Sharma RK, Wirch E. Calcium-dependent cyclic nucleotide phosphodiesterase from rabbit lung. Biochem Biophys Res Commun 1979;91:338-344


Sharma RK, Bhalla RC. Multiple forms of cyclic nucleotide phosphodiesterases in normal and goitrous rat thyroid. Arch Biochem Biophys 1980(b);202:210-220


Sharma RK, Wang JH. Regulation of cAMP concentration by calmodulin-dependent nucleotide phosphodiesterase. Biochem Cell Biol 1986(c);64:1072-1080


Smoake JA, Johnson LS, Peake GT. Calmodulin-dependent high-affinity cyclic AMP phosphodiesterase in liver membranes. *Arch Biochem Biophys*. 1981(a);206:331-335


Stryer LJ, Danillo MA, Manganiello VC, Vaughan R.
Calcium-independent cyclic GMP phosphodiesterase from rat liver and HTC hepatoma cells. Biochem J 1983;213:379-386


Sullivan TA, Dussier BH, Kutsasch NJ, Karavis TH, Wells JN.


Sutherland EM, Robison GA. The role of cyclic 3',5'-AMP in responses to catecholamine and other hormones. Pharmacol Rev 1966;18:145-161

Szabo H, Burke G. Adenosine 3':5'-cyclic phosphate phosphodiesterase from bovine thyroid: isolation and properties of a partially purified, soluble fraction. Biochim Biophys Acta 1972;284:208-219

Szego GM, Davis JS. Adenosine-3',5'-monophosphate in rat uterus: acute elevation by estrogen. Proc Natl Acad Sci (USA) 1967;58:1711-1718


Terasaki WL, Appleman MM. The role of cyclic GMP in the regulation of cyclic AMP hydrolysis. Metabolism 1978;24:311-319

Teo TS, Wang JH. Mechanism of activation of cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ion. J Biol Chem 1973;248:5950-5955


Thompson WJ, Epstein PM, Strada SJ. Purification and characterization of high-affinity cyclic adenosine monophosphate phosphodiesterase from dog kidney. Biochemistry 1979(a);18:5228-5237


286

Turnbull JL, Hickie RA. The isolation and characterization of cyclic nucleotide phosphodiesterase from Morris hepatoma 512tc(h) and rat liver. Eur J Biochem 1984;16:19-29


Wedner HJ, Chan BY, Parker CS, Parker CW. Cyclic nucleotide phosphodiesterase activity in human peripheral blood lymphocytes and monocytes. *J Immunol* 1979;123:725-732


Wells JN, Hardman JQ. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res 1977;8:119-143


Wilson SR, Wallace AV, Housley MD. Insulin activates the plasma-membrane and dense-vesicle cyclic AMP phosphodiesterase in hepatocytes by distinct routes. Biochem J 1983(b);216:245-248


Wombacher H. Theophylline effect on the cyclic AMP degrading multienzyme sequence. Biochem Pharm 1982;31:3441-3446

Wong EHA, Ooi S-O. Methylxanthine and non-xanthine phosphodiesterase inhibitors: their effects on adenosine uptake and the low Km cyclic AMP phosphodiesterase in intact rat adipocytes. Biochem Pharmacol 1985;34:2891-2896


Yamamoto T, Manganello VC, Vaughan M. Purification and characterization of cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from calf liver. *J Biol Chem* 1983(a);258:12526-12533

Yamamoto T, Yamamoto S, Osborne JC Jr, Manganello VC, Vaughan M. Complex effects of inhibitors on cyclic GMP-stimulated cyclic nucleotide phosphodiesterase. *J Biol Chem* 1983(b);258:14173-14177

Yamamoto T, Lieberman F, Osborne JC, Manganello VC, Vaughan M, Hidaka H. Selective inhibition of two soluble adenosine cyclic 3',5'-phosphate phosphodiesterases partially purified from calf liver. *Biochemistry* 1984(a);23:670-675

Yamamoto T, Yamamoto S, Manganello VC, Vaughan M. Effects of fatty acids on activity of cGMP-stimulated cyclic nucleotide phosphodiesterase from calf liver. *Arch Biochem Biophys* 1984(b);229:81-89
