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1 Introduction

Ooguri, Strominger and Vafa introduced a partition function for BPS black holes in four

dimensions based on a mixed statistical ensemble [1]

ZOSV(p, φ) =
∑

qI

d(q, p) eπqIφ
I

, (1.1)

where d(q, p) denote microstate degeneracies that depend on electric and magnetic charges
(

qI , p
I
)

, and φI denote electrostatic potentials that are held fixed (I = 0, . . . , n). When

evaluating this partition function [2–4], one encounters divergences that are associated

with the indefinite signature of the underlying lattice of electric and magnetic charges. One

therefore needs to introduce a regulator. OSV type partition functions have been computed

in two different regimes. In one regime one utilizes the description of the system as a bound

state of D-branes and regularizes the partition function by modifying the exponent of (1.1)

through the addition of a so-called H-regulator [5, 6]. This calculation is done in a regime

where the D-brane world sheet theory is weakly coupled. The partition function may,

however, also be computed in a different regime, where a supergravity description in terms

of BPS black holes is available. In this paper we will focus on a subset of these black

holes, namely single-center black holes, and we will be interested in single-center black

hole partition functions. To define these, the sum (1.1) needs to be restricted in a suitable

manner. This can be done as follows.

We consider a specific model, namely four-dimensional toroidally compactified het-

erotic string theory. For this model there exists an exact counting formula of 1
4 BPS

microstate degeneracies [7, 8] in terms of a Siegel modular form 1/Φ10, expressed as a

function of quadratic charge invariants. To be able to use an effective N = 2 description,

we will work with a restricted set of N = 4 charges, which we denote by
(

qI , p
I
)

. Then, a

black hole partition such as (1.1) is evaluated in various steps. First, we sum over charges
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q0 and q1. To do so, we express these charges in terms of T-duality invariant charge bilin-

ears, and we rewrite the chemical potentials φ0 and φ1 in (1.1) in terms of the Siegel upper

half plane period matrix entries, which act as chemical potentials for the charge invariants

that parametrize the degeneracies in the ensemble counted by 1/Φ10. This allows us to

express the sum over q0 and q1 in terms of an integral over 1/Φ10, which is then evaluated

using residue techniques. In doing so we restrict the analysis to a certain subset of zeroes

of Φ10 [9], in order to single out the contributions that give rise to the dilatonic free energy

FD of a single-center black hole [3]. Subsequently, we also sum over charges qa and pa,

obtaining generalized OSV type partition functions which we call single-center black hole

partition functions. For extremal dyonic black holes, the near-horizon geometry, called the

attractor geometry (for reasons explicated in the next section), decouples from asymptotic

infinity and encodes the entropy of the black hole microstates sans scalar hair contribu-

tions. The single-center black hole partition functions that we obtain1 count excitations,

graded by qa and pa, in the near-horizon geometry of the black hole. These excitations

may also encode contributions from hair or small multi-center configurations. However,

the dominant contribution still arises from the single-center black hole background, and

hence we refer to these partition functions as single-center black hole partition functions.

When performing the sum over charges qa (and pa) we encounter the aforementioned

divergences associated with the indefiniteness of the qa(p
a) charge lattice. In [11] we ad-

vocated using indefinite theta functions [12] to regularize these sums. There we focussed

on OSV black hole partition functions with p0 = 0. In this paper we will extend our

considerations and consider single-center black hole partition functions with p0 6= 0 based

on either mixed or canonical ensembles. To regularize the sum over qa (and pa) we first

pick a reference attractor background (which we define in next the section) and consider

fluctuations in this background. To enforce thermodynamical stability, we restrict to fluc-

tuations that do not increase the dilatonic free energy FD mentioned above. Thus, we

remove exponentially growing contributions. This is done by introducing in the sum a

suitable measure factor based on sign functions (rather than by modifying the exponent

of (1.1)). The resulting regularized sums are given in terms of indefinite theta functions.

The latter have good transformation properties under modular and elliptic transformations.

The elliptic transformation property ensures that the result is independent of the chosen

reference background. We use modular transformations to extract known semi-classical

results from the regularized partition functions, namely the semi-classical free energy FE

and the semi-classical Hesse potential H [1, 3]. We note that this regularization proce-

dure requires, in addition, extending the electrostatic potentials φa to complex potentials

φa + iµa, and similarly for their magnetic counterparts χa (a = 2, . . . , n), as was already

noted in [11]. Indefinite theta functions have previously found applications in counting

dyonic degeneracies [13–15].

This paper is organized as follows. In section 2 we introduce the notion of an attractor

background and collect various useful formulae. In section 3 we define single-center black

1These partition functions are different from the finite part of the index, ψF
m(τ, z), defined in [10],

that counts states in the CFT dual to the near-horizon geometry, in an ensemble parametrized by charge

invariants at fixed magnetic charges.
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hole partition functions for two types of ensembles in toroidally compactified heterotic

string theory, and we describe the regulator that we use to deal with the aforementioned

divergences. Contrary to [11] we do not restrict to single-center black holes with p0 = 0.

The resulting regularized partition functions have good modular and elliptic transformation

properties, which we use to make contact with semi-classical supergravity results. We

summarize our findings in section 4, where we also comment on various subtleties that we

encountered.

2 Attractor backgrounds

We consider models whose two-derivative Wilsonian effective action is based on an N = 2

prepotential of the form

F (0)(Y ) = −1

2

Y 1Y aCabY
b

Y 0
, a = 2, . . . , n , (2.1)

up to worldsheet instanton corrections which we assume are either absent or negligible.

Here, n denotes the number of N = 2 abelian vector multiplets coupled to N = 2 su-

pergravity. The consistent coupling of these vector multiplets to supergravity requires the

symmetric matrix Cab to have signature (1, n − 2) [16, 17]. These models may either de-

scribe genuine N = 2 models or provide an effective N = 2 description of N = 4 models

when restricting to a subset of N = 4 charges.

We introduce the quantity K(0) = i
(

Ȳ IF
(0)
I − Y I F̄

(0)
I

)

, where I = 0, 1, . . . , n and

F
(0)
I = ∂F (0)(Y )/∂Y I . For the class of models specified by (2.1), K(0) takes the form

K(0) =
1

2
|Y 0|2

(

S + S̄
) (

T + T̄
)a
Cab

(

T + T̄
)b
, (2.2)

where we defined

S = −iY
1

Y 0
, T a = −iY

a

Y 0
. (2.3)

In heterotic string theory, the field S denotes the dilaton/axion complex scalar field.

We can construct single-center dyonic BPS black hole solutions in any given model (2.1).

These are static, spherically symmetric, asymptotically Minkowskian spacetimes with line

elements given by

ds2 = −e2U(r)dt2 + e−2U(r)
(

dr2 + r2dΩ2
(2)

)

. (2.4)

These solutions, which are supported by scalar fields Y I(r) and by the abelian gauge fields

of the model, are dyonic and carry electric/magnetic charges
(

qI , p
I
)

.

A fixed charge vector
(

qI , p
I
)

supports a single-center BPS black hole solution if the

scalar fields Y I(r) evolve smoothly to near-horizon values Y I = Y I
∗ /r specified by the

so-called attractor equations [18–21]

Y I
∗ − Ȳ I

∗ = ipI ,

F
(0)
I (Y∗)− F̄

(0)
I

(

Ȳ∗
)

= iqI , (2.5)
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such that the horizon quantity |Z∗|2 ≡ pIF
(0)
I (Y∗) − qIY

I
∗ is non-vanishing, i.e. |Z∗|2 > 0.

Then, the near-horizon line element takes the form of an AdS2 × S2 line element,

ds2 = − r2

|Z∗|2
dt2 +

|Z∗|2
r2

dr2 + |Z∗|2 dΩ2
(2) , (2.6)

and the macroscopic entropy of the BPS black hole, which at the two-derivative level is

determined by the area law, equals S(q, p) = π |Z∗|2 = π
(

pIF
(0)
I (Y∗)− qIY

I
∗

)

. The entropy

may also be expressed as S(q, p) = πK(0) by virtue of (2.5).

Next, we associated a free energy to the BPS black hole. To this end, we introduce

electro/magnetostic potentials as [22]

φI = Y I + Ȳ I ,

χI = F
(0)
I + F̄

(0)
I . (2.7)

Then, a solution to the attractor equations (2.5) can be expressed as

Y I
∗ =

1

2

(

φI∗ + ipI
)

, (2.8)

F
(0)
I (Y∗) =

1

2
(χI∗ + iqI) . (2.9)

The black hole can be assigned a macroscopic free energy by performing a Legendre trans-

form of the entropy. There are various possibilities here. Performing a Legendre transform

with respect to all the electric charges yields the free energy F (0)
E (p, φ∗) = S(q, p)/π+qIφI∗,

which equals [1, 3]

F (0)
E (p, φ∗) = 4

[

ImF (0)(Y )
]
∣

∣

∣

Y I
∗ =

1
2(φ

I
∗+ipI)

=
1

4

(

S + S̄
)

[

paCabp
b − φa∗Cabφ

b
∗ − 2i

S − S̄

S + S̄
φa∗Cabp

b

]

, (2.10)

where S is expressed in terms of the electrostatic potentials φ0∗ and φ1∗ and the magnetic

charges p0, p1 as

S =
−iφ1∗ + p1

φ0∗ + ip0
. (2.11)

On the other hand, performing the Legendre transform with respect to the electric charges

q0, q1 only yields the dilatonic free energy F (0)
D

(

S, S̄, pa, qa
)

= F (0)
E (p, φ∗) − qaφ

a
∗, which

equals [3]

F (0)
D

(

S, S̄, pa, qa
)

=
1

S + S̄

[

qaC
abqb + |S|2paCabp

b + i
(

S − S̄
)

qap
a
]

. (2.12)

Finally, performing a Legendre transform of F (0)
E (p, φ∗) with respect to the magnetic

charges pa yields the reduced Hesse potential H(0)(S, S̄, φa∗, χa∗) = F (0)
E (p, φ∗)− paχa∗ [11],

H(0)
(

S, S̄, φa∗, χa∗

)

= − 1

S + S̄

[

χa∗C
abχb∗ + |S|2φa∗Cabφ

b
∗ + i

(

S − S̄
)

χa∗φ
a
∗

]

. (2.13)
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The extremization equations following fromH(0)
(

S, S̄, φa∗, χa∗

)

= F (0)
D

(

S, S̄, pa, qa
)

+qaφ
a
∗−

paχa∗ yield the attractor values (φa∗, χa∗), expressed in terms of the charges (qa, p
a) and

the field S, namely

φa∗ + 2
Cab qb
S + S̄

+
i(S − S̄)

S + S̄
pa = 0 (2.14)

and

χa∗ − 2
|S|2
S + S̄

Cabp
b − i

(S − S̄)

S + S̄
qa = 0 . (2.15)

At the two-derivative level, the attractor value of S is determined in terms of the following

three charge bilinears

Q = 2q0p
1 − qaC

abqb , P = −2p0q1 − paCabp
b , R = p0q0 − p1q1 + paqa (2.16)

as [23]

S =

√

QP −R2

P 2
− i

R

P
. (2.17)

The entropy, when expressed in terms of these charge bilinears, reads S(q, p)=π
√

QP−R2.

Conversely, given a value S with S + S̄ > 0 and charges (qa, p
a), we defined attractor

values (φa∗, χa∗) by (2.14) and (2.15). Therefore, the lattice of electric and magnetic charges

singles out a subset of values (φa, χa), namely the attractor values (φa∗, χa∗). For a given

S, these correspond to attractor values

Y a
∗ =

S̄ φa∗ + iCabχb∗

S + S̄
. (2.18)

In the following, we will refer to the attractor values (φa∗, χa∗) as attractor backgrounds,

provided QP − R2 > 0 as well as ̺aC
ab̺b > 0. The latter are necessary conditions for a

charge configuration to constitute a single-center BPS black hole, as we show below. Before

doing so, we note that all three quantities F (0)
E (p, φ∗),F (0)

D

(

S, S̄, pa, qa
)

,H(0)
(

S, S̄, φa∗, χa∗

)

will play a role at various steps when evaluating OSV type partition functions in the

following sections.

Next, let us introduce the vector ̺a, which can be motivated as follows. Let us return

to K(0) given in (2.2). Imposing the magnetic attractor equations (2.8) as well as the

electric attractor equations (2.14) for the qa results in

Y 0
∗ =

p1 + iS̄p0

S + S̄
, T a

∗ = i

(

Cabqb − iS̄ pa
)

p1 + iS̄p0
, (2.19)

and determines K(0) in terms of the charges (qa, p
I) and S as

K(0)
(

S, S̄, pI , qa
)

=
̺aC

ab̺b

2|Y 0
∗ |2
(

S + S̄
) , (2.20)

where

̺a = p0 qa + p1Cab p
b . (2.21)

– 5 –
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Now let us recall that the entropy of a single-center BPS black hole is given by S(q, p) =
πK(0), which implies ̺aC

ab̺b > 0 in order for the entropy to be non-vanishing at

the two-derivative level (here we are assuming S + S̄ > 0, with |Y 0
∗ |2
(

S + S̄
)

finite).

Thus, ̺aC
ab̺b > 0 is a necessary condition for a charge configuration to correspond to

a single-center black hole. This combination may be expressed in terms of the charge

bilinears (2.16) as

̺aC
ab̺b = −

(

p0
)2
Q−

(

p1
)2
P + 2p0p1R . (2.22)

Single-center black hole solutions necessarily have QP − R2 > 0. We will now show,

using (2.22), that they also have to satisfy Q < 0, P < 0. This can be checked as follows.

Since QP − R2 > 0, we only have two possibilities: either Q < 0, P < 0 or Q > 0, P > 0.

Let us first assume that Q < 0, P < 0, in which case we may rewrite (2.22) as

̺aC
ab̺b =

(

p0
√

|Q| ± p1
√

|P |
)2

+ 2p0p1
(

R∓
√

|QP |
)

. (2.23)

When p0p1 > 0, we choose the plus sign in the second term, while when p0p1 < 0 we take

the minus sign. Then, using
√

|QP | > |R|, we obtain ̺aC
ab̺b > 0. Now let us consider

the case when Q > 0, P > 0. We rewrite (2.22) as

̺aC
ab̺b = −

(

p0
√

Q± p1
√
P
)2

+ 2p0p1
(

R±
√

QP
)

. (2.24)

When p0p1 > 0, we choose the minus sign in the second term, while we choose the plus

sign when pop1 < 0. Using
√

|QP | > |R|, we see that ̺aC
ab̺b < 0, which establishes that

configurations with Q > 0, P > 0 cannot correspond to single-center black holes.

In section 3, we will find it useful to perform the replacements

qa → − i

π

∂

∂µa
, pa → i

π

∂

∂νa
, (2.25)

in (2.19), resulting in differential operators

T̂ a = π−1C
ab∂/∂µb + iS̄∂/∂νa
(

S + S̄
)

Y 0
∗

(2.26)

and

K̂(0) =
1

2
|Y 0

∗ |2
(

S + S̄
)

(

T̂ +
¯̂
T
)a
Cab

(

T̂ +
¯̂
T
)b

. (2.27)

Observe that K(0) and K̂(0) are invariant under S-duality, provided the differential

operators in (2.25) transform in the same way as the charges (qa, p
a). Under S-duality, S

transforms as

S → aS − ib

icS + d
, (2.28)

with a, b, c, d ∈ Z satisfying ad− bc = 1, while the charges transform as

p0 → d p0 + c p1 ,

p1 → a p1 + b p0 ,

pa → d pa − cCab qb ,

q0 → a q0 − b q1 ,

q1 → d q1 − c q0 ,

qa → a qa − bCab p
b .

(2.29)

– 6 –
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The electric and magnetic potentials φI and χI transform in a similar manner, and hence

the combination qI φ
I − pI χI is invariant under S-duality. It also follows that Y 0

∗ →
(d+ icS)Y 0

∗ , and that |Y 0
∗ |2
(

S + S̄
)

and T a
∗ are invariant under S-duality.

We will also introduce the quantities K [3],

K =
1

2
|Y 0|2

(

S + S̄
)

[

(

T + T̄
)a
Cab

(

T + T̄
)b

+ 4
∂SΩ

(Y 0)2
+ 4

∂S̄Ω
(

Ȳ 0
)2

]

, (2.30)

where Ω denotes a real quantity that encodes corrections due to higher-curvature terms.

Aspects of the sigma-model geometry based on (2.30) have been discussed in [24]. In the

context of the N = 4 model which we will be considering, Ω only depends on S and S̄ and

is S-duality invariant. Hence, K is S-duality invariant. It is also T-duality invariant [3].

Replacing T a by the differential operator (2.26) yields K̂, which will play the role of a

measure factor in subsequent discussions.

3 Single-center black hole partition functions

In this section we focus on a particular N = 4 model for which there exists an exact

counting formula for 1
4 BPS microstates, namely four-dimensional toroidally compactified

heterotic string theory [7, 8]. We restrict to a subset of N = 4 charges, which we denote

by
(

qI , p
I
)

(with I = 0, 1, . . . , n), so as to use an effective N = 2 description of this model

based on a prepotential of the form (2.1). The charges
(

qI , p
I
)

and the matrices Cab and

Cab are integer valued, and thus the charge bilinears (2.16) satisfy Q,P ∈ 2Z, R ∈ Z. The

BPS microstate degeneracies d(q, p) are encoded in a Siegel modular form, defined on the

Siegel upper half-plane (σ, ρ, v) with Imσ > 0, Im ρ > 0, (Imσ)(Im ρ) > (Im v)2,

1

Φ10(σ, ρ, v)
=

∑

Q,P≤2, R∈Z

d(Q,P,R) e−πi(Qσ+P ρ+R (2v−1)) . (3.1)

Convergence of the Q and P sums is enforced by Imσ > 0 , Im ρ > 0. The sum over R is

more subtle. Convergence of the R sum requires restricting it to a certain range, and this

range depends on the sign of Im v [25, 26].

In the following, we will focus on single-center 1
4 BPS black holes with p0 6= 0 and

define an OSV black hole partition function (1.1) for these in a two-step procedure, as

follows. The first step is implemented by considering the sum over electric charges q0, q1,

∑

q0,q1

d(q, p) eπqIφ
I

, (3.2)

converting it into a sum over Q and P by using the relations (2.16), and subsequently

using an integral representation for the degeneracies d(q, p) based on (3.1), which is then

computed in terms of residues associated with the zeros of Φ10. Here we improve on the

analysis of [11] by only retaining those zeroes of Φ10 that give a contribution to the dilatonic

free energy (2.12).

In a second step we sum over charges qa. We begin by picking reference charges qBa (and

pa) which we encode in a reference vector (2.21), denoted by ̺Ba , that satisfies ̺
B
a C

ab̺Bb > 0.

– 7 –
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This is a necessary condition for the configuration to correspond to a single-center black

hole, as already discussed. We will refer to ̺Ba as an attractor background. We then

consider fluctuations Va = qa − qBa around this background. The sum over these electric

fluctuations is ill defined due to the indefiniteness of the charge lattice. We regularize this

sum by removing all the contributions that grow exponentially. In addition, we demand

that the resulting regularized sum possesses good transformation properties under modular

and elliptic transformations. One way of achieving this is to convert the sum over Va into

an indefinite theta function [11]. Indefinite theta functions have good modular and elliptic

transformations properties [12] which we subsequently utilize to make contact with semi-

classical results. The regularized partition function then contains an exponential factor that

accounts for the semi-classical free energy of the background, as well as an indefinite theta

functions that describes a regularized sum of fluctuations around the background. Due to

the elliptic property of the indefinite theta function, the result is actually independent of

the choice of the background charge qBa , since two such choices are related by an elliptic

transformation. The result for the partition function also uses a differential operator that

enforces the condition ̺aC
ab̺b > 0 discussed below (2.21). Thus, the partition function

can be viewed as a sum over attractor backgrounds.

Subsequently, we extend the discussion by considering single-center black hole parti-

tion functions based on a canonical ensemble, obtained by also summing over magnetic

charges pa,

Z
(

p0, p1, φI , χa

)

=
∑

qI ,pa

d(q, p) eπ[qIφ
I−paχa] . (3.3)

We restrict our analysis to the case S = S̄, so as to decouple the sums over (qa, p
a). We regu-

larize these sums by again employing indefinite theta functions. After resorting to modular

transformations, the resulting expression is given in terms of the Hesse potential (2.13), two

indefinite theta functions and a measure factor, and it is invariant under the strong-weak

coupling duality transformation S → 1/S.

We proceed to explain these results.

3.1 Summing over charges qI

We begin by considering the sum over charges (q0, q1), using various results obtained in [11].

In doing so, we improve on the analysis of [11] and clarify certain statements made there.

There, we specialized to p0 = 0. Here, we keep p0 6= 0 (as well as p1 6= 0), which will be

kept fixed throughout.

As stated above, we focus on toroidally compactified heterotic string theory, for which

there exists an exact counting formula for 1
4BPS microstates based on the Siegel mod-

ular form 1/Φ10. We first convert the sum over (q0, q1) into a sum over the charge bi-

linears (Q,P ) using the relations (2.16), where we keep (qa, p
a) fixed. From (3.1) we

see that the states that contribute are states for which Q and P are mostly negative,

which implies that the states contributing to the sum over (q0, q1) are mostly states

with a definite sign of (q0, q1). Replacing (q0, q1) by (Q,P ) we obtain q0φ
0 + q1φ

1 =
1
2

[

Qφ0p1/
(

p1
)2 − P φ1p0/

(

p0
)2
]

+ . . . , where the dots refer to terms that do not involve
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Q and P . Thus, for the exponent in (3.2) to be damped for negative Q and P , we require

φ0p1 > 0 , φ1p0 < 0 . (3.4)

Introducing

S =
−iφ1 + p1

φ0 + ip0
, (3.5)

and using (3.4), we obtain

S + S̄ = 2

(

φ0p1 − φ1p0
)

|φ0 + ip0|2 > 0 . (3.6)

Next, let us consider the combination R in (2.16). Replacing (q0, q1) by (Q,P ) we

obtain the combination

R(Q,P ) =
p0

2p1

(

Q+ qaC
abqb

)

+
p1

2p0

(

P + paCabp
b
)

+ qap
a . (3.7)

For fixed
(

qa, p
I
)

, and taking |Q| ≫ 1, |P | ≫ 1, the sign of R(Q,P ) equals the sign of

−p0p1. Next, we convert the sum (3.2) over (q0, q1) into a sum over (Q,P ) following [2, 3].

In order to use the representation (3.1), we introduce an additional sum over a dummy

variable R′ ∈ Z [11],

f(R) =

∫ 1

0
dθ1

∑

R′

eπi(2θ−1)(R−R′) f(R′) , (3.8)

where θ = θ1+ iθ2 ∈ C, and where θ2 is held fixed with θ2 6= 0. For a fixed θ2, convergence

of the R′ sum requires restricting it to a certain range that is taken to include R. This is

similar to what was observed below (3.1).

Using this, we obtain the following representation for the sum over (q0, q1) [11],

∑

q0,q1

d(q, p) eπqIφ
I

=
1

|p0p1|
∑

l0=0,...|p1|−1
l1=0,...|p0|−1

∫ 1

0
dθ1

1

Φ10(σ(θ), ρ(θ), v(θ))

exp
[

−iπσ(θ) qaCabqb + πqaφ̃
a(θ)− πi ρ(θ) paCabp

b
]

, (3.9)

where

σ(θ) = i
φ̂0

2p1
− (2θ − 1)

p0

2p1
,

ρ(θ) = −i φ̂
1

2p0
− (2θ − 1)

p1

2p0
,

v(θ) = θ , (3.10)

and

φ̂0 = φ0 + 2il0 ,

φ̂1 = φ1 + 2il1 ,

φ̃a(θ) = φa + i (2θ − 1) pa . (3.11)
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The extra sum over the integers l0 and l1 arises when trading the summation variables

(q0, q1) for the T-duality invariant combinations Q and P [2, 3]. The integration contour

in (3.9) is at fixed θ2, whose value is obtained by requiring that the conditions for conver-

gence of the expansion (3.1) in the Siegel upper half plane are satisfied when restricting σ

and ρ to (3.10). Namely, demanding Imσ(θ) > 0, Im ρ(θ) > 0, we obtain

p0p1θ2 <
φ0p1

2
,

p0p1θ2 < −φ
1p0

2
, (3.12)

from which we infer

p0p1θ2 <

(

S + S̄
)

|φ0 + ip0|2
8

, (3.13)

where S is given in (3.5). Recalling (3.4), we see that the right hand side of (3.12) is

positive. Taking it to be very large, so that
(

S + S̄
)

|φ0 + ip0|2 is very large, we see that

the conditions (3.12) (as well as (3.13)) are satisfied for any finite value of θ2. Similar

considerations apply to the Siegel upper half plane condition Imσ(θ) Im ρ(θ) > (Im v(θ))2,

which translates into

p0p1θ2 <
−φ0φ1p0p1

(

S + S̄
)

|φ0 + ip0|2 . (3.14)

Now we note that we can also impose the more restrictive condition Imσ(θ) ≫ 1,

Im ρ(θ) ≫ 1, which ensures that (3.1) has a well defined expansion for very large charges.

We obtain

p0p1θ2 ≪
φ0p1

2
− p21 ,

p0p1θ2 ≪ −φ
1p0

2
− p20 , (3.15)

from which it follows that

p0p1θ2 <

(

S + S̄
)

|φ0 + ip0|2
8

− 1

2

(

p20 + p21
)

. (3.16)

In this case the conditions (3.15) and (3.16) can be satisfied for any finite value of φ0, φ1,

p0, p1 by taking θ2 to satisfy p0p1θ2 < 0 with |θ2| ≫ 1. This choice also ensures the validity

of the Siegel upper half plane condition (3.14). Thus

p0p1θ2 < 0 with |θ2| ≫ 1 (3.17)

specifies another viable integration contour for the integral (3.1). Below we will show that

this choice of contour is necessary in order to select large charge single-center black holes.

The left hand side of (3.9) is invariant under the shifts φ0 → φ0 + 2i, φ1 → φ1 + 2i.

The right hand side of (3.9) is also invariant under these shifts. This follows from the fact

that the integrand of (3.9) is invariant under shifts

σ(θ) → σ(θ)− n , ρ(θ) → ρ(θ) +m, n,m ∈ Z , (3.18)
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which are induced by

φ0 → φ0 + 2ip1 n , φ1 → φ1 + 2ip0m. (3.19)

Now let us turn to the evaluation of the integral (3.9). We begin with the following ob-

servation. The θ-dependent part of the exponential in (3.9) reads exp
[

iπ θ ̺aC
ab̺b/

(

p0p1
)]

,

with ̺a given in (2.21) [11]. We will assume |̺aCab̺b| 6= 0, as the ̺aC
ab̺b = 0 contributions

will be subleading. Below we will evaluate the integral (3.9) by residue techniques. To this

end, we will first extend the range of integration to the entire real line and then move the

contour to a region where the integrand becomes vanishing. Choosing the contour specified

by (3.17), we obtain a non-vanishing result provided that ̺aC
ab̺b > 0. The result will

thus be proportional to a Heaviside step function H(̺aC
ab̺b), as expected for an inverse

Laplace transform. Note that ̺aC
ab̺b > 0 is a necessary condition for a charge configu-

ration to correspond to a single-center black hole, as discussed below (2.21). Thus, in the

following, we will use the contour (3.17). It corresponds to the so-called attractor contour

introduced in [27] to single out large charge single-center contributions to the entropy.

We now evaluate (3.9). Here we proceed differently from [11] and resort to an ap-

proximation. Namely, we approximate the exact result by only keeping the contributions

from zeroes of Φ10(σ(θ), ρ(θ), θ) that encode the dilatonic free energy contribution (2.12),

as follows. The zeroes of Φ10(σ, ρ, v) that yield the leading contribution to the entropy of

single-center black holes are parametrized by three integers (m,n, p) and given by [7],

ρσ − v2 + (1− 2p)v +mσ − nρ+ p− p2 −mn = 0 . (3.20)

This can be verified by considering a certain constrained extremization problem [9]. In the

following, we consider a related extremization problem in order to determine the subset of

zeroes (3.20) that encode the dilatonic free energy of single-center black holes.

To leading order, (3.9) can be calculated by saddle point approximation, by extremizing

the exponent on the right hand side of (3.9) with respect to θ subject to (3.20). By

inserting (3.10) into (3.20), we obtain the combination

D ≡ ρ(θ)σ(θ)− θ2 + (1− 2p)θ +mσ(θ)− nρ(θ) + p− p2 −mn = 0 . (3.21)

Denoting the exponent on the right hand side of (3.9) by E,

E ≡ −iπσ(θ) qaCabqb + πqaφ̃
a(θ)− πi ρ(θ) paCabp

b , (3.22)

we consider the constrained extremization problem,

dE

dθ
= λ

dD

dθ
, (3.23)

where λ denotes a Lagrange multiplier. We obtain

dE

dθ
= iπ

̺aC
ab̺b

p0p1
,

dD

dθ
=
i

2

(

φ̂1

p1
− φ̂0

p0

)

− 2p−m
p0

p1
+ n

p1

p0
, (3.24)
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with ̺a given in (2.21). Inserting this into (3.23) we get

λ =
2π ̺aC

ab̺b
p0φ1 − p1φ0

(3.25)

as well as
p1n+ l0

p0
−
(

p0m+ l1
)

p1
= 2p . (3.26)

The first relation determines the value of λ, while the second relation selects a subset of the

zeroes (3.20). The value of θ associated to these zeroes is determined from the condition

D = 0 given in (3.21), which we need to supplement with (3.26), resulting in

2θ − 1 = −i
(

φ0 + 2i
(

l0 + p1n
)) (

φ1 + 2i
(

l1 + p0m
))

+ p0p1 − 4p2p0p1

φ0p1 − φ1p0
. (3.27)

The exponent E, on the other hand, takes the value

E = π

[

φ̂0

2p1
qaC

abqb −
φ̂1

2p0
paCabp

b + qaφ
a + i

(

θ − 1

2

)

̺aC
ab̺b

p0p1

]

, (3.28)

with θ given by (3.27).

The zeroes (3.26) depend on the combinations l0 + p1n and l1 + p0m. Using Φ10(σ −
n, ρ, v) = Φ10(σ, ρ + m, v) = Φ10(σ, ρ, v) as well as qaC

abqb ∈ 2Z, paCabp
b ∈ 2Z, we can

absorb the shifts p0m and p1n into l1 and l0 and extend the original range of l0 and l1

in (3.9) to run over all the integers. The condition (3.26) then becomes

l0

p0
− l1

p1
= 2p , (3.29)

where now −∞ < l0,1 <∞. Next, we parametrize the zeroes satisfying (3.29) by

(

l0, l1, p
)

=
(

(k + p)p0, (k − p)p1, p
)

. (3.30)

The associated value of θ reads,

2θ − 1 = −2p+ 2k

(

φ0p1 + φ1p0
)

φ0p1 − φ1p0
− i

φ0φ1 + p0p1 − 4k2p0p1

φ0p1 − φ1p0
. (3.31)

Then, inserting (3.31) into E in (3.28) shows that the real part of E will depend on k,

unless k = 0, in which case we obtain

eE = e
π
[

F
(0)
D

+qaφa
]

, (3.32)

which is real and independent of p. Here F (0)
D denotes the dilatonic free energy intro-

duced in (2.12). The zeroes with k 6= 0, on the other hand, correspond to instanton

corrections to F (0)
D ,

∑

k

eE = e
π
[

F
(0)
D

+qaφa
]

∑

k

e2πiτ k2+2πikz , (3.33)
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where in this expression z ∈ R, whose value can be read off from (3.31), and where τ is

given by

τ = 2i
̺aC

ab̺b
(

S + S̄
)

|φ0 + ip0|2 . (3.34)

Taking S + S̄ > 0 as well as ̺aC
ab̺b > 0 (recall that this is implemented by using the

contour (3.17)), τ takes its value in the complex upper half plane, and the sum over k gives

a theta function.

Thus, we have established that only the subset of zeroes parametrized by (3.30) solves

the extremization problem (3.23), and that out of these only those with k = 0 encode

the dilatonic free energy F (0)
D , while those with k 6= 0 yield instanton corrections. In the

following, and contrary to [11], we will suppress instanton corrections and only retain the

subset of zeroes with k = 0. These are the zeroes
(

l0, l1, p
)

=
(

pp0,−pp1, p
)

. Since they

contribute with a factor F (0)
D , they yield the semi-classical free energy of a single-center 1

4

BPS black hole when ̺aC
ab̺b > 0.

We proceed to evaluate (3.9) by retaining only the subset of zeroes just discussed,

and employing the contour (3.17). Since eE is independent of p, and using the property

Φ10(σ, ρ, v + p) = Φ10(σ, ρ, v) for p ∈ Z, we can use the zeroes
(

l0, l1, p
)

=
(

pp0,−pp1, p
)

to extend the range of integration of θ1 to −∞ < θ1 < ∞. The relevant zero of Φ10 is

then given by D = v + ρσ − v2 = 0. In the vicinity of this zero, Φ10 takes the form

Φ10 ≈ D2∆ with [25]

∆ = σ−12 η24(γ′) η24(σ′) , (3.35)

where

γ′ =
ρσ − v2

σ
, σ′ =

ρσ − (v − 1)2

σ
. (3.36)

In these expressions, (σ, ρ, v) is replaced by (3.10) with l0 = l1 = 0. Then, using (3.28), (3.9)

becomes
∑

q0,q1

d(q, p) eπqIφ
I

=
1

|p0p1|

∫ ∞

−∞
dθ1

1

D2(θ)∆(θ)
(3.37)

exp

[

π
φ̂0

2p1
qaC

abqb − π
φ̂1

2p0
paCabp

b + qaφ
a + πi

(

θ − 1

2

)

̺aC
ab̺b

p0p1

]

.

The contour of integration is at fixed θ2 satisfying (3.17). The quantity D2(θ) has a

double zero at 2θ∗ = 1+
(

S − S̄
)

/
(

S + S̄
)

[3]. Recall that we consider configurations with

̺aC
ab̺b 6= 0. We now evaluate the integral by residue technique, moving the contour to a

region where the integrand becomes vanishing. In this way we find that only configurations

with ̺aC
ab̺b > 0 contribute. They pick up the contribution from the zero D(θ∗) = 0,

resulting in
∑

q0,q1

d(q, p) eπqIφ
I

=
M

(

S + S̄
)2 |Y 0|4

eπ[FD+qaφa] , (3.38)

where FD is the semi-classical dilatonic free energy in the presence of R2 interactions,

FD = F (0)
D + 4Ω

(

S, S̄
)

,

4πΩ
(

S, S̄
)

= − ln η24(S)− ln η24
(

S̄
)

− 12 ln
(

S + S̄
)

, (3.39)
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while M denotes the measure factor

M = H
(

̺aC
ab̺b

)

[

̺aC
ab̺b (3.40)

−
(

S+S̄
)

π

(

12
(

Y 0−Ȳ 0
)2
+
(

ln η24(S)
)′ (

S+S̄
) (

Ȳ 0
)2
+
(

ln η24
(

S̄
))′ (

S+S̄
) (

Y 0
)2
)

]

.

Here, H denotes the Heaviside step function. It ensures that only configurations with

̺aC
ab̺b > 0 contribute. As mentioned before, the latter is a necessary condition for the

charge configuration to constitute a single-center black hole. We note that the Heaviside

step function can be smoothen out into a continuous and differentiable function. Below we

will assume that this is the case, but will refrain from writing this out explicitly.

In obtaining these results we used that on the zero D(θ∗) = 0 [11],

σ(θ∗) =
i

S + S̄
,

ρ(θ∗) = i
|S|2
S + S̄

. (3.41)

Note that (3.38) no longer exhibits the shift symmetry φ0 → φ0 + 2i, φ1 → φ1 + 2i, due

to the fact that we only retained the contributions from zeroes of Φ10 that give rise to the

semi-classical dilatonic free energy FD.

Observe that both FD and the measure factor M/
[(

S + S̄
)

|Y 0|2
]2

in (3.38) are in-

variant under S-duality transformations (2.28), (2.29). This can be easily seen by rewriting

M in (3.40) as

M = 2H
(

(

T + T̄
)a
Cab

(

T + T̄
)b
)

(

S + S̄
)

|Y 0|2
[

K +
(

S + S̄
)2
∂S∂S̄(4Ω)

]

, (3.42)

with T a defined as in (2.19), and K given in (2.30). The factor M/
[(

S + S̄
)

|Y 0|2
]

is also

T-duality invariant [3]. The measure (3.42) is closely related to (but not identical with)

the measure factor
√
∆− introduced in [3] on the grounds of electric/magnetic duality

covariance. It differs from
√
∆− by duality covariant terms.

Next, we would like to sum (3.38) over charges qa (a = 2, . . . , n). Here we face various

issues. First, we have a measure factor M that depends on qa. To deal with this, we

first extend φa to φa + iµa (with µa ∈ R
n−1). Then, we replace the charge qa in M by

the corresponding differential operator of (2.25). This results in a differential operator M̂ ,

which is obtained from M by replacing T a with

T̂ a =
π−1Cab∂/∂µb + S̄pa

(S + S̄)Y 0
. (3.43)

Thus, we replace (3.38) by

∑

q0,q1

d(q, p) eπ[q0φ
0+q1φ1+qa(φa+iµa)] =

M̂
(

S + S̄
)2 |Y 0|4

eπ[FD+qa(φa+iµa)] . (3.44)

Next, we consider summing (3.44) over qa. Here we face the problem that this sum is

ill-defined due to the indefinite signature of the qa charge lattice (a = 2, . . . , n). Thus, the

sum over qa has to be regularized. We propose the following procedure. First, we pick

a reference vector qBa such that ̺Ba C
ab̺Bb > 0. As mentioned below (2.18), we will refer
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to this reference vector as an attractor background associated with a single-center BPS

black hole. We then consider fluctuations Va = qa− qBa around this black hole background.

Thus, we set qa = qBa + Va in (3.44) and sum over Va. To enforce thermodynamic stability,

we restrict to fluctuations that do not increase the dilatonic free energy FD. We do this

by modifying the measure factor in (3.44). Namely, we introduce an additional measure

factor ρ, whose role is to weight each summand in the Va sum with ±1 or 0, in such a

way that the contributions (3.44) with growing exponent are removed from the sum, while

the remaining contributions are weighted by ±1. This is achieved by taking ρ to be the

difference of two sign functions ρ = ρc1 − ρc2 , with ρc(V ; τ) = −sgn(VaC
abcb) and suitably

chosen vectors c1 and c2 [12]. Thus, the proposed regulator turns the sum over Va into

an indefinite theta function based on sign functions. In principle, we can also consider

indefinite theta functions that are based on error functions, as in [11]. These would then

be defined in terms of different choices for c1 and c2. Note that the regulator ρ does

not preserve all of T-duality, but only the subgroup SO(1, n − 2;Z). We also note that

there exist other proposals for regularizing the sum, which are based on a modification of

the exponent of (3.44). Examples thereof are the so-called H-regulator, which has been

proposed when p0 = 0, and Siegel-Narain theta functions [5, 6, 28, 29].

The resulting regularized partition function Zreg
OSV(p, φ;µ) appears to depend on the

choice of the reference attractor background qBa , but this dependence is only apparent, since

two different choices of a reference background are related by an elliptic transformation of

the indefinite theta function. Thus, the result for the regularized partition function is inde-

pendent of the choice of the background. We proceed with the details of this construction.

The reference charge vector qBa has a background value φaB associated to it, which is

determined by (2.14). Expanding the exponent of (3.44) around qa = qBa + Va gives

π [FD(q) + qa (φ
a + iµa)] = 2πi

[

Q
(

qB
)

τe + B
(

ze, q
B
)

+ Q(V )τe + B(∆, V )
]

+ π
|S2|
S + S̄

paCab p
b + 4πΩ

(

S, S̄
)

, (3.45)

where we introduced

Qe(q) =
1

2
qaA

abqb , B(ze, q) = zeaA
abqb , Aab = −Cab ,

τe =
i

S + S̄
, zea =

i

2
Cab

(

φb + i

(

S − S̄
)

S + S̄
pb + iµb

)

,

∆a = zea +
i

S + S̄
qBa =

i

2
Cab

(

U b + iµb
)

, Ua = φa − φaB . (3.46)

Then, by multiplying (3.44) with the regular ρ specified below and summing over fluctua-

tions Va (a = 2, . . . , n), we define the regularized partition function Zreg
OSV(p, φ;µ) by

Zreg
OSV(p, φ;µ) ≡

e
π

|S|2

S+S̄
paCabp

b+2πiQ(qB)τe+4πΩ(S,S̄)

(S + S̄)2|Y 0|4 M̂
[

e2πiB(ze,q
B) ϑ(∆; τe)

]

, (3.47)

where ϑ(∆; τe) denotes an indefinite theta function [12],

ϑ(∆; τe) =
∑

V ∈Zn−1

ρ(V + α; τe) e
2πiτeQe(V )+2πiB(∆,V ) . (3.48)
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Here we decomposed ∆ = α τe + β (with α, β ∈ Z
n−1), so that

αa =
1

2

(

S + S̄
)

CabU
b , βa = −1

2
Cab µ

b . (3.49)

The regulator ρ = ρc1 − ρc2 is taken to be

ρ(q; τe) = sgn(B(q, c1))− sgn(B(q, c2)) , (3.50)

where sgn denotes the sign-function, and where c1 and c2 are two linearly independent null

vectors, Q(ci) = 0.

To assess the physical meaning of this construction, consider the case when φa does not

equal φB, but has a nearby value, so that Ua is small. A single unit of elliptic transformation

shifts αa by unity. Hence any given excitation about the specified black hole background

can be regarded as a fluctuation characterized by αa with |αa| < 1. This puts the sum

over the indefinite charge lattices squarely in the domain of the Göttsche-Zagier treatment

in [30], as each component αa is the range 0 < |αa| < 1. Then, restricting to a two-

dimensional lattice Γ1,1 for simplicity, i.e. taking n = 3, the indefinite theta function based

on (3.50) precisely does what was described above, namely, contributions that would lead

to an increase of the exponential in (3.48) are removed from the sum in a Lorentz invariant

manner [30]. We refer to appendices B and D of [11] for a brief review of this.

Next, using (2.14), we note that the regularized partition function (3.47) may also be

written as

Zreg
OSV(p, φ;µ) =

eπFE(φa
B ,pa,S,S̄)

(S + S̄)14|Y 0|4 M̂
[

e2πiB(q
B ,∆) ϑ(∆; τe)

]

, (3.51)

where FE

(

φaB, p
a, S, S̄

)

denotes the free energy (2.10) in the presence of R2 corrections,

FE

(

φaB, p
a, S, S̄

)

= −2i
(

F (Y a, S)|Y a= 1
2
(φa

B
+ipa) − F̄

(

Ȳ a, S̄
)

|Ȳ a= 1
2
(φa

B
−ipa)

)

,

F (Y a, S) = F (0)(Y a, S)− i

2π
ln η24(S) . (3.52)

Note that in an N = 2 model, F (Y a, S) has the interpretation of a topological string free

energy at weak topological string coupling. The exponent FE

(

φaB, p
a, S, S̄

)

describes the

semi-classical free energy of a BPS black hole with charges qBa , while ϑ(∆; τ) encodes the

regulated contributions from the fluctuations Va = qa − qBa .

As already mentioned, the choice of a reference background vector qBa satisfying

̺Ba C
ab̺Bb > 0 is arbitrary. Two different choices are related by an elliptic transforma-

tion of ϑ(∆; τe), as follows. Under the elliptic transformation ∆ → ∆+λ τe with λ ∈ Z
n−1,

ϑ(∆; τe) transforms as

ϑ(∆ + λ τe; τe) = e−2πiQ(λ)τe−2πiB(∆,λ) ϑ(∆; τe) . (3.53)

Choosing two different reference background vectors qB1 and qB2 (both satisfying

̺Ba C
ab̺Bb > 0 at fixed magnetic charges), and denoting the associated values of ∆ by

∆1 and ∆2, respectively, we implement the elliptic transformation ∆1 = ∆2 + λ τe on

ϑ
(

∆1; τe
)

, with λ = qB1 − qB2 . This results in expression (3.47), with
(

qB1 , φB1

)

replaced

by
(

qB2 , φB2

)

. Thus, (3.47) is independent of the chosen background. Here we have as-

sumed that the vectors ci which define ρ are independent of any background value.
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Since (3.47) is background independent, we may remove any reference to the back-

ground qB by redefining the sum. Rewriting (3.47) into a sum over charges qa = qBa + Va,

we obtain

Zreg
OSV(p, φ;µ) =

e
π

|S|2

S+S̄
paCabp

b+4πΩ(S,S̄)

(S + S̄)2|Y 0|4 M̂ ϑ(ze; τe) , (3.54)

where ϑ(ze; τe) denotes the indefinite theta function

ϑ(ze; τe) =
∑

q∈Zn−1

ρ(q + a; τe) e
2πiτeQe(q)+2πiB(ze,q) . (3.55)

Here we decomposed ze as ze = aτe + b (with a, b ∈ R
n−1), resulting in

aa =
1

2

(

S + S̄
)

Cab

(

φb + i

(

S − S̄
)

S + S̄
pb

)

, ba = −1

2
Cab µ

b . (3.56)

Note that since the measure factor M̂ projects onto configurations with ̺aC
ab̺b > 0, (3.54)

has the interpretation of a sum over attractor backgrounds. The regulated sum (3.54) has

φa-shift symmetry. Namely, under shifts of φa by φa → φa+2i, we have Cabzeb → Cabzeb−1,

which leaves ϑ(ze; τe) invariant.

Let us now comment on a subtlety. In the discussion below (3.50) we took φa not to

equal an attractor value φaB. When φa is taken to be on an attractor value (2.14), the

components aa are integer valued and can be brought to zero by an appropriate elliptic

transformation, as discussed above. In this case, the indefinite theta function (3.48) would

vanish, unless we keep µa 6= 0, so that ∆a is non-vanishing. This subtlety was already

noted in [11], and is the reason why in (3.54) we have refrained from setting µa = 0 after

the evaluation of M̂ ϑ(ze; τe). Then, by applying the modular transformation τ → −1/τ

(to be discussed below) we obtain a representation of the indefinite theta function with aa
replaced by −ba = 1

2Cabµ
b. Choosing µb so that 0 < |ba| < 1, we again obtain a set-up

that is similar to the one described below (3.50).

Next, let us apply the modular transformation (τe, ze) → (−1/τe, ze/τe) to (3.54) and

discuss its consequences. Taking into account that Aab is integer valued, we obtain [12]

ϑ(ze/τe;−1/τe) =
1√

− detA
(−iτe)(n−1)/2 e2πiQe(ze)/τe ϑ(ze; τe)

=
∑

q̃∈Zn−1

ρ(q̃ + ã;−1/τe) e
−2πiQe(q̃)/τe+2πiB(ze/τe,q̃) , (3.57)

where

ã =
Im(ze/τe)

Im(−1/τe)
= −b . (3.58)

Hence we get

ϑ(ze; τe) =

√
− detA

(−iτe)(n−1)/2

∑

q̃∈Zn−1

ρ(q̃ − b;−1/τe) e
−2πiQe(q̃−ze)/τe , (3.59)
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where

q̃a − zea = − i

2
Cab

(

φ̂b + i

(

S − S̄
)

S + S̄
pb

)

, φ̂a = φa + 2iCabq̃b + iµa . (3.60)

Using (3.59), we express (3.54) as

Zreg
OSV(p, φ;µ) = 2

√
− detA

(

S + S̄
)(n−27)/2 |Y 0|−2 (3.61)

H

(

(

T̂+
¯̂
T
)a
Cab

(

T̂+
¯̂
T
)b
)

[

K̂+4
(

S+S̄
)2
∂S∂S̄Ω

]

∑

q̃∈Zn−1

ρ(q̃ − b;−1/τe) e
πFE(φ̂a,pa,S,S̄),

where FE

(

φ̂a, pa, S, S̄
)

denotes the free energy (3.52), with φaB replaced by φ̂a.

The OSV conjecture [1] relates the OSV partition function (1.1) to the topological free

energy F (Y a, S) evaluated at Y a = 1
2(φ

a + ipa). We proceed to extract this factor out

of (3.61), and obtain

Zreg
OSV(p, φ;µ) = 2

√
− detA

(

S + S̄
)(n−27)/2 |Y 0|−2 (3.62)

H

(

(

T̂ +
¯̂
T
)a
Cab

(

T̂ +
¯̂
T
)b
)

[

K̂ + 4
(

S + S̄
)2
∂S∂S̄Ω

]

eπFE(φa+iµa,pa,S,S̄) ϑ(ze/τe;−1/τe) .

Thus, by making use of a modular transformation we have related the regulated sum Zreg
OSV

to the free energy FE . The regularized partition function (3.62) takes the form of an expo-

nential factor |e−2πiF |2, where F denotes the holomorphic topological free energy (3.52),

times a measure factor and an indefinite theta function. If we artificially set n = 27, which

corresponds to taking a model with 28 abelian gauge fields just as in the original N = 4

model, the powers of S + S̄ cancel out in the measure factor [31], and we are left with

the duality covariant differential operator
(

K̂ + 4
(

S + S̄
)2
∂S∂S̄Ω

)

/|Y 0|2. This operator,
when acting on eπFE , yields the duality covariant factor

(

K + 4
(

S + S̄
)2
∂S∂S̄Ω

)

/|Y 0|2,
with K given in (2.30) and T a = −i(φa + iµa + ipa)/(2Y 0).

3.2 Summing over charges p
a

Next, we turn to the black hole partition function (3.3), obtained by summing over charges

pa as well. We take (3.38) as our starting point and consider summing over both qa and pa.

Here we face the problem that the dilatonic free energy F (0)
D contains a term proportional

to
(

S − S̄
)

qap
a that couples one type of charges to the other type. To avoid this coupling,

we consider the case S = S̄ in the following. This allows us to interpret the sum over qa
as a sum over attractor values φa∗ at fixed χa∗, and the sum over pa as sum over attractor

values χa∗ at fixed φa∗, using (2.14) and (2.15).

We proceed as in the case of the regularized partition function (3.54). We first extend

φa and χa to φa + iµa and χa + iνa, respectively (with µa, νa ∈ R
n−1). We convert the
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measure M in (3.42) into a differential operator M̂ , obtained by replacing T a by the

differential operator (2.26). Then, taking (3.38) as a starting point, we obtain

∑

q0,q1

d(q, p) eπ[q0φ
0+q1φ1+qa(φa+iµa)−pa(χa+iνa)]=

M̂

4S2|Y 0|4 e
π[FD+qa(φa+iµa)−pa(χa+iνa)]. (3.63)

Then, in analogy to (3.54), we define the regularized partition function, obtained by sum-

ming (3.63) over charges qa and pa (a = 2, . . . , n), by

Zreg
(

φI , χa;µ, ν
)

≡ e4πΩ(S)

4S2|Y 0|4 M̂
(

ϑ(ze; τe)ϑ(zm; τm)
)

, (3.64)

where ϑ(ze; τe) and ϑ(zm; τm) denote indefinite theta functions with

τe =
i

2S
, τm =

i

2
S

zea =
i

2
Cab

(

φb + iµb
)

, zam = − i

2
Cab (χb + iνb) ,

Qe(q) =
1

2
qaA

abqb Qm(p) =
1

2
paAabp

b , Aab = −Cab , Aab = −Cab ,

B(ze, q) = zeaA
abqb , B(zm, p) = zamAabp

b . (3.65)

We take both indefinite theta functions to be defined in terms of sign functions, as in (3.50).

Observe that (3.64) is invariant under S → 1/S. It is also invariant under SO(1, n− 2;Z)

T-duality transformations, as well as under shifts φa → φa + 2i and χa → χa + 2i.

Applying the modular transformations (τe, τm) → (−1/τe,−1/τm) we obtain, in a

manner analogous to (3.57),

ϑ(ze; τe)ϑ(zm; τm)=2n−1
∑

q̃∈Zn−1

∑

p̃∈Zn−1

ρ(q̃−be;−1/τe) ρ(p̃−bm;−1/τm) eπH
(0)(S,φ̂a,χ̂a), (3.66)

where

φ̂a = φa + 2iCabq̃b + iµa , χ̂a = χa − 2iCabp̃
b + iνa ,

bea = −1

2
Cabµ

b , bam =
1

2
Cabνb , (3.67)

and where H(0) denotes the Hesse potential (2.13). Using this, we arrive at

Zreg
(

φI , χa;µ, ν
)

=2n−3 M̂

S2|Y 0|4
(

eπH(S,φa+iµa,χa+iνa) ϑ(ze/τe;−1/τe)ϑ(zm/τm;−1/τm)
)

,

(3.68)

where we introduced the Hesse potential H in the presence of higher-derivative

corrections [3],

H(S, φa, χa) = H(0)(S, φa, χa) + 4Ω(S) . (3.69)

Thus, by resorting to modular transformations, we have related the regularized partition

function (3.64) to the semi-classical Hesse potential.
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Now let us expand (3.64) around an attractor background defined in terms of charges
(

qBa , p
a
B

)

satisfying ̺Ba C
ab̺Bb > 0. The associated background values

(

φaB, χ
B
a

)

are given

by (2.14) and (2.15), where we recall that we are setting S = S̄. Hence, the background

value φaB is determined in terms of qBa (and S), while χB
a is determined in terms of paB (and

S). The choice of the background values (qBa , p
a
B) is arbitrary. We perform the shifts

qa = qBa + Va , pa = paB +W a ,

φa = φaB + Ua , χa = χB
a +Xa . (3.70)

Expanding (3.64) around
(

qBa , p
a
B

)

is implemented by applying the following elliptic trans-

formations to ϑ(ze; τe) and ϑ(zm; τm),

zea = Ze
a − qBa τe , zam = Za

m − paB τm , (3.71)

where

Ze
a =

i

2
Cab

(

U b + iµb
)

, Za
m = − i

2
Cab (Xb + iνb) . (3.72)

Using the transformation property (3.53) gives

Zreg
(

φI , χa;µ, ν
)

=
eπH(S,φB ,χB)+πqBa Ua−πpaBXa

4S2 |Y 0|4

M̂
(

eπiq
B
a µa−πipaBνa ϑ(Ze; τe) ϑ(Zm; τm)

)

, (3.73)

where

ϑ(Ze; τe) =
∑

V ∈Zn−1

ρ(V +Ae; τe) e
2πiτeQ(V )+2πiB(Ze,V ) ,

ϑ(Zm; τm) =
∑

W∈Zn−1

ρ(W +Am; τm) e2πiτmQ(W )+2πiB(Zm,W ) . (3.74)

Here we decomposed Z = Aτ + B, so that

Ae
a = S CabU

b , Be
a = −1

2
Cabµ

b ,

Aa
m = − 1

S
CabXb , Ba

m =
1

2
Cabνb . (3.75)

In (3.73), the first line gives the contribution of the attractor background to the partition

function, while the second line contains the contribution from fluctuations around it.

Observe that the final expression (3.73) is identical to what one obtains starting

from the regularized OSV partition function (3.51), with S = S̄, multiplying it with

e−πpa(χa+iνa), summing over charges pa by resorting to the background expansion (3.70)

and regularizing this sum. Thus, our proposal (3.64) for the regularized partition function

is consistent with what one obtains by first regularizing the sum over qa, which results

in (3.51), and subsequently summing over the charges pa and regularizing this sum in a

similar manner. Note that our proposal (3.64) does not depend on any particular attractor

background
(

φB, χ
B
)

.

Observe that the regularized partition function (3.64) only counts axion-free attrac-

tor backgrounds (2.14) and (2.15). We may extend this by implementing the S-duality

transformation S → S + i and summing over all its images.
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Finally, we note that the form of (3.64) is reminiscent of the proposal [32] for a back-

ground independent partition function for matrix models and topological strings.

4 Conclusions

We first defined an OSV partition function for single-center BPS black holes by restricting

to those zeroes of Φ10 that give rise to the dilatonic free energy FD of single-center BPS

black holes. Within this approximation, we dealt with the divergences that arise when

performing the sum over charges qa by first expanding around an attractor background,

and then regularizing the sum over fluctuations Va around this background by removing

contributions that are exponentially growing. This was achieved by converting the Va-sum

into an indefinite theta function based on a regulator ρ constructed out of sign functions.

The choice of the attractor background is arbitrary, and two different choices are related

by an elliptic transformation of the indefinite theta function. We then used its modular

properties to relate the regularized sum to the free energy FE which, in N = 2 compactifi-

cations, is relatd to the topological free energy at weak topological string coupling. Observe

that the regulator ρ only preserves a subset of T-duality transformations, namely the one

given by SO(1, n− 2;Z) transformations.

We then turned to a canonical partition function by also summing over charges pa.

We set S = S̄ in order to decouple the sums over qa and pa. We again regularized the

sums using indefinite theta functions. We then used a modular transformation to relate

the regularized canonical partition function to the Hesse potential H of supergravity. The

regularized sum is invariant under the electric-magnetic duality transformation S → 1/S.

Its form is reminiscent of the proposal [32] for a background independent partition function

for matrix models and topological strings.

One subtlety that arises in our proposal is that if we choose φa and/or χa to be on an

attractor value (2.14) and/or (2.15), the indefinite theta functions vanish unless we extend

φa, χa to the complex plane, i.e. φa → φa + iµa, χa → χa + iνa. Thus, our regularized

partition functions depend on µa, νa.

We chose a regulator with good modular and elliptic transformation properties in order

to be able to relate the regularized partition function to semi-classical results, and to ensure

that the partition function is independent of the particular attractor background around

which one chooses to expand it. We opted to work with indefinite theta functions based

on sign functions, but other choices are, in principle, also possible [10, 11].

Finally, we note that the computation of a Witten index in the presence of a continuous

spectrum may yield a result [33–35] that is reminiscent of an indefinite theta function.

Consider a supersymmetric one-dimensional quantum mechanics model with Hamiltonian

H = p2 +W 2(x) −
[

ψ†, ψ
]

W ′(x). This Hamiltonian describes a charged spin 1
2 particle

moving in a potential W (x). Take W to have a solitonic form, i.e.

{

W (x) −→W+ for x −→ +∞
W (x) −→W− for x −→ −∞ . (4.1)
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Upon imposing boundary conditions, an explicit computation of the Witten index in this

model yields [33]

E
(

√

βW+

)

− E
(

√

βW−

)

, (4.2)

where E denotes the error function. In the presence of superselection sectors labelled by γ,

this generalizes to

Z(β) =
∑

γ

(

E
(

√

βW γ
+

)

− E
(

√

βW γ
−

))

e−βHγ
top , (4.3)

where we allowed for the presence of a topological term Htop in the Hamiltonian [36].

Then, a judicious choice of both the asymptotics of the potential W γ
± and the topological

Hamiltonian Hγ
top labeling the superselection sectors, gives an indefinite theta function.
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