THE ETHENE POLYMERISATION BEHAVIOUR OF ZIRCONIUM METALLOCENES: A STERIC AND ELECTRONIC INVESTIGATION INTO THE INFLUENCE OF SUBSTITUENT EFFECTS.

Neil Eugene Grimmer

A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy
Johannesburg, 2000
DECLARATION

I hereby declare that this thesis is my own, unaided work, performed under the supervision of Professor N.J. Coville and Doctor C.B. de Koning. It is being submitted for the Degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

Neil Eugene Grimmer
28th Day of March 2000
ABSTRACT

A systematic investigation into the effect that alkyl and aryl substituents have on the ethene polymerisation behaviour of a series of MAO co-catalysed mono-substituted bis-(cyclopentadienyl)zirconium dichloride and bis-(indenyl)zirconium dichloride metallocenes was carried out. The electronic attributes of the substituents were related to the Hammett substituent functions. The sizes of the ligands were measured from the perspective of the metal using the Tolman cone angle, numerical solid angle and analytical solid angle methodologies. For the mono-substituted cyclopentadienyl metallocenes of formula (CpR)\(_2\)ZrCl\(_2\) (R = Me, Et, \(^3\)Pr, \(^7\)Bu, SiMe\(_3\), CMe\(_2\)Ph), it was found that an optimum ligand size (R = Et, \(^3\)Pr) was required for high activity. These substituents protected the active polymerisation site from deactivation processes. However, if the substituent was too bulky (R = \(^7\)Bu, CMe\(_2\)Ph) activity dropped drastically. Electronic factors possibly also play a role as demonstrated by the much higher activity of the SiMe\(_3\) substituted catalyst over its similarly sized \(^7\)Bu analogue. A series of new bis-(indenyl)zirconium dichloride metallocenes of formula [2–R-Ind]\(_2\)ZrCl\(_2\) (R = H, Me, SiMe\(_3\), Ph, Bz and 1-Naphthyl) and [1–R-Ind]\(_2\)ZrCl\(_2\) (R = Me, Et, \(^3\)Pr, \(^7\)Bu, SiMe\(_3\), Ph, Bz and 1-Naphthyl) were synthesised. Ethene polymerisation reactions with these metallocenes revealed the same electronic and steric trends observed for the (CpR)\(_2\)ZrCl\(_2\) catalysts. Steric effects were found to play an important role with polymerisation activity decreasing as the size of the substituent increases. Also, the 1-substituted metallocenes had higher activities than their 2-substituted analogues, the differences in their activity increasing with the size of the substituent. By studying the conformations adopted by the indenyl ligands in the solid state, we have rationalised this phenomenon to be a result of the greater steric protection afforded to the active polymerisation site by the 1-substituted metallocenes.
ACKNOWLEDGEMENTS

This thesis would not have been possible without the input and support of a number of people to who I am gratefully indebted. This page gives me the opportunity to thank these important people.

- My two supervisors, Prof. N.J. Coville and Dr C.B. de Koning, for providing me with the opportunity to work under their expert guidance. It is a privilege for which I am tremendously grateful. The challenges presented to me would not have been surmounted without their knowledge, support and unhealthy optimism, the latter which at times may have required observation by white-coats of a different nature!

- My wonderful parents, who despite being cursed with an ungrateful son, always find reasons to provide more love and support. I am truly blessed.

- My beautiful sister, for reasons too many to mention here.

- The unique collection of hooligans and persons of ill repute who happen to be my friends. Without your insanity, I would most certainly have lost mine. Thanks for standing by me all these years and understanding all the times I could not ‘come out and play’.

- Apologies to Tshepo Malefetse, Bhekie Mamba, Namadzavho Sitabule, Miranda Mamabolo and Jeremy Smith who had the misfortune of sharing the laboratory with this difficult mlungu for the longest period of time. Thank you for all the wonderful lessons, discussions and laughs. Not only should we be running this country, but more importantly, the national football team too! It will be a tremendous honour to be considered as not just a colleague, but a friend as well.

- Jeremy Smith and Leanne Cook for all the help with the two crystal structures. During the dark months leading to the conclusion of this project, my frayed personality was in no position to deal directly with the quirks of difficult structures and refinement routines.

- All the technical staff, without whose help none of this work would have been possible. Barry Fairbrother and Stephen Gannon, for their adroit glass-blowing talents. Sigi Heiss for her friendly NMR spectroscopy service. Basil Chassoulas for electronics and the long-suffering Physics workshop for helping me to get my polymerisation reactor working smoothly.
CHAPTER 1: INTRODUCTION .. ERROR! BOOKMARK NOT DEFINED.

CHAPTER 2: LITERATURE SURVEY – A REVIEW OF CYCLOPENTADIENYL TYPE LIGANDS IN GROUP 4 METALLOCENE OLEFIN-POLYMERISATION CATALYSTS. .. ERROR! BOOKMARK NOT DEFINED.

2.1. INTRODUCTION AND HISTORICAL PERSPECTIVE ERROR! BOOKMARK NOT DEFINED.

2.2. THE NATURE OF METALLOCENE CATALYSTS ERROR! BOOKMARK NOT DEFINED.

2.2.1. The active polymerisation species Error! Bookmark not defined.

2.2.2. Polymerisation mechanism Error! Bookmark not defined.

2.2.2.1. Monomer insertion and chain growth Error! Bookmark not defined.

2.2.2.2. Chain transfer mechanisms Error! Bookmark not defined.

2.3. THE DESIGN OF METALLOCENE, OLEFIN POLYMERISATION CATALYSTS ERROR! BOOKMARK NOT DEFINED.

2.3.1. The effect of metal on polymerisation results Error! Bookmark not defined.
2.3.2. The cyclopentadienyl ligand...

2.3.3. Metallocene symmetry and polymer tacticity.

2.3.4. The effect of ring substituents.
 2.3.4.1. Unbridged metallocenes
 2.3.4.2. Bridged metallocenes
 2.3.4.3. The effect of bridge choice

2.3.5. Metallocene synthesis: resolving the problem of diastereomers.
 2.3.5.1. Synthetic strategies
 2.3.5.2. Ligand strategies
 2.3.5.3. Separation strategies

2.4. Conclusions

2.5. Tables of polymerisation data

2.6. References

Chapter 3: General Experimental Procedures

3.1. Introduction

3.2. Experimental procedures
 3.2.1. Purification of solvents
 3.2.2. Laboratory bench set-up
 3.2.3. Experimental techniques

3.3. Characterisation procedures
 3.3.1. NMR spectroscopy
 3.3.2. X-ray crystal diffractometry
 3.3.3. Mass Spectrometry
 3.3.4. Elemental analysis
 3.3.5. Differential scanning calorimetry (DSC)

3.4. Polymerisation studies
 3.4.1. Polymerisation reactor and rig design
 3.4.2. Polymerisation Reaction Details
CHAPTER 4: QUANTIFICATION OF STERIC EFFECTS IN GROUP 4 METALLOCENES

4.1. INTRODUCTION

4.1.1. Cone Angle Measurements, \(\theta \)

4.1.2. Solid Angle Measurements, \(\Omega \)

4.1.3. Summary

4.1.4. Steric Measurement of Cyclopentadienyl Ligands

4.1.5. Aims

4.2. METHODS SECTION

4.3. RESULTS AND DISCUSSION

4.3.1. Crystal Structure Analysis

4.3.2. A comparative analysis of the \(C_5H_5R \) ligand size

4.3.3. Analysis of the Co-ordination Gap Aperture

4.4. CONCLUSIONS

4.5. REFERENCES

CHAPTER 5: A STUDY OF STERIC AND ELECTRONIC PARAMETERS: THEIR INFLUENCE ON THE ETHENE POLYMERISATION ACTIVITY FOR A SET OF (CPR)\(_2\)ZrCl\(_2\/\)MAO CATALYSTS

5.1. INTRODUCTION

5.2. EXPERIMENTAL

5.2.1. General Experimental Methods

5.2.2. Synthesis of the (CpR)\(_2\)ZrCl\(_2\) metallocenes

5.2.3. Ethene polymerisation reactions

5.2.4. Steric measurements

5.3. RESULTS AND DISCUSSION
CHAPTER 6: SYNTHESIS OF A SERIES OF BIS-(INDENYL)ZIRCONIUM DICHLORIDE METALLOCENES: SUBSTITUTION BY ALKYL AND ARYL GROUPS AT THE 1- AND 2-INDENYL RING POSITIONS

6.1. INTRODUCTION

6.2. EXPERIMENTAL SECTION

6.2.1. General Experimental Procedures

6.2.2. Synthesis of the substituted indene ligands

6.2.3. Synthesis of the bis-(R-indenyl)zirconium dichloride complexes

6.3. RESULTS AND DISCUSSION

6.3.1. Synthesis of the substituted indene ligands

6.3.1.1. 1- and 3-Substituted indenes

6.3.1.2. 2-Substituted indenes

6.3.2. Synthesis of the bis-(R-indenyl)zirconium dichloride complexes

6.4. CONCLUSIONS

6.5. REFERENCES

CHAPTER 7: A CRYSTALLOGRAPHIC AND STERIC STUDY OF BIS-(INDENYL)ZIRCONIUM DICHLORIDE COMPOUNDS

7.1. INTRODUCTION

7.2. METHODS SECTION

7.2.1. Crystallographic procedures

7.2.2. Steric measurement procedures

7.3. RESULTS AND DISCUSSION

7.3.1. Crystallographic studies
CHAPTER 8: A STUDY OF THE ETHENE POLYMERISATION BEHAVIOUR OF A SET OF 1- AND 2-SUBSTITUTED BIS-(INDENYL)ZIRCONIUM DICHLORIDE METALLOCENES

8.1. INTRODUCTION

8.2. EXPERIMENTAL SECTION

8.2.1. General experimental methods

8.2.2. Ethene polymerisation reactions

8.2.3. Steric measurements

8.3. RESULTS AND DISCUSSION

8.3.1. Assessment of steric and electronic parameters

8.3.2. Polymerisation reactions

8.4. CONCLUSIONS

8.5. REFERENCES

CHAPTER 9: SUMMARY AND CONCLUSIONS

APPENDIX A: INDEX TO CD-ROM

A1. Crystallographic Data

A2. Thesis

A3. Steric
LIST OF FIGURES

Figure 2.1. A constrained geometry catalyst..........................Error! Bookmark not defined.
Figure 2.2. Examples of the cyclopentadienyl family of ligands.Error! Bookmark not defined.
Figure 2.3. The substituent on the monomer units in the polymer chain can be positioned in different orientations to each other giving rise to different stereostructures. Error! Bookmark not defined.
Figure 2.4. The last inserted unit in a chain end controlled catalysts (a) defines the orientation of the next inserted unit whereas for a catalytic-site controlled catalyst (b), any errors are corrected by the chirality of the catalyst…Error! Bookmark not defined.
Figure 2.5. For olefin polymerisation reactions, metallocenes may be divided in to four main point-groups, examples of each are shown here.Error! Bookmark not defined.
Figure 2.6. The growing polymer chain always occupies the least congested quadrant. Non bonded interactions with the chain forces a trans orientation of the monomer R-group. ..Error! Bookmark not defined.
Figure 2.7. Depiction of the substituents on the α- and β-positions on the cyclopentadienyl, indenyl and fluorenyl ring moieties..................................Error! Bookmark not defined.
Figure 2.8. Three main bridging systems exist in ansa-metallocenes, namely ethyl, isopropyl and dimethylsilyl bridges.Error! Bookmark not defined.
Figure 2.9. The use of chiral ligands in the synthesis of ansa-metallocenes ensures that only one diastereomer is formed.................................Error! Bookmark not defined.
Figure 3.1. An inert-air filtration apparatus. The reaction mixture is filtered through a glass frit from A into flask B. ...Error! Bookmark not defined.
Figure 3.2. Schematic diagram of the polymerisation-rig set-up in our laboratory........ Error! Bookmark not defined.
Figure 4.1. The Tolman cone angle methodology involves the measurement of the half-vertex angle for each substituent in an unsymmetrical ligand.Error! Bookmark not defined.
Figure 4.2. Measurement of the cone angle for a methyl substituted cyclopentadienyl ligand.

Figure 4.3. Representation of the ligand angular profile used to create a non-circular cone.

Figure 4.4. In the solid angle calculation the atoms are reflected onto a surface and the area of that shadow is then integrated.

Figure 4.5. Correction of ring tilt in metalloccenes.

Figure 4.6. Diagram illustrating the co-ordination gap aperture.

Figure 4.7. Representation of the three conformations adopted by mono-alkyl substituted cyclopentadienyl metalloccenes in the solid state.

Figure 4.8. Three-dimensional angular ligand profile for the cyclopentadienyl ligand.

Figure 4.9. Three-dimensional angular ligand profile for the tertiary-butyl-cyclopentadienyl ligand.

Figure 4.10. Three-dimensional angular ligand profile for the ethylcyclopentadienyl ligand.

Figure 4.11. Three-dimensional angular ligand profile for the iso-propylcyclopentadienyl ligand.

Figure 4.12. Semi-vertex cone angles for a mono-substituted cyclopentadienyl ligand.

Figure 4.13. Cone angle ligand profiles.

Figure 4.14. Tolman cone angle profiles.

Figure 4.15. Solid angle ligand profiles.

Figure 4.16. Numerical solid angle profiles.

Figure 4.17. Ligand Profiles for the cyclopentadienyl ligand.

Figure 4.18. Ligand Profiles for the tertiary-butylcyclopentadienyl ligand.

Figure 4.19. Dependence of Tolman cone angle on M–(CpR) distance.
Figure 4.20. Dependence of the numerical solid angle on M–(CpR) distance.............. Error! Bookmark not defined.

Figure 5.1. The solid angle is calculated by reflecting the shape of the ligand onto a sphere and calculating the size of that shadow. Error! Bookmark not defined.

Figure 5.2. Diagram showing the spaces between the ligand branches in the cone angle. ... Error! Bookmark not defined.

Figure 5.3. Data lines showing the ethene uptake rate for a set of (CpR)2ZrCl2 catalysts. ... Error! Bookmark not defined.

Figure 5.4. Correlation between co-ordination gap aperture and activity.Error! Bookmark not defined.

Figure 6.1. Numbering scheme used in describing the bis(1-R-indenyl)zirconium dichloride metallocenes. ... Error! Bookmark not defined.

Figure 6.2. Representation of the three stereoisomers and their symmetry elements.. Error! Bookmark not defined.

Figure 7.1. The co-ordination gap aperture is measured as the largest possible angle between the inner van der Waals surfaces of the β-substituents on the 5-membered ring. ... Error! Bookmark not defined.

Figure 7.2. The ring substituents were orientated in such a way so as to create a minimum steric impression when the size of the substituted indenyl ligand was calculated from the perspective of the metal... Error! Bookmark not defined.

Figure 7.3. ORTEP diagram of the two racemic diastereomers of bis-(1-ethyl-indenyl)zirconium dichloride (5b) with 40% probability thermal ellipsoids. Error! Bookmark not defined.

Figure 7.4. Molecular geometry of 5b viewed by looking down the 5-membered rings of the indenyl ligands (a) S,S-diastereomer (top) (b) R,R-diastereomer (bottom). Error! Bookmark not defined.

Figure 7.5. (a) ORTEP diagram of bis-(1-phenyl-indenyl)zirconium dichloride (11b) with 40% probability thermal ellipsoids (top) (b) 11b viewed looking down the 5-membered rings of the indenyl ligands (bottom). As the second ligand was generated by symmetry, it was not numbered. ... Error! Bookmark not defined.
Figure 7.6. The ligands in unbridged Group 4 metalloccenes can adopt three conformations with respect to each other. These conformers are usually dictated by the size of the substituents on the cyclopentadienyl and indenyl ligands.

Figure 7.7. Waymouth’s 2-phenylindenyl metalloccene is capable of changing between anti-“rac-like” to a syn-“meso-like” conformations.

Figure 7.8. In order to prevent steric conflicts as depicted in this diagram, aryl substituents are orientated so that they do not lie in the same plane as their parent indenyl moieties.

Figure 7.9. Tolman cone angle ligand profiles for the substituted indenyl ligands.

Figure 7.10. Analytical solid angle profiles for the substituted indenyl ligands.

Figure 7.11. Numerical solid angle ligand profiles for the substituted indenyl ligands.

Figure 7.12. Comparison of the differences between the three ligand profile calculation methodologies, illustrated by considering the tertiary-butyl substituted indenyl ligand.

Figure 8.2. Ethene uptake rates for the metallocenes studied at low catalyst concentrations.

Figure 8.3. Ethene uptake rates for the metallocenes studied at high catalyst concentrations.

Figure 8.4. Some of the different conformations adopted by 1- and 2-substituted bis-(indenyl)zirconium dichloride metalloccenes in the solid state.

Figure 8.5. As the tertiary-butyl group in 7b protrudes below the ligand place, its Tolman cone angle is larger than that of 15b.

Figure 8.6. Ligand profile plot showing the variation in ligand size as a function of distance from the zirconium metal.
LIST OF SCHEMES

Scheme 2.1. The bimetallic species, 5b, was originally thought to be responsible for ethene insertion and polymerisation.

Scheme 2.2. Reaction devised by Eisch and co-workers to disprove that the bimetallic system 6a is responsible for ethene insertion. Instead, a cationic species 6b was shown to be the active polymerisation catalyst.

Scheme 2.3. Reaction scheme, as proposed by Fink, illustrating the insertion of ethene into an active polymerisation species (C–P\(^+\))\(_n\) as well as the transition of this species to a dormant state (C–P\(_n\)) facilitated by an alkylaluminium compound. Al\(_2\)=unknown, Al\(_2\)=(AlEtCl\(_2\))\(_2\), P\(_n\)=polymer chain.

Scheme 2.4. Carbon-carbon bond formation as described in the Cossee-Arlman reaction mechanism.

Scheme 2.5. In the Green-Rooney mechanism a 1,2-hydrogen shift, to form a metallocarbene, precedes monomer insertion.

Scheme 2.6. In the Brookhart-Green mechanism, the \(\alpha\)-H of the polymer chain bonds agostically to the metal during the insertion. What has not been shown in this scheme is how the \(\gamma\)-agostic interaction in the final step reverts to a more favoured \(\alpha\)-agostic one.

Scheme 2.7. By exploiting the fact that the agostic interaction of H is preferred to that of D, Brinztinger was able to prove the existence of agostic interactions. In the hydrodimerisation of (E)- and (Z)-1-[D]-1-hexene, the erythro diastereomers were formed in a higher ratio than that of the threo (1.3:1).

Scheme 2.8. Before ethene inserts into a polymer chain, a rotation around the M-C\(_\alpha\) bond occurs to give an \(\alpha\)-agostic intermediate. The product, which is a \(\gamma\)-agostic intermediate revert to the more stable \(\beta\)-agostic species.

Scheme 2.9. Chain termination by transfer to co-ordinated monomer.

Scheme 2.10. Termination by chain transfer to the metal.
Scheme 2.12. Chain transfer of the polymer to an aluminium centre. Error! Bookmark not defined.

Scheme 2.13. By oscillating between between “rac-like” and “meso-like” conformations, Waymouth’s catalyst can produce isotactic and atactic polymer respectively. Error! Bookmark not defined.

Scheme 2.14. Donor-acceptor metallocene are capable of equilibrating between bridged and unbridged systems. Error! Bookmark not defined.

Scheme 2.15. The asymmetric synthesis of ansa-metallocenes can be rendered diastereoselective by reacting the stannylated or silylated versions of the ligands with the metal chloride. Error! Bookmark not defined.

Scheme 2.16. The amine-elimination reaction developed by Jordan and co-workers favours the formation of the thermodynamically favoured rac-diastereomer, rac-1. Error! Bookmark not defined.

Scheme 2.17. The use of doubly-bridged indenyl ligands allows the synthesis of only one diastereomer, thus doing away with tedious separation procedures. Error! Bookmark not defined.

Scheme 2.18. Resolution of the racemic diastereomers can be achieved by reaction with the appropriate lithiated chiral binaphthol. Error! Bookmark not defined.

Scheme 2.19. The reaction of (R)-binaphthol with the R- and S-biphenyl bridged metallocenes only give the R,R-product indicating that epimerisation of the S-diastereomer had occurred. Error! Bookmark not defined.

Scheme 5.1. Reaction scheme, as proposed by Fink, illustrating the insertion of ethene into an active polymerisation species (C–P$_n^*$) as well as the transition of this species to a dormant state (C–P$_n$) facilitated by an alkylaluminium compound. Al$_2$ = unknown, Al$_2$ = (AlEtCl$_2$)$_2$, P$_n$ = polymer chain. Error! Bookmark not defined.

Scheme 6.1. Waymouth’s oscillating catalyst in which the bulky indenyl rings slowly rotate producing blocks of atactic and isotactic polymer in the same polypropylene chain. Error! Bookmark not defined.

Scheme 6.3. Indene synthesis via cyclization of a phenyl substituted allylic cation. **Error! Bookmark not defined.**

Scheme 6.4. Synthetic routes to substituted indene ligands. **Error! Bookmark not defined.**

Scheme 6.5. Rearrangement of indene in the presence of oxygen.**Error! Bookmark not defined.**

Scheme 6.6. Formation of the rac- and meso substituted indenyl zirconium complexes. Depending on which enantiotopic ligand face attaches to the zirconium metal, one meso-diastereomer and two racemic-enantiomers. **Error! Bookmark not defined.**

Scheme 6.7. The rac- and meso- diastereomers could be differentiated form each other by converting them to their dimethyl derivatives. **Error! Bookmark not defined.**

Scheme 8.1. The bulky phenyl group attached to the indenyl ligands is capable of slowing ring rotation down to such an extent, that certain conformations of the metallocene are capable of producing elastomeric polypropylene. **Error! Bookmark not defined.**

Scheme 8.2. Conformational rotomeric forms for [2-Ph-Ind]_2ZrCl_2. **Error! Bookmark not defined.**

Scheme 8.3. Possible conformational rotomeric forms for [1-Ph-Ind]_2ZrCl_2. **Error! Bookmark not defined.**

Scheme 8.4. The active polymerisation species C^- can be converted to an inactive intermediate I_2, which can then either be regenerated by MAO to form more active catalysts or irreversibly transformed into a second species, I_2. **Error! Bookmark not defined.**
LIST OF TABLES

TABLE 2.1. List of recent review articles concerning single site catalysts used for olefin polymerisations. Error! Bookmark not defined.

TABLE 2.2. Ethene polymerisation reactions of group 4 metallocene catalysts. Error! Bookmark not defined.

TABLE 2.3. Propene polymerisation reactions of group 4 metallocene / aluminoxide catalysts. ... Error! Bookmark not defined.

TABLE 2.4. Ethene polymerisation with cationic group 4 metallocene catalysts. ... Error! Bookmark not defined.

TABLE 4.5. Propene polymerisation with cationic group 4 metallocene catalysts. ... Error! Bookmark not defined.

TABLE 4.6. Polymerisation of other olefin molecules by group 4 metallocene catalysts. ... Error! Bookmark not defined.

TABLE 2.7. Co-polymerisation reactions involving group 4 metallocenes. Error! Bookmark not defined.

TABLE 3.1. Solvent purification details.. Error! Bookmark not defined.

TABLE 4.5. Variation in the Tolman cone angle with distance from the point of measurement. ... Error! Bookmark not defined.

TABLE 4.6. Variation in the solid angle with distance from the point of measurement ... Error! Bookmark not defined.

TABLE 4.7. Variation in the numerical solid angle with distance from the point of measurement. ... Error! Bookmark not defined.

TABLE 5.1. Ethene polymerisation data for a set of \((\text{CpR})_2\text{ZrCl}_2/\text{MAO}\) catalysts. ... Error! Bookmark not defined.

TABLE 5.2. Comparison of ethene polymerisation results from studies on the \((\text{C}_2\text{H}_4, \text{R}_3\text{ZrCl}_2/\text{MAO}\) system. ... Error! Bookmark not defined.

TABLE 6.1. Summary of 1- and 2-substituted indene syntheses. Error! Bookmark not defined.
TABLE 6.2. NMR SPECTRAL DATA FOR THE SUBSTITUTED INDENE LIGANDS

TABLE 6.3. NMR SPECTRAL DATA FOR THE BIS-(R-INDENYL)ZIRCONIUM DICHLORIDE METALLOCENES.

TABLE 6.4. SELECTED 1H AND 13C NMR DATA FOR THE BIS-(1-R-INDENYL)ZIRCONIUM DICHLORIDE METALLOCENES.

TABLE 6.5. SELECTED 1H AND 13C NMR DATA FOR THE BIS-(2-R-INDENYL)ZIRCONIUM DICHLORIDE METALLOCENES.

TABLE 6.6. MASS SPECTROMETRY FRAGMENTATION DATA FOR THE BIS-(R-INDENYL)ZIRCONIUM DICHLORIDE METALLOCENES.

TABLE 7.1. CRYSTAL DATA AND STRUCTURE REFINEMENT FOR 5B.

TABLE 7.2. CRYSTAL DATA AND STRUCTURE REFINEMENT FOR 11B.

TABLE 7.3. AVERAGE STRUCTURAL PARAMETERS FOR 1- AND 2- SUBSTITUTED BIS-(INDENYL)ZIRCONIUM DICHLORIDE METALLOCENES.

TABLE 7.4. SELECTED CRYSTALLOGRAPHIC STRUCTURAL DATA FOR 5B AND 11B.

TABLE 7.5. BOND LENGTHS EMPLOYED IN CONSTRUCTING THE (R-IND)–M RING-FRAGMENTS.

TABLE 7.6. COVALENT AND VAN DER WAALS RADII USED IN THE STERIC MEASUREMENTS.

TABLE 7.7. STERIC MEASUREMENTS FOR A SET OF 1- AND 2-SUBSTITUTED (R-IND)–M FRAGMENTS.

TABLE 8.1. HAMMETT SUBSTITUENT FUNCTIONS FOR A SET OF R-SUBSTITUENTS.

TABLE 8.2. ETHENE POLYMERISATION DATA FOR A SET OF 1- AND 2- SUBSTITUTED (R–IND)$_2$ZrCl$_2$/MAO CATALYSTS EMPLOYING LOW METALLOCENE CONCENTRATIONS.
TABLE 8.3. ETHENE POLYMERISATION DATA FOR A SET OF 1- AND 2- SUBSTITUTED (R–
IND)\textsubscript{2}ZrCl\textsubscript{2}/MAO CATALYSTS EMPLOYING HIGH METALLOCENE CONCENTRATIONS. ERROR!

BOOKMARK NOT DEFINED.
ABBREVIATIONS

An : anisidine (4-methoxyaniline), 4-CH$_3$-3,5-$\text{-} \text{Bu}_2$C$_6$H$_2$
Bz : benzyl, –CH$_2$(C$_6$H$_5$)
CCD : Charge-Coupled Device (X-ray crystallography)
C$_{cp}$: carbon atom in a cyclopentadienyl ring
cga : co-ordination gap aperture
COD : cis, cis-1,5-cyclooctadiene
Cp : cyclopentadienyl, η^5–C$_5$H$_5$
$'\text{Pe}$: cyclo-pentyl
Cp* : pentamethylcyclopentadienyl, η^5–C$_5$Me$_5$
C$_{pc}$: the centroid of a cyclopentadienyl or indenyl ligand
CSD : Cambridge Structural Database
Cy : cyclohexyl, –C$_6$H$_{11}$
d : doublet (NMR spectroscopy)
dd : doublet of doublets (NMR spectroscopy)
DSC : Differential Scanning Calorimetry
EAO : ethylaluminoxane
ebmp : 2,2‘-ethylenbis(6-tert-butyl-4-methylphenolato)
ebthi : 1,2-ethylene-1,1‘-bis(η^5–tetrahydroindenyl)
Et : ethyl, –CH$_2$CH$_3$
ETE : Electron Transfer Equilibria
Flu : fluorenyl, η^5–C$_{13}$H$_8$
GC : Gas Chromatography
HR-MS : High Resolution Mass Spectrometry
Ind : indenyl, η^5–C$_9$H$_7$
Ind$_c$: the centroid of the 5-membered ring on an indenyl ligand
IndH$_4$: tetrahydroindanyl, η^5–C$_9$H$_{11}$
$'\text{Pr}$: iso-propyl, –CH(CH$_3$)$_2$
l.p. : liquid propene
m : multiplet (NMR spectroscopy)
Me : methyl, –CH₃
MAO : methylaluminoxane
mbmp : 2,2’-methylenebis(6-tert-butyl-4-methylphenolato)
MW : molecular weight
MS : Mass Spectrometry
Naph : Naphthyl, (C₁₀H₇)
n.g : not given.
NMR : Nuclear Magnetic Resonance
\(P_p \) : pressure at which polymerisation reaction was carried out
PBB : tris-(2,2’,2”-perfluorobiphenyl)borane
PE : polyethene
Ph : phenyl
PNB : tris-(β-perfluoronaphthyl)borane
PP : polypropene
\(^t\)Pr : cyclo-propyl
q : quartet (NMR spectroscopy)
r.t. : room temperature
sibmp : 2,2’-sulfinylbis(6-tert-butyl-4-methylphenolato)
SMART : Small Molecule Analytical Research Tool
SSC : Single Site Catalyst
t : triplet (NMR spectroscopy)
\(t_p \) : polymerisation time
\(T_p \) : polymerisation temperature
\(^t\)Bu : tertiar-y-butyl, -C(CH₃)₃
tbmp : 2,2’-thiobis(6-tert-butyl-4-methylphenolato)
TBS : tertiar-y-butylidimethylsilyl, –SiMe₂(C(CH₃)₃)
TCP : 2-(tetramethyleclopentadienyl)-4-methylphenolate
THF : tetrahydrofuran
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIBA</td>
<td>tri-iso-butylaluminium</td>
</tr>
<tr>
<td>TIPP</td>
<td>2, 4, 6-tri-(iso-propyl)phenyl</td>
</tr>
<tr>
<td>TIPS</td>
<td>tri-iso-propylsilyl, –Si(CH(CH₃)₂)₃</td>
</tr>
<tr>
<td>T_m</td>
<td>melting point of polymer</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl, –Si(CH₃)₃</td>
</tr>
<tr>
<td>TP</td>
<td>hydrotris(pyrazolyl)borate</td>
</tr>
<tr>
<td>TP*</td>
<td>hydro-tris-(3,5-dimethylpyrazolyl)borate</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-Violet Spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffractometry</td>
</tr>
<tr>
<td>XPS</td>
<td>X-Ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>Z-N</td>
<td>Ziegler-Natta</td>
</tr>
</tbody>
</table>
GLOSSARY

- **Co-ordination gap aperture, cga**
 - The largest possible angle spanned by two planes through the metal centre which touch the inner van der Waals radii of the β-substituents at the C₅ ligands.

- **Cone (or linear) angle, θ**
 - The angle between the vectors of right circular cone encompassing a group of atoms.

- **Numerical solid angle, Ω_N**
 - The non-circular cone angle formed by subtending a vector from the point of measurement to the outer van der Waals radii of the group of atoms being measured and then tracing around these atoms. The surface of the non-circular cone traced out is then integrated.

- **Solid angle, Ω**
 - The surface area of projection onto the inside of a unit sphere.

- **Cone angle radial profile**
 - Plot of the cone angle, θ, as a function of distance from the point of perspective.

- **Numerical solid angle radial profile**
 - Plot of the numerical solid angle, Ω_N, as a function of distance from the point of perspective.

- **Solid Angle radial profile**
 - Plot of the solid angle, Ω, as a function of distance from the point of perspective.