

values are given in the same scatter-plot with the missing values being the coloured blocks and 

the observed values the empty diamonds.   

 

Figure 4.2 presents a random scatter in the missing values and as such shows the case of MCAR 

missingness.  The straight lines in Figure 4.3 and Figure 4.4 indicate the cut-off value for being 

MAR and MNAR, respectively.  With MAR (Figure 4.3) it can be observed that majority of the 

missing values in X2 have high values for X3, but are randomly scattered with respect to X1.  

Hence, the missing values in X2 depend on X3.  Considering MNAR (Figure 4.4), the majority of 

the missing values are in both instances observed to have high values for X2 and thus depend on 

the variable with the missingness (X2).  

 

Figure 4.2: Scatter-plots for MCAR 
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Figure 4.3: Scatter-plots for MAR 

 

Figure 4.4: Scatter-plots for MCAR 

 

Given the survey in Psychology, it is possible that the school learners might leave some 

questions unanswered as a result of the teacher being in the room while the survey is conducted.  

Hence, the single simulation analysis is performed on an assumption of 40% MAR missingness. 

The incomplete data are then imputed by the different imputation algorithms and a PCA model 

applied to each of the imputed datasets.  The results from the imputed datasets are then compared 

to the results from the baseline dataset. 
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4.2.1. PCA Model Results 

The first step is to compare the number of PC’s selected from the imputed datasets based on the 

cumulative proportion of variation (Table 4.8) and Kaiser’s rule (Table 4.9), with the results 

highlighted in red in the tables.  According to Table 4.8, the only imputed dataset that incorrectly 

identified the number of PC’s to select based on cumulative proportion of variation was the 

Mean imputed dataset.  However, according to Kaiser’s rule in Table 4.9, the mean imputation 

selected the correct number of PC’s.  Hence, the cumulative proportion of variation may be more 

influenced by the missing data than the eigenvalues.   

 

Table 4.8: Cumulative proportion of variation for the single simulation analysis  

 
PC1 PC2 PC3 PC4 PC5 PC6 

Baseline 57.32% 84.63% 90.70% 95.36% 98.24% 100% 

CW 56.97% 83.30% 89.44% 94.67% 98.14% 100% 

Mean 49.13% 73.21% 82.41% 90.44% 96.28% 100% 

EM 58.59% 84.86% 91.06% 95.33% 98.13% 100% 

iPCA 61.62% 88.97% 93.46% 96.09% 98.52% 100% 

MI 57.96% 85.11% 90.90% 95.34% 98.27% 100% 

 

Table 4.9: Eigenvalues for the single simulation analysis 

 
PC1 PC2 PC3 PC4 PC5 PC6 

Baseline 3.44 1.64 0.36 0.28 0.17 0.11 

CW 3.42 1.58 0.37 0.31 0.21 0.11 

Mean 2.95 1.44 0.55 0.48 0.35 0.22 

EM 3.52 1.58 0.37 0.26 0.17 0.11 

iPCA 3.70 1.64 0.27 0.16 0.15 0.09 

MI 3.48 1.63 0.35 0.27 0.18 0.10 
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4.2.2. PCA Output Results 

The next step is to compare the resultant PC’s from the imputed PCA models to the baseline 

PC’s.  However, as mentioned in Section 3.3.2 the effect of axis reflection and axis rotation 

should first be considered by looking at the correlation matrices between the respective PC’s.  

This calculation is demonstrated in Table 4.10 that shows the correlations between the resultant 

PC’s from an EM imputed dataset and the baseline PC’s, with the maximum absolute correlation 

for each column highlighted in red.  The maximum correlations thus indicate that in this specific 

scenario there were no PC’s that swapped around.  Also, based on the sign of the maximum 

correlations, axis reflection is observed for PC3 with a correlation of -0.85.  Hence, the values 

for imputed PC3 are multiplied with -1 before being compared to the baseline PC’s.  The same 

process is followed when combining the 5 MI imputed results. 

 

Table 4.10: Correlation matrix between EM imputed PC’s and baseline PC’s  

  
EM Imputed 

  
PC1 PC2 PC3 PC4 PC5 PC6 

Baseline 

PC1 0.98 -0.02 -0.03 0.01 -0.05 -0.01 

PC2 0.03 0.96 0.01 0.03 0.01 -0.04 

PC3 0.04 -0.09 -0.85 -0.03 0.02 -0.01 

PC4 0.03 0.07 0.09 0.72 -0.11 -0.06 

PC5 -0.02 0.01 -0.06 0.17 0.89 0.03 

PC6 -0.01 -0.05 0.09 0.09 0.03 0.49 

 

By looking at the median and standard deviation of the PC’s (the minimum, mean and maximum 

are excluded from the analysis as it showed similar results to the median),  Table 4.11 presents 

the squared deviation between the baseline and imputed statistics, with the lowest error 

highlighted in green and the highest in red.  From the table it is observed that for the medians, 

the EM algorithm is the only algorithm that produced high errors relative to the other algorithms 

with CW having the lowest error for PC1 and MI PCA for PC2.  Considering the standard 

deviation, MI PCA had very high errors compared to the other algorithms and MI Ave and iPCA 

had the lowest errors for PC1 and PC2, respectively.  Based on the results of the descriptive 
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statistics for the single simulation, it is thus evident that MI PCA is not an effective imputation 

algorithm, compared to the other algorithms that have errors close to 0. 

 

Table 4.11: Descriptive statistics for single simulation analysis 

 Median Standard Deviation 

 
PC1 PC2 PC1 PC2 

CW 0.0003 0.0000 0.0000 0.0003 

Mean 0.0010 0.0003 0.0190 0.0061 

EM 0.0138 0.0048 0.0004 0.0006 

iPCA 0.0029 0.0002 0.0047 0.0000 

MI Ave 0.0015 0.0001 0.0000 0.0005 

MI PCA 0.0029 0.0000 0.1337 0.8570 

 

4.2.3. Goodness-of-fit Results 

The goodness-of-fit of the imputed datasets are calculated on the respondent level output by 

looking at the RV coefficient (Figure 4.5) and the SSD (Figure 4.6).  Since CW results in a 

dataset of different size compared to the baseline, it is excluded from the goodness-of-fit 

analysis.  From Figure 4.5 it follows that MI PCA performs worse than the mean imputation with 

the lowest RV coefficient of 0.91.  iPCA and MI Ave are the most effective imputation 

algorithms with the EM algorithm slightly below them.  Each of the RV coefficients was 

statistically significant at a 1% significance level.  

 

Figure 4.5: RV coefficient for the single simulation analysis 
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Similar conclusions follow from the SSD given in Figure 4.6.  MI Ave performs slightly better 

than iPCA.  The figure also shows the big difference between the SSD from MI PCA compared 

to the other algorithms. 

 

Figure 4.6: SSD deviation for the single simulation analysis 

 

Although the study is only focused on the first two PC’s, it is interesting to note from Table 4.12 

that the goodness-of-fit measures decrease if all six PC’s are added to the model since the extra 

PC’s add more noise to the data.  MI PCA is the most impacted by the extra noise in the data 

with the SSD almost ten times more than the model with only two PC’s. 

 

Table 4.12: Goodness-of-fit for the single simulation analysis based on all six PC’s  

 

Mean EM iPCA MI Ave MI PCA 

RV Coefficient 0.832 0.954 0.968 0.968 0.668 

SSD 790.72 226.24 488.91 139.02 3484.13 
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4.3. Overall Simulation Analysis 

The single simulation analysis in Section 4.2 provides an indication of the effectiveness of the 

different imputation algorithms.  However, the conclusions are made based on a single execution 

and a single percentage of missingness.  This can often be misleading, as these results may occur 

by chance or specifically for that percentage.  The analysis is therefore extended to four different 

percentages of missingness and three different scenarios of missing data with 1000 incomplete 

datasets created for each percentage and each scenario. 

 

4.3.1. Scenario 1: Missing Completely At Random 

PCA Model Results 

The PCA model results for MCAR are given in Table 4.13 and indicate the error rates as a 

percentage of the 1000 simulations that selected the incorrect number of PC’s to be extracted for 

the different algorithms at the different percentages of missingness.  CW and mean imputation 

are the only algorithms mentioned in the table as all the other algorithms had a 0% error rate 

across the simulations.  Based on the cumulative proportion of variation, there is an increase in 

the error rate for mean imputation as the percentage of missingness increases such that at 30% 

and 40% missingness every simulation identifies the incorrect number of PC’s.  CW only had a 

0.5% error rate at 40% missingness.  In each of these instances the results identified that three 

PC’s must be selected as opposed to the two PC’s from the baseline model.  Applying Kaiser’s 

rule decreased most of the error rates such that only 0.1% of the simulations from CW at 40% 

missingness stated that one PC should be extracted from the data.  

 

Table 4.13: PCA model results for MCAR 

  
10% 20% 30% 40% 

Cumulative proportion 

of variation 

CW 0% 0% 0% 0.5% 

Mean 39% 97% 100% 100% 

Eigenvalues 
CW 0% 0% 0% 0.1% 

Mean 0% 0% 0% 0% 

 



51 

 

PCA Output Results 

The output of the resulting PCA models for the different algorithms is shown in Figure 4.7 to 

Figure 4.10 for the median and standard deviation of both of the PC’s.  The output is presented 

as boxplots indicating the range of the statistics across the simulations for the different 

algorithms as well as the different percentages of missingness, with the red dot indicating the 

observed statistic from the baseline PC.  Ideally, the statistics from the imputed datasets must be 

as close to the baseline as possible.  This, however, is not the case for CW considering the 

median of PC1 (in Figure 4.7) since most of the simulations overestimated the baseline median 

of PC1 (-0.0375) with a wide range across all the percentages of missingness.  As the percentage 

of missingness increase, there is a significant increase in the length of the boxplot for CW.  The 

other algorithms indicate that up until 30% missingness most of the algorithms predict the 

baseline median quite accurately.  At 30% and 40% missingness there is also a slight 

underestimation for both iPCA and MI Ave.   

 

Figure 4.7: PCA output results of the median of PC1 for MCAR 
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Figure 4.8 presents the results for the median of PC2 and indicates that even though the range of 

CW increase as the percentage of missingness increase, the baseline median for PC2 (0.0268) is 

still close to the median of the distributions.  At 10% missingness MI PCA slightly overestimates 

the baseline median and from 30% missingness all of the algorithms slightly underestimates the 

baseline median.  

 

Figure 4.8: PCA output results of the median of PC2 for MCAR 
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From Figure 4.9 it follows that the EM algorithm and MI Ave estimate the baseline standard 

deviation for PC1 (1.8576) quite accurately.  The range of CW increases only slightly and a 

gradual increase in the underestimation of the baseline standard deviation is observed for mean 

imputation.  MI PCA completely overestimates the baseline standard deviation even at 10% 

missingness. The mean imputation underestimates the baseline standard deviation for all 

percentages of missingness. 

 

Figure 4.9: PCA output results of the standard deviation of PC1 for MCAR 
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Looking at the standard deviation of PC2 (Figure 4.10), MI PCA again completely overestimates 

the baseline standard deviation (1.2823) for all the percentages of missingness.  The other 

algorithms present accurate results with slight deviations from 20% missingness for mean 

imputation and iPCA especially. 

 

Figure 4.10: PCA output results of the standard deviation of PC2 for MCAR 
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Goodness-of-fit Results 

The ranges of the RV coefficient for the different imputation algorithms across the different 

percentages of missingness for MCAR are given in Table 4.14. All of the RV coefficients proved 

statistically significant at a 1% significance level.  It is notable from the table that as the 

percentage missingness increases, the upper and lower bounds of the ranges decrease indicating a 

decline in effectiveness.  The ranges highlighted in red show that at 10% and 20% missingness, 

the upper bounds for iPCA suggest superiority in effectiveness compared to the other algorithms, 

as the bounds are the closest to 1.  At 30% and 40% missingness, MI Ave is the most effective.  

The ranges for MI PCA show the poor performance of the algorithm compared to the other 

algorithms suggesting less effectiveness than observed for mean imputation.  On average, the RV 

coefficient shows a rapid deterioration for mean imputation as the percentage of missingness 

increases and still the results outperforms MI PCA (Figure 4.11).  The average RV coefficients 

for iPCA and MI Ave are almost exactly the same. 

 

Table 4.14: Ranges of the RV coefficient for MCAR 

 
10% 20% 30% 40% 

Mean (0.956; 0.98) (0.932; 0.97) (0.92; 0.956) (0.905; 0.948) 

EM (0.973; 0.989) (0.955; 0.982) (0.946; 0.976) (0.936; 0.97) 

iPCA (0.983; 0.994) (0.975; 0.99) (0.966; 0.984) (0.962; 0.98) 

MI Ave (0.982; 0.993) (0.976; 0.989) (0.967; 0.985) (0.96; 0.981) 

MI PCA (0.925; 0.937) (0.919; 0.933) (0.91; 0.928) (0.904; 0.925) 

 

 

Figure 4.11: Line graph of the average RV coefficient for MCAR 
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Similar results follow from the average SSD across the 1000 simulations for the different 

imputation algorithms and percentages of missingness in Figure 4.12.  The size of the bubble in 

the figure reflects the size of the SSD relative to the other algorithms at each percentages of 

missingness.  On average, the SSD of MI PCA is approximately 4 times the size of mean 

imputation and approximately 10 times the size of iPCA and MI Ave.  The effectiveness of the 

EM algorithm sits on average between that of the mean imputation and iPCA or MI Ave. 

 

 

Figure 4.12: Bubble plot of the average SSD for MCAR 
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4.3.2. Scenario 2: Missing At Random 

PCA Model Results 

Table 4.15 shows the PCA model results for MAR and similar to the results for MCAR (Table 

4.13), only CW and mean imputation resulted in incorrect selections of the number of PC’s.  

There is an increase in the error rate based on the cumulative proportion of variation as the 

percentages of missingness increase with mean imputation resulting in a 100% error rate at 30% 

and 40% missingness.  In every instance the number of PC’s to select was predicted to be three 

PC’s.  However, as opposed to MCAR, by applying Kaiser’s rule to MAR both CW and mean 

imputation selected the correct number of PC’s.  

 

Table 4.15: PCA model results for MAR 

  
10% 20% 30% 40% 

Cumulative proportion 

of variation 

CW 0% 0% 0.1% 0.9% 

Mean 36% 97% 100% 100% 

Eigenvalues 
CW 0% 0% 0% 0% 

Mean 0% 0% 0% 0% 
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PCA Output Results 

The output of the PCA models for the medians is given in Figure 4.13 and Figure 4.14 and the 

output for the standard deviations in Figure 4.15 and Figure 4.16.  From Figure 4.13 it follows 

that most of the time mean imputation, the EM algorithm and MI Ave accurately predicts the 

baseline median for PC1 (-0.0375) for all the percentages of missingness.  CW overestimates the 

baseline median completely with a widening range of values as the percentages of missingness 

increase.  iPCA and MI PCA start to slightly underestimate the baseline median from 30% 

missingness. 

 

Figure 4.13: PCA output results of the median of PC1 for MAR 
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From the results for the median of PC2 (Figure 4.14), it can be observed that the baseline median 

for PC2 (0.0268) is quite aligned to the median from CW.  Mean imputation underestimates the 

baseline median from 20% missingness.  MI PCA slightly overestimates the baseline median up 

until 40% missingness.  

 

Figure 4.14: PCA output results of the median of PC2 for MAR 
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The results of the standard deviation for PC1 (Figure 4.15) compared to the baseline standard 

deviation for PC1 (1.8576) indicate that CW, the EM algorithm and MI Ave accurately predicted 

the baseline standard deviation as the medians of their distributions.  From 10% missingness, the 

underestimation of the baseline standard deviation observed in mean imputation rapidly 

increases as the percentages of missingness.  MI PCA completely overestimates the baseline 

standard deviation from 10% missingness. 

 

Figure 4.15: PCA output results of the standard deviation of PC1 for MAR 
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Figure 4.16 shows the results of the standard deviation for PC2 compared to the baseline 

standard deviation of 1.2823.  The EM algorithm and MI Ave reflects the baseline standard 

deviation quite accurately compstrf to mean imputation and iPCA that start deviating from 20% 

missingness.  

 

Figure 4.16: PCA output results of the standard deviation of PC2 for MAR 
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Goodness-of-fit Results 

The ranges of the RV coefficient given in Table 4.16 consist of statistically significant RV 

coefficients for MAR at a 1% significance level.  The table shows similar results as the RV 

coefficients for MCAR in Table 4.14.  However, for MAR, MI Ave proves to be the most 

effective for every percentage of missingness with iPCA equal to MI Ave at 20% missingness 

and slightly below MI Ave for the other percentages of missingness.  MI PCA have the lowest 

RV coefficients for most percentages of missingness except at 40% missingness.  Figure 4.17 

shows that on average, the EM algorithm is more effective than mean imputation and MI PCA 

but still worse than iPCA and MI Ave, that have almost exactly the same average RV 

coefficients.   

 

Table 4.16: Ranges of the RV coefficient for MAR 

 

10% 20% 30% 40% 

Mean (0.954; 0.981) (0.933; 0.969) (0.914; 0.959) (0.902; 0.948) 

EM (0.972; 0.99) (0.96; 0.984) (0.951; 0.977) (0.938; 0.969) 

iPCA (0.982; 0.993) (0.975; 0.989) (0.963; 0.984) (0.961; 0.98) 

MI Ave (0.983; 0.994) (0.975; 0.989) (0.97; 0.985) (0.962; 0.98) 

MI PCA (0.926; 0.937) (0.917; 0.933) (0.913; 0.929) (0.907; 0.924) 

 

 

Figure 4.17: Line graph of the average RV coefficient for MAR 
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The results above are confirmed by the average SSD observed in Figure 4.18.  The figure 

indicates the big gap between the average SSD for MI PCA and the other algorithms.  Similar to 

Figure 4.12, it follows that the average size of the SSD for MI PCA is approximately 4 times the 

size of mean imputation and approximately 10 times the size of iPCA and MI Ave.   

 

 

Figure 4.18: Bubble plot of the average SSD for MAR 

 

  

0

100

200

300

400

500

0% 10% 20% 30% 40% 50%

SS
D

 

% missing 

MI PCA

Mean

EM

iPCA

MI Ave



64 

 

4.3.3. Scenario 3: Missing Not At Random 

PCA Model Results 

Looking at the PCA model results for MNAR in Table 4.17, similar trends to MCAR (Table 

4.13) and MAR (Table 4.15) can be observed.  Given the cumulative proportion of variation, the 

increase in the error rates is not only observed as the percentages of missingness increase, but 

also when comparing the error rates for MNAR to MCAR and MAR.  The results for MNAR 

indicate somewhat higher error rates for CW at 30% and 40% missingness as was observed for 

the other two scenarios.  Still, the application of Kaiser’s rule decreased the error rates such that 

only CW has an error of 0.1% at 40% missingness.  The incorrect number of PC’s selected was 

three PC’s based on the cumulative proportion of variation and one PC based on Kaiser’s rule. 

 

Table 4.17: PCA model results for MNAR 

  
10% 20% 30% 40% 

Cumulative proportion 

of variation 

CW 0% 0% 0.2% 2.4% 

Mean 37% 98% 100% 100% 

Eigenvalues 
CW 0% 0% 0% 0.1% 

Mean 0% 0% 0% 0% 
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PCA Output Results 

Figure 4.19 to Figure 4.22 shows the output of the PCA model for MNAR.  The baseline median 

for PC 1 (-0.0375) is accurately predicted by most of the algorithms for the different percentages 

of missingness in Figure 4.19.  CW and mean imputation are the only algorithms that deviated 

from the baseline median.  The mean imputation slightly overestimates the baseline median at 

40% missingness whereas CW overestimates the baseline median from 10% missing.  

 

Figure 4.19: PCA output results of the median of PC1 for MNAR 
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Based on the output for the median of PC2 in Figure 4.20 compared to the baseline median of 

PC2 (0.0268), it follows that up until 30% missingness majority of the algorithms predicted the 

baseline median well.  At 40% missingness, there is a general slight underestimation observed in 

all the algorithms.  

 

Figure 4.20: PCA output results of the median of PC2 for MNAR 
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From Figure 4.21 comparing the standard deviation of PC1 to the baseline standard deviation for 

PC1 (1.8576), it can be observed that for all percentages of missingness CW, the EM algorithm 

and MI Ave predicted the baseline standard deviation accurately.  While the overestimation 

observed in iPCA gradually increases as the percentages of missingness increase, the 

underestimation in mean imputation also increases at a faster rate.  MI PCA still completely 

overestimates the baseline standard deviation from 10% missingness.      

 

Figure 4.21: PCA output results of the standard deviation of PC1 for MNAR 
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The results of the standard deviation of PC2 is presented in Figure 4.22 and compared to the 

baseline standard deviation of PC 2 (1.2823).  Except for MI PCA that overestimates the baseline 

standard deviation at all percentages of missingness, the algorithms generally produce accurate 

estimates.  It is only from 30% missingness that the mean imputation and iPCA start to deviate 

slightly. 

 

Figure 4.22: PCA output results of the standard deviation of PC2 for MNAR 
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Goodness-of-fit Results 

Table 4.18 shows the ranges of the RV coefficient for MNAR of which all of the values proved to 

be statistically significant at a 1% significance level.  Contrary to the results that were observed 

for MCAR (Table 4.14) and MAR (Table 4.16), it follows that iPCA and MI Ave are very 

similar for all percentages of missingness.  Similarly to MAR, MI PCA is the least effective for 

all percentages of missingness except at 40% where the mean imputation has a lower minimum 

bound than MI PCA.  On average, the RV coefficient for mean imputation at 40% missingness is 

almost as low as the RV coefficient for MI PCA but MI PCA is still the least effective imputation 

algorithm.   

 

Table 4.18: Ranges of the RV coefficient for MNAR 

 

10% 20% 30% 40% 

Mean (0.954; 0.981) (0.937; 0.972) (0.912; 0.955) (0.897; 0.942) 

EM (0.973; 0.989) (0.961; 0.983) (0.945; 0.975) (0.933; 0.968) 

iPCA (0.983; 0.993) (0.974; 0.989) (0.967; 0.984) (0.962; 0.979) 

MI Ave (0.983; 0.993) (0.974; 0.989) (0.969; 0.984) (0.96; 0.979) 

MI PCA (0.926; 0.937) (0.917; 0.933) (0.913; 0.928) (0.903; 0.923) 

 

 

Figure 4.23: Line graph of the average RV coefficient for MNAR 
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The bigger size of the average SSD for MI PCA that was observed for MCAR (Figure 4.12) and 

MAR (Figure 4.18), can also be observed for MNAR in Figure 4.24.  The figure shows a clear 

distinction between the average SSD for MI PCA and mean imputation at 40% missingness even 

though the average RV coefficient for mean imputation at 40% missingness is close to the 

average RV coefficient for MI PCA (Figure 4.23).  It also follows that the EM algorithm, iPCA 

and MI Ave are on average more effective than Mean Imputation. 

 

 

Figure 4.24: Bubble plot of the average SSD for MNAR 
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4.4. Summary 

The results for the overall simulation analysis in Section 4.3 coincide with the results that were 

observed for the single simulation analysis in Section 4.2.  In both analyses, there are three parts 

to the evaluation of the results, namely the PCA model, the PCA output and the goodness-of-fit 

measures.   

 

The first objective of the analysis was to determine whether the imputation algorithm selected 

the same number of PC’s to be extracted in the PCA model as the baseline PCA model.  For this 

purpose both the criteria cumulative proportion of variation and Kaiser’s rule were applied.  The 

results showed that only CW and Mean Imputation were affected with instances for which the 

incorrect number of PC’s was selected.  Majority of these instances were observed for the 

cumulative proportion of variation.   

  

The second part of the analysis focused on a variable level analysis to compare the imputed PC’s 

to the baseline PC’s.  For this step of the analysis, the descriptive statistics consisting of the 

median and the standard deviation were calculated for both the PC’s from the imputed and the 

baseline PCA models.  The biggest deviations from the baseline medians were observed for CW, 

and the biggest deviations from the baseline standard deviations for Mean Imputation and MI 

PCA. 

  

Finally, a goodness-of-fit analysis was performed in order to compare the imputed results with 

the baseline results on a respondent level.  The measures that were used for the analysis include 

the RV coefficient and the SSD.  A significance test performed on the RV coefficients indicated 

that all the values are statistically significant at a 1% significance level.  Both the RV coefficients 

and SSD concluded that iPCA and MI Ave were the most effective algorithms and MI PCA the 

least effective.   
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5. CONCLUSIONS 

5.1. Conclusions 

Missing data are a problem that needs to be considered but researchers tend to ignore the 

problem.  As Schafer and Graham (2002, p.147) state: “Missingness is usually a nuisance, not 

the main focus of inquiry”.  In this study, the focus of the analysis is missing data specifically in 

the context of PCA.  Grung and Manne (1998) mention that if missing data are handled 

incorrectly, the results of the PCA may be severely affected. 

 

The study considered a range of imputation algorithms that have not yet been compared 

including CW, mean imputation, the EM algorithm, iPCA and MI.  In the case of MI, two 

methods for combining the multiple datasets into a single dataset were considered, namely the 

application of a simple average across the PC’s from the multiple imputed datasets (MI Ave) and 

the application of a weighted average (MI PCA).  The efficiency of the methods for imputing 

missing data was assessed using a baseline dataset simulated from a multivariate normal 

distribution and introducing the three missing mechanisms as three possible scenarios for four 

percentages of missingness.  A PCA was performed and the results from the imputed datasets are 

compared with the results from the baseline data, including the cumulative proportion of 

variation and the eigenvalues.  The goodness-of-fit of the PCA models were assessed using the 

descriptive statistics, the SSD and the RV coefficient. 

 

The first observation is that based on Kaiser’s rule it can be concluded that mean imputation, the 

EM algorithm, iPCA and MI had no problem with selecting the same number of PC’s as the 

baseline PCA model.  Secondly, a comparison of the descriptive statistics showed that the only 

algorithms that produced descriptive statistics comparable to the baseline were the EM 

algorithm, iPCA and MI Ave.  Finally, the goodness-of-fit results revealed that iPCA and MI 

Ave were the most effective imputation algorithms from this study.  Similar to literature, the 

effectiveness decreased as the percentages of missingness increased.  Contrary to research and 

expectations, the study showed that the influence of the MNAR missingness, specifically, on the 

results was minimal.  A possible explanation can be because the missingness was only 
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introduced in a single variable for each PC and as such the effect is minimal as it is 

overshadowed by the existing relationships among the rest of the variables.  

 

Based on the research questions asked at the beginning of this study, the conclusions are as 

follow: Taking a simple average of the multiple values provided an effective way to combine the 

results from MI.  The EM algorithm, iPCA and MI Ave methods proved more effective than CW 

and mean imputation with both iPCA and MI Ave being the most efficient imputation 

algorithms. 

 

While only a few methods are investigated in this study, there are many more methods each with 

their own advantages and disadvantages.  Schlomer et al (2010, p.3) state that “There is not one 

best strategy; the strategy will depend on the data and the analyses.”  Even though the methods 

for handling missing data are distinct, all the methods have the same goal: To impute the missing 

observations as accurately as possible in order to obtain results and conclusions that the study 

would have given if all the observations were observed.   

 

5.2. Recommendations 

Although a growing field, the research in missing data is still far from complete, specifically for 

missing data in the context of statistical techniques other than linear regression, such as PCA.  

This analysis has shown that MI Ave produced efficient results and should be investigated 

further to determine whether the variability within and between imputations should be 

incorporated in the final PCA derivation, similar to what Rubin (1987) did for linear regression.  

MI PCA on the other hand produced variable results and should also be investigated as to the 

reason for the variability.   The efficient results of iPCA also suggest further research into the 

most recent mention of an MI version of iPCA.  The influence of the missing data mechanisms, 

with specific focus on MNAR missingness, on the results of PCA also deserves further research.  

This can be achieved by analysing the effect on the results when the missingness is introduced 

into more of the variables.  Another focus can be to compare the correlation matrices between 

the baseline and imputed PC’s using the determinant of matrices, or any other measure that can 

summarise the correlation matrices.   
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APPENDIX: R CODE 

Load libraries needed: 

library(corpcor) 

library(MASS) 

library(norm) 

library(Matrix) 

library(FactoMineR) 

library(missMDA) 

 

Simulate baseline dataset: 

simulateDataRandomCorr=function(n, seedValue){ 

   #Set random generator seed 

   rngseed(seedValue) 

   #Set correlation bounds 

   LowMin=-0.35; LowMax=-0.15 

   HighMin=0.7;  HighMax=0.85 

   #Set correlations 

x1x1=1;   

x1x2=runif(1,min=HighMin,max=HighMax); 

x1x3=runif(1,min=HighMin,max=HighMax);    

x1x4=runif(1,min=LowMin,max=LowMax);    

x1x5=runif(1,min=LowMin,max=LowMax);     

x1x6=runif(1,min=LowMin,max=LowMax);     

x2x1=x1x2;    

x2x2=1;             

x2x3=runif(1,min=HighMin,max=HighMax);   

x2x4=runif(1,min=LowMin,max=LowMax);    

x2x5=runif(1,min=LowMin,max=LowMax);     

x2x6=runif(1,min=LowMin,max=LowMax);     
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  x3x1=x1x3;    

x3x2=x2x3;          

x3x3=1;           

x3x4=runif(1,min=LowMin,max=LowMax);    

x3x5=runif(1,min=LowMin,max=LowMax);     

x3x6=runif(1,min=LowMin,max=LowMax);     

   x4x1=x1x4;    

x4x2=x2x4;           

x4x3=x3x4;          

x4x4=1;             

x4x5=runif(1,min=HighMin,max=HighMax);   

x4x6=runif(1,min=HighMin,max=HighMax);     

   x5x1=x1x5;    

x5x2=x2x5;           

x5x3=x3x5;          

x5x4=x4x5;              

x5x5=1;                    

x5x6=runif(1,min=HighMin,max=HighMax);   

   x6x1=x1x6;    

x6x2=x2x6;         

x6x3=x3x6;          

x6x4=x4x6;                  

x6x5=x5x6;                 

x6x6=1;                

   #Construct correlation matrix 

   cor_mat=matrix(c(x1x1,x1x2,x1x3,x1x4,x1x5,x1x6, 

         x2x1,x2x2,x2x3,x2x4,x2x5,x2x6, 

         x3x1,x3x2,x3x3,x3x4,x3x5,x3x6, 

         x4x1,x4x2,x4x3,x4x4,x4x5,x4x6, 

         x5x1,x5x2,x5x3,x5x4,x5x5,x5x6, 
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         x6x1,x6x2,x6x3,x6x4,x6x5,x6x6),6,6) 

   #Calculate mean vector of 0 

  mu=c(0)   

   for (i in 1:6){ 

  mu[i]=0 

   } 

   #Make sure correlation matrix is positive definite 

   if(is.positive.definite(cor_mat)=="FALSE"){ 

  cor_mat=make.positive.definite(cor_mat) 

  } 

   is.positive.definite(cor_mat) 

   #Simulate data 

   data_sim=mvrnorm(n, mu, cor_mat) 

  #Name the variables 

   colnames(data_sim)=c("X1","X2","X3","X4","X5","X6") 

  return(list(data=data_sim, 

        corr=cor_mat)) 

} 

 

Create the missing data mechanisms:  

MCAR=function(dataset,miss,var_MCAR){ 

   n_row=nrow(dataset)  #Number of rows in dataset under consideration 

  num_miss=round(miss*n_row,0)   #Number of missing values to create 

   #Number of variable in dataset that must contain the missing values 

  variable=var_MCAR 

   i=c(0) 

  #Random rows that will contain the missing values 

   i=sample(1:n_row,num_miss,replace=F) 

   #Create the missing observation 

   for (x in 1:num_miss){ 
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      dataset[i[x],variable]=NA 

   } 

   return(dataset) 

} 

 

MAR=function(dataset,miss,pMAR,var_MAR,var_createMAR,cutoff){ 

   variable=var_MAR  #Variable that should contain MAR missingness 

   n=nrow(dataset)   #Number of observations in original dataset 

   #Only create pMAR% of miss as MAR and the rest as MCAR 

   num_specific=round(miss*pMAR*n,0)   #Number of MAR to create 

   num_other=round(miss*n,0)-num_specific #Number of MCAR to create 

     #Randomly select values to delete conditional on the cutoff value for var_createMAR  

   specific=which(dataset[,var_createMAR]>cutoff) 

   i=c(0) 

   i=sample(specific,num_specific,replace=F) 

   for (x in 1:num_specific){ 

      dataset[i[x],variable]=NA 

   } 

     #Randomly select the values that will MCAR 

   other=which(dataset[,var_createMAR]<=cutoff) 

   j=c(0) 

   j=sample(other,num_other,replace=F) 

   for (x in 1:num_other){ 

      dataset[j[x],variable]=NA 

   } 

     return(dataset) 

} 
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MNAR=function(dataset,miss,pMNAR,var_MNAR,cutoff){ 

   #MNAR will be the same as MAR but the missingness will be conditional on  

   #the same variable that will contain the missing values 

   dataset_MNAR=MAR(dataset,miss,pMNAR,var_MNAR,var_MNAR,cutoff) 

   return(dataset_MNAR) 

} 

 

Apply the imputation algorithms: 

imputeMean=function(dataset){ 

   #Initialise the imputed dataset 

imp_x=dataset 

#For each variable in the dataset, determine if the value is missing and impute it with  

#the mean of the observed values for that variable  

   for (i in 1:NCOL(dataset)){ 

  imp_x[is.na(dataset[,i]),i]=mean(dataset[,i],na.rm=TRUE) 

   } 

   return(imp_x) 

} 

 

imputeEM=function(dataset, seedValue){ 

   #Do preliminary manipulations 

   s=prelim.norm(dataset)  

   #Find the MLE parameters 

   thetahat = em.norm(s,showits=FALSE)  

   #Set random number generator seed 

   rngseed(seedValue)  

   #Impute missing data under the MLE 

   imp_x = imp.norm(s,thetahat,dataset)  

   #Return the imputed dataset 

   return(imp_x) } 
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imputeiPCA=function(dataset, S, seedValue){ 

   #Set random number generator seed 

   rngseed(seedValue)  

   #Impute data using iterative PCA 

   #Method set to using EM algorithm instead of regularised EM 

   #seed=NULL implies initial missing values set to mean of variables 

   imp_data=imputePCA(dataset,ncp=S,method="EM",seed=NULL) 

   #Return the imputed dataset 

   imp_x=imp_data$completeObs 

   return(imp_x) 

} 

 

imputeMCMC=function(dataset,seedValue){ 

   #Set random number generator seed otherwise the function repeats the values 

   rngseed(seedValue)  

   #Create matrix to use in functions 

   data_matrix=prelim.norm(dataset) 

   #Compute ML estimates using EM-algorithm 

   par_hat=em.norm(data_matrix,showits=F) 

   #Create new par. taking 10 steps 

   new_par=da.norm(data_matrix,start=par_hat,steps=10,showits=F) 

   #Impute under new par. 

   imp_x=imp.norm(data_matrix,new_par,dataset) 

   #Return imputed dataset 

   return(imp_x) 

} 
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Run the PCA: 

pcaModel=function(dataset, S){ 

   #Number of variables 

   p=NCOL(dataset) 

   #Fit PCA model to dataset 

   fit_model= princomp(dataset, cor=TRUE) 

   #Get the cumulative proportion of variation accounted for 

   cumpVar=cumsum(fit_model$sdev^2/sum(fit_model$sdev^2)) 

   #Get the eigenvalues and vectors 

   eSummary=eigen(cor(dataset)) 

   eValues=eSummary$values 

   #The eigenvectors are only extracted for the first S PC's 

   eVecs=eSummary$vectors[1:p,1:S] 

   #Extract the first S PC's and calculate the scores: 

   #Note: the scores are calculated based on the scaled and centered data matrix 

   PCs=with(fit_model, scale(dataset,center=center,scale=scale))%*%eVecs 

   #Return the results 

   return(list(cumpVar=cumpVar, 

    eig=eValues, 

    eigvec=eVecs, 

    scores=PCs)) 

} 

 

Determine the correlations between the SI imputed PC’s and baseline PC’s: 

#Function to determine if imputed PC’s swapped around and swapping them around if they did 

corrPCs=function(observed,imputed,S){ 

 #Determine the correlation 

   corMatrix=cor(observed,imputed) 

   #Initialise 

   n=0 
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   maxCor=c(0,0,0,0,0,0) 

  maxCorInd=c(0,0,0,0,0,0) 

swapInd=0 

   #For each imputed PC determine which PC has the max correlation with baseline PC’s 

for (i in 1:S){ 

  maxCorInd[i]=which(abs(corMatrix[,i])==max(abs(corMatrix[,i]))) 

  maxCor[i]=corMatrix[maxCorInd[i],i] 

   } 

   #Test if imputed dataset swapped PC's 

   if (sum(maxCorInd==c(1,2,3,4,5,6))!=6)  swapInd=1 

   #Swap PC’s if necessary otherwise keep PC as is 

scoresFinal=cbind(sign(maxCor[1])*imputed[,maxCorInd[1]], 

     sign(maxCor[2])*imputed[,maxCorInd[2]], 

     sign(maxCor[3])*imputed[,maxCorInd[3]], 

     sign(maxCor[4])*imputed[,maxCorInd[4]], 

     sign(maxCor[5])*imputed[,maxCorInd[5]], 

     sign(maxCor[6])*imputed[,maxCorInd[6]]) 

   return(list(scores=scoresFinal, 

    indPCs=maxCorInd, 

    swapInd=swapInd))  

} 

 

Determine the correlations between the MI imputed PC’s and baseline PC’s: 

corrMI=function(observed,impdata1,impdata2,impdata3,impdata4,impdata5,S){ 

   #Create a combined dataset of 5 imputed datasets 

scores_combined=cbind(impdata1,impdata2,impdata3,impdata4,impdata5) 

   #Initialise 

maxCorMI=matrix(0,S,4) 

   maxCor_PCs=matrix(0,S,4) 

sumMiss=0 



90 

 

   scoresMIave=matrix(0,NROW(observed),S) 

   scoresMIpca=matrix(0,NROW(observed),S) 

   MIcumpVar=matrix(0,1,30) 

   MIeig=matrix(0,1,30) 

   #Calculate which PC’s match the first imputed dataset’s PC’s 

for (j in 1:4){ 

  cor_PCs=cor(scores_combined[,1:6],scores_combined[,(6*j+1):(6*j+6)]) 

  for (i in 1:S){ 

   maxCor_PCs[i,j]=which(abs(cor_PCs[,i])==max(abs(cor_PCs[,i]))) 

   maxCorMI[i,j]=cor_PCs[maxCor_PCs[i,j],i] 

    } 

   } 

 for (k in 1:S){ 

  #Check number of PC's swapped in 5 imputed datasets 

  sumMiss=sum(maxCor_PCs[k,]!=k)+sumMiss 

  #Create the swapped PC’s of 5 imputed datasets 

PCtemp=cbind(impdata1[,k], 

    sign(maxCorMI[k,1])*impdata2[,maxCor_PCs[k,1]], 

    sign(maxCorMI[k,2])*impdata3[,maxCor_PCs[k,2]], 

    sign(maxCorMI[k,3])*impdata4[,maxCor_PCs[k,3]], 

    sign(maxCorMI[k,4])*impdata5[,maxCor_PCs[k,4]]) 

#Calculate MI Ave by taking average of imputed values 

scoresMIave[,k]=rowMeans(PCtemp) 

#Calculate MI PCA by calculating one component PCA model 

pcaMI=pcaModel(PCtemp,1) 

  scoresMIpca[,k]=pcaMI$scores 

  #To check if one PC should be extracted 

MIcumpVar[(5*(k-1)+1):(5*k)]=pcaMI$cumpVar 

  MIeig[(5*(k-1)+1):(5*k)]=pcaMI$eig 

   } 
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   #Determine the correlation between the combined MI PC’s and baseline PC’s 

MIaveAdj=corrPCs(observed,scoresMIave,S) 

   MIpcaAdj=corrPCs(observed,scoresMIpca,S) 

   return(list(swapMI=sumMiss, 

    aveScores=MIaveAdj$scores, 

    aveIndPCs=MIaveAdj$indPCs, 

    aveSwapInd=MIaveAdj$swapInd, 

    MIcumpVar=MIcumpVar, 

    MIeig=MIeig, 

    pcaScores=MIpcaAdj$scores, 

    pcaIndPCs=MIpcaAdj$indPCs, 

    pcaSwapInd=MIpcaAdj$swapInd)) 

} 

 

Evaluation of results: 

summaryStatsPCs=function(datasetScores){ 

 #Initialise 

 statsPCs=matrix(0,NCOL(datasetScores),2) 

   #Get summary stats per PC 

   for (i in 1:NCOL(datasetScores)){ 

  statsPCs[i,1]=mean(datasetScores[,i]) 

  statsPCs[i,2]=sd(datasetScores[,i]) 

   } 

   return(statsPCs) 

} 

 

comparePCs=function(completeScores,imputedScores){ 

   #Initialise 

results=matrix(0,1,3) 

   #Get the RV Coefficient and p-value of complete vs imputed scores  
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   results[1]=coeffRV(completeScores,imputedScores)$rv 

   results[2]=coeffRV(completeScores,imputedScores)$p.value  

   #SSD between complete and imputed scores 

   results[3]=sum((completeScores-imputedScores)^2) 

   return(results) 

} 


