faced with increasing competition for available resources - all within the increasingly competitive economy in the Republic. Thus the manager of an information service who cannot account for expenditure with fair accuracy is likely to find himself continually on the defensive trying to justify the service provided. This is a totally unacceptable situation at a time when South African industry is beginning to appreciate the importance and value of efficient information services, perhaps for the first time.

8.2 AE&CI experience

AE&CI has enjoyed a long tradition of good library services, and, more recently, of comprehensive information services. The reason for providing well stocked libraries probably originated in the geographical isolation of South Africa in the early years of the twentieth century, in relatively slow communications and also in its industrially undeveloped state. Consequently it was difficult to obtain information quickly since there was no local 'invisible college' and very few good technical libraries from which material could be borrowed. Thus the Company was amongst the first two or three in the Republic to appreciate the potential value of technical information services, and particularly of IR systems to cover the information in internally produced documents.

The Company's management has provided the opportunity for widespread communication with the literature for many years and, in the case of the Research Department at least, the environment for creative thinking. As a result, the contribution which recorded information can make to optimum-decision-making has been well catered for, and the philosophy of Dr Skolnik(290) has been expressed in practice; both of these aspects were discussed in Section 8.1 above.

It is considered important to emphasise the foregoing for the following reasons:

1. A major reason for the successful development of technical information services within AE&CI has been that a succession of senior managers have understood the objectives, and have appreciated the need for the right environment and for continuing support, especially in times of economic difficulty.
2. A major reason, from the author's observations, for the lack of success in attempts to develop similar services within many other industrial concerns in the Republic has been due to inadequate understanding of the objectives on the part of senior management, coupled with the provision of inadequate or inconsistent funding. This lack of success has been compounded by inadequate organisation and indifferent supervision or management.

A major objective of this treatise is to assist the managements of other industrial concerns in the Republic, and it is believed that comment on the reasons for the apparent success or failure of information services as above should be helpful.
Chapter 9 SPECULATION ON THE FUTURE OF INFORMATION SERVICES

9.1 Research

Research in the field of Information Science has, during the 1960s and early 1970s, led to the publication of many thousands of papers and hundreds of books. The practical worker in the field is, in general, unhappy with, and confused by, the results since so many of the reported findings are vague and tentative, are apparently applicable to one unique situation only or are wrapped up in mathematical formulae applicable to model situations unrelated to his needs. If such research had led to obvious large-scale benefits, the workers in industry would have no reason for their unhappiness and confusion.

There have, of course, been benefits such as improvements in the understanding of the semantics of indexing which have led to improved levels of relevance in items retrieved from an IR system. However the total effort and expenditure appears not to have been fully justified by the results achieved. For several years the author has been questioning whether the lines taken by many researchers have been sound. Others have also been questioning the basis for much of the research and Rosenberg, University of California, has recently expressed his doubts(298), after these had evidently been initiated by Thomas Kuhn's ideas on the nature of science(299).

Kuhn suggests that what one age regards as scientific truth is, in fact, truth only within the world view prevailing at the time. Thus Newton's mechanistic view of scientific truth was not the same as Einstein's relativistic view.

Rosenberg states:

"Kuhn argues that science does not proceed toward a unified truth, but rather that it is a process of explicating nature within the structure of the adherents to a given paradigm."

[Note: a paradigm can be regarded as a prime example of a conceptual framework that serves to define the legitimate problems and appropriate methods in a field of study - it is a system of guidance which determines the path to be followed in a field of study].

173
"I believe it is worthwhile to explore the basic premises of what we today call information science in the context of a paradigm. Whether or not Kuhn's notions of scientific paradigm and scientific revolution are true, they do serve as a useful metaphor for discussion of information science. What then are some of the characteristics of the scientific paradigm of information science?

Most of the research done to date in information science has been done in what we can broadly call the tradition of Newtonian mechanics. In this tradition the world and man are perceived to be essentially mechanistic. All phenomena are understood in the context of logical, and ultimately mechanical, processes. Central to this world view is the notion of causality. Although some phenomena must be viewed as probabilistic, there is an underlying fundamental logic. Both causal and probabilistic laws, or explanations, are derivable from observation. The most important element of this scientific tradition is the belief system based on the notion that behind every phenomenon there is an ultimately discoverable cause or explanation.

The method for discovering the mechanism or cause is to reduce all phenomena to their basic component parts, to dissect, to simplify. Also essential to the methodology is the notion of objectivity - the removal of the observer from that which is observed. This scientific tradition and its methods have demonstrated at least qualified success in most scientific disciplines.

The modern digital computer represents a high point in the development of deterministic electromechanical devices. In many ways it also represents the high point, at least to date, of the scientific tradition just described. In information science, as well as other disciplines, the computer has become more than a tool or machine, it is a way of looking at the world.

Although the world view derived from the computer is important in broad cultural terms, it is particularly
important in the field of information science. Because information science has been so closely linked to the computer, the device has thoroughly colored our view of what information is and how people use it. Broadly speaking, the computer has caused us to view human information processing as analogous to machine processing. The success of this approach is similar to the success that Kuhn describes with regard to obsolete paradigms (such as Newtonian mechanics). Historically, scientific paradigms have been successful and "true" for the period during which they prevailed. In a limited way the "obsolete" paradigms remain useful in describing certain phenomena. A paradigm becomes obsolete, however, when the number of questions that it cannot answer increases and, additionally, when phenomena are observed which the paradigm cannot explain.

There is no doubt that a large portion of human behavior associated with information is deterministic, even computer-like. Further, there is little doubt that human communication is, in fact, achieved by symbols which can be incorporated into a computer.......................... Much of the fundamental work in information science has been done using the tools of logic and mathematics. Most retrieval strategies currently use at least some form of Boolean logic or Boolean operators to compose queries for these information systems. Many efforts have been made, and still are being made, to explore the fundamental logical nature of the information retrieval process.

Beyond the logical components of the information retrieval process, or other processes involving man and information, there is the basically human element. The human and social side of information science has been explored using the techniques developed over the past century for the study of sociology and psychology."

The crux of Rosenberg's argument is:

"........................, although I believe that much of man's intellectual and physical behavior is indeed mechanical,
I do not believe it is essentially mechanical. I believe that the notion of man as a mechanical device and the notion that human behavior can be perfectly replicated by computers are fundamentally wrong. Note that I said I believe it is fundamentally wrong. There is no adequate way of proving the assertion at this time. What is important here is not whether the idea is right or wrong, but what research and what social consequences flow from this idea and what alternatives might be possible. I believe that the essentially reductionist view of man which emerges from the "gestalt of the computer," is ultimately demeaning to man, is scientifically counter productive, and it is arrogant.

Nevertheless, I am not suggesting that all the work that has been done in replicating human intellectual behavior using computers is of no practical value. In the same way the Newtonian mechanics, although proven false as a scientific theory, still has enormous usefulness in everyday life, similarly the use of computers to process information has, and will continue to have, enormous value. However, as a basic principle for understanding, scientifically understanding, the nature of information and its use, the paradigm is of extremely limited value."

Finally he points out:

"To criticize is not enough; one must attempt to develop an alternative. Kuhn states,"To reject one paradigm without simultaneously substituting another is to reject science itself. That act reflects not on the paradigm but on the man. Inevitably he will be seen by his colleagues as 'the carpenter who blames his tools'". The development of an alternative scientific paradigm is always an enormously difficult task. But then, that's the stuff that science is made of.

A paradigm is never developed by one man, but rather by a community of scientists. All the critics of science seem to have one common failure, they cannot provide an alternative. I can only suggest a few avenues of research which might be productive.
First, information science must abandon its deterministic approach and must recognize the computer as perhaps an historical accident rather than a scientific organizing principle. We must get out from behind the computer. A more holistic approach is needed. In this the field is perhaps most closely related to a field such as ecology. We must begin to look at the interrelationships between various parts of the information environment.

We must begin to pay more attention to the social, cultural, and spiritual aspects of human communication. We must recognize that what a man says or writes is not simply the additive sum of the phenomes or the morphemes, the words or the sentences a utters. To deal effectively with the transcendent qualities of human communication we must admit as scientific evidence the intuitive, the subjective, and the experiential."

It may well be asked why Rosenberg's opinions and arguments have been quoted at such length. In the author's experience, industrial managers who have, for one reason or another, had to consult the literature of Information Science have been disturbed by the apparent lack of major benefits from so much effort. This is as apparent in the United Kingdom, Netherlands and Germany as it is in South Africa. But when recognised academics, such as Rosenberg, come out with pleas for changes then it becomes probable for the first time that these will occur.

Study of the literature shows that a remarkably high percentage of research has been concerned with 'systems' for many years - to an extent that many authors could be accused of obsession with systems for their own sake and of indifference to the need to provide efficient service to users at acceptable cost levels. It is with a sense of relief to this author therefore that recent articles show that others besides Rosenberg are moving towards changes which should provide new benefits - benefits which industry in particular can apply. The author referred extensively in Chapter 2 to the needs of information users and pointed out that relatively little had been published on research in this field.
This situation continued for far too long in view of the fact that no information services, and IR systems in particular, would exist if there were no users. Recently however an increasing number of research findings have begun to be published, such as those by Professor H Schur, University of Sheffield (300), F L Scheffler, University of Dayton Research Institute (301) and R Rothwell, Science Policy Research Unit, University of Sussex (302). Schur (300) emphasises the need for systems which should be easier for the information user to use, while Scheffler (301) stresses that more specific and less generic information is required from the study of 'User Needs':

".............., the author believes that a major pitfall in a users' needs study is the tendency of the contractor to interview the entire population of potential users on a one-to-one basis, deriving therefrom a summation of all the needs of all the users. Generally, the user has been approached with the instruction to consider any and all needs which he would like to see met by the information system to be designed and implemented. Once the designer has determined all possible needs from all possible users, after as many recycles of the basic users' needs study as he has been able to finagle, he then proceeds to design a system from scratch, this system incorporating the capability of handling all these needs.

The University of Dayton Research Institute has had considerable success in conducting users' needs studies in small group sessions. Generally two interviewers interact with a group of about six interviewees, each interviewee being at least somewhat similar in his subject interests to other members of the group; preferably different levels of management/engineer types will be represented in each group."
Rothwell (302), writing specifically of the field of scientific and technological innovation, refers to the importance of the 'gatekeeper concept' - see Footnote on p99 - in meeting the needs of information users:

"Good communications are highly important to successful technological innovation; they are, it seems, a key factor in determining innovative success. The importance of individuals as agents of technology transfer cannot be over-stressed and the implications to management of identifying and encouraging 'technological gatekeepers' are obvious. Also, the international technological gatekeeper has an important role to play, particularly in developing countries, where lack of resources makes essential the avoidance of duplicating scientific and technical research which has previously been performed in the developed countries. [See author's note below]

The fact that personal contact emerges as the most important channel for the transfer of information employed during innovation is not, perhaps surprising. Library and selective dissemination of information (SDI) systems will generally only be of help when the information seeker can closely define his information requirement: in 'idea generation', of course, and barring accidental retrieval, library and SDI systems will play a relatively minor role. Further, formal information retrieval channels merely present the data as requested, and offer no attempt at interpretation. In personal contact, during conversation, however, the reporter will spontaneously decode the information, having himself already digested and analysed it: his answers will be to the point, and he is immediately available to answer any subsequent questions. Thus, the refinement is much greater with informed information channels; there is virtually no delay in obtaining the first, and subsequent, bits of information, and the transfer contains in-built filtration and evaluation. In short, informal information retrieval is inherently more efficient than formal information systems."
Note: Rothwell's point on the importance of international technological gatekeepers to developing countries is well made. In South African industry the dependance of many concerns on overseas principals for technical 'know-how' is well known. The author has very frequently heard the point made that it is so much easier to obtain wanted information when the 'right man' - ie the gatekeeper - can be identified and contacted on a person-to-person basis.

It is concluded that the whole field of user needs could be the subject of worthwhile research in South Africa; this is probably particularly opposite currently at a time when strenuous efforts are being made to turn very large numbers of unskilled workers into skilled individuals with greatly increased productivity potential. The Republic's scientific and technological resources are limited and it is essential on economic grounds to ensure that information - whether available within documents or within individuals - is conveniently accessible to those who need it, when they need it.

9.2 Management, Organization and Staffing

The management, organization and staffing of information services are subjects which are closely interlinked. They comprise a field which has received relatively little attention in this specific context of information services. There appears to be a growing realisation that in order to achieve the objective of providing efficient and effective service at an acceptable cost level a better understanding of these subjects is required.

Industry in general has traditionally operated with a hierarchical and pyramidal structure - with senior management at the apex, increasing numbers of individuals at intermediate levels as one progresses towards the base line and with the base line itself comprising the actual workmen. This structure has produced prodigious results in the coordination of resources and skills for the production of goods in ever increasing quantity and with, in general, increasing efficiency. Jobs have been created for an enormous work force, control has been maintained over world-wide activities and unprecedented power has been
concentrated in the hands of those at the top. In spite of short-comings which are well-known, the level of overall accomplishment appears to have justified the validity of this system of organisation, at least up to the middle of this century.

Today general questions about the functional effectiveness of these hierarchies, particularly in respect to their responsiveness to change, to human needs (those of the members of these hierarchies as well as society in general) and to sociological responsibilities are being questioned. The stresses within the hierarchies are symptomatic of a wide variety of frustrations at many levels. Certainly in the very much more specific field of information services there does appear to be a need for staff who are more flexible in their outlook, who are less wedded to systems and set procedures (i.e., more responsive to the need to change) and who are more multi-discipline orientated in their approach to their work. It can be argued that any team of individuals are expected to, and frequently do, display similar outlook and aptitudes when drawn together to work on a special project. The point here however is that to organise and run an information service on a day-to-day basis indefinitely on this basis is not at all the same requirement as running a special project for a limited period.

What alternatives are there to the hierarchical pyramid? None appear to have been worked out fully in practice but one at least appears to be sufficiently practicable as to be worth researching. An organization which is inherently more cohesive and interactive (so that individuals do not work in isolated units as is so frequent in information and library work in the hierarchical pyramid) is perhaps best illustrated by the use, again, of the Venn diagram to form a rosette. As an example consider the management of IR systems:
The model includes six areas of activity but each circle could include more than one individual or, alternatively, some areas could be combined since, in any event, they would be part-time activities. The activities covered comprise:

1. The Librarian representing cataloguing and classification and for the abstracting and indexing of published information and documents.

2. The Information Scientist concerned with systems and with the abstracting and indexing of unpublished information (reports, correspondence, etc) and possibly with collections of specialised documents and the information in them (patents, standard specifications, etc).

3. The Secretary's concern is with format of presentation of information (card lay-out, punching, coding, computer programming, etc as appropriate to the systems in use).

4. The Reprographer's involvement is to ensure adequate standards, the necessary number of copies and their proper distribution, ease of access, etc of the presentation itself.
5. The Information User - the customer and raison d'être of any IR system - is needed to ensure that his actual and potential needs are met with efficiency and effectiveness. He is concerned with ease of use and access and with 'selling' the system(s) to other users.

6. The Cost Accountant is required to ensure that the most economic methods, compatible with needs, are adopted, maintained, modified, etc - ie that a realistic approach to planning, operation, salaries, etc is the environment in which the whole operates.

All the areas of activity within the rosette interact within this single organization through the exchange and the transmission of information, skills, resources, and (most important) enthusiasms. The environment could be said to be one of 'resonance'. Yet all are under the influence of an individual at the centre represented by the hatched area. In a hierarchical structure this individual would be called the 'manager', but possibly another title is needed since the management style involved would be rather different; he would 'lead the team' and 'co-ordinate' the various functions, yet neither 'team-leader' nor 'co-ordinator' appear to be really appropriate. A most important aspect of his responsibilities would be to develop easy relationships with other functions throughout the concern employing him. Thus the management style required could be described as 'supportive' as well as 'integrative' - for activities which involve service, whether this is service to research, production, marketing, etc, this is particularly important and apt. The complexity of modern industry necessitates the integration of activities wherever possible and economically sound, and this is the basic reason for the author's efforts to integrate the AE&CI IR systems as pointed out in Section 6.4 of Chapter 6; nowhere is this more true than for service activities.

The management style required is seldom produced by today's training and leadership selection methods, since these have developed to meet the needs of the hierarchical pyramid. Hence the sources of new leadership are unclear at this stage as are the details of a 'resonant' working situation. No doubt there
would be resistance in the early stages arising from such questions as accountability within the areas of overlap. Nevertheless an organisational system such as this could relieve some of the frustrations met with in hierarchical systems. It could enhance the effectiveness of the whole as well as providing a more appropriate environment for the enhancement of self, and thus improve the quality of life and work. From the author's experience in the field of information and library work, anything which can be done to break down the 'isolated cells' environment within which so many of us work year-in and year-out is likely to lead to greater personal job satisfaction as well as greater productivity to the organisation as a whole. Thus the practical implications of moving away from hierarchies to a configuration which is more cohesive and interactive are important.

Since the sociological aspects of industry are clearly changing rather quickly it appears to be appropriate to conclude this Section with an extract from an OECD report entitled 'Information for a changing society: some policy considerations':

"The wise man does not act without attempting to know the consequences of his actions. Contemporary societies must be more prudent in their actions if technology is to be a boon rather than a curse to mankind. Information is the key to the wise management of our future. Perhaps the most important event of the next decade will be the recognition of the true value of information - the right information, reliable and relevant to our needs, available in a useful form to all those who need it."

9.3 Services to industry

While the growth of national IR systems, operating at a rather generic level as far as technical subject matter is concerned, seems likely during the 1970s, the setting up of more services on a commercial basis or to serve the needs of particular industries appears to be inevitable and desirable. Many of these are likely to be international and some will be discipline orientated (as for instance Chemical Abstracts Service is) while others will be
subject orientated (ie cross-discipline, as is the Copper Development Association index at the Battelle Memorial Institute, Ohio). In addition, it seems certain that there will also be a growth of services to meet the technical information requirements of particular industries within a geographical area or economic unit (eg Southern Africa and the European Common Market respectively) or within countries - as a possible example of this the subject of diamond technology in the Republic can be cited, since a high proportion of this particular industry is in South Africa, while other aspects of it are controlled from South Africa. These services will form networks at international, national and industry-wide levels.

It is becoming clearer that many of the services referred to above will become increasingly aware of difficulties in the 'software' side of IR systems. All services will have to face up to the growing needs for better writing in the technical literature and better facilities for evaluating that literature. Industrial concerns with their own internal system and commercial services, such as ARAC (see Chapter?), will realise the need for low cost and simple straightforward procedures for culling out-dated, inaccurate or unwanted information from their systems.

The questions of better writing and of better facilities for evaluating the literature are considered below, but these are really just symptoms of a bigger problem. In fact, the vast quantity of information being published and the almost complete lack of control over its quality and over the extent to which much of it is duplication (whether plagiarism or not) point to the need for firm international control of the whole. Whether or not this can ever be achieved remains to be seen. There is certainly a growing need for ways of controlling what is published in the technical literature as regards quality, of ways of preventing material rejected by the referees of journals of standing being published elsewhere, and so on. At the same time it would also be necessary to ensure that material for publication is not rejected because few or no pundits could agree on the importance or validity of new information - otherwise the work of future Einsteins could well be lost. Some attempts at control have been
tried, particularly page charges, but they have had no significant effect whatsoever.

It is, of course, difficult to say just how detailed such control should be. As an example, consider the citation indexes which have been introduced in recent years: the greatest weakness of such indexes is that many authors do not cite only those whose reported work has contributed to their own thinking. Many citations appear to be barely relevant to the material or subject under discussion, so that the reader wonders why they were listed and is frequently unclear as to whether he has missed an important point or whether the particular author has misunderstood the material cited, or has taken a chance on the original not being referred to. This justifiable lack of user-confidence has undoubtedly adversely affected the potential benefits of citation indexes. Firm control over material published in the open literature which included a check of all citations would, in theory, improve the value of such indexes considerably - whether such a check is a practical possibility is, of course, another matter altogether.

It can be argued with some justification that industry does already exercise some of the firm control discussed above for its own internal publications, such as technical reports, within the limits of each company's expertise. In other words no company deliberately produces and distributes documents which it knows to be technically inferior, etc, or which it knows are duplications of its own earlier documents - it would be helpful if industry could take the lead in ensuring adequate standards for much of the published literature.

In the smaller countries, such as South Africa, there is currently and for the first time, a growing appreciation amongst many of the medium-to-large companies that they have a need for their own internal IR systems. This trend will grow so that the majority will have equipped themselves with some sort of system before the end of the 1970s. At the same time the more enterprising small industrial concerns will establish small-scale systems looked after part-time by one of their more senior staff members, or alternatively will co-operate with competitors in setting up systems to cater for the general interests of a whole industry.
9.4 Software

Strictly speaking the difficulties discussed in this section are already known. However their importance will undoubtedly become more obvious to many more individuals, and also become more important in the future on economic grounds.

One aspect of the software of information retrieval is not discussed in this section and that is the question of indexing techniques. There are obvious limits to the ways in which language can be manipulated for purposes of information retrieval. Whether or not new ideas will be conceived and applied successfully is difficult to say; currently there is no evidence that there is any great need for new ideas in this field, nor indication that any are being developed.

9.4.1 The need for better writing

That much of the present technical literatur, whether published or produced as an internal report by an industrial concern for distribution within that organisation only, is poorly written is widely recognised. In a number of universities throughout the English speaking world, including the University of the Witwatersrand, some of the departments of science and technology have recognised that an ability to communicate thoughts clearly, concisely and logically in writing is an essential and basic tool for the qualified scientist and technologist. Students are being taught to appreciate that language is a tool which they can manipulate and this is in marked contrast to the approach taught in schools, which is essentially that of literary appreciation.

A few pioneers amongst university staffs have published their views on this subject and the problem has been well set out by F Peter Woodford, an affiliate of the Rockefeller University, New York, NY, in an article entitled 'Sounder thinking through clearer writing' (304). He concludes:

'Bad scientific writing involves more than stylistic inelegance: it is often the outward and visible form of an inward confusion of thought. The scientific literature at its present standard distorts rather than forms the graduate student's view of scientific knowledge and thought, and corrupts his ability to write, to read, and to think.'
Strong educational measures are needed to effect reform. I advocate a course on scientific writing as an essential feature in every scientist's training. Such a course delves deep into the philosophy and method of science if it deals with logic, precision, and clarity on how these qualities can be achieved in writing; and on how such achievement strengthens the corresponding faculties in thinking.

Experience has shown that a sound way of improving the standard of written communication in technical articles and reports is to provide instruction and practice in indexing and abstracting techniques. It has even been proposed that all technical graduates working in research should serve a short apprenticeship as technical information officers. The suggestion has much merit but has seldom been adopted in industry. This is partly because research workers generally have little natural liking for the paper work side of technical communication, and so resist efforts by management to insist on sufficient practice to ensure proficiency. It is also partly because management usually require full time attention to the laboratory side of research work \textit{ab initio} and tend to assume that the worker has already acquired adequate proficiency in written communication techniques by some means or other.

It is believed that within the next decade almost all scientific and technical graduates will be taught to improve their standard of written communication. In the case of research work, for example, a description of an experiment will not only be accurate but will, when necessary, be sufficiently detailed to enable it to be repeated in other laboratories, which is frequently not the case now. In turn this will result in the writing of better summaries of articles, reports, etc and make the work of professional abstracters considerably easier.

Herman Skolnik and Lane F McBurney of Hercules, Inc have summed-up the objectives of technical reports in the research environment in much of industry well. They state\footnote{305}:
we take our technical reports seriously and invest supervisory and managerial energies to ensure that we get a fair return on the expenditure.

Hercules R & D management considers that a fair return is realized when technical reports do some or all of the following:

1. They provide the results and conclusions needed to reach decisions for action.
2. They shorten the time between the discovery and application of information and knowledge.
3. They coordinate responsibility and accountability of scientists assigned to various programs, and consequently are a particularly good mechanism for research management to exercise some guidance in a scientist's growth and advancement.
4. They act as an effective communication channel among members of a program team whose assignments may range from research and development to patent, plant, marketing, and sales responsibilities.
5. They constitute an adequate and permanent record of the information, knowledge, and experience gained in the course of carrying out the program.

It is apparent that the objectives of research management for its technical report system include a fair share of recognition and rewards for the report writer.

(Note: There is a belief in some circles that abstracts and the process of abstracting are obsolete and will soon cease to exist(306). However, there is no real evidence of truth in this contention and the continuing increase in abstracting services of all kinds appears to refute it. In fact, it would appear to be wishful-thinking and, like a premature report of his own death which Mark Twain saw, to be, as he remarked, 'a slight exaggeration'.)
9.4.2 The need for better facilities for evaluating the literature

One of the greatest difficulties which any user of an IR system encounters is evaluation of the information which he finds during a search. It is in fact very rare for him to find that the presentation in any two articles, or in abstracts of them, is such that a basis for valid and thorough comparison exists. As the total of information on all technical subjects continues to grow, the need for some basis for such comparison will probably become much more important. Many 'guides to authors' already stress the need for consistency in presentation as well as clarity and unambiguity - good examples are 1) the guide for the 'Journal of Chemical Engineering Data',(307) and the very brief, but comprehensive, guide on 'precision and accuracy' in analytical chemistry, published in the journal of 'Analytical Chemistry',(308). W H Evans and D Garvin have made a number of useful suggestions for improvements in the contents of published papers, etc which would facilitate retrieval and evaluation(309). In the instance of chemical experimental method they have listed the basic aspects which all published descriptions should include. They give these as being:

Description of apparatus with dimensions (either directly or by reference to earlier work).
Calibration of equipment, including a discussion of the magnitudes of possible systematic biases for which corrections were not made.
Experimental procedure.
Environmental conditions.
Identification of analytical methods used (and proof of them if novel).
Purity of materials and how determined.
Statement of sensitivity or resolution.
Explanation of the method used to reduce the data.
Assumptions made in deriving the results.
Auxiliary data used including explicit statement of their values.
Numerical factors that relate the units used in reporting the data to the fundamental units of measure.
Reports on negative results.
Clearly this sort of approach can be applied to many other fields and activities and if all journal editors, referees, etc were to insist on such minimum requirements, the resulting standardisation of presentation would improve the possibility of worthwhile comparisons considerably.

Over and above the actual content of journal articles, etc it becomes clear that similar standardisation in abstracts of these articles is also extremely desirable. Thus the criteria for acceptable abstracts, as suggested, for example, by Borko (310) and Chatman (111) will almost certainly become increasingly necessary (see Chapter 4).

9.4.3 The need for low cost procedures for culling IR systems

There is already a need for procedures for culling out-dated, inaccurate and unwanted information from the internal IR systems operated by industry, where the selection of input material is in any event usually highly subjective. This also applies to the commercial IR system specialising in particular subjects, or specific disciplines, since no customer is prepared to pay for information that he does not need or want.

These problems are very real and will become more acute with the increase in available information. As stated above, the IR system in an industrial concern usually has a very subjective input and has to accept that subjects of interest and importance to that concern are liable to change. The commercial IR system has of necessity an objective input whatever the subject field or discipline with which it is concerned and has to include all material which appears to be relevant. Thus both will tend to become more cluttered with the passage of time.

The review of all items in a large IR system at a given time for purposes of culling or 'weeding' unwanted information, etc is an expensive and time consuming job, and one which becomes more expensive as systems grow. To-date there do not appear to be any really satisfactory techniques for dealing with the problem and this is a field in which successful research can yield worthwhile practical benefits - benefits which will lead to increased IR systems efficiency, reduced operating costs and greater
user satisfaction. That such research is necessary will become increasingly obvious during the next decade.

9.5 Hardware

David Liston has pointed out\(^{31}\) that for a long time to come IR systems will continue to be man/machine systems with man contributing most of the intellectual operations required. There will continue to be a quest for ways to mechanise or automate functions performed by people. These functions account for the major part of the cost of setting up and operating IR systems so that there is considerable economic inducement to replace humans with machines. For many years after the introduction of computers it appeared that the high capital costs or rentals would confine their application to very large scale IR systems only. The recent introduction of the mini-computer and the real prospect of even smaller and still less expensive machines becoming available is currently changing the outlook rapidly. Mini-computers will undoubtedly be used in the operation of relatively small IR systems, such as those in AE&CI for example and for even smaller ones, as well as being used for the selective dissemination of new information (SDI) and for various record keeping chores in information services (journal subscriptions, loans of documents and their recall on time, etc). After a long period of relative stability the possibilities for computer applications in South Africa have opened-up and predictions other than the above generalities would be rash. However, the very rapid acceptance of computer-output-microfilm (COM) in place of paper print-out (which has undoubtedly been hastened by rapidly increasing paper prices and volume of print-out) points clearly to the widespread use of this technique for the distribution of low-cost and up-datable sets of microfiche. These microfiche will carry abstracts of items in IR systems and numerous lists of documents and other items - current examples include spare parts catalogues issued by all the major motor vehicle assemblers in the Republic and the Unicat listing of book holdings in major South African libraries, which is compiled and distributed by the State Library, Pretoria. It is a safe prediction that use of this technique will escalate rapidly.
To replace humans in such tasks as indexing and abstracting it is obvious that machines are required which can recognise syntax. Of course this problem would be greatly simplified if, as David Liston points out, language could be redesigned so that there could be only one way to express any given idea. From the point of view of the information scientist there does not, unfortunately, appear to be the slightest prospect of any such language redesign, and no doubt much of humanity is grateful that it is so. But the possibility of such redesign raises many complex philosophical problems, not the least of which is that communication between the majority of mankind on the one hand and the scientist and technologist on the other would almost certainly become even more difficult than it is now.

In conclusion, it should be noted that efforts to convert a large percentage of unskilled workers in South Africa to skilled workers, with higher salaries and wages, within a short period will inevitably involve work such as information services eventually. Jobs which are currently done manually will undoubtedly disappear and the work will be done more economically by machines, many of which have still to be developed, such as syntax recognising machines for example.

9.6 Speculation on the future of AE&CI IR systems

It is a truism in the case of machinery of any type that when it is operating satisfactorily it is best left alone. The same applies to IR systems, and since the overall integrated APRECOD system (i.e., the Alphabetical Precoordinated Descriptor based TIRSS CORIS and LIBRIS systems) is operating satisfactorily at present there are no immediate plans to modify or supersede it. The greatest possibility for change within the next few years is the transfer of TIRSS to microfiche, as indicated in Appendix VI, although the use of COM will not be overlooked since the economics of this technique are improving rapidly.

Other probable developments include the designing of small-scale IR systems based on post-coordinate indexing and the Termatrex optical coincidence system. A number of these have already been developed, as stated in Chapter 6, for use in fields which are
highly-specific - e.g., the physical and chemical properties of industrial accidents, analytical methods, etc. Subscriptions to tape services for SDI purposes, partly through SASDI (the SDI service operated by the CSIR, Pretoria) and partly through business associates overseas are likely to increase, and possibly to replace much of this work currently done manually. Reference has already been made to possible applications for mini-computers and COM; the deciding factors will undoubtedly be the overall economics involved.

Beyond this brief discussion little purpose would be served by further speculation. In times such as are being experienced in the mid-1970s - times of rapid change, industrial development, inflation, and major plans for training a new and more skilled labour force in South Africa - it is as well to be reminded of Edmund Burke's contention, which is even truer now than when he made it, that one cannot plan the future entirely by past experience.
Chapter 10 GUIDANCE ON ESTABLISHING AN IR SYSTEM

In this chapter some of the major facets discussed in this dissertation are brought together. Of necessity much of what follows comprises repetition of points already made, but their presentation is less discursive and is reduced to essential practical aspects and to references back to earlier chapters.

The objective is to provide a short basic guide to establishing a system for the storage and retrieval of technical information, particularly in industry in countries which are at an intermediate stage of development, such as the Republic of South Africa. In such countries most concerns tend to be of very small to small size by the standards of fully developed and industrialised countries. As a guide to establishing an IR system it is mainly intended to provide assistance to such small concerns which have to rely mainly on their own resources.

The bigger companies, many of which have access to 'know-how' from large overseas associates, have a more complex design problem in most instances. It is often necessary for them to design an IR system which will above all else be compatible with an existing management information system. When a company first feels the need for some sort of information service this need will almost certainly be for an IR system (as opposed to, say, an information dissemination system or other activity within the scope of technical information services - see Chapter 1, Section 1.2). Once management have decided that an IR system is necessary, but before any work is done on working out detailed requirements or on the design of a system to meet these requirements, it is essential to determine the objectives:

WHAT IS THE SYSTEM EXPECTED TO ACHIEVE?

When the objectives are known it is recommended that procedure such as is set out in Sections 10.1 to 10.4 below should be followed.

It is appreciated that the system designer invariably has to meet various constraints. The most common one is probably that of costs, which is discussed in Section 10.5. But when system requirements and design are being investigated the constraints
which the investigator expects to be faced with should not become the overriding consideration. If this is allowed to happen, then there is a real danger that 'the tail will wag the dog' so that the system eventually adopted will not achieve what is expected of it.

10.1 **Quantify the project**

Having defined the objectives of a proposed IR system the next step is to determine the potential input to it:

10.1.1 **What subject fields are to be included?**

10.1.2 **How many documents will be involved per unit of time (per week, month or year)?**

10.1.3 **What types of documents will be involved?**

(eg correspondence, internal reports, journal articles, patent specifications, etc).

10.1.4 **What is the average number of items of useful information that will probably need to be added to the system for each type of document?**

10.1.5 **Decide whether any existing backlog of information is to be included in the system in addition to newly acquired information.**

(The main advantages of including backlog are the accessibility of information often known to be in current files and improved user confidence in the system at an early date. The main disadvantage is increased costs in establishing the system. Thus it is necessary to evaluate the information already on file and to decide how far back in time to go, and whether all subject fields need to be treated in the same way, if it is decided to include backlog information).

10.2 **Specify requirements**

There is one basic requirement for all situations, which is that the simplest system that will serve the purpose and meet the particular specified requirements - see below - will invariably be the most efficient and most widely used. The author, during visits to companies in North America and Europe, has been told
of numerous complex and expensive mechanised systems which were installed during the 1960s and proved to be failures. Such failures are rarely, if ever, reported in the open literature and, unfortunately, these instances have done considerable damage (even if only for a relatively short period) to the image of IR systems and to individuals concerned with their design and operation within industry at least. Thus maximum SIMPLICITY in the context of specified requirements can be said to be a golden rule.

10.2.1 What are the potential user requirements? This subject has been covered in Section 2 of Chapter 2 but the following points should be borne in mind:

1. Users of IR systems frequently have a greater need for a reduction of irrelevant information than a critical need for more relevant information to assist them in decision making.

2. A user does not have to know how an IR system works, only how to use it. If he does not know how to use it, he will not be in control of it.

10.2.2 Will one system meet requirements for all types of documents which are to be included? See Chapter 3, Section 3.1 where this aspect has been dealt with.

10.2.3 What is the expected growth rate? The information collected under Section 10.1 above will assist to some extent to determine the probable growth rate, by providing a realistic base line from which to consider the future.

10.2.4 Is the system to provide wide subject coverage or possibly very detailed coverage in a few narrow subject areas or data fields? The answer frequently determines whether a pre- or a post-coordinate system should be selected:

10.2.4.1 If wide subject coverage is required serious consideration should be given to a pre-coordinate indexing system (See sub-section 4.1.4.2 in Chapter 4).
10.2.4.2 If narrow subject areas or data fields are to be covered then a post-coordinate indexing system may well be more suitable (See sub-section 4.1.4.1 in Chapter 4).

10.2.5 Is thorough indexing control by means of a thesaurus of preferred or agreed terms to be introduced ab initio? (See sub-section 4.1.6 on 'Thesaurus control' and 4.1.6.1 on 'Constructing a thesaurus' as well as 4.1.4.1 and 4.1.4.2 referred to above, all in Chapter 4). It is emphasised that small scale operation is not a sound reason for not establishing adequate indexing control; the prevalence of synonyms and near synonyms in all sciences and technologies is too great).

[Note: It would be interesting and instructive to know how many tests, measurements, etc are needlessly repeated in industry because either the author of an earlier document has buried useful information in his manuscript by not having the patience to tabulate it well (inadequate presentation) or the indexer of an IR system has not understood the significance of the same information (inadequate indexing)].

10.2.6 Are abstracts to be included or not? See sub-sections 4.1.2 and 4.1.3, Chapter 4. Note that for small IR systems the use of amplified document titles, which are really indicative abstracts, may well meet requirements.

10.2.7 What are the minimum of bibliographic data necessary to identify each document or other source of information unambiguously (author, title, date, document number, etc)? This is the opposite of what is usually the practice in many libraries for their catalogues. Until recently at any rate, the emphasis has been on the inclusion of the maximum amount of bibliographic information of potential use to library staff; for an IR system this is unnecessary and merely creates additional work which serves no purpose. [Note: It is of interest to record that some libraries have adopted a similar approach - eg Randse Afrikaanse Universiteit].

[Note: The use by publishers of International Standard Book Numbers (ISBNs) is currently being adopted widely. Since each book is
allocated a unique number, this may well have useful application for an IR system containing information obtained mainly from books].

10.3 **Fit into the existing organisational structure**

Whether a company is large or small it is quite clear that a service such as an IR system should fit into the existing organisational structure so as to result in the minimal change consistent with the specified requirements as set out in Section 10.2. If a library already exists then it is reasonable to establish the IR system within the Library organisation or parallel to it and under the same supervision, depending on circumstances. Obviously consideration should be given to the subject content of the system so that its place in the organisation is at least logical. In an industrial company in South Africa legal libraries and IR systems are invariably attached to legal or secretarial departments. All too often technical libraries and IR systems are found to be administered by a company's secretarial function, even when well defined technical departments, including research departments, exist. This practice is particularly prevalent in the local mining industry; it is illogical and frequently leads to inadequate service to information users, to inefficiency and to personnel problems - particularly job dissatisfaction - amongst those required to operate the services and facilities provided.

10.4 **Design the system**

Once answers to the questions posed in Sections 10.1 and 10.2 have been obtained, then Sections 5.1 of Chapter 5 and the conclusions reached on criteria for and factors affecting the performance of IR systems, as set out in sub-sections 3.1.6, Chapter 3, and 4.1.8, Chapter 4, should be read. The system itself can then be selected and designed.

Systems have been described very thoroughly in the literature\(^{94, 198-201}\) so that repetition in this dissertation would serve no useful purpose. Under the conditions obtaining in South African industry, as well as in other countries at a similar level of development, it is emphasized again that no company will establish a highly sophisticated and computerized system initially. Consequently this dissertation has deliberately avoided detailed
discussion of such systems, and it is recommended that the system
designer should consider primarily those of a simpler but often
completely adequate type. Such systems are described in the
references listed above. In particular consideration should be
given to card-based systems, such as pre-coordinate systems (as
exemplified by TIRSS) or post-coordinate systems (as exemplified
by Uniterm), or to coincidence systems - all post-coordinate -
based on optical or mechanical principles. The final decision
must be based on the requirements of the particular company
involved in each instance, but it is emphasised that where more than
one system is required they should be compatible as well as being
integrated as much as possible in order to minimise costs.

Finally the necessary hardware and format of presentation can
be specified (see sub-sections 3.1.4 and 4.1.7 of Chapters 3 and 4
respectively). It is axiomatic that the mechanical or other
equipment, lay-out of cards and other stationery, etc should be
the simplest that will meet current and foreseeable requirements.

10.5 Staff the system

In a very small concern the operation of the agreed IR system
may well have to be undertaken as a part-time activity by
management personally, as pointed out in Chapter 8. One
advantage of such initial personal involvement is that the levels
of technical and clerical competence required to operate the system
become clear to management. Delegation of both the technical and
clerical aspects to one or more individuals can then be effected
with confidence when necessary.

In bigger concerns the system may require a full-time or
part-time employee from its establishment, particularly if backlog
is to be included, together with clerical assistance. In these
instances it is recommended that the system designer should ensure
his own proficiency in the techniques and procedures which he has
selected since he will probably have to train the appropriate
staff himself. In addition he will acquire a clear idea of the
time required to process items of information into the system.

In general it can be stated categorically that the more
 technologically complex the information which is to constitute the input
to the system, the more necessary does it become for the system operator to possess technical expertise, probably in the relevant field, and sound knowledge of the particular company's technical and business interests. Subject experience and 'know-how' may well be of greater importance than any technical qualifications, except in the case of complex theoretical and mathematical material.

10.6 Cost the system

As indicated in Chapter 7 the realistic evaluation of the cost effectiveness of IR systems is extremely difficult, and, in any case, can only be considered after a system has been operative for some time - probably for some years.

In costing IR systems, therefore, consideration should be limited to capital cost and operating cost. Capital cost is, generally, made up of expenditure incurred in acquiring assets for the purpose of operating the IR system. This expenditure is usually heaviest when a system is being established, since it comprises items which are not consumed or added to routinely and which only require replacement very occasionally. They include office furniture such as card filing cabinets and the mechanical, optical or electro-mechanical equipment needed for viewing, sorting, punching, etc the cards involved. Operating costs on the other hand are made up of several components, viz 'Prime Costs', comprising labour (salaries) and materials (stationery, etc), 'Overheads' (e.g. share of rent, taxes, management, maintenance, etc) and 'Indirect Expenses' (e.g. cost of supervising the labour, cost of using the system, etc). The size of the particular company and the actual costing system used will determine what costs are allocated to overheads and whether indirect costs are determined or not. Thus for the IR system designer the main concerns are 1) prime costs and 2) to ensure that his operating budget is soundly established and can be met when the system is operating as intended.

10.7 Plan the start-up

For optimum efficiency the system designer should estimate realistic dates by which the system can be set up and be operating with the staff properly trained. The following steps are suggested
once the designer has worked out the system and has received management's permission to establish it. Each step requires one or more target dates, as appropriate, and steps may be concurrent or consecutive:

1) Determine the office space required and ensure that it is available.

2) Order the items required under 'capital expenditure'.

3) Order the items required under 'materials' and ascertain routine availability, so that initial maximum and minimum stock-levels can be laid down. [Note: these can of course be altered later in the light of experience if necessary].

4) Lay down in writing the procedures to be followed by both technical and clerical staff, in the form of a manual or guide.

5) Select or recruit staff.

6) Train staff.

7) Initiate the laid-down procedures - i.e. start up the system.

8) Explain the system to all potential users (encourage feedback).

9) Introduce any modifications which appear to be desirable or necessary (preferably within three months of start-up).

If a plan such as that set out above is developed and adhered to, then whatever the form or scale of operation, any IR system should become operational with a minimum of difficulties and a maximum of efficiency.

In conclusion, a systematic approach to establishing an IR system should ensure that the assistance which it can provide in optimising decision-making will be maximised, as discussed in Chapter 8.
APPENDIX I

EJC ROLE INDICATORS

The best known system of role indicators is probably that published by the Engineers Joint Council in the USA. This list derives from one drawn up by B E Holm for the Engineering Department of E I du Pont de Nemours & Co, which was handed over initially to the American Institute of Chemical Engineers in 1961. This was passed on by the AIChE to the EJC in 1962 and greatly expanded to make meanings clearer. This EJC list comprises 11 roles, the meanings of which are as follows:

1 Input; raw material; material of construction; reactant; base metal (for alloys); components to be combined; constituents to be combined; ingredients to be combined; material to be shaped; material to be formed; ore to be refined; sub-assemblies to be assembled; energy input (only in an energy conversion); data and types of data (only when inputs to mathematical processings); a material being corroded.

2 Output; product, by-product, co-product; outcome, resultant; intermediate product; alloy produced; resulting material; resulting mixture or formulation; material manufactured; mixture manufactured; device shaped or formed; metal or substance refined; device, equipment, or apparatus made, assembled, built, fabricated, constructed, created; energy output (only in an energy conversion); data and types of data (only as mathematical processing outputs).

3 Undesirable component; waste; scrap; rejects (manufactured devices); contaminant; impurity, pollutant, adulterant, or poison in inputs, environments, and materials passively receiving action; undesirable material present; unnecessary material present; undesirable product, by-product, co-product.

4 Indicated, possible, intended present or later uses or applications. The use or application to which the term has been, is now, or will later be put. To be used as, in, on, for, or with; for use as, in, for, or with; used as, in, on, for, or with; for later use as, in, on, for, or with.
5 Environment; medium; atmosphere; solvent; carrier (material); support (in a process or operation); vehicle (material); host; absorbent, adsorbent.

6 Cause; independent or controlled variable; influencing factor; "X" as a factor affecting or influencing "Y"; the "X" in "Y" is a function of "X".

7 Effects; dependent variable; influenced factor; "Y" as a factor affected or influenced by "X"; the "Y" in "Y" as a function of "X".

8 The primary topic of consideration is; the principal subject of discussion is; the subject reported is; the major topic under discussion is; there is a description of.

9 Passively receiving an operation or process with no change in identity; composition, configuration, molecular structure, physical state, or physical form; possession such as when preceded by preposition of, in or on meaning possession; location such as when preceded by the prepositions in, on, at, to, or from meaning location; used with months and years when they locate information (not bibliographic data) on a time continuum.

10 Means to accomplish the primary topic of consideration or other objective.

11 Bibliographic data, personal names of authors, corporate authors and sources, types of documents, dates of publication, names of journals and other publications, other source-identifying data, and adjectives.
APPENDIX II

Extracts from AE&CI's Thesaurus Building Guide

1. THE THESAURUS

A complete record of the index terms is kept in a thesaurus, which is a word authority list. Control of the index terms selected is essential. There are many synonymous words used in scientific language and a great number of terms would be generated if these were not cross-referred.

- eg BLOWN PLASTICS
 - CELLULAR PLASTICS
 - EXPANDED PLASTICS
 - FOAMED PLASTICS

ie One term is selected, and cross-references, known as "see" entries are made to it from the others.

Cross-references are also made for terms which are obsolete, unscientific, or the author's own naming.

- eg CAUSTIC SODA
 - PLASTER OF PARIS
 - SODA ASH

See SODIUM HYDROXIDE
See CALCIUM SULPHATE HEMIHYDRATE
See SODIUM CARBONATE

Another function of the thesaurus is to direct the searcher's attention to related terms which may be of interest to him. This is done by the "see also" entries.

- eg CONTROL SYSTEM (PNEUMATIC)
 - FLUIDICS

See also FLUIDICS
See also CONTROL SYSTEM (PNEUMATIC)

It is obvious, therefore, that before the subject index is referred to, the thesaurus should first be consulted, in case the terms mentally selected by the searcher are not the terms filed in the subject index.

NOTE: The TIRSS files are divided into four main sections:
1) Document number index
2) Author index
3) Subject index (Index terms are filed here)
4) Master file

1.1 New Index Terms

Every term that is used as an index term is checked against the thesaurus. If a new term is suggested where a similar term exists it is usually possible to alter the new term selected to conform with terms already in the thesaurus.
The terms REFRIGERATION PLANT - CLEANING and REFRIGERATION PLANT - OPERATION are suggested new terms, but a series exists under REFRIGERATION SYSTEMS. The two new terms are thus changed to conform with the existing terms and become new terms:
REFRIGERATION SYSTEMS - CLEANING and REFRIGERATION SYSTEMS - OPERATION

NOTE: The naming and indexing of chemical compounds is explained in the introduction to the subject index in Volumes 56 and 66 of Chemical Abstracts.

2. THE INDEX TERM

2.1 Selection of the index terms

After the abstract has been prepared, suitable index terms are selected. This is not an easy task as the indexer must bear in mind the requirements of the user; i.e. try to imagine what approach he would take in his search for the information concerned.

Scan the document carefully and at the same time note down words that appear best to lead to each item of information. As terms are written down their roles should be assigned as these two phases of indexing are inseparable.

One of the more important objectives of the present indexing system is to bring together all pieces of information relating to a subject or aspect of a subject. This may necessitate the use of certain uniterms; i.e. a repetition of the second part of an index term.

eg. The terms: FERTILIZERS - MILLING INSECTICIDES - MILLING ORES - MILLING

will each lead the searcher to a specific aspect of milling, whereas the unterm, "MILLING", brings together all the information on the milling of these and other materials, which could be very useful, as in a survey on milling.

As the Company's interests are of prime importance the selection of index terms, particularly the selection of uniterms, will naturally have a bias.

When the index terms have been selected each one must be checked against the thesaurus entries. In order to restrict the addition of "new" terms to the thesaurus the indexer must search the thesaurus for existing terms which may possibly cover the same concept as the proposed "new" index term.

After the index terms have been checked they are to be clearly written in alphabetical order below the abstract on the work-sheet. Each existing index term is ticked off on the left and "new" terms are marked, NT (in red), also on the left.
Any new cross-references which the indexer considers necessary are printed in ink at the top of ISO A6 pink cards in capital letters and attached to the relevant work-sheet.

<table>
<thead>
<tr>
<th>RATE OF SOLUTION</th>
<th>SHOCK WAVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See SOLUTION RATE</td>
<td>See also DETONATION WAVES</td>
</tr>
</tbody>
</table>

The use of abbreviations should be avoided and a cross-reference given to the full term wherever possible.

\[\text{eg NMR SPECTRA} \quad \text{See NUCLEAR MAGNETIC-RESONANCE SPECTRA}\]

Some exceptions: The name of some countries

\[\text{eg SA GOVERNMENT REGULATIONS} \quad \text{USA DEPARTMENT OF DEFENCE PUBLICATIONS}\]

The name of some companies

\[\text{eg AE&CI PRODUCTS} \quad \text{NOBEL DIVISION, ICI}\]

Miscellaneous

\[\text{eg ASAT} - \text{A mixture of lead azide, lead styphnate, aluminium and tetryl.}\]
\[\text{ADC EXPLOSIVES} - \text{Ardeer double cartridge sensitivity test.}\]

As index terms these would be too cumbersome.

2.2 Notes on the choice of index terms

2.2.1 Choose the most relevant term that will lead the searcher to an item of information given in the document. Avoid jargon, slipshod or foreign phraseology, particularly when indexing patents, translations and American publications. The index term chosen should be scientific and unambiguous.

\[\text{eg POTASSIUM NITRATE and not NITRE or SALTPETRE} \quad \text{SODIUM HYDROXIDE and not CAUSTIC SODA} \quad \text{PLASTICS - OPTICAL PROPERTIES and not PLASTICS - CLARITY or PLASTICS - HAZE}\]

2.2.2 A new index term in its final form should, where possible start with a noun, but the use of verb forms, usually as participles, is often necessary for operations and processes.

\[\text{eg HARDENING AGENTS}\]

2.2.3 If it is thought that searcher may look under a different word from the one finally chosen for the index term a cross-reference should be made to guide the searcher to the term chosen.
ACRYLITE*, ALTUGLAS*, LUCITE*, GROGLAS*, PERSPEX*, PLEXIGLAS*, PLEXIGUM*, RESARTGLAS*, RESARTIT*, RHOAGLAS* and VEDRIL* are all trade names for METHACRYLIC ACID, METHYL ESTER POLYMERS.

These should be referred to the scientific term with a "see" card if they are products of non-associated companies and with a "see also" card if they are products of AE&CI and Associated Companies.

2.2.4 If the contents of the document are considered to be of particular importance to AE&CI the index term chosen should be specific.

For example:

POLYETHYLENE - MELT FLOW INDEX

and not

the general terms

PLASTICS - MELT FLOW INDEX
PLASTICS - PROPERTIES
POLYETHYLENE - PROPERTIES
POLYMERS - MELT FLOW INDEX

General terms of the type exemplified above should be used only when general information covering a wide field is indexed. If the abstractor considers that the contents of a document are not of current interest to AE&CI new index terms that have to be added are kept to a minimum.

For example:

ANTIBIOTICS -2
PHARMACEUTICALS - PATENT LAWS -9
PHARMACEUTICALS - PROPERTIES -9
NT SALICIL, 5,5'-DIBROMO -2

This set of terms indicates that the new term (NT) is an antibiotic and falls under the general heading of pharmaceuticals thus obviating the introduction of new terms, such as:

SALICIL, 5,5'-DIBROMO-, PATENT LAWS
SALICIL, 5,5'-DIBROMO-, PROPERTIES

If the abstractor considers the contents of a document to be of no permanent value to AE&CI Format 4 is used.

2.2.5 When new terms are introduced they should not be clumsy or involved.

For example:

Index thus : POLYMERS (GRANULAR)
POLYMERS PRODUCTION
and not : POLYMERS (GRANULAR) - PRODUCTION

It is permissible to use the adjectival descriptor as the first word of an index term, provided that there is no existing series in the thesaurus in which it appears as the second word.

For example:

ATMOSPHERIC POLLUTION - CONTROL
FERTILIZER GRANULES - PLASTICITY
PLATE GLASS - WASHING
SOIL STERILANTS - EVALUATION
2.2.6 Index terms of the form x (in y) should not be used unless they are already in the thesaurus.

eg NT MOISTURE (IN RESINS) should be changed to RESINS - MOISTURE CONTENT or if not of interest to the company simply SUBJECT - PROPERTIES
The same applies to index terms of the form x (in y) - DETERMINATION

eg NT MOISTURE (IN RESINS) - DETERMINATION should be changed to MOISTURE DETERMINATION and RESINS - MOISTURE CONTENT

2.2.7 All trade names (ie registered trade marks) are indicated with an asterisk.

eg SAAIFOS*

Trade names are used once as index terms if they are the names of proprietary products of AE&CI, ICI, ICI Australia and other companies associated with AE&CI.

eg ANFEX*

c) These trade names are always followed by a "see also" reference which indicates what ANFEX* is. When indexing a report on eg ANFEX*, one or two of the descriptors on the reference card should be used on the work-sheet.

eg AMMONIUM NITRATE BLASTING AGENTS
AMMONIUM NITRATE/FUEL OIL
ANFEX*

Thus when a trade name is introduced as an index term for the first time a "see also" reference must be given.

b) Trade names for proprietary products of non-associated companies are not used as index terms, but are included in the thesaurus with references.

eg Index term: FIBRES (SYNTHETIC)
References: ARDEIN*
See FIBRES (SYNTHETIC)
ARIL*
See FIBRES (SYNTHETIC)

c) If a trade name given to a product of a non-associated company has to be used, a scope note, giving the name of the company must be added to the "see" reference

eg MONEL*
MONEL* (The Trade Mark of Henry Wiggin & Co. Ltd)
See also ALLOYS (COPPER)
ALLOYS (NICKEL)

2.2.8 Generic or common names

If a generic name is used for a chemical compound it must be referred to the preferred name, according to Chemical Abstracts, and also to its indicated use. (The same applies to trade names).
2.2.9 All chemicals, inorganic and organic, should normally be indexed according to Chemical Abstracts. The following exceptions to this rule should be noted.

a) *(CYANURIC ACID 1957-1961 Chemical Abstracts nomenclature followed.
*(ISOCYANURIC ACID
From 1962 on Chemical Abstracts refer these respectively to:
sym-TRIAZINE, 2,4,6-TRICL
sym-TRIAZINE, 2,5,6(1H,3H,5H)-TRIONE
We refer these later entries back to cyanuric acid and isocyanuric acid.

b) The common names of some explosives:

eg DINITROTOLUENE
 LEAD STYPHNAITE
 NITROTOLUENE
 RDX
 TRINITROTOLUENE, etc.

c) The common names of some plastics:

eg POLYETHYLENE
 POLYPROPYLENE
 POLYURETHANE
 POLYVINYL CHLORIDE, etc.

d) The common names of some solvents:

eg PERCHLOROETHYLENE
 TRICHLOROETHYLENE, etc.
Cross-references are made from the name preferred by Chemical Abstracts to the abovementioned terms.

e) Inorganic compounds
Chemical Abstracts index specific compounds under the simplest general names, ie those based on the constituents of compounds and preferably on the structure, but do not always indicate the oxidation state of simple groups, or cations, or the stoichiometric composition. Formulae are used for specific compounds under these group headings.
eg group heading: NITROGEN OXIDE No group heading
(N0) NITRIC OXIDE
(N02) NITROGEN DIOXIDE
Specific entries : (N2O) NITROUS OXIDE
(N025) NITROGEN PENTOXIDE

As it is impossible to use chemical formulae as index terms we deviate from Chemical Abstracts and index the above specific entries as indicated.

2.2.10 Uniterms

Some examples of uniterms which appear in the thesaurus and which are considered useful.

BIBLIOGRAPHY (Use Role O)
COMPUTER PROGRAMS
COMPUTER PROGRAMMING
CONFERENCES (Use Role O)
MANUALS (Use Role O)
MILLING
PROJECT (Use Role O. Use only for AE&CI projects)
SAMPLING
STANDARDS (Use Role O)
SURVEY (Use Role O)
SYMPOSIA (Use Role O)

2.2.11 In general, fungicides, herbicides, insecticides, miticides, molluscicides, pesticides, etc should be indexed once under the name given by Chemical Abstracts and the descriptors follow the general terms.

eg CARBAMIC ACID, ESTERS
INSECTICIDES - HANDLING
INSECTICIDES - TOXICITY

2.2.12 Fungi, Bacteria and pests

When these are indexed the genus or generic name should appear once with the descriptors following a general term.

eg ALTERNIA SPP
FUNGI - CONTROL
BACTERIA - VIABILITY

2.3 Indexing Rules

2.3.1 Periodical Reports

a) Periodical reports are divided into two categories. The first comprises reports which are numbered consecutively in a series retained exclusively for them:

eg Q5.5000/1, Q5.5000/2 etc
or KRI.1, KRI.2 etc

The second comprises reports which are scattered throughout a series:
b) These reports are indexed by TIRSS clerical staff, and not by abstractors.

c) Solvay reports, which are strictly confidential, have the word "SOLVAY" incorporated in the numbers before the classification letter "C".

eg MD.257/7/1964/SOLVAY/C

As Solvay reports are not filed separately, an additional index term is given for reports on mercury cells.

ie SOLVAY REPORTS -O

NB This index term is not to be used for reports on plastics.

NOTE: All documents from the ICI family on mercury cells must have MERCURY CELL REPORTS -O as an index term.

2.3.2 Reports on visits

a) Visit reports are indexed in the usual manner as to subject content, not to any great depth, unless the subject matter warrants it, but all visit reports written by members of AE&CI, must be indexed in depth.

b) The term, "VISIT" is restricted to the following:
 (i) any visit paid by staff of AE&CI
 (ii) any visit to AE&CI and/or subsidiary companies.

c) Under the lead-in term "VISIT", at least two entries are made

ie the company visited

eg VISIT - CANADIAN INDUSTRIES LIMITED

eg VISIT - (INTEREST)

eg VISIT - PLASTICS

d) In order to restrict the number of terms put into the thesaurus, a selection should be made from the following list of terms for the "INTEREST":

AGRICULTURE (includes soil cultivation; use for livestock when the visit covers both
ANALYTICAL METHODS
ANIMAL HUSBANDRY (use for visit about livestock only)
CHEMICALS (excluding plastics)
COMPUTERS
ENGINEERING
EXPLOSIVES (including detonators, accessories, munitions, etc)
FABRICS
FERTILIZERS
INFORMATION SERVICES
INSTRUMENTS
MINERAL DEPOSITS (including phosphates, ores, clays, etc)
MISCELLANEOUS
ORGANIZATION (including management, office organization, etc)
PAINTS
PLANNING
PLANT PROTECTION
PLASTICS
SAFETY
SALES
UNIVERSITIES
WORK STUDY

e) Do not reverse the terms under the lead-in word "VISIT"
 eg do not use FERTILIZERS - VISIT
 UNITED STATES - VISIT

f) Where a factory, division, or company has been visited for
general interest index as follows:
 eg VISIT - IMPERIAL CHEMICAL INDUSTRIES, LIMITED
 VISIT - MISCELLANEOUS

g) Use only the following names of companies after the lead-
in word "VISIT"
 AE&CI Limited
 Canadian Industries Limited
 Danbritken A/S
 Imperial Chemical Industries Limited
 ICI Australia
 Indian Explosives Limited

 h) Where an AE&CI factory has been visited, ie Midlands
 Modderfontein, Rodia, Somerset West or Umbogintwini,
 index under AE&CI, "interest" and "place".
 eg MODDERFONTEIN FACTORY
 VISIT - AE&CI LIMITED
 VISIT - EXPLOSIVES

 i) Where visits have been paid to other firms in South
 Africa, index under the name of the place, not under
 the name of the firm.
 eg VISIT - CAPE TOWN
 not VISIT - NATIONAL CHEMICAL PRODUCTS LIMITED

 j) Where more than one country was visited it is not
 necessary to index each one, provided that there is
 an index term which embraces all the countries visited.
 eg Index VISIT - EUROPE
 Instead of VISIT - FRANCE
 VISIT - HOLLAND
 VISIT - SWITZERLAND, etc
k) Where more than one subject has been studied, index under each of the appropriate "interest" terms.
 eg VISIT - AGRICULTURE
 VISIT - FERTILIZERS
 VISIT - PLANT PROTECTION

l) Do not index under the term "INTERFACTORY VISIT" or "OVERSEAS VISIT". Use the above rules as a guide.

m) Terms which include the word "VISIT" are assigned Role O.

2.3.3 Reports on explosions, fires, or unusual occurrences

When documents dealing with investigations into explosions, fires, or unusual occurrences are indexed, entries should be made as indicated below if these events occurred in AE&CI or associated companies. Note that index terms for event - place and place - event should not be used when other companies are concerned, and that the names of countries should not be used as index terms - the country and the company concerned should be mentioned in the abstract and/or title.

a) Index under the event together with the place where the event occurred:
 eg EXPLOSION (ACCIDENTAL) - SOMERSET WEST FACTORY
 FIRES - MODDERFONTEIN FACTORY
 UNUSUAL OCCURRENCES - UMBOGINTWINI FACTORY
 NB For ICI and AE&CI reports, be as specific as possible as to the location of the explosion, fire or unusual occurrence ie use the name of the factory or plant rather than the division or company. For ICIANZ and CIL reports, use the name of the company for these terms, and the name of the factory or plant on its own:
 eg BROWNSBURG WORKS - CANADIAN INDUSTRIES LIMITED
 CANADIAN INDUSTRIES LIMITED - EXPLOSION (ACCIDENTAL)
 EXPLOSION (ACCIDENTAL) - CANADIAN INDUSTRIES LIMITED

b) Reverse the terms selected under 2.3.3 (a). This will bring together under the name of the factory or place, all explosions, all fires, and all unusual occurrences.
 eg MODDERFONTEIN FACTORY - EXPLOSION (ACCIDENTAL)
 MODDERFONTEIN FACTORY - FIRES
 MODDERFONTEIN FACTORY - UNUSUAL OCCURRENCES

c) Index under the type of explosive, piece of equipment, explosive house or material that exploded or caught fire:
 eg ACETYLENE - EXPLOSION (ACCIDENTAL)
 BLACKPOWDER - EXPLOSION (ACCIDENTAL)
 CRIMPING MACHINES - EXPLOSION (ACCIDENTAL)
 DYNAMITE CARTRIDGING HOUSE - FIRES
 NITROCOTTON DRYING HOUSE - FIRES
 Do not reverse the above terms.
d) Where a document deals with both an explosion and a fire, index under both headings:

`eg EXPLOSION (ACCIDENTAL) - SOMERSET WEST FACTORY
FIRES - SOMERSET WEST FACTORY
NITROCOTTON DRYING HOUSE - FIRES
SOMERSET WEST FACTORY - EXPLOSION (ACCIDENTAL)
SOMERSET WEST FACTORY - FIRES`

e) Terms directly related to explosions, fires and unusual occurrences should be indexed under Role O.

f) Neither a fire nor an explosion should be recorded as an unusual occurrence, so that the term "UNUSUAL OCCURRENCES" must not be used in conjunction with either of these two.

2.3.4 Surveys and bibliographies

a) Surveys and bibliographies are indexed in the normal manner as to subject content.

b) The following terms must be used for surveys.

```
SUBJECT -9
SURVEY (TYPE) -O (ie specified)
eg BILHARZIASIS
SURVEY (LITERATURE)
PHOSPHATE ROCK
SURVEY (GEOLOGICAL)
PLASTICS
SURVEY (MARKET)
```

c) The following terms must be used for "land" surveys.

```
AREA -O
SURVEY (TYPE) -O
eg SOUTH AFRICA
SURVEY (AGRICULTURAL)
AGRICULTURAL RESEARCH STATION (FRANKENWALD)
SURVEY (BOTANICAL)
SURVEY (GEOLOGICAL)
TUGELA BASIN
```

d) Patent surveys are indexed as follows:

```
SUBJECT
SURVEY (PATENTS)
```

e) Use "SURVEY" on its own only for surveys other than those which are specified in the thesaurus. A survey indexed under one of the latter is not also indexed under "SURVEY".

f) Use "BIBLIOGRAPHY" when the document is primarily a bibliography. Do not use for a document that has a limited list of references at the end.
g) The following terms must be used for bibliographies:
 BIBLIOGRAPHY -0
 SUBJECT
 eg BIBLIOGRAPHY
 EXPLOSIONS (DUST)

h) Terms directly related to bibliographies and surveys should be indexed under Role O.

2.3.5 Work Study reports

Work Study reports include those on work specifications, incentive bonus schemes, investigations and those of a general nature that deal with various aspects of the subject of work study itself.

a) Index reports of a general nature under appropriate headings
 eg BONUS EARNINGS
 INCENTIVE BONUS SCHEMES
 WORK STUDY

b) Index reports on incentive bonus schemes under the headings:
 SUBJECT -4
 INCENTIVE BONUS SCHEMES -0
 POLYVINYL CHLORIDE PRODUCTION

c) Index reports on work specifications under the headings:
 SUBJECT -4
 PHOSPHATE ROCK MILLING
 WORK SPECIFICATIONS

 d) Index reports on work study investigations under the heading:
 SUBJECT -4
 WORK STUDY INVESTIGATION
 POLYVINYL CHLORIDE PRODUCTION
 WORK STUDY INVESTIGATION

e) The above subjects should be indexed under the operation performed or studied, and not under the name of the plant.

f) Use Role O as shown in the examples above.

2.3.6 Computer Programs

a) Index reports on computer programs under the headings:
 COMPUTER PROGRAMS
 SUBJECT
 eg COMPUTER PROGRAMS
 PROBABILITY DISTRIBUTION

b) Use the term COMPUTER PROGRAMMING to index techniques and methods of programming, and for methods of calculating by means of a computer -
 ie for detailed instructions for programmers.
g) The following terms must be used for bibliographies:
 BIBLIOGRAPHY -O
 SUBJECT

 eg BIBLIOGRAPHY
 EXPLOSIONS (DUST)

h) Terms directly related to bibliographies and surveys should be indexed under Role O.

2.3.5 Work Study reports

Work study reports include those on work specifications, incentive bonus schemes, investigations and those of a general nature that deal with various aspects of the subject of work study itself.

a) Index reports of a general nature under appropriate headings:
 eg BONUS EARNINGS
 INCENTIVE BONUS SCHEMES
 WORK STUDY

b) Index reports on incentive bonus schemes under the headings:
 SUBJECT -O
 INCENTIVE BONUS SCHEMES -O

 eg INCENTIVE BONUS SCHEMES -O
 POLYVINYL CHLORIDE PRODUCTION

c) Index reports on work specifications under the headings:
 SUBJECT -O
 WORK SPECIFICATIONS -O

 eg PHOSPHATE ROCK MILLING
 WORK SPECIFICATIONS

d) Index reports on work study investigations under the heading:
 SUBJECT -O
 WORK STUDY INVESTIGATION

 eg POLYVINYL CHLORIDE PRODUCTION
 WORK STUDY INVESTIGATION

e) The above subjects should be indexed under the operation performed or studied, and not under the name of the plant.

f) Use Role O as shown in the examples above.

2.3.6 Computer Programs

a) Index reports on computer programs under the headings:
 COMPUTER PROGRAMS
 SUBJECT

 eg COMPUTER PROGRAMS
 PROBABILITY DISTRIBUTION

b) Use the term COMPUTER PROGRAMMING to index techniques and methods of programming, and for methods of calculating by means of a computer -
 ie for detailed instructions for programmers.
2.5 **AE&CI Factories**

Index the name of an AE&CI factory when a document deals with one specific factory. Documents for which these locator terms must be used are as follows: manuals, commissioning reports, project reports, etc.

 eg FERTILIZERS PRODUCTION - PROJECT MODDERFONTEIN FACTORY MIDLAND FACTORY POLYETHYLENE PLANT COMMISSIONING PROCESS MANUALS RODIA FACTORY

The index terms relating to the factories are assigned Role O.

 eg MIDLAND FACTORY -O

2.6 **Analytical methods**

If documents have a full description of an analytical method then either "ANALYTICAL METHODS" or the specific method must be used as one of the index terms.

 eg ANALYTICAL METHODS or VOLUMETRIC METHODS

NOTE (i) If there is no information on a particular subject in a document do not use an index term to indicate that there is, unless it is a locator term.

 eg MODEDERFONTEIN FACTORY -O POLYETHYLENE PLANT -9

NOTE (ii) Do not use an index term that is not a retrieval term for the particular document concerned, and do not use a term that does not appear either in the title or in the abstract. (An exception is where an indicative abstract is written for a lengthy document and it is necessary to deep index the document).

2.7 **AEM Reports**

The index term PRODUCTION INSTRUCTIONS -O must be used for all these reports.

2.8 **Documents concerning a thesaurus**

 If a document is a thesaurus, index under the headings:

SUBJECT -9

 eg PLASMA PHYSICS

 If a document is about the construction of a thesaurus index under one heading only:

THESAURUS -9
If a document has a section on thesaurus construction and a section which is a thesaurus, index under the headings:

- SUBJECT
- THESAURUS
- ENGINEERING
- THESAURUS
APPENDIX III

TYPES OF THESAURUS

CONTENTS

Example of unstructured post-coordinate thesaurus 221
Example of unstructured pre-coordinate thesaurus 222
Example of structured post-coordinate thesaurus 223
Example of structured pre-coordinate thesaurus - specific level 224
Example of structured pre-coordinate thesaurus - generic level 225
Examples of 'trees' showing word relationships 226-9

(Reproduced by permission of the Copper Development Association)
APPENDIX III

EXAMPLE OF U-NSTRUCTURED POST-COORDINATE THESAURUS

BRITTLE FAILURES
BRITTLENESS
BRONZE
BRUSHES
BUBBLES
BUBBLING PRESSURES
BUCKETS
BUCKETS/FLIP/USE FLIP BUCKETS
BUCKLING
BUDGETS
BUDGETS/FEDERAL/USE FEDERAL BUDGETS
BUFFERS/CHEMISTRY/
BUFFERS/DAM/USE CUSHIONING
BUFFERS/INDUSTRIAL EQUIP/
BUILDING CODES
BUILDING MATERIALS
BUILDINGS
BULK
BULKHEADS
BULKHEADS/ANCHORED/USE ANCHORED BULKHEADS
BUCKLING
BULLDOZERS
BUNDLED CONDUCTORS
BUOYANCY
BUOYS
BURIED MEMBRANES
BURNING
BURROWING ANIMALS
BUS/ELECTRICAL/
BUSHINGS
BUTT JOINTS
BUTTERFLY VALVES
BUTTRESSES DAMS
BUTTRESSES
BYPASS CHANNELS
APPENDIX III
EXAMPLE OF UNSTRUCTURED PRE-COORDINATE THESAURUS

BEARINGS - ALIGNMENT
BEARINGS - DESIGN
BEARINGS - EVALUATION
BEARINGS - MAINTENANCE
BEARINGS - MOUNTING
BEARINGS - PERFORMANCE

BEESWAX

BENEFICIATION
SEE ALSO MAGNETIC SEPARATION

BENEFICIATION - BIBLIOGRAPHY

BENZENE, DEHYDRO
SEE 1,3-CYCLOHEXADIEN-5-YNE

BENZENEDIAZONIUM COMPOUNDS

BENZENE, 1,2-DIHYDROXY-
SEE PYROCATECHOL

BENZENE, META-DIISOPROPYL-

PARA-BENZENEDIOL
SEE HYDROQUINONE

BENZIMIDAZOLE, 2-(4-THIAZOLYL)-

BENZOFURAN, DERIVATIVES - NUCLEAR MAGNETIC RESONANCE SPECTRA

BENZOFURAN, DERIVATIVES - PREPARATION

BENZO(c)PTERIDINE-2,4(3H,10H)-DIONE
INDEX AS ISOALLOXAZINE
APPENDIX III

EXAMPLE OF STRUCTURED POST-COORDINATE THESAURUS

PLY BONDING
USE PLY ADHESION

PLYWOOD (3)
RT WOOD

PMA
USE POLY AllyL ACRYLATE

PMMA
USE POLY Methyl METHACRYLATE

POLUTANTS
USE CONTAMINANTS

POLLUTION (1)
NT AIR POLLUTION
STREAM POLLUTION
WATER POLLUTION
RT CONTAMINATION
INDUSTRIAL WASTES
MERCAPTANS
MICROORGANISMS
ODOR CONTROL
QUALITY
SPENT LIQUORS
WASTE DISPOSAL
WASTES

POLYACRYLATES
USE ACRYLIC RESINS

POLYACRYLONITRILE (1)
UF ACRILAN *
DIYNEL *
NITRILE RUBBER
ORLON *
RT ACRYLIC RESINS
ADDITION RESINS
CYANIDES
NITRILES
PLASTICS
POLYMERS
SYNTHETIC RESINS
THERMOPLASTIC RESINS
VINYL RESINS

RT ACRYLONITRILE
POLYALKYL METHACRYLATES
POLYMETHYL METHACRYLATE
SYNTHETIC RUBBER
VINYON*

BT = Broader Term
NT = Narrower Term
RT = Related Term
UF = Use For
* = Trade Name
APPENDIX III

EXAMPLE OF STRUCTURED POST-COORDINATE THESAURUS

PLY BONDING
USE PLY ADHESION

PLYWOOD (3)
RT WOOD

PMA
USE POLYMETHYL ACRYLATE

PMMA
USE POLYMETHYL METHACRYLATE

POLLUTANTS
USE CONTAMINANTS

POLLUTION (1)
NT AIR POLLUTION
STREAM POLLUTION
WATER POLLUTION
RT CONTAMINATION
INDUSTRIAL WASTES
MERCAPTANS
MICROORGANISMS
ODOUR CONTROL
QUALITY
SPENT LIQUORS
WASTE DISPOSAL
WASTES

POLYACRYLATES
USE ACRYLIC RESINS

POLYACRYLONITRILE (1)
UF ACRYLAN *
DYNEL *
NITRILE RUBBER
ORION *
RT ACRYLIC RESINS
ADDITION RESINS
CYANIDES
NITRILES
PLASTICS
POLYMERS
SYNTHETIC RESINS
THERMOPLASTIC RESINS
VINYL RESINS

RT ACRYLONITRILE
POLYALKYL METHACRYLATES
POLYMETHYL METHACRYLATE
SYNTHETIC RUBBER
VINYLON *

BT = Broader Term
NT = Narrower Term
RT = Related Term
UF = Use For
* = Trade Name
APPENDIX III

EXAMPLE OF STRUCTURED PRE-COORDINATE THESAURUS

SPECIFIC LEVEL

HEADS

Nitroglycerin Explosives
 NT Powder Explosives
 NT Dynamites
 NT Ammon Dynamites
 NT Treflo
 NT Semigelatinous Explosives
 NT Dynagels
 NT Gelatinous Explosives
 NT Blasting Gelatin
 NT HV Slabs
 NT Permitted Explosives
 NT Gelignites
 NT Ammon Gelignites

TAILS

Properties
 NT Chemical Properties
 NT Mechanical Properties
 NT Electrical Properties
 NT Magnetic Properties
 NT Physical Properties
 NT Burning Properties
 NT Burning Speed
 NT Burning Time
 NT Deflagration Properties
 NT Initiation Properties
 NT Initiation Efficiency
 NT Firing Properties
APPENDIX III
EXAMPLE OF STRUCTURED PRE-COORDINATE THESAURUS
GENERIC LEVEL

HEADS
Explosives
 NT Blasting Explosives
 NT Underground Blasting Explosives
 NT Nitroglycerin Explosives
 NT Ammonium Nitrate Explosives
 NT Open cast Explosives
 UP Quarrying Explosives
 NT Plaster Shooting Explosives
 NT Underwater Blasting Explosives
 NT Oilwell Blasting Explosives
 NT Jet Piercing Explosives
 NT Borehole Clearing Explosives

TAILS
Initiation Properties
 NT Initiation Efficiency
 NT Initiation Energy
 NT Initiation Power
 NT Initiation Sensitivity
 NT Compression Sensitivity
 NT Friction Sensitivity
 NT Torpedo Friction Sensitivity
 NT Gap Sensitivity
 NT ADC Sensitivity
 NT Impact Sensitivity
 NT Spark Sensitivity
 NT Electrostatic Spark Sensitivity
 NT Pyrotechnic Spark Sensitivity
APPENDIX IV
EXAMPLES OF STRUCTURED TERMS (TOGETHER WITH A SCOPE NOTE)

ALIPHATIC POLYENE HYDROCARBONS
*(Hydrocarbons with two or more ethylenic bonds)

BT Aliphatic acyclic hydrocarbons
 Aliphatic hydrocarbons
 Aliphatic polyene compounds
 Alkene compounds
 Alkene hydrocarbons
 Hydrocarbons
 Unsaturated hydrocarbons

NT Allene
 Butadienes
 Cyclopolyene hydrocarbons
 Isoprene
 Squalene

RT-Dienes
 Unsaturated organic compounds

ALIZARIN
BT Anthraquinones
 Aromatic ketones
 Ketones
 Quinones

RT-Dyes

ALKALINE ELECTROLYTES
BT - ionic conductors
 Electrolytes

RT Battery electrolytes
 Fuel cell electrolytes

ALKALINE PHOSPHATASES
BT Enzymes
 Esterases
 Hydrolases
 Phosphatases

ALKALINE ROCKS
USE Basic rocks

ALKALINITY
 UF Basicity
 Causticity

BT Chemical properties
 BT Acidity
 Buffers (*chemistry)
 pH

ALKALINITY CONTROL
USE pH control

ALKALI RESISTANCE TESTS
BT Corrosion tests
BT Acid resistance tests

♦ = scope note
BT = broader term
NT = narrower term
RT = related term
UF = use for
APPENDIX V

DESCRIPTION OF TIRSS

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Types of documents included in TIRSS</td>
<td>232</td>
</tr>
<tr>
<td>2 The physical preparation of TIRSS cards</td>
<td></td>
</tr>
<tr>
<td>2.1 Bibliographic information</td>
<td>233</td>
</tr>
<tr>
<td>2.2 Abstracts</td>
<td>234</td>
</tr>
<tr>
<td>2.3 Indexing</td>
<td>240</td>
</tr>
<tr>
<td>2.4 Editing and quality control</td>
<td>245</td>
</tr>
<tr>
<td>2.5 Reprographic and clerical work</td>
<td>246</td>
</tr>
<tr>
<td>2.6 Instructions to TIRSS users</td>
<td>247</td>
</tr>
<tr>
<td>2.6.1 'How to use TIRSS'</td>
<td>248</td>
</tr>
<tr>
<td>2.7 Examples of TIRSS cards</td>
<td>249</td>
</tr>
</tbody>
</table>
1 Types of documents included in TIRSS

The following indicates the wide range of documents included in the system:

<table>
<thead>
<tr>
<th>Document type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical methods</td>
<td>Methods for both chemical and physical analysis.</td>
</tr>
<tr>
<td>Government and Provincial Gazette and Regulations</td>
<td>All regulations, such as for fertilizer analysis, etc, are included.</td>
</tr>
<tr>
<td>Journal articles</td>
<td>Included on request only and preferably limited to review type articles.</td>
</tr>
<tr>
<td>Letters and minutes</td>
<td>Only when of a technically informative nature and of permanent value.</td>
</tr>
<tr>
<td>Memoranda</td>
<td>- ditto -</td>
</tr>
<tr>
<td>Minutes of meetings</td>
<td>- ditto -</td>
</tr>
<tr>
<td>Pamphlets</td>
<td>Only pamphlets that contain particularly valuable technical information are included.</td>
</tr>
<tr>
<td>Patents</td>
<td>Now discontinued - South African chemical patents were included until Chemical Abstracts Service agreed to abstract them.</td>
</tr>
<tr>
<td>Periodical reports</td>
<td>All reports that are issued at regular intervals sequentially (monthly, quarterly, etc). These are not abstracted but are included for cross-reference purposes.</td>
</tr>
<tr>
<td>Subject reports</td>
<td>Internal reports dealing with one or more subjects and produced by AE&CI and associated companies. These make up 80% of TIRSS.</td>
</tr>
<tr>
<td>Test notes</td>
<td>The results of testing raw materials, products, competitive products, etc, are included when of permanent value.</td>
</tr>
<tr>
<td>Translations</td>
<td>All technical material translated from foreign languages at AE&CI's expense is included to ensure maximum return on the investment.</td>
</tr>
</tbody>
</table>
The physical preparation of TIRS cards

Several examples of TIRS cards are included in Section 2.7 of this Appendix to show the slightly differing treatment for different types of documents. The presentation has been standardised so that bibliographic information heads each card. This is followed by the abstract, or extract if more appropriate, and all the index terms appropriate to each document. The abstractor/indexer prepares a draft of information required for the three sections of each card, using a so-called 'work sheet'.

2.1 Bibliographic information

This is limited to the minimum that will serve to identify each document unambiguously and to indicate its physical whereabouts. To save abstractors' time it is only necessary to write out the information unique to each document and a 'format' number so that the typist can complete the lay-out.

Example 1: a memorandum.

The abstractor would write the following information:

Format 10
CE/MEM/27/67/REL
6.3.67
R.E. Leyman, Eng. Dept.
Examination of pipe bend on ARCTON 'cold' line, heat-treated in-situ
CE 136
Tech. file T 17/10, Eng. Dept., AE&CI

The typist would present this information as follows on the TIRSS card:

FROM : R.E. LEYMAN, Engineering Department, AE&CI
TO : A.J.P. TUCKER, Engineering Department, AE&CI
SUBJECT : EXAMINATION OF PIPE BEND ON ARCTON "COLD" LINE, HEAT-TREATED "IN-SITU". PROJECT CE.136
AVAILABLE : Technical file, T.17/10, Engineering Department, AE&CI

Example 2: a pamphlet

FORMAT 3 A (shown only as typed on the TIRSS card)

PAMPHLET NO. : P.M.14.263 DATE : 23.5.1966
SOURCE : U.S. Naval Research Laboratory, Washington, USA
AUTHORS : E.S. STUHLER and R.E. KAGARISSE
TITLE : INFRARED SPECTRA OF PLASTICS AND RESINS PART 2 - MATERIALS DEVELOPED SINCE 1954
AVAILABLE : Library, Research Department, AE&CI
Example 3: a report

REPORT NO. : AER.312/A DATE: 23.10.1961
AUTHOR : J. HAWES & N. MUNRO, Research Department, AE&CI
TITLE : THE DEVELOPMENT OF A PLASTIC IGNITERCORD CONNECTOR
AVAILABLE : Central Report files, Research Department, AE&CI

2.2 Abstracts

Whenever possible, and it is appreciated that it is not always possible, an existing summary is used or an informative type abstract is provided. Alternatively, in the case of letters, minutes, memoranda and minutes of meetings, extracts which contain the valuable pieces of information may be all that it is necessary to provide. If time can be saved by making photocopies and marking them using conventional proof-readers' symbols as appropriate, this is always to be preferred.

Guidance is given by the abstractor on the preferred style to be used and on how to set about preparing an abstract. As far as possible the Chemical Abstracts Service 'Directions for abstractors' are followed closely (see below for reference). In the case of an investigational report, for example, the abstractor should consider the scope and purpose, methods and procedures used in making the investigation, significant new results, the conclusions drawn and the recommendations made. Information which, for one reason or another, must be excluded is detailed - this may include 'classified' information (ie information which is relevant to national security) and information where the need for commercial security is paramount - eg information on the details of the formulation of products, cost data, market estimates, etc.

Generally speaking the abstractor is referred to the following publications as regards the length of abstracts, permitted abbreviations and units, etc.

1 Chemical Abstracts Service : Directions for abstractors, Columbus, Ohio, Chemical Abstracts Service of the American Chemical Society, 1967.

The formal training of abstractors takes from two to four weeks, depending on aptitude, technical ability, etc., and each is provided with an aide memoire as follows:

DO:
- Scan the document
- State what was found
- State why the work was done
- State how the work was done
- Place general statements last
- Separate relatively independent subjects
- Differentiate experiment from hypothesis
- Be exact, concise, and unambiguous
- Use short, complete sentences
- Avoid unnecessary words
- Use generic expressions when possible
- Use direct statements (active voice)
- Describe conclusions in the present tense
- Use standard abbreviations

DO NOT:
- Change the meaning of the original
- Comment on or interpret the document
- Mention earlier work
- Include detailed experimental results
- Describe details of apparatus
- Mention future work
- Use involved phraseology or jargon
- Waste words by stating the obvious
- Say the same thing in two ways
- Use a choppy, telegraphic style
The formal training of abstractors takes from two to four weeks, depending on aptitude, technical ability, etc, and each is provided with an aide memoire as follows:

DO:
- Scan the document
- State what was found
- State why the work was done
- State how the work was done
- Place general statements last
- Separate relatively independent subjects
- Differentiate experiment from hypothesis
- Be exact, concise, and unambiguous
- Use short, complete sentences
- Avoid unnecessary words
- Use generic expressions where possible
- Use direct statements (active voice)
- Describe conclusions in the present tense
- Use standard abbreviations

DO NOT:
- Change the meaning of the original
- Comment on or interpret the document
- Mention earlier work
- Include detailed experimental results
- Describe details of apparatus
- Mention future work
- Use involved phraseology or jargon
- Waste words by stating the obvious
- Say the same thing in two ways
- Use a choppy, telegraphic style
Initially the newcomer works from model abstracts, an example of which is set out below:

'PM 2.36 A MULTI-TON HIGH EXPLOSIVE AIR BLAST SIMULATOR
The design principles, construction, and performance of a stepped cylindrical blast tunnel are described. With this, spherical blasts from multi-ton explosions can be simulated at less capital cost than is required for a fully conical tunnel. The stepped tunnel consists of four sections: about 35 ft of 9-in. tube (the breech and barrel of a 9.2-in. gun, in which the charge is exploded); about 25 ft of 18-in. steel tube; about 35 ft of 36-in. steel tube; and about 100 ft of 72-in. tube, initially steel but continued as concrete. The sections are linked by conical joints and fitted with piezo-electric blast gauges, foil strain gauges, and other types of gauges as required, the outputs being fed into a recorder. The charge consists of 1-lb cylinders of HDX/TNT, electrically detonated, and the maximum with the present design (imposed by the concrete section) is 8 lb, equivalent to a free-air mass of about 23 tons.

Examples of hydrostatic pressure-time records obtained during running-up tests are given and compared with records from multi-ton high-explosive charges and from nuclear explosives tests. It is concluded that the performance agrees reasonably well with that predicted from theory and that the simulator largely eliminates the need for multi-ton H.E. firings. Suggested uses are for studies in the following fields: transient hydrostatic loading of panels, beams, and columns; effects of earth cover and other protection of structural members; blast loading of various target shapes; reflection, diffraction, and drag (including dusty flow); behaviour of drag targets.'

It is essential for the training given to be thorough if a high standard is to be reached and maintained. As an example consider the following case history:

The document which is the subject of the above model abstract was given for test purposes to a new abstractor as her initial attempt on her first day of learning. This individual holds an honours degree in chemistry and she had, at that time, no experience of working in industry or of writing abstracts. The following shows her abstract as corrected for language and arrangement (the purpose of the circled numerals is made clear below):
The simulator is a new-type-of-facility—a stepped cylindrical and blast tunnel. The principle of this simulator is similar to that of the conical shock tube. The blast tunnel is described and illustrated in detail. The explosive charge is contained at the end of a 9/16 in. diameter thick-wall tube. On detonation an air shock wave of several thousands of psi overpressure travels down the tube. It then expands through a short conical section into an 18/16 in. diameter tube, giving a shock overpressure of several hundred psi. Two further expansions take place via conical sections into 36/16 in. and 72/16 in. diameter tubes; where-the maximum blast overpressure would be about 50 psi. Various pressure gauges and strain gauges are situated in the various tubes. To permit high speed cine photography of targets, glass ports have been provided. Experimental results are given and compared with predicted results on the basis of a true conical tube. Examples of the hydrostatic pressure-time records obtained during the running up tests are given and compared with those from multi-ton high explosive charges and from British and American nuclear tests.

The original version comprises 189 words, and after editing this has been reduced to 169. The instructor's comments and advice comprised the following, which were discussed orally with the learner, and her attention was drawn to a factual content comparison between the model abstract and her own abstract:

Discussion with learner

Content

More details of construction, operation, and uses are needed. Only 13 of the 40 facts in the model are included, plus overpressure figures not in the model. That the shock wave expands along the tunnel would be known to the prospective reader.
Facts not made clear: 5 this is a 9.2-in. gun barrel. 7 in which tube is the overpressure 50 psi?

Redundant facts: 1 'a new type of facility'. 3 already said it is described. 5 no need (in this and preceding two sentences) to say that shock wave expands in tubes. 13 country of tests immaterial.

Arrangement
Construction should precede, not accompany, description of what happens when charge is exploded.

Language
2 'this simulator' could be used in the first sentence of the abstract, but not here, when a tunnel has just been referred to. 4 'explosive charge is contained' is loose language; 'the charge is exploded at' would be better. 8 why 'would be'? T.is should read 'is' to conform with earlier sentences. 10 Neither word 'various' is doing any work; omit both. 11 'are' should replace 'have been' to preserve style. 12 'on the basis of a true conical tube' is wrongly attached to 'compared'; the phrase should read 'and compared with results predicted on the basis'.
Factual content comparison between the model abstract and the learner's abstract of the same document

<table>
<thead>
<tr>
<th>Factual in model abstract</th>
<th>Maximum score</th>
<th>Learner's score and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic sentences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stepped cylindrical blast tunnel</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>design principles, construction, performance given</td>
<td>(3)</td>
<td>1</td>
</tr>
<tr>
<td>simulates multi-ton explosions</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>cheaper to build than conical tunnel</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>breech and barrel of 9.2-in. gun;</td>
<td>(2)</td>
<td>referred to as a 'tube'</td>
</tr>
<tr>
<td>length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>charge exploded in above</td>
<td>(1)</td>
<td>1</td>
</tr>
<tr>
<td>18-in. section; length; material</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>36-in. section; length; material</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>72-in. section; length; material</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>joined by conical sections</td>
<td>(1)</td>
<td>1</td>
</tr>
<tr>
<td>instrumentation (blast gauges, strain gauges, provision for others, output to recorder)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>Operation and performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>charge 1-lb cylinders of RDX/TNT</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>electrically detonated</td>
<td>(1)</td>
<td>details of overpressures given</td>
</tr>
<tr>
<td>maximum charge 8 lb</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>equivalent to 23 tons in free air</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>reasons for maximum</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sample records given</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>compared with HE & nuclear expl. results</td>
<td>(2)</td>
<td>2</td>
</tr>
<tr>
<td>performance agrees with theory</td>
<td>(1)</td>
<td>1</td>
</tr>
<tr>
<td>Conclusions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>need for multi-ton firing largely eliminated</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>5 suggested uses (hydrostatic loading, protection, blast loading, flow etc, targets)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

Total: 40 13
The above procedure is followed for the first twelve practice abstracts, working from a model in each instance. Thereafter, practice abstracts are discussed briefly only until the instructor is satisfied that the learner can consistently produce abstracts that are acceptable for TIRSS.

2.3 Indexing

A complete record of all the indexing terms in use, together with cross-references, is maintained. This is the ABCOI thesaurus. A sample page is illustrated in Appendix II, page 159.

The indexer selects from the thesaurus the terms which he considers to be appropriate to each document, including cross-references. He also suggests new terms whenever he believes this to be necessary. The whole process of indexing is not an easy task and it is essential for the indexer to bear in mind the requirements of the user at all times. Thus it is not infrequently necessary for the indexers to consult potential users who possess expertise in the appropriate technical field.

One of the more important objectives of the TIRSS system is to bring together all available pieces of information relating to a subject. This may necessitate the repetitive use of a uniterm as the 'tail' of several pre-coordinated terms, as well as the use of the same uniterm in its own right:

eg: The terms FERTILIZERS - MILLING

INSECTICIDES - MILLING

ORES - MILLING will each lead the TIRSS user to a specific aspect of milling whereas the term MILLING brings together all the information in the system on milling these as well as other materials.

However, there are numerous uniterms which should not, for one reason or another, be introduced into a pre-coordinate system such as TIRSS and guidance to the indexers includes lists of such terms, as well as a few which may be so used:

Examples of uniterms excluded from TIRSS are:
Some uniterms do however serve a useful purpose in a pre-coordinated system and the following are examples of such terms included in TIRSS:

- BIBLIOGRAPHY
- COMPUTER PROGRAMMES
- COMPUTER PROGRAMMING
- CONFERENCES - Role 0
- MANUALS - Role 0 (Use either this or PROCESS MANUAL - 0 for what is obviously a manual even if not so called on the title page)
- MILLING
- PROJECT - Role 0 (Use only for AE&CI projects)
- SAMPLING
- STANDARDS
- SURVEY
- SYMPOSIA - Role 0

The use of uniterms in their own right and as the tails of pre-coordinated terms, together with role indicators, is illustrated by the following examples:

- BIBLIOGRAPHY - 0
- EXPLOSIVES PRODUCTION - BIBLIOGRAPHY - 0
- COMPUTER PROGRAMMES - 4
- FLOW SHEETS - COMPUTER PROGRAMMES - 4
- INSECTICIDES - SURVEY - 0
- SURVEY (MARKET) - ~

As illustrated above, TIRSS includes the use of role indicators primarily as a means of ensuring indexing consistency (see Chapter 4, sub-section 4.4.2), and these are defined for the benefit of indexers as follows - some rules for their application are also included. (Note: this list is derived from the EJC roles set out in Appendix I. It is simpler and less detailed and quicker to learn and to use):
ROLE 1: An input, *ie* a raw material, or ingredient, which is thus subjected to a process. As index terms should serve the purpose of retrieval this role must be used sparingly, particularly as role 1 terms are usually uniterms. If the following terms are applicable:

(a) ETHYLENE -1
(b) POLYETHYLENE -2
(c) ETHYLENE POLYMERIZATION -4

omit the first term (a) as it serves no useful purpose. Every term with role 1 must have a corresponding term for the output, which must be assigned role 2 if the means of production are not discussed or role 4, *ie* POLYMERIZATION, PREPARATION or PRODUCTION or other similar descriptor, if they are, *ie* either (b) or (c) above.

ROLE 2: An output, *ie* the product or result of one or more inputs (role 1). Not every term with role 2 need have a corresponding term with role 1.

ROLE 3: Undesirable, such as contaminants, pollutants, diseases, pests or properties.

ROLE 4: Means of production and the use of equipment when described. If these are merely discussed role 9 is assigned.

ROLE 5: An environment or medium, such as a catalyst carrier, solvent or vacuum.

ROLE 6: That which affects. Every term, with role 6 should generate a corresponding term with role 7, and *vice versa*. If, however, the term with role 6 (or 7) is not a useful retrieval term, omit it.

ROLE 7: That which is affected by a term with role 6 (q.v.)

ROLE 8: For the theoretical treatment of a subject.

ROLE 9: The passive recipient - that which is treated or discussed, economics, properties, etc. EVALUATION -

ROLE 10: When the subsequent possible applications of a material are given.
ROLE 0: Locator terms, bibliographies, companies (e.g. IMPERIAL CHEMICAL INDUSTRIES, LIMITED), complaints, conferences, data sheets, explosions, factories, fires, flow sheets, manuals, place names, projects, specifications, standards, statistics, surveys, symposia, visits, work study reports.

N.B. If an index term is used with more than one role number then it is repeated each time in full, i.e.

PIGMENT DISPERSION -8
PIGMENT DISPERSION -9

(Note: When the name of a chemical plant is used as an index term, the role numbers must be either 0 or 9, e.g. CHLORINE PLANT -0 as a locator term when only its equipment is described or CHLORINE PLANT -9 when the plant or process, or both, is discussed or described.)

Roles are usually assigned to indexing terms at the same time as indexing terms are selected, since it normally becomes obvious during the preparation of an abstract whether, for example, a chemical compound is a raw material, a product, or a contaminant, etc. Their value is well illustrated by an example:

A document was indexed as follows:

CONTAINERS (PLASTIC) -9
LINING MATERIALS -4
POLYPROPYLENE -4
POLYVINYL CHLORIDE -9

From the role indicators it can be seen that polyvinyl chloride containers are lined with polypropylene.

Without role indicators the containers can either be made from polypropylene or polyvinyl chloride and the same ambiguity applies to the lining materials.

Finally, it is every industrial concern’s experience that certain words are regularly misunderstood or misused by technical staff. Others require definition because of double meanings, or different local and overseas usage, or special limitations or requirements within the particular concern, or because their meaning is usually known only to specialists working in a narrow field. Thus it is most desirable to compile a glossary of all words which cause difficulties or which require explanation.
The following is an extract from the TIRSS indexers’ glossary which has been built up since 1963:

PRIMERS
A blasting cartridge into which the detonator of a capped fuse, electric detonator or electric delay action detonator has been inserted.

PROCESS EVALUATION
This index term is restricted to a report the objective of which is the evaluation of a process: it is not used for reports in which process evaluation does not form the major part.

PRODUCTION STATISTICS
Use (SUBJECT) – STATISTICS
STATISTICS (PRODUCTION)

PROJECT
Use for AR&CI projects only (Role 0)

REFORMING
The use of controlled heat and pressure (with or without catalysis) to cause cracking and isomerization of the hydrocarbon molecules in low octane petroleum fractions.

REGULATIONS
Do not use as a uniterm. When regulations are specifically given in a document use REGULATIONS as a "tail" Role 0

SURVEY
In chromatography: the ratio of the distance travelled by the zone, to the distance travelled by the liquid front.

RHEOLOGICAL PROPERTIES
These embrace a wide range of flow properties
 granular flow, melt flow, powder flow, etc. (q.v. MELT FLOW PROPERTIES).

RIGISOLS
Weak strength plastisols (25-40 parts filler/100 parts polyvinyl chloride). For use in surfaces and semi-rigid moulding compounds.

ROPE
Use for ropes or cables that carry loads stays, mooring ropes, etc.
It will be appreciated from the foregoing that the process of indexing is more difficult to master than abstracting, for example. At the same time it is essential to lay down numerous rules and to provide guidance on many details. Thus considerable constraints are placed on the indexer, which can be summarised by use of the word 'discipline'. Experience has shown that after an abstractor has had about one week of training in abstracting, he/she can then start learning to index as well. However, while a competent abstractor can be trained in two-to-four weeks as already indicated, it takes from two-to-three months for the same individual to become a competent indexer as well. The training given is less formal than for abstracting and involves discussion between the learner and the instructor of each set of terms selected.

Experience has shown that complete consistency between any two indexers is never achieved. But for practical purposes, provided that control of the terms in the thesaurus is tight (so that near-synonyms, etc do not creep in) this is not of great importance in the TIRSS system. The presentation of all the indexing terms selected for each document on each TIRSS card has been found to provide adequate access; after six and a half years of operation almost no evidence has been found that important information in the system has been missed when required because of inadequate or inconsistent indexing.

2.4 Editing and quality control

When the trained abstractor/indexer has completed the three sections of a TIRSS card, as set out above in Section 2.3 of this Appendix, the draft is passed to a colleague together with the original document. The colleague is then required to edit the language used in the abstract and to check the acceptability of the indexing terms selected. Clearly discussion and disagreement can arise at this stage and the Head of the Section is expected to make all necessary decisions on language, phraseology, word selection, etc. Experience has shown that the work of each abstractor/indexer should be checked by one colleague for a short period only, and that it should then be passed to another colleague. In this way each one's work is checked over a period by all his colleagues, and the net effect is greater overall consistency, or less divergence by any one abstractor/indexer.
Finally, the bibliographic information is checked by the staff responsible for maintaining the thesaurus, i.e., for adding and deleting terms and for up-dating the print-out. It should be noted that all the thesaurus terms and cross-references have been punched onto tabulating cards and transferred to magnetic tape. At each up-dating all changes are incorporated into the main list of terms stored on tape and the new tape is then run through a computer printer; print-out is direct onto offset-litho paper masters, sprocket-punched so as to fit the printer, and perforated for subsequent separation of each page.

2.5 Reprographic and clerical work

The draft abstract and index terms, written out on a 'work sheet' and edited and checked on a routine basis, are passed to a typist for production of the 'master' from which the requisite number of copies will be made. All typing is done onto offset-litho paper masters supplied as perforated continuous stationery, so that A5 sized masters (105 x 148 mm) can be detached in succession. Electric typewriters are used to ensure uniformity of impression and are fitted with a small typeface (Charter) - see examples in Section 2.7 of this Appendix - in order to obtain the maximum density of print compatible with clarity. The offset-litho masters are preprinted with a rectangular block in the top right-hand corner and a so-called 'master number' is typed into this block. Master numbers represent the sequence in which documents have been processed into TIRSS and one card is run-off for the sequential filing of each abstract; these cards are filed some miles away as security against destruction of the main body of TIRSS.

After each offset-master has been typed it is checked for typing errors and also to ensure that the correct format has been used - see Section 2.1 of this Appendix. Thereafter the requisite number of copies are run-off on cards (size A5 and weight two-sheet) as follows:

One card for the master number file.
One card for the document number file.
One card for filing under the name of each author, patentee, etc.
One card for filing under each index term used.

245
The average total is ten cards per document processed. Approximately five percent of the documents in TIRSS require the use of more than one card in order to accommodate all the bibliographic information, abstract and index terms. These cards are secured together by a high quality masking tape which will stand up to extensive flexing as the cards are taken out of the file, opened and then refolded. In the bottom left-hand corner of each card an indication is typed to the total number of cards secured together in this way for each document processed, thus:

Card 1/1 means that there is only one card for the particular item,
Card 1/2 means that this is the first of two cards for the particular item,
Card 2/2 means that this is the second of two cards for the particular item, and so on — see example 2, Fertilizer Society Proceedings No. 76, in Section 2.7 of this Appendix — second, etc cards are known as continuation cards.

Once the requisite number of cards have been produced each is rubber-stamped with an arrow to show where it is to be filed — see examples in Section 2.7 of this Appendix. The cards are filed. In the case of document numbers all filing is sequential but in the case of index terms they are filed alphabetically and sub-filed from role 0 to role 10. All items in the same sub-file are in random order since experience has shown that date sequence, etc is of little value when a search for information is carried out. The only exception to this is when information is sought for use in patent matters, when a date may be important. However, since most of the contents of TIRSS comprises unpublished documents (ie unpublished in the legal sense) these cannot be used as citations in patent matters.

2.6 Instructions to TIRSS users

No IR system can establish itself successfully without undertaking a certain amount of 'selling' activity to its customers, actual and potential. Some customers prefer personal instruction and others prefer to receive a descriptive written guide as a hand-out. The guide to TIRSS includes a very short description of the underlying principles and brief reference to the information set out in detail in the foregoing Sections of this Appendix. This is followed by an explanatory section entitled 'How to use TIRSS', which is reproduced verbatim below:
2.6.1 'How to use TIRSS'

In order to use TIRSS most expeditiously, a well-defined routine should be adhered to. Briefly the steps to be taken in this routine are as follows:

1 Define the problem
2 Decide on possible index terms
3 Consult the thesaurus
4 Determine the role
5 Consult the index cards
6 Select the required cards
7 Have copies made
8 Return cards to index

The following example is given to assist searchers in using the steps outlined above.

Example:
A chemical engineer wants to know whether there is any information in TIRSS on the production of aluminium sulphate.

Step 1 (Define the problem)
Usually it is necessary to clarify a problem so that the in-terms decided on may lead to the required information. In the above example further discussion reduced the scope of the problem, which ultimately became: what information is available in TIRSS on methods of production of aluminium sulphate using bauxite as a raw material?

Step 2 (Decide on possible index terms)
Possible index terms which may lead to information are:

1 ALUMINIUM SULPHATE PRODUCTION
2 Bauxite
3 RAW MATERIALS
4 PRODUCTION - ALUMINIUM SULPHATE

Terms 3 and 4 cover too wide a field to be of much value - "RAW MATERIALS" could cover almost any substance, and "PRODUCTION" as a generic word is not of great value, and is not used in this inverted form in the TIRSS thesaurus.

Term 1 is the term that would normally come to mind, but a little further thought will show that this term would cover all methods of aluminium sulphate production from all possible raw materials, whereas what is required are methods in which bauxite only, is used as a raw material. This suggests
another line of approach namely, term 2, i.e. BAUXITE as a raw material.

Step 3 (Consult the thesaurus)

On consulting the thesaurus, it will be seen that amongst other terms dealing with bauxite, there is one headed simply "BAUXITE".

The searcher is immediately aware that there is at least some information available on bauxite in the subject index, but not necessarily on the aspect in which he is interested.

Step 4 (Determine the role)

The next step, before proceeding to the subject index cards, is to determine what role BAUXITE is playing in the problem. On consulting the role guide, it may be seen that inputs, ingredients, raw materials, etc, are indexed under Role 1, so that BAUXITE-1 is the term to seek amongst the subject index cards.

Step 5 (Consult the index cards)

The index cards are then searched until the guide card "BAUXITE" is found. Behind this guide card are the role indicator guide cards from, in this instance, BAUXITE-1 to BAUXITE-9.

All the index cards filed behind the role indicator guide card "Role 1" should then be removed for examination. All these cards should give BAUXITE-1, i.e. bauxite used as a raw material in any process, as one of the terms.

Step 6 (Select the required cards)

In order to select the relevant cards from those found under BAUXITE-1, all that is necessary is to find those which cover methods of production of aluminium sulphate as well, i.e. those which contain the index term ALUMINIUM SULPHATE-PRODUCTION. Referring again to the role guide, it may be seen that methods, devices for accomplishing something, etc, are indexed under Role 4, so that all cards which contain both terms (i.e. BAUXITE-1 and ALUMINIUM SULPHATE-PRODUCTION-4) are the ones required.

Step 7 (Have copies made)

A copying machine is available for making copies of cards to take away. The searcher is expected to use this facility when appropriate (operating instructions are displayed beside the machine) and not to copy out any cards manually. Copying by hand is time consuming and far more expensive than photocopying.
Finally, the index cards should be returned to the index. There should be no difficulty about this, as the index cards are filed in random order behind each role indicator guide card. It is strictly forbidden to remove any cards from the index room.

2.7 Examples of TIRSS cards

Several examples of TIRSS cards for different types of documents are set out below. These are all actual cards in the system – note the small typeface and that the arrows indicate where each card is filed:

Example 1 Although this is a published report, internal Company reports are laid out in exactly the same way.

REPORT NO : ERA 5030
AUTHOR : P. VON KAHNE, Electrical Research Association, UK
TITLE : SHAFT VOLTAGES AND BEARING CURRENTS – A SURVEY OF PUBLISHED WORK
AVAILABLE : Library files, Research Department, AE&CI

ABSTRACT
The survey summarizes the knowledge of the different kinds of shaft voltages and bearing currents, of their sizes and their origins, of the damage they produce and the remedies usually taken. The chapter on the origins of shaft voltages contains some evaluations of a new thesis, leading to a new understanding of the influence of alternating homopolar fields on bearing currents, mainly in two-pole machines, and in machines with fractional slot windings, connected with eccentricity and tooth saturation. The survey mentions and criticizes the commonly known rules for avoiding bearing currents. It refers then to the different qualitative approaches made by different authors and evaluates the latest contribution, which, it is claimed, allows the calculation of bearing currents using only design sheet data. Furthermore the most comprehensive bibliography ever published on this subject is added, compiled from American, English, French, German, Russian and other sources.

INDEX TERMS

BEARINGS -9
CURRENT (INDUCED) -9
CURRENT (STRAY) -9
ELECTROSTATIC CHARGES -9
MACHINES (ELECTRICAL) -9

MACHINES (ROTATING) -9
MACHINES - SURVEY -0
SHAFT VOLTAGE -9
SURVEY (LITRATURE) -0

Card 1/1
Example 2 This example shows the lay-out adopted for the five percent of documents which result in more than one card being needed.
Example 3 Proposed regulations published in a South African Government Gazette.

GOVERNMENT GAZETTE EXTRAORDINARY
DATE: 23rd May, 1963
NO. 509 VOLUME 8.
TITLE: PROPOSED REGULATIONS IN CONNECTION WITH THE SALE OF FERTILIZERS
AVAILABLE: Library, Research Department. File A/10/3. Development Department

ABSTRACT

These proposed regulations cover the registration of fertilizers and the provision for appeals; marking of fertilizer containers; composition or minimum quality of single, compound or natural and artificially mixed fertilizers; sterilization of imported fertilizers; advertising; sampling and analysis of fertilizers; and offences and penalties.

INDEX TERMS

AMMONIATED SUPERPHOSPHATE -9
AMMONIUM NITRATE -9
AMMONIUM SULPHATE -9
BASIC SLAG -9
BLOODMEAL -9
BONE MEAL -9
CALCIUM CYANAMIDE -9
CALCIUM NITRATE -9
DETERMINATION - NITROGEN (IN FERTILIZERS) -4
DETERMINATION - PHOSPHATE (IN FERTILIZER) -4
DETERMINATION - POTASSIUM (IN FERTILIZER) -4
FERTILIZERS - ANALYSIS -4
FERTILIZERS - NITROGEN DETERMINATION -4
FERTILIZERS - PHOSPHORUS DETERMINATION -4
FERTILIZERS - POTASSIUM DETERMINATION -4
FERTILIZERS - REGULATIONS -9
FERTILIZERS - SAMPLING -4

Card 1/1

251
Example 4 A pamphlet of particular value.

It is shown that the solubility is greatly affected by the nitrogen content when this is in the region of 13%. The content depends on the composition of the mixed acid used for nitrating, nitrating time and temperature. Solubility increased when the cellulose was first treated with acetone, but when the products were nitrated for a longer period or redistilled, acetone treatment had less effect on the solubility. No direct connection was found between the sudden decrease in solubility, which occurs at 20°C for 13.1595 N but at 0°C for 13.2035 N, and the discontinuity in the (101) spacing at 13.154 N. Experimental details are given and results are tabulated.

INDEX TERMS

CELLULOSE MATERIALS - MOLECULAR STRUCTURE -6
COTTON LINTERS (NITRATED) -9
COTTON LINTERS - NITRATION -4
MIXED ACID COMPOSITION -6
NITROCOTTON - NITRATION TIME -6
NITROCOTTON - NITROGEN CONTENT -6
NITROCOTTON SOLUBILITY -7

Card 1/1
Example 5 A translation of a journal article.

ABSTRACT
Methods for the determination of organic additives, surface-treatment and coating agents, and binders have been combined into a systematic analytical procedure. The procedure consists of an exploratory analysis, described in detail, and an extraction analysis, not described here. In the exploratory analysis the following are detected: nitrogen; chlorine; sulphur; phosphorus; fluoride; amino nitrogen; formaldehyde in amino resins and aldehyde groups in oxidized starch and vegetable gum; resins, resinous products; fatty oils; polyvinyl polymers; styrene-butadiene interpolymers; starch, dextrin, polyvinyl alcohol and polyvinyl acetate; phenol resin; silicone resin, and sulphur and phosphorus in organic compounds; proteins; carboxymethyl cellulose; alginate; methyl cellulose; and low-polymer acrylates and polyethoxy compounds soluble in water; polymers directly on the coated paper surface; ash analysis.

INDEX TERMS
ADDITIVES - IDENTIFICATION -4
ANALYTICAL METHODS -4
COATING COMPOSITIONS - IDENTIFICATION -4
PAPER - ANALYSIS -4
PAPER (COATED) -9
PAPER - ADDITIVES -9
SURFACE-ACTIVE AGENTS - IDENTIFICATION -4
A method is claimed for the production of container closure sealing gaskets from a thermoplastic resilient material, in which the thermoplastic resilient material comprises as an essential ingredient a copolymer of an α-olefine and another α-olefinically unsaturated monomer, or a poly α-olefine in admixture or combination with such a copolymer and/or with a polymer of one or more α-olefinically unsaturated monomers.

T. α-olefine is ethylene and the poly α-olefine is polyethylene, and the thermoplastic resilient material comprises a copolymer or mixture of copolymers of an α-olefine and a vinyl or acrylate, ester either alone or in admixture or combination with a polymer of one or more poly α-olefines.

INDEX TERMS

ACRYLIC ACID ESTERS -1
CONTAINERS - SEALING -4
ETHYLENE -1
GASKETS -9
OLEFINES -1
OLEFINES, COPOLYMERS -1

OLIFINES - COPOLYMERIZATION -4
PLASTICS (THERMOPLASTIC) -2
POLYETHYLENE -1
SEALING COMPOSITIONS -2
SEALING COMPOSITIONS -4
VINYL ACETATE -1
VINYL ALCOHOL ESTERS -1
The enclosed document is the exclusive property of A.E. & C.I. Limited and may not be used by anyone without the Company’s written permission. Transmittal or disclosure of the contents in any manner to any unauthorized person is prohibited.

Figure 1. A film-jacket ‘master’ of 16 mm film representing all the current available information in the system on pest control, role 4 - 16, use of equipment. Thirty-one items were in the system and an additional item, representing new information, is shown in the process of being added.

Figure 2. A diazo ‘working’ copy of the same information as shown in Figure 1 with the additional item in its correct position. Such copies are available for study or distribution wherever and whenever required.
<table>
<thead>
<tr>
<th>NUMBER</th>
<th>QUESTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>How does plasticizer absorption behaviour of suspension of PVC depend on the nature of the plasticizer?</td>
</tr>
<tr>
<td>2</td>
<td>How may molecular weight distribution be calculated from gel permeation chromatograms for polyethylene?</td>
</tr>
<tr>
<td>3</td>
<td>What is the precision of sieving procedures for measuring particle size distribution of corvic polymers?</td>
</tr>
<tr>
<td>4</td>
<td>What concentrations of dialaurylthiodipropionate should be used with Cyasorb LV531 to protect polyethylene socks from UV degradation?</td>
</tr>
<tr>
<td>5</td>
<td>What is the effect of injecting Topanol GC into a polyethylene reactor on the composition of the recycle gas stream?</td>
</tr>
<tr>
<td>6</td>
<td>What polymer properties control the rate of absorption of hot plasticizer by granular PVC?</td>
</tr>
<tr>
<td>7</td>
<td>Are there any AEClI plants where traces of radioactivity present in raw materials build up to a dangerous level?</td>
</tr>
<tr>
<td>8</td>
<td>What is the effect of voidage in a bed of pelleted catalyst on the conversion efficiency of ammonia to nitric oxide?</td>
</tr>
<tr>
<td>9</td>
<td>What is the effect of chemically absorbed water on the sintering of catalyst pellets?</td>
</tr>
<tr>
<td>10</td>
<td>Are there any uses for spent antimony chloride catalyst ex Arcton process?</td>
</tr>
<tr>
<td>11</td>
<td>What is the mechanical stability of ICI high temperature shift catalyst after treatment with water?</td>
</tr>
<tr>
<td>12</td>
<td>How can rock fragmentation be decreased when blasting is carried out with a pneumatically loaded ammonium nitrate blasting agent?</td>
</tr>
<tr>
<td>NUMBER</td>
<td>QUESTION</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>How necessary is it to control the relative humidity in process build-</td>
</tr>
<tr>
<td></td>
<td>ings used for the preparation of antimony permanganate delay compo-</td>
</tr>
<tr>
<td></td>
<td>sitions for delay detonators?</td>
</tr>
<tr>
<td>14</td>
<td>How can the sensitivity of pneumatically loaded ammonium nitrate-fuel</td>
</tr>
<tr>
<td></td>
<td>oil explosives be increased?</td>
</tr>
<tr>
<td>15</td>
<td>Have there been any investigations into means of improving the adhesion</td>
</tr>
<tr>
<td></td>
<td>of the final countering cottons to PP fuse?</td>
</tr>
<tr>
<td>16</td>
<td>How do Armoflo 16 and AS 7 compare as antisetting agents for ammonium</td>
</tr>
<tr>
<td></td>
<td>nitrate which is to be transported in bulk?</td>
</tr>
<tr>
<td>17</td>
<td>What effect does the use of fuse raw materials from different suppliers</td>
</tr>
<tr>
<td></td>
<td>have on the properties of the finished fuse?</td>
</tr>
<tr>
<td>18</td>
<td>What infrared gas analyzers are being used in ICI?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMBER</td>
<td>QUESTION</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>25</td>
<td>Under what conditions is an ethylene gas stream capable of generating</td>
</tr>
<tr>
<td></td>
<td>dangerous electric charges?</td>
</tr>
<tr>
<td>26</td>
<td>What is the capacity of the Midland peroxide plant for manufacturing</td>
</tr>
<tr>
<td></td>
<td>45% solution of catalyst K?</td>
</tr>
<tr>
<td>27</td>
<td>What materials have been tried as clarity modifiers for manufacture of</td>
</tr>
<tr>
<td></td>
<td>polyethylene film grades?</td>
</tr>
<tr>
<td>28</td>
<td>What information is available on the application of the Cusum statistical</td>
</tr>
<tr>
<td></td>
<td>method to process control in polyethylene manufacture?</td>
</tr>
<tr>
<td>29</td>
<td>How may floss generation during polyethylene manufacture be minimised?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>How precise are viscosity measurements on cone and plate viscometers?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Which methods are available for testing the mechanical strength of</td>
</tr>
<tr>
<td></td>
<td>catalyst pellets?</td>
</tr>
<tr>
<td>NUMBER</td>
<td>QUESTION</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>38</td>
<td>To what extent does the decoupling of an explosive in a borehole affect the fracture pattern in the medium surrounding the borehole?</td>
</tr>
<tr>
<td>39</td>
<td>On what basis can the initiating mixture used in commercial detonators be classified as "safe" to use?</td>
</tr>
<tr>
<td>40</td>
<td>What is the effect of moisture on the propagation sensitivity (ADC) of Monobel explosives?</td>
</tr>
<tr>
<td>41</td>
<td>What is the effect of including beeswax or DNT in Pentolite on its sensitivity?</td>
</tr>
<tr>
<td>42</td>
<td>What on-line equipment is available for the determination of trace quantities of water in process streams?</td>
</tr>
<tr>
<td>43</td>
<td>What reports are available on the quantitative aspects of gas chromatography?</td>
</tr>
<tr>
<td>50</td>
<td>What analytical methods are available for the determination of mercury in effluents?</td>
</tr>
<tr>
<td>NUMBER</td>
<td>QUESTION</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>51</td>
<td>What work has been done on the determination of the specific surface area of ferrosilicon?</td>
</tr>
<tr>
<td>52</td>
<td>Has a method been developed to fill the plastic containers which were designed for Primogal boosters?</td>
</tr>
<tr>
<td>53</td>
<td>What are the factors influencing the final properties of blackpowder?</td>
</tr>
<tr>
<td>54</td>
<td>What are the important variables in the manufacture of Sinex slurries which affect their quality?</td>
</tr>
<tr>
<td>55</td>
<td>What effect has ageing on the burning characteristics of safety fuse?</td>
</tr>
<tr>
<td>56</td>
<td>What are the factors that need to be strictly controlled during the manufacture of one-second delay composition?</td>
</tr>
<tr>
<td>NUMBER</td>
<td>QUESTION</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>64</td>
<td>Would other grades of nitrocellulose be suitable as a replacement for</td>
</tr>
<tr>
<td></td>
<td>imported DHX 3/5 nitrocellulose in the incendiary slurry used in special</td>
</tr>
<tr>
<td></td>
<td>fast ignitercord?</td>
</tr>
<tr>
<td>65</td>
<td>Is the grade of red lead used in the manufacture of ignitercord suitable</td>
</tr>
<tr>
<td></td>
<td>for making delay composition for detonators?</td>
</tr>
<tr>
<td>66</td>
<td>Has AE&CI ever manufactured sheathed elect. c delay detonators?</td>
</tr>
<tr>
<td>67</td>
<td>What information is available on butylation catalysts for melamine-</td>
</tr>
<tr>
<td></td>
<td>formaldehyde resins?</td>
</tr>
<tr>
<td>68</td>
<td>How satisfactory would UF4A resin be for veneering applications?</td>
</tr>
<tr>
<td>69</td>
<td>What is the correlation between impact strength of film measured by</td>
</tr>
<tr>
<td></td>
<td>Monsanto dart and bag dropping test results?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMBER</td>
<td>QUESTION</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>76</td>
<td>Which agents can be used for shifting the transition temperature for the rhombic and monoclinic forms of ammonium nitrate crystals?</td>
</tr>
<tr>
<td>77</td>
<td>How useful is ammonia liquor for removing carbon dioxide from gases?</td>
</tr>
<tr>
<td>78</td>
<td>Is it feasible to recover ammonia from aqueous effluent by sparging with air?</td>
</tr>
<tr>
<td>79</td>
<td>Is it presently economically attractive to expand facilities for producing powdered aluminium sulphate at Modderfontein?</td>
</tr>
<tr>
<td>80</td>
<td>Can cooling of lead azide with mother liquor be omitted without affecting quality of the product?</td>
</tr>
<tr>
<td>NUMBER</td>
<td>QUESTION</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>87</td>
<td>What errors were responsible for the metering errors on the purge from</td>
</tr>
<tr>
<td></td>
<td>Midland Polyethylene Plant ca 1970?</td>
</tr>
<tr>
<td>88</td>
<td>What techniques are available to improve the dispersion of pigment</td>
</tr>
<tr>
<td></td>
<td>particles when compounding polyethylene?</td>
</tr>
<tr>
<td>89</td>
<td>Can ethylene gas be ignited by corona discharge?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>During manufacture of polyethylene-terephthalate how does the acidity</td>
</tr>
<tr>
<td></td>
<td>of antimonic acid catalyst affect polymer properties?</td>
</tr>
<tr>
<td>91</td>
<td>How may the chain branching of PVC be determined?</td>
</tr>
<tr>
<td>92</td>
<td>How does heat stability of suspension PVC depend on granulating agent</td>
</tr>
<tr>
<td></td>
<td>used?</td>
</tr>
<tr>
<td>93</td>
<td>Is there a precise method for determining particle size distribution of</td>
</tr>
<tr>
<td></td>
<td>PVC lattices?</td>
</tr>
<tr>
<td>NUMBER</td>
<td>QUESTION</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>100</td>
<td>What investigations have been carried out on the failure rate of chemical plant equipment?</td>
</tr>
<tr>
<td>101</td>
<td>What on-line methods are available for the determination of water in chlorinated hydrocarbons?</td>
</tr>
<tr>
<td>102</td>
<td>How do you calibrate gas chromatographs used for on-line moisture measurement?</td>
</tr>
<tr>
<td>103</td>
<td>Has AE&CI ever considered using nuclear magnetic resonance techniques?</td>
</tr>
<tr>
<td>104</td>
<td>What methods are available for determining traces of nickel carbonyl?</td>
</tr>
<tr>
<td>105</td>
<td>What reports are available on on-line analysis in fertilizer plants?</td>
</tr>
</tbody>
</table>
1. All items to be included in CORIS are indexed by subject (white cards) and by author/originator (green cards) – see examples above in which a green arrow is used to indicate the same item filed under subject and originator. Both types of cards are double-sided and have a maximum of twenty entries each.

2. Details of subject card (red symbols)
 - A = indexing term (from thesaurus)
 - B = year
 - C = addressor – arrow pointing down ↑
 - addressee – arrow pointing up ↑
 (copy for information only – no arrow)
 - D = date of document
 - E = file number
 - F = brief abstract

3. Details of author/originator cards (blue symbols)
 - A = addressor
 - B = addressee
 - C = date of document
 - D = file number
 - E = brief abstract
 - F = year
APPENDIX IX

DESCRIPTION OF LIBRIS

As in the case of TIRSS, LIBRIS is a manual card index. Each card comprises bibliographic information, an abstract and index terms. No 'continuation' cards are permitted so that it is essential to limit the information concerning each document to what can conveniently be typed on an A6 card. (105 x 148 mm).

Again, as in TIRSS, electric typewriters with the small 'Charter' type-face are used and a set of cards for each document consists of:

- author/title cards as necessary
- a card for each index term used
- a card for the classified index, the reverse side of which also serves as the library register

The cards are filed alphabetically in the subject index, all those which refer to one subject being in random order.

The bibliographic information has been cut to the minimum essential for the identification of each document. Normal library conventions such as indicating the number of pages, whether or not the publication includes plates, tables, diagrams, etc and all reference to the type of binding are not used at all (see Footnote). Not only has this helped to keep the input costs down, but with the relatively small size of the document collection involved, no inconvenience has been experienced by the library staff as a result of these deliberate omissions.

As stated in Chapter 6, sub-section 6.3.2, of this dissertation the abstracts provided are indicative only. In certain instances it has been found that there is no point in providing any abstract and they are omitted completely when this is appropriate — eg for many pamphlets where an abstract

[Footnote. It has been drawn to the author's attention by an experienced librarian that in the humanities in particular the use of these conventions is frequently valuable and a means of saving the user's time. For example, the titles of books and pamphlets in some subjects convey no idea as to the size and extent of subject coverage of two such documents. A pamphlet on, say, a historical subject and of possibly 30 pages must of necessity deal with the subject matter briefly. In technical fields it is generally accepted that the vast majority of pamphlets are brief documents but they are likely to be consulted for particular specific facts more than for any other reason; it is immaterial therefore whether these facts are presented in a book of 300 pages or in a pamphlet of 3 pages].
would be no more than a repetition of the index terms, for encyclopaedic works where the contents include very many subjects and for such publications as dictionaries where an abstract could be no more than a statement of the obvious.

Many of the rules and guiding principles laid down for TIRSS have been found to be directly applicable to LIBRIS and it has not been found necessary to compile a separate guide for the LIBRIS abstractors/indexers. However, in the case of certain publications it is essential to remember that LIBRIS is firstly an IR system and that various established library procedures must be modified. Thus, for example, annual technical publications which are frequently classified as journals in a conventional library, are indexed separately and in depth. There are many such publications where the titles start with such phrases as 'Annual review of' or 'Progress in for the year'. It has also been found most desirable to treat the reports of many conferences, symposia, etc in the same way, whether these comprise preprints, 'working papers' or reprints.

Examples of cards prepared for various types of documents are set out below - the arrows indicate where each card is filed.
Example 3: a book

MINICOFF, F.J. and TIPPER, C.F.H.
Chemistry of combustion reactions.
Research Library, AE & CL

Describes the conditions under which hydrogen, carbon monoxide, the lower hydrocarbons and related compounds react with oxygen in the gas phase at less than 1000°C. The state of knowledge of intermediate molecules and radicals, reaction mechanisms and high temperature reactions in a flame front, is reviewed.
Example 2: A monograph

FINCHAM, J.R.S., and DAY, P.R.
Fungal genetics.
(Botanical Monographs, 4.)
Research Library, AE & CL

Discusses the chromosome theory; the biology of fungi of genetic interest; the induction, isolation and characterization of mutants; chromosome mapping; genetic consequences of changes in chromosome number; the genes, the structure of genes and the mechanism of genetic exchange; the biochemical analysis of gene function; comparative genetics and physiology; extra-nuclear inheritance; genetics of pathogenicity. The structure of DNA is discussed in an appendix.

Fungal diseases
Fungi - Genetics
Fungi - Physiology
Nucleic acids deoxyribo-
properties

Example 3: An annual

FENNER, S.S., and WILLIAMS, F.A., editors
Detonation and two-phase flow.
(Progress in astronautics and rocketry, 6.)
Research Library, AE & CL

Papers in Part I cover the range of physical conditions under which detonation may be sustained. Progress is recorded in the understanding of the phenomena involved in transition from deflagration to detonation and of stable detonations in dilute sprays. In Part 2 problems associated with high frequency instabilities in liquid fuel rocket engines and progress in the understanding of the nature of two-phase flow phenomena in converging-diverging nozzles are discussed.

Combustion parameters
Deflagration/detonation - transition
Detonation parameters
Detonation waves - structure
Engine - performance
Engine (rocket)
Explosives - detonation
Flow systems (two phase)
Fluid flow - measurement
Gas mixtures - detonation
Gas/solid flow
Nozzles - performance
Propellants - combustion
Propellants (rocket)
Example 4: A map

MAP L3/2528 CB
SOUTH AFRICA, Trigonometrical Survey
Silverton, Topographical, Scale : 1:50,000,
2nd edition.
 Research Library, AE 6 CL

Shows the Eastern part of Pretoria, Memelshoi, part of the Magaliesberg, Pienaar River dam and part of the Pienaars River.

MAP (TOPOGRAPHICAL)

Example 5: A non-technical book

SAMUELSON, P.A.
Economics: an introductory analysis.
7th edition.
Research Library, AE 6 CL

Textbook discusses basic economic aspects and national income, determination of national income and its fluctuations, the composition and pricing of national output, distribution of income and the pricing of productive factors, international trade and finance, and current economic problems.

CAPITAL INVESTMENT
COMMERCE
COST ESTIMATING
ECONOMICS
INCOME (NATIONAL)
Example 6: A collection of papers presented at a symposium

678 INT
INTERNATIONAL UNION OF PURE AND APPLIED
CHEMISTRY,
International Symposium on macromolecular chemistry,
Pergam, 1965, 4 vol.,
(Polymer Symposium, 16,)
Library, Midland Factory, AE 6 CI.

The theme of the symposium comprises the following sections: mechanisms of formation and transformation; structure and properties; systems and models of macromolecules; organic, biological and inorganic macromolecular compounds; monomers and modifiers; methods and disciplines,

MOLECULAR STRUCTURE POLYMERS - FRACTIONATION
- ANALYSIS MOLECULAR WEIGHT
MOLECULAR WEIGHT DISTRIBUTION
DETERMINATION POLYMER DEGRADATION
POLYMERIZATION - KINETICS
POLYMERIZATION - REACTION MECHANISM
POLYMERS - CRYSTALLIZATION

Example 7: A pamphlet (no abstract) - this copy placed in 'Classified'
section of library

PM 16,255
DINEGAR, R.H. and others

Effect of specific surface on the shock sensitivity of pressed granular PETN,
Los Alamos, N.M., University of California,
Library, Somerset West Factory, AE 6 CI.

PENTAERYTHRITOL TETRANT ET - SENSITIVITY
Example 8: A pamphlet (complete with abstract)

RABE, W.A., and RATKAY, T.A.

The advantages, practical and economic, of extruding PVC dry blends (or powder compounds) are discussed. Consistency of the polymer and the correct choice of lubricant are critical. Stabilizer systems, modifying copolymers or graft polymers, and fillers are reviewed, together with mixing and extruding the compound. Single- and twin-screw extruders are described briefly.

EXTRUDERS (PLASTICS)
EXTRUDERS (SCREW)
POLYVINYL CHLORIDE DRY BLENDS
POLYVINYL CHLORIDE - EXTRUSION
POLYVINYL CHLORIDE - LUBRICANTS
POLYVINYL CHLORIDE - MIXING
POLYVINYL CHLORIDE (RIGID)
POLYVINYL CHLORIDE - STABILIZERS
VINYL CHLORIDE POLYMERS

Example 9: A dictionary

UPHOF, J.C.T., Dictionary of economic plants, Waldheim (Bergstrasse), Engelmann, 1959, Research Library, AE & CL.

CROPS

DICTIONARY

PLANTS
As mentioned above the reverse side of the cards in the 'classified' section of LIBRIS are used to comprise a register of all publications held. The example below shows that the whereabouts of any publication and the number of copies held can be recorded in a simple manner, such as by a X or other symbol. If considered worthwhile the entry symbol could comprise the original order number for the purchase of a publication:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PAT.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACK.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOT.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTSL</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDF</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MID.</td>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWF.</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMB.</td>
<td>10</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H.O.CHEM. FAM.</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of LIBRIS register card (reverse side of card in 'classified' section)
APPENDIX X

This Appendix comprises the actual LIBRIS cards discussed and used in the tests described in Chapter 6, sub-section 6.3.5.
PLASTICIZERS - TESTING
PLASTOGRAPH
POLYVINYL CHLORIDE - PLASTICIZATION
POLYVINYL CHLORIDE (PLASTICIZED)
SYNOPSIS

A statistical experiment dealing with fusion of polyvinyl chloride (PVC) with di-2-ethyl hexyl phthalate (DOP) is described. A method is proposed that shows the relative fusion characteristics of a number of plasticizers. The standard deviation is 1.1°C. The 95% confidence limits based on a single determination are ± 2.2°C. The Brabender Plasti-Corder was found to be useful for determining the fusion characteristics of plasticized PVC.

POLYVINYL CHLORIDE - GELATION

PM 16.359/11
Bedenoff G
Die Messung der rheologischen Eigenschaften von PVC-Hart
Duisburg Brabender OHG 1967
RDL AEGCI

The author describes the testing of characteristic properties of PVC compounds with respect to their processability in extruders and injection molding machines. Photographs of the Brabender Plastograph are included, together with graphs and 22 references. (Reprinted from Kunststoff und Gumm1, vol 5, various dates in 1966 and 1967.)

RHEOLOGICAL PROPERTIES - DETERMINATION

PM 16.359/9
Schmidt P
Die Bestimmung der Gelierfähigkeit von Polyvinylchlorid in Temperaturbereich von 100-160°C mittels des Brabender Plastographen
Duisburg Brabender OHG 1967
RDL AEGCI

The author discusses the determination of the gelation of polyvinyl chloride in the temperature range 100-160°C with the Brabender plastograph. (German text.)

PLASTOGRAPHS
POLYVINYL CHLORIDE - GELATION

PM 16.359/10
Scheidt P
Neue Methode zur Bestimmung der Gellingsgeschwindigkeit von plastifiziertem Polyvinylchlorid
Kunststoffe 1961 Vol 41 No 1 P 23-29
Duisburg Brabender OHG 1967
RDL AEGCI

A mixture of polyvinyl chloride (200 units in weight) and plasticizer (100 units in weight) is kneaded in the plastograph. The deformation resistance is measured throughout the test in cm. g. From the diagram thus obtained it can be seen that part of the plasticizer attains the upper limit of the measuring range of the plastograph of 1 000 cm. g. within a short time. The gelling speed is based on this time. Plasticizers which do not reach the limit of 1 000 cm. g. within the testing time can be classified according to the start of gel formation given by the minimum of their performance curves. Diagrams, tables, and 5 references in the German text.
Papers deal with such topics as crystallinity in polymers (by C W Burn of ICI, Plastics Division); optical properties of strained amorphous polymers; permeability of plastics and rubbers; structure and properties of polypropylene; conduction and polarisation processes in plasticised polyvinyl chloride compounds (by W Reddish, of ICI, Plastics Division); and nonlinear viscoelastic effects in ethylene polymers (by D J H Sandford, also of ICI, Plastics Division). Measurement of the physical properties of polymers is discussed. Diagrams, tables, and references are included.

NEWMAN T R
PLASTICS AS AN ART FORM 2ND ED
LONDON SIR ISAAC PITMAN & SONS 1972
UMB AEGCI

The author discusses the properties of plastics and methods of modifying them with additives, such as stabilisers, pigments, fillers, reinforcing agents; laminating, casting, forming, and fabricating plastics; and working with polyester, epoxy resins, acrylics, vinyls, copolymers of the last two, polyurethanes, polyesters, silicates, and foams. Bas-relief, sculpture, mosaic work, and printing techniques are among the topics described. Testing, moulding, extrusion, and coating are considered in the appendices. Illustrations and references are included.

KOSTY, S. A.
Molecular structure and relaxation behavior of polyvinyl chloride,
Thesis (Ph.D.), Lehigh University, 1970,
Ann Arbor, Mich, University Microfilms, 1970,
Research Library, AE & CL

PVC 7... was more syndiotactic and crystalline than usual was prepared by low-temperature polymerisation. Physical properties were determined and stress relaxation and tensile modulus measurements were made to study the viscoelastic properties of both unplasticised and unplasticised PVC. At a given value of molecular weight, viscoelastic measurements confirm previously reported increases in glass transition temperature (Tg) to about 105°C with decreasing polymerisation temperature. The absolute value of the modulus above Tg is not only related to polymerisation temperature. The higher modulus indicates a greater degree of physical crosslinking, apparently due to increased crystallinity. With increasing crystallinity, modulus-time curves show longer characteristic relaxation times, a broadened glass-rubber transition region, and higher rubbery moduli. A model for the morphology of PVC is proposed. (77 references.)

NEWTON V.
POLYMERS - RELAXATION
POLY. - AS - VISCOELASTIC PROPERTIES
POLYSYNYL CHLORIDE (CRYSTALLINE)
POLYSYNYL CHLORIDE - MOLECULAR STRUCTURE
POLYSYNYL CHLORIDE - RHETORICAL PROPERTIES

LEE, M. -S.
Thermodynamic properties of dilute polyvinyl chloride solutions,
Thesis (Ph.D.), Cape Western Reserve University, 1969,
Ann Arbor, Mich, University Microfilms, 1970,
Research Library, AE & CL

The osmotic pressure was measured within a wide temperature range for PVC solutions in cyclohexanone, cyclopentanone, and tetrahydrofuran. Molecular weight was found to be independent of temperature of measurement and methods of preparation. It was concluded that no aggregates of PVC were present in the solvent used. The variation of the thermodynamic interaction parameter was determined from the osmotic pressure data and viscosity measurements as a function of concentration, temperature, and molecular weight. Values of the temperature coefficient of the interaction parameter agree with results of Tian-Calvet microcalorimetry and confirm the Maron theory of polymer solutions which requires that heats of solution and dilution be determined by the temperature coefficient of the interaction parameter. Results suggest that the order of solvent power for PVC is cyclohexanone > cyclopentanone > tetrahydrofuran. (85 references.)

POLYMER SOLUTIONS - PROPERTIES
POLYSYNYL CHLORIDE - MOLECULAR WEIGHT
POLYSYNYL CHLORIDE - PROPERTIES
SOLVENTS (ORGANIC)
THEOHEMODYNAMIC PROPERTIES
MORGAN, P. editor
Plastics progress, 1955.
British Plastics Convention, 1955.
Research Library, AE & CI.

Papers deal with technical advances and commercial aspects of polyolefines, polystyrenes, vinyls, and the processing of thermoplastics.

OLEFINS, POLY-, PROPERTIES
PLASTICS - EXTRUSION
PLASTICS - MOULDSING
PLASTICS PROCESSING
PLASTICS PROCESSING EQUIPMENT
PLASTICS (THERMOPLASTIC)
POLYETHYLENE - PROPERTIES
POLYVINYL CHLORIDE - PROPERTIES
STYRENE POLYMERS - PROPERTIES
SYMPOSIA

MORGAN, P. editor
Plastics progress, 1955.
British Plastics Convention, 1955.
Research Library, AE & CI.

Subjects discussed include unplasticised PVC, reinforced plastics, plastics durability and performance, moulding, marketing, and new uses and developments, such as coating of plastics for optical purposes.

PLASTICS - COATING
PLASTICS - DEVELOPMENT
PLASTICS INDUSTRY
PLASTICS - MOULDSING
PLASTICS - PROPERTIES
PLASTICS (REINFORCED)
POLYVINYL CHLORIDE (REV.)
SYMPOSIA
LITERATURE SURVEY REGARDING THE DEGRADATION OF PLASTICISED PVC BY MICRO-ORGANISMS, TRANSLATED FROM GERMAN

Material und Organismen 1971 Vol. 6 No 4 p. 295-315

London ICI 1972

The survey covers: damage caused by micro-organisms; surface growth and discoloration; changes in electrical and mechanical properties; testing the resistance of plasticised PVC to microbial attack; and the possibility of protection against microbial attack. The references cover the period 1945-1971.

New trends in the design of biological filters, translated from Spanish

Dyna May 1972 No 5 P 211-23

London Imperial Chemical Industries Limited 1972

The author discusses the biological purification of effluents with natural and with plastic media. He also describes comparative tests carried out with biological filters and with activated sludges. He concludes that plastic media are more easily adapted to treating effluents, possess greater flexibility in supporting overloads, are simpler to operate, and cost less. Their principal disadvantage is that high rates of purification in a single stage are not possible. (26 references.)

The solubility of PVC in plasticisers : investigations of the system dioctylphthalate/PVC with a heated microscope, translated from German

Kolloid-Zeitschrift und Zeitschrift für Polymere 1973 Vol. 251 No 1 P 5-16

Johannesburg AEGCI 1973

The solution (dissolving) temperature of polyvinyl chloride (PVC) in dioctylphthalate was investigated with respect to molecular weight (MW) and pretreatment of the sample with the microscope method. Technical products show an increase in solvation temperature with MW, with a higher solvation temperature for the suspension polymer than would be indicated by its MW. Reprecipitation of the technical products obliterates both the difference and the effect of MW. A minimum solvation temperature was found for polymer fractions with a medium MW. The application of measures (such as tempering, swell-crystallisation) which increase crystallinity in crystallisable polymers led to increased solvation temperatures. (29 references.)

Measuring the rheological properties of rigid PVC, translated from German

Kunststoff und Gumm 1966 Vol. 5 P

Johannesburg AEGCI 1972

Part 1 of a series of articles adapted from the author's thesis in which (1) the flow curve of rigid polyvinyl chloride (PVC) compound was determined with an extrusion viscometer and (2) the PVC compound was examined under variable test conditions in the kneading zone of the Brabender Plastograph. The Plastograph is described and illustrated. Test procedures are discussed. Diagrams are included in the German text. (Translation of PM 16. 359/11, part 1.)

BIOLOGICAL TREATMENT
EFFLUENTS TREATMENT
FILTER MEDIA
FLOCOR
PACKING MATERIALS (ENGINEERING)
POLYVINYL CHLORIDE SHEET
SEWAGE TREATMENT

PLASTICisers - DEGRADATION
POLYVINYL CHLORIDE - DEGRADATION
POLYVINYL CHLORIDE (PLASTICIZED) SURVEY (LITERATURE)

BIOLOGICAL TREATMENT
EFFLUENTS TREATMENT
FILTER MEDIA
FLOCOR
PACKING MATERIALS (ENGINEERING)
POLYVINYL CHLORIDE SHEET
SEWAGE TREATMENT

POLYVINYL CHLORIDE - PROPERTIES (RHEOLOGICAL)
POLYVINYL CHLORIDE (RIGID)
RHEOLOGICAL PROPERTIES - DETERMINATION

DEGRADATION
POLYVINYL CHLORIDE - PROPERTIES
POLYVINYL CHLORIDE - PROPERTIES (RHEOLOGICAL)
POLYVINYL CHLORIDE (RIGID)
RHEOLOGICAL PROPERTIES - DETERMINATION

MOLECULAR WEIGHT
POLYVINYL CHLORIDE - PROPERTIES
POLYVINYL CHLORIDE - GELATION
POLYVINYL CHLORIDE - MOLICULAR WEIGHT
POLYVINYL CHLORIDE - SOLUBILITY

POLYTHALIC ACID, DIOCTYL ESTER
POLYVINYL CHLORIDE COMPOSITIONS
POLYVINYL CHLORIDE - CHLORIDE PASTES
POLYVINYL CHLORIDE - PROPERTIES
POLYVINYL CHLORIDE - PROPERTIES (RHEOLOGICAL)
POLYVINYL CHLORIDE (RIGID)
RHEOLOGICAL PROPERTIES - DETERMINATION

278
AET 1753
BEDENKOPF G
MEASURING THE RHEOLOGICAL PROPERTIES OF RIGID PVC, PT. 2-4, TRANSLATED FROM GERMAN
KUNSTSTOFF UND GUMMI 1967 - JOHANNESBURG AESCI 1973
RDL AESCI

Parts 2-4 of an article adapted from the author's thesis in which the results of tests with the kneading chamber of the Rehander Plastograph show that this equipment is not suitable for determining the flow curves of a thermoplastic material because not all 3 of the coefficients of flow can be determined. To determine absolute values viscometry must be used. The kneader is of practical use for checking factory materials and for establishing terms of acceptance between the processor and the manufacturer of raw materials. Equations, graphs, and 22 references are included in the German text. (Translation of PM 16.359/11, parts 2-4.)

MELT FLOW INDEX - DETERMINATION
PLASTICS (THERMOPLASTIC)
PLASTOGRAPH
POLYMER MELTS
POLYVINYL CHLORIDE - PROPERTIES (RHEOLOGICAL)
POLYVINYL CHLORIDE (RIGID)
RHEOLOGICAL PROPERTIES - DETERMINATION
VISCOMETERS

AET 1778
MENDEL G
IMPACT-RESISTANT PVC-COMPONDES FOR OUTSIDE USE PT. I: RAW MATERIAL PROPERTIES, STABILIZATION AND FORMULATION FOR OUTSIDE USE, TRANSLATED FROM GERMAN
FLASTVERARBEIT 1973 VOL 24 NO 7 P 497-505
JOHANNESBURG AESCI 1973
RDL AESCI

The author discusses the properties of polyvinyl chloride (PVC) suitable for use in building; impact-resistant components and PVC types; stabilization of impact-resistant PVC; problems of pigmentation; and light- and weather-resistance. Tables included which show the physical properties of impact-resistant rigid PVC; stabilizer systems for V-PVC-C compounds; the composition of stabilizer systems; properties of weather-resistant pigments; and the results of weathering tests.

BUILDING MATERIALS
POLYVINYL CHLORIDE COMPOSITIONS
POLYVINYL CHLORIDE (HIGH IMPACT)
POLYVINYL CHLORIDE - PIGMENTATION
POLYVINYL CHLORIDE - PROPERTIES
POLYVINYL CHLORIDE (RIGID)
POLYVINYL CHLORIDE - STABILIZATION
POLYVINYL CHLORIDE - STABILIZERS
POLYVINYL CHLORIDE - WEATHERING STABILIZER SYSTEMS

AET 1777
MITTERBERGER W D AND GROSS R
SIMPLE ANALYTICAL TESTS FOR FINISHED ARTICLES AND PVC POWDER COMPOUNDS PT. I: SEPARATION PROCESSES AND ANALYTICAL INVESTIGATIONS, TRANSLATED FROM GERMAN
KUNSTSTOFFTECHNIK 1973 VOL 12 NO 7 P 176-9
JOHANNESBURG AESCI 1973
RDL AESCI

Methods which do not require special knowledge and costly apparatus are outlined. The time factor and the smallness of the sample are also taken into account. The authors discuss the determination of PVC content; quantitative separation of PVC powder mixtures, granular materials, and finished articles; ether extraction; carbon tetrachloride extraction; n-butanol extraction; thin-layer chromatography; determination of solids content; and qualitative analysis of pigments and fillers.

ADDITIONS - DETERMINATION
ANALYTICAL METHODS
CHROMATOGRAPHY (THIN FILM)
POLYVINYL CHLORIDE - ADDITIVES
POLYVINYL CHLORIDE - ANALYSIS
POLYVINYL CHLORIDE FILLERS
POLYVINYL CHLORIDE - PIGMENTS

Translation of Russian book (Moscow, 197i) that covers industrial methods of producing polymers, properties of polymers, and (briefly) the application of these polymers as materials of construction. Polyethylene, polyvinyl chloride, polytetrafluoro- and polytrifluoroethylene, polystyrene, polyurethanes, polystyrene, and cellulose esters and ethers are among the polymers discussed. Diagrams and extensive references are included.

Cellulose Esters
Chain Branching Reactions
Condensation, Polyesters, Polyethylene, Tetrafluoro-, Polymers
Materials (Construction) - Properties
Polyethylene
Polymerization
Polymers - Production
Polymers - Properties
Polypropylene
Polyurethanes
Polyvinyl Chloride
Rubber (Synthetic)
Styrene Polymers

N. Coll, W. A.
Cross-linked PVC wire insulation systems; paper...
International wire and cable symposium, 18th... Atlantic City, NJ... 1969.
Research Library, AE 6 CL

PVC wire insulating and cable jacketing materials have long been the wire and cable industry standards for applications requiring flame retardant capabilities, a good combination of toughness and flexibility, and low cost. One of their major defects has been the normal tendency of a thermoplastic to soften at high temperatures. PVC softens and readily deforms over a wide temperature range. This deformation at high temperatures has been altered by irradiation cross-linking. Cross-linked PVC insulating and jacketing systems can be obtained by varying compound formulations and electron beam exposure. Various properties can be emphasized in any one compounded formulation.

Cables - Insulating Materials
Insulating Materials (Electric)
Polymers - Cross-Linking
Polymers - Deformation
Polymers - Irradiation
Polyvinyl Chloride (Heat-Resistant)
Wire - Insulation

Johns, H.
Extension tests on PVC contraction joint forming waterstops.
Research Library, AE 6 CL

Laboratory tests on short sections of polyvinyl chloride test samples taken from materials used in concrete-lined canals are described. The results indicate that: 1) most strips will serve satisfactorily if the joint does not open more than 1 in; 2) most strips could be extended over 2 in; 3) the size of the hole in the centre bulb does not greatly affect performance; 4) fins on the horizontal flange restrict deformation to that portion of the flange that is between fins; 5) strips should restrain movement of the slab; 6) stress relaxation and the effect of cycling on the part of the slab should be investigated further. Photographs are included.

Joint (Expansion)
Lining - Testing
Plastics - Properties (Mechanical)
Polyvinyl Chloride - Testing
Data are provided on the ways in which the best weather resistance of plastics can be achieved. Material is arranged under the following headings: weathering factors and exposure tests; polyurethanes; polyolefines; glass fibre reinforced polyester resins; epoxy resins; PVC; acrylics; phenolic and amino resins; cellulose esters; polystyrene and other plastic materials. A comprehensive bibliography is included.

BIBLIOGRAPHY

CELLULOSE ESTERS
EPOXY RESINS
ESTERS, POLY-, RESINS
PHENOL CONDENSATION PRODUCTS
PLASTICS - AGING
PLASTICS (REINFORCED)
POLYURETHANES
POLYVINYLL CHLORIDE
SURVEY (LITERATURE)

SECONDARY DAMAGE has been severe in some industrial fires because of the presence of polyvinyl chloride (PVC). PVC decomposes when exposed to fire, with evolution of HCl.1 kg of PVC evolves about 0.56 kg of HCl, about the equivalent of 10 kg of 20% hydrochloric acid, which corrodes metals, concrete, and electronic equipment. Damage can be reduced by rapid and correct decontamination. References are included.

DECOMPOSITION PRODUCTS

FIRE HAZARDS
HYDROCHLORIC ACID - CORROSIIVITY
HYDROGEN CHLORIDE

POLYVINYL CHLORIDE - DECOMPOSITION

A directory which contains a review of the market for foamed plastics as well as the addresses of processors and producers of blowing agents, machinery, and foamed plastics. Polyurethane mainly are dealt with but polyethylene foams, polyvinyl chloride foams, and a number of other foamed plastics are also covered.

DIRECTORY

FOAMING AGENTS
PLASTICS (EXPANDED)
PLASTICS PRODUCTION EQUIPMENT
POLYURETHANES (EXPANDED)
POLYVINYL CHLORIDE (EXPANDED)
STYRENE POLYMERS (EXPANDED)
SURVEY (MARKET)
Papers deal with the origin of petroleum, particularly chemical and migrational aspects; properties of the petroleum deposit at the Athabasca tar sands; petroleum refining, including catalytic reforming and cracking, hydrocracking, alkylation, and isomerization; developments in ethylene chemistry; and vinyl chloride and polyvinyl chloride. Diagrams, tables, and very extensive references are included.

ALKYLATION

POLYVINYL CHLORIDE

CATALYSIS (HOMOGENEOUS)

SYNTHESIS

ETHYLENE PRODUCTION

HYDROCARBONS - CRACKING

PRODUCTION

HYDROCARBONS - REFORMING

ISOMERIZATION

NAPHTHA

OIL REFINING

PETROCHEMICALS

PETROLEUM REFINING

MILLER, S.A. editor

Research Library, AE & CI.

Deals with the history of C2H4 chemistry (including discovery and development of polyethylene by ICI); production, recovery, pyrolysis, properties, analysis, combustion, and uses of C2H4; production, properties, and uses of polyethylene and related polymers; production, properties, and uses of acetaldehyde and ethylene oxide and their derivatives; hydration, halogenation, hydroboration, and ethylation of C2H4, and properties and uses of derivatives obtained by these processes; and production, properties, and uses of vinyl acetate, and other vinyl esters, and their derivatives (mainly polymers).

ACETALDEHYDE

BENZENE, ETHYL-

ETHANE, 1,2-DICHLORO-

ETHYL ALCOHOL

ETHYLENE - ANALYSIS

ETHYLENE - FLAMMABILITY LIMITS

ETHYLENE OXIDE

ETHYLENE POLYMERIZATION

ETHYLENE POLYMERS

ETHYLENE PRODUCTION

ETHYLENE - PROPERTIES

POLYETHYLENE

POLYVINYL CHLORIDE

STYRENE

STYRENE POLYMERS

VINYL ACETATE

VINYL ACETATE POLYMERS

VINYL CHLORIDE

VINYL CHLORIDE POLYMERS

POLYMERS - CHEMICAL RESISTANCE

POLYETHYLENE - PROPERTIES

POLYVINYL CHLORIDE - PROPERTIES

CARBON - PROPERTIES

ESTERS, POLY - REINFORCED

FIBRES (GLASS)

GRAPHITE - PROPERTIES

MATERIALS (CONSTRUCTION)

- PROPERTIES

MATERIALS (CONSTRUCTION)

- SPECIFICATIONS

PLASTICS - CHEMICAL RESISTANCE

PLASTICS (REINFORCED)

POLYETHYLENE - PROPERTIES

FILM (PACKAGEING)

PACKAGING (AUTOMATIC)

PACKAGING - ECONOMICS

PACKAGING MATERIALS

PACKAGING (RUBBER)

PLASTIC FILMS PRINTING

PLASTIC FILMS - TESTING

POLYETHYLENE FILM

POLYPROPYLENE FILM

POLYVINYL CHLORIDE FILM

STYRENE POLYMERS - FILM SYMPOSIUM
Man-made fibers: science and technology, vol. 3

MARK, H. P. and others, editors.

Polymer engineering and technology.

Research Library, AE & Cl.

Deals with the production and properties of polyethylene terephthalate, copolyesters containing ethylene terephthalate, polyesters of 1,4-cyclohexane-dimethanol and terephthalic acid, acrylonitrile and its fibres, the fibres of polyvinyl alcohol, polyvinylidene chloride, polyvinyl chloride, linear polyolefins, and spandex. The applications of glass textile fibres, properties of elementorganic fibre-forming polymers, the behaviour of metallic fibres during processing, and dyeing, finishing, and testing of fibres are also discussed.

- **FIBRES (GLASS)**
- **FIBRES (METALLIC)**
- **FIBRES - PIGMENTATION**
- **FIBRES - PROPERTIES**
- **FIBRES - SPINNING**
- **FIBRES (SYNTHETIC)**
- **FIBRES - TREATMENT**
- **POLYETHYLENE FIBRES**
- **POLYPROPYLENE FIBRES**
- **POLYVINYL CHLORIDE FIBRES**
- **TEREPHTHALIC ACID, POLYETHYLENE ESTERS**

The Science and technology of polymer films. Vol. 2

SWEETING, O. J., editor.

Polymer engineering and technology.

Research Library, AE & Cl.

Chapter 1 deals with the barrier properties of films. In the remainder of the book, films of importance in packaging, excluding laminates and other composites, are discussed. Polymerisation of the monomer, orientation and other properties of the polymer, and technology of film production are covered for polyethylene, polypropylene, polyvinyl chloride, and about a dozen other films. Photographs, diagrams, tables, trade names, and the regulations about food additives of the US Food and Drug Administration are included. (Very extensive references.)

- **CELOPHANE FILM**
- **POLYPROPYLENE FILM**
- **POLYVINYL CHLORIDE FILM**
- **FOOD ADDITIVES**
- **STYRENE, POLYMERS - FIBRE**
- **FOODS - PACKAGING**
- **PACKAGING - REGULATIONS**
- **PLASTIC FILMS - ORIENTATION**
- **PLASTIC FILMS - PERMEABILITY**
- **PLASTIC FILMS - PROPERTIES**
- **POLYETHYLENE FILM**
- **POLYMERISATION**
- **POLYMERS - PROPERTIES**

Conference on the development of petrochemical industries in developing countries, Tehran, 1964.

Research Library, AE & Cl.

Characteristics of the petrochemical industry and prospects for its development, aspects of supply and demand, research and technology, studies of raw materials, nitrogenous fertilizers, and plastics materials are contained in volume I. Volume II contains papers on synthetic fibre and rubber industries, the petrochemical industry in various countries, regional development, financial and legal aspects and location factors.

- **FERTILIZERS (NITROGENOUS)**
- **PLASTICS PRODUCTION**
- **FERTILIZERS PRODUCTION**
- **POLYMERS - PROPERTIES**
- **POLYETHYLENE (LOW DENSITY)**
- **POLYVINYL CHLORIDE**
- **HYDROCARBONS - REFORMING**
- **STYRENE POLYMERS**
- **HYDROCARBONS - SURVEY**
- **PETROCHEMICAL INDUSTRY**
- **PETROLEUM REFINING**

Plastics materials.

BRYDON, J. A.

Research Library, AE & Cl.

Deals with the history, development and properties of commercially available plastics, in the second half of the book individual classes of plastics are examined and processing and uses of each type are reviewed. Plastic materials with similar properties are compared.

- **METHYLACRYLIC ACID, METHYL ESTER POLYMERS**
- **PLASTICS PRODUCTION**
- **PLASTICS - PROPERTIES**
- **POLYETHYLENE - PROPERTIES**
- **POLYMERS - MOLECULAR STRUCTURE**
- **POLYMERISATION**
- **POLYMERS - PROPERTIES**
- **POLYURETHANE - PROPERTIES**
- **POLYVINYL CHLORIDE - PROPERTIES**
- **RESINS - PROPERTIES**
Papers deal with propylene- and ethylene-modified PVC; copolymers and polymers of 4-methylpentane-1; thermoplastic polyurethanes; the chemistry and development of ionomers; modifying the surface of inorganic reinforcing fillers (such as kaolin and colloidal crocidolite asbestos) for filled linear polyethylene; boron-containing high-temperature polymers; polymer 360 (a polyaryl-sulphone thermoplastic); thermoplastics based on ASA; and the chemistry, properties, and applications of polybutylene, Tyrex-chlorinated polyethylene, and carbonyl nitroso rubber (a non-flammable fluorocarbon elastomer).

Mechanical properties of thermoplastics and the influence on those properties of mechanical and thermal treatment employed in converting thermoplastics to plastic articles. The use of this information in the design of thermoplastics is discussed. Creep studies, deformation and fracture, high-speed impact strength, design of plastic pipe, and strength and fracture toughness of glass fibre-reinforced plastics are among the topics considered.

Papers deal with the determination of molecular weight distribution and number-average by such methods as light scattering and gel permeation chromatography (GPC). The use of GPC in analyzing monomers, catalysts, carrier solvents, plasticizers, and other additives is described, together with optical methods of polymer characterization. Microstructure, morphology, and thermal and solution properties of polymers are discussed.

The Chemical and physical structure and properties of polymeric solids, relaxation theories and experimental methods for the study of anelastic and dielectric relaxation are described in the first half. Mechanical and dielectric relaxations in polymeric solids are dealt with in the second half.
OGORKIEWICZ, R.M., editor
Engineering properties of thermoplastics; a collective work produced by Imperial Chemical Industries Limited, Plastics Division.
The characteristics (the nature of polymeric materials and the composition and processing of plastics) and uses of thermoplastics are discussed, together with deformation behaviour, strength, and other physical properties. Methods by which particular types of thermoplastics can be characterized are described. The economics and design of plastic articles are considered. Data are presented in graphical form. (57 references.)

DESIGN DATA
ENGINEERING DESIGN
PHYSICAL PROPERTIES
PLASTIC ARTICLES - DESIGN
PLASTICS PROCESSING
PLASTICS PROCESSING EQUIPMENT
PLASTICS - PROPERTIES
PLASTICS STRESSES
PLASTICS (THERMOPLASTIC)
POLYETHYLENE (LOW DENSITY)
POLYETHYLENE - PROPERTIES
POLYMERS - DEFORMATION
POLYMERS - PROPERTIES
POLYPROPYLENE - PROPERTIES
POLYVINYL CHLORIDE - PROPERTIES

GUILLET, J.E., editor
Polymers and ecological problems; American Chemical Society, Symposium, New York, 1972, Proceedings.
POLYMER SCIENCE AND TECHNOLOGY 3
NEW YORK PLENUM 1973
ISBN 0-80-36-0403-4
RD LASCII
The papers deal with such topics as polymers with controlled lifetimes; a delayed action photo-activator for the degradation of polyethylene; photo-activated degradation of polystyrene; biodegradability of synthetic polymers; effects from municipal incineration of plastics; auto-ignition of multicomponent fibre systems; thermal analysis of irradiated polyvinyl chloride; recycling polytetrafluoroethylene; and legal problems associated with the disposal and recycling of plastics. An edited report of a panel discussion is included, together with diagrams, photographs, tables, and some references.

DECOMPOSITION PRODUCTS
POLYETHYLENE - DEGRADATION
DEGRADATION PRODUCTS
ETHYLENE, TETRAFLUORO-, POLYMERS
FIBRE COMPOSITES
POLYMER DEGRADATION
OLEFINES, POLY., DEGRADATION
PACKAGING MATERIALS
PLASTICS - ADDITIVES
PLASTICS - BIODERADATION
PLASTICS - DEGRADATION
POLYVINYL CHLORIDE - DEGRADATION
PLASTICS - WASTE DISPOS.
PLASTICS - WASTE RECOVERY

RITCHIE, P.D., editor
Physics of plastics.
London, Iliffe for the Plastics Institute, 1965, Research Library, AE & CI.
After an introduction that deals with elementary concepts relating to the molecular structure and organization of high molecular weight polymers, including solutions and melts, the investigation of this structure by light scattering, X-ray, infra-red, and NMR spectroscopy is outlined. Chemical aspects of physical properties are discussed, together with deformation and mechanical, thermal, electrical, optical, and mechanical properties. The effects of plasticizers, fillers, and other additives on the physical properties of polymers are also dealt with.

ANALYTICAL METHODS (PHYSICAL)
FILLERS
PLASTICIZERS - PROPERTIES
PLASTICS - ADDITIVES
PLASTICS - PROPERTIES
POLYMER MELTS
POLYMER SOLUTIONS
POLYMERS - DEFORMATION
POLYMERS (HIGH MOLECULAR WEIGHT)
POLYMERS - MOLECULAR STRUCTURE
POLYMERS - PHYSICAL PROPERTIES
POLYVINYL CHLORIDE - PROPERTIES
The synthesis, manufacture, properties and uses of synthetic plastics are described. The volumes comprise: Fundamentals of synthesis; Manufacture and testing; Polyvinylchloride; Raw materials; Polyolefines; Polyes­tyrenes; Polyamides; Polyurethanes; Polymers; Polymethacrylates; Thermo-setting plastics and resins.

Papers deal with specific polymers such as polyphosphonitrile chloride, polymers, acrylic and methacrylic acid ester polymers, nitrile polymers, polyvinyl chloride, polyesters, polyphenylene oxides, poly­phenylenes, polyamides, polyurethanes, and polypropylene.

The monograph deals with the selection and preparation of raw materials for calendering; calenders and auxiliary equipment; the calendering process; calendering faults and their remedies; control testing of raw materials and finished sheet; and post-calendering processing of sheets. Photographs, diagrams, graphs and references are included.
Methods of welding thermoplastics are described in detail. Many illustrated step-by-step procedures are included. Design data, chemical and physical properties of thermoplastics (particularly PE and rigid PVC), heat sealing of plastic film and thin sheet, and welding of vessels, lining materials, and ducting and piping are covered, as well as methods of testing welds. A chart that shows the chemical resistance of a very large number of thermoplastics is included, together with diagrams, photographs, tables, and references.

CHEMICAL RESISTANCE

POLYETHYLENE - WEATHERING

HEAT SEALING

LINING MATERIALS

POLYVINYL CHLORIDE

PIPES (PLASTIC)

PLASTIC FILMS - JOINING

PLASTIC FILMS - WELDING

PLASTICS - DESIGN DATA

PLASTICS - HEAT SEALING

PLASTICS - JOINING

PLASTICS - PROPERTIES (MECHANICAL)

PLASTICS TESTING

WELDS - TESTING

PLASTICS (THERMOPLASTIC)

PLASTICS - WELDING

POLYETHYLENE - WELDING

POLYVINYL CHLORIDE - WELDING

POLYVINYL CHLORIDE - MOULDING

STYRENE POLYMERS
Stabilization of polymers and stabilizer processes; a symposium... 15th (national) meeting... Miami Beach, Fla.,... 1967.

Discusses structure and thermal stability of polymers; oxidation of polymers in the dark and under illumination; inhibition of polymer decomposition due to oxidants, heat, and light; stabilization of polyethylene, polypropylene, polystyrene, and polyvinyl chloride.

- POLYETHYLENE - DEGRADATION
- POLYETHYLENE - STABILIZATION
- POLYMER DEGRADATION
- POLYMERS - HIGH MOLECULAR WEIGHT
- POLYMERS - STABILIZATION
- POLYVINYL CHLORIDE - DECOMPOSITION
- POLYVINYL CHLORIDE STABILIZATION
- POLYVINYL CHLORIDE - STABILIZERS

The book covers stabilisation against thermal oxidation by antioxidants and combinations of stabilizers; thermal degradation by sequential elimination and random scission; stabilization against oxidative photodegradation (ultraviolet radiation methods of stabilization and choice of stabilizers; protection of degradation by oxygen; protection against weathering, burning, and chemical agents; the biological degradation of polymers and weatherability tests, accelerated thermal stability tests, and some miscellaneous tests. Mechanisms are illustrated, diagrams, tables, and very extensive references are included.

ANTIOXIDANTS
- POLYETHYLENE - STABILIZATION
- FIREPROOFING AGENTS
- HEAT STABILITY
- POLYMER DEGRADATION
- IONIZATION
- STABILIZATION
- OXIDATION (AUTO-)
- PLASTICS - DEGRADATION
- PLASTICS - STABILIZATION
- PLASTICS - FLAMMABILITY
- PLASTICS - STABILIZATION
- PLASTICS - TESTING
- POLYVINYL CHLORIDE - STABILIZERS
- WEATHERING
FRISCH K. C. AND SAUNDERS J. H.
PLASTIC FOAMS VOL 1
MONOGRAPHS ON PLASTICS VOL 1 PT 1
NEW YORK: DEKKER 1972
ISBN 0-8247-1218-8

Part 1 contains an extensive treatment of the principles of the formation of nearly all types of plastic foam. Foams which are mainly flexible are then discussed seriatim. Polyurethane foams, sponge rubber and latex foams, polyolefin foams (LDPE, HDPE, PP), polyvinyl chloride foams, and all other foams are covered. In each case the chemistry involved in the selection of monomers and suitable equipment for foaming, and foaming and processing methods, such as molding, are considered, together with the relationship between structure and properties. A chapter on testing is included, as are diagrams, photographs, tables, and very extensive references.

CROSS-LINKING AGENTS
FOAMING AGENTS
PLASTICS (EXPANDED)
POLYURETHANES (EXPANDED)
POLYVINYL CHLORIDE (EXPANDED)
STYRENE POLYMERS (EXPANDED)
UREA/FORMALDEHYDE RESINS (EXPANDED)

MOISEYEV, A. A. and others, editors

Collection covers the production, properties and uses of expanded plastics based on polyurea and polyvinyl chloride, phenolic-formaldehyde resins, expanded polyurethanes, and the production of articles from these expanded plastics.

MOSSETTE, A. A. and others, editors
Unsaturated polyesters and polyester plasticizers.
(Polyesters, 2.)
Londen, Ellis for the Plastics Institute, 1967.

Unsaturated polyesters are dealt with under the headings: production, monomer resins, control, analysis, and inhibition; properties of cured resins; auxiliary materials; applications of resins. Polyester plasticizers are dealt with under the headings: preparation and production; properties in relation to structure; low molecular weight polyester plasticizers; and behaviour of polyester plasticizers in polyvinyl chloride and in polyvinyl acetate. Diagrams and tabulations are included. (Extensive references.)

CATALYSTS (POLYMERIZATION)
ESTERS, POLY-, PRODUCTION
ESTERS, POLY-, REACTIONS
ESTERS, POLY-, REINS
PEROXIDES - PROPERTIES
PLASTICIZERS - PRODUCTION
PLASTICIZERS - PROPERTIES
POLYMERIZATION - INITIATION
POLYVINYL CHLORIDE - PLASTICIZERS
RTEMS, POLY-, PROPERTIES
After dealing with theory of copolymerization and the relation between monomer structure and reactivity with free radicals (involving resonance, polar, and steric factors), copolymers of alpha-olefins, block copolymers with ethylene as a component, and ethylene-propylene copolymers are discussed. Cationic, anionic, and block and graft copolymerizations are also discussed, as well as copolymerizations involving styrene, acrylonitrile, vinyl chloride, acrylates, or methacrylates as principal components. Reactivity ratios are tabulated.

ACRYLIC ACID, POLYMERS
ACRYLONITRILE POLYMERS
COPOLYMERIZATION
COPOLYMERS - PROPERTIES
ETERNENE, 1,1-DICHLORO-, POLYMERS
ETHYLENE POLYMERS
ETHYLENE/PROPYLENE COPOLYMERS
METHACRYLIC ACID, POLYMERS
OLEFINES, POLYMERS
POLYETHYLENE
POLYVINYL CHLORIDE
STYRENE POLYMERS
SURVEY (LITERATURE)
Thirty-seven papers deal with polyblends, copolymers, and composites made from olefine, diene, vinyl halide, styrene, acrylic, urethane, and epoxy resin, as well as from polyamides, polyesters, polyarylenes, and others. Theory, processing, and practical applications are discussed. Random, graft, and block copolymers with improved mechanical, thermal, or optical properties are discussed, together with polymers reinforced with, or bonded to, minerals, carbon black, metals, or fibres.

CARBON BLACK
CONCRETE/RESIN
COPOLYMERIZATION
COPOLYMERS - PROPERTIES
ELASTOMERS - PROPERTIES
FIBRE COMPOSITES
FIBRES (GLASS)
PLASTICS - PROPERTIES
PLASTICS (REINFORCED) - PROPERTIES
PLASTICS - REINFORCEMENT
PLASTICS (THERMOPLASTIC)

Papers and discussions were grouped in 5 sessions:
1) effects of molecular size and shapes on polymer-solvent interactions; 2) interactions in dilute polymer solutions; 3) specific interactions and hydrophobic bonds; 4) experimental characterization of interactions; and 5) phase equilibria. General statistical theories of polymer solutions; copolymers and biological macromolecules; and the effects of primary molecular structure on thermodynamic properties and chain conformations received attention. Diagrams, tables, and references are included.

SLONIM, I. Ya. and LYUBIMOV, A. N.

The physical bases of nuclear magnetic resonance (NMR) and recording and interpreting NMR spectra are discussed, together with the application of the NMR method to the study of the structure of polymers and molecular motion and chemical processes in polymers. Quantitative analysis of polymers is also dealt with. (286 references have been added to the 748 references in the Russian edition, 1966.)

METHYCRYLIC ACID, METHYL ESTER POLYMERS - ANALYSIS
NUCLEAR MAGNETIC RESONANCE
NUCLEAR MAGNETIC RESONANCE SPECTRA
POLYETHYLENE - ANALYSIS
POLYETHYLENE - POLYMERS
POLYMERS - ANALYSIS
POLYMERS - CRYSTALLINITY
POLYMERS - MOLECULAR ORIENTATION
POLYMERS - MOLECULAR STRUCTURE
POLYMERS - RELAXATION
POLYMERS - TRANSITIONS
POLYPROPYLENE - ANALYSIS
POLYVINYL CHLORIDE - ANALYSIS
SPECTROSCOPY (NUCLEAR MAGNETIC RESONANCE)
The account starts with the preparation of vinyl chloride in 1835 (prehistory in the sense of the preparation being previous in history and necessarily prior to the preparation of polyvinyl chloride) and progresses through polymerization, modification of vinyl chloride polymers, plasticization, stabilization, and processing to early applications of polyvinyl chloride. Illustrated with portraits of early chemists and prototypes of apparatus.

POLYVINYL CHLORIDE
- Development
- Plasticization
- Processing
- Stabilization

SCIENCE - HISTORY
TECHNOLOGY - HISTORY

POLYVINYL CHLORIDE: FORMATION AND PROPERTIES
MICROSYMPOSIUM ON MACROMOLECULES, 7TH, PRAGUE, 1970
SED'LACEK B ED
POLYMER SYMPOSIA 33
NEW YORK INTERSCIENCE 1971

Thirty-three papers deal with radical polymerization; non-radical formation; morphology and mechanical properties; rheology and plasticization; solution properties; molecular structure; and destruction. Diagrams, photographs, tables, and references are included.

CHAIN BRANCHING REACTIONS
- Cross-linking
- Plasticizer/fpolyvinyl chloride compatibility
- Properties
- Polymerization
- Kinetics
- Stabilization
- Molecular weight distribution

POLYVINYL CHLORIDE - CONTAINERS
POLYVINYL CHLORIDE - MOULDING EXTRUSORS - DESIGN
STABILIZERS

ETHYLENE, FLUORO- POLYMERS
STYRENE POLYMERs

PVC BLOW-Moulding

FEED SPECIFICATIONS
PROCESS CONTROL

SYNTHESIS

PRODUCT DEMANDS

EMERGENCY PLANNING

RISK ASSESSMENT

ENVIRONMENTAL IMPACT

REGULATORY ISSUES

ECONOMICS

MARKETING
Almost the entire book deals with PVC and its technology. The production and properties of VC, the production and properties of VC polymers and copolymers, and degradation, stabilisation, plasticisation, and other aspects of formulation of PVC are covered, as well as mixing compounding, extrusion, calendaring, and moulding. Miscellaneous processes, test procedures, and applications are discussed. The final chapter, by I Llewellyn and H Williams, deals with VA homopolymers and copolymers. Diagrams, tables, and extensive references are included.

Deals with commercial polymers and compounds; compounding principles; properties and choice of plasticizers; fillers and stabilizers; compounding for special properties; fabrication methods and machinery; rigid polyvinyl chloride, pastes, latexes, solutions, adhesives, foamed vinyls, and PVC pipes. Standards are listed. Trade names and sources of supply are included, as well as diagrams, tables, and references.

A literature survey dealing with the polymerisation of vinyl chloride (methods, initiation, kinetics), characterization of polyvinyl chloride (molecular weight determination, spectroscopic studies, physical constants), chemical properties (reactions, degradation, stabilisation), and physical properties (properties in bulk, plasticised polymer, dilute solutions). Applications of polyvinyl chloride are briefly discussed.

Deals with polymers derived from acetylene, addition polymers and copolymers from vinyl and related monomers, especially those types concerned with synthetic rubbers, plastics, and fibres. Emphasis is on the practical chemistry and physics of polymerization and polymers, the basic inventions, methods of synthesis, and the advantages and limitations of the products.
Reviews the production of PVC film and sheet under the headings: synthesis of PVC, plasticizers, stabilizers, fillers, manufacturing processes (including extrusion and calendering), finishing, special effects, specifications, testing and applications.

PLASTIC FILMS PRINTING
PLASTIC FILMS - WELDING
PLASTIC SHEET - MOLDING
POLYVINYL CHLORIDE - CANDELING
POLYVINYL CHLORIDE - COMPOUNDING
POLYVINYL CHLORIDE - EXTRUSION
POLYVINYL CHLORIDE FILM
POLYVINYL CHLORIDE - FORMULATION
POLYVINYL CHLORIDE - PIGMENTS
POLYVINYL CHLORIDE - PLASTICIZATION
POLYVINYL CHLORIDE - PROCESSING
POLYVINYL CHLORIDE SHEET
POLYVINYL CHLORIDE - SOLVENTS
POLYVINYL CHLORIDE - SPECIFICATIONS
POLYVINYL CHLORIDE - STABILIZERS
POLYVINYL CHLORIDE - TESTING

Effect of plasticization and particle size on fusion rate of poly-(vinyl chloride).

A Brabender plastograph was used. Dry blend samples with different wt% of plasticizer and different average particle size were prepared in a Haushel mixer. Results, recorded simultaneously as plots of torque vs. time and temperature, show that the fusion rate of PVC is a direct function of wt% plasticizer, particle size of PVC polymer, polymer-plasticizer interaction, and aging time of dry blend samples up to 16 hrs. Reproducible results were obtained with the plastograph except in the initial portion of the fusion rate curve. (15 references.)

The Stabilization of polyvinyl chloride...

Part 1 deals with the theory of degradation and stabilization of polyvinyl chloride. Part 2 with classification and mixtures of stabilizers and part 3 with practical aspects such as test conditions, influence of components on compounds, compounds for use in electrical insulation, stabilization of flexible and rigid products, of plastisols and organosols and of paints and varnishes.
KAUFMAN, M. editor
Advances in PVC compounding and processing.
Symposium on recent advances in PVC compounding and processing, Manchester, 1961.
London, MacLaren, 1962,
Research Library, AE & Cl.

Papers dealt with: Factors affecting the properties of vinyl chloride polymers and copolymers; polyvinyl chloride plasticisation, polyvinyl chloride stabilisation; polyvinyl chloride-rubber blends; compounding; extrusion; sintering processes.

POLYVINYL CHLORIDE BLENDS
POLYVINYL CHLORIDE - COMPOUNDING
POLYVINYL CHLORIDE - EXTRUSION
POLYVINYL CHLORIDE - PLASTICIZATION
POLYVINYL CHLORIDE - PROCESSING
POLYVINYL CHLORIDE - PROPERTIES
POLYVINYL CHLORIDE STABILIZATION
SINTER COATING
SINTER COATING COMPOSITIONS
SYMPOSIA
VINYL CHLORIDE COPOLYMER - PROPERTIES

Deals with commercial polymers and compounds; compounding principles; properties and choice of plasticisers; fillers and stabilizers; compounding for special properties; fabrication methods and machinery; rigid polyvinyl chloride, pastes, latexes, solutions, adhesives, foamed vinyls, and PVC pipes. Standards are listed. Trade names and sources of supply are included, as well as diagrams, tables and references.

PRES - EXTRUSION
PRES (POLYVINYL CHLORIDE)
POLYVINYL CHLORIDE - COMPOUNDING
POLYVINYL CHLORIDE (EXPANDED)
POLYVINYL CHLORIDE - EXTRUSION
POLYVINYL CHLORIDE - FILLERS
POLYVINYL CHLORIDE - FORMULATION
POLYVINYL CHLORIDE - LATEX
POLYVINYL CHLORIDE MOLDING
POLYVINYL CHLORIDE PASTES
POLYVINYL CHLORIDE - PLASTICIZERS
POLYVINYL CHLORIDE - PROCESSING
POLYVINYL CHLORIDE - PROPERTIES
POLYVINYL CHLORIDE (RIGID)
POLYVINYL CHLORIDE SHEET
POLYVINYL CHLORIDE - STABILIZERS

WARNER, A. AND OTHERS
SOLID WASTE MANAGEMENT OF PLASTICS
DEBBEL AND RICHARDSON INCORPORATED PROJECT 1440,2
WASHINGTON DC MANUFACTURING CHEMISTS' ASSOCIATION 1970
RDL AECC

This survey, undertaken for the MCA, provides an analysis of, and reference to, the literature on plastics waste disposal. The report enables the reader to compare the situation and the position taken in the USA on the various aspects of solid waste disposal such as sanitary landfill, incineration, pyrolysis, and compounding with the corresponding positions taken in other countries. Disposal of polyvinyl chloride (PVC) and the incineration and air pollution problems arising therefrom are fully covered. An extensive bibliography and reference to the trade literature now available on equipment for solid waste disposal is included.

ATMOSPHERIC CONTAMINANTS
ATMOSPHERIC POLLUTION - CONTROL
CONTAINERS (PLASTIC)
PLASTICS - WASTE DISPOSAL
GAS CLEANING
GAS (FLUE)
HYDROGEN CHLORIDE
INCINERATORS
POLYVINYL CHLORIDE

Surveys the production of vinyl chloride polymers, the properties of these, polymerisation and compounding additives, Contains a patents index and an index of producers.

KAINER, H.
Polyvinylchlorid und Vinylchlorid-Mischpolymerisate; Chemie und chemische Technologie.
Research Library, AE & Cl.

Surveys the production of vinyl chloride polymers, the properties of these, polymerisation and compounding additives. Contains a patents index and an index of producers.
Applications and properties of Conic polymers and copolymers are set out, together with test methods. (Loose-leaf binder.)

CORVIC®
POLYVINYL CHLORIDE - PROPERTIES

POLYVINYL CHLORIDE SHEET

SEWAGE TREATMENT

AFRICAN EXPLOSIVES AND CHEMICAL INDUSTRIES LIMITED, Johannesburg, AE & CI, 1968, Research Library, AE & CI.

WELVIC® PVC compounds.

AFRICAN EXPLOSIVES AND CHEMICAL INDUSTRIES LIMITED, Johannesburg, Research Library, AE & CI.

POLYVINYL CHLORIDE COMPOSITIONS

WELVIC
Chippendale P. N. J.

Experiences in Great Britain by Imperial Chemical Industries Limited with Plastic Filter Media

Water Pollution Control Federation, Annual Conference, Kansas City, 1966

Hyde Chas Imperial Chemical Industries Limited 1965-1967

RDL AE6CI

The author reviews research into plastic packings at Brixham Research Laboratory: Flocor packings; the economics and performance of Flocor; and the practical application of Flocor to treating wastes from various industries. Tables and 6 references are included. Other papers included in the pamphlet comprise: The pollution of estuaries: an historical view and some thoughts on the discharge of industrial effluents to tidal waters; reprinted from "Wastewater and Industry", 1967, pp 1245-7 and 1968, pp 1650-6 respectively, and The use of plastic media in the biological treatment of sewage and industrial wastes: a paper presented at the 13th Canadian Chemical Engineering Conference, Quebec, 1965.

Biological treatment: Effluents treatment

Filter media

Flocor*

Packaging materials (Engineering)

Polyvinyl chloride sheet

Sewage treatment

Water pollution

Water (river)

Pearson C. R.

Use of Synthetic Media in the Biological Treatment of Industrial Wastes

Institute of Sewage Purification, North Western Branch, Symposium on the Treatment of Effluents from the Chemical Industry, Manchester, 1965

RDL AE6CI

The author discusses effluent quality requirements, the biochemical basis of biological filtration, properties required of an ideal packing, factors that affect the design and operation of high rate packings, and economic aspects of the use of packings for roughing treatment. (1 reference.)

Biological treatment

Effluents treatment

Filter media

Flocor*

Packaging materials (Engineering)

Polyvinyl chloride sheet

Sewage treatment

Imperial Chemical Industries, Limited.

Plastics Division.

"Corvic" brand of quick processing vinyl chloride polymers; grades D65/6 & D65/8.

Welwyn Garden City, ICI, 1967

Research Library, AE & CI.

Corvic*

Polyvinyl chloride compositions
POLYVINYL CHLORIDE (RIGID)

IMPERIAL CHEMICAL INDUSTRIES LIMITED.
Plastics Division.
Rigid P.V.C. intensifiers.
Welwyn Garden City, ICI, 1957.
Research Library, AE & CI.

POLYVINYL CHLORIDE COMPOSITIONS
WELVIC®

POLYVINYL CHLORIDE - CHEMICAL RESISTANCE
WELVIC®

Data are tabulated that pertain to the resistance of both unplasticized and plasticized (with dioctyl phthalate) polyvinyl chloride to a wide range of chemicals. The permeability of PVC to gas and water vapour is also considered briefly.

POLYVINYL CHLORIDE - CHEMICAL RESISTANCE
POLYVINYL CHLORIDE (PLASTICIZED)
POLYVINYL CHLORIDE (RIGID)
WELVIC®
CORVIC®
- Polyvinyl Chloride (Expanded)
- Vinyl Polymers

CORVIC®
- Fabrics (Coated)
- Paper (Coated)
- Polyvinyl Chloride Pastes

PM 8.6/1032
IMPERIAL CHEMICAL INDUSTRIES LIMITED PLASTICS DIVISION
A NEW PROCESS FOR THE MANUFACTURE OF MICROCELLULAR PVC FOAM FROM CORVIC VINYL POLYMER P65/49
WELWYN GARDEN CITY HERTS ICI 1963
RDL AECCI

PM 8.6/1030
IMPERIAL CHEMICAL INDUSTRIES LIMITED PLASTICS DIVISION
WELVIC PVC PASTE FOR PROTECTIVE COATINGS
WELWYN GARDEN CITY HERTS ICI 1963
RDL AECCI

PM 8.6/1049
IMPERIAL CHEMICAL INDUSTRIES LIMITED PLASTICS DIVISION
THE PRODUCTION OF PVC COATED FABRIC AND PAPER FROM CORVIC PASTE-MAKING POLYMERS
WELWYN GARDEN CITY HERTS ICI 1963
RDL AECCI

PM 8.6/1042
IMPERIAL CHEMICAL INDUSTRIES LIMITED PLASTICS DIVISION
WELVIC PVC PASTES FOR PROTECTIVE COATINGS
WELWYN GARDEN CITY HERTS ICI 1963
RDL AECCI

POLYVINYL CHLORIDE PASTES
WELVIC®
POLYVINYL CHLORIDE (HEAT-RESISTANT)
POLYVINYL CHLORIDE (RIGID)
WELVIC®

POLYVINYL CHLORIDE PASTES
POLYVINYL CHLORIDE - PROPERTIES
WELVIC®

The pamphlet deals with the properties and uses of Welvic pastes (dispersions of polyvinyl chloride in plasticizer); addition of pigments and fillers to the pastes; moulding, spreading, spraying, dipping and dip coating; hardening articles made from the paste; and bonding the paste to metal.

I CI (HYDE) BUILDING AND ALLIED PRODUCTS GROUP
BUILDING PRODUCTS ; COLLECTED BROCHURES
HYDE CHES ICI 1966-1969
RDL AECI

BUILDING MATERIALS
CARPET
PLASTICS
POLYETHYLENE SHEET
POLYVINYL CHLORIDE (RIGID)
POLYVINYL CHLORIDE SHEET

POLYVINYL CHLORIDE (HEAT-RESISTANT)
POLYVINYL CHLORIDE (RIGID)
WELVIC®
Imperial Chemical Industries Limited. Plastics Division.
Vinyl chloride plastics made by Imperial Chemical Industries Limited, Welwyn Garden City, Herts, ICI, 1960.
Research Library, AE & CI.

Corvic, Davic, Flovic, and Welvic products are described and illustrated and their more important properties and uses are outlined.

Corvic* Polyvinyl Chloride Welvic* Polyvinyl Chloride (Rigid) Vinyl Acetate Copolymers Vinyl Chloride Copolymers

Imperial Chemical Industries Limited.
Flovic.
ICI (Hyde)...
Research Library, AE & CI.

The use of Flocor® filter media (polyvinyl chloride packing materials) in the biological treatment of distillery, brewery, malting, and winery waste is described and illustrated with examples.

Biological Treatment Effluents Treatment Fermentation - Engineering Filter Media Flocor® Packing Materials (Engineering) Polyvinyl Chloride

301
Correct selection of the polymer/plasticizer system is important in obtaining porous polyvinyl chloride (PVC) by saturating the paste with gas-low-boiling liquids. Necessary properties of such a system follow: polymer/plasticizer compatibility; stability of PVC paste in storage; stability of saturated foam in atmospheric conditions; and greatest possible time at the beginning of coalescence of the foam during warm-up, and a high tangent of dielectric loss angle. (5 references.)

PLASTICIZER/POLYVINYL CHLORIDE COMPATIBILITY
PLASTICIZERS - EVALUATION
POLYVINYL CHLORIDE (EXPANDED)
POLYVINYL CHLORIDE LATEX
POLYVINYL CHLORIDE PASTES
POLYVINYL CHLORIDE - PLASTICIZERS
POLYVINYL CHLORIDE (POROUS)
POLYVINYL CHLORIDE - PROPERTIES
POLYVINYL CHLORIDE - VISCOSITY
Papers deal with fibrillated asbestos-reinforced thermoplastics; polyethylene flow studies; effect of processing history on melt flow defects; influence of polyvinyl chloride structure on ease of processing with plasticizers; effects of gamma irradiation on mechanical properties of high MW polymers; mechanisms of UV stabilization of films; and structural details of plastics and rubbers as revealed by birefringence under strain.

PLASTICS - COMPOUNDING SYMPOSSIA

PLASTICS - FLEXIBILITY
PLASTICS PROCESSING
PLASTICS (REINFORCED)
PLASTICS (THERMOPLASTIC)
POLYETHYLENE
POLYMER DEGRADATION
POLYMERS (HIGH MOLECULAR WEIGHT)
POLYMERS - IRRADIATION
POLYMERS - MELT FLOW PROPERTIES
POLYMERS - RHEOLOGICAL PROPERTIES
POLYMERS - STABILIZATION
POLYVINYL CHLORIDE - PLASTICIZATION
POLYVINYL CHLORIDE (PLASTICIZED)
STRESS-STRAIN - MEASUREMENT

BUILDING CONSTRUCTION
BUILDING MATERIALS
BUILDING UNITS (PREFabRICATED)
FLAMMABILITY TESTS
PIPES (POLYVINYL CHLORIDE)
PLASTICS
PLASTICS - FLAMMABILITY
POLYVINYL CHLORIDE (RIGID)
SYMPOSSIA
WALL COVERING

Processing, properties, and performance test data on vinyl plastics are presented, with graphs and tables used to amplify the text. Topics covered include general-purpose polyvinyl chloride (PVC) resins; dispersion and solution resins, and vinyl latexes; modifying resins for vinyls; plasticizers; degradation and stabilization of PVC; fillers for vinyls; pigmentation of vinyls; compounding and premixing; vinyl foam; and properties and testing of flexible vinyl chloride plastics. Bibliographies are included.
PM 16.61/53

SOCIETY OF PLASTICS ENGINEERS, INCORPORATED.
Palisades Section.
Plastics and ecology : Influence on pollution, flammability and safety,... regional technical conference... Cherry Hill, NJ... 1970.
Greenwich, Conn, SPE, 1970. Research Library, AE & CI.

Papers deal with such topics as the biodegradability of synthetic organic polymers; mist abatement from plastics processing operations; use of polymers in wastewater treatment; phosphonium bromides as fire retardants for thermoplastics; flammability of PVC; polymer colour and flammability; intumescent (swelling) coatings; plastics with selective wavelength absorption; and US Federal regulations for octyltin-stabilized PVC for packaging food. Abstracts of a panel discussion on solid plastics waste disposal are included, as well as some others.

EFFLUENTS TREATMENT
WATER TREATMENT
FIREPROOFING AGENTS
FOODS - PACKAGING
MIST REMOVAL
PACKAGING - REGULATIONS
PLASTICS - BIODERADATION
PLASTICS - FIREPROOFING
PLASTICS - FLAMMABILITY
POLYMER DEGRADATION
POLYVINYL CHLORIDE - STABILIZERS
SCRAP MATERIALS RECOVERY
SYMPOSIUM

PM 16.61/50

SOCIETY OF PLASTICS ENGINEERS, INCORPORATED.
Akron Section.
Processing and commercial applications of high-temperature plastics,... regional technical conference,... Akron, Ohio... 1970.
Greenwich, Conn, SPE, 1970. Research Library, AE & CI.

Papers deal with Ucardel P-4174 (a polymeric alloy); Arylon, a modified polyaryl ether thermoplastic; poly-carbonate; Astrel brand 360 plastic; a polyarylsulphone for elevated temperatures; polyarylsulphone polymers for stable dielectrics; irradiated plastics; glass-filled polyethylene terephthalate moulding compound; chlorinated polyvinyl chloride; and fibrous glass for improving performance of thermoplastics at elevated temperatures.

1,3-BUTADIENE, POLYMERS
CARBONIC ACID, ESTERS (POLY-)
FIBRES (GLASS)
HIGH TEMPERATURE PROPERTIES
PLASTICS (REINFORCED)
PLASTICS - PROPERTIES
POLYMERS (HIGH TEMPERATURE)
POLYMERS - IRRADIATION
POLYVINYL CHLORIDE (CHLORINATED)
SYNTHETICS, POLY-

PM 16.61/57

SOCIETY OF PLASTICS ENGINEERS, INCORPORATED.
Vinyl Plastics Division.
Vinyl plastics, 2 : fundamentals of processing equipment and techniques... lecture notes... divisional technical conference... Atlanta, Ga... 1971.

Papers deal with mixers and mixing; calendering of PVC; single- and four-screw extruders; batch-type mixing equipment; die design and auxiliary equipment; compounding plants; thermofoming machines and thermofoming of rigid PVC; rotational moulding; and mechanically whipped vinyl plastisols foam.

EXTRUDER - DESIGN
EXTRUDER (PLASTICS)
EXTRUDER (SCREW)
MOLDING EQUIPMENT - DESIGN
PLASTICS PROCESSING
PLASTICS PROCESSING Equipment
PLASTICS
POLYVINYL CHLORIDE COMPOSITIONS
POLYVINYL CHLORIDE - MIXING
POLYVINYL CHLORIDE - PROCESSING
POLYVINYL CHLORIDE (RIGID)
SYMPOSIUM
VINYL COMPOUNDS

PM 16.61/73

SOCIETY OF PLASTICS ENGINEERS INCORPORATED
CHICAGO SECTION
PLASTECOLOGY 1972 ; REGIONAL TECHNICAL CONFERENCE,
ROSEMONT, ILL, 1972
GREENWICH CONN SPE 1973
RDL AECI

Papers deal with the recovery and re-use of plastics from waste. Representative papers are concerned with the extrusion forming of waste plastics and glass; concrete-plastic composites; corrosion of incinerators in the presence of PVC; combustion processes with polymers that contain fire-retardant additives; biodegradability of synthetic polymers; polysaccharide films as biodegradable packaging materials; automatic collection of PE bags containing urban waste. Diagrams, photographs, tables, and references are included.

COMBUSTION PRODUCTS
CONCRETE/RESIN
CONTAINERS (POLYETHYLENE)
CORROSION PREVENTION
INCINERATORS
PACKAGING MATERIALS
PLASTICS - BIODERADATION
PLASTICS - WASTE RECOVERY
POLYSACCHARIDES
POLYVINYL CHLORIDE
SYMPOSIUM
WASTE DISPOSAL
FLEXIBLE VINYL AND HUMAN SAFETY: AN OBJECTIVE ANALYSIS, REGIONAL TECHNICAL CONFERENCE, KIAMESHA LAKE, NY, 1973
GREENWICH CONN SPE 1973

Papers deal with a vinyl processor's choice of plasticizers; the safety of phthalates; US Federal regulations that affect vinyl flexible products; US Occupational Safety and Health Agency Standards and the safe use of asbestos; US Food and Drug Administration regulations that govern plasticizers for vinyl products; pigments and safety; plastic additives (Ca and Pb stabilizers) and the environment; inhalation toxicity tests; and toxicological studies of phthalates (6 papers). Tables and references are included.

RDL AESCI

Most of the papers deal with PVC in various forms. Foams, blow moulding, extrusion, compounding, lubricants, impact strength modifiers, and physical properties of PVC resins are discussed. Urethane-coated fabrics, paintbrushes, and organosols, decoration, vinyl powder coatings, and pigments and fillers for vinyls are also considered. Diagrams, photographs, and references are included.

RDL AESCI

Twenty papers deal with such topics as the thermomechanical history and strength of polymeric solids; structure-property relationships in short-fibre reinforced plastics; effects of processing and environmental conditions on the performance of plastics; unsteady states of cooling on crystallisation; effect of melt processing variables on the properties of injection-moulded polypropylene; tensile properties of polyethylene; performance and mechanical properties of polyvinyl chloride; structure and properties of flexible vinyl foams; weathering of polyolefins; simulation of mould filling; melt, thermal, and rheological characteristics of thermosetting moulding compounds; use of lubricant melt rheology to predict extrudability of melts. Diagrams, tables, and extensive references are included.

RDL AESCI
BARGELLINI, F. and BENEDETTI, L.
Esters of isomalic acid as primary plasticizers in polyvinyl chloride non-toxic formulations.
Research Library, AE & Cl.

The preparation, properties, and evaluation of isomalic acid esters are described. Transesterification of dimethyl isomaleate is the most convenient way to prepare the esters. Tests showed that, with one exception, they were suitable primary plasticizers for PVC, the best being di(2-ethylhexyl) acetyl isomaleate and dl(2-ethylhexyl) propionyl isomaleate, the properties of which resembled those of tributyl acetyl citrate.

PLASTICIZERS - EVALUATION
PLASTICIZERS - PRODUCTION
PLASTICIZERS - PROPERTIES
POLYVINYL CHLORIDE - PLASTICIZERS

BRITISH PLASTICS FEDERATION PIPE GROUP
UNIVERSITY OF SOUTHAMPTON
INTERNATIONAL PLASTICS PIPES SYMPOSIUM, 2ND,
SOUTHAMPTON 1972, PROCEEDINGS
SOUTHAMPTON BLAIR BOWDEN FOR BPF 1972
ISBN 0-903329-01-X
RDL AEGCI

Papers deal with plastics as engineering materials, the design of pipe fittings, joints, and systems, and the use of plastic pipes in gas distribution, unsteady flow conditions, irrigation systems, and in effluent and sewage drainage systems. W.L. Thorne and D.A. Hall of ICI Plastics Division contribute a paper entitled Choice of materials available to the gas industry. The acceptance and the place of plastic pipes in chemical process work is also discussed. Diagrams, discussion, tables, and references are included, as well as BPF's 'Buyers' guide to (vinylplastics) pipes and fittings, publication 62/4, 1972.

CHEMICAL PLANT - MATERIALS (CONSTRUCTION)
IRRIGATION
MATERIALS (CONSTRUCTION)
PIPE FITTINGS
PIPE (PLASTIC)
Pipes (SOIL DRAINAGE)
PIPE JOINTS
PLASTIC PIPES (WATER TRANSPORT)
PIPELINES
POLYETHYLENE (HIGH DENSITY)
PIPES (GAS TRANSPORT)
PIPES - INSTALLATION
POLYVINYL CHLORIDE (RIGID)
PIPES - MATERIALS (CONSTRUCTION) SYMPOSIUM

SWEDISH FIRE PROTECTION ASSOCIATION
PROTECTION 69; PLASTICS-FIRE-CORROSION
STOCKHOLM THE ASSOCIATION 1969
RDL AEGCI

1st International symposium on corrosion risks in connection with fire in plastics, Stockholm... 1969. Papers deal with such topics as corrosion caused by burning plastic materials, particularly PVC; corrosion of concrete and metallic fire risks and fire protection relating to PVC; and post-fire prevention of metallic corrosion with temporary preventives. PVC in building and the corrosion risk by D.R. Jones, Plastics Division, ICI, is included.

BUILDINGS - DAMAGE
CONCRETE - CORROSION
CORROSION
CORROSION INHIBITING
AGENTS
POLYVINYL CHLORIDE RIGID BLENDS
SYNOPSIS
Lubricants (including plasticizers, stabilizers, and other additives that impart lubricity) and processing techniques in which lubrication is necessary are reviewed, together with the problems that a compounding may have to solve.

PLASTICS - COMPOUNDING

POLYVINYL CHLORIDE - LUBRICANTS

SYMPOSIA

VINYL COMPOUNDS

The use is described of the plastograph to measure the heat stability of polyvinyl chloride (PVC) during processing. Measurement of the temperature of the plastic in the mixing head of the plastograph and the effects of volatile components (such as plasticizers) and torque on constant temperature runs are discussed. A diagram of the plastograph, a typical torque-time curve for PVC, and graphs are included.

PLASTOGRAPHS

POLYVINYL CHLORIDE - HEAT STABILITY

STABILITY TESTS

SYMPOSIA

The use of the plastograph to predict the extrudability of rigid polyvinyl chloride compounds containing different additives and stabilized with different systems is described. Test procedures and the effects of polymers, stabilizers, lubricants, impact modifiers, plasticizer level, and emulsion polymer on the fluxing rate are discussed. Results are tabulated.

PLASTOGRAPHS

POLYVINYL CHLORIDE - ADDITIVES

POLYVINYL CHLORIDE - EXTRUSION PROPERTIES

POLYVINYL CHLORIDE (RIGID)

SYMPOSIA

The author discusses the thermal stress on PVC compounds in a single-screw extruder. Graphs and photographs are included.

PLASTICS - STRESSES

POLYVINYL CHLORIDE COMPOSITIONS

STRESSES - DETERMINATION

The dry blending (or powder mixing) of polyvinyl chloride is discussed briefly.

POLYVINYL CHLORIDE DRY BLENDS

POLYVINYL CHLORIDE - EXTRUSION

The advantages, practical and economic, of extruding PVC dry blends (or powder compounds) are discussed. Consistency of the polymer and the correct choice of lubricant are critical. Stabilizer systems, modifying copolymers or graft polymers, and fillers are reviewed, together with mixing and extruding the compound. Single- and twin-screw extruders are described briefly.

EXTRUDERS (PLASTICS)

EXTRUDERS (SCREW)

POLYVINYL CHLORIDE DRY BLENDS

POLYVINYL CHLORIDE - EXTRUSION

POLYVINYL CHLORIDE - LUBRICANTS

POLYVINYL CHLORIDE - MIXING

POLYVINYL CHLORIDE (RIGID)

POLYVINYL CHLORIDE - STABILIZERS

VINYL CHLORIDE POLYMERS

Papers deal with records for measuring and reducing production costs; improving effectiveness of salesmen’s call reports; processing rigid PVC; the formulation and physical properties of blown vinyl films; planning in the industry; establishing safety standards; and woven cotton versus spun-bonded substrates.

MARKETING

PLASTIC FILMS - PRODUCTION

PLASTIC FILMS - PROPERTIES

PLASTICS PRODUCTION - ECONOMICS

POLYVINYL CHLORIDE (RIGID)

PRODUCTION PLANNING

SUBSTRATES

SYMPOSIA

VINYL FILM
MARTIN, F.A. and others
A Study on methods of evaluating waxes as lubricants in rigid PVC fabrication,
Research Library, AE & CL.

A Brabender Flastl-Corder was used to determine the torque requirements and heat-stability characteristics of rigid PVC. Operation of the equipment was initially carried out at constant jacket temperature on PVC having a specific viscosity of 0.28-0.31. However, tests showed that with properly stabilized resins, sequential and reproducible results could be obtained at higher jacket temperatures. The effect of various stabilizers on lubrication was determined and it was found that the effectiveness of the lubricant appeared to be based on the stabilizer used. Torque/time curves are included.

HEAT STABILITY - DETERMINATION
LUBRICANTS - EVALUATION
POLYVinYL chlorIDE - HEAT STABILITY
POLYVinYL chlorIDE - LUBRICANTS
POLYVinYL chlorIDE (RIGID)
POLYVinYL chlorIDE stabilIZATION
TORQUE DETERMINATION

DABY J.R. AND MUSCHICK E
Santicizer 711 in the American PVC Industry,
Presented at a Special Symposium, Derby, England
St Louis MO Monsanto 1971?
RDL AE&CI

The properties and uses of the plasticizer, Santicizer 711, a di-(67-9-11) linear phthalate ester, are reviewed. Diagrams, tables, and 24 references are included.

PLASTICIZER/POLYVINYL CHLORIDE COMPATIBILITY
PLASTICIZERS - PROPERTIES
POLYVINYL CHLORIDE - PLASTICIZERS

EUROPEAN CHEMICAL MARKETING RESEARCH ASSOCIATION
Petrochemicals and their raw materials in Europe;
proceedings of the International Conference of the
European Chemical Marketing Research Association, 4th...
Budapest, ..., 1970.
Research Library, AE & CL.

Papers deal with such topics as the distribution of olefins from a single cracker versus local production; large size ethylene plants; development of the petrochemical industry in small countries; international co-operation; polyolefins (development, status, and potential); European market for PVC; by H. Hurel of Solvay et Cie; world referee market trends; petrochemicals for detergents; ethylene and propylene oxides and their derivatives; urethane polymer in West Europe; aromatics (precycling and oxides); and dimethyl terephthalate and terephthalic acid. Flow sheets, diagrams, and tables are included.

ETHYLENE PRODUCTION
EUROPE
OLEFINS, POLY-
OLEFINS - PRODUCTION
PETROCHEMICAL INDUSTRY
PETROCHEMICALS
POLYVINYL CHLORIDE
RAW MATERIALS - ECONOMICS
SURVEY (MARKET)
SYMPOSIUM
The shoe trade in SA, with an annual output of more than 40 000 000 pairs, is a market which has attracted the attention of the plastics industry. In the USA shoe production is of the order of 650 000 000 pairs and in the UK it is 220 000 000 pairs. It has been suggested that by 1980, footwear production in SA will reach about 50 000 000 pairs and this figure could even reach 80 000 000. By the year 2000, it is estimated that more than 150 000 000 pairs of shoes and boots will be made in SA. Plasticized polyvinyl chloride and microcellular polyurethane footwear materials are discussed together with processes in use in the SA footwear industry. Tables are included. (Text of lecture given at Umbogintwini to the Plastics Institute and the SA Institute of the Boot and Shoe Industry, Natal Branch. The slides are omitted.)

FOOTWEAR MATERIAlS
FOOTWEAR (PLASTIC)
FOOTWEAR PRODUCTION
POLYURETHANES
POLYVINYL CHLORIDE (PLASTICIZED)
SURVEY (MARKET)
Methods of production are outlined briefly. Properties, such as durability and flammability, are discussed and related to building legislation. The material suitable for each application is illustrated. Manufacturers’ data sheets are included for available proprietary brands of cast acrylic sheet (Perspex), glassfibre reinforced polyester laminates, PVC metal laminates, and rigid unplasticized PVC sheeting and wire laminates.

BUILDING MATERIALS
ESTERS, POLY-, RESINS
METHACRYLIC ACID, METHYL ESTER POLYMERS
PERSPEX®
PLASTIC SHEET (CORRUGATED)
PLASTIC SHEET - PROPERTIES
POLYVINYL CHLORIDE LAMINATES
POLYVINYL CHLORIDE SHEET
POLYVINYL CHLORIDE (RIVI)

DEALS WITH FLAT PLASTICS SHEETING THAT IS NORMALY BONDED TO CORE STOCK TO PROVIDE A HARD-WEARING AND ATTRACTIVE FINISH FOR INTERIOR OR EXTERIOR BUILDING APPLICATIONS. METHALINE DECOATIVE LAMINATED SHEETS AND POLYVINYL CHLORIDE SHEETING ARE DISCUSSED. MANUFACTURERS' DATA SHEETS ARE INCLUDED.

BUILDING MATERIALS
BUILDING UNITS (PREFABRICATED)
LAMINATES - PRODUCTION
LAMINATES - PROPERTIES
LINING MATERIALS
METHALINE/FORMALDEHYDE RESINS
POLYVINYL CHLORIDE LAMINATES
POLYVINYL CHLORIDE SHEET
WALL COVERING

THE MECHANISM OF PVC DEGRADATION
SHERWRIIY RUBBER AND PLASTICS RESEARCH ASSOCIATION OF GREAT BRITAIN 1966
RDL AE&CI
A critical review of the literature about the degradation of polyvinyl chloride, that covers thermal dehydrochlorination, photodegradation, mechanochemical degradation, degradation by irradiation, and stabilisation. Diagrams and 220 references are included.

HYDROGEN CHLORIDE - REMOVAL
POLYMERS - IRRADIATION
POLYVINYL CHLORIDE - DEGRADATION
POLYVINYL CHLORIDE - STABILIZATION
SURVEY (LITERATURE)

THE FORMULATION OF PVC COMPOUNDS WITH AZOICARBONAMIDE REV ED
LOUGHBOROUGH LEICS FISONs 1969
PTSL AE&CI

The metallic cations, cadmium, zinc, and lead, present as their salts in stabilizers, can change the decomposition temperatures of azodicarbonamide. Specimen formulations are set out.

FOAMING AGENTS
FORMAMIDE, l,l'-AZOIS-
POLYVINYL CHLORIDE - FORMULATION
POLYVINYL CHLORIDE - STABILIZERS
Two formulations are set out.

POLYVINYL CHLORIDE (EXPANDED)

POLYVINYL CHLORIDE - FORMULATION

Properties required in back coatings for tufted carpets are discussed briefly. Formulations for backing and underlay are set out.

PLASTISOLS

POLYVINYL CHLORIDE (EXPANDED)

POLYVINYL CHLORIDE - FORMULATION

A formulation is set out.

POLYVINYL CHLORIDE (EXPANDED)

POLYVINYL CHLORIDE - FORMULATION

Extrusion and a flame- and a pressure-blown process are outlined. Formulations are included. Precautions to be taken in handling the Gentron blowing agents are briefly discussed.

FOAMING AGENTS

POLYVINYL CHLORIDE - FOAMING

POLYVINYL CHLORIDE - FORMULATION

312
This collection of progress reports of work carried out by RAPRA for its sponsors, the Building Group of the British Plastics Federation and the Ministry of Technology, Great Britain, contains: Methods of test: a literature review (45 pp); Smoke and toxic products: a literature review (15 pp); Smoke and toxic gas evolution from unplasticized polyvinyl chloride fires (16 pp); Fire propagation and other tests (23 pp); Flammability tests: an investigation (24 pp); and Smoke and toxic combustion products (48 pp). Diagrams, tables, and very extensive references are included.

CARTER, A. R.
The Determination of the K Value of PVC Soling Compounds
SHOE AND ALLIED TRADES RESEARCH ASSOCIATION
MEMORANDUM TM 1383
KETTERING NORTHANTS SATRA 1968
RDL AE6C1

A method, based on ISO recommendation R 174, for determining the K value of polyvinyl chloride (PVC) extracted from a compound, is described. The purification technique selected depends on filtration of a THF solution of PVC followed by precipitation of the PVC from the filtrate by the addition of methanol. The precipitated PVC is then filtered and washed free of plasticizer with methanol. Reproducibility of the method is quite good but the analytical techniques require practice before reproducibility is achieved. Values within 1 - 1.5 of the correct ISO K value should be attained. Determination of K values on the surface layers and the middle layers of PVC units suggests that the molecular weight of the PVC is constant through a sole unit. (3 references.)

CONVERSION TABLES
FOOTWEAR MATERIALS
HARDNESS - STANDARDS
POLYVINYL CHLORIDE - PROPERTIES

DICKERSON, K. and MADDAMS, J. S.
The Hardness of PVC and its variation with temperature,
(Shoe and Allied Trades Research Association research report, 228.)
Research Library, AE 6 CL

It was found that the softness of all PVC soles decreases with fall in temperature. The rate of decrease is almost linear for most compounds from -25°C to + 34°C. The exceptions are hard compounds, which approach zero softness within this range. The rate of decrease in softness probably varies from compound to compound. An average value is about 0.8 BSS per °C temperature change. The hardness of rubber soles also changes with temperature but not as much as that of PVC. Other results are discussed. Conversion from degrees of BSS softness to International degrees of rubber hardness (IRHD) is described briefly. A table is included.
PM 18.40
GRALEN N CH
PLASTICS FROM AN ENVIRONMENTAL STANDPOINT
ROYAL SWEDISH ACADEMY OF ENGINEERING REPORT
IWA 160
LUND RIGELLO PAK AB 1970
PTSL AECCI

Translation (issued by the publishers of the original Swedish document) that deals with incineration tests in which the waste contained 14 and 24 of PVC by weight. The tests show that 30-40% of the HCl produced is neutralized through being bound to clinker and fly ash. A rocking grate and a reduced flue gas temperature are prerequisites for a higher 'natural' reduction. Provision of waste incinerators with equipment for dust separation and gas cleaning almost completely prevent the release of HCl. Diagrams, tables, and references are included.

ATMOSPHERIC POLLUTION - CONTROL
GAS CLEANING
GAS (FLUE)
HYDROGEN CHLORIDE REMOVAL
INCINERATORS
PLASTICS - WASTE DISPOSAL
WASTE - INCINERATION

PM 18.153
CHEMISCHE WERKE MUNCHEN OTTO BAERLOCHER
GMBH
LEAD STABILIZERS
MUNCHEN OTTO BAERLOCHER 1965
RDL AECCI

LEAD COMPOUNDS
LEAD COMPOUNDS - HEALTH HAZARDS
POLYVINYL CHLORIDE - STABILIZERS
STABILIZERS
STABILIZERS - PROPERTIES
STABILIZERS - TOXICITY

PM 18.68
BAIRD M E
ELECTRICAL PROPERTIES OF POLYMERIC MATERIALS
LONDON PLASTICS INSTITUTE 1973
ISBN 0-903107-02-3
RDL AECCI

Experimental knowledge and theoretical interpretation of the electrical properties of polymeric materials are discussed. Dielectric behaviour, resistivity, and dielectric breakdown are dealt with, as well as techniques of measurement. Limitations are indicated. Mathematical expressions are explained briefly. Formulas are given for the rationalized MlS system where the units are the same as SI units. Diagrams and 620 references.

DIELECTRIC LOSSES
DIELECTRIC PROPERTIES
DIELECTRIC PROPERTIES - MEASUREMENT
POLYMERS - STABILIZERS
POLYMERS - PROPERTIES (DIELECTRIC)
POLYMERS - RELAXATION
POLYVINYL CHLORIDE - PROPERTIES
POLYVINYL CHLORIDE - PROPERTIES (ELECTRICAL)
SURVEY (LITERATURE)

PM 18.165
PLASTIC COATINGS LIMITED
THE DESIGN ENGINEERS GUIDE TO PLASTIC COATING
CH. UNIFORMSUCKRY THE COMPANY 1973
RDL AECCI

The guide deals mainly with thermoplastics used as permanent protective coatings. General physical data about these coatings are tabulated. Processes for applying the coatings (by dipping, spraying, or cast lining) are outlined. As of PVC types, Deonyl, Flumax, fluoroplastics, electrostatically applied finishes, and plastic coating systems are illustrated.

COATING
COATING COMPOSITIONS - APPLICATION
COATINGS (PLASTICS (THERMOPLASTIC)
POLYVINYL CHLORIDE (PLASTICIZED)

314
The hazardous properties of additives used in the processing of PVC are discussed briefly, together with the investigation of these hazardous properties. Metal stearate dust explosions that have occurred in disc attrition mills, spontaneous ignition of metal soaps, the explosibility of dust clouds of organic tin oxides, and the toxicity of Pb, Ba, and Cd stearates and dibutyl tin oxide are dealt with. Precautions to be taken in producing PVC additives are outlined. Tables and 9 references are included.

ADDITIVES - PRODUCTION
EXPLOSION HAZARDS
EXPLOSIONS (DUST)
HEALTH HAZARDS (INDUSTRIAL)
PLASTICS PRODUCTION - HAZARDS
POLYVINYL CHLORIDE ADDITIVES
POLYVINYL CHLORIDE - ADDITIVES
POLYVINYL CHLORIDE - SORES (METAL)

Extrusion of PVC from dry blends; a literature survey.
(Rubber and Plastics Research Association technical review, 28.)
Shawbury, Shrewsbury, RAPRA, 1966.
Research Library, AE & Cl.

Preparation and processing of dry blends and the materials required (polymers, lubricants, stabilisers, fillers) are reviewed. It is concluded that the success of the dry blend extrusion process depends not only on using extruders and dies designed and equipped for powder extrusion, but also on the properties of the prepared dry blends. (51 references.)
MECKENSTOCK, K. U.
Titanium dioxide pigments for the colouring of plastics.
Translated from German.
(Kronos Information, 41/E.)
Leverkusen, Titangesellschaft, 1968?
Research Library, AE & Cl.

The development and properties of titanium dioxide pigments, particularly Kronos RN 40 and Kronos CL 220, are discussed.

RISER, G. R. and PALM, W. E.
An Accelerated light aging study of plasticized PVC, comparing twin carbon arc with xenon arc.
Research Library, AE & Cl.

The effect of carbon arc and xenon arc on plasticized PVC was studied under dry conditions (ab 5% RH) with a black panel temperature of 82°C. The air temperature in the xenon arc machine was about 8°C higher than in the carbon arc machine. Samples were also exposed to the xenon arc at 20% and 50% RH at a black panel temperature of 62°C. Values obtained for percentage increase in torsional modulus show that the xenon arc produces a faster rate of stiffening than the carbon arc (with the exception of the sample plasticized with TCP). No differences were noted between 20% and 50% RH for xenon arc exposure.

AGING TEST
POLYVINYL CHLORIDE AGEING
POLYVINYL CHLORIDE DEGRADATION
POLYVINYL CHLORIDE (PLASTICIZED)

SMITH, H. V.
Polyvinyl chloride; a market survey.
(Major thermoplastics, U. K.)
Research Library, AE & Cl.

Information is tabulated under the following: vinyl chloride producers and capacities; polyvinyl chloride producers and capacities; manufacturers of plasticizers, stabilizers, lubricants, and pigments; production, import, export, consumption, and end use pattern of PVC consumption, with forecasts to 1970; export agents; import agents; major processors.

DIRECTORY
POLYVINYL CHLORIDE
POLYVINYL CHLORIDE - ADDITIVES
SURVEY (MARKET)
VINYL CHLORIDE

LACKSONEN, J. W. and BARSAN, R. E.
A Mathematical model for continuous suspension vinyl chloride polymerization in a series of stirred reactors.
Research Library, AE & Cl.

The mathematical model, designed to serve as the basis for studying the economics of PVC production, is described. The kinetic and residence time distribution equations are set out. Some of the assumptions on which the model was based are known to be incorrect but refinements are difficult to justify without experimental data. An example of the computer output is given.

COMPUTERIZED METHODS
MATHEMATICAL MODELS
POLYVINYL CHLORIDE PRODUCTION
VINYL CHLORIDE POLYMERIZATION

316
Articles deal with types of PVC and their use in producing PVC dry (or powder) blends; pigments, plasticizers, lubricants, stabilizers, fillers, and modifiers; problems, recipes, limitations, test methods; construction and operation of equipment for producing the blends; processing of PVC dry blends and hot melts; single- and twin-screw extruders; equipment for compounding and granulating plasticized PVC; and injection moulding equipment.

EXTRUDER (SCREW)
MOULDING EQUIPMENT
PLASTICIZERS - PROPERTIES
PLASTICS PRODUCTION EQUIPMENT
POLYMER MELTS
POLYVINYL CHLORIDE - ADDITIVES
POLYVINYL CHLORIDE - DRY BLENDS
POLYVINYL CHLORIDE - RECOGNITION
POLYVINYL CHLORIDE - PLASTICIZERS

The viscosity is described of PVC plastisols depending on their volumetric concentration. The two empirical parameters used were corrected for solvency and swelling and represent the intrinsic viscosity and packing volume of the spheres. These parameters tend to the predicted theoretical values at higher shear stresses. An additional working equation, based on the weight fraction, is proposed. Diagrams are included. (13 references.)

Effluent treatment plants based on the use of Flocor, a biological filtration plastic module produced by ICI, are discussed briefly. Illustrated.

Effluent treatment plants for the production of high-volume process chemicals is described. The objectives of the work were to identify plastic/air combustion products with potential commercial value; to identify waste plastic/air combustion products that are potential air pollutants; to conceive of and evaluate technical and economic evaluations for chemical processes that use waste plastics as raw materials; and to identify potential R&D programmes leading to the development of commercially viable chemical processes. Analytical tools and the results of thermodynamic, kinetic, preliminary process design, and economic analysis are discussed. Computer programs, flow sheets, tables, and extensive references are included.

Effluent treatment plants based on the use of Flocor, a biological filtration plastic module produced by ICI, are discussed briefly. Illustrated.
Flocor, a synthetic packing, designed for the biological oxidation of waste water, is described and illustrated.

BIOLOGICAL TREATMENT
EFFLUENTS TREATMENT
FILTER MEDIA
FLOCOR® PACKING MATERIALS (ENGINEERING)
POLLUTION CONTROL SHEET
SEWAGE TREATMENT

COATING COMPOSITIONS - ADDITIVES
FUEL ADDITIVES
2,4-PENTANEDIOL, 2-METHYL-
POLYVINYL CHLORIDE - ADDITIVES
The properties and specifications for organotin stabilizers (sulphur-containing dibutyltin compounds, sulphur-free dibutyltin derivatives, di-α-octyltin compounds) and lubricants for polyvinyl chloride are set out, together with the properties of and specifications for Metatin 49-10, a permanent organotin microbicide for vinyl polymers.

LUBRICANTS - PROPERTIES
ORGANIC COMPOUNDS (TIN)
Polyvinyl Chloride - LUBRICANTS
Polyvinyl Chloride - STABILIZERS
STABILIZERS - PROPERTIES
TIN COMPOUNDS
Index entries used on cards for publications concerned with PVC.

It should be noted that the system enables all subjects relevant to one or more aspect of PVC technology to be indexed with equal facility.

<table>
<thead>
<tr>
<th>Index term</th>
<th>No of times used</th>
<th>Index term</th>
<th>No of times used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkylation</td>
<td>1</td>
<td>Cross-linking</td>
<td>4</td>
</tr>
<tr>
<td>Atmospheric pollution-control</td>
<td>2</td>
<td>Copolymers - properties</td>
<td>4</td>
</tr>
<tr>
<td>Acrylic acid polymers</td>
<td>4</td>
<td>Copolymers (Block)</td>
<td>1</td>
</tr>
<tr>
<td>Acrylonitrile polymers</td>
<td>2</td>
<td>Copolymers - molecular structure</td>
<td>1</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>1</td>
<td>Cervia</td>
<td>6</td>
</tr>
<tr>
<td>Acrylonitrile/Butadiene/ Styrene polymers</td>
<td>2</td>
<td>Cellulose Esters</td>
<td>2</td>
</tr>
<tr>
<td>Amides, polyamides, poly-properties</td>
<td>2</td>
<td>Containers - materials-construction</td>
<td>1</td>
</tr>
<tr>
<td>Atmospheric contaminants</td>
<td>2</td>
<td>Containers (PVC)</td>
<td>3</td>
</tr>
<tr>
<td>Additives - determination</td>
<td>2</td>
<td>Containers bulk</td>
<td>1</td>
</tr>
<tr>
<td>Analytical methods</td>
<td>2</td>
<td>Chemical resistance</td>
<td>2</td>
</tr>
<tr>
<td>Additives - production</td>
<td>1</td>
<td>Coating compositions - additives</td>
<td>1</td>
</tr>
<tr>
<td>Ageing test</td>
<td>2</td>
<td>Chain branching reactions</td>
<td>3</td>
</tr>
<tr>
<td>Asbestos fibre</td>
<td>1</td>
<td>Condensation, poly</td>
<td>1</td>
</tr>
<tr>
<td>Anti-oxidants</td>
<td>2</td>
<td>Chromatography (thin film)</td>
<td>1</td>
</tr>
<tr>
<td>Anti-oxidants testing</td>
<td>2</td>
<td>Combustion products</td>
<td>2</td>
</tr>
<tr>
<td>Acrylic acid polymers - properties</td>
<td>1</td>
<td>Concrete resin</td>
<td>2</td>
</tr>
<tr>
<td>NH₃ synthesis</td>
<td>1</td>
<td>Containers (polyethylene)</td>
<td>1</td>
</tr>
<tr>
<td>A/N production</td>
<td>1</td>
<td>Corrosion prevention</td>
<td>1</td>
</tr>
<tr>
<td>Auto-t ves - cleaning</td>
<td>1</td>
<td>Carbonic acid, ester</td>
<td>1</td>
</tr>
<tr>
<td>Absorbents (UV)</td>
<td>1</td>
<td>Chromatography (gel perm.)</td>
<td>1</td>
</tr>
<tr>
<td>1-Butene-polymers</td>
<td>1</td>
<td>Concrete corrosion</td>
<td>1</td>
</tr>
<tr>
<td>Biological treatment</td>
<td>9</td>
<td>Corrosion</td>
<td>1</td>
</tr>
<tr>
<td>Bibliography</td>
<td>1</td>
<td>Corrosion inhibiting agents</td>
<td>1</td>
</tr>
<tr>
<td>Benzene-ethyl</td>
<td>1</td>
<td>Corrosion prevention</td>
<td>1</td>
</tr>
<tr>
<td>Building materials</td>
<td>10</td>
<td>Computer programmes</td>
<td>1</td>
</tr>
<tr>
<td>Buildings - Fire hazards</td>
<td>1</td>
<td>Cavitation</td>
<td>1</td>
</tr>
<tr>
<td>Blow moulding</td>
<td>3</td>
<td>Coffehone film</td>
<td>1</td>
</tr>
<tr>
<td>1,3 Butadiene polymers</td>
<td>1</td>
<td>Cellulose</td>
<td>1</td>
</tr>
<tr>
<td>Buildings - damage</td>
<td>1</td>
<td>Containers - production</td>
<td>1</td>
</tr>
<tr>
<td>Buildings - units</td>
<td>3</td>
<td>Coating</td>
<td>1</td>
</tr>
<tr>
<td>Blow moulding compositions</td>
<td>1</td>
<td>Coatings</td>
<td>1</td>
</tr>
<tr>
<td>Building - construction</td>
<td>2</td>
<td>Coating compositions - application</td>
<td>1</td>
</tr>
<tr>
<td>Building - industry</td>
<td>1</td>
<td>Coating compositions - properties</td>
<td>1</td>
</tr>
<tr>
<td>Catalysis (Homogeneous)</td>
<td>1</td>
<td>Catalysts - polymerization</td>
<td>1</td>
</tr>
<tr>
<td>Cables (electric)</td>
<td>1</td>
<td>Chemicals production</td>
<td>1</td>
</tr>
<tr>
<td>Cables - insulating -terials</td>
<td>2</td>
<td>Chemicals production - flow sheets</td>
<td>1</td>
</tr>
<tr>
<td>Cables - PVC</td>
<td>1</td>
<td>Computerized methods</td>
<td>1</td>
</tr>
<tr>
<td>Calendering compositions</td>
<td>2</td>
<td>Conversion tables</td>
<td>1</td>
</tr>
<tr>
<td>Calenders</td>
<td>2</td>
<td>Carbon properties</td>
<td>1</td>
</tr>
<tr>
<td>Cellulose - reactions</td>
<td>1</td>
<td>Chemical plant - materials construction</td>
<td>2</td>
</tr>
<tr>
<td>Copolymerization</td>
<td>4</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>Index term</td>
<td>No of times used</td>
<td>Index term</td>
<td>No of times used</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Combustion products</td>
<td>1</td>
<td>Filter media</td>
<td>10</td>
</tr>
<tr>
<td>Carpets</td>
<td>1</td>
<td>Floccor</td>
<td>9</td>
</tr>
<tr>
<td>Chemical plant equipment</td>
<td>1</td>
<td>Fire radicals - reactions</td>
<td>1</td>
</tr>
<tr>
<td>Carbon black</td>
<td>1</td>
<td>Fertilizers (liquid)</td>
<td>1</td>
</tr>
<tr>
<td>Dyes</td>
<td>1</td>
<td>Fertilizers (nitrogenous)</td>
<td>2</td>
</tr>
<tr>
<td>Directory</td>
<td>3</td>
<td>Film - packaging</td>
<td>1</td>
</tr>
<tr>
<td>Dies - design</td>
<td>3</td>
<td>Fire hazards</td>
<td>4</td>
</tr>
<tr>
<td>Decomposition products</td>
<td>4</td>
<td>Fertilizers - production</td>
<td>2</td>
</tr>
<tr>
<td>Degradation</td>
<td>2</td>
<td>Fertilizers - survey</td>
<td>1</td>
</tr>
<tr>
<td>Density - detonation</td>
<td>1</td>
<td>Fibres - production</td>
<td>1</td>
</tr>
<tr>
<td>Diseases - control</td>
<td>1</td>
<td>Fibres - survey</td>
<td>1</td>
</tr>
<tr>
<td>Diseases - occupational</td>
<td>1</td>
<td>Fibres - synthetic</td>
<td>2</td>
</tr>
<tr>
<td>Design data</td>
<td>2</td>
<td>Fuel additives</td>
<td>2</td>
</tr>
<tr>
<td>Ethylene production</td>
<td>3</td>
<td>Fabrics coating</td>
<td>2</td>
</tr>
<tr>
<td>Europe</td>
<td>1</td>
<td>Food additives</td>
<td>3</td>
</tr>
<tr>
<td>Erxolation</td>
<td>1</td>
<td>Foods packaging</td>
<td>5</td>
</tr>
<tr>
<td>Effluents treatment</td>
<td>9</td>
<td>Fibres - glass</td>
<td>4</td>
</tr>
<tr>
<td>Ethylene 1,1-dichloro polymers</td>
<td>2</td>
<td>Fibres - composites</td>
<td>3</td>
</tr>
<tr>
<td>Ethylene polymers</td>
<td>2</td>
<td>Fibres - production</td>
<td>1</td>
</tr>
<tr>
<td>Ethylene/Propylene polymers</td>
<td>3</td>
<td>Fibre protection</td>
<td>1</td>
</tr>
<tr>
<td>Effluents - disposal</td>
<td>1</td>
<td>Fireproofing agents</td>
<td>4</td>
</tr>
<tr>
<td>Epoxy resins</td>
<td>3</td>
<td>Fillers</td>
<td>2</td>
</tr>
<tr>
<td>Esters, Poly</td>
<td>6</td>
<td>Foaming equipment</td>
<td>1</td>
</tr>
<tr>
<td>Esters, Poly-resins</td>
<td>3</td>
<td>Fibres metallic</td>
<td>1</td>
</tr>
<tr>
<td>Ethane 1,2-dichloro</td>
<td>1</td>
<td>Fibres - pigmentation</td>
<td>1</td>
</tr>
<tr>
<td>Ethyle alcohol</td>
<td>1</td>
<td>Fibres - properties</td>
<td>1</td>
</tr>
<tr>
<td>Ethylene analysis</td>
<td>1</td>
<td>Fibres - spinning</td>
<td>1</td>
</tr>
<tr>
<td>Ethylene flammability limits</td>
<td>1</td>
<td>Fibres - treatment</td>
<td>1</td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>1</td>
<td>Film packaging</td>
<td>2</td>
</tr>
<tr>
<td>Ethylene polymerisation</td>
<td>1</td>
<td>Formamide 1,1-azobis</td>
<td>1</td>
</tr>
<tr>
<td>Ethylene properties</td>
<td>1</td>
<td>Footwear - materials</td>
<td>2</td>
</tr>
<tr>
<td>Ethylene reactions</td>
<td>1</td>
<td>Footwear - plastic</td>
<td>1</td>
</tr>
<tr>
<td>Esters - poly (reinforced)</td>
<td>2</td>
<td>Footwear - production</td>
<td>1</td>
</tr>
<tr>
<td>Ethers - poly</td>
<td>1</td>
<td>Footwear - soles</td>
<td>1</td>
</tr>
<tr>
<td>Ethylene, tetra fluoro polymers</td>
<td>4</td>
<td>Flame propagation</td>
<td>1</td>
</tr>
<tr>
<td>Extruders, design</td>
<td>5</td>
<td>Flammability tests</td>
<td>2</td>
</tr>
<tr>
<td>Extruders, screw</td>
<td>7</td>
<td>Flavic</td>
<td>1</td>
</tr>
<tr>
<td>Explosion hazards</td>
<td>1</td>
<td>Gas cleaning</td>
<td>3</td>
</tr>
<tr>
<td>Explosions (dust)</td>
<td>1</td>
<td>Gas (Flue)</td>
<td>2</td>
</tr>
<tr>
<td>Elastomers - properties</td>
<td>2</td>
<td>Geon</td>
<td>1</td>
</tr>
<tr>
<td>Extruder - plastics</td>
<td>4</td>
<td>Graphite properties</td>
<td>1</td>
</tr>
<tr>
<td>Explosive powder</td>
<td>1</td>
<td>Hydrocarbons - cracking</td>
<td>1</td>
</tr>
<tr>
<td>Elastic properties</td>
<td>1</td>
<td>Hydrocarbons - reforming</td>
<td>2</td>
</tr>
<tr>
<td>Esters, poly - production</td>
<td>1</td>
<td>Hydrogen chloride removal</td>
<td>2</td>
</tr>
<tr>
<td>Esters, poly - reactions</td>
<td>1</td>
<td>Hazards - evaluation</td>
<td>1</td>
</tr>
<tr>
<td>Esters, poly - properties</td>
<td>1</td>
<td>Hydrogen chloride</td>
<td>2</td>
</tr>
<tr>
<td>Ethylene, fluoro polymers</td>
<td>1</td>
<td>Health hazards (industrial)</td>
<td>2</td>
</tr>
<tr>
<td>Effluents treatment</td>
<td>9</td>
<td>High temperature properties</td>
<td>2</td>
</tr>
<tr>
<td>Engineering design</td>
<td>1</td>
<td>Hydrochloric acid - corrosivity</td>
<td>1</td>
</tr>
<tr>
<td>Fillers - modification</td>
<td>1</td>
<td>Hoppers design</td>
<td>1</td>
</tr>
<tr>
<td>Fluorocarbons polymers</td>
<td>1</td>
<td>Heat stability - determination</td>
<td>2</td>
</tr>
<tr>
<td>Foaming agents</td>
<td>5</td>
<td>Hydrocarbons - production</td>
<td>1</td>
</tr>
<tr>
<td>Fermentation engineering</td>
<td>1</td>
<td>Hardness standards</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat sealing</td>
<td>2</td>
</tr>
</tbody>
</table>

321
<table>
<thead>
<tr>
<th>Index term</th>
<th>No of times used</th>
<th>Index term</th>
<th>No of times used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isomerization</td>
<td>1</td>
<td>Oil refining</td>
<td>1</td>
</tr>
<tr>
<td>Insulating materials (electric)</td>
<td>2</td>
<td>Olefines, Poly</td>
<td>4</td>
</tr>
<tr>
<td>Insulating materials - properties</td>
<td>1</td>
<td>Oxidation</td>
<td>1</td>
</tr>
<tr>
<td>Ionomers</td>
<td>1</td>
<td>Optical methods</td>
<td>2</td>
</tr>
<tr>
<td>Incinerators</td>
<td>3</td>
<td>Osmometry</td>
<td>1</td>
</tr>
<tr>
<td>Industrial organization</td>
<td>1</td>
<td>Oxidation - auto</td>
<td>2</td>
</tr>
<tr>
<td>Impact strength improvers</td>
<td>3</td>
<td>Olefines, poly - degradation</td>
<td>2</td>
</tr>
<tr>
<td>Injection moulding</td>
<td>1</td>
<td>Ordnance</td>
<td>1</td>
</tr>
<tr>
<td>Insulating compositions</td>
<td>2</td>
<td>Organic compounds (tin)</td>
<td>1</td>
</tr>
<tr>
<td>Irrigation</td>
<td>1</td>
<td>Petrochemicals</td>
<td>2</td>
</tr>
<tr>
<td>Ionization</td>
<td>1</td>
<td>Petroleum refining</td>
<td>2</td>
</tr>
<tr>
<td>Joints - expansion</td>
<td>1</td>
<td>Petrochemical Industry</td>
<td>2</td>
</tr>
<tr>
<td>Kinetics of reaction</td>
<td>1</td>
<td>Plastic articles - design</td>
<td>1</td>
</tr>
<tr>
<td>Lining materials</td>
<td>3</td>
<td>Plastics - Heat treatment</td>
<td>1</td>
</tr>
<tr>
<td>Lubricants</td>
<td>2</td>
<td>Plastics properties (Mech)</td>
<td>6</td>
</tr>
<tr>
<td>Lacquers</td>
<td>1</td>
<td>Plastics - fracture</td>
<td>2</td>
</tr>
<tr>
<td>Light scattering</td>
<td>1</td>
<td>Plastics - mech. properties</td>
<td>2</td>
</tr>
<tr>
<td>Latex</td>
<td>1</td>
<td>Pipes (design)</td>
<td>1</td>
</tr>
<tr>
<td>Lubricants - evaluation</td>
<td>1</td>
<td>Pipes (plastic)</td>
<td>1</td>
</tr>
<tr>
<td>Laminates - production</td>
<td>1</td>
<td>Plastics - creep</td>
<td>2</td>
</tr>
<tr>
<td>Laminates - properties</td>
<td>2</td>
<td>Plastics - Processing</td>
<td>11</td>
</tr>
<tr>
<td>Lead compounds</td>
<td>1</td>
<td>Plastics (reinforced)</td>
<td>15</td>
</tr>
<tr>
<td>Lead compounds - health hazards</td>
<td>1</td>
<td>Polyethylene</td>
<td>12</td>
</tr>
<tr>
<td>Linings - testing</td>
<td>1</td>
<td>1-Pentente,4-methyl polymers</td>
<td>5</td>
</tr>
<tr>
<td>Methacrylic acid - polymers</td>
<td>2</td>
<td>Plastics - fillers</td>
<td>2</td>
</tr>
<tr>
<td>Materials (construction)</td>
<td>3</td>
<td>Plastics - heat resistant</td>
<td>2</td>
</tr>
<tr>
<td>Madder factory</td>
<td>6</td>
<td>Polyethylene (chlorinated)</td>
<td>9</td>
</tr>
<tr>
<td>Methacrylic acid/methyl ester polymers</td>
<td>4</td>
<td>Polymers - high temperature</td>
<td>2</td>
</tr>
<tr>
<td>Material (construction)</td>
<td>2</td>
<td>Polymers - properties</td>
<td>13</td>
</tr>
<tr>
<td>moulding equipment</td>
<td>1</td>
<td>Polymers - properties</td>
<td>13</td>
</tr>
<tr>
<td>Molecular weight determination</td>
<td>2</td>
<td>Polyurethanes</td>
<td>8</td>
</tr>
<tr>
<td>Metals - corrosion</td>
<td>1</td>
<td>Plastic sheet production</td>
<td>1</td>
</tr>
<tr>
<td>Mathematical models</td>
<td>2</td>
<td>Plastic sheet - properties</td>
<td>1</td>
</tr>
<tr>
<td>Micro-organisms</td>
<td>1</td>
<td>Plastics - additives</td>
<td>6</td>
</tr>
<tr>
<td>Melamine/formaldehyde resins</td>
<td>1</td>
<td>Plastics - coldlending</td>
<td>1</td>
</tr>
<tr>
<td>Moulding equipment - design</td>
<td>1</td>
<td>Plastics - raw materials</td>
<td>2</td>
</tr>
<tr>
<td>Moulding compositions - properties</td>
<td>2</td>
<td>Plastics - waste disposal</td>
<td>3</td>
</tr>
<tr>
<td>Moulding equipment - design</td>
<td>1</td>
<td>Polymer degradation</td>
<td>13</td>
</tr>
<tr>
<td>Materials construction - specifications</td>
<td>1</td>
<td>Polymerization</td>
<td>9</td>
</tr>
<tr>
<td>Mechanical properties</td>
<td>1</td>
<td>Polymers - depolymerization</td>
<td>2</td>
</tr>
<tr>
<td>Melts - properties</td>
<td>1</td>
<td>Polymers - reactions</td>
<td>5</td>
</tr>
<tr>
<td>Melt flow index - determination</td>
<td>1</td>
<td>Protein</td>
<td>1</td>
</tr>
<tr>
<td>Marketing</td>
<td>1</td>
<td>Packaging materials</td>
<td>13</td>
</tr>
<tr>
<td>Mist removal</td>
<td>1</td>
<td>Plastics - crack propagation</td>
<td>1</td>
</tr>
<tr>
<td>Naphtha</td>
<td>1</td>
<td>Plastics - crazing</td>
<td>1</td>
</tr>
<tr>
<td>Nitriles, polymers</td>
<td>1</td>
<td>Plastics - stresses</td>
<td>3</td>
</tr>
<tr>
<td>NMR</td>
<td>1</td>
<td>Polymers - deformation</td>
<td>6</td>
</tr>
<tr>
<td>NMR - spectra</td>
<td>1</td>
<td>Polymers - molecular structure</td>
<td>9</td>
</tr>
<tr>
<td>Plastics - properties (physical)</td>
<td>1</td>
<td>Polymers - relaxation</td>
<td>4</td>
</tr>
<tr>
<td>Plastics - transitions</td>
<td>1</td>
<td>Polymers - transitions</td>
<td>3</td>
</tr>
</tbody>
</table>

322
<table>
<thead>
<tr>
<th>Index term</th>
<th>No of times used</th>
<th>Index term</th>
<th>No of times used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymers - viscoelastic properties</td>
<td>1</td>
<td>Polyethylene analysis</td>
<td>1</td>
</tr>
<tr>
<td>Pipes - joining</td>
<td>2</td>
<td>Polymers - molecular</td>
<td>2</td>
</tr>
<tr>
<td>Pipes (PVC)</td>
<td>4</td>
<td>Polypropylene analysis</td>
<td>1</td>
</tr>
<tr>
<td>Polymers, processing equipment</td>
<td>4</td>
<td>Polymers - crystallinity</td>
<td>1</td>
</tr>
<tr>
<td>Plastics welding apparatus</td>
<td>2</td>
<td>Polymeric analysis</td>
<td>1</td>
</tr>
<tr>
<td>Polymers - conjugated</td>
<td>1</td>
<td>Polypropylene analysis</td>
<td>1</td>
</tr>
<tr>
<td>Polymers - cross-linked</td>
<td>3</td>
<td>Polymers - irradiation</td>
<td>4</td>
</tr>
<tr>
<td>Polymers - organometallic</td>
<td>1</td>
<td>Pipes - testing</td>
<td>1</td>
</tr>
<tr>
<td>Polymers - photosensitive</td>
<td>2</td>
<td>Plastic articles - testing</td>
<td>1</td>
</tr>
<tr>
<td>Polymers - stabilization</td>
<td>6</td>
<td>Plasticizers</td>
<td>1</td>
</tr>
<tr>
<td>Posture improvement</td>
<td>1</td>
<td>Polyethylene extrusion</td>
<td>1</td>
</tr>
<tr>
<td>Plastics production</td>
<td>5</td>
<td>Polymers - molecular weight distribution</td>
<td>2</td>
</tr>
<tr>
<td>Plastics expanded</td>
<td>6</td>
<td>Plastics - corrosivity</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - moulding</td>
<td>4</td>
<td>Plastics - flammability</td>
<td>5</td>
</tr>
<tr>
<td>Plastics - printing</td>
<td>1</td>
<td>Plastics hazards</td>
<td>1</td>
</tr>
<tr>
<td>Phenol</td>
<td>2</td>
<td>Plastics - pyrolysis</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - ageing</td>
<td>2</td>
<td>Polyethylene decomposition</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - permeability</td>
<td>1</td>
<td>Process evaluation</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - weathering</td>
<td>2</td>
<td>Polyethylene degradation</td>
<td>5</td>
</tr>
<tr>
<td>Polymers - addition</td>
<td>1</td>
<td>Polyethylene stabilization</td>
<td>2</td>
</tr>
<tr>
<td>Phenol formaldehyde resins</td>
<td>1</td>
<td>Polymers - high molecular weight</td>
<td>4</td>
</tr>
<tr>
<td>Polymers</td>
<td>3</td>
<td>Plastics stabilization</td>
<td>2</td>
</tr>
<tr>
<td>Plastics - technology</td>
<td>2</td>
<td>Pyrocatechol</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - testing</td>
<td>1</td>
<td>Polymers - discoloration</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - survey</td>
<td>1</td>
<td>Polymers - pyrolysis</td>
<td>1</td>
</tr>
<tr>
<td>Polytetrafluoroethylene (low density)</td>
<td>4</td>
<td>Polyethylene oxidation</td>
<td>1</td>
</tr>
<tr>
<td>Plastics</td>
<td>9</td>
<td>Polymers - oxidation</td>
<td>2</td>
</tr>
<tr>
<td>Polymers</td>
<td>3</td>
<td>Plasticizers/PVC</td>
<td>2</td>
</tr>
<tr>
<td>Patents</td>
<td>1</td>
<td>compatibility</td>
<td>5</td>
</tr>
<tr>
<td>Polymerization - mass</td>
<td>1</td>
<td>Polymer solutions - properties</td>
<td>5</td>
</tr>
<tr>
<td>Pigments - properties</td>
<td>3</td>
<td>Polymerization - kinetics</td>
<td>2</td>
</tr>
<tr>
<td>Plasticizers - properties</td>
<td>9</td>
<td>Plastics - waste recovery</td>
<td>1</td>
</tr>
<tr>
<td>Polytetrafluoroethylene</td>
<td>4</td>
<td>Powders - properties</td>
<td>1</td>
</tr>
<tr>
<td>Powder coatings</td>
<td>1</td>
<td>Propellants - properties</td>
<td>1</td>
</tr>
<tr>
<td>Plastics production - hazards</td>
<td>1</td>
<td>Plastic - extrusion</td>
<td>1</td>
</tr>
<tr>
<td>Plastics production equipment</td>
<td>2</td>
<td>Polyethylene - melt fracture</td>
<td>1</td>
</tr>
<tr>
<td>Polymer melts</td>
<td>5</td>
<td>Polyethylene - rheological properties</td>
<td>1</td>
</tr>
<tr>
<td>Petrols - toxic esters</td>
<td>2</td>
<td>Polypropylene - properties</td>
<td>5</td>
</tr>
<tr>
<td>Plasticizers - toxicity</td>
<td>1</td>
<td>Powder compaction</td>
<td>1</td>
</tr>
<tr>
<td>Plastic films - printing</td>
<td>2</td>
<td>Powders - rheological properties</td>
<td>1</td>
</tr>
<tr>
<td>Plastic films - welding</td>
<td>2</td>
<td>Polyesters - properties</td>
<td>1</td>
</tr>
<tr>
<td>Plastic sheet - moulding</td>
<td>1</td>
<td>Plasticizers - plasticization</td>
<td>1</td>
</tr>
<tr>
<td>Polymers - analysis</td>
<td>4</td>
<td>Plasticizers - analysis</td>
<td>1</td>
</tr>
<tr>
<td>Polymers - dielectric properties</td>
<td>1</td>
<td>Plasticizers - production</td>
<td>3</td>
</tr>
<tr>
<td>Polymers - graft</td>
<td>1</td>
<td>Plasticizers - evaluation</td>
<td>2</td>
</tr>
<tr>
<td>Polymers - high impact strength</td>
<td>1</td>
<td>Polyethylene - expanded</td>
<td>2</td>
</tr>
<tr>
<td>Polymers - rheological properties</td>
<td>3</td>
<td>Polyurethanes - expanded</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polypropylene - expanded</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymers - foaming</td>
<td>1</td>
</tr>
</tbody>
</table>

323
<table>
<thead>
<tr>
<th>Index term</th>
<th>No of times used</th>
<th>Index term</th>
<th>No of times used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticizers - testing</td>
<td>3</td>
<td>Pipe-water transport</td>
<td>1</td>
</tr>
<tr>
<td>Polyethylene fibres</td>
<td>1</td>
<td>Pipe-plastic</td>
<td>3</td>
</tr>
<tr>
<td>Polypropylene fibres</td>
<td>2</td>
<td>Polyethylene sheet</td>
<td>1</td>
</tr>
<tr>
<td>Packaging regulations</td>
<td>3</td>
<td>Pipes - welding</td>
<td>1</td>
</tr>
<tr>
<td>Plastic films - coating</td>
<td>4</td>
<td>Plastic film - joining</td>
<td>1</td>
</tr>
<tr>
<td>Plastic films - orientation</td>
<td>2</td>
<td>Plastic film - welding</td>
<td>1</td>
</tr>
<tr>
<td>Plastic films - production</td>
<td>4</td>
<td>Plastics - joining</td>
<td>1</td>
</tr>
<tr>
<td>Plastic films - properties</td>
<td>2</td>
<td>Plastics - welding</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - identification</td>
<td>4</td>
<td>Polyethylene weathering</td>
<td>1</td>
</tr>
<tr>
<td>Polyethylene film</td>
<td>4</td>
<td>Polyethylene - welding</td>
<td>2</td>
</tr>
<tr>
<td>Polypropylene film</td>
<td>1</td>
<td>Polypropylene - oxygenation</td>
<td>1</td>
</tr>
<tr>
<td>Packaging - automatic</td>
<td>1</td>
<td>Polypropylene - stabilizers</td>
<td>1</td>
</tr>
<tr>
<td>Packaging - economics</td>
<td>1</td>
<td>Plastics - coating</td>
<td>1</td>
</tr>
<tr>
<td>Packaging - shrink</td>
<td>1</td>
<td>Plastics - development</td>
<td>1</td>
</tr>
<tr>
<td>Plastic - film-testing</td>
<td>2</td>
<td>Plastics - industry</td>
<td>1</td>
</tr>
<tr>
<td>Plastic - film permeability</td>
<td>1</td>
<td>Production planning</td>
<td>1</td>
</tr>
<tr>
<td>Plasticizers</td>
<td>1</td>
<td>Plastics production - economics</td>
<td>1</td>
</tr>
<tr>
<td>Polymers - frictionisation</td>
<td>1</td>
<td>Plastics - degradation</td>
<td>1</td>
</tr>
<tr>
<td>Perspex</td>
<td>1</td>
<td>Plastics - fire-proofing</td>
<td>2</td>
</tr>
<tr>
<td>Plastic sheet - corrugated</td>
<td>1</td>
<td>Plastics - stabilizers</td>
<td>1</td>
</tr>
<tr>
<td>Plastic sheet - properties</td>
<td>1</td>
<td>Polypropylene - stabilization</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - compounding</td>
<td>2</td>
<td>Polymer - blends</td>
<td>1</td>
</tr>
<tr>
<td>Polyethylene - blow moulding</td>
<td>1</td>
<td>Polymer - blends properties</td>
<td>1</td>
</tr>
<tr>
<td>Paper - coated</td>
<td>1</td>
<td>Polymer - metal containing</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - pigments</td>
<td>1</td>
<td>Raw materials - economics</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - flexibility</td>
<td>1</td>
<td>Radiation processes</td>
<td>1</td>
</tr>
<tr>
<td>Polymers - melt flow properties</td>
<td>1</td>
<td>Reactor mechanism</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - heat resistance</td>
<td>1</td>
<td>Rubber synthetic</td>
<td>2</td>
</tr>
<tr>
<td>Plastics - termite resistance</td>
<td>1</td>
<td>Rubber blends</td>
<td>1</td>
</tr>
<tr>
<td>Polyethylene - viscoelastic properties</td>
<td>1</td>
<td>Rheological properties</td>
<td>2</td>
</tr>
<tr>
<td>Plasticizers - composition</td>
<td>1</td>
<td>Rheology</td>
<td>1</td>
</tr>
<tr>
<td>Peroxides - properties</td>
<td>1</td>
<td>Rubber - expanded</td>
<td>2</td>
</tr>
<tr>
<td>Polymerization - inhibition</td>
<td>1</td>
<td>Rubber - properties</td>
<td>1</td>
</tr>
<tr>
<td>Plastic sheet (thermoplastic)</td>
<td>1</td>
<td>Resins - properties</td>
<td>1</td>
</tr>
<tr>
<td>Polyethylene processing</td>
<td>1</td>
<td>Symposia</td>
<td>46</td>
</tr>
<tr>
<td>Polyethylene production</td>
<td>1</td>
<td>Survey (market)</td>
<td>5</td>
</tr>
<tr>
<td>Polymerization - reaction</td>
<td>1</td>
<td>Survey (literature)</td>
<td>7</td>
</tr>
<tr>
<td>mechanism</td>
<td>1</td>
<td>Styrene polymers</td>
<td>12</td>
</tr>
<tr>
<td>Polymerization - suspension</td>
<td>1</td>
<td>Stress-strain curves</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - chemical resistance</td>
<td>3</td>
<td>Science history</td>
<td>1</td>
</tr>
<tr>
<td>Plastics - heat sealing</td>
<td>3</td>
<td>Sewage treatment</td>
<td>8</td>
</tr>
<tr>
<td>Polyethylene properties</td>
<td>1</td>
<td>Silicones</td>
<td>2</td>
</tr>
<tr>
<td>Polyurethane properties</td>
<td>1</td>
<td>Styrene</td>
<td>1</td>
</tr>
<tr>
<td>Physical properties</td>
<td>1</td>
<td>Storage tanks - materials</td>
<td>1</td>
</tr>
<tr>
<td>Plastic articles - design</td>
<td>1</td>
<td>construction</td>
<td>1</td>
</tr>
<tr>
<td>Polyethylene (hd)</td>
<td>1</td>
<td>Sulphur dioxide</td>
<td>1</td>
</tr>
<tr>
<td>Polyethylene properties</td>
<td>1</td>
<td>Soaps, metal</td>
<td>1</td>
</tr>
<tr>
<td>Polyurethane properties</td>
<td>1</td>
<td>Safety regulations</td>
<td>1</td>
</tr>
<tr>
<td>Physical properties</td>
<td>1</td>
<td>Stabilizers (toxicity)</td>
<td>2</td>
</tr>
<tr>
<td>Pipe - fittings</td>
<td>1</td>
<td>Spectrometry (NMR)</td>
<td>2</td>
</tr>
<tr>
<td>Poly - joint</td>
<td>1</td>
<td>Sulphones - poly</td>
<td>1</td>
</tr>
<tr>
<td>Pipe - lines</td>
<td>1</td>
<td>Stress - determination</td>
<td>1</td>
</tr>
<tr>
<td>Pipe - gas transport</td>
<td>1</td>
<td>Stabilizer systems</td>
<td>1</td>
</tr>
<tr>
<td>Pipe - installation</td>
<td>1</td>
<td>Styrene polymers - analysis</td>
<td>1</td>
</tr>
<tr>
<td>Pipe - materials construction</td>
<td>1</td>
<td>Stabilizers - properties</td>
<td>4</td>
</tr>
<tr>
<td>Pipe - soil drainage</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index term</td>
<td>No of times used</td>
<td>Index term</td>
<td>No of times used</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Stabilizers - heat</td>
<td>1</td>
<td>Waste products (industrial)</td>
<td>1</td>
</tr>
<tr>
<td>Stabilizers - light</td>
<td>1</td>
<td>Wall covering</td>
<td>3</td>
</tr>
<tr>
<td>Styrene polymers - expanded</td>
<td>4</td>
<td>Wire insulation</td>
<td>1</td>
</tr>
<tr>
<td>Styrene polymers - film</td>
<td>3</td>
<td>Welding</td>
<td>1</td>
</tr>
<tr>
<td>Solubility</td>
<td>1</td>
<td>Welding flaws</td>
<td>1</td>
</tr>
<tr>
<td>Stability tests</td>
<td>1</td>
<td>Welding tests</td>
<td>1</td>
</tr>
<tr>
<td>Solvents - organic</td>
<td>1</td>
<td>Water pollution</td>
<td>1</td>
</tr>
<tr>
<td>Stress/strain measurement</td>
<td>1</td>
<td>Water (river)</td>
<td>1</td>
</tr>
<tr>
<td>Sinter coating</td>
<td>1</td>
<td>Weathering</td>
<td>1</td>
</tr>
<tr>
<td>Sinter coating - compositions</td>
<td>1</td>
<td>Water treatment chemicals</td>
<td>1</td>
</tr>
<tr>
<td>Sulphuric acid - production</td>
<td>1</td>
<td>Welding - high frequency</td>
<td>1</td>
</tr>
<tr>
<td>Stabilizers - evaluation</td>
<td>2</td>
<td>X-ray diffraction methods</td>
<td>1</td>
</tr>
<tr>
<td>Stabilizers - UV light</td>
<td>1</td>
<td>Yield stress</td>
<td>2</td>
</tr>
<tr>
<td>Substrates</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilizers</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrap metal recovery</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology - history</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicity determination</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicology</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terephthalic acid, poly-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethylene esters</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal analysis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque determination</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin compounds</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamic properties</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade names</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test methods</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U/F Resins - expanded</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC - production</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC polymers</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC - polymerization</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate copolymers</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC copolymers</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl polymers</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate polymers</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl polymers - properties</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC polymers - additives</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl film</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl compounds</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate polymerization</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC - properties</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC copolymers - properties</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscometers</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity - determination</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste - incinerization</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water pollution - control</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water pollution - determination</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water supply</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welvic</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste - disposal</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastage prevention</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

PART I - IN ORDER OF APPEARANCE IN TEXT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Borko, Harold</td>
</tr>
<tr>
<td>4</td>
<td>Weisman, Herman M</td>
</tr>
<tr>
<td>6</td>
<td>Mooers, Calvin E</td>
</tr>
<tr>
<td>8</td>
<td>Jones, Paul E; Curtis, Robert M</td>
</tr>
<tr>
<td>9</td>
<td>Leimkuhler, Ferdinand F</td>
</tr>
<tr>
<td>10</td>
<td>Uhlmann, Wolfram</td>
</tr>
<tr>
<td></td>
<td>Author</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>13</td>
<td>Swets, John A</td>
</tr>
<tr>
<td>14</td>
<td>Blunt, Charles R</td>
</tr>
<tr>
<td>17</td>
<td>Cartwright, A P</td>
</tr>
<tr>
<td>20</td>
<td>Miles, F D</td>
</tr>
<tr>
<td>21</td>
<td>van Houten, R</td>
</tr>
<tr>
<td>24</td>
<td>Coover, Robert W</td>
</tr>
</tbody>
</table>
25 Great Britain Advisory Council on Scientific Policy
Survey of information needs of physicists and chemists
J Doc, 1965, 21, 6, 83-112

26 Herner, Saul
Information gathering habits of workers in pure and applied science.
Ind Eng Chem, 1954, 46, 1, 228-236

27 Herner, Saul and Herner, Mary
Information needs and uses in science and technology: Annual review of information science and technology.
Amer Doc Inst, 1967, 2, 1-34

28 Rosenberg, Victor
Studies in the man-system interface in libraries. Report No. 2: The application of psychometric techniques to determine the attitudes of individuals toward information seeking.
Bethlehem, Pa, Center for the information sciences, Lehigh Univ, July 1966

29 Uytberschaut, L
Literature searching methods in social science research
Amer Behav Sci, 1966, 9, 14, 23-26

30 Conrad, Carleton C
Coordination and integration of technical information services.
J Chem Doc, 1967, 7, 2, 111-114

31 Liston, David, Jr
Information systems; Proc, Eighth Annual Institute in industrial communication, Fort Collins, Col, Colorado State Univ, 1965

32 Judge, P J
The user-system interface today: national and international information systems; Communication in science: Documentation and automation; Ciba Foundation, London, J & A Churchill Ltd, 37-56, 1967

33 Nesmayanov, A N
In the forward to: Fundamentals of scientific information, by Mikhailov, Aleksandr, J et al, Moskva, Nauka, 1965

34 Barnes, R C M
Information use studies. Part 2 - Comparison of some recent surveys.

Technology transfer and the flow of technical information in a large industrial corporation; Harvard University, sponsored by American Academy of Arts and Sciences, March 1965, Report No. PB.173457

328
<table>
<thead>
<tr>
<th></th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Weinberg, A</td>
<td>Science, Government and information; the responsibilities of the technical community and the government in the transfer of information, Washington D C, Superintendent of Documents, 1963</td>
</tr>
<tr>
<td>41</td>
<td>Menzel, Herbert</td>
<td>Planning the consequences of unplanned action in scientific communication; Communication in science: Documentation and automation, Ciba Foundation, London, J & A Churchill, 1967, 57-77</td>
</tr>
<tr>
<td>43</td>
<td>American Psychological Association</td>
<td>Networks of information communication among scientifically productive psychologists; an explanatory study, Report No. 21, Washington D C, The Association, Project on scientific information exchange in psychology, 1969</td>
</tr>
<tr>
<td>44</td>
<td>Crane, Diana</td>
<td>Collaboration: communication and influence. A study of the effects of formal and informal collaboration among scientists, Baltimore, John Hopkins University, Md, 1968</td>
</tr>
<tr>
<td>45</td>
<td>Crane, Diana</td>
<td>Social structure in a group of scientists: test of the invisible college hypothesis, Baltimore, John Hopkins University, Md, 1968</td>
</tr>
<tr>
<td>Page</td>
<td>Author(s)</td>
<td>Title and Details</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>46</td>
<td>Lingwood, D A</td>
<td>Interpersonal communication, scientific productivity and invisible colleges: studies of two behavioral science research areas, Washington D C; American Educational Research Association, 1968</td>
</tr>
<tr>
<td>47</td>
<td>Parker, E P et al</td>
<td>Communication and research productivity in an interdisciplinary behavioral science research area, Stanford, Calif; Institute for Communication Research, Stanford University, 1968</td>
</tr>
<tr>
<td>49</td>
<td>Grant, Joan</td>
<td>Information for Management - an evaluation of managerial requirements and patterns for use; Research report 240, Pretoria, CSIR, 1966</td>
</tr>
<tr>
<td>50</td>
<td>van Houten, R</td>
<td>Technical information for industry. Short report on industry's needs for technical information in general and in the field of electronics in particular, Pretoria, CSIR, 1966</td>
</tr>
<tr>
<td>51</td>
<td>Holm, B E</td>
<td>Scientific and technical information services - Significant parts of the enterprise structure. Symposium on communication of scientific and technical information for industry, 21-22 Oct, 1969, Rome, FID/II</td>
</tr>
<tr>
<td>53</td>
<td>Artandi, Susan</td>
<td>Measure of indexing. Libr Res & Tech Serv, 1964, 8, 2, 229-235</td>
</tr>
<tr>
<td>54</td>
<td>Artandi, Susan</td>
<td>Investigation of systems for the intellectual organisation of information. Proc of the 2nd International Study Conf on Classification Research, Elsinore, Denmark, 14-18 Sept, 1964, ed Pauline Atherton, Copenhagen, Munksgaard, 1965, 399-427</td>
</tr>
<tr>
<td></td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>55</td>
<td>Borko, Harold</td>
<td>Evaluating the effectiveness of information retrieval systems.</td>
</tr>
<tr>
<td>56</td>
<td>Bourne, Charles P</td>
<td>A review of the methodology of information system design; Parameter of information science</td>
</tr>
<tr>
<td>58</td>
<td>Goffman, William; Newill, V A</td>
<td>Methodology for test and evaluation of information retrieval systems</td>
</tr>
<tr>
<td>59</td>
<td>National Science Foundation</td>
<td>Study conference on evaluation of document searching systems and procedures: Summary</td>
</tr>
<tr>
<td>60</td>
<td>Papier, Lawrence S</td>
<td>Evaluation of science communication systems, Edgewood Arsenal, US Army Chemical Research and Development Laboratories, Md, 1965</td>
</tr>
<tr>
<td>62</td>
<td>Rees, Alan M</td>
<td>The evaluation of retrieval systems, Technical Report No. 5, Cleveland, Ohio.</td>
</tr>
<tr>
<td>63</td>
<td>Rocchio, J J</td>
<td>Performance indices for document retrieval systems; Information storage and retrieval, Computation Laboratory Report No. ISR-8, Harvard University, Cambridge, Mass, December 1964</td>
</tr>
</tbody>
</table>
64 Rocchio, J J; Salton, G

65 Swets, John A
Information retrieval systems, Science, 1963, 141, 3577, 245-250

66 Tell, Bjorn V

67 Cleverdon, Cyril W, et al
Factors determining the performance of indexing systems, Volume I, Design, Part 1, Cranfield, 1966

68 Cleverdon, Cyril W
Report on the testing and analysis of an investigation into the comparative efficiency of indexing systems, Cranfield, Oct 1962

69 Cleverdon, Cyril W; Mills, J
The testing of index language devices. Aslib Proc, 1963, 15, 4, 106-130

70 Cleverdon, Cyril W et al
Testing indexes and index language devices: The Aslib-Cranfield project. Amer Doc, 1964, 15, 1, 4-13

71 O'Connor, J

72 Fairthorne, Robert A
Implications of test procedures; Information in action, Cleveland, Ohio, Western Reserve University, 1963, 109-113

73 Kyle, Barbara R F

74 Richmond, P A

75 Rees, A M
Review of a report of the Aslib-Cranfield test of the index of metallurgical literature of Western Reserve University; Center for Documentation and Communication Research, Cleveland, Ohio, Western Reserve University, October 1963
76	Rees, A M	The Cleverdon-WRU experiment: Search results; Information in action, Cleveland, Ohio, Western Reserve University, 1963, 93-99
79	Stevens, N D	Review of reference 67 above (Cleverdon, Cyril W), in Libr Res and Tech Serv, 1964, 8, 1, 87-90
80	Swanson, D R	The evidence underlying the Cranfield results. Libr Quart, 1965, 35, 1, 1-20
81	Taube, M	The pseudo-mathematics of relevance. Amer Doc, 1965, 16, 2, 69-72
82	Cleverdon, Cyril W	The Cranfield Hypotheses. Libr Quart, 1965, 35, 2, 121-124
83	Bourne, Charles P	Evaluation of indexing systems; Annual review of information science and technology, 1, ed by Carlos A Caudra, New York, Interscience, 1966, 171-190
84	Perry, James W	Communication and the scientific method; Proceedings, Seventh Annual Institute in Technical and Industrial Communications, Colorado State University, Fort Collins, Col, 1964, 117-125
86	Rees, Alan M; Saracevic, Tefko	The measurability of relevance. Progress in Inf Sci & Tech, Proc of the ADI, Santa Monica, Calif, Oct 3-7, 1966, Adrianne Press
87	Rees, Alan M, et al	A field experimental approach to the study of relevance assessments in relation to document searching. Vol I. Final report to the NSF. School of Library Science, Case Western Reserve University, Cleveland, Ohio, 1967
88 Morse, Philip M

89 Zipf, G K
Human behaviour and the principle of least effort, Cambridge, Mass, Addison-Wesley, 1949

90 Menzel, Herbert

91 Allen, Thomas J

92 Lancaster, F Wilfred
Information retrieval systems: characteristics, testing and evaluation, New York, N Y, John Wiley & Son, Inc, 1968

93 Lancaster, F Wilfred

94 Scholes, A K
Storage and retrieval of technical information. SA Chem Processing, Dec-Jan 1966/1967, 1, 5, 137-140

95 Evans, Luther H

96 Kyle, Barbara R F
Notes on cataloguing in special libraries with special emphasis on author and name entries. J Doc, 1966, 22, 13-21

97 Kennedy, R F
Classified cataloguing: A practical guide, Cape Town, A A Balkema, 1966

98 Berwick Sayers, W C

99 Bakewell, K G B
100 Frank, O
Modern documentation and information practices; a basic manual published with assistance of UNESCO. FID publication 334, The Hague, International Federation for Documentaion, 1961

101 Metcalfe, J
Information indexing and subject cataloguing, New York, N Y, Scarecrow Press, 1957

102 Metcalfe, J
Alphabetical subject indication of information, New Brunswick, N J, Graduate School of Library Science, Rutgers University, 1965

103 Ranganathan, S R
Classification and communication, Delhi, Delhi University, 1951

104 Ranganathan, S R
Philosophy of library classification, Copenhagen, Munksgaard, 1951

105 Tauber, M F
Cataloguing and classification, New Brunswick, N J, Rutgers University Press, 1960

106 Vickery, B C

107 Vickery, B C
Classification of Chemistry, Abgila, 1953, 3, 11-24

108 Vickery, B C; Foskett, D J

109 Weil, B H et al

110 Liston, David, Jr

111 Borko, Harold; Chatman, Seymour

112 Republic of South Africa
<table>
<thead>
<tr>
<th>ID</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Frank, O</td>
<td>Modern documentation and information practices; a basic manual published with assistance of UNESCO.</td>
</tr>
<tr>
<td>101</td>
<td>Metcalfe, J</td>
<td>Information indexing and subject cataloguing, New York, N Y, Scarecrow Press, 1957</td>
</tr>
<tr>
<td>102</td>
<td>Metcalfe, J</td>
<td>Alphabetical subject indication of information, New Brunswick, N J, Graduate School of Library Science, Rutgers University, 1965</td>
</tr>
<tr>
<td>103</td>
<td>Ranganathan, S R</td>
<td>Classification and communication, Delhi, Delhi University, 1951</td>
</tr>
<tr>
<td>104</td>
<td>Ranganathan, S R</td>
<td>Philosophy of library classification, Copenhagen, Munksgaard, 1951</td>
</tr>
<tr>
<td>105</td>
<td>Tauber, M F</td>
<td>Cataloguing and classification, New Brunswick, N J, Rutgers University Press, 1960</td>
</tr>
<tr>
<td>107</td>
<td>Vickery, B C</td>
<td>Classification of Chemistry, Abgila, 1953, 3, 11-24</td>
</tr>
<tr>
<td>109</td>
<td>Weil, B H et al</td>
<td>Technical abstracting fundamentals, Part 1 - Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part 2 - Writing principles and practices; Preprint of paper presented before the American Documentation Institute, December 15, 1962</td>
</tr>
<tr>
<td>110</td>
<td>Liston, David, Jr</td>
<td>Information Systems; Proceedings, 8th Annual Institute in Technical Industrial Communications, Colorado State University, Fort Collins, Col, 1965, 37-50</td>
</tr>
<tr>
<td>111</td>
<td>Borko, Harold; Chatman, Seymour</td>
<td>Criteria for acceptable abstracts: A survey of abstractors' instructions, Amer Doc, 14, 2, 1963, 149-160</td>
</tr>
</tbody>
</table>

The use of BNB in dictionary cataloguing. Libr Assoc Record, 1957, 59, 6, 197-202

Subject catalogues: headings and structure. Libr Assoc, London, 1960

Scientific and Technical Indexing. Indexer, 1966, 5, 1, 27-34

The organisation of knowledge in libraries and the subject approach to books; 2nd ed, New York, N Y, Wilson Co, 1939

Subject headings: principles and development; In the subject analysis of library materials, ed M F Tauber, New York, N Y, School of Library Service, Columbia University, 1953

Records and research in engineering and industrial science, 2nd ed, London, Chapman and Hall, 1947

A new approach to classification and selection of documents and references by perforated cards, London, Royal Society document No. RSSICR 57, 1948

The coordinate indexing of scientific fields. Unpublished paper read to the Division of Chemical Literature of the American Chemical Society, September 1951
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>Vickery, B C</td>
</tr>
<tr>
<td>126</td>
<td>Taube, Mortimer and Associates</td>
</tr>
<tr>
<td>127</td>
<td>Sharp, John R</td>
</tr>
<tr>
<td>128</td>
<td>International Business Machines, Corp</td>
</tr>
<tr>
<td>129</td>
<td>Costello, J C</td>
</tr>
<tr>
<td>130</td>
<td>Costello, J C</td>
</tr>
<tr>
<td>131</td>
<td>Costello, J C</td>
</tr>
<tr>
<td>132</td>
<td>Slamecka, V, ed</td>
</tr>
<tr>
<td>133</td>
<td>Shera, Jesse, H</td>
</tr>
<tr>
<td>134</td>
<td>Artandi, Susan; Hines, Theodore C</td>
</tr>
<tr>
<td>135</td>
<td>Costello, J C</td>
</tr>
<tr>
<td>136</td>
<td>Hines, Theodore C</td>
</tr>
<tr>
<td>137</td>
<td>Holm, B E</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The structure of a connective index. J Doc, 1950, 6, 3, 140-151</td>
</tr>
<tr>
<td></td>
<td>Some fundamentals of information retrieval, London, Andre Deutsch, 111-114, 1965</td>
</tr>
<tr>
<td></td>
<td>An introduction to deep coordinate indexes. Unpublished paper read to the Division of Chemical Literature of the American Chemical Society, Atlantic City, N J, September 1962</td>
</tr>
<tr>
<td></td>
<td>Training manual and workbook for use in abstracting and coordinate indexing, Columbus, Ohio, Battelle Memorial Institute, 1964</td>
</tr>
<tr>
<td></td>
<td>Coordinate indexing (Rutgers series on systems for the intellectual organisation of information) New Brunswick, N J, Rutgers University Press, 1966</td>
</tr>
<tr>
<td></td>
<td>Studies in coordinate indexing, 6 Bethesda, Md, Documentation Inc, 1965</td>
</tr>
<tr>
<td></td>
<td>Libraries and the organisation of knowledge, London, Crosby Lockwood & Son, Ltd, 1965</td>
</tr>
<tr>
<td></td>
<td>Roles and Links : or forward to Cutter. Amer Doc, 1963, 14, 1, 74-77</td>
</tr>
<tr>
<td></td>
<td>Storage and retrieval of chemical research and patent information by links and roles in du Pont. Amer Doc, 1961, 12, 2, 111-120</td>
</tr>
<tr>
<td></td>
<td>Information retrieval : a solution. Chem Eng Prog, 57, 5, 55-58 and 6, 73-78</td>
</tr>
</tbody>
</table>
Holm, B E

Liston, David Jr

Montague, Barbara A

Montague, Barbara A

Mullison, W R et al

Perry, James et al

Sharp, John R

Taube, Mortimer

Tinker, John F

Shera, Jesse H

Artandi, Susan

Brenner, Everett H; Hines, Theodore C

Chemical Abstracts Service

Information systems. Machine Design, 38, 17, 190-197

Patent indexing by concept coordination using links and re'es. Amer Doc, 1962, 13, 1, 104-111

Testing, Comparison and Evaluation of Recall, Relevance and Cost of Coordinate Indexing with links and roles. Amer Doc, 1965, 16, 3, 201-208

Notes on the use of roles and links in coordinate indexing. Amer Doc, 1961, 12, 2, 98-100

Imprecision in meaning measured by inconsistency of indexing. Amer Doc, 1966, 17, 2, 96-102, and 1966, 17, 3, 322-330

Of librarianship, documentation and information science, Unesco Bull Libr, 1968, 22, 2, 58-65

The searchers - links between inquirers and indexers. Spec Libr, 1986, 57, 10, 571-574

Thesaurus construction. Draft paper - personal communication.

Directions for abstractors. Columbus, Ohio, Chemical Abstracts Service of the American Chemical Society, 1967
151	Tate, F H et al	A world-wide chemical and chemical engineering information system. Reprint of paper presented to 33rd Conf of FID and International Conf on Documentation, To yo, 1967
154	Brandhorst, W T	Simulation of Boolean logic constraints through the use of term weights. Amer Doc, 1967, 17, 3, 145-146
155	Iker, Howard, P	Solution of Boolean equations through use of term weights to the base two. Amer Doc, 1967, 18, 1, 47
156	Jennings, Michael A	Construction of Boolean search operations in a coordinate indexing system, Reprint, Lehigh University, Bethlehem, Pa, undated.
159	Blagden, J F	Thesaurus compilation methods : a literature review. Aslib Proc, 1968, 20, 8, 345-359
160	Committee on Scientific and Technical Information;	Guidelines for the development of information retrieval thesauri, Washington D C, COSATI, 1967
161	Mandersloot, Wim G B et al	Thesaurus control - the selection, grouping and cross-referencing of terms for inclusion in a coordinate index word list. J Amer Soc for Inf Sci, 1970, 21, 1, 49-57
162 Reisner, Phyllis
Construction of authority files.
In: Information systems compatibility,
ed: Simon N Newman, Washington D C,
Spartan Books, 1965

163 Sharp, John R
Some fundamentals of information
retrieval.
London, Andre Deutsch, 1965

164 Schirmer, Robert F
Thesaurus analysis for updating.
J Chem Doc, 1967, 7, 2, 94-97

165 Wall, Eugene
Information retrieval thesauri, New
York, N Y, Engineers Joint Council,
1962

166 American Petroleum
Institute
Subject authority list, 2nd ed,
N Y, The Institute, 1965

167 American Society for
Metals
Thesaurus of metallurgical terms.

168 Copper Development
Association
Thesaurus of terms on copper
technology, 3rd ed, New York, N Y,
The Association, 1966

169 Engineer's Joint
Council
Thesaurus of engineering and
scientific terms, New York, N Y,
The Council, 1967

170 Federation of Societies
for Paint Technology;
Thesaurus of paint and allied
technology: a guide to technical
terms employed in the United States,
Canada and Great Britain,

171 Blagden, John F
Management information retrieval:
A new indexing language.
London, British Institute of
Management, 1969

172 Pulp and Paper Research
Institute of Canada
Thesaurus of pulp and paper terms,
Quebec, P Q, The Institute, 1965

173 South African Iron and
Steel Industrial
Corporation, Ltd
ISCOR Thesaurus. 2nd ed, Pretoria,
ISCO, 1968

174 Service de documentation
scientifique et technique
de l'armement
Thesaurus de l'armement. 2nd ed.
Paris, Le Service, 1967

175 United States Department
of Agriculture
Agricultural/biological vocabulary,
Washington D C, The Department, 1967

176 United States Department
of Defense
Thesaurus of ASTIA descriptors,
Arlington, Va, The Department, 1962
<table>
<thead>
<tr>
<th>Number</th>
<th>Institution/Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>178</td>
<td>United States Department of the Interior, Bureau of Reclamation</td>
<td>Thesaurus of descriptors : water resources development, Denver, Col, The Bureau, 1963</td>
</tr>
<tr>
<td>181</td>
<td>Luhn, H P</td>
<td>A statistical approach to mechanised encoding and searching of literary information. IBM Jnl of Res and Dev, 1957, 1, 4</td>
</tr>
</tbody>
</table>
191 Hawkins, N; Anderson, E P

192 Kochen, Manfred; Tagliacozzo, Renata

193 Moss, R

194 Reisner, Phyllis

195 Shaw, T N; Rothman, H
An experiment in indexing by word choosing. J Doc, 1968, 24, 3, 159-172

196 Vickery, B C
Vocabularies for coordinate systems. Aslib Proc, 1963, 15, 6, 170-177

197 Loukopoulos, Loukas
Indexing problems and some of their solutions. Amer Doc, 1966, 17, 1, 17-25

198 Even, Arthur, D
Engineering data processing system design. New York, N Y, D van Nostrand, Co, Inc, 1966

199 Information for Industry, Inc

200 Johnson, A; Baker, K J
Practical considerations in establishing and operating an optical coincidence card system. The Information Scientist, 1970, 4, 1, 11-25

201 Kent, A

202 Scholes, A K
Proposals for an AE&CI information storage and retrieval system. Report No. AER 360/A, issued January 1963. (This document is an internal report and the property of AE&CI Limited)

203 Bowman, C M
A corporate attack on personal files. Chem Eng Prog, 1966, 62, 5, 85-88

204 Cross, L C

342
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>Kessler, M M</td>
<td>The MIT technical information project.</td>
<td>Physics Today, 1965, 18, 3, 28-36</td>
</tr>
<tr>
<td>208</td>
<td>McGillivray, R</td>
<td>Some manual information retrieval systems.</td>
<td>SA Chem Processing, 1966, 1, 3, 55-57</td>
</tr>
<tr>
<td>209</td>
<td>Brand, R H</td>
<td>Oor patente en patentspesifikasies.</td>
<td>SA Libr, 1967, 35, 2, 44-47</td>
</tr>
<tr>
<td>211</td>
<td>Lucas, M B</td>
<td>Medlars; or the medical literature analysis and retrieval system.</td>
<td>SA Libr, 1967, 35, 1, 31-36</td>
</tr>
<tr>
<td>212</td>
<td>Retief, H J M</td>
<td>Watter tak het die bibliotekaris in die nywerheidsinligtingdiens.</td>
<td>SA Libr, 1966, 34, 3, 96-102</td>
</tr>
<tr>
<td>213</td>
<td>Zaaiman, R B</td>
<td>The provision of technical information in a developing region.</td>
<td>SA Libr, 1965, 33, 3, 95-104</td>
</tr>
</tbody>
</table>
216 Kirsipuu, A
Scientific and Technical Communication in Southern Africa.
Proceedings of the Southern Africa Regional Symposium on Scientific and Technical Information, 66th Annual Congress of the South African Association for the Advancement of Science.
Lourenco Marques, 1968

217 Lodder, M
Mechanisation in the SACSIR's Library and Information Divisions.
Proceedings of the Southern Africa Regional Symposium on Scientific and Technical Information, 66th Annual Congress of the South African Association for the Advancement of Science.
Lourenco Marques, 1968

218 Mandersloot, W B
Douglas, E M B
Filing, indexing and thesaurus control for Information Retrieval by Coordination of Keywords.
Proceedings of the Southern Africa Regional Symposium on Scientific and Technical Information, 66th Annual Congress of the South African Association for the Advancement of Science.
Lourenco Marques, 1968

219 Masson, D R
The South African Research worker's approach to Scientific Information.
Proceedings of the Southern Africa Regional Symposium on Scientific and Technical Information, 66th Annual Congress of the South African Association for the Advancement of Science.
Lourenco Marques, 1968

220 Richards, S J
Technical Information for the building industry.
Proceedings of the Southern Africa Regional Symposium on Scientific and Technical Information, 66th Annual Congress of the South African Association for the Advancement of Science.
Lourenco Marques, 1968

221 Scholes, A K
Technical Information Services in AESCI Ltd.
Proceedings of the Southern Africa Regional Symposium on Scientific and Technical Information, 66th Annual Congress of the South African Association for the Advancement of Science.
Lourenco Marques, 1968
<table>
<thead>
<tr>
<th></th>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>Morton, M G</td>
<td>The industrial information centre at the University of Natal</td>
<td>Conference paper, 1969</td>
</tr>
<tr>
<td>226</td>
<td>Whitehead, C</td>
<td>Information services and the South African sugar industry</td>
<td>Durban, SA Library Association Conference paper, 1969</td>
</tr>
<tr>
<td>227</td>
<td>Hill, F G</td>
<td>The knowledge problem, with special reference to scientific and technical communication in the gold mining industry.</td>
<td>The SA Mech Eng, 1965, 15, 2, 25-32</td>
</tr>
<tr>
<td>228</td>
<td>Breadmore, R G</td>
<td>Finding facts from cards</td>
<td>Office Meth & Mach, 1966, 13, 154, 764-771</td>
</tr>
<tr>
<td>229</td>
<td>Costello, J C</td>
<td>The Charter: A "Must" for effective information system planning and design. Paper presented to Materials Information Retrieval Symposium, Dayton, Ohio, Nov 29, 1962, on behalf of Battelle Memorial Institute, Columbus, Ohio</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall, Eugene</td>
<td>Small-scale information retrieval systems. Paper presented to AEChE Annual Meeting, Chicago, Ill, Dec 2, 1962, on behalf of Engineers Joint Council</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen, Thomas J</td>
<td>The world. Your Company - A gate for information! Who guards the gate? Innovation, 1969, 1, 8, 32-38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firdoia, A</td>
<td>Technological gatekeepers and their role in R & D Laboratories. MS Thesis, MIT, 1968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacon, Francis</td>
<td>New Atlantis (Bound with 'The advancement of learning' in one volume). Oxford, OUP, 1951, p296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malan, Marjorie A</td>
<td>Private communication, 1968.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anzalone, Alfred M et al
A novel index tailored to plastics specialists (Reference not complete on copy available).

Bland, William F
Information-reporting services.
J Chem Doc, 1965, 5, 2, 140-143

Carter, Launor F et al

Davison, P S
Letter from Scientific Documentation Centre, Ltd to the Editor, Amer Doc, 1968, 19, 1, 104-105

Dougherty, Richard M
The scope and operating efficiency of information centers as illustrated by the chemical-biological coordination center of the National Research Council. Dissertation Abs, 1963, 24, 2046

Evans, B Agard
The proposed world institute for documentation of housing, building, and planning. Aslib Proc, 1968, 20, 3, 162-170

Freeman, Monroe E
Kent, A
J Chem Doc, 1966, 6, 4, 254-256

Lowry, C D et al
Abstracting services in closely defined fields.

Penner, Rudolf J
The practice of charging users for information services: A state of the art report.

Policy planning for technology transfer

Armstrong, D L; Grenier, M T
A central information retrieval system.

Bloomfield, Masse
Current awareness publications - an evaluation.

Friedenstein, Hanna
Alerting with internal abstract bulletins.

Mohlman, J W
Costs of an abstracting program.

Anonymous
Advantages of Termatex over computers for retrieving information and data.

English, Bryant; Willey, Edward N
A storage and retrieval system for projection slides.

Hiroyama, Kenzo
Time required, cost and personnel for documentation.

Kertesz, F
The role of information centers; evaluation of their effectiveness.

King, Donald W
Evaluation of coordinate index systems during file development.
266 National Science Foundation

267 Van Dijk, Marcel

Essai sur le coût de la recherche documentaire par les méthodes d'indexation coordonnée (Cost of documentation by the coordinate indexing method). Revue internationale de la documentation, 1963, 30, 4, 143-150

268 Blunt, Charles R et al

A general model for simulating information storage and retrieval systems. HRB-Singer, Inc, April 1966, Report No. AD636435

269 Westat Research, Inc

270 Lancaster, F W

271 King, Donald W, Caldwell, Nancy W

272 Quade, E S

273 Ramey, James W

274 Herbert, E

Information transfer. International Science and Technology, No. 51, March 1966, 26-37

275 Brockis, G J; Cole, P F

Evaluating the technical information function. Chem in Brit, 1967, 3, 10, 421-423

276 Hirsch, Irving et al

Increasing the productivity of scientists. Harvard Business Review, 1958, 36, 1, 66-76

349

Essai sur le coût de la recherche documentaire par les méthodes d’indexation coordinée (Cost of documentation by the coordinate indexing method). Revue internationale de la documentation, 1963, 30, 4, 143-150

A general model for simulating information storage and retrieval systems. HRB-Singer, Inc, April 1966, Report No. AD636435

Information transfer. International Science and Technology, No. 51, March 1966, 26-37

Evaluating the technical information function. Chem in Brit, 1967, 3, 10, 421-423

Increasing the productivity of scientists. Harvard Business Review, 1958, 36, 1, 66-76
<table>
<thead>
<tr>
<th></th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>277</td>
<td>Martyn, John E</td>
<td>Unintentional duplication of research. New Scientist, 6 Feb 1964, 21, 377</td>
</tr>
<tr>
<td>279</td>
<td>Bourne, Charles P; Ford, D F</td>
<td>Cost analysis and simulation procedure for the analysis and simulation procedure for the evaluation of large information systems. Amer Doc, 1964, 15, 3, 142-149</td>
</tr>
<tr>
<td>286</td>
<td>Myatt, Dewitt O</td>
<td>Special design considerations for information services supporting the small firm. Commonwealth of Puerto Rico Economic Development Administration, Information Technology Conference, San Juan, Puerto Rico, 20-21 June, 1968</td>
</tr>
<tr>
<td>287</td>
<td>Klintøe, Kjeld</td>
<td>Scientific and technical information at enterprise level. International Federation for Documentation (FID) - Symposium on communication of scientific and technical information for industry. Rome, 21-22 Oct 1969</td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>289</td>
<td>McDaniel, H C</td>
<td>Researching communication requirements - an instrument of decision making. Proc, Sixth Annual Institute in industrial communication, Fort Collins, Col, Colorado State University, 1963</td>
</tr>
<tr>
<td>290</td>
<td>Skolnik, Herman</td>
<td>Management of operations and services in the Hercules Technical Information Division, J Chem Doc, 1969, 2, 4, 213-217</td>
</tr>
<tr>
<td>294</td>
<td>Garvey, William D;</td>
<td>Scientific communication as a social system. Science, 1967, 157, 3792, 1011-1016</td>
</tr>
<tr>
<td>295</td>
<td>Weisman, Herman M</td>
<td>The communication process. Proc, third Annual Institute in industrial communication, Fort Collins, Cd, Colorado State University, 1960</td>
</tr>
<tr>
<td>296</td>
<td>Weisman, Herman M</td>
<td>Spectrum of communication. Proc, Eighth Annual Institute in industrial communication, Fort Collins, Col, Colorado State University, 1965</td>
</tr>
<tr>
<td>297</td>
<td>Brookes, B C</td>
<td>Private Communication, August, 1968</td>
</tr>
<tr>
<td>298</td>
<td>Rosenberg, Victor</td>
<td>The scientific premises of information science. JASIS, 1974, 25, 263-269</td>
</tr>
<tr>
<td>299</td>
<td>Kuhn, T</td>
<td>The structure of scientific revolutions. Chicago, University of Chicago Press, 2nd ed, 1970</td>
</tr>
<tr>
<td>300</td>
<td>Schur, H</td>
<td>Education and training of Information Specialists for the 1970s, Paris OECD, 1971</td>
</tr>
<tr>
<td>301</td>
<td>Scheffler, F L</td>
<td>A novel philosophy for the design of information storage and retrieval systems appropriate for the '70s. JASIS, 1973, 24, 205-209</td>
</tr>
</tbody>
</table>
Author Scholes A K
Name of thesis the Organisation and Accessibility of Technical Information in the Industrial Environment 1975

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.