Development of Versatile Bio-stable Oral Polymeric Delivery Systems for Proteins

By

Pierre Pavan Demarco Kondiah

A Thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand, in fulfillment of the requirements for the degree of Doctor of Philosophy

Supervisor:
Professor Viness Pillay
Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, South Africa

Co-Supervisors:
Professor Yahya E. Choonara
Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, South Africa

Professor Girish Modi
Department of Neurosciences, Division: Neurology, Faculty of Health Sciences, University of the Witwatersrand, South Africa

Johannesburg, 2014
I, Pierre Pavan Demarco Kondiah declare that this thesis is my own work. It has being submitted for the degree of Doctor of Philosophy in the Faculty of Health Sciences in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

..

This day of 2015
RESEARCH OUTPUTS

Research Output Presentation

Pierre P.D. Kondiah, Viness Pillay, Yahya E. Choonara, Development of a Versatile Proteomatrix Oral Polymeric Delivery System for advances in the field of Multiple Sclerosis (Podium Presentation). Cross-Faculty Postgraduate Research Day, University of the Witwatersrand, Johannesburg, South Africa, 2014

Patent Filed

DEDICATION

“Om Namo Bhagavate Rudraya” I offer my most humble Pranams at the lotus Feet of Bhagawan Sri Sathya Sai Baba who is the source of all knowledge, wisdom and inspiration
Acknowledgements

All my thanks and gratitude to the Lord of the Multiverse, Bhagawan Sri Sathya Sai Baba, for all the divine blessings and most abundant grace over every endeavor I have ever undertaken, for nothing is possible without the will and blessings of the Lord.

My deepest gratitude and love to my beloved, youthful beautiful amazing parents Roshan and Joanne Kondiah for always spreading light, confidence and happiness at all times during every aspect of my life. I am ever most thankful and honored for your constant blessings.

To my super loving gorgeous sister Pariksha Jolene Kondiah for the most fundamental support and love constantly with everlasting laughter, joy and happiness through every endeavor, who is also my inspiration, constantly guiding and supporting me through every walk of life.

To my dearest brother Sailesh Kondiah, there is no being in the world who ever understands me the way you do. You are my constant, most dynamic inspiration in all aspects of my life. Through all your success, I have gathered strength and motivation to attain at least a fraction of your blessed abilities. There is no love in this world to express my gratitude and honor of being your brother. Thank you infinitely.

To my grandmothers Mrs Champamoney Kondiah and Mrs Bina Bullone and grandfather Mr Bobby Kondiah for the lifelong support and belief in my potentials always, sharing intense love and support through every journey I have undertaken.

All my academic success are truly attributed to all my dear supervisors Prof. Viness Pillay, Prof. Y.E Choonara, Prof. G Modi, Dr. L.K Tomar, Dr. C Tayagi, Mr. Pradeep Kumar and Dr. Lisa du Toit, for the infinite inspiration, knowledge, compassion and most bountiful support constantly during every effort and activity of my research. My deepest and sincere thanks and gratitude for the ever helping and uplifting experiences you have granted me at all times. There are no words to thank you all enough. Each and every supervisor is so special to me with each personal relation and sincere gratitude on a unique basis. You have all contributed immensely to the success of the project and research outputs derived thereof.

Prof. Pillay is most certainly the guiding light of profound wisdom and inspiration, heading all projects with most compassion, and spreading a hand for extreme support and guidance constantly. You have made an extreme influence in my life, awarding me many privileges and constantly believing in my potential. You are indeed an extreme form of dedication and inspiration to all researchers, providing wisdom and opportunity to all who come into your circle of influence. Thank you infinitely Dear Prof. Pillay.

Dr. Tomar and Dr. Tayagi, you have granted me such a precious gift to work, learn and grow into an experienced researcher, of which none of this success would be possible without your most amazing grace and deepest support, holding my hand every step of the way, from the very beginning to the last corrections on all my work undertaken. No words can ever express all the gratitude and sincere appreciation for everything you’ll have done for me. I am ever most appreciative for granting me this rare opportunity of succeeding with all your guidance and brilliance.

Prof. Choonara, Mr Pradeep Kumar, Dr Lisa du Toit and Dr Thashree Marimuthu, thank you all must abundantly for the constant guidance, motivation and support throughout my academic career. I am most thankful for all your profound expertise and skills, which are extremely rare,
granting me the ability to complete this research with significant insight and great successes in record time.

A Special thanks to Mr Allan Reddy, Mrs Pearl Reddy, Nivashnee Reddy, Tiasha Reddy and Theshan Reddy for all the love, compassion, laughter and inspiration you have constantly showered me with. Thank you for your constant support.

To all my colleagues, Khuphukile Madida, Sunaina Indermun, Fatema Mia, Olufemi Akilo, Latavia Singh, Ahmed Seedat, Maluta Mufamadi, Miles Braithwaite, Mershen Govender, Nonhlanhla Masina, Kealeboga Mokolobate, Khadija Rhoda, Zamanzima Mazibuko, Jonathan Pantshwa, Famida Ghulam Hoosain, Naema Mayet, Bibi Choonara, Zikhona Hayiyana, Karmani Murugan, Poornima Ramburrun, Margaret Siya, Mduduzi Sithole, Dr. Divya Bijukumar, Nishola Sookram, Megna Patel, Ahmed Begg, Bhavik Hira and Waseem Haye, a special thanks for all the assistance and friendship throughout this study.

To Mr Sello Ramaruma, Pride Mothobi, Mr Kleinbooi Mohlabi and Mr Bafana Temba, for significant assistance through all laboratory operations.

To all the staff at the Central Animal Services of Wits, Ms Kershnee Chetty, Ms Lorraine Setimo, Mr Nico Douths, Mr Patrick Selahle, Sr. Amelia Rammekwa and Sr. Marry-Ann Costello for all the assistance with in vivo studies throughout this project.

To my colleagues, Ms Shirona Naidoo, Ms Nompumelelo Damane, Mr David Bayever and Mrs Neelaveni Padayachee for all the support throughout my studies. A Special thanks to the Head of School of Pharmacy and Pharmacology, Prof. Paul Danckwerts, for all support through this project.

A special acknowledgement to the National Research Foundation (NRF), for the financial support through this study. Conclusions and results of this Thesis are those of the author, and not attributed to the NRF. This research would not have been possible without the financial support of the NRF of South Africa.

A special thanks to the Sri Sathya Sai Seva organization and all members of my dearest loving Sai family for the everlasting support and balance that has fundamentally evolved my capacities for learning and growth beyond measure.

The end of education is character- Sri Sathya Sai Baba
Abstract

An oral proteomatrix drug delivery platform was formulated using pH responsive biostable polymers for slow release kinetics for the treatment of the neurodegenerative disease, multiple sclerosis (MS), which was the primary aim. After successful design and optimization for utilizing this system for MS, this system was further applied as a versatile platform for oral protein delivery. Interferon beta (INF-β) was selected as the oral treatment for MS. The fundamental effect of INF-β in the treatment of MS is based on reducing the immune response that is directed against central nervous system myelin, i.e. the fatty sheath that surrounds and protects nerve fibers. Damage of nerve fibers, resulting in demyelination, consequently causes nerve impulses to be slowed or halted, thus producing symptoms of MS (Jongen et al., 2011). To date, INF-β is effectively being used to treat MS subcutaneously or as intramuscular injections. These forms of administration have commonly been associated with multiple problems of pain, allergic reactions, poor patient compliance and chances of infection (Chiu et al., 2007). It was thus concluded to design an oral platform for the delivery of multiple protein therapeutic formulations. To prove the versatility of the proteomatrix system, two other demanding protein therapeutics for oral delivery, insulin and erythropoietin, were selected for further in vitro Box-Behnken series of formulations and in vivo analysis. By administration of these oral protein systems, a greater patient compliance can be achieved, thus enhancing the therapeutic profiles of patients with conditions of MS, diabetes and chronic renal failure resulting in chronic anemia. All studies consisted of in vitro drug release studies, characterization using specific analytical techniques for testing the mechanical properties, as well as the physicochemical characteristics of the copolymeric system. All proteins, INF-β, insulin and erythropoietin, were analyzed in vivo using New Zealand White rabbits (NZW) with determination of the protein from serum obtained during regular blood sampling intervals.

The polymers chitosan (CHT), trimethyl-chitosan (TMC), poly(ethylene glycol)dimethacrylate (PEGDMA) and methacrylic acid (MAA) was used in synthesis-free radical polymerization reaction, to obtain crosslinked copolymeric systems of CHT-PEGDMA-MAA and TMC-PEGDMA-MAA. The polymerization of CHT-PEGDMA-MAA produced a microgel formulation, thereby loading INF-β, insulin and erythropoietin as separate formulations for further evaluation. TMC-PEGDMA-MAA polymerization produced microparticles, loading the three proteins as separate drug delivery formulations for further in vivo and in vitro analysis. Mucoadhesive studies were undertaken on the proteomatrix systems, confirming greater mucoadhesion in the TMC crosslinked polymer than the CHT.

For insulin studies, rabbits were induced with diabetes according to the protocol approved by the university ethics committee, and evaluated for a decrease in blood glucose levels in relation to time of 24 hours. In vivo studies were undertaken comparing the oral experimental formulations, against a leading commercial product on the market for all protein formulations, administered subcutaneously, as well as compared to a control (n=3 rabbits for each group in the study). Results obtained from copolymeric TMC-PEGDMA-MAA proteomatrix microparticles concluded a greater peak absorption concentration and greater sustained release profiles for each protein formulation in vivo, as opposed to the copolymeric CHT-PEGDMA-MAA proteomatrix microgel formulation. Both TMC-PEGDMA-MAA and CHT-PEGDMA-MAA copolymeric proteomatrix formulations proved successful for all in vitro and in vivo studies to significant degrees, thus producing a versatile platform for oral protein delivery.
TABLE OF CONTENTS

DECLARATION ii
RESEARCH OUTPUTS iii
DEDICATION iv
ACKNOWLEDGEMENTS v
ABSTRACT vii
TABLE OF CONTENTS viii
LIST OF FIGURES xiv
LIST OF TABLES xxii
LIST OF COMMONLY-USED ABBREVIATIONS xxiv

CHAPTER 1 1
1. INTRODUCTION 1
1.1. Background into Protein Therapeutics 1
1.2. Rational and Motivation of Study 4
1.3. Possible Therapeutic Agent Application of the Delivery System 8
1.4. Aim and Objectives 8
1.5. Novelty of the delivery systems 9
1.6. Overview of the Thesis 10
1.7. Concluding Remarks 12

CHAPTER 2 13
2. A LITERATURE REVIEW OF CRITICAL EVALUATION OF THERAPEUTIC MULTIPLE SCLEROSIS INTERVENTIONS: DIAGNOSIS AND TREATMENT OPTIONS 13

2.1. Introduction 13
2.2. Multiple Sclerosis Symptoms and Prognosis 14
2.3. Advances in Diagnosis 17
2.3.1. Pathophysiology of MS 19
2.3.2. Immunological studies 21
2.3.3. Genetic predisposing factors 21
2.3.4. Experimental autoimmune encephalomyelitis (EAE) and viral animal modeling for multiple sclerosis 22
2.4. Current Line of Treatment 26
2.4.1. Anti-CD20 antibodies 28
2.4.2. Disease Modifying Treatments 30
2.4.2.1. Glatiramer acetate (GA) 32
2.4.2.2. Beta-Interferon treatment 34
2.4.2.3. Natalizumab treatment 36
2.4.2.4. Mitoxantrone treatment 38
2.5. Fingolimod Therapy 39
2.6. 4-aminopyridine (4-AP) (Fampridine-SR) and 3,4 diaminopyridine 40
2.7. Teriflunomide 42
2.8. Dimethyl fumarate 43
2.9. Vitamin D therapy 44
2.10. Fatigue in MS 45
2.11. Concluding Remarks 48

CHAPTER 3 49

CRITICAL EVALUATION OF PHYSICOCHEMICAL AND PHYSICOMECHANICAL PROPERTIES OF NOVEL MICROGEL AND MICROPARTICULATE SYSTEMS 49

3.1. Introduction 49
3.2. Materials and Methods 50
3.2.1. Materials 50
3.2.2. Synthesis of TMC for microparticulate formation 51
3.2.3. Synthesis of PEGdimethacrylate (PEGDMA) 51
3.2.4. Preparation of CHT-PEGDMA-MAA/TMC-PEGDMA-MAA copolymeric particles 52
3.2.5. Box-Behnken Design of copolymeric particles 52
3.2.6. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy 54
3.2.7. Particle size and zeta potential analysis of copolymeric systems 54
3.2.8. Mucoadhesion studies 55
3.2.9. Porositometric analysis 55
3.2.10. Morphological Characteristics of the Particles using Scanning Electron Microscopy (SEM) 57
3.2.11. Thermal Properties of the Monomers, Polymers and Copolymeric Systems 57
using Differential Scanning Calorimetry (DSC) analysis

3.2.12. Thermogravimetric analysis (TGA)
3.2.13. Matrix hardness (MH) and Matrix resilience (MR)
3.2.14. Rheological Evaluation
3.2.15. X-Ray Diffraction (XRD) analysis
3.2.16. NMR Evaluation

3.3. Results and Discussion

3.3.1 PART A: Evaluation of TMC-PEGDMA-MAA Copolymeric Microparticulate System

3.3.1.1. Box-Behnken optimization evaluation
3.3.1.2. ATR-FTIR Spectroscopy
3.3.1.3. Particle size and zeta potential analysis
3.3.1.4. Porosity analysis of optimized copolymeric delivery system
3.3.1.5. Morphological characteristic determination using SEM techniques
3.3.1.6. Mucoadhesive properties of optimized copolymeric delivery system
3.3.1.7. Thermal evaluation using Differential Scanning Calorimetry (DSC) analysis
3.3.1.8. Thermogravimetric analysis (TGA)
3.3.1.9. Matrix hardness (MH) and Matrix resilience (MR)
3.3.1.10. Rheological Evaluation
3.3.1.11. X-Ray Diffraction (XRD) analysis
3.3.1.12. NMR analysis
3.3.1.13. Concluding Remarks

3.3.2 PART B: Evaluation of CHT-PEGDMA-MAA Copolymeric Microgel System

3.3.2.1. Box-Behnken optimization analysis
3.3.2.2. ATR-FTIR Spectroscopy of monomers and copolymeric microgel formulation
3.3.2.3. Particle size and zeta potential analysis
3.3.2.4. Porosity analysis of optimized copolymeric delivery system
3.3.2.5. Scanning Electron Microscopy (SEM) of the microgel formulation
3.3.2.6. Mucoadhesive properties of optimized copolymeric delivery system
3.3.2.7. Differential Scanning Calorimetry (DSC) analysis of monomers and copolymeric microgel formulation
3.3.2.8. Thermogravimetric analysis (TGA) 98
3.3.2.9. Mechanical evaluation of the copolymeric microgel tablet 100
3.3.2.10. Rheological evaluation of the microgel formulation 102
3.3.2.11. X-Ray Diffraction (XRD) analysis of the microgel formulation 104
3.3.2.12. NMR analysis 105
3.3.3. Concluding Remarks 107

CHAPTER 4 108

PROTEIN LOADING AND IN VITRO RELEASE ANALYSIS OF THE ORAL MICROPARTICULATE AND MICROGEL DRUG DELIVERY PLATFORMS 108

4.1. Introduction 108
4.2. Materials and Methods 109
4.2.1. Materials 109
4.2.2. Protein-loading in copolymeric microgel and microparticulate systems 109
4.2.3. Protein release studies undertaken on all Box-Behnken design and optimized formulations 110

4.3 Results and Discussion 111

4.3.1. PART A: Evaluation of TMC-PEGDMA-MAA Microparticulate System using Insulin, EPO and INF-β as Optimized Protein Delivery Systems 111
4.3.1.1. Protein-loading evaluation for each protein microgel formulation 111
4.3.1.2. In vitro release analysis on design and optimized formulations 112
4.3.2. Concluding Remarks 117
4.3.2. PART B: Evaluation of CHT-PEGDMA-MAA Microgel System using Insulin, EPO and INF-β as Optimized Protein Delivery Systems 118
4.3.2.1. Protein-loading evaluation for each protein microgel formulation 118
4.3.2.2. In vitro protein release analysis on design and optimized formulations 119
4.3.3. Concluding Remarks 124

125
CHAPTER 5

EVALUATION OF THE IN VIVO RELEASE POTENTIAL OF THE ORAL INSULIN, INF-β AND EPO-LOADED TMC-PEGDMA-MAA MICROPARTICULATE AND CHT-PEGDMA-MAA MICROGEL SYSTEMS IN A RABBIT MODEL

5.1. Introduction
5.2. Materials and Methods
5.2.1. Materials
5.2.2. Animal study protocol for dosing and blood sampling
5.2.3. Histopathological tissue evaluation postdosing
5.2.4. Pharmacokinetic modeling employing compartmental and non-compartmental algorithms
5.3 Results and Discussion
5.3.1. Part A: Evaluation of TMC-PEGDMA-MAA-Loaded Copolymeric Delivery System for In Vivo Evaluation
5.3.1.1. Quantitative in vivo release analysis
5.3.1.2. Histopathological evaluation
5.4. Part B: Evaluation of CHT-PEGDMA-MAA Protein-Loaded Copolymeric Delivery System for In Vivo Evaluation
5.4.1 Quantitative in vivo release analysis
5.4.2 Histopathological evaluation
5.5. Comparative pharmacokinetic analysis of the INF-β-loaded TMC-PEGDMA-MAA microparticles and CHT-PEGDMA-MAA microgel formulations.
5.5.1. INF-β non-compartmental and compartmental analysis
5.6. Concluding Remarks

CHAPTER 6
CONCLUSION AND RECOMMENDATIONS

6.1. Conclusion
6.2. Future Outlook and Recommendations
7. REFERENCES
8. APPENDICES

8.1. Animal Ethics Clearance Certificate 174
8.2. Research Paper 1 175
8.3. Research Output Presentation 176
LIST OF FIGURES

Figure 1.1: Schematic representing PEG-INF-β conjugate

Figure 1.2: Schematic illustrating how the pH sensitive, biostable particles shrink in gastric pH (pH 1.2), in comparison to their swelling abilities in the basic pH of the small intestine (pH 6.8). Being mucoadhesive in nature they will adhere to the mucus lining and release the protein, which will further enter into the blood stream via paracellular pathways.

Figure 2.1: Illustration of axonal damage, in which myelin is perceived as a foreign intruder and mounts an immune response to attack and destroy myelin sheaths. This causes deterioration of nerve conduction and impulses. Scarring normally starts forming if the condition is not controlled, thereby forming plaques as material is deposited into the scar formation. In this specific axonal transaction and immune-mediated demyelination, a great degree of ovoids were identified from a MS tissue (a), red identifies stain for myelin protein and green for axons. The arrowheads depict demyelination, in which microglia and hematogenous monocytes are believed to mediate the degenerative process. The large green swelling of the axonal bulb,(b and c) is a typical response of axonal transaction, due to the immune-mediated demyelination process. Once transaction occurs, the distal end of the axon substantially degenerates, in relation to the proximal end connected to the neuronal cell body that sustains itself without undergoing degeneration, allowing transported organelles to locate itself at the site of transaction, thus forming an ovoid (arrows) (Figure reproduced with permission from Elsevier Ltd.: Dutta et al, 2011).

Figure 2.2: Schematic representing the main symptoms associated with MS as a result of not seeking treatment (van den Noort., 2005., Poser et al., 2001)

Figure 2.3 (a) RRMS is the most common form of MS with 65-80% of patients starting in this stage. This stage comprises of acute attacks (exacerbations), and if not treated leads to serious loss of function. Symptoms may resolve, until another attack occurs (relapse) (b) PPMS comprises of a uniform steady increase in deterioration, with no occurring relapses and remissions. This form of MS is more predominant in people over the age of 40 and prevalent in approximately 15% of people with MS (c) SPMS
starts with RRMS, which later develops into progressive disease. Statistics indicate that 50% of patients develop SPMS after acquiring RRMS within a 10 year gap period (d) this stage of MS (PRMS) is characterized by steady progression of disability with acute attacks which may or may not follow recovery. This is one of the least prevalent stages of MS, and usually appears as PPMS. (Figure adapted with permission from Elsevier Ltd.: Davis., 2010)

Figure 2.4: Schematic depiction of axonal injury, due to inflammation caused by demyelination in an active MS lesion. Glial and immune cells cause damage to the tissue, as well as axonal transaction. Degeneration occurs at sites distal to the site of transection. Myelin forms empty tubes that later develop into degenerated ovoids. White matter may seem normal on standard MRI images. (Figure reproduced with permission from Elsevier Ltd.: Bjartmar et al, 2003)

Figure 2.5: Depiction of a relatively common MS model in mice, illustrating systemic and local disease process points of interest and analysis. As part of the active immunization process, antigens are injected at the toe pad of the animal, since this is a highly effective systemic immune response due to highly responsive lymphatic draining nodes at the site for the autoimmune procedure to be induced efficiently. (Figure reproduced with permission from Elsevier Ltd.: Mix et al, 2010) (AT-EAE, adoptive transfer EAE; CFA, complete Freund's adjuvant; i.p., intraperitoneal; i.v., intravenous; LN, lymph node; MOG, myelin oligodendrocyte glycoprotein; PB, peripheral blood; PLP, proteolipid protein; s.c., subcutaneous; SP, spleen, Th1 cells, T helper type 1 cells.)

Figure 2.6: A viral autoimmune model of sequential molecular mimicry and epitope spreading. The black straight lines (not broken up) depict the acute viral infection, where APC or macrophages present antigens of viral peptides to specific viral epitope CD4 T cells located at the periphery(1a), or directly to the CNS (1b). These activated cells at the periphery, cross the BBB, thereby releasing a range of proinflammatory chemokines and cytokines, increasing the inflammatory process (2) this causes a great deal of tissue destruction further amplified by activating and attracting a greater number of monocytes, macrophages and other inflammatory mediators (3) the virus and self antigens, induces self-peptide processing to occur (4) cross reaction
(molecular mimicry) also occurs between self-peptides (galactocerebroside, GALC) as well as viral peptides (VP1) (5). The red dashed lines depict a time response of a persistent viral infection, the epitope spreading model (1) the antigen is then processed by APC’s (2) this is then presented to virus epitope-specific CD4 T cells, which can be in the peripheral or crossing the BBB to nervous tissue (3) proinflammatory cytokines and chemokines are thus activated, attracting a greater number of monocytes and macrophages (4) this results in self-tissue destruction (5) leading to greater inflammatory reactions and processing of self-antigens (6) activation of virus-specific and self-epitope CD4 T cells (7), thus resulting in a prolonged immune-mediated disease state model.(Figure reproduced with permission from Elsevier Ltd.: Mecha et al, 2013)

Figure 2.7: Various stages of MS and the implementation of disease modifying drugs (DMD) in relation to the increasing state of neurodegeneration (MTR-magnetization transfer ratio; DTI-diffusion tensor imaging; OCT-optical coherence tomography; EP-evoked potential; fMRI-functional magnetic resonance imaging; DTI-diffusion tensor imaging; MRS-magnetic resonance spectroscopy; CSF-cerebrospinal fluid;). (Figure reproduced with permission from Elsevier Ltd.: Ziemann et al, 2011)

Figure 2.8: Treatment procedures for relapsing–remitting multiple sclerosis. (Figure adapted with permission from Elsevier Ltd.: Sorensen, 2011)

Figure 2.9: Mode of action of IFN-β. (Figure adapted with permission from Elsevier Ltd.: Rudicka et al., 2011)

Figure 3.1: Phase shift illustrated using the Theorem of Pythagoras in relation to complex modulus (G^*), storage modulus (G') and loss modulus (G'').

Figure 3.2: Residual and surface plots of (a) average particle size, (b) fractional release in gastric medium at 2 hours and (c) fractional release in intestinal medium at 2 hours.

Figure 3.3: Optimization plot for the response optimization of the copolymeric formulation
Figure 3.4: FTIR spectra of (a) TMC-PEGDMA-MAA, (b) CHT, (c) MAA, (d) TMC, (e) PEGDMA

Figure 3.5: Schematic depicting (a) the types of isotherms at different relative pressure, (b) the types of hysteresis loops according to the IUPAC classification system (adapted from Sing et al., 1985).

Figure 3.6: Isotherm Linear plots (a) gastric medium and (b) intestinal medium

Figure 3.7: Scanning electron micrographs of copolymeric particles at 10 000X magnification (a) in gastric medium (pH 1.2) (b) in intestinal medium (pH 6.8).

Figure 3.8: Percentage crosslinking of prepared copolymeric particulate system to mucous

Figure 3.9: DSC thermogram of a) TMC, b) PEGDMA and c) TMC-PEGDMA-MAA d) PMAA

Figure 3.10: TGA profile of (a) PEGDMA, (b) TMC and (c) TMC-PEGDMA-MAA

Figure 3.11: Evaluation of mechanical properties of copolymeric particles a): Matrix Hardness (MH) (N/mm); b) Matrix Resilience (MR) (Kg/sec)

Figure 3.12: Oscillation curves representing storage modulus (G’ in red) and loss (G” in green), using a 0.1% constant strain in a) gastric medium and b) intestinal medium

Figure 3.13: Diffractogram Representing the intensity of crystalline nature of PEGDMA (red), PMAA (blue), TMC (green), TMC-PEGDMA-MAA (yellow)

Figure 3.14: 13C solid state NMR spectra of a) chitosan, b) TMC, c) MAA, and d) TMC-PEGDMA-MAA spinning side band CO peak

Figure 3.15: Reaction mechanism involving each reactant in the free radical polymerization reaction to form the copolymeric crosslinked microparticulate system.
Figure 3.16: Representation of residual and surface plots of the formulations, with regard to average particle size, fractional release at 2 hours in gastric medium and fractional release at 2 hours in intestinal medium.

Figure 3.17: Program specifications for obtaining an optimal desirability index of 93% for the copolymeric insulin delivery system

Figure 3.18: FTIR spectra of (a) CHT-PEGDMA-MAA, (b) CHT, (c) MAA, (d) PEGDMA

Figure 3.19: Isotherm Linear plots (a) gastric medium and (b) intestinal medium.

Figure 3.20: SEM images of copolymeric microgel at 10 000X magnification (a) in gastric medium (pH 1.2) (b) in intestinal medium (pH 6.8).

Figure 3.21: Percentage crosslinking of prepared copolymeric microgel system to mucous

Figure 3.22: DSC thermograms for copolymeric microgel a) CHT-PEGDMA-MAA, and polymers b) PEGDMA, c) CHT, d) PMAA

Figure 3.23: TGA profile representation of a) CHT, b) PEGDMA and c) CHT-PEGDMA-MAA

Figure 3.24: a) MH (N/mm) Grad net fd =80.016, Area Fd =0.009 b) MR (Kg/sec) = 101 30%

Figure 3.25: Dynamic oscillation curves depicting storage modulus (G' in red) and loss (G'' in green) under constant strain of 0.1% a) in gastric medium pH 1.2 and b) in intestinal medium pH 6.8

Figure 3.26: Diffractogram representing each polymer CHT(green), PEGDMA(red), PMAA(blue) and copolymer CHT-PEGDMA-MAA(yellow).
Figure 3.27: 13C solid state NMR spectra of a) chitosan b) MAA, and c) CHT-PEGDMA-MAA

Figure 3.28: Reaction mechanism of the crosslinked copolymer with proposed structure for the microgel system.

Figure 4.1: Fractional release of insulin in gastric medium: a) formulations 1-7, b) formulations 8-13.

Figure 4.2: Fractional release of insulin in intestinal medium: a) formulations 1-7, b) formulations 8-13.

Figure 4.3: (a) Fractional release of Proteins in gastric medium, (b) Fractional release of proteins in intestinal medium.

Figure 4.4a-b: Demonstrates the drug release properties of the Box Behnken series of formulations in gastric medium over 2.5 hour duration.

Figure 4.5a-b: Demonstrates the drug release properties of the Box Behnken series of formulations in intestinal medium over 8 hour duration.

Figure 4.6: (a) Fractional release profiles of insulin, INF-β and EPO in gastric medium (b) Fractional release profiles of insulin, INF-β and EPO in intestinal medium.

Figure 5.1: Summarised flow-chart of the animal study undertaken for *in vivo* evaluation of all protein-loaded formulations of the microgel and microparticulate systems.

Figure 5.2: One-compartmental model representing the pharmacokinetic distribution of protein released from the microparticulate and microgel systems.

Fig.5.3: Mechanism of action depicting the mucoadhesive characteristic of the protein-loaded microparticulate system adhering to the gastric linings of the stomach, forming a site specific directed passage for protein to enter the blood stream.
Fig. 5.4a: In vivo release of INF-β from the optimized oral microparticles compared to the commercial subcutaneous dose administration.

Figure 5.4b: Blood glucose response to insulin-loaded microparticles, commercial SC formulation and placebo dose.

Figure 5.4c: EPO-loaded microparticles, commercial SC formulation and placebo in vivo studies.

Figure 5.5: Histological evaluation of tissue samples from rabbits in the experimental oral microparticles. a) Intestinal mucosal crypts confirm normal intestinal mucosa (X10), b) Intestinal mucosa which shows normal epithelium (X10), c) Fundic portion of the stomach which shows normal fundic glands (X10) d) Severe loss of cellularity and necrosis of the islet cells in the islet of Langerhans (X20).

Figure 5.6: In vivo analysis of the oral protein-loaded microgel system in a rabbit model a) INF-β, b) Insulin c) EPO

Figure 5.7: Histological evaluation of the GIT from rabbits dosed with the protein-loaded microgel formulation. a) Intestinal mucosa showing normal intestinal villi (10X), b) normal fundic mucosa of the stomach (10X), c) duodenal mucosa showing normal glands and intestinal crypts (X10), d) normal intestinal mucosa with guter cells among epithelial cells (X10)

Figure 5.8: (a) Concentration-time profiles demonstrating the predicted and observed concentration values from the release profiles of INF-β microparticulate system over 24 hours for one compartmental analysis with lag, (b) demonstrating the predicted and observed concentration values from the release profiles of INF-β of the microparticulate system over 24 hours for noncompartmental analysis, demonstrating a significant maintenance of slow release behavior of the INF-β loaded copolymeric delivery system.

Figure 5.9: (a) Predicted and observed concentration values from the release profiles
of INF-β over 24 hours for noncompartmental analysis (b) Predicted and observed concentration values from the release profiles of INF-β over 24 hours for one compartmental analysis with lag.

Figure 5.10: (a) Predicted and observed concentration values from the release profiles of INF-β over 24 hours for noncompartmental analysis (b) Predicted and observed concentration values from the release profiles of INF-β over 24 hours for one compartmental analysis with lag.
LIST OF TABLES

Table 2.1: Treatment options and mechanism of action of the drugs in MS therapy 46

Table 3.1: Variables in Box-Behnken design 53

Table 3.2: Formulations generated by Box-Behnken design for CHT-PEGDMA-MAA microgel formulations. 53

Table 3.3: Formulations generated by Box-Behnken design for TMC-PEGDMA-MAA microparticulate formulations. 54

Table 3.4: Evacuation and Heating Phase Parameters for Porosimetric Analysis 56

Table 3.5: Parameter settings for determining MR and MH 58

Table 3.6: Parameters employed for rheological evaluation 59

Table 3.7: Experimental design formulation analysis of average particle size according to specifications of the design in gastric and intestinal fluid 65

Table 3.8: Porosity analysis of optimized copolymeric delivery system at different pH ranges of gastric and intestinal medium 68

Table 3.9: Experimental design formulation in gastric and intestinal fluid for evaluation of average particle size 91

Table 3.10: Porosity analysis of optimized copolymeric delivery system at different pH ranges of gastric and intestinal medium 92

Table 3.11: TGA analysis of polymers and copolymeric microgel 100

Table 4.1: Experimental design formulation analysis for protein loading efficiency and release 113
Table 4.2: Experimental design formulation analysis for protein loading efficiency and release

Table 5.1: Doses of drugs administered to rabbits during in vivo study.

Table 5.2: Dosages for protein-loaded microparticulate, microgel and comparator subcutaneous formulations.
LIST OF COMMONLY-USED ABBREVIATIONS

4-AP- 4-aminopyridine

AIBN- Azobisisobutyronitrile

ATR-FTIR- Attenuated Total Reflectance-Fourier Transform Infrared

BBB- Blood Brain Barrier

BET- Brunauer–Emmett–Teller

CHT- PEGDMA-MAA-Chitosan-polyethylene glycol dimethacrylate-methacrylic acid

DMT- Disease Modifying Treatments

DSC- Differential Scanning Calorimetry

EAE- Experimental autoimmune encephalomyelitis

EPO- Erythropoietin

GA- Glatiramer Acetate

INF-β- Interferon beta

MAA- Methacrylic acid

mAbs- Monoclonal antibodies

MH- Matrix hardness

MR- Matrix resilience

MS- Multiple sclerosis

M_W - Molecular Weight

NMR- Nuclear Magnetic Resonance

PDI- Polydispersity Index
PEGDA- Polyethylene Glycol Diacrylate

PEGDMA- Poly(ethylene glycol) dimethacrylate

SEM- Scanning Electron Microscopy

T_g- Glass Transition

TGA- Thermogravimetric analysis

T_m- Melting Point

TMC- PEGDMA-MAA- Trimethyl chitosan polyethylene glycol dimethacrylate-methacrylic acid

XRD- X-Ray Diffraction