4.4.5 Effect of bunton spacing

Neither measurements nor parametric studies using DISCS have shown that bunton spacing is an important variable, although most of the measurements were in shafts with the same bunton spacing, i.e. 4.57 m. Only two sets of measurements were in shafts with 6.10 m bunton spacing, two with 3.68 m bunton spacing, and two with 4.0 m bunton spacing which are probably insufficient to be very conclusive. However, the time between buntons increases as bunton spacing increases and for a given misalignment the off-vertical angle of the guides reduces. The magnitude of misalignment should thus be related to bunton spacing to give:

\[K_m = \frac{A}{0.010 \times \frac{A}{4.57}} K_D \]

\[= \frac{450 A}{A} K_D \]

where \(A \) = bunton spacing.

4.4.6 Effect of guide and bunton stiffness

The only noticeable effect of differing stiffness was in shafts where the buntons on one side were stiffer than on the other side of the conveyance. As shown in Table 4.1, for Hartbeestfontein No. 8 shaft the peak wheel loads on the side with the stiff buntons were very much higher than on the other side. The layout of buntons in this shaft is shown in Figure 4.13.
The stiffnesses of the buntons as numbered on Figure 4.13 is:

<table>
<thead>
<tr>
<th>Bunton/guide stiffness ratio</th>
<th>Skip</th>
<th>Cage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 50 000 kN.m</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11 111 kN.m</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7 692 kN.m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The maximum wheel loads measured at 15 m/s on these buntons were:

<table>
<thead>
<tr>
<th>Skip</th>
<th>Cage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 19,4 kN</td>
<td>2 12,7 kN</td>
</tr>
<tr>
<td>2 8,1 kN</td>
<td>3 7,6 kN</td>
</tr>
</tbody>
</table>

In both cases the ratio of wheel loads to the bunton stiffness is similar on both sides, indicating that the maximum wheel loads are directly related to the bunton stiffness, and the relative bunton stiffnesses on opposite sides of the compartment. The figures above show no absolute relationship between wheel load and bunton stiffness, but this ratio seems to increase as the relative bunton stiffness increases. One way of dealing with this would be to consider the wheel loads as being above and below an average value, the amount above or below being determined by the bunton stiffness ratio as shown in Figure 4.14 below.
It is also recommended in Chapter 6 that more severe deflection limitations should be applied as the bunton stiffness ratio increases, to limit the effects of this phenomenon.

In this shaft the practice is to use a fairly high preload (0.5 tonnes). In the absence of such preload there may well not be this relationship because the maximum wheel loads relate to dynamic behaviour of the conveyance to a greater degree, except that where the guide gauge reduces a stiff bunton will lead to a high wheel load.
FIGURE 4.14: Wheel load variation with bunton stiffness ratio
The factor $K_p \times \text{PRELOAD}$ above should thus be taken as:

$$K_p \times \text{PRELOAD} = \left(\frac{\bar{K}_{\text{Bunt}}}{K_{\text{Bank}}} \cdot \text{PRELOAD} + \frac{1}{2} \delta \cdot \frac{\bar{K}_{\text{Bunt}}}{K_{\text{Bank}}} \right) (1\pm0.15\kappa)$$

where $\bar{K}_{\text{Bunt}} = \text{average equivalent wheel spring stiffness at a bunton}$

$K_{\text{Bank}} = \text{average equivalent wheel spring stiffness at bank where wheel preload is set.}$

$\delta = \text{maximum guide gauge reduction (in m).}$

$\kappa = \text{ratio of stiffer bunton stiffness to more flexible bunton stiffness} - 1.$

This can then be rewritten as:

$$\bar{K}_{\text{Bunt}} \left(\frac{\text{PRELOAD}}{K_{\text{Bank}}} + \frac{\delta}{2} \right) (1\pm0.15\kappa)$$

4.4.7 Effect of wheel preload

All the measurements and DISCS predictions show that wheel preload acts only as a fixed preset displacement on the wheels, giving a wheel load which varies with varying guide stiffness. In no case was there clear evidence of a higher or lower preload either increasing or decreasing the dynamic behaviour of the conveyance.

4.4.8 Effect of spring stiffness

In practice there is not a very wide variation of spring stiffness of guide wheels and it was never possible to alter this with all other parameters unchanged. Parametric studies using DISCS and work done by McKechnie show that a more flexible spring on the wheels leads to lower wheel loads. However, for this to operate a larger deflection is required, so that a greater clearance between guide and slipper is required. If slipper/guide
Contact occurs because a more flexible spring is used the consequent maximum wheel loads may well be more severe than with a stiffer spring which prevents such contact. McKeechnie18 thus uses a double spring, a flexible spring for normal operation and a much stiffer spring to prevent slipper/guide contact. Spring stiffness has also been shown to be the cause of wheel resonance in the case of President Steyn. This is a difficult problem to predict, so that it should be catered for, not by adjusting the design wheel load, but by using wheelsets where the spring stiffness can easily be varied on site if a problem arises.

4.4.9 Maximum wheel load equation

Combining the relevant effects discussed above gives the equation for maximum wheel load as:

\[P = W_E \left(0,16V \frac{30\Delta}{A} + \frac{\text{PRELOAD}}{K_{\text{Bank}}} + \frac{\delta}{2} \right) (1 \pm 0,15\kappa) \] for skips

\[P = W_E \left(0,20V \frac{30\Delta}{A} + \frac{\text{PRELOAD}}{K_{\text{Bank}}} + \frac{\delta}{2} \right) (1 \pm 0,15\kappa) \] for cages

This can be rewritten as:

\[P = F \cdot W_E \left(\frac{VA}{A} \right) + \frac{\text{PRELOAD}}{K_{\text{Bank}}} + \frac{\delta}{2} \right) (1 \pm 0,15\kappa) \]

where \(F \) is a "conveyance factor" equal to:

- 4.8 for skips
- 6.0 for cages

There may be some justification in specifying different \(F \) factors for good, acceptable and non-acceptable shafts as described in Chapter 6. However, this is to some
extent covered by the term A in the equation, so this will not be done, as a single factor for each type of conveyance is easier to work with.

For koepe winders there is some indication that the above F factor may be divided by 2, by virtue of the damping effect of the tailropes, so the Western Deep Levels have been doubled in calculating the averages in table 4.8. This needs verification by further tests however. It should be noted that the above equations deal only with cases where there is no dynamic magnification. Section 5.5 deals with wheel loads in the presence of magnification.

4.5 RELATIONSHIP OF WHEEL LOADS TO ACCELERATIONS

In trying to find some way of relating lateral accelerations to wheel loads, several transfer functions between wheel loads and accelerations were calculated from the relevant power spectra. This did not however give useful results, probably because all the wheel loads and all the accelerations are interrelated, so that no one acceleration is directly related to one wheel load, and also because of the presence of noise. A low (noise) power spectrum value divided by a lower (noise) value can give a large result at random.

An alternative means of achieving an averaged relationship is described below:

The expected acceleration value is equal to a factor, T, multiplied by the square root of the sum of the power spectrum values, and the expected value of wheel load is equal to the same factor, T, multiplied by the sum of its power spectrum values. The relationship
between the force and acceleration values is thus given by:

\[R = \frac{T \cdot \sqrt{\text{Power Spectrum of Wheel Load}}}{\sqrt{\text{Power Spectrum of Acceleration}}} \]

This value, \(R \), is given in Table 4.9 below for all the shafts in which wheel load measurements were made. Omitting the values at Blyvooruitsig No. 4 shaft, which was not felt to be a good wheel load measurement, the means of these values is 1.30 with a standard deviation of 0.47. The same analysis was carried out for the DISCS runs with similar, although somewhat higher results. These are also shown on Table 4.12.

Table 4.9: R Values

<table>
<thead>
<tr>
<th>SHAFT</th>
<th>R - value</th>
<th>DISCS R - value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top Wheel</td>
<td>Bottom Wheel</td>
</tr>
<tr>
<td>Pres. Steyn 4*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19(^t) skip</td>
<td>0.76</td>
<td>1.78</td>
</tr>
<tr>
<td>10(^t) skip</td>
<td>1.03</td>
<td>1.42</td>
</tr>
<tr>
<td>Western Deep Levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2*18(^t) skip</td>
<td>0.67</td>
<td>-</td>
</tr>
<tr>
<td>Western Holdings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1*10(^t) skip</td>
<td>1.06</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>0.87</td>
<td>1.63</td>
</tr>
<tr>
<td>Blyvooruitsig 4*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skip</td>
<td>0.33</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hartebeestfontein 8*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skip</td>
<td>-</td>
<td>0.68 (R)</td>
</tr>
<tr>
<td>Cage</td>
<td>1.31</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>2.02</td>
<td>1.73</td>
</tr>
<tr>
<td>Hartebeestfontein 6*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cage</td>
<td>1.00</td>
<td>2.39</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deelkraal 1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21(^t) skip</td>
<td>1.55</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>2.91</td>
<td>2.55</td>
</tr>
</tbody>
</table>
Assuming a normal distribution for R, a 1% probability of exceedence, and zero preload, the expected wheel load is then given by:

\[\text{WHEEL LOAD} = \text{Acceleration} \times (1.30 + 2.4 \times 0.47) \]
\[= 2.4 \times \text{ACCELERATION} \]

Including preload the expected wheel load is:

\[\text{WHEEL LOAD} = \text{PRELOAD} + 2.4 \times \text{ACCELERATION} \]

This serves to confirm the above statement that no problems or damage should be expected below accelerations of about 7 m/sec\(^2\), because this gives:

\[\text{WHEEL LOAD} = \text{PRELOAD} < 1.8 \]

Typically, preload values are not greater than 3 kN, i.e.

\[\text{WHEEL LOAD} = 19.8 \text{ kN at } 7 \text{ m/sec}^2 \]

Many modern conveyances fully loaded weigh 20 tonnes or more, so that the W/10 design load is 20 kN or more. No problems should be expected until this design load is significantly exceeded.
CHAPTER 5 : DYNAMIC MAGNIFICATION

The dynamic magnification of wheel loads and accelerations due to the interaction of natural frequencies and exciting frequencies is a phenomenon which must be avoided in a mineshaft. Instances of high dynamic magnification have been known,\(^6\),\(^7\) and have had serious consequences for the shaft and conveyances. The following is an assessment of this problem and how it may be avoided.

Initially, the recommendations of two major reports, i.e. that of Reinke\(^8\) and one from the CSIR\(^9\) are considered, and this is followed by discussion of parametric studies carried out using DISCS. These are followed by some comments relating to actual instances of dynamic magnification which has been experienced in various shafts. General conclusions regarding the problem of dynamic magnification are drawn and finally recommended methods for avoiding dynamic magnification and for assessing the level of wheel load when it does occur, are described.

5.1. Literature survey

The CSIR\(^9\), and Reinke\(^8\), both deal at some length with dynamic magnification.

5.1.1 CSIR report\(^9\)

This report assesses the magnification of displacements in three dimensions and then calculates the wheel loads from the displacements. All the translational and rotational modes are considered as being uncoupled. Thus in the X-Z plane, i.e. the plane between the guides, the force amplitudes are:-
For the top and bottom wheels, where:

\[A = \frac{\sqrt{2(1 + \cos a)}}{2(1-\eta^2)} \]

\[B = \frac{z^2\sqrt{2(1 - \cos a)}}{p^2} \frac{2(2^2/p^2 - \eta^2)}{2(1-\eta^2)} \]

\[\eta^2 = \frac{\Omega^2}{p_x^2} \]

\[\rho = \frac{R_I}{M} \]

\[a = 2\pi(2Z-a)/a \text{ for } 0<2Z<2a \]

\[= 2\pi(2Z-na)/a \text{ for } na<2Z<(n+1)a \]

\[a = \text{bunton spacing} \]

\[Z = \text{half the conveyance overall length} \]

\[P_x = \sqrt{\frac{4K}{M}} = 2\sqrt{\frac{K}{M}} \]

\[K = \text{individual wheel spring stiffness} \]

\[\Omega = \frac{2\pi v}{a} \]

\[U = \text{the amplitude of misalignment, assumed to be a sine curve.} \]

In this equation, \(K \) and \(U \) are constants. Thus:

\[F_v = KU\sqrt{A^2+B^2-2A\cos a/2-2B\sin a/2} + 1 \]
 CHAPTER 5 : DYNAMIC MAGNIFICATION

The dynamic magnification of wheel loads and accelerations due to the interaction of natural frequencies and exciting frequencies is a phenomenon which must be avoided in a mineshaft. Instances of high dynamic magnification have been known, and have had serious consequences for the shaft and conveyances. The following is an assessment of this problem and how it may be avoided.

Initially, the recommendations of two major reports, i.e. that of Reinke and one from the CSIR are considered, and this is followed by discussion of parametric studies carried out using DISCS. These are followed by some comments relating to actual instances of dynamic magnification which has been experienced in various shafts. General conclusions regarding the problem of dynamic magnification are drawn and finally recommended methods for avoiding dynamic magnification and for assessing the level of wheel load when it does occur, are described.

5.1 Literature survey

The CSIR, and Reinke, both deal at some length with dynamic magnification.

5.1.1 CSIR report

This report assesses the magnification of displacements in three dimensions and then calculates the wheel loads from the displacements. All the translational and rotational modes are considered as being uncoupled. Thus in the X-Z plane, i.e. the plane between the guides, the force amplitudes are:-
\[F_y = KV A^2 + B^2 - 2A \cos \frac{a}{2} - 2B \sin \frac{a}{2} + 1 \]

For the top and bottom wheels, where:

\[A = \frac{\sqrt{2} (1 + \cos \alpha)}{2 (1 - \eta^2)} \]

\[B = \frac{Z^2 \sqrt{2} (1 - \cos \alpha)}{\rho^2 \frac{Z^2}{\rho^2} - \eta^2} \]

\[\eta^2 = \Omega^2 / \rho^2 \]

\[\rho = R_I / \Omega \]

\[\alpha = 2\pi (2Z-a) / a \text{ for } 0 < 2Z < 2a \]
\[2\pi (2Z-na) / a \text{ for } na < 2Z < (n+1) a \]

\[a = \text{bunton spacing} \]

\[Z = \text{half the conveyance overall length} \]

\[\rho_x = \sqrt{4K / M} = 2 \sqrt{K / M} \]

\[K = \text{individual wheel spring stiffness} \]

\[\Omega = \frac{2\pi u}{a} \]

\[U = \text{the amplitude of misalignment, assumed to be a sine curve.} \]

In this equation, K and U are constants. Thus:

\[F = \sqrt{A^2 + B^2} - 2A \cos \frac{a}{2} - 2B \sin \frac{a}{2} + 1 \]
Normalized spring force F/KU

$$HOISTING\ VEL (\text{m/sec})$$

FIGURE 5.1: Dynamic Magnification According to CSIR Report

* CSIR method

* Reinke method (24% damping)

FIGURE 5.2: Areas of High Dynamic Magnification
Plotting F against hoisting velocity typically gives a graph as shown in figure 5.1. In order to draw a more useful graph, and the one used by Reinke8 (see below), of areas of high magnification on a plot of bunton spacing against hoisting velocity, it is considered, arbitrarily, that a high magnifier is where:

$$\sqrt{A^2 + B^2} - 2A \cos \frac{a}{2} - 2B \sin \frac{a}{2} + 1 \geq 4$$

Because of the very high slope of the curve for F, see Figure 5.1, this arbitrary selection of the limits of areas of high magnification is felt to be acceptable. This then results in the area shown by the crosses in Figure 5.2, for a typical cage.

5.1.2 German approach

The approach used by Reinke8 in studying dynamic magnification is to model the conveyance in two dimensions as a single rigid body with two degrees of freedom, supported by elastic springs onto an elastically supported continuous beam. By solving the equations of motion of the system, natural frequencies are obtained which are then related to the frequency of passing buntons:

$$\omega_e = \frac{2\pi v}{a}$$

This result can then be plotted on a graph of bunton spacing against hoisting velocity, to show areas of high magnification of forces. A typical plot is shown by the circles on figure 5.2.

A computer programme, DYNMAG, which is listed and described in appendix E, was written to calculate these areas of high magnification following both the above methods.
The output from this programme is a graph in the form of figure 5.2.

There are always two main natural frequencies, the frequencies of translation and rotation. For the very simplified conveyances considered by the CSIR report, these frequencies are:

\[\omega_T = \sqrt{\frac{4K}{M}} \quad \text{for translation} \]

\[\omega_R = \sqrt{\frac{4Ka^2}{\theta}} \quad \text{for rotation} \]

where:

- \(K\) = spring stiffness
- \(M\) = conveyance mass
- \(\theta\) = conveyance rotational inertia
- \(a\) = half the conveyance length.

However, it is known that for this case with centre of mass and geometric centre coinciding

\[\theta = \frac{M}{\frac{1}{2}} (4a^2 + b^2) \]

where:

- \(b\) = conveyance width

Thus:

\[\omega_T = \sqrt{\frac{4K}{M}} \]

\[\omega_R = \sqrt{\frac{4Ka^2}{M\left(\frac{1}{2}(4a^2 + b^2)\right)}} \]
\[\frac{4K}{M} \sqrt{\frac{12}{4 + b^2/a^2}} \]
\[\sqrt{\frac{12}{4 + b^2/a^2}} \cdot \omega_T \]

In all practical cases \(a \) is larger than \(b \), thus

\[4 < 4 + \frac{b^2}{a^2} < 5 \]

and \[1.55 < \frac{\sqrt{12}}{4 + \frac{b^2}{a^2}} < 1.73 \]

The rotational frequency is thus always the higher one, with a value approximately 1.6 times the translational frequency.

Clearly these two methods give very similar results, except that the CSIR areas of high magnification always start from the origin because damping is neglected. The German curves are thus more useful in practice. Only the German method is thus referred to below.

5.2 Prediction by DISCS of dynamic magnification

In order to study this phenomenon of dynamic magnification using DISCS, various hypothetical models, covering a wide range of possible shaft layouts, were run. In all cases the misalignment of the guides was as shown on Figure 5.3.

These models were run using bunton spacing of 4 m and 8 m and various hoisting velocities, both inside and outside areas of dynamic magnification. Figure 5.4 shows a typical result.
Both guides misaligned by 20 mm.

5 mm mismatch on one guide only.

FIGURE 5.3: Guide Misalignment
From these runs, it is clear that DISCS predicts dynamic magnification in similar conditions to Reinke's predictions, although areas of high magnification do not exactly coincide. DISCS shows a greater tendency towards magnification and a higher level of magnification in the translational mode than in the rotational mode. DISCS also in some cases predicts magnification between the two modes given by Reinke's method.

Returning to the simplified CSIR approach, using uncoupled translation and rotation, Warburton shows that for a single-degree-of-freedom system, excited by a sinusoidally varying force, the magnification is:

\[\frac{1}{\left(1 - \omega^2/\omega_N^2 \right)^2 + (C\omega/K)^2} \]

High magnification occurs where:

\[\omega = \omega_N \]

and its value is given by:

\[\frac{1}{\left(1 - \omega_N^2/\omega_N^2 \right)^2 + (C\omega_N/K)^2} \]

\[= \frac{K}{C\omega_N} \]

For constant damping, C, and stiffness, K, it is clear that this magnification reduces for higher natural frequencies.

It would thus be expected that in general, high magnification is less manifest in the rotational mode, which is the higher natural frequency, than in the translational mode.
FIGURE 5.4: Dynamic Magnification Predicted by DISCS

Maximum increment = 1

FIGURE 5.5: Decreasing Dynamic Magnification with Increasing Misalignment
DISCS can thus be used to predict dynamic magnification as well as wheel loads and accelerations with random misalignment. Reinke's finding that dynamic magnification reduces with increasing magnitude of guide misalignment was also confirmed by running DISCS with the specified misalignment and also with random misalignment, as shown in Figure 5.5.

5.3 Measured Dynamic Magnification

High dynamic magnification has been measured at some shafts such as Deelkraal No. 2 shaft. On this shaft it occurred at about 15 m/sec hoisting speed, but not during every hoist.

The maximum hoisting speed was reduced to 11.5 m/s and this dynamic magnification was thus not recorded by measurements taken for the present study. Measurements showed natural frequencies of the cage in this shaft to be 1.2 Hz, 2.3 Hz, 3.3 Hz and 18.5 Hz. At 15 m/sec with a bunton spacing of 4.0 m, the frequency of passing buntons is 3.75 Hz, which does not coincide with any of the natural frequencies. At 9 m/sec however, the frequency of passing buntons is 2.3 Hz which does coincide with the second natural frequency and at 5 m/sec the frequency of passing buntons is 1.25 Hz which coincides with the fundamental natural frequency. At 9 m/sec hoisting speed, the magnitude of the peak at 2.3 Hz is slightly increased by virtue of the coincidence of a natural and an exciting frequency, but not to the extent that it could be considered a dynamic magnification problem. Apart from this, the power spectra did not show the frequency of passing buntons at all.
The fundamental flexural frequency of the cage is given approximately by:

\[f_1 = \frac{1}{2\pi} \left(\frac{EI}{pA} \right)^{1/2} \]

For this cage:

\[\ell = 7.8 \text{ m} \] (the length of the cage)
\[I = 1050 \times 10^6 \text{ m}^4 \] (the second moment of area about the vertical axis of the cage)
\[pA = 0.5 \text{ t/m} \] excluding top and bottom transoms (the mass per metre length of the cage)

Thus:

\[f_1 = 17.1 \text{ Hz} \]

This is probably the 18.5 Hz natural frequency shown by measurement. This vibration mode is shown schematically in Figure 5.6.

This coincides with the frequency of rotation of the guide wheels at a hoisting speed of 14.5 m/sec. At lower hoisting speeds, the frequency of revolution of the wheels is clearly shown as a very significant frequency, leading to the conclusion that this is probably the cause of the dynamic magnification.

Another shaft where severe problems have been experienced is President Steyn No. 4 shaft. The wheel load measurements on both the 19 tonne and 10 tonne skips, sections of which are shown in Figure 5.7 and the power spectra of these measurements, clearly show the problem frequency to be in the region of 20 Hz. Again this is the
frequency of revolution of the wheels at 15 m/sec hoisting speed, and it is also likely to be the fundamental natural frequency of the wheel itself.

The Structural Dynamic Research Corporation\(^{20}\) (SDRC) have carried out tests on the wheels used on the skips in this shaft and have found that at a low preload their natural frequency is 17 hz, increasing to about 29 hz at a high preload. At a certain level of preload, the natural frequency of the wheels can thus coincide exactly with their frequency of revolution. Although SDRC\(^{20}\) found the wheels to have high damping (about 40% of critical) this is not sufficient to prevent magnification of the dynamic effects.

It seems likely that the cause of the problem in this shaft is resonance between the wheel revolution and its own natural frequency.

Another shaft in which problems have occurred is the Deelkraal No. 1 shaft on the 21 tonne skips. Dimitriou\(^{21}\) has studied this problem, and concludes that, although this problem occurs at a lower frequency, it is due to severe misalignment rather than dynamic magnification.

Measurements in this shaft bear out this finding. Between the time of the work carried out by Dimitriou\(^{21}\) and the time of taking measurements for the present work, extensive realignment of the shaft steel work has taken place. The measurements showed a short section with very high wheel loads and accelerations in a few runs only (see Figure 5.8). These measurements do not show any tendency for increasing wheel loads or accelerations as would be expected if dynamic magnification were a severe problem. Rather it appears that the cause of these very high wheel loads is a short badly aligned section of the guides or perhaps it is only at one
bunton where the guide is badly aligned and is struck by the skip only if it is orientated in a certain way as it approaches that section.

It is however interesting that for this shaft, the engineer stated that dynamic magnification occurs at 12.5 m/sec hoisting speed. Reinke's method when applied to this skip running empty, indicates that dynamic magnification in the translational mode should be expected at hoisting speeds between 12.5 m/sec and 12.9 m/sec as shown in figure 5.9.

Significantly, the magnitude of wheel loads measured at 10 m/sec was higher than those measured at 12.5 m/sec. This reducing magnitude probably indicates some dynamic magnification at approximately 10 m/sec. This is not a severe problem here, the magnified wheel loads still being less than those at 15 m/sec and faster, but it does occur at a hoisting speed which is fairly close to the speed at which dynamic magnification was predicted.

5.4 Avoiding Dynamic Magnification

There are two different frequency ranges in which dynamic magnification should be considered, i.e. the higher frequencies relating to wheel rotation, and the lower frequencies relating to bunton spacing.

5.4.1 High Frequency Problems

These are related to the frequency of revolution of the wheels, and appear to occur at the higher hoisting speeds, where the frequency is in the region of 18 hz to 21 hz. In considering the elimination of this problem, it is necessary to study the behaviour of conveyances in more detail. DISCS does not model the wheels as individual units, nor does it make allowance for the higher frequency modes of vibration of the conveyance. What is
FIGURE 5.6: Flexural Vibration Mode of Deelkraal No. 2 Shaft Cage.
(a) Wheel loads on 19 tonne skip

(b) Wheel loads on 10 tonne skip

(c) Typical power spectrum of wheel loads

FIGURE 5.7: Wheel loads at President Steyn No. 4 Shaft
DEELKRAAL 1# UP 10.66T 17.8M/S

FIGURE 5.8: Wheel loads in bad section of the Deelkraal No. 1 shaft
Figure S.9: Dynamic Magnification on Deelkraal No. 1 Shaft, 21 Tonne Skip.

Figure S.10: Conveyance Movement in a Shaft

(a) LENGTH=(N) BUNTON SPACES (b) LENGTH=(N+1) BUNTON SPACES
required is a finite element model of the conveyance, including the wheels as separate masses, in order to establish the higher order natural frequencies. Alternatively, once a conveyance is in service, there are methods available whereby these higher frequencies can be measured. One such method is the use of the cyclical exciter described in section 3.1.5. The wheelsets must then be designed in such a way that there is no coincidence between wheel revolution frequency and any natural frequencies, or if this cannot be avoided some form of dampers should be fitted.

3.4.2 Low Frequency Problems

Although only one case of dynamic magnification has been specifically measured at low frequencies during the present work, it should not be ignored. The one example quoted above shows that it may well be a problem in other cases as well. Two modes of behaviour may develop at lower frequencies, translation or rotation. As discussed in section 5.2 above, translation is always the lower frequency and is likely to produce the higher magnification if this occurs. Studying the motion of the conveyance, as shown in Figure 5.10, where the overall conveyance length is equal to an integer multiple of the bunton space the stiffness of the guide at the top and bottom wheels is increasing or decreasing at the same time. This will tend to excite translation rather than rotation. On the other hand where the overall conveyance length is equal to an integer-plus-half multiple of the bunton space the stiffness of the guide at the top wheel increases while that at the bottom wheel decreases, which will tend to excite rotation rather than translation.
In avoiding the more likely and severe problem of dynamic magnification at the translation frequency, an overall conveyance length of an integer-plus-half multiple of bunton spacing should be used. In addition, some assessment of possible dynamic magnification using DISCS or a method such as that proposed by Reinke should be made. If possible problems are predicted, than some suitable adjustment should be made to bunton spacing, guide stiffness or conveyance geometry.

5.5 Maximum Wheel Load with Magnification

From the measurements it was observed that the increase of wheel load with velocity was usually linear, but that where dynamic magnification occurred it became exponential. This exponential increase above a linear increase is also shown by DISCS, and can be shown schematically as in figure 5.11 to have two components - the basic linear increase and a magnification 'hump' above it. In practice, hoisting speeds were seldom high enough to measure the decrease beyond the hump, but this is predicted by DISCS, and measured at Deelkraal No. 1 shaft.

The total wheel load where dynamic magnification occurs can be split into two components as shown by figure 5.11, giving:

\[W = W_1 + W_2 \]

\[= W_1 (1 + \frac{W_2}{W_1}) \]

\[= W_1 \left(\frac{W}{W_1} \right) \]

The factor \(\frac{W}{W_1} \) is referred to as the dynamic magnification factor, and it is given by Warburton for a single degree of freedom system as:
FIGURE 5.11: Dynamic Magnification Hump

Dynamic magnification component, \(W_2 \)

Basic linear increase component, \(W_1 \)

FIGURE 5.12: Magnification Factor

\[
\frac{W}{W_1}
\]

\[
\begin{align*}
&0.7 & 1.0 & 1.3 \\
&1 & & 2
\end{align*}
\]
\[\frac{W}{W_1} = \frac{1}{\sqrt{(1-r^2)^2 + (2 \gamma r)^2}} \]

Where \(\gamma \) = damping ratio
\(r \) = ratio of the exciting frequency to the natural frequency.

The exciting frequencies are proportional to the speed, so \(r \) could equally well be defined as

\[r = \text{ratio of hoisting speed to speed at which the exciting frequency equals the natural frequency.} \]

This magnification factor has a value significantly above one only for \(0.7 < r < 1.3 \) as shown on Figure 5.12. It has also been noted in chapters 4 and 5 that in practice severe dynamic magnification appears usually, but not always to relate to the frequency of revolution of the wheels.

In order to establish dynamic magnification of wheel loads at high frequencies the following procedure is suggested.

(a) Establish whether there is a higher order (deformation mode or wheel set) natural frequency, \(\omega_0 \), in the range of wheel revolution frequency at speeds of 10 m/sec and faster. With the standard 0.25 m diameter wheels used at present this is a frequency range of \(10/0.25\pi = 12.5 \text{ hz and higher.} \)

(b) If there is not, ignore dynamic magnification. If there is such a frequency, calculate the speed, \(V_0 \), at which it equals the wheel revolution frequency.

\[V_0 = \omega_0 \times 0.25\pi \]
\[= 0.785 \omega_0 \]
(c) For speeds in the range

\[0.7 V_o < V < 1.3 V_o \]

the maximum wheel load is then given by

\[W = \frac{W_1}{\left(1 - r^2\right)^2 + (2yr)^2} \]

Where \(W_1 \) = maximum wheel load calculated from linear increase.

For low damping ratios, a good approximation to this is:

\[W = \frac{W_1}{1 - r^2} \]

but with a maximum value determined by the damping ratio. Warburton shows a maximum magnification of five for a damping ratio of 0.1, but the complexity of the practical shaft appears to restrict the magnification more severely. A good semi-empirical approach thus seems to be:

For \(0.7 V_o < V < 1.3 V_o \)

\[W = \frac{W_1}{1 - \left(\frac{V}{V_o}\right)^2} \]

but \(W = 3W_1 \)

At low frequencies, if magnification is predicted in the translation mode, the conveyance length should be made equal to an integer-plus-half multiple of bunton spacing. If magnification is predicted in the rotation mode, then the conveyance length should be an integer multiple of the bunton spacing.
CHAPTER 6

DESIGN LOAD RECOMMENDATIONS

It has already been stated in the introduction that shaft steelwork practice has developed, by necessity, with the historical development of mines to greater depths and greater production requirements. Shaft steelwork design methods, also developing historically or empirically, have at no stage reflected the dynamic character of the loads imposed by conveyances on the guides. This is clearly shown by Devy22, in an interesting survey of shaft steelwork design methods. All but the most recent Anglo American design method are based very simply on a static load equal to some percentage of the conveyance mass. The latest Anglo American design method still assumes a static load, but this is now related to the square of hoisting speed and certain limitations are imposed on the relative stiffnesses of buntons and guides.

The design of conveyances, both skips and cages has tended to follow prototype testing methods. Suppliers have, by experience, based new designs on what they know has operated well in the past. This has led to uncertainties regarding factors of safety, fatigue life and discomfort to passengers. The mining houses are at present beginning to require more satisfactory design procedures, but there is not a great deal of value in a properly executed design which is based on unknown magnitudes of loading.

The following recommendations form an attempt to remedy this situation, by providing easy to use yet acceptably
CHAPTER 6

DESIGN LOAD RECOMMENDATIONS

It has already been stated in the introduction that shaft steelwork practice has developed, by necessity, with the historical development of mines to greater depths and greater production requirements. Shaft steelwork design methods, also developing historically or empirically, have at no stage reflected the dynamic character of the loads imposed by conveyances on the guides. This is clearly shown by Devy, in an interesting survey of shaft steelwork design methods. All but the most recent Anglo American design method are based very simply on a static load equal to some percentage of the conveyance mass. The latest Anglo American design method still assumes a static load, but this is now related to the square of hoisting speed and certain limitations are imposed on the relative stiffnesses of buntons and guides.

The design of conveyances, both skips and cages has tended to follow prototype testing methods. Suppliers have, by experience, based new designs on what they know has operated well in the past. This has led to uncertainties regarding factors of safety, fatigue life and discomfort to passengers. The mining houses are at present beginning to require more satisfactory design procedures, but there is not a great deal of value in a properly executed design which is based on unknown magnitudes of loading.

The following recommendations form an attempt to remedy this situation, by providing easy to use yet acceptably
accurate methods of predicting design loads for conveyances and shaft steelwork. The work on which these recommendations is based represents only a small sample of measurements. Thus, although the format of these recommendations and the way in which the important variables are included is unlikely to alter, further measurements may well indicate that the absolute values proposed need adjustment.

6.1 SUGGESTED BASIC OPERATING LIMITS

In order for the conveyances in a shaft to operate safely and reliably, and to carry out routine maintenance to an acceptable standard, limits should be placed on certain variables. The two suggested "control variables" are guide misalignment for quality control which should be specified for shaft equipping and lateral acceleration which can be used in an existing shaft to determine the necessity of maintenance. Following similar categories to those suggested by Gotzman[2], these will be defined for good, acceptable and unacceptable conditions of shafts.

6.1.1 Misalignment of the guides

There should be four basic values defined as components of the overall misalignment. These are:

(a) overall distance of the guide from the true vertical position. This does not have any noticeable effect on the conveyance behaviour, but it should be limited to ensure that the conveyance is basically running vertically, and to limit the horizontal component of rope pull. It is thus specified as a ratio of distance from surface. See Table 6.1.
(b) the increment of the guide position from true vertical, from one bunton to the next. This is an important factor in determining the dynamic behaviour, so it should be carefully controlled. Discussion with engineers at various mines as well as parametric studies using DISCS has led to the recommendations shown in Table 6.1, where a good shaft should not have wheel loads greater than half the maximum design value, and an acceptable shaft should not have wheel loads exceeding the design loads.

(c) the guide gauge error can reasonably easily be controlled accurately by the use of a template, and it is also of significant importance in dynamic behaviour. Guide gauge reduction could lead to jamming of conveyances, so it should not be permitted. Guide gauge increase can lead to wheels coming away from the guides which leads to increased wheel loads and severe tyre wear, so that it is limited to a small amount.

(d) guide mismatch leads to high shock loads and should thus be minimised, either by some system whereby it can be ensured that guides of very nearly equal height are placed consecutively down the shaft, or by grinding joints where there is mismatch to a maximum slope of 1:20.

These misalignments are shown schematically in Figure 6.1 and suggested maximum permissible values are given in Table 6.1.
FIGURE 6.1: Misalignments of guides
6.1.2 Lateral acceleration

As shown in section 4.5 above the design loads of W/10 which have previously been used are, in general, equivalent to lateral acceleration of about 7 m/sec².

A good shaft in the assessment of most engineers has accelerations below about 3 m/sec², so that these are suggested as the basic limits for a good shaft and an acceptable shaft. The reason for using lateral acceleration as the control variable here is that it does have a definite relationship to shaft condition and some bearing on maximum wheel loads, and it is also easy to measure with equipment which is readily available to all mines.

TABLE 6.1: BASIC OPERATING LIMITS

<table>
<thead>
<tr>
<th>Control variable</th>
<th>Good shaft</th>
<th>Acceptable shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall off-vertical misalignment</td>
<td>D/2000</td>
<td>D/1000</td>
</tr>
<tr>
<td></td>
<td>± 0.5 m</td>
<td>± 0.5 m</td>
</tr>
<tr>
<td>off-vertical incremental misalignment</td>
<td>± 5 mm</td>
<td>± 8 mm</td>
</tr>
<tr>
<td>gauge error</td>
<td>-0 mm</td>
<td>-0 mm</td>
</tr>
<tr>
<td></td>
<td>+2 mm</td>
<td>+4 mm</td>
</tr>
<tr>
<td>mismatch (maximum value without grinding)</td>
<td>0.3 mm</td>
<td>0.6 mm</td>
</tr>
<tr>
<td>lateral acceleration</td>
<td>3 m/sec²</td>
<td>7 m/sec²</td>
</tr>
</tbody>
</table>

D = depth below sheave
6.2 DESIGN RULES

Based on the measurements obtained as described above, on personal discussions with many engineers and on some parametric studies using DISCS, the following rules are proposed for establishing the design loading for conveyances running between two guides in vertical mineshafts. From two sets of measurements in conveyances with a different guide configuration, similar rules probably apply to other guide configurations, but too few measurements were obtained to extend these proposals to such cases.

6.2.1 Assessment of wheel loads and their point of application

The design procedure should be based on an assessment of the wheel loads as given in section 4.4.9 and 5.5 above, i.e.

\[\Pi = F \cdot W_B (\frac{V_A}{A}) + F_\text{Bunt} \left(\frac{\text{PRELOAD}}{K_\text{Bank}} + \frac{\delta}{2} \right) (1 \pm 0.15\xi) \ldots 6.1 \]

The results of this equation, together with measured maximum wheel loads and DISCS predictions are shown in Table 6.2.
<table>
<thead>
<tr>
<th>SHAFT</th>
<th>Shaft condition</th>
<th>Design load (kN)</th>
<th>Measured load (kN)</th>
<th>DISCS load (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pres. Steyn* 4th skip</td>
<td>Non-acceptable</td>
<td>21.4</td>
<td>16.8</td>
<td>11.3</td>
</tr>
<tr>
<td>Western Deep levels 2nd skip +</td>
<td>Good</td>
<td>6.6</td>
<td>6.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Western Holdings 1st skip</td>
<td>Good Acceptable</td>
<td>4.3</td>
<td>6.9</td>
<td>7.8</td>
</tr>
<tr>
<td>Harties 8th cage</td>
<td>Acceptable</td>
<td>13.3</td>
<td>15.6</td>
<td>15.3</td>
</tr>
<tr>
<td>Deelkraal 1st skip</td>
<td>Acceptable</td>
<td>21.1</td>
<td>14.7</td>
<td>17.5</td>
</tr>
</tbody>
</table>

* Values given for top and bottom wheels
+ Koepe winder, \(F = F/2 \)

The values for "good", "acceptable" and "non-acceptable" shafts in this Table 6.2 are obtained by putting the value of \(a \) equal to 0.005, 0.008 and 0.012 respectively.

In designing conveyances, these wheel loads should be applied at any one wheel and resisted at the level of the centre of gravity of the conveyance, i.e. by the inertia of the conveyance.
To design the guides, the first section only of equation 6.1 should be used. This arises by virtue of the dynamic behaviour of the conveyance and can occur anywhere along the guide. At the buntons, the preload may also have a high value, so that the buntons should be designed considering the entire equation 6.1 for the wheel loads. In both cases P should be considered as acting at one wheel only. These design loads are shown schematically in Figure 6.2.

6.2.2 Guide and Bunton Stiffnesses

As discussed above, the guide and bunton stiffness can play an important part in increasing wheel loads where there is a significant preload, where the guide gauge decreases, or if the bunton stiffness is not the same on both sides. One or other of these applies in almost all mines, so certain limitations need to be placed on guide and bunton stiffness. As the maximum wheel load and the preload increases, the bunton deflection should increase under the design load, but the guide deflection should not increase, but rather decrease. Also, as the ratio of the bunton stiffness of the stiffer bunton to the more flexible one increases above one, the guide deflection should decrease to prevent the high change in wheel load on the side of the stiffer bunton. The set of curves in Figure 6.3 represent the recommended deflection limits for bunton deflection (minimum limit, i.e. deflection should not be less than this value) and for guide deflection (maximum limit, i.e. deflection should not be greater than this value).
To design the guides, the first section only of equation 6.1 should be used. This arises by virtue of the dynamic behaviour of the conveyance and can occur anywhere along the guide. At the buntons, the preload may also have a high value, so that the buntons should be designed considering the entire equation 6.1 for the wheel loads. In both cases P should be considered as acting at one wheel only. These design loads are shown schematically in Figure 6.2.

6.2.2 Guide and Bunton Stiffnesses

As discussed above, the guide and bunton stiffness can play an important part in increasing wheel loads where there is a significant preload, where the guide guage decreases, or if the bunton stiffness is not the same on both sides. One or other of these applies in almost all mines, so certain limitations need to be placed on guide and bunton stiffness. As the maximum wheel load and the preload increases, the bunton deflection should increase under the design load, but the guide deflection should not increase, but rather decrease. Also, as the ratio of the bunton stiffness of the stiffer bunton to the more flexible one increases above one, the guide deflection should decrease to prevent the high change in wheel load on the side of the stiffer bunton. The set of curves in Figure 6.3 represent the recommended deflection limits for bunton deflection (minimum limit, i.e. deflection should not be less than this value) and for guide deflection (maximum limit, i.e. deflection should not be greater than this value).
FIGURE 6.2: Design wheel loads

\[P = F \cdot W_e \left(\frac{V_A}{A} \right) + R_{\text{Bunt}} \left(\frac{\text{PRELOAD}}{K_{\text{Bank}}} + \delta \right) (1 \pm 0.15k) \]
Deflection (mm)

(a) Minimum bunton deflection

\[\kappa = \left(\frac{\text{Stiffness of stiffer bunton}}{\text{Stiffness of less stiff bunton}} \right) \]

Deflection (mm)

(b) Maximum guide deflection

FIGURE 7.3 - Illustration 140
6.2.3 Basic permissible stresses

The basic permissible stresses in shaft steelwork should be those given in SABS 0162 divided by 2 to allow for the much greater uncertainties of loading and steelwork condition after some years in the shaft. For conveyances the same loads apply, but these should then be factored in accordance with the rope strength factors specified by the Mines and Work Act, divided by the ratio of ultimate strength to maximum working stress and the stresses as given in SABS 0162 should be used.

6.2.4 Fatigue life

The fatigue life should be calculated in accordance with BS 5400 or SABS 0162 Appendix F, using the fatigue load of 5 kN applied the number of times which will be recommended by Fotopoulos.

6.2.5 Preventing dynamic magnification

This problem relates to the frequency of revolution of the wheels. If this frequency is within 30% of a natural frequency of deformation of the conveyance, one of the frequencies should be altered. The simplest alteration would be to change the diameter of the wheel, preferably to a larger diameter so that the frequency of revolution decreases for a given hoisting speed. To achieve this, it would be very valuable if the wheel suppliers could offer wheels of different diameter. Alternatively, some alteration should be made to the conveyance, to alter its natural frequencies of deformation.
6.3 DESIGN METHOD

6.3.1 Applying the rules

In applying the recommended design rules above, the following design procedure should be used.

(a) establish the shaft layout and conveyance size and mass from normal shaft design criteria.

(b) make some assumption regarding bunton stiffness and hence with a standard, or specified preload, assess the maximum wheel loads, including dynamic magnification.

(c) check that deflections are within the limits specified in 6.2.2. In calculating guide deflections use only that component of the wheel load applicable to dynamic behaviour, and in calculating the bunton deflection the full wheel load should be used.

(d) Check that stresses do not exceed the relevant values, again using only the dynamic component of wheel load for the guides in bending, and the full wheel loads for the guides in shear and the buntons.

6.3.2 Example of design

Devy22 has shown the application of several existing design methods, to the shaft layout in the Free State Geduld No. 5 shaft, shown in Figure 6.4. These design methods, together with the maximum horizontal loads and resulting bunton sections are shown in Table 6.3. This shaft layout is used for a design example which illustrates the design method proposed in this thesis.
TABLE 6.3: DESIGN COMPARISONS

<table>
<thead>
<tr>
<th>Design method</th>
<th>Maximum horizontal force as % of full conveyance weight</th>
<th>Bunton size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old A A C</td>
<td>12.5</td>
<td>300 x 100 x 8</td>
</tr>
<tr>
<td>New A A C</td>
<td>10</td>
<td>300 x 150 x 8</td>
</tr>
<tr>
<td>German</td>
<td>8.33</td>
<td>200 x 100 x 6</td>
</tr>
<tr>
<td>DISCS predictions</td>
<td>11</td>
<td>----</td>
</tr>
<tr>
<td>Krige (method proposed in this thesis)</td>
<td>6</td>
<td>300 x 100 x 8</td>
</tr>
</tbody>
</table>

The shaft layout at Free State Gedule No. 5 shaft is shown in Figure 6.4. Figure 6.5 shows the results of checking for dynamic magnification using DYNMAG. It is clear from this figure that no dynamic magnification should be expected with a bunton spacing of less than 6.0 m and a hoisting velocity of less than 20 m/sec. Dynamic magnification is thus not a problem in this instance.

It is assumed that the wheel preload will be 2 kN and that the bunton stiffness will be 15000 kN.m. The design wheel load for the skip is thus:

\[P = 4.8 \frac{W_e}{A} \left(\frac{A}{V}\right) + \frac{F_{PRELOAD}}{F_{Bank}} \left(\frac{\delta}{\delta} + 1\right) + 10,15k\]

Looking initially at the skip compartment marked with a cross, the buntons on each side of it will be assumed to have equal stiffness. The empty weight of the skip is 89 kN,
FIGURE 6.4: Layout of Free State Geduld No. 5 Shaft

FIGURE 6.5: DYNMAC dynamic predictions for F.S.G No. 5 shaft
FIGURE 6.4: Layout of Free State Geduld No. 5 Shaft

FIGURE 6.5: DYNMAG dynamic predictions for F.S.G No. 5 shaft
the hoisting velocity is 15 m/sec and it will be assumed that specified alignment errors are in the acceptable classification, i.e. $\Delta = 0.008$. Assuming that the wheel spring stiffness is 1000 kN m, we have:

$$W = 4.8 \times 89 \left(15.0 \cdot 0.008 + \frac{15000 \times 1000 \cdot 2}{4.57 + 0}\right).$$

$$W = 4.8 \times 89 \left(15.0 \cdot 0.008 + \frac{15000 \times 1000 \cdot 2}{15000 + 1000 \text{K}_{\text{Bank}}}\right).$$

$$W = 11.2 + 937.5 \left(\frac{2}{\text{K}_{\text{Bank}}}\right) \text{kN}$$

Assuming that the wheels are adjusted where the stiffness of the guides is 8000 kN m,

$$\text{K}_{\text{Bank}} = \frac{8000 \times 1000}{8000 + 1000} = 888.9 \text{ kN.m}$$

Thus

$$W = 11.2 + 937.5 \left(\frac{2}{888.9}\right) = 13.3 \text{ kN}$$

The bunton length is 3.39 m and this force is applied 1.02 m from the end. Assume that it is fixed ended.

Thus the maximum bending moment is

$$\text{B.M} = 13.5 \text{ kN.m}$$

The required modulus is thus

$$z_{\text{req'd}} = \frac{13.5 \times 10^3}{165/2} = 163.6 \times 10^6 \text{ m}^3$$
This requires the use of a

300 x 100 x 8 \(\square \) bunton.

The stiffness of this bunton can be calculated as:

16864 kN/m.

The stiffness of the other bunton a 610 x 230 x 140 UB, can be calculated as:

23566 kN/m

These are not similar, so that \(\kappa = \frac{23566}{16864} - 1 = 0.4 \)

This bunton stiffness gives a design wheel load of:

\[
W = 11.2 + \frac{16864 \times 1000 \times 2}{16864 + 1000 \times 889} \times (1-0.15 \times 0.4) \text{ kN}
\]

\[
= 11.2 + 2.0 \text{ kN}
\]

\[
= 13.2 \text{ kN}
\]

Check deflections:

\(\kappa = 0.4 \)

Bunton deflection = \(\frac{13.2}{16864} = 0.0008 \text{ m} = 1 \text{ mm} \)

Guide deflection = \(\frac{13.2}{1057} = 0.0125 \text{ m} = 12.5 \text{ mm} \)

The 300 x 100 x 8 \(\square \) is thus acceptable.
CHAPTER 7

CONCLUSION AND FURTHER RESEARCH NEEDED

Previous design practice for shaft steelwork has been based on assumed or "historically extrapolated" conveyance wheel loads. There has not previously been any comprehensive measurement of these wheel loads, or use of theoretically derived methods in predicting them. The research described in this report addresses this problem.

7.1 CONCLUSIONS

A computer model, DISCS, has been set up, based on a simplified mathematical model of a conveyance running between two guides of equal stiffness. In addition, a method of measuring the lateral accelerations and the wheel loads on a conveyance under normal operating conditions has been developed.

An assessment of the validity of the computer model, by comparison of its predictions with actual measurements, has shown that once some adjustments have been made to certain input variables, the wheel loads are predicted with reasonable accuracy. Such adjustments could in all cases be explained - as relating to one or other of the simplifying assumptions made in setting up the model. This gives an acceptable degree of confidence that the model can be altered to predict design values.

Several important conclusions can be drawn from the measurements which were obtained.
(a) The wheel load, \(W/10 \), which is the normal current design value, is usually a good maximum design value, although in many cases it is too high. The major exceptions to this, where the actual wheel loads exceed this value are cases where there is dynamic magnification, where the hoisting speed exceeds 15 m/sec, or where the guide misalignment is significantly worse than the acceptable limit proposed in Chapter 6. An empirical method is proposed whereby these factors are taken into account, to give a more accurate assessment of the design wheel load value.

(b) There is no direct relationship between wheel loads and the associated accelerations, so that measurements of acceleration only will not necessarily indicate the wheel load magnitude. It was however found that in general, high levels of acceleration are linked to high levels of wheel loads. Thus, although the commonly used "decelerometer traces" do not yield the exact location or magnitude of high wheel loads, they do give a good general indication of the shaft condition.

(c) The condition of the wheels and their revolution frequency are very important to the determination of the dynamic behaviour of a conveyance.

(d) Dynamic magnification was found to relate to the natural frequencies of the wheelsets or of deformation of the conveyance coinciding with the frequency of revolution of the wheels, rather than to the coincidence of the natural frequencies of overall displacement of the conveyance and the bunton passing frequency. This latter possibility cannot be ruled out however. A method is proposed for assessing and avoiding, or allowing for, possible dynamic magnification.
7.2 FURTHER RESEARCH NEEDED

As has been mentioned in this thesis, it was necessary to limit the scope of the work undertaken, thus excluding aspects which may be of significant importance. Further research in these areas, listed below, is required.

7.2.1 Geometric factors

(a) Three dimensional study. The measurements which were taken in the direction perpendicular to the plane between the guides show that accelerations in this direction are often higher than in the plane between the guides. No analysis of these measurements was undertaken, and it is not certain whether it would follow that the wheel loads on the sides of the guides are thus also higher than the face wheel load. Buntons are usually very stiff in this direction, being loaded axially rather than flexurally, which may be a contributory factor to this higher acceleration, and the mass moment of inertia about the vertical axis is much lower than about other axes, so that high accelerations relating to rotation may not lead to high wheel loads.

(b) Guide Layout. Linked to the three dimensional study, is an assessment of the contribution to dynamic behaviour of different guide layouts. The one set of measurements taken on a cage with two guides on one side only, as shown in figure 7.1(a), when compared with the DISCS prediction showed similar results to those expected with one guide each side, but this is by no means an indication of the behaviour with other layouts, some of which are shown in Figure 7.1.
FIGURE 7.1: Other guide layouts
(c) **Other Factors.** There may well also be merit in investigating other factors such as aerodynamic behaviour of skip and cage shapes, and the effects of two conveyances travelling the same direction, next to each other in adjacent compartments.

7.2.2 Specific problem areas

During the course of this study, several specific problem areas were identified, which need a more detailed investigation.

The first of these was the behaviour of the wheels. A more detailed study, both theoretically and experimentally of variables relating directly to the wheel, should be undertaken. These variables should include the lever arm between wheel and pivot, the age and condition of the rubber tyre, the inertia of the wheel about its pivot, and the effect of damping the wheel.

The second of these was the higher order natural frequencies. Local factors such as connection stiffness and slip between bridle and skip or cage played a significant part in determining the natural frequencies relating to deformation of the conveyance. More measurements should be undertaken to enable an empirical or theoretical assessment of these frequencies to give more accurate results.

A third problem was that slipper contact forces could not be measured. A more complete picture of the dynamic behaviour would be obtained if this could be done, even if it is only to measure forces which are seldom applied.
7.2.3 Economic and Maintenance Aspects

A study such as outlined in this thesis could well be followed up with a detailed study of the relation between initial capital expenditure in equipping a new shaft, and subsequent expected maintenance and down-time costs. Such a study would probably require measurements repeated in one or more selected shafts over an extended time period, or at least an examination of decelerometer trace records where they are available over the past few years.

7.4 DESIGN RECOMMENDATIONS

While this project has identified many important factors which determine the dynamic response, the absolute levels of the design recommendations specified in Chapter 6 should be assessed in a wide range of good and acceptable shafts as well as shafts which are not acceptable, in order to improve the confidence with which these recommendations can be applied.
REFERENCES

15. FOTOPoulos M. An Experimental Study of the Dynamic Loading on Mineshaft Steelwork with Particular Reference to Fatigue Loading. MSc Thesis, to be submitted to the University of the Witwatersrand, Johannesburg.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>bunton spacing</td>
</tr>
<tr>
<td>A_1 to A_2</td>
<td>constants used in the equations of motion in DISCS</td>
</tr>
<tr>
<td>B_1 to B_4</td>
<td>constants used to calculate the natural frequencies in DISCS</td>
</tr>
<tr>
<td>C_B</td>
<td>damping (percentage of critical) of conveyance body and bridle</td>
</tr>
<tr>
<td>C_s</td>
<td>damping (percentage of critical)</td>
</tr>
<tr>
<td>C_{s_1} to C_{s_6}</td>
<td>effective damping of steelwork and wheel</td>
</tr>
<tr>
<td>d_1 to d_6</td>
<td>conveyance dimensions</td>
</tr>
<tr>
<td>$E(x)$</td>
<td>expected value of x</td>
</tr>
<tr>
<td>F</td>
<td>"conveyance factor"</td>
</tr>
<tr>
<td>F_N</td>
<td>upper frequency limit</td>
</tr>
<tr>
<td>F_1 to F_6</td>
<td>forces on three rigid bodies in DISCS</td>
</tr>
<tr>
<td>f_n or f</td>
<td>natural frequencies</td>
</tr>
<tr>
<td>I_R and I_{R_1} to I_{R_3}</td>
<td>mass moments of inertia</td>
</tr>
<tr>
<td>K_{Bank}</td>
<td>effective wheel spring stiffness at bank level where preload is adjusted</td>
</tr>
<tr>
<td>K_{Bunt}</td>
<td>average effective wheel spring stiffness at a bunton</td>
</tr>
<tr>
<td>K_{C_5} to K_{C_4}</td>
<td>connection stiffness between conveyance body and transoms</td>
</tr>
<tr>
<td>K_{e_1} to K_{e_6}</td>
<td>effective wheel spring stiffness</td>
</tr>
<tr>
<td>K_G</td>
<td>guide stiffness</td>
</tr>
<tr>
<td>K_W</td>
<td>wheel spring stiffness</td>
</tr>
<tr>
<td>K_W', K_P', K_M'</td>
<td>various constants used in deriving wheel load equation</td>
</tr>
<tr>
<td>K_D</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>overall conveyance length</td>
</tr>
<tr>
<td>M_1 to M_3</td>
<td>masses</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>OWE</td>
<td>other wheel effect, i.e. the displacement at one wheel due to the other wheel on the same guide</td>
</tr>
<tr>
<td>P</td>
<td>the design wheel load</td>
</tr>
<tr>
<td>r</td>
<td>ratio of frequencies</td>
</tr>
<tr>
<td>R</td>
<td>ratio of sum of power spectra for wheel loads and accelerations</td>
</tr>
<tr>
<td>$S_{yy}(w)$</td>
<td>power spectrum of $y(t)$</td>
</tr>
<tr>
<td>V</td>
<td>hoisting velocity</td>
</tr>
<tr>
<td>W</td>
<td>wheel load</td>
</tr>
<tr>
<td>W_1 to W_6</td>
<td>specific wheel loads calculated by DISCS</td>
</tr>
<tr>
<td>W_E</td>
<td>empty weight of conveyance</td>
</tr>
<tr>
<td>w_{xx}</td>
<td>spring travel, or clearance between guide and guide shoe</td>
</tr>
<tr>
<td>w_{a1} to w_{24}</td>
<td>guide position off true vertical</td>
</tr>
<tr>
<td>$y(t)$</td>
<td>function of time (either acceleration or wheel load)</td>
</tr>
<tr>
<td>Δ</td>
<td>maximum misalignment increment</td>
</tr>
<tr>
<td>σ</td>
<td>minimum gauge error</td>
</tr>
<tr>
<td>γ</td>
<td>damping ratio</td>
</tr>
<tr>
<td>κ</td>
<td>(ratio of stiffness of stiffer bunton to more flexible bunton)$^{-1}$</td>
</tr>
<tr>
<td>v_1 to v_3</td>
<td>lateral displacements of rigid bodies in DISCS</td>
</tr>
<tr>
<td>ω</td>
<td>cyclical frequencies</td>
</tr>
<tr>
<td>ϕ</td>
<td>rotation of rigid bodies in DISCS</td>
</tr>
</tbody>
</table>
APPENDIX A : DERIVATION OF THE EQUATIONS OF MOTION

Rotation Equation:

For simplicity of writing equations use:

\[\dot{\psi} = \dot{\psi}(t) \]
\[v_1 = v_1(t) \]
\[v_2 = v_2(t) \]
\[v_3 = v_3(t) \]
\[I_R = I_{R_1} + I_{R_2} + I_{R_3} \]

\[\ddot{\psi} = \frac{d^2\psi(t)}{dt^2} \]
\[\dot{v}_1 = \text{as above} \]
\[\dot{v}_2 = \text{as above} \]
\[\dot{v}_3 = \text{as above} \]

\[\dddot{\psi} = \frac{d^3\psi(t)}{dt^3} \]
\[w_1 = w_1(x, t) \]
\[w_2 = w_1(x, t) \]
\[w_3 = w_1(x + \ell, t) \]
\[w_4 = w_3(x + \ell, t) \]

Assumptions

Angular rotation of transoms is the same as body of the skip - i.e. bridle legs are taken as inextensible.
\[w_0 = w_m (x) \]
\[w_m = w_m (x) \]

\(\phi \) is small, so that:

\[\cos \phi = 1 \quad \sin \phi = \phi \]
\[\sin \phi \frac{d\phi}{2} = \sin \phi \frac{d\phi}{2} = \sin \frac{b}{2} = 0 \]

Equation of Motion is:

\[I_R \ddot{\phi} + I_{R_2} \ddot{\phi} + I_{R_3} \ddot{\phi} = (-F_1 + F_2 - F_3) \frac{d\phi}{2} - F_7 \frac{b}{2} - F_3 d_1 - F_4 d_4 + F_7 b + F_3 b \]
\[+ (F_5 - F_6 - F_4) \frac{d\phi}{2} - F_6 b \]

\[\therefore I_R \phi + (F_1 - F_2 + F_3) \frac{d\phi}{2} + F_3 d_1 + F_4 d_4 + (-F_5 + F_6 + F_4) \frac{d\phi}{2} = 0 \text{ (1)} \]

\[F_1 = (v_3 - w_1 - w_0) K_{c_1} + (v_2 - w_1 - w_0) C_{S_1} \]
\[F_2 = (-v_3 + v_2) K_{c_2} - (v_2 + w_2 + w_0) C_{S_2} \]
\[F_3 = (v_3 - w_2 - w_0) K_{c_3} + (v_3 + w_3 + w_0) C_{S_3} \]
\[F_4 = (-v_1 + w_1 + w_0) K_{c_4} + (v_1 + d_3 + w_3) C_{b_1} \]
\[F_5 = (-v_1 + d_3 + w_3) K_{c_5} + (v_1 + d_3 + w_3) C_{b_2} \]
\[F_6 = (-v_1 - w_4 - w_0) K_{c_6} - (v_3 + w_3 + w_0) C_{b_3} \]

Note: \(F_1, F_2, F_3 \) & \(F_6 \) are zero if deflection causes wheels to leave the rails.
\(w_a = w_a(x) \)
\(w_m = w_m(x) \)

\(\phi \) is small, so that:
\[
\cos \phi = 1 \quad \sin \phi = \frac{\phi}{2} \\
\sin \phi \frac{d\phi}{2} = \sin \phi \frac{d\phi}{2} = \sin \phi \frac{b}{2} = 0
\]

Equation of Motion is:
\[
I_R \ddot{\phi} + \int \frac{(F_1 + F_2 - F_3)}{2} d\phi^2 - F_2 b - F_3 d_2 - F_4 d_4 + F_7 b = F_8 b
\]
\[
+ (F_5 - F_6 - F_4) \frac{d^4}{4} - F_8 b
\]
\[
\therefore I_R \ddot{\phi} + (F_1' - F_2 + F_3') \frac{d^4}{4} + F_3 d_2 + F_4 d_4 + (-F_5 + F_6 + F_4) \frac{d^4}{4} = 0 \quad \ldots \quad (1)
\]

\(F_1 = (v_2 - w_1 - w_3) K_{e_1} + (\dot{v}_2 - \dot{w}_1 - \dot{w}_3) C_{s_1} \)
\(F_2 = (v_2 - w_2 - w_3) K_{e_2} + (\dot{v}_2 + \dot{w}_2 + \dot{w}_3) C_{s_2} \)
\(F_3 = (v_3 - w_3 - w_0) K_{e_3} + (\dot{v}_3 - \dot{w}_3 - \dot{w}_0) C_{s_3} \)
\(F_5 = (v_3 + \dot{w}_3 + \dot{w}_0) K_{e_5} + (\dot{v}_3 + \dot{w}_3 + \dot{w}_0) C_{s_5} \)
\(F_6 = (v_3 - \dot{w}_3 - \dot{w}_0) K_{e_6} + (\dot{v}_3 + \dot{w}_3 + \dot{w}_0) C_{s_6} \)

Note: \(F_1, F_2, F_5 \) & \(F_6 \) are zero if deflection causes wheels to leave the rails.
Horizontal Motion of Mass M_1

\[M_1 v_1 = -F_1 + F_4 \]
\[\therefore M_1 \ddot{v}_1 + F_4 = 0 \] \hspace{1cm} (2)

Horizontal Motion of Mass M_2

\[M_2 v_2 = -F_1 + F_2 + F_3 \]
\[\therefore M_2 \ddot{v}_2 + F_1 - F_2 - F_3 = 0 \] \hspace{1cm} (3)

Horizontal Motion of Mass M_3

\[M_3 v_3 = -F_5 + F_6 - F_4 \]
\[\therefore M_3 \ddot{v}_3 + F_5 - F_6 + F_4 = 0 \] \hspace{1cm} (4)
APPENDIX B : DERIVATION OF GUIDE STIFFNESS EQUATION

Derivation of Varying Guide Stiffness

Considering the 3 - span beam shown, the stiffness can be evaluated for load moving across the centre span. This stiffness repeated along the guide gives the varying guide stiffness.

Using standard structural deflection theory it can be shown that:

(N.B. - Applies for L/3 ≤ x ≤ 2L/3 only)

1 For $R_1 = R_2 = 0$

 $\Delta_1 = \frac{WL^3}{162EI} (-1+19a-27a^2+9a^3)$
 $\Delta_2 = \frac{WL^3}{162EI} (8a - 9a^3)$

 Δ_1, Δ_2 are the deflections at 1 and 2 resp.

2 For $W = 0$

 $\Delta_1 = \frac{(8R_1+7R_2)L^3}{486 EI}$
 $\Delta_2 = \frac{(7R_1+8R_2)L^3}{486 EI}$

The deflections under the action of W, resisted by spring supports are thus:

$\Delta_1 = \frac{L^3}{162EI} \left[W(-1+19a-27a^2+9a^3) - \frac{1}{2} (8R_1 + 7R_2) \right] = \frac{R_1}{K_B}$

$\Delta_2 = \frac{L^3}{162EI} \left[W(8a - 9a^3) - \frac{1}{2} (7R_1+8R_2) \right] = \frac{R_2}{K_B}$

where K_B is the bunton stiffness.
Solving these two equations for R_i and R_j gives:

$R_1 = \frac{W}{B_1} \left[B_1 (-1 + 19a - 27a^2 + 9a^3) + B_2 (-1 + 11a - 27a^2 + 18a^3) \right]$

$R_2 = \frac{W}{B_2} \left[B_1 (8a - 9a^3) - B_2 (-1 + 11a - 27a^2 + 18a^3) \right]$

where $B_1 = \frac{1}{B_3/K_B + 5}$, $B_2 = B_3 \left(\frac{7/3}{B_3/K_B + 1/3} \right)$, $B_3 = \frac{162EI}{L^3}$

It can then be shown that the deflection under W is:

$\Delta_x = \frac{W}{B_3} \left[54a^2 (1-a)^2 - B_1 (-1 + 19a - 27a^2 + 9a^3) - B_1 (8a - 9a^3) \right. $

$\left. - B_2 (-1 + 11a - 27a^2 + 18a^3) \right]$}

The guide stiffness, K_G, is thus given by:

$\frac{1}{K_G} = \frac{1}{B_3} \left[(-B_1 - B_2) + (38B_1 + 22B_2) a + (54 - 479B_1 - 175B_2) a^2

\right. $\n
$\left. - (108 - 1044B_1 - 630B_2) a^3 + (54 - 927B_1 - 1125B_2) a^4

\right. $\n
$\left. + (486B_1 + 972B_2) a^5 - (162B_1 + 324B_2) a^6 \right]$
APPENDIX C : CALCULATION OF GUIDE DISPLACEMENT DUE TO OTHER WHEEL LOAD

The effect at each wheel due to the other wheel on the same guide is calculated as below. Due to symmetry and laws of reciprocity, the unit load effect at each of the four wheels is the same.

Consider the beam shown below:

The guide is simplified as a continuous beam over elastic supports having reactions R_A to R_H and support moments of M_B to M_G. Initially, the moments and reactions due to a unit load, as shown, are calculated.

Putting: $K = \frac{6EI}{a^2}$

$Y_1 = \frac{y(a-y)^2}{a^2}$

$Y_2 = \frac{y^2(a-y)}{a^2}$

Fixed end moments

$M_B = -M_{BA} = M_{BC}$

$M_C = -M_{CB} = M_{CD}$

$M_D = -M_{DC} = M_{DE}$

$M_E = -M_{ED} = M_{EF}$

$M_F = -M_{FE} = M_{FG}$

$M_G = -M_{GF} = M_{GH}$

we can write the slope-deflection equations for the beam as:

$M_B = -\frac{3EI}{a} \theta_B + \frac{K}{2} (\delta_B - \delta_A)$

$M_B = Y_1 - \frac{4EI}{a} \theta_B - \frac{2EI}{a} \theta_C + K(\delta_C - \delta_B)$
\[-M_C = Y_1 - \frac{4EI}{a} \theta_C - \frac{2EI}{a} \theta_B + K(\delta_C - \delta_B)\]
\[M_C = -\frac{4EI}{a} \theta_C - \frac{2EI}{a} \theta_D + K(\delta_D - \delta_C)\]
\[-M_D = -\frac{4EI}{a} \theta_D - \frac{2EI}{a} \theta_C + K(\delta_D - \delta_C)\]
\[M_D = -\frac{4EI}{a} \theta_D - \frac{2EI}{a} \theta_E + K(\delta_E - \delta_D)\]
\[-M_E = -\frac{4EI}{a} \theta_E - \frac{2EI}{a} \theta_D + K(\delta_E - \delta_D)\]
\[M_E = -\frac{4EI}{a} \theta_E - \frac{2EI}{a} \theta_F + K(\delta_F - \delta_E)\]
\[-M_F = -\frac{4EI}{a} \theta_F - \frac{2EI}{a} \theta_E + K(\delta_F - \delta_E)\]
\[M_F = -\frac{4EI}{a} \theta_F - \frac{2EI}{a} \theta_G + K(\delta_F - \delta_F)\]
\[-M_G = -\frac{4EI}{a} \theta_C - \frac{2EI}{a} \theta_F + K(\delta_G - \delta_F)\]
\[M_G = -\frac{3EI}{a} \theta_G + \frac{K}{2} (\delta_H - \delta_G)\]

where \(\theta \) and \(\delta \) are the rotation (clockwise +ve) and deflection (down +ve) respectively at the support points.

Eliminating all \(\theta \)'s from these equations we have:

\[4M_B + M_C = 2Y_1 - Y_2 + K \delta_A - 2K \delta_B + K \delta_C\]
\[M_B + 4M_C + M_D = Y_1 - 2Y_2 + K \delta_B - 2K \delta_C + K \delta_D\]
\[M_C + 4M_D + M_E = K \delta_C - 2K \delta_D + K \delta_E\]
\[M_E + 4M_F + M_G = K \delta_E - 2K \delta_F + K \delta_G\]
\[-M_e - 3M_F + 3M_G = -K \delta_E + 3K \delta_F - 3K \delta_G + K \delta_H\]
\[-M_C - 2M_D + 6M_E + 7M_G = -K \delta_C + 4K \delta_D - 6K \delta_E + 6K \delta_F - 5K \delta_G + 2K \delta_H\]
Equilibrium equations are:

Vertical: \(aR_A + aR_B + aR_C + aR_D + aR_E + aR_F + aR_G + aR_H = a \)

Moment: \(aR_H = -M_G \)
\[2aR_H + aR_G = -M_F \]
\[3aR_H + 2aR_G + aR_F = -M_E \]
\[4aR_H + 3aR_G + 2aR_F + aR_E = -M_D \]
\[5aR_H + 4aR_G + 3aR_F + 2aR_E + aR_D = -M_C \]
\[aR_A = -M_B \]
\[2aR_A + aR_E - (a-y) = -M_C \]

We also have:
\[a6_iK_B = aR_i \] where \(K_B \) is bunton stiffness.
\[K6_i = \frac{KaR_i}{aK_B} = K_1aR_i \] where \(K_1 = \frac{K}{aK_B} \).

substitute for \(M_i \) and \(K6_i \) above, and include vert. equil and equate the two expressions for \(M_G \), dividing through by \(a \), to give:-

\[-6R_A - 3R_B + 2 - \frac{Y}{a} = \frac{2Y_1 - 4Y_2}{a} + K_1R_A - 2K_1R_B + K_1R_C \]
\[-2R_A - 4R_B - 2R_C - 6R_D - 14R_E - 19R_F + 1 - \frac{Y}{a} = K_1R_C - 2K_1R_D + K_1R_E \]
\[-9R_A - 4R_B - 4R_C - 3R_D - 4R_F + 4 - \frac{Y}{a} = \frac{Y_1 - 2Y_2}{a} + K_1R_B - 2K_1R_C + K_1R_D \]

\[-R_F - 6R_G - 12R_H = K_1R_E - 2K_1R_F + K_1R_G \]
\[R_F + 5R_G + 6R_H = -K_1R_E + 3K_1R_F - 3K_1R_G + K_1R_H \]
\[2R_A + 2R_B - 2R_C - 6R_D - 17R_E - 1 - \frac{Y}{a} = -K_1R_C + 4K_1R_D - 6K_1R_E + 6K_1R_F - 5K_1R_G + 2K_1R_H \]
\[R_A + R_B + R_C + R_D + R_E + R_F + R_G + R_H = 1 \]
\[-2R_A - R_B - R_C - R_D - R_E + 3R_F + 4R_G + 5R_H = -1 + \frac{Y}{a} \]
Eliminating R_A and then R_B and rearranging equations gives:

$$-R_F - 6R_G - 12R_H = K_1R_E - 2K_1R_F + K_1R_G$$

$$-R_D - 6R_E - 12R_F - 18R_G - 24R_H = K_1R_C - 2K_1R_D + K_1R_E$$

$$-R_C - 6R_D - 12R_E - 18R_F - 24R_G - 30R_H = X_1 - 5X_3 + K_1X_5 - 4K_1R_C - 2K_1R_D$$

$$-4K_1R_E - 5K_1R_F - 6K_1R_G - 7K_1R_H$$

$$R_D + 4R_E + R_F - 2R_G - 12R_H = - K_1R_C + 4K_1R_D - 6K_1R_E + 6K_1R_F - 5K_1R_G + 2K_1R_H$$

$$-4R_C - 9R_D - 14R_E - 19R_F - 24R_G - 29R_H = X_2 - 5X_3 - 3K_1X_5 + 6K_1R_C + 8K_1R_D$$

$$+ 11K_1R_E + 14K_1R_F + 17K_1R_G + 20K_1R_H$$

$$R_F = - 8R_G - 24R_H - K_1R_C + 3K_1R_D - 2K_1R_H$$

where $X_1 = \frac{Y_1 - 2Y_3}{a} + 5 + \frac{4}{a}$

$$X_2 = \frac{2Y_1 - Y_3}{a} + K_1 + 5 + \frac{3}{a}$$

$$X_3 = 1 + \frac{3}{a}$$
Put \(X_4 = X_1 - 5X_3 + K_1X_3 \), \(X_5 = X_2 - 5X_4 - 3K_1X_3 \)

Substitute for \(R_F \) to give:
\[
\begin{align*}
R_G + 6R_H - 10K_1R_G - 23K_1R_H - K_1^2R_E - 3K_1^2R_E - 2K_1^2R_H &= 0 \\
-R_C - 6D + 12R_E + 402R_H + 4K_1R_C + 2K_1R_E + 22K_1R_E - 88K_1R_G - 77K_1R_H \\
-5K_1^2R_E + 15K_1^2R_G - 10K_1^2R_H &= X_4 \\
R_D + 4K_C - 10G - 36R_H + K_1R_C - 4K_1RD + 5K_1R_E + 56K_1R_G + 140K_1R_H + 6K_1^2R_E \\
-18K_1^2R_G + 12K_1^2R_H &= 0 \\
-4K_C - 9D - 14G + 128R_G + 427R_H - 6K_1R_G - 8K_1R_D + 8K_1R_E + 38K_1R_G + 354K_1R_H \\
+ 14K_1^2R_E - 42K_1^2R_G + 28K_1^2R_H &= X_5 \\
R_C &= -\frac{1}{K_1} \frac{R_D}{K_1} R_E - \frac{78}{K_1} \frac{R_G}{K_1} + \frac{264}{K_1} \frac{R_H}{R_E + 2R_D + 11R_E - 36R_G + 24R_H}
\end{align*}
\]

Substitute for \(R_C \) to give:
\[
\begin{align*}
R_G + 6R_H - 10K_1R_G - 23K_1R_H - K_1^2R_E - 3K_1^2R_E - 2K_1^2R_H &= 0 \\
\frac{1}{K_1} R_D + \frac{6}{K_1} R_E - \frac{78}{K_1} R_G - \frac{264}{K_1} R_H - 12R_D - 47R_E + 468R_G + 1434R_H + 10K_1R_D \\
+ 66K_1R_E - 232K_1R_G + 19K_1R_H - 5K_1^2R_E + 15K_1^2R_G - 10K_1^2R_H &= X_4 \\
\frac{4}{K_1} R_D + \frac{24}{K_1} R_E - \frac{312}{K_1} R_G - \frac{1056}{K_1} R_H - 11R_D - 22R_E - 196R_G - 1253R_H - 20K_1R_D \\
-58K_1R_E + 254K_1R_G + 210K_1R_H + 14K_1^2R_E - 42K_1^2R_G + 28K_1^2R_H &= X_5 \\
R_D &= -\frac{1}{K_1} R_E + \frac{34}{K_1} R_G + \frac{114}{K_1} R_H + 8R_E + 10R_G + 82R_H + 3K_1R_E - 9K_1R_G + 6K_1R_H
\end{align*}
\]
Substitute for R_D and regroup the equations to give:

$$(-K_1^2)E + (1-10K_1+3K_1^2)R_G + (6-23K_1-2K_1^2)R_H = 0$$

$$(-\frac{1}{K_1^2} + \frac{26}{K_1} - 150 + 110K_1 + 25K_1^2)E + \left(\frac{34}{K_1} - \frac{476}{K_1^2} + 679 - 24K_1 - 75K_1^2\right)R_G$$

$$+ \left(\frac{114}{K_1^2} - \frac{1550}{K_1} + 1596 + 767K_1 + 50K_1^2\right)R_H = X_4$$

$$(-\frac{4}{K_1^2} + \frac{67}{K_1} - 78 - 251K_1 - 46K_1^2)E + \left(\frac{136}{K_1^2} - \frac{646}{K_1} - 1022 + 153K_1 + 138K_1^2\right)R_G$$

$$+ \left(\frac{456}{K_1^2} - \frac{1982}{K_1} - 4411 - 1496K_1 - 92K_1^2\right)R_H = X_5$$

Put:

$$Z_1 = \frac{1-10K_1+3K_1^2}{K_1^2}$$

$$Z_2 = \frac{6-23K_1-2K_1^2}{K_1^2}$$

$$Z_3 = -\frac{1}{K_1^2} + \frac{26}{K_1} - 150 + 110K_1 + 25K_1^2$$

$$Z_4 = \frac{34}{K_1} - \frac{476}{K_1^2} + 679 - 24K_1 - 75K_1^2$$

$$Z_5 = \frac{114}{K_1^2} - \frac{1550}{K_1} + 1596 + 767K_1 + 50K_1^2$$

$$Z_6 = -\frac{4}{K_1^2} + \frac{67}{K_1} - 78 - 251K_1 - 46K_1^2$$

$$Z_7 = \frac{136}{K_1^2} - \frac{646}{K_1} - 1022 + 153K_1 + 138K_1^2$$

$$Z_8 = \frac{456}{K_1^2} - \frac{1982}{K_1} - 4411 - 1496K_1 - 92K_1^2$$

The equations can then be written as:

$$R_E = Z_1R_G + Z_2R_H$$

$$Z_3R_E + Z_4R_G + Z_5R_H = X_4$$

$$Z_6R_E + Z_7R_G + Z_8R_H = X_5$$
Substituting for R_E:

\[(Z_1Z_3+Z_4)R_G + (Z_1Z_5+Z_5)R_H = X_4\]
\[(Z_1Z_6+Z_7)R_G + (Z_2Z_5+Z_5)R_H = X_5\]
\[(Z_1Z_6+Z_7)(Z_1Z_3+Z_4)R_G + (Z_1Z_6+Z_7)(Z_1Z_3+Z_5)R_H = (Z_1Z_6+Z_7)X_4\]
\[(Z_1Z_6+Z_6)(Z_1Z_3+Z_4)R_G + (Z_1Z_6+Z_6)(Z_2Z_5+Z_5)R_H = (Z_1Z_6+Z_6)X_5\]

Thus:

\[R_H = \frac{(Z_1Z_6+Z_7)X_4 - (Z_1Z_3+Z_4)X_5}{(Z_1Z_6+Z_7)(Z_2Z_5+Z_5) - (Z_1Z_3+Z_4)(Z_2Z_6+Z_6)}\]
\[R_G = \frac{X_4 - (Z_1Z_3+Z_4)R_H}{(Z_1Z_3+Z_4)}\]

Having established the reactions, the effect in the other spans is determined as follows:

\[\frac{dv^2}{dx^2} = \frac{M}{EI} = \frac{BM - \frac{BM}{a}EM}{a} \cdot \frac{x}{EI} = \frac{1}{EI} \left(BM - \frac{BMx}{a} + EMx \right) \]

\[\frac{dv}{dx} = \frac{1}{EI} \int \left(BM - \frac{BMx}{a} + EMx \right) dx\]
\[= \frac{1}{EI} \left(BMx - \frac{BMx^2}{2a} + EMx^2 \right) + C\]
\[v = \frac{1}{EI} \int \left(BMx - \frac{BMx^2}{2a} + \frac{EMx^2}{2a} + C \right) dx \]

\[v = \frac{1}{EI} \left(\frac{BMx^2}{2} - \frac{BMx^3}{6a} + \frac{EMx^3}{6a} + Cx + D \right) \]

At \(x = 0 \), \(v = B\delta \) Thus \(D = EI B\delta \)

At \(x = a \) \(v = E\delta \)

\[EI.B\delta = \frac{BMa^2}{2} - \frac{BMa^3}{6} + \frac{EMA^3}{6} + Ca + EI.B\delta \]

\[Ca = EI.B\delta - EI.B\delta - \frac{BMa^2}{3} + \frac{EMA^2}{6} \]

\[C = \frac{EI}{a} (B\delta - B\delta) - \frac{BMa}{3} + \frac{EMA}{6} \]

Thus:

\[v = \frac{1}{EI} \left(\frac{BMx^2}{2} - \frac{BMx^3}{6a} + \frac{EMx^3}{6a} - \frac{BMAX}{3} + \frac{EMax}{6} \right) \cdot \frac{B\delta}{a} \cdot x + \frac{B\delta}{a} x + B\delta \]

This is then multiplied by the value of the relevant wheel load at the previous time step and added to the guide position.
APPENDIX D: DERIVATION OF EQUATIONS TO CALCULATE NATURAL FREQUENCIES

(a) EQUATIONS OF MOTION

The full equations of motion can be written as:

\[I_R \dddot{\theta} + (K_{e1} \dddot{\theta} - K_{e1} \omega \dot{\theta} + C_{S1} \dddot{\theta}) \dot{\theta} + (K_{e2} \dddot{\theta} + K_{e2} \omega \dot{\theta}) \dot{\theta} + (K_{e3} \dddot{\theta} + K_{e3} \omega \dot{\theta}) \dot{\theta} + (K_{e4} \dddot{\theta} + K_{e4} \omega \dot{\theta}) \dot{\theta} + (K_{e5} \dddot{\theta} + K_{e5} \omega \dot{\theta}) \dot{\theta} + (K_{e6} \dddot{\theta} + K_{e6} \omega \dot{\theta}) \dot{\theta} = 0 \]

\[I_R \dddot{\theta} + (C_{B1} \dddot{\theta} + C_{B1} \omega \dot{\theta} + C_{S1} \dddot{\theta}) \dot{\theta} + (C_{B2} \dddot{\theta} + C_{B2} \omega \dot{\theta} + C_{S2} \dddot{\theta}) \dot{\theta} + (C_{B3} \dddot{\theta} + C_{B3} \omega \dot{\theta} + C_{S3} \dddot{\theta}) \dot{\theta} + (C_{B4} \dddot{\theta} + C_{B4} \omega \dot{\theta} + C_{S4} \dddot{\theta}) \dot{\theta} = 0 \]

\[(K_{C1} \dddot{\theta} - K_{C1} \omega \dot{\theta} + C_{C1} \dddot{\theta}) \dot{\theta} + (K_{C2} \dddot{\theta} - K_{C2} \omega \dot{\theta} + C_{C2} \dddot{\theta}) \dot{\theta} + (K_{C3} \dddot{\theta} - K_{C3} \omega \dot{\theta} + C_{C3} \dddot{\theta}) \dot{\theta} + (K_{C4} \dddot{\theta} - K_{C4} \omega \dot{\theta} + C_{C4} \dddot{\theta}) \dot{\theta} + (K_{C5} \dddot{\theta} - K_{C5} \omega \dot{\theta} + C_{C5} \dddot{\theta}) \dot{\theta} + (K_{C6} \dddot{\theta} - K_{C6} \omega \dot{\theta} + C_{C6} \dddot{\theta}) \dot{\theta} = 0 \]
Putting:

$$A_1 = C_{B_3} \frac{d_1}{2} + C_{B_1} d_1 - C_{B_4} d_4 - C_{B_4} \frac{d_6}{2}$$

$$A_2 = C_{S_1} \frac{d_1}{2} - C_{B_3} d_1 + C_{S_2} \frac{d_1}{2}$$

$$A_3 = C_{B_4} d_4 + C_{B_4} \frac{d_6}{2} - C_{S_4} d_4 - C_{S_4} \frac{d_6}{2}$$

$$A_4 = C_{B_3} d_3 \frac{d_1}{2} + C_{B_3} d_3^2 + C_{B_4} d_4^2 + C_{B_4} d_4 \frac{d_6}{2}$$

$$A_5 = K_{C_3} \frac{d_3}{2} + K_{C_3} d_3 - K_{C_4} d_4 - K_{C_4} \frac{d_6}{2}$$

$$A_6 = K_{e_1} \frac{d_3}{2} - K_{e_1} d_3 + K_{e_4} \frac{d_6}{2}$$

$$A_7 = K_{C_4} d_4 + K_{C_4} \frac{d_6}{2} - K_{e_4} d_4 - K_{e_4} \frac{d_6}{2}$$

$$A_8 = K_{C_4} d_4 \frac{d_3}{2} + K_{C_4} d_4^2 + K_{C_4} d_4 + K_{C_4} d_4 \frac{d_6}{2}$$

$$A_9 = K_{e_1} \frac{d_4}{2} + K_{e_1} d_4 - K_{e_4} \frac{d_6}{2} - K_{e_4} d_4 + K_{e_4} \frac{d_6}{2}$$

$$A_{10} = C_{S_1} \frac{d_4}{2} + C_{S_2} d_4^2 + C_{S_3} \frac{d_4}{2}$$

We thus have:

$$I_R \dot{v}_1 + A_1 \dot{v}_1 + A_2 \dot{v}_2 + A_3 \dot{v}_2 + A_4 \dot{v}_3 + A_5 \dot{v}_3 + A_6 \dot{v}_3 + A_7 \dot{v}_3 + A_8 \dot{v}_3 + A_9 \dot{v}_3 = 0 \quad \ldots \ldots (1)$$

$$M_1 \dot{v}_1 + K_{C_3} \dot{v}_1 + K_{C_3} d_3 \dot{v}_1 + C_{B_3} \dot{v}_1 + C_{B_3} d_3 \dot{v}_1 + C_{B_4} \dot{v}_1 + C_{B_4} d_4 \dot{v}_1 + C_{B_4} d_4 \dot{v}_1 + K_{C_4} \dot{v}_1$$

$$-K_{C_4} d_4 \dot{v}_3 + C_{B_4} \dot{v}_3 + C_{B_4} d_4 \dot{v}_3 - C_{B_4} \dot{v}_3 = 0$$

$$M \ddot{v}_1 + (C_{B_3} + C_{B_4}) \dot{v}_1 + (-C_{B_3}) \dot{v}_1 + (C_{B_4} d_4) \dot{v}_1 + (K_{C_3} + K_{C_4}) \dot{v}_1$$

$$+ (K_{C_3} d_3 - K_{C_3} d_3) \dot{v}_1 = 0$$
Putting:

\[A_{10} = C_B + C_B^4 \]
\[A_{11} = C_Bd_3 - C_B^4d_4 \]
\[A_{12} = K_{C_3} + K_{C_4} \]
\[A_{13} = K_{C_2}d_3 - K_{C_4}d_4 \]

We thus have:

\[M_1v_1 + A_{10} \dot{v}_1 - C_{B_3} \dot{v}_2 - C_{B_4} \dot{v}_3 + A_{11} \dot{v}_1 + A_{12} v_1 - K_{C_3} v_2 - K_{C_4} v_3 + A_{13} \dot{v}_1 = 0 \]

\[M_2 \ddot{v}_2 + K_{e_1} v_2 - K_{e_1} \dot{v}_3 + K_{e_2} \dot{v}_3 + C_S v_1 - C_{S_1} \dot{v}_1 - C_{S_2} \dot{v}_2 + C_{B_3} \dot{v}_3 = 0 \]

\[M_2 \ddot{v}_1 + (-C_{B_3}) \dot{v}_1 + (C_{S_1} + C_{S_2} + C_{B_3}) \dot{v}_2 + (-C_{B_3}d_3) \dot{v}_3 + (-K_{C_3}) v_1 + (K_{e_1} + K_{e_2} + K_{C_3}) v_2 + (-K_{C_3}d_3) \dot{v}_3 + (K_{e_2} \dot{w}_2 - K_{e_1} \dot{w}_2 + C_{S_2} \dot{w}_2 - C_{S_1} \dot{w}_1) = 0 \]

Putting:

\[A_{14} = C_{S_1} + C_{B_3} + C_{S_1}^4 \]
\[A_{15} = -C_{B_3}d_3 \]
\[A_{16} = K_{e_1} + K_{e_2} + K_{C_3} \]
\[A_{17} = -K_{C_3}d_3 \]
\[A_{18} = K_{e_2} \dot{w}_2 - K_{e_1} \dot{w}_2 + C_{S_2} \dot{w}_2 - C_{S_1} \dot{w}_1 \]

We thus have:

\[M_2 \ddot{v}_1 + A_{14} \dot{v}_1 + A_{15} \dot{v}_1 + A_{16} v_1 + A_{17} \dot{v}_2 + A_{18} = 0 \]
\[M_3 \dddot{v}_3 + K_{e_5} \dddot{v}_3 - K_{e_3} w_{o3} + C_{s_3} \dddot{v}_3 - C_{s_9} \dot{w}_{o3} + K_{e_6} \dddot{v}_3 + K_{e_6} w_{o3} + C_{s_6} \dddot{v}_3 + C_{s_6} \dot{w}_{o3} \]

\[-K_{c_4} \dot{v}_1 + K_{c_4} \dot{v}_3 - C_{B_4} \dot{v}_1 + C_{B_4} \dot{v}_3 = 0\]

\[M_3 \dddot{v}_3 + (-C_{B_4}) \dddot{v}_1 + (C_{s_5} + C_{s_6} + C_{B_4}) \dddot{v}_1 + (C_{B_4} \dot{d}_4) \dot{v}_1 + (-K_{c_4}) \dddot{v}_1 + (K_{e_5} + K_{e_6} + K_{c_4}) \dddot{v}_3 \]

\[+ (K_{c_4} \dot{d}_4) \dot{v}_1 + (K_{c_5} w_{o3} - K_{e_5} w_{o3} + C_{s_6} \dot{w}_{o3} + C_{s_6} \dot{w}_{o3} = 0\]

Putting:-

\[A_{19} = C_{B_4} d_4 \]

\[A_{20} = K_{c_4} + K_{e_5} + K_{c_6} \]

\[A_{21} = K_{c_5} d_4 \]

\[A_{22} = K_{e_6} w_{o3} - K_{e_5} w_{o3} + C_{s_6} \dot{w}_{o3} - C_{s_6} \dot{w}_{o3} \]

\[A_{23} = C_{s_5} + C_{s_6} + C_{B_4} \]

We thus have:-

\[M_3 \dddot{v}_3 - C_{B_4} \dddot{v}_1 + A_{23} \dddot{v}_3 + A_{19} \dddot{v}_1 + A_{20} \dddot{v}_3 + A_{21} \dddot{v}_1 + A_{22} = 0 \quad (4) \]

(b) Expansion of Determinant

To obtain a non-trivial solution the determinant must be non-zero,

ie:

\[
\begin{vmatrix}
A_{12} - M_1 \omega^2 & -K_{C_3} & -K_{C_4} & A_{13} \\
-K_{C_3} & A_{16} - M_2 \omega^2 & 0 & A_{17} \\
-K_{C_4} & 0 & A_{20} - M_3 \omega^2 & A_{21} \\
A_5 & A_6 & A_7 & A_8 - T_R \omega^2
\end{vmatrix} = 0
\]
Expanding this determinant by the second row gives:

\[
\begin{vmatrix}
-K_{C4} & -K_{C4} & A_{13} \\
0 & A_{20} - M_3 \omega^2 & A_{21} \\
A_6 & A_7 & A_8 - I_R \omega^2 \\
\end{vmatrix} + (A_{15} - M_2 \omega^2)
\begin{vmatrix}
A_{12} - M_1 \omega^2 & -K_{C4} & A_{13} \\
-K_{C4} & A_{20} - M_3 \omega^2 & A_{21} \\
A_5 & A_7 & A_8 - I_R \omega^2 \\
\end{vmatrix} = 0
\]

Expanding these determinants by the second row in each case gives:

\[
K_{C4} \begin{vmatrix}
-A_{20} - M_3 \omega^2 & -K_{C4} & -K_{C4} \\
-K_{C4} & 0 & A_{20} - M_3 \omega^2 \\
A_5 & A_7 & A_8 \\
\end{vmatrix} = 0
\]

\[
K_{C4} \begin{vmatrix}
-A_{20} - M_3 \omega^2 & -K_{C4} & -K_{C4} \\
-K_{C4} & 0 & A_{20} - M_3 \omega^2 \\
A_5 & A_7 & A_8 \\
\end{vmatrix}
\]

\[
\begin{vmatrix}
-K_{C4} & -K_{C4} & A_{13} \\
0 & A_{20} - M_3 \omega^2 & A_{21} \\
A_6 & A_7 & A_8 - I_R \omega^2 \\
\end{vmatrix}
\begin{vmatrix}
A_{12} - M_1 \omega^2 & -K_{C4} & A_{13} \\
-K_{C4} & A_{20} - M_3 \omega^2 & A_{21} \\
A_5 & A_7 & A_8 - I_R \omega^2 \\
\end{vmatrix} = 0
\]
\[\omega^8 (M_1 M_2 M_3 I_R) - \omega^6 (A_{16} M_1 M_3 I_R + A_{12} M_2 M_3 I_R + A_20 M_1 M_2 I_R + A_{20} M_1 M_3 I_R + A_{12} M_1 M_2 I_R) \\
+ \omega^4 (-K_{C_3}^2 M_1 I_R + A_{12} M_1 M_3 I_R + A_{16} M_2 M_3 I_R + A_{16} M_1 M_2 I_R + A_{12} M_1 M_2 I_R + A_{20} M_1 M_3 I_R) \\
+ A_{16} M_1 M_3 I_R - K_{C_4}^2 M_2 M_3 I_R - A_8 M_2 M_3 + A_8 M_2 I_R - A_7 A_{12} M_1 M_2 - A_6 A_{17} M_1 M_2 \) \\
+ \omega^2 (K_{C_3}^2 A_{20} I_R + K_{C_3} A_8 M_3 + K_{C_3} A_6 A_{13} M_2 - A_{12} A_{16} A_{20} I_R - A_4 A_{12} A_{16} M_2 \\
+ A_{16} I_R + A_5 A_{13} A_{16} M_2 - A_8 A_1 A_{20} M_1 + A_7 A_{16} A_{16} A_{20} M_1 - A_8 A_{17} A_{20} M_2 \\
+ A_7 A_{12} A_{20} M_2 + K_{C_4} A_8 M_2 + K_{C_4} A_7 A_{13} M_2 + K_{C_4} A_6 A_{21} M_2 + A_5 A_{13} A_{20} M_2 \\
+ K_{C_4} A_5 A_{17} M_3 + A_8 A_{12} A_{17} M_3 + A_6 A_{17} A_{20} M_1) + (-K_{C_3}^2 A_8 A_{20} + K_{C_3}^2 A_7 A_{21} \\
- K_{C_3} A_5 A_{21} + K_{C_3} A_6 A_{13} A_{20} + A_8 A_{12} A_{16} A_{20} - A_7 A_{12} A_{16} A_{21} - K_{C_4} A_8 A_{16} \\
- K_{C_4} A_7 A_{13} A_{16} - K_{C_4} A_5 A_{16} A_{21} - A_5 A_{13} A_{16} A_{20} - K_{C_4} K_{C_4} A_7 A_{17} - K_{C_4} A_5 A_{17} A_{20} \\
- A_6 A_{12} A_{17} A_{20} + K_{C_4} A_8 A_{17}) = 0 \\
\]

Dividing through by $M_1 M_2 M_3 I_R$ and putting:

\[B_1 = A_{16} / M_1 + A_{20} / M_3 + A_{12} / I_R \]

\[B_2 = -K_{C_3}^2 / (M_1 M_3) + A_{12} A_{16} / (M_1 M_3) + A_{16} A_{16} / (M_2 M_3) + A_8 A_{16} / (M_2 I_R) \]

\[+ A_{12} A_{20} / (M_1 M_3) + A_8 A_{12} / (M_1 I_R) - K_{C_4}^2 / (M_1 M_3) - A_5 A_{13} / (M_1 I_R) \]

\[+ A_{20} / (M_3 I_R) - A_7 A_{21} / (M_3 I_R) - A_6 A_{17} / (M_2 I_R) \]
B_3 = (K_C_3^2 A_{20 I} I_R + K_C^2 A_8 M_3 + K_C A_4 A_{13} M_3 - A_{12} A_{26} A_{29} I_R - A_8 A_1 z A_{16} M_3

+ K_C A_{16} I_R + A_8 A_{13} A_{16} M_3 - A_8 A_{16} A_{26} M_1 + A_7 A_{16} A_{21} M_1 - A_8 A_{12} A_{20} M_2

+ A_7 A_{12} A_{21} M_2 + K_C^2 A_8 M_2 + K_C A_7 A_{13} M_2 + K_C^2 A_8 A_{21} M_2 + A_8 A_{13} A_{20} M_2

+ K_C A_5 A_{17} M_3 + A_5 A_{12} A_{17} M_3 + A_5 A_{17} A_{20} M_1) / (M_1 M_2 M_3 I_R)

B_4 = (-K_C^2 A_8 A_{20} + K_C^2 A_7 A_{21} - K_C A_4 A_{13} - K_C A_5 A_{13} A_{20} + K_C A_4 A_{12} A_{26} A_{20}

- A_7 A_{12} A_{26} A_{21} - K_C^2 A_8 A_{16} - K_C A_7 A_{13} A_{16} - K_C A_5 A_{16} A_{21} - A_5 A_{13} A_{16} A_{20}

- K_C A_7 A_{17} - K_C A_5 A_{17} A_{20} - A_5 A_{12} A_{17} A_{20} + K_C^2 A_8 A_{17}) / (M_1 M_2 M_3 I_R)

We then have:

ω^6 - B_2 w^6 + B_2 w^4 + B_3 w^2 + B_4 = 0

(The slope w.r.t ω^2 is 4ω^4 - 3B_1 w^4 + 2B_2 w^2 + B_3)
APPENDIX E : COMPUTER PROGRAMMES

E.1 DISDAT

The input for DISDAT is all in free format in response to questions.

(i) A title up to 80 characters long

(ii) A filename of 6 characters

(iii) The conveyance rotational inertia in t.m.² (RI)

(iv) Masses, in t, of the body, the top transom and the bottom transom in that order. (AM1, AM2, AM3).

(v) Depths, in m, of the top and bottom transoms, in that order. (D1, D6).

(vi) Distances, in m, from the conveyance centre of gravity to the top of the body and then to the bottom of the body (D3, D4)

(vii) The overall length of the conveyance, or the distance between top and bottom guide wheels, in m. (AOL)

(viii) The bunton spacing, in m. (A)

(ix) The damping constants, as percentage of critical damping, for the shaft steelwork/wheel combination and for the conveyance. (CS, CB)
(x) The guide inertia in units of 10^6 m and the bunton stiffness in kN/m. The bunton stiffness is calculated in accordance with normal structural theory, making allowance for end compliance as described by Laubsher and Bull. (CK1, CK2)

(xi) Spring stiffness of wheels in kN/m, and wheel diameter. For the stiffness an average value, based on the spring curve supplied by the manufacturers, is used. (AK, DIAM)

(xii) Stiffness, in kN/m, of connection between top transom and conveyance body, and of the connection between the bottom transom and body. This stiffness divided by the mass of the relevant transom should not exceed about 25000, or ill-conditioning of the equations of motion results. The stiffness is calculated in accordance with standard structural methods. (CEK3, CEK4)

(xiii) The velocity of conveyance travel, in m/sec, the preload applied to the wheels in KN, and the wheel clearance from the guides. One of these last two must be zero, as both relate to the positioning of the wheels relative to the guides. (VEL, PREL, CLEAR)

(xiv) Spring travel, in m. This is the distance the wheel can move back before hard contact occurs. (WXX)

(xv) Wheel irregularity (in m) and four phase angles for the initial wheel positions (AMP, PH1, PH2, PH3, PH4).
(xvi) Number of buntons for the run. A typical deep shaft has 300 to 500 buntons, but for DISCS to give good predictions for analysis 50 buntons are probably sufficient. (NOB)

(xvii) A number to determine how the misalignment is input. (MISAL)

1 - Misalignment is calculated randomly between specified limits.

2 - All misalignment values must be specified

(xviii) Number of buntons, from start, which have non-zero misalignment. This is usually equal to the number of buntons. (IBUNT)

If MISAL = 1 :-

(xix) The maximum values, in m, of misalignment increment, gauge error and overall misalignment (WL(1), WL(2))

(xx) The variance of the mismatch, in m, and six random seed numbers, which should be any numbers between 0 and 199017 (WL(3), XWX(1) to XWX(6)).

If MISAL = 2 :-

(xxii) The misalignment, in m, of the two guides and the mismatch, also in m, of both guides. (WO(1), WO(2), WM(1), WM(2)). This input is repeated for each bunton, including 7 buntons prior to the initial bunton, number 0, which allow for initialising. For specified misalignment the first seven input lines should thus be zeros in most cases.
The output from DISDAT is:

(i) Heading in 20A4 format.
(ii) RI, AM1, AM2, AM3 in 4F12.4 format.
(iii) D1, D3, D4, D6, A, AOL in 6F12.4 format.
(iv) CB, CS, CK1, CK2, AK in 5F12.4 format.
(v) CEK3, CEK4 in 2F12.4 format.
(vi) VEL, PREL, CLEAR, WXX in 4F12.4 format.
(vii) AMP, DIAM in 2F12.4 format.
(viii) PH1, PH2, PH3, PH4 in 4F12.4 format.
(ix) NOB, MISAL in 2I7 format.
(x) WO(1), WO(2), WM(1), WM(2) in 4F12.4 format, for each bunton.
DISDAT : Flowchart

Specify dimensions
and read variable types
Read input interactively
Specify full filename
of output as:
Filename = "DL1:"filename".DAT"
Logical unit 1 is assigned to file E

Calculate total number of buntons considered

Guide 2 misalignment is gauge error less guide 1 misalignment

This section reads specified misalignment

Initialise
Read heading & filename
E = "DL1:"B'1.DAT"
Read major input
Open file E for output
Write major output
Read IBUNT
NBBA = NOB+7
IBUNTA = IBUNTA + 7

MISAL=1?
No
Yes
Read misalignment limits and seeds
Calculate random misalignments at next bunton
If InIBUNTA misalignments = 0,0
WO(2) = WO(2) - WO(1)
Write misalignments to file

Do Loop I = 1, NOBA

Yes
InIBUNTA?
No
Read misalignments
Set misalignments to zero
Write misalignments to file
Close output file
STOP
PROGRAMME DISDAT : Listing

C THIS PROGRAMME GENERATES THE INPUT FOR DISCS INTERACTIVELY

INTEGER*2 B(3), D(3), E(8), F(2)
DIMENSION W0(2), WL(3), WM(2), C(20)
REAL*8 WY, WX(6)

TYPE 300
FORMAT(' ENTER RUN TITLE (< 80 CHARs BEGINNING WITH A BLANK)')
READ(5,301)(C(I), I=1,20)

TYPE 301
FORMAT(20A4)

TYPE 302
FORMAT(' ENTER DATA FILE NAME (6 CHARs)')
READ(5,303)(B(I), I=1,3)

DATA D /'DA','TV' /
DATA F /'DL','11' /

DO 29 I=1,2
E(I)=F(I)
DO 30 I=1,3
E(I+2)=B(I)
DO 31 I=1,3
E(I+5)=D(I)

TYPE 1
FORMAT(' ENTER ROTATIONAL INERTIA')
ACCEPT *, RI

TYPE 2
FORMAT(' ENTER MASSES OF BODY, TOP TRANSOM, BOTTOM TRANSOM')
ACCEPT *, AM1, AM2, AM3

TYPE 3
FORMAT(' ENTER DEPTHS OF TOP AND BOTTOM TRANSOMS')
ACCEPT *, D1, D6

TYPE 4
FORMAT(' ENTER DISTANCE FROM C.G. TO TOP & BOTTOM OF BODY')
ACCEPT *, D3, D4

TYPE 5
FORMAT(' ENTER OVERALL CONVEYANCE LENGTH')
ACCEPT *, AOL

TYPE 6
FORMAT(' ENTER BUNTON SPACING')
ACCEPT *, A

TYPE 7
FORMAT(' ENTER % DAMPING OF STEELWORK & CONVEYANCE')
ACCEPT *, CS, CB

TYPE 8
FORMAT(' ENTER GUIDE INERTIA & BUNTON STIFFNESS')
ACCEPT *, CX1, CK2
A27

9

TYPE 9
FORMATT(‘ ENTER WHEEL SPRING STIFFNESS & WHEEL DIAMETER’)
ACCEPT *,AK,DIA

10

TYPE 10
FORMATT(‘ ENTER CONNECTION STIFFNESS TO TOP & BOTTOM TRANSOMS’)
ACCEPT *,CEK3,CEK4

11

TYPE 11
FORMATT(‘ ENTER VELOCITY, WHEEL PRELOAD & WHEEL CLEARANCE’)
ACCEPT *,VEL,PREL,CLEAR

12

TYPE 12
FORMATT(‘ ENTER SPRING TRAVEL BEFORE HARD SLIPPER CONTACT’)
ACCEPT *,WXX

18

TYPE 18
FORMATT(‘ ENTER WHEEL IRREGULARITY & 4 PHASE ANGLES (degrees)’)
ACCEPT *,AMP,PH1,PH2,PH3,PH4

13

TYPE 13
FORMATT(‘ ENTER NUMBER OF BUNTONS FOR RUN’)
ACCEPT *,NOB

14

TYPE 14
FORMATT(‘ ENTER 1 FOR RANDOM MISALIGNMENT, 2 FOR SPECIFIED MISALIGNMENT’)
ACCEPT *,MISAL

CALL ASSIGN(1,E,15)
WRITE(1,304)(C(I),I=1,20)
FORMAT(20A4)
WRITE(1,100)RI,AM1,AM2,AM3
FORMAT(4F12.4)
WRITE(1,110)DI,D1,D3,D4,D6,A,ADL
FORMAT(6F12.4)
WRITE(1,120)CS,CK1,CK2,AK
FORMAT(5F12.4)
WRITE(1,130)CEK3,CEK4
FORMAT(2F12.4)
WRITE(1,140)VEL,PREL,CLEAR,WXX
WRITE(1,130)AMP,DIAM
WRITE(1,140)NOB,MISAL
FORMAT(217)

17

TYPE 17
FORMATT(‘ ENTER NUMBER OF BUNTONS WITH NON-ZERO MISALIGNMENT’)
ACCEPT *,IBUNT
NOBA=NOB+7
IBUNT=IBUNT+7
IF(MISAL.NE.1)GOTO 50

15

TYPE 15
FORMATT(‘ MAX MISALIGNMENT CHANGE, GAUGE ERROR & MAX MISALIGNMENT’)
ACCEPT *,WL(1),WL(2),WLMAX
TYPE 9
FORMAT(' ENTER WHEEL SPRING STIFFNESS & WHEEL DIAMETER')
ACCEPT *,AK,DIAM

TYPE 10
FORMAT(' ENTER CONNECTION STIFFNESS TO TOP & BOTTOM TRANSOMS')
ACCEPT *,CEK3,CEK4

TYPE 11
FORMAT(' ENTER VELOCITY, WHEEL PRELOAD & WHEEL CLEARANCE')
ACCEPT *,VEL,PREL,CLEAR

TYPE 12
FORMAT(' ENTER SPRING TRAVEL BEFORE HARD SLIPPER CONTACT')
ACCEPT *,WXX

TYPE 18
FORMAT(' ENTER WHEEL IRREGULARITY & 4 PHASE ANGLES(degrees)')
ACCEPT *,AMP,PH1,PH2,PH3,PH4

TYPE 13
FORMAT(' ENTER NUMBER OF BUNTONS FOR RUN')
ACCEPT *,NOB

TYPE 14
FORMAT(' ENTER 1 FOR RANDOM MISALIGNMENT, 2 FOR SPECIFIED MISALIGNMENT')
ACCEPT *,MISAL

CALL ASSIGN(1,E,15)
WRITE(1,304)(C(I),I=1,20)
FORMAT(20A4)
WRITE(1,100)RI,AM1,AM2,AM3
FORMAT(4F12.4)
WRITE(1,110)D1,D3,D4,D6,A,AOL
FORMAT(6F12.4)
WRITE(1,120)CB,CS,CK1,CK2,AK
FORMAT(5F12.4)
WRITE(1,130)CEK3,CEK4
FORMAT(2F12.4)
WRITE(1,140)PH1,PH2,PH3,PH4
FORMAT(217)

TYPE 17
FORMAT(' ENTER NUMBER OF BUNTONS WITH NON-ZERO MISALIGNMENT')
ACCEPT *,IBUNT
NOBA=NOB+7
IBUNTA=IBUNT+7
IF(MISAL.NE.1)GOTO 50

TYPE 15
FORMAT(' MAX MISALIGNMENT CHANGE, GAUGE ERROR & MAX MISALIGNMENT')
ACCEPT *,WL(1),WL(2),WLMAX
TYPE 16
FORMAT(' ENTER MISMATCH VARIANCE & 6 SEEDS')
ACCEPT *,XL(3),XL(1),XL(2),XL(3),XL(4),XL(5),XL(6)
DO 20 I=1,N0BA
DO 21 J=1,6
YW=(24298.*XL(J)+99991.)/199017.
XL(J)=(YW-DINT(YW))*199017.
IF(J.LE.2)WO(J)=XL(J)/199017.*2.*YL(J)-YL(J)-(J-2)*WO(J)
IF(J.EQ.4.OR.J.EQ.6)YW=XL(J-1)/199017.
IF(J.EQ.4.OR.J.EQ.6)WM(J/3)=YL(3)*SQRT(DLOG(YW)*(0.-2.))*DCOS(6
.2832*XL(J)/199017.)
CONTINUE
NWM=(I/2)*2
DO 22 J=1,2
IF(I.GT.IBUNTA)WM(J)=0.000
IF(I.GT.IBUNTA)WO(J)=0.000
IF(NW,.EQ.1)WH(J)=.000
CONTINUE
IF(WO(1).GT.WLMAX)WO(1)=WLMAX-WL(1)
IF(WO(1).LT.-WLMAX)WO(1)=-WLMAX+WL(1)
WO(2)=WO(2)-WO(1)
WRITE(1,200)WO(1),WO(2),WM(1),WM(2)
FORMAT(4F12.4)
GOTO 70
DO 51 I=1,N0BA
IF(I.GT.IBUNTA)GOTO 72
TYPE 19
FORMAT(' ENTER MISALIGNMENT AT BOTH GUIDES & MISMATCH AT BOTH')
ACCEPT *,WO(1),WO(2),WH(1),WH(2)
GOTO 53
WO(1)=0.0
WO(2)=0.0
WH(1)=0.0
WH(2)=0.0
WRITE(1,200)WO(1),WO(2),WH(1),WH(2)
CONTINUE
CALL CLOSE(1)
STOP
END
TYPE 16
FORMAT(' ENTER MISMATCH VARIANCE & 6 SEEDS')
ACCEPT *,W0(3),XWX(1),XWX(2),XWX(3),XWX(4),XWX(5),XWX(6)
DO 20 I=1,N0BA
DO 21 J=1,6
 YWY=(24298,*XWX(J)+99991.)/199017.
 XWX(J)=(YWY-DINT(YWY))*199017.
 IF(J.LE.2)W0(J)=XWX(J)/199017,*2.*WL(J)-WL(J)-(J-2)*W0(J)
 IF(J.EQ.4.OR.J.EQ.6)YWY=XWX(J-1)/199017.
 IF(J.EQ.4.OR.J.EQ.6)WM(J/3)=WL(3)*SQRT(LOG(YWY)*0,-2,)*DCOS(6.2832*XWX(J)/199017,)
CONTINUE
NWM=(I/2)*2
DO 22 J=1,2
 IF(I.GT.IBUNTA)WM(J)=0.000
 IF(I.EQ.IBUNTA)W0(J)=0.000
 IF(NWM.EQ.I)WM(J)=0.000
CONTINUE
IF(W0(1).GT.WLMAX)W0(1)=WLMAX-WL(1)
IF(W0(1).LT.-WLMAX)W0(1)=-WLMAX+WL(1)
W0(2)=W0(2)-W0(1)
WRITE(1,200)W0(1),W0(2),WM(1),WM(2)
FORMAT(4F12.4)
GOTO 70
DO 51 1=1,N0BA
 IF(I.GT.IBUNTA)GOTO 52
GOTO 53
TYPE 19
FORMAT(' ENTER MISALIGNMENT AT BOTH GUIDES & MISMATCH AT BOTH')
ACCEPT *,W0(1),W0(2),WM(1),WM(2)
GOTO 53
W0(1)=0.0
W0(2)=0.0
WM(1)=0.0
WM(2)=0.0
WRITE(1,200)W0(1),W0(2),WM(1),WM(2)
CONTINUE
CALL CLOSE(1)
STOP
END
E.2 Programme DISCS

This is the main programme for predicting the dynamic behaviour of the conveyances.

The input is an interactive request for the filename, and all other input is then from the data file created by DISDAT.

The output is:

(i) A data file giving the wheel load and acceleration information and time at each data point.

(ii) A data file giving basic information, such as time step and total number of samples, which is required by the analysis programmes.

(iii) Printout of the input parameters, then the calculated natural frequencies over one guide span, and finally the guide misalignment is listed at each bunton. If there is instability, this is printed, with the time at which it occurred, between the relevant buntons listed above.
Flowchart for DISCS

1. Initialise
2. Read Major Values
3. Write input values
4. Calculate Actual Damping
 From Damping %
5. Calculate Stiffness Constants
 for other Wheel Effect
6. Read Number of Misaligned Buntons
7. Calculate Conveyance Position
 (Top Wheel)
 DIS, DX, DIST.
8. Increment IJK
9. IS DIST>DX
 No
 Read Misalignment at New Bunton & Shift Others 2 Array Positions
 Yes
 Write Bunton Member and Misalignments and Increment Bunton Number, N
 IS Time
 Yes
 Calculate Guide Displacement under Preload
 No
 IS N<0 (Bunton No)
 No
Flowchart for DISCS (cont'd)

- Calculate Effective Guide Position at Each Wheel
- Is this the first time Step? \(iJK = 1 \)
 - Yes
 - No
 - Calculate Other wheel effect
 - Calculate rate of change of Guide Position
 - Set Old Guide Position to current guide position
 - Calculate relative Dist between Guides & Conveyance
 - Are Wheels in Contact?
 - Yes
 - Set Wheel Stiffness Damping & Wheel Rot. Inc. = 0
 - No
 - Calculate Portion of relative Dist. is Across Spring
 - Have wheels Bottomed out?
 - Yes
 - Set Effective Stiffness = Guide Stiffness
 - No
 - Calculate Constants \(AE1 - AE23 \)

- \(Z \geq 1 \)
 - Bunton No N?
 - Yes
 - Increment M
 - No
 - Calculate Constants \(BE1 - BE4 \)
 - Increment Z

- \(B > 0 \)
Flowchart for DISCS (cont'd)

Calculate Effective Guide Position at Each Wheel

Is this the first time step? IJK = 1

No

Calculate Other wheel effect

Calculate rate of change of Guide Position

Set Old Guide Position to current guide position

Calculate relative Dist between Guides & Conveyance

Are Wheels in Contact

Yes

Set Wheel Stiffness Damping & Wheel Rot. Inc. = 0

No

Calculate Portion of relative Dist. is Across Spring

Have wheels Bottomed out?

Yes

Set Effective Stiffness = Guide Stiffness

No

Calculate Constants AE1 - AE23

Bunton No N?

Yes

Increment M

No

Increment Z

Calculate Constants BE1 - BE4

≥ 1

< 0

= 0
Flowchart for DISCS (Cont'd)

Yes IS M > U

Calculate Initial Approx. solutions to frequency equation

Yes

Set Time Step to previous step divided by 20 i.e. min. period divided by 8

Solve for Cyclical Freq. starting from previous Value

Calculate Natural frequencies

Write Natural frequencies

Set time Step Equal to minimum period multiplied by 2.5

Increment time by time Step

No

Calculate Derivatives and next solution to motion equations using runge-kutta 4th order

Calculate Natural frequencies

Calculate Derivatives and next solution to motion equations using runge-kutta 4th order

Calculate predicted values for new solution using Adams Mouton

SET JJ = 0

Calculate New Derivative values

IS Z > 5?

Yes

Yes

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values Minus 1

IS JJ = 10?

Yes

No

Increment JJ

No

A32

IS M > U

Calculate Initial Approx. solutions to frequency equation

No

Calculate Natural frequencies

Write Natural frequencies

Set time Step Equal to minimum period multiplied by 2.5

Increment time by time Step

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values Minus 1

IS JJ = 10?

Yes

No

Increment JJ
Flowchart for DISCS (Cont'd)

Yes

IS M > 1?

No

Calculate Initial Approx. solutions to frequency equation

Yes

Set Time Step to previous step divided by 20 i.e. min. period divided by 8

Calculate Derivatives and next solution to motion equations using runge-kutta 4th order

No

Solve for Cyclical Freq. starting from previous Value

Write Natural frequencies

Calculate Natural frequencies

Set time Step Equal to minimum period multiplied by 2.5

Increment time by time Step

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

Yes

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

Yes

IS Z > 5?

No

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Calculate Corrector Values

Calculate Predicted values for new solution using Adams Mouton

SET JJ = 0

Calculate Initial Approx. solutions to frequency equation

No

Set Time Step to previous step divided by 20 i.e. min. period divided by 8

Calculate Derivatives and next solution to motion equations using runge-kutta 4th order

No

Solve for Cyclical Freq. starting from previous Value

Write Natural frequencies

Calculate Natural frequencies

Set time Step Equal to minimum period multiplied by 2.5

Increment time by time Step

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

Yes

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?

No

Calculate Corrector Values

Calculate Ratio between Prev. & Corrected Values minus 1

IS JJ = 10?

No

Increment JJ

Calculate New Derivative values

IS Z > 5?
Flowchart for DISCS (cont'd)

Is Accuracy Sufficient

Yes

Do any Deriv. values exceed 200?

Yes

Divide all solution values, derivatives & current wheel loads by 20

Write Unstable

No

Calculate Accelerations and Wheel loads at current time step

Move all solutions and derivative values to previous array position

Increment time by time step

Have 19990 steps been done?

Yes

No

Have specified No. of runtions been passed?

Yes

STOP

No
THIS PROGRAM GENERATES THE DYNAMIC WHEEL LOADS AND ACCELERATIONS OF MINESHAFT CONVEYANCES FROM INPUT OF RANDOM OR SPECIFIED GUIDE MISALIGNMENT AND MISMATCH.

DIMENSION XT(8,6), DT(8,6), ZT(8,5), ZK(8,4), ET(8,4), FREQ(4,30)
DIMENSION CHECK(8), AA(2), ETTEST(4), BK(2)
DIMENSION W0(12), WL(3), WM(12), GAP(12), C(20)
REAL*8 Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, RC, RD, RE, RF, RG, RH
INTEGER*2 B(8), D(8), E(8); F(3), G(3), HH(3), FF(3), DL(2)

INITIALISE ALL NECESSARY VALUES

TYPE 1
1 FORMAT(' INPUT FILE NAME (6 CHARS)')
READ(5,2)(F(I),1=1,3)
2 FORMAT(3A2)
DO 4 I=1,3
B(I+2)=F(I)
D(I+2)=F(I)
4 E(I+2)=F(I)
DATA DL /'DL','l:'/
DATA G /'I,f,'DA','T'/
DATA HH /'2,' ,'DA', 'TV
DATA FF /'3,','DA','TV
DO 6 I=1,2
B(I)=DL(I)
D(I)=DL(I)
6 E(I)=DL(I)
DO 5 I=1,3
B(I+5)=D(I)
D(I+5)=HH(I)
5 E(I+5)=FF(I)
DATA WL(1), WL(2), WL(3)/0., 0., 0., /
DATA W01, W02, W03, W04, W01, W02, W03, W04/0., 0., 0., 0., 0., 0., 0.
0
7 TIME=0.
DIST=1.
N=-2
M=0
KK=0
JJ=0
IJK=0
Z=0.
ARY=1.
DO 110 I=1,6
DO 110 J=1,8
XT(J,I)=0.0
110 DT(J,I)=0.0
DO 130 I=1,10
WD(I)=0.0
WM(I)=0.0
130 GAP(I)=0.005
C
C INPUT AND WRITE SPECIFIED VARIABLES
C
CALL ASSIGN(2,B,15)
CALL ASSIGN(1,D,15)
CALL ASSIGN(3,E,15)
CALL ASSIGN(4,‘DATAFILE,DAT’,12)
READ(2,3)(C(I),I=1,20)
FORMAT(20A4)
READ(2,11000)RI,A1,A2,A3
READ(2,11100)D1,D3,D4,D6,A,AOL
READ(2,11400)CB,CS,CK1,CK2,AK
READ(2,11300)CEK3,CEK4
READ(2,11000)VEL,PREL,CLEAR,WWX
READ(2,11300)AMP,DIAH
READ(2,11000)PH1,PH2,PH3,PH4
PER=2.0VEL/DIAM
TIW1=PH1/PER
TIW2=PH2/PER
TIW3=PH3/PER
TIW4=PH4/PER
READ(2,11200)N0B,MISAL
RAT=AOL/A
AN0D=N0B*1.0
WRITE(1,3)(C(I),I=1,20)
WRITE(3,3)(C(I),I=1,20)
WRITE(4,50000)(C(I),I=1,20)
WRITE(4,12100)
WRITE(4,12500)
WRITE(4,12600)RI
WRITE(4,12700)A1,A2,A3
WRITE(4,13000)CB,CB
WRITE(4,13700)
WRITE(4,13200)AK,CEK3,CEK
WRITE(4,13100)CK1,CK2
WRITE(4,13600)
WRITE(4,12800) A, AOL
WRITE(4, 12900) D1, D3, D4, D6
WRITE(4, 14100) CLEAR, WXX
WRITE(4, 13800) DIAM, AMP
WRITE(4, 13300) VEL
WRITE(4, 13400) PREL
WRITE(4, 12100)
WRITE(4, 12200)
CST=CS/50. * SQRT(AM2*AK/2.)
CSB=CS/50. * SQRT(AM3*AK/2.)
CBT=CB/50. * SQRT(AM2*CEK3)
CBB=CB/50. * SQRT(AM3*CEK4)
CK1=CK1*208. * 162. / A**3 / 27.

CALCULATE CONSTANTS FOR EQUATIONS FOR OTHER WHEEL EFFECT, IE WHEEL INTERACTION

EI=CK1*A**3/162.*27.
XXK=6.*EI/A**2.
XXK1=XXK/A/CK2
Z1=(1.-10.*XXK1+3.*XXK1**2)/(XXK1**2)
Z2=(6.-23.*XXK1-2.*XXK1**2)/(XXK1**3)
Z3=26./XXK1-1./XXK1**2-150.*XXK1+25.*XXK1**2
Z4=34./XXK1**2-476./XXK1+679.-24.*XXK1-75.*XXK1**2
Z5=14./XXK1**2-1550./XXK1+1596.+767.*XXK1+50.*XXK1**2
Z6=67./XXK1-4./XXK1**2-79.-251.*XXK1-46.*XXK1**2
Z7=136./XXK1**2-446./XXK1-1022.1+53.*XXK1+138.*XXK1**2
Z8=456./XXK1**2-1982./XXK1-4411.-1496.*XXK1-92.*XXK1**2
Z9=(Z1*Z6+Z7)*(Z2*Z3+Z5)-(Z1*Z3+Z4)*(Z2*Z6+Z8)

INITIALISE NEW TIME STEP

IJK=IJK+1
DX=DIST
DIST=TIME*VEL-DIS*T
IF(DIST.GT.DX) GOTO 210

CALCULATE GUIDE MISALIGNMENT AND MISMATCH

DO 200 I=1,2
W(I+10)=W(I+8)
W(I+8)=W(I+6)
W(I+6)=W(I+4)
W(I+4)=W(I+2)
W(I+2)=W(I)
W(I)=W(I)+CLEAR
IF(WM(I).GT.0.0) GAP(I) = GAP(I)*3.0
CONTINUE
DO 205 I=1,9,2
WM(13-I) = WM(11-I)
WM(12-I) = WM(10-I)
GAP(13-I) = GAP(11-I)
205 GAP(12-I) = GAP(10-I)
GAP(I) = 0.005
GAP(2) = 0.005
READ(2,11000)WD(1),WD(2),WM(1),WM(2)
KK = KK+1
IF(KK,LT,5)GOTO 140
GMA = WD(3)*1000.
GMB = WD(4)*1000.
GMC = WM(3)*1000.
GMD = WM(4)*1000.
IF(N.EQ.0) GOTO 113
GOTO 115
113 WRITE(4,12100)
TIME = TIME - A/VEL*2.
IJK = 1
115 IF(N.GE.0) WRITE(4,11500) N, GMB, GMA, GMD, GMC
IF(N.LE.0) WRITE(4,13500)
N = N + 1
IF(N.LE.0) GOTO 210
C C CALCULATE RELEVANT DAMPING RATIOS - BASIC DAMPING IS ASSUMED CONSTANT
C C CALCULATE RELEVANT STIFFNESS VALUES - WHEEL STIFFNESS IS CONSTANT
C FIRST CALCULATE GUIDE STIFFNESS.
C 210 ARAT = ((AOL-DIST)/A)
AA(I) = DIST/A/3.4 + 3.4
IF(Aarat,GT,3.0) AA(2) = (ARAT-3.0)3,
IF(Aarat,GT.2.0.AND.,ARAT.LE.3.0)AA(2) = (ARAT-1.0)/3.
IF(Aarat,GT.1.0.AND.,ARAT.LE.0) AA(2) = ARAT/3.
IF(ARAT.LE.1.0) AA(2) = (ARAT+1.0)/3.
COA = 1./(CK1/CK2+5.)
COB = 7./3./(CK1/CK2+1./3.)*COA
DO 300 I=1,2
BK(I) = (162.*COA+324.*COB)*AA(I)
BK(I) = (486.*COA+972.*COB-BK(I))*AA(I)
BK(I) = (BK(I)+54.-927.*COA-1125.*COB)*AA(I)
BK(I) = (BK(I)-108.4+1044.*COA+630.*COB)*AA(I)
BK(I) = (BK(I)+54.-479.*COA-175.*COB)*AA(I)
BK(I) = (BK(I)+38.*COA+22.*COB)*AA(I)
BK(I) = CK1/(BK(I)-COA-COB)
300 CONTINUE
C CALCULATE COMBINED STIFFNESSES, CEK

CEK1 = AK * BK(1) / (AK + BK(1))
CEK2 = CEK1
CEK5 = AK * BK(2) / (AK + BK(2))
CEK6 = CEK5
CS1 = CST
CS2 = CST
CS5 = CSB
CS6 = CSB
IF (TIME .EQ. 0.0) PR = PREL / CEK1
IF (N.LT.0) GOTO 340

C CALCULATE W0 VALUES AT THE WHEELS FROM VALUES AT THE BUNIONS

PR ARE EFFECTIVE DISPLACEMENTS DUE TO PRELOAD SPECIFIED, CALCULATED
AT THE FIRST BUNION

305 W01 = (W0(3) + WM(3)) + (W0(1) - (W0(3) + WM(3))) * DIST / A - PR
W02 = (W0(4) + WM(4)) + (W0(2) - (W0(4) + WM(4))) * DIST / A - PR
IF (ARAT .GT. 3.0) GOTO 240
IF (ARAT .GT. 2.0) GOTO 230
IF (ARAT .GT. 1.0) GOTO 220
W03 = W0(3) + ((W0(5) + WM(5)) - W0(3)) * ARAT - PR
W04 = W0(4) + ((W0(6) + WM(6)) - W0(4)) * ARAT - PR
GOTO 250
220 W03 = W0(5) + ((W0(7) + WM(7)) - W0(5)) * (ARAT - 1.) - PR
W04 = W0(6) + ((W0(8) + WM(8)) - W0(6)) * (ARAT - 1.) - PR
GOTO 250
230 W03 = W0(7) + ((W0(9) + WM(9)) - W0(7)) * (ARAT - 2.) - PR
W04 = W0(8) + ((W0(10) + WM(10)) - W0(8)) * (ARAT - 2.) - PR
GOTO 250
240 W03 = W0(9) + ((W0(11) + WM(11)) - W0(9)) * (ARAT - 3.) - PR
W04 = W0(10) + ((W0(12) + WM(12)) - W0(10)) * (ARAT - 3.) - PR

C CALCULATE W0 VARIATION DUE TO EFFECT OF THE OTHER WHEEL ON SAME GUIDE

250 IF (IJK .EQ. 1) GOTO 295
ARX = ARY
IF (ARAT .GE. 0.0) ARY = (1. - ARAT)
IF (ARAT .GT. 1.0) ARY = (2. - ARAT)
IF (ARAT .GT. 2.0) ARY = (3. - ARAT)
IF (ARAT .GT. 3.0) ARY = (4. - ARAT)
YONE = ARY ** (1. - ARY) ** 2
YTWO = ARY ** 2 * (ARY - 1.)
XONE = YONE - 2. * YTWO + 5. + 4. * ARY
XTWO = 2. * YONE - YTWO + XXK1 + 5. + ARY
CALCULATE COMBINED STIFFNESSES, CEK

CEK1 = AK*BK(1)/(AK+BK(1))
CEK2 = CEK1
CEK5 = AK*BK(2)/(AK+BK(2))
CEK6 = CEK5
CS1 = CST
CS2 = CST
CS5 = CSB
CS6 = CSB
IF (TIME.EQ.0.0) PR = PREL/CEK1
IF (N.LT.0) GOTO 340

CALCULATE W0 VALUES AT THE WHEELS FROM VALUES AT THE BUNTONS

PR ARE EFFECTIVE DISPLACEMENTS DUE TO PRELOAD SPECIFIED, CALCULATED AT THE FIRST BUNTON

305 W01 = (WO(3) + WM(3)) + (WO(1) - (WO(3) + WM(3))) * DIST/A - PR
W02 = (WO(4) + WM(4)) + (WO(2) - (WO(4) + WM(4))) * DIST/A - PR
IF (ARAT.GT.3.0) GOTO 240
IF (ARAT.GT.2.0) GOTO 230
IF (ARAT.GT.1.0) GOTO 220
W03 = W0(3) + ((WO(5) + WM(5)) - W0(3)) * ARAT - PR
W04 = W0(4) + ((WO(6) + WM(6)) - W0(4)) * ARAT - PR
GOTO 250

220 W03 = W0(5) + ((WO(7) + WM(7)) - W0(5)) * (ARAT - 1) - PR
W04 = W0(6) + ((WO(8) + WM(8)) - W0(6)) * (ARAT - 1) - PR
GOTO 250

230 W03 = W0(7) + ((WO(9) + WM(9)) - W0(7)) * (ARAT - 2) - PR
W04 = W0(8) + ((WO(10) + WM(10)) - W0(8)) * (ARAT - 2) - PR
GOTO 250

240 W03 = W0(9) + ((WO(11) + WM(11)) - W0(9)) * (ARAT - 3) - PR
W04 = W0(10) + ((WO(12) + WM(12)) - W0(10)) * (ARAT - 3) - PR

CALCULATE W0 VARIATION DUE TO EFFECT OF THE OTHER WHEEL ON SAME GUIDE

250 IF (IJK.EQ.1) GOTO 295
ARX = ARY
IF (ARAT.GE.0.0) ARY = (1. - ARAT)
IF (ARAT.GT.1.0) ARY = (2. - ARAT)
IF (ARAT.GT.2.0) ARY = (3. - ARAT)
IF (ARAT.GT.3.0) ARY = (4. - ARAT)
YONE = ARY**1*(1. - ARY)**2
XTWO = ARY**2*(ARY - 1.)
XONE = YONE - 2.*YTWO + 5. + 4.*ARY
XTWO = 2.*YONE - XTWO + XXK1 + 5.*ARY
XTHR=1. + ARY
XFOU=XONE-5.*XTHR+XXK1*XTHR
XFIV=XTWO-5.*XTHR-3.*XXK1*XTHR
RH=((Z1*Z6+Z7)*XFOU-(Z1*Z3+Z4)*XFIV)/Z9
RG=(XFOU-(Z2*Z3+Z5)*RH)/(Z1*Z3+Z4)
RE=Z1*RG+Z2*RH
RD=(34.*RG+114.*RH-RE)/XXK1+8.*RE+10.*RG+50.*RH+(3.*RE-9.*RG+6.*RH)*XXK1
RF=0.-8.*RG-24.*RH-XXK1*RE+3.*XXK1*RG-2.*XXK1*RH
IF(A RAT.GT.3)G0T0 280
IF(A RAT.GT.2)G0T0 270
IF(A RAT.GT.1)G0T0 260
BEGM=0.-A*(RD+2.*RE+3.*RF+4.*RG+5.*RH)
ENDM=0.-A*(RE+2.*RF+3.*RG+4.*RH)
BDEL=RC/CK2
EDEL=RD/CK2
GOTO 290
260 BEGM=0.-A*(RE+2.*RF+3.*RG+4.*RH)
ENDM=0.-A*(RF+2.*RG+3.*RH)
BDEL=RD/CK2
EDEL=RE/CK2
GOTO 290
270 BEGM=0.-A*(RF+2.*RG+3.*RH)
ENDM=0.-A*(RG+2.*RH)
BDEL=RE/CK2
EDEL=RF/CK2
GOTO 290
280 BEGM=0.-A*(RG+2.*RH)
ENDM=0.-A*RH
BDEL=RF/CK2
EDEL=RG/CK2
290 W0E=BDEL+(BDEL-BDEL)*DIST/A+(ENDM-BEGM)/6.*A*DIST/EI+DIST**2/
E1=((ENDM-BEGM)/6./A*DIST+BEGM/2.)
W01=W01+CX*W0E
W02=W02+DX*W0E
W03=W03+AX*W0E
W04=W04+BX*W0E
C CALCULATE W0 VARIATION DUE TO WHEEL IRREGULARITIES , THIS VARIATION
C IS ASSUMED TO BE A SINE WAVE ,
C
W01=W01+AMP*SIN(TIW1*PER)
W02=W02+AMP*SIN(TIW2*PER)
W03=W03+AMP*SIN(TIW3*PER)
W04=W04+AMP*SIN(TIW4*PER)
C CALCULATE WVO VALUES; IE RATE OF CHANGE OF GUIDE POSITION

WVO1=(W01-OW01)/DELT
WVO2=(W02-OW02)/DELT
WVO3=(W03-OW03)/DELT
WVO4=(W04-OW04)/DELT

IF(DIST.GT.DX)GOTO 293
WVO1=WVO1+WM(3)/GAP(3)
WVO2=WVO2+WM(4)/GAP(4)

293 IF(ARY.GT.ARX)GOTO 295
IF(RAT.LT.1.0)MIM=3
IF(RAT.GE.1.0.AND.RAT.LT.2.0)MIM=5
IF(RAT.GE.2.0.AND.RAT.LT.3.0)MIM=7
IF(RAT.GE.3.0.AND.RAT.LT.4.0)MIM=9
IF(RAT.GE.4.0)MIM=11
WVO3=WVO3+WM(MIM)/GAP(MIM)
WVO4=WVO4+WM(MIM+1)/GAP(MIM+1)

295 OW01=W01
OW02=W02
OW03=W03
OW04=W04

C CHECK WHETHER WHEELS ARE IN CONTACT WITH THE GUIDES AND PUT DAMPING
C AND STIFFNESS OF RELEVANT WHEEL EQUAL TO 0 IF THEY ARE NOT

WD1=XT(5,5)-W01
WD2=XT(5,5)+W02
WD3=XT(6,5)-W03
WD4=XT(6,5)+W04

IF(WD1.GT.0.0)GOTO 310
CEK1=0.0
CS1=0.0

310 IF(WD2.LT.0.0)GOTO 320
CEK2=0.0
CS2=0.0

320 IF(WD3.GT.0.0)GOTO 330
CEK3=0.0
CS3=0.0

330 IF(WD4.LT.0.0)GOTO 331
CEK4=0.0
CS4=0.0

C CHECK FOR BOTTOMING OUT AND PUT WHEEL STIFFNESS EQUAL TO GUIDE
C STIFFNESS IF IT HAPPENS

331 AKE1=BK(1)/(BK(1)+AK)
AKE3=BK(2)/(BK(2)+AK)
WD1X=WD1*AKE1
WD2X=0.-WD2*AKE1
WD3X=WD3*AKE3
WD4X=0.-WD4*AKE3
IF(WD1X.LT.WXX)G0T0 332
WD1=W01+WXX
IF(WD2X.LT.WXX)G0T0 333
WD2=W02+WXX
IF(WD3X.LT.WXX)G0T0 334
WD3=W03+WXX
IF(WD4X.LT.WXX)G0T0 335
WD4=W04+WXX
C CALCULATE CONSTANTS, AE FOR USE IN EQUATIONS OF MOTION
C
340 AE1=0.-CBB*(D4+D6/2.)+CBT*(D3+D1/2.)
AE2=CS1*D1/2.,+CS2*D1/2.,-CBT*(D3+D1/2.)
AE3=CBB*(D4+D6/2.),-CS5*D6/2.,-CS6*D6/2.
AE4=CBT*(D3*D1/2.+D3**2)+CBB*(D4**2+D4*D6/2.)
AE5=CEK3*(D1/2.+D3)-CEK4*(D4+D6/2.)
AE6=(CEK1+CEK2-CEK3)*D1/2.-CEK3*D3
AE7=CEK4*D4-(CEK5+CEK6-CEK4)*D6/2.
AE8=CEK3*(D3*D1/2.+D3**2)+CEK4*(D4**2+D4*D6/2.)
AE9=CEK2*W02-CEK1*W01+CS1*WV01-CS2*WV02
AE10=CBT+CBB
AE11=CBT*D3-CBB*D4
AE12=CEK3+CEK4
AE13=CEK3*D3-CEK4*D4
AE14=CS1+CS2+CBT
AE15=0.-CBT*D3
AE16=CEK1+CEK2+CEK3
AE17=0.-CEK3*D3
AE18=CEK2*W02-CEK1*W01+CS2*WV02-CS1*WV01
AE19=CBB*D4
AE20=CEK4+CEK5+CEK6
AE21=CEK4*D4
AE22=CEK4*W04-CEK5*W03+CS6*WV04-CS5*WV03
AE23=CS5*CS6+CBB
IF(N.GE.1)G0T0 395
IF(N.GE.0)G0T0 393
C CALCULATE NATURAL UNDAMPED FREQUENCIES FROM THE EXPANDED DETERMINANT
OF THE EQUATIONS OF MOTION

H=M+1
BE1=AE16/AM2+AE12/AM1+AE20/AM3+AE8/RI
BE2=(AE12*AE16-CEK3*2)/AM1/AM2+AE16*AE20/AM2/AM3+AE8*AE17/AM2/R
I+AE12*AE20/AM1/AM3+AE8*AE12/AM1/RI-CEK4*2/AM1/AM3-(AE5*AE13/AM1)
I-AM2*AE7*AE21/AM3+AE6*AE17/AM2/RI
BE3=(CEK3*2*AE20/RI+AE8*AM3+CEK3*AE6*AE13*AM3-AE12*AE16*AE20*AE8*AM3)
RI-AE8*AE12*AE16*AM3+CEK4*2*AE16*RI+AE5*AE13*AE16*AM3-AE8*AM3
AE20*AM1+AE7*AE16*AE21*AM1-AE8*AE12*AE20*AM2+AE7*AE12*AE21*AM2+C
EK4*2*AE8*AM2+CEK4*AE7*AE13*AM2+CEK4*AE5*AE21*AM2+AE9*AE13*AE20
*AM2+CEK3*AE6*AE13+AM3+AE6*AE17*AE20*AM1/AM1/AM1/
AM2/AM3/RI
BE4=(CEK3*2*AE7*AE21-CEK3*AE6*(CEK4*AE21+AE13*AE20)+
17-CEK3*AE5*AE17*AE20-AM1*AM1*AM1*AM1*AM1*AM1
*M2/AM3/RI
IF(M,GT,1)GOTO 370
FUNC=BE4
SSS=1.0
I=1
350 FUNK=(((SSS-BE1)*SSS+BE2)*SSS+BE3)*SSS+BE4
FUNR=FUNC/FUNK
FUNC=FUNC/FUNK
SSS=SSS*1.05
IF(SSS,LT,1000000.0)GOTO 360
IF(FUR,LT,0.0)GOTO 360
GOTO 350
360 FREQ(I,M)=SSS
ETEST(I)=0.01*FREQ(I,M)
IF(I,EQ,4)GOTO 370
I=I+1
GOTO 350
37 DO 390 I=1,4
IF(M,GT,1)FREQ(I,M)=(FREQ(I,(M-1))*6.2832)**2
IF(FREQ(I,M),GE,1000000.0)GOTO 385
DFQ=(((FREQ(I,M)-BE1)*FREQ(I,M)+BE2)*FREQ(I,M)+BE3)*FREQ(I,M)+BE3
SLOPE=((4.0*FREQ(I,M)-3.0*BE1)*FREQ(I,M)+2.0*BE2)*FREQ(I,M)+BE3
CHFE=FREQ(I,M)
FREQ(I,M)=FREQ(I,M)-DFQ/SLOPE
ESC=ABS(CHFE-FREQ(I,M))
IF(ESC,GT,ETEST(I))GOTO 380
385 FREQ(I,M)=SORT(FREQ(I,M))/6.2832
390 CONTINUE
WRITE(4,12300)FREQ(1,M),FREQ(2,M),FREQ(3,M),FREQ(4,M)
DELT=2.5/FREQ(4,1)
OVER=DELT*VEL/A
IF(OVER.GT.0.3) TIME=TIME+DELT/3.
IF(OVER.LE.0.3 .AND. OVER.GT.0.06) TIME=TIME+DELT
IF(OVER.LE.0.06) TIME=TIME+DELT*3.
GOTO 120

C USE RUNGE-KUTTA FOURTH ORDER METHOD TO SOLVE EQUATIONS OF MOTION IN
C FIRST FOUR TIME STEPS
C CALCULATE K VALUES
393
Z=Z+1
IF(Z.GE.5.0) GOTO 395
IF(Z.EQ.1.0) DELT=DELT/20.
Q=DELT/24.
DO 705 I=1,8
ZT(I,1)=XT(I,5)
705 CONTINUE
DO 700 J=1,4
ET(1,J)=(CEK3*ZT(5,J)+CEK4*ZT(6,J)-AE13*ZT(7,J)-AE10*ZT(1,J)+CBT
Q*ZT(2,J)+CBB*ZT(3,J)-AE11*ZT(8,J)-AE12*ZT(4,J))/AM1
ET(2,J)=(CEK3*ZT(4,J)-AE16*ZT(5,J)-AE17*ZT(7,J)-AE18+CBT*ZT(1,J)
Q-AE14*ZT(2,J)-AE15*ZT(8,J))/AM2
ET(3,J)=(CEK4*ZT(4,J)-AE20*ZT(6,J)-AE21*ZT(7,J)-AE22+CBB*ZT(1,J)
Q-AE23*ZT(3,J)-AE19*ZT(8,J))/AM3
ET(4,J)=ZT(1,J)
ET(5,J)=ZT(2,J)
ET(6,J)=ZT(3,J)
ET(7,J)=ZT(8,J)
ET(8,J)=(0.-AE1*ZT(1,J)-AE2*ZT(2,J)-AE3*ZT(3,J)-AE4*ZT(8,J)-AE5*
Q ZT(4,J)-AE6*ZT(5,J)-AE7*ZT(6,J)-AE8*ZT(7,J)-AE9)/R1
DO 700 I=1,8
ZK(I,J)=DELT*ET(I,J)
ZT(I,(J+1))=XT(I,5)+ZK(I,J)/2.
IF(J.EQ.3) ZT(I,(J+1))=ZT(I,(J+1))+ZK(I,J)/2.
700 CONTINUE
C CALCULATE NEW XT VALUES USING K VALUES
C DO 710 I=1,8
XT(I,6)=XT(I,5)+ZK(I,1)+2.*ZK(I,2)+2.*ZK(I,3)+ZK(I,4))/6.
710 CONTINUE
GOTO 410
C USE ADAMS-MOULTON PREDICTOR-CORRECTOR STEP-BY-STEP SOLUTION AFTER
C FOURTH TIME STEP
C PREDICTED NEW XT VALUES
C 395 DO 400 I=1,8
 XT(I,6)=XT(I,5)+Q*(55.*DT(I,5)-59.*DT(I,4)+37.*DT(I,3)-9.*DT(I,2)
 &)
400 CONTINUE
C CALCULATE NEW DERIVATIVE VALUES FROM SIMULTANEOUS EQUATIONS
C
C JJ=0
410 DT(1,6)=(CEK3*XT(5,6)+CEK4*XT(6,6)-AE13*XT(7,6)-AE10*XT(1,6)+CBT
 &)*XT(2,6)+CBB*XT(3,6)-AE11*XT(8,6)-AE12*XT(4,6))/AM1
 DT(2,6)=(CEK3*XT(4,6)-AE16*XT(5,6)-AE17*XT(7,6)-AE18+CBT*XT(1,6)
 &)-AE14*XT(2,6)-AE15*XT(8,6))/AM2
 DT(3,6)=(CEK4*XT(4,6)-AE20*XT(6,6)-AE21*XT(7,6)-AE22+CBB*XT(1,6)
 &)-AE23*XT(3,6)-AE19*XT(8,6))/AM3
 DT(4,6)=XT(1,6)
 DT(5,6)=XT(2,6)
 DT(6,6)=XT(3,6)
 DT(7,6)=XT(8,6)
 DT(8,6) = (0.-AE1*XT(1,6)-AE2*XT(2,6)-AE3*XT(3,6)-AE4*XT(8,6)-AES*
 &)*XT(4,6)-AE6*XT(5,6)-AE7*XT(6,6)-AE8*XT(7,6)-AE9)/RI
C CALCULATE CORRECTOR VALUES
C
C IF(Z.LT.5)GOTO 600
DO 420 I=1,8
 XT(I,1)=XT(I,5)+Q*(9.*DT(I,6)+19.*DT(I,5)-5.*DT(I,4)+DT(I,3))
420 CONTINUE
C CHECK ACCURACY OF CORRECTED VALUES
C
C IF(JJ.EQ.10)GOTO 600
 JJ=JJ+1
DO 440 I=1,8
 IF(CHECK(I).GT.0.001)GOTO 410
440 CONTINUE
C CALCULATE WHEEL LOADS AND ACCELERATIONS
C
C 600 DO 640 I=1,8
 IF(DT(I,6).GT.200.0)GOTO 810
640 CONTINUE
C AX=CEK1*(XT(5,6)-WD1)+CS1*(XT(2,6)-WV01)
\begin{verbatim}
BX = -CS2*(XT(2,6)+WV02) - CEK2*(XT(5,6)+W02)
CX = CEK5*(XT(6,6)-W03) + CS5*(XT(3,6)-WV03)
DX = -CS6*(XT(3,6)+WV04) - CEK6*(XT(6,6)+W04)
PX = DT(3,6)
HX = DT(1,6) - D4*BT(8,6)
GX = DT(1,6)
FX = DT(1,6) + D3*DT(8,6)
EX = DT(2,6)
YR = TIME
JWR = 32
IF (DELT GT 0.0007) JWR = 16
IF (DELT GT 0.0015) JWR = 8
IF (DELT GT 0.003) JWR = 4
IF (DELT GT 0.0075) JWR = 2
IF (DELT GT 0.015) JWR = 1
IWR = (IJK/JWR)*JWR
IF (IJK EQ IWR) NPTS = 0
IF (N GE 1 AND IJK EQ IWR) NPTS = NPTS + 1
C MOVE ALL XT AND DT VALUES TO NEXT ARRAY POSITION FOR NEXT TIME STEP
C
DO 620 I=1,8
DO 20 J=2,5
XT(I,J) = XT(I,(J+1))
DT(I,J) = DT(I,(J+1))
620 CONTINUE
TIME = TIME + DELT
IF (CS1 NE 0.) TIW1 = TIW1 + DELT
IF (CS2 NE 0.) TIW2 = TIW2 + DELT
IF (CS5 NE 0.) TIW3 = TIW3 + DELT
IF (CS6 NE 0.) TIW4 = TIW4 + DELT
IF (N LE NOB) GOTO 120
GOTO 800
C IF ACCELERATION VALUES EXCEED 200 REDUCE ALL ACCELERATION, VELOCITY
C AND DISPLACEMENT VALUES BY A FACTOR OF 20 AND WRITE WARNING MESSAGE
C
810 DO 820 I=1,8
XT(I,6) = XT(I,6)/20.
DT(I,6) = DT(I,6)/20.
DO 820 J=1,4
ET(I,J) = ET(I,J)/20.
820 CONTINUE
W01 = W01/20.
W02 = W02/20.
\end{verbatim}
U03=W03/20.
W04=W04/20.
WRITE(4,14200)
WRITE(4,14300)TIME
WRITE(4,14200)
GOTO 630
C
END OF LOAD AND ACCELERATION GENERATION
C
800 CALL CLOSE(1)
DELT=DELT*KJR
WRITE(3,12345)DELT,VEL,NOB
WRITE(3,11111)NPTS
CALL CLOSE(2)
READ(2,B01,END=803)(F(I),I=1,3)
801 FORMAT(3A2)
DO 802 J=3,5
B(J)=F(J-2)
802 E(J)=F(J-2)
CALL CLOSE(2)
CALL CLOSE(4)
GOTO 7
803 STOP
11000 FORMAT(4F12.4)
11100 FORMAT(6F12.4)
11111 FORMAT(17)
11200 FORMAT(2I7)
11300 FORMAT(2F12.4)
11400 FORMAT(5F12.4)
11500 FORMAT(/,16,'BUNTON NO.',I6,8X,'GUIDE MISALIGNMENT (IN mms)'=,2F8.2,' .)',16,'GUIDE MISMATCH (IN mms)'='2F8.2)
12100 FORMAT(/,12('************'),//)
12200 FORMAT(17X,'UNDAMPED NATURAL FREQUENCIES'/)
12300 FORMAT(9X,4F11.2)
12345 FORMAT(12,F8.2,F12.4,I6)
12500 FORMAT(5X,'*','INPUT VALUES',,48X,'*','5X','*','48X','***********
12600 FORMAT(5X,'*','108X','*','5X','*','108X','*')
12700 FORMAT(5X,'*','108X','*','5X','*','5X','MASS MOMENT OF INERTIA : RI
12800 FORMAT(5X,'*','19X','BUNTON SPACING =',F6.3,' OVERALL CONVEYANCE LENGTH =',F7.3,29X,'*)
12900 FORMAT(5X,'*','16X','TOP TRANSOM DEPTH =',F7.3,' BODY TOP TO C.G
12388 FORMAT(5X,'*','11X','B
BOTTOM TRANSOM DEPTH = \(F7.3 \times 10^6 \times \text{'} \)
13000 FORMAT(5X,'*',108X,'*/5X,'*','DAMPING : STEELWORK & WHEELS
\(\theta = F7.2, \) 14X,'BRIDLE = F7.2, 33X,'*')
13100 FORMAT(5X,'*',9X,'STEELWORK : GUIDE INERTIA = 'F8.2,9X,'BUNTONS
\(\theta = F12.2,35X,'*')
13200 FORMAT(5X,'*',21X,'WHEEL SPRING = F12.2, BRIDLE TOP = F12.2,
\(\theta = F12.2,6X,'*')
13300 FORMAT(5X,'*',108X,'*/5X,'*','HOISTING SPEED : VEL
\(\theta = F5.1,68X,'*')
13400 FORMAT(5X,'*',108X,'*/5X,'*','WHEEL PRELOAD : PREL
\(\theta = F5.1,67X,'*')
13500 FORMAT(26X,'(TVE IS OUTWARD DISPLACEMENT)',/)
13600 FORMAT(5X,'*',108X,'*/5X,'*','LINEAR DIMENSIONS : 84X,'*')
13700 FORMAT(5X,'*',108X,'*/5X,'*','STIFFNESS VALUES : 85X,'*')
13800 FORMAT(5X,'*',108X,'*/5X,'*','WHEEL DIAMETER = F5.3,20X,
\(\theta = F5.3,10X,'*')
13900 FORMAT(5X,'*',108X,'*/5X,'*','WHEEL CLEARANCE : CLEAR
\(\theta = F5.3,10X,'*')
14000 FORMAT(50X,'UNSTABLE SYSTEM!!')
14300 FORMAT(40X,'ACCELERATIONS, VELOCITIES & DISPLACEMENTS DIVIDED BY
\(\theta = 20.0 \) TIME='F8.2)
14400 FORMAT(10F11,3)
50000 FORMAT(///,T20,80('=',)/,T20,20A4,/,T20,80('=',)/)
END
E. 3 Programme DATAPL

This programme plots DISCS or measured results. The input to this programme is initially interactive, being free format in response to questions.

(i) Filename to plot. This is the six letter filename specified for DISTAT and DISCS as well.

(ii) Total number of channels and highest wheel load channel. For plotting a DISCS run these are 9 and 4, and for plotting measurements, the response is any number up to 9 for the total channels sampled and up to four for the sampled wheel loads.

(iii) Number of channels to be plotted. This is up to four channels on one page.

(iv) Value to plot and number of plot on the page. This gives the channel number and the position on the page, which is 1 at the top to 4 at the bottom.

(v) Start time and time scale. This gives the section of the record which is plotted.

(vi) Vertical scale and minimum value. This is half the peak to peak value to be plotted and the minimum value on the plot. If the scale is given as zero, a scale is calculated by the programme. These values are given for each channel plotted.

The two output files from DISCS or CALIB are also read as input to this programme.
After plotting each channel the computer will pause, and RES must be typed to resume plotting.

Once all channels have been plotted more interactive input is required to either stop or continue plotting.

(vii) More Plots. Response is:

1 - for more plots, return to (vi) above, with same time scale, and start time set to end time of previous plot.
0 - to stop.
Flowchart for DATAPL

Do Loop for Number of Channels

Do Loop for Full Time Range

Read Input

Check Time Range to be plotted & calculate plotting time increment

Read Input to start time

Read Data to be plotted. All channels

Extrapolate between Data points to get plotting points for all channels

Write channels 2 to 4 to Output

Channel 1?

Yes

Read plot Data

No

Scale =0?

Yes

Calculate scale

No

Set plotting Position

Plot Data

Plot Axes

Plot next time range

STOP
Flowchart for DATAPL

1. Read Input
2. Check Time Range to be plotted & calculate plotting time increment
3. Read Input to start time
4. Read Data to be plotted. All channels
5. Extrapolate between Data points to get plotting points for all channels
6. Write channels 2 to 4 to Output
7. Channel 1? (No)
 1. Read plot Data
 2. Scale = 0? (Yes)
 1. Set plotting Position
 2. Calculate scale
 3. Plot Data
 4. Plot Axes
 3. Plot next time range (Yes)
 4. STOP (No)
PROGRAMME DATAPL : Listing

C THIS PROGRAMME PLOTS VALUES OF WHEEL LOADS AND/OR ACCELERATION
C GENERATED BY DISCS OR MEASURED.
C N.B. : EXTRA BUFFERS ARE NEEDED TO RUN THIS PROGRAMME, THUS:
C 1 - $F4PC (TO COMPILE)
C 2 - $TKB
C ENTER OPTIONS:
C $TKB>ACTFIL=6
C $TKB>/
C $TKB> (LINKING COMPLETED)
C
C DIMENSION VAL(2,14),X(1270),Y(1270),SCALE(4),VMIN(4)
LOGICAL*! A(13),B(15)
INTEGER*4 ISAMP,J,ISA,L
INTEGER C(80),JB(4),JC(4)

C INTERACTIVE INPUT AND INPUT FROM FILES CREATED BY DISCS OR CALIB
C
C TYPE 1
1 FORMAT(' FILENAME TO PLOT ?')
READ(S,2)(A(I),I=5,10)
2 FORMAT(6A1)

C TYPE 18
18 FORMAT(/ TOTAL NO
OF CHANNELS & HIGHEST WHEEL LOAD CHANNEL ?')
ACCEPT *,NOCHN,IWH
NOCHN1=NOCHN+1

C TYPE 8
8 FORMAT(' NO OF CHANNELS TO PLOT (MAX 4) ?')
ACCEPT *,NPL

C TYPE 3
3 FORMAT(' VALUE TO PLOT & NUMBER OF PLOT ON PAGE ?')
DO ? IPL=1,NPL
9 ACCEPT *,JB(IPL),JC(IPL)
DATA A(1),A(2),A(3),A(4)/'D','L','1','/'
DO 4 I=1,10
4 B(I)=A(I)
DATA A(11),A(12),A(13),A(14),A(15)/'D','T'/
DATA B(11),B(12),B(13),B(14),B(15)/'D','A','T'/
CALL ASSIGN(1,B,15)
READ(1,5)(C(I),I=1,80)
5 FORMAT(51A1)

C TYPE 6
6 FORMAT(' START TIME & TIME SCALE (1/10 OF RANGE) ?')
ACCEPT *,TIME,TSCALE
READ(1,*),DELT,Q,MH
READ(1,*),ISAMP
CALL CLOSE(1)
HORPL=0
CALL ASSIGN(1,A,15)

502 TYPE 7
FORMAT(' VERT SCALE & MIN VALUE? (SCALE=0, FOR AUTO SCALING)')
DO 10 IPL=1,NPL
10 ACCEPT $,SCALE(IPL),VMIN(IPL)
TIME1=0.0
DT=33.*TSCALE/3800.
JA=1
CALL ASSIGN(2,'DL0:PL0T2.DAT',15)
CALL ASSIGN(3,'DL0:PL0T3.DAT',15)
CALL ASSIGN(4,'DL0:PL0T4.DAT',15)
IF(MORPL.EQ.0)READ(1,5)C(I),I=1,100
IF(DT.LT.DELT)DT=DELT
IF(MORPL.EQ.0)J=TIME/DELT
ISA=10*TSCALE/DELT
IF(ISA.GT*ISAMP)ISA=ISAMP
K=ISA-1
IF(J.GT.50)J=J-50
DO 130 L=1,J
130 READ(1100),VALDUM
DO 110 L=1,K
READ(1,1100)(VAL(2,M),M=1,N0CHN1)
DT1=VAL(2,N0CHN1)-TIME1-TIME
Y(JA)=TIME1+TIME
X(JA)=VAL(2,JB(1))-(VAL(2,JB(1)))-VAL(1,JB(1)))/DELT*DT1
IF(NPL.LE.1)GOTO 120
IF(NPL.LE.2)GOTO 203
IF(NPL.LE.3)GOTO 202
XPL1=VAL(2,JB(4))-(VAL(2,JB(4))-VAL(1,JB(4)))/DELT*DT1
WRITE(2,1111)XPL
XPL2=VAL(2,JB(3))-(VAL(2,JB(3))-VAL(1,JB(3)))/DELT*DT1
WRITE(3,1111)XPL
XPL3=VAL(2,JB(2))-(VAL(2,JB(2))-VAL(1,JB(2)))/DELT*DT1
WRITE(4,1111)XPL
203 TIME1=TIME1+DT
JA=JA+1
C READ MAIN DATA FILE, INTERPOLATING TO ACHIEVE A GOOD TIME STEP FOR C PLOTTING, AND WRITE NEW VALUES TO FILES FOR LATER PLOTTING
C DO 130 L=1,J
130 READ(1,1100)VALDUM
DO 110 L=1,K
READ(1,1100)(VAL(2,M),M=1,N0CHN1)
DT1=VAL(2,N0CHN1)-TIME1-TIME
Y(JA)=TIME1+TIME
X(JA)=VAL(2,JB(1))-(VAL(2,JB(1)))-VAL(1,JB(1)))/DELT*DT1
IF(NPL.LE.1)GOTO 120
IF(NPL.LE.2)GOTO 203
IF(NPL.LE.3)GOTO 202
XPL1=VAL(2,JB(4))-(VAL(2,JB(4))-VAL(1,JB(4)))/DELT*DT1
WRITE(2,1111)XPL
XPL2=VAL(2,JB(3))-(VAL(2,JB(3))-VAL(1,JB(3)))/DELT*DT1
WRITE(3,1111)XPL
XPL3=VAL(2,JB(2))-(VAL(2,JB(2))-VAL(1,JB(2)))/DELT*DT1
WRITE(4,1111)XPL
203 TIME1=TIME1+DT
JA=JA+1
DO 110 II = 1, NOCHN1
VAL(1,II) = VAL(2,II)
110 CONTINUE
J = JA - 1
CALL CLOSE(2)
CALL CLOSE(3)
CALL CLOSE(4)
CALL ASSIGN(4,'PL',3)
CALL PLINIT(1)
CALL PLON

C THE FOLLOWING LOOP PLOTS THE CURVES INDIVIDUALLY - ONE CURVE IS
C PLOTTED EACH TIME THE LOOP IS COMPLETED.

DO 300 IPL = 1, NPL
IF(IPL.EQ.1) GOTO 301
IF(IPL.EQ.2) CALL ASSIGN(2,'DL0:PL0T4.DAT',15)
IF(IPL.EQ.3) CALL ASSIGN(2,'DL0:PL0T3.DAT',15)
IF(IPL.EQ.4) CALL ASSIGN(2,'DL0:PL0T2.DAT',15)
DO 302 IJA = 1, JA
302 READ(2,1111) X(IJA)
301 Z2 = VMIN(IPL)
Z1 = Z2 + 2.*SCALE(IPL)
IF(SCALE(IPL).NE.0,0) GOTO 303
CALL MINVAL(X, JA, Z2)
CALL MAXVAL(X, JA, Z1)
Z3 = ABS(Z2)
DO 200 L = 1, 13
AK = 7.-L
Z1Z = Z1/10.*AK
Z3Z = Z3/10.*AK
IF(Z1Z.GE.1.) GOTO 210
IF(Z3Z.GE.1.) GOTO 210
200 CONTINUE
210 IZ1Z = (Z1Z/2+1)
Z1 = 2.*IZ1Z*10.*AK
IF(Z3.EQ.0.0) Z3 = 0.00001
IZ3Z = (Z3Z/2-1*(Z2/Z3))
Z2 = 2.*IZ3Z*10.*AK*Z2/Z3
303 IF(Z1GE.0.0) Z1A = Z1*1.25
IF(Z1LT.0.0) Z1A = Z1*0.75
IF(Z2GE.0.0) Z2A = Z2*0.75
IF(Z3GE.0.0) Z3A = Z3*0.75
IF(IPL.GT.1) PAUSE ': WHEN PLOTTER STOPS TYPE 'RES' TO RESUME'
CALL TWINDO(TIME-TSCALE,10.*TSCALE+TIME,Z2A,Z1A)
IF(JC(IPL).EQ.1) CALL TWINDO(200,4020,2140,2755)
IF(JC(IPL).EQ.2) CALL TWINDO(200,4060,1485,2100)
IF(JC(IPL),EQ,3)CALL TWINDO(200,4000,830,1445)
IF(JC(IPL),EQ,4)CALL TWINDO(200,4000,175,790)
CALL LINE(Y,X,JA)
CALL MOVEA(Y(JA),0,0)
CALL DRAWA(TIME,0,0)
SCALE(IPL)=(Z2-Z1)/2.
IF(IPL.EQ.2.OR.NPL.EQ.1)CALL AXIS(TIME,Z2,0,"TIME (sec")
IF(JC(IPL),EQ,4)CALL IWINDQ(200,4000,175,790)
CALL LINE(Y,X,JA)
CALL MOVEACYCJA),0.0)
CALL DRAWA(TIME,0.0)
SCALE(IPL)=(Z2-Z1)/2.
IF(IPL.EQ.2.OR.NPL.EQ.1)CALL AXIS(TIME,Z2,0,"TIME (sec")
IF(JB(IPL),LE,IWH)CALL AXIS(TIME,Z2,90,"LOAD (kN)
IF(JB(IPL),GT,IWH)CALL AXIS(TIME,Z2,90,"ACC (m/s^2)
CALL AXIS(TIME,Z2,90,"ACC")
300 CONTINUE
CALL PLOCH(35,60)
CALL DWINDO(0,10,0,10)
CALL TWINDO(200,4000,50,120)
CALL MOVEA(1,4)
CALL AOUT(80,C)
TYPE 501
501 FORMAT(* IF MORE PLOTS ENTER 1 OTHERWISE 0)
ACCEPT *,MORPL
J=1
ISAMP=ISAMP-JA
TIME=VAL(2,NOCHN1)+DELT
CALL CLOSE(4)
IF(MORPL,EQ,1)GOTO 502
CALL CLOSE(1)
CALL PLOFF
1000 FORMAT(2X,F12.4,F12.4,F16)
1100 FORMAT(<NOCHN1>F11.3)
1111 FORMAT(1X,F11.3)
END
C
C THIS SUBROUTINE CALCULATES THE MAXIMUM VALUE ON THE CURVE
C
SUBROUTINE MAXVAL(X,I,A)
DIMENSION X(I)
A=X(1)
K=I-20
DO 100 J=1,K,10
A=AMAX1(A,X(J+1),X(J+2),X(J+3),X(J+4),X(J+5),X(J+6),X(J+7)
100 A=X(J+8),X(J+9))
RETURN
END
C THIS SUBROUTINE CALCULATES THE MINIMUM VALUE ON THE CURVE

SUBROUTINE MINVAL(X,I,A)
DIMENSION X(I)
A=X(I)
K=I-20
DO 100 J=1,K,10
100 A=AMIN1(A,X(J),X(J+1),X(J+2),X(J+3),X(J+4),X(J+5),X(J+6),X(J+7),
 \ X(J+8),X(J+9))
RETURN
END
SUBROUTINE LINE(X,Y,I)
DIMENSION X(I),Y(I)
CALL MOVEA(X(1),Y(1))
DO 100 J=1,I
 CALL DRAWA(X(J),Y(J))
100 RETURN
END
SUBROUTINE AXIS(XA, YA, DEG, TITLE, ITLEN, SCALEB, SCALEA, J)

XA ------ X CO-ORDINATE OF THE START OF THE AXIS
YA ------ Y
DEG ------ ANGLE OF THE AXIS ANTICLOCKWISE FROM THE HORIZONTAL.
 CAN ONLY BE 0., 90., 180.
TITLE -- OUTPUT HEADING (MAX LENGTH 72)
LETTERS MUST BE SEPARATED BY BLANKS
ITLEN -- NO OF LETTERS IN TITLE
SCALEB -- INCREMENTS ON THE AXIS
 IF NEGATIVE HEADING IS PLOTTED ANTI-CLOCKWISE FROM THE AXIS
 POSITIVE = CLOCKWISE
SCALEA -- LENGTH OF THE INCREMENT LINE
 RELATES TO THE SCALE OF THE OTHER AXIS
J ------ NO OF INCREMENTS ON THE AXIS

INTEGER TITLE(72), REF(4), RAF(5), NUM(13), DOT
DATA DOT, RAF(1), RAF(2), RAF(3), '/', '|', ' ', 'E'/
DATA NUM, '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '/
AA=0.
X=X A
Y=YA
AA=ABS(SCALEA)
IF(SCALEB.GT.0.)AA=0.-A
IF(SCALEB.LT.0.)AA=A/2.
SCALE=ABS(SCALEB)
CALL RROTATE(DEG)
CALL LINROT(DEG)
CALL MOVEA(X, Y)
IF(DEG.GT.-1.0.AND.DEG.LT.1.0)G=GAMAX1(J*SCALE+X,ABS(X))
IF(DEG.GT.99.0.AND.DEG.LT.91.0)G=GAMAX1(J*SCALE+Y,ABS(Y))
DO 10 K=1, 13
AK=K-7.
GK=G/10.**AK
IF(GK.LT.10.)GOTO 11
10 CONTINUE
11 MIH=ABS(AK)+1
IREF=0
IF(G.0.E.2.0.AND.G.LE.100.)IREF=1
IF(IREF.EQ.0.)REF(3)=DOT
RAF(5)=NUM(MIH)
IF(AK.LT.0.0.RAF(4)=NUM(12)
IF(AK.GE.0.0.)RAF(4)=NUM(11)
IF(DEG.GT.-1.0.AND.DEG.LT.1.0)AX=X/10.**AK
IF(DEG.GT.89.0.AND.DEG.LT.91.0)AX=Y/10.##AK
IF(DEG.GT.179.0.AND.DEG.LT.181.0)AX=X/10.##AK
XSC=SCALE/10.##AK
XDR=AX-XSC
CALL DRAWR(SCALE*J,0.)
CALL MOVER(-SCALE*J+0.)
CALL PLCHAR(25.49)
J=J+1
IF(DEG.GT.1.0.AND.DEG.LT.1.0)X=X-SCALE
IF(DEG.GT.89.0.AND.DEG.LT.91.0)Y=Y-SCALE
IF(DEG.GT.179.0.AND.DEG.LT.181.0)X=X+SCALE
DO 100 J=J+1
REF(1)=NUM(11)
IF(DEG.GT.1.0.AND.DEG.LT.1.0)X=X+SCALE
IF(DEG.GT.89.0.AND.DEG.LT.91.0)Y=Y+SCALE
CALL MOVEA(X,Y)
CALL DRAWR(0.0,A)
CALL MOVER(-0.2*SCALE,0.0)
XDR=XDR+XSC
IF(XDR.LT.0)REF(1)=NUM(12)
IXA=(ABS(XDR)+0.05)
IF(XDR.GT.0.0)IX=0
IF(XDR.0.0)IX=IXA*(XDR/ABS(XDR))
IF(IREF.EQ.0)REF(2)=NUM(IXA+1)
IXA=(ABS(XDR-IX)*10)+0.5
IF(IREF.EQ.0)REF(4)=NUM(IXA+1)
IF(IREF.EQ.1)CALL REFER(REF,XDR,AK,HUM)
CALL A1OUT(4,REF)
CONTINUE
CALL MOVEA(XA,YA)
CALL MOVER(0.,A*4.)
CALL A1OUT(ITLEN,TITLE)
CALL A1OUT(I,O)CALL A1OUT(S,RAF)
CALL RROAT(O.)
CALL LINRRT(O.)
RETURN
END
SUBROUTINE REFER(REF,XDR,AK,HUM)
INTEGER REF(4),NUM(13)
X=ABS(XDR)*10.##AK+0.5
I=X/100
REF(2)=NUM(I+1)
IF(I.EQ.0)REF(2)=REF(1)
IF(I.EQ.0)REF(1)=NUM(13)
X=X-100.*I
I=X/10
REF(3) = NUM(1 + 1)

I = X - 10 * I

REF(A) = NUM(I + 1)

RETURN

END
E.4 Programme SAMPLER

This programme is used to sample measured data from the tape recorder at a rate of up to 200 Hz. Up to 14 channels can be sampled almost simultaneously.

The input for this programme is interactive and analogue signals.

(i) Data filename. This is a six letter filename which will be used for all analysis or this data. (AA)

(ii) Number of samples per channel and number of channels. (ISAMP, NCHN)

(iii) Sampling rate. This is given in Hz. (RATE)
Sampling starts immediately if the rate is accepted and continues for the specified number of samples.
Flowchart for SAMPLER

- Initialize and Open Files
- Input Sampling Information

Continuous Process

- Sample into Buffers
- Write Full Buffers to Disc and Release for Refilling

Until Sampling

- Read from Disk

Complete

- Set Clock and Buffers Using Standard Routines

Write, Unformatted into Specified File

STOP
PROGRAMME SAMPLER : Listing

IMPLICIT INTEGER (A-W)
INTEGER*4 ISAMP
REAL*4 ADWELL, RATE, DWELL
DIMENSION BUF(1024, 8), IBUF(40), IOSB(2)
LOGICAL AA(15), BB(5), CC(4)
EQUIVALENCE (IBUF(1), IOSB(1))

CALL SETIBF (IBUF, IND) , BUF(1,1), BUF(1,2), BUF(1,3),
 & BUF(1,4), BUF(1,5), BUF(1,6), BUF(1,7), BUF(1,8))
OPEN(unit=1,name='DL1[2,4]SAMPER,DATA1',recordsize=1024,
 & initialsize=2500,type='UNKNOWN',form='UNFORMATTED')

TYPE 1
1 FORMAT(’ DATA FILENAME ?’)
READ(5,2)(AA(I),I=5,10)
2 FORMAT(6A1)
DATA BB ,’A’,’B’,’C’,’D’,’E’/
DATA CC ,’F’,’G’,’H’,’I’,’J’/
DO 3 I=1,5
3 AA(I+10)=BB(I)
DO 7 I=1,4
4 AA(I)=CC(I)

TYPE 4
5 FORMAT(’ NO OF SAMPLES PER CHANNEL AND NO OF CHANNELS ?’)
ACCEPT *ISAMP,NCHN
NBUF=FLOAT(ISAMP)/1024.*FLOAT(NCHN)+1.

SET THE CLOCK RATE AND PRESET FOR THE SWEEP

TYPE 5
6 FORMAT(’ SAMPLING RATE ?’)
ACCEPT *RATE
Dwell=1./RATE
CALL XRATE(DWELL, RATE, IPRSET, 0)
CALL CLOCK (RATE, IPRSET, IND)
ADWELL=XRATE(DWELL, RATE, IPRSET, 0)
WRITE(5,6)ADWELL, RATE, IPRSET
FORMAT(5X’ACTUAL SAMPLING TIME’,F13.5,’ sec’s’,2I8)

THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE ROUTINE

CALL RLSBUF (IBUF, IND, 0,1,2,3,4,5,6,7)

START THE SWEEP, USE 1024 WORD BUFFERS, SAMPLE FOREVER
EVENT FLAG 30, NCHN CHANNELS (0).

CALL ADBSWP (IBUF, 1024, -1, 0, IPNSET,
* 30, 0, NCHN)

HERE WE COULD CHECK THE I/O STATUS BLOCK TO ENSURE
THAT THE SWEEP IS ACTUALLY RUNNING

WRITE (5, 910) IOSB(1)

IBFCNT=0

THIS IS THE TOP OF THE DATA PROCESSING LOOP.WE
WAIT FOR A BUFFER TO BE COMPLETED, AND THEN WRITE
THE BUFFER INTO A DATA FILE - UNFORMATTED

10 IBUFNO = IWTBUF(IBUF, 30)+1

IWTBUF WILL RETURN A POSITIVE NUMBER
AS LONG AS THERE IS A BUFFER OF DATA AVAILABLE
IF RESULT IS -1, WE PROBABLY HAD DATA OVERRUN, SO STOP

IF (IBUFNO .LE. 0) GOTO 100
IBFCNT=IBFCNT+1
WRITE (1) <BUF(I,IBUFNO), I=1,1024)
IF (IBFCNT.GE.NBUF) GOTO 200

RELEASE BUFFER FOR SERVICE ROUTINE TO REFILL

CALL RLSBUF(IBUF,IND,IBUFNO-1)
IF (IND .NE. 1) GOTO 400
GOTO 10

100 WRITE (5, 904)
WRITE (5, 900) IOSB(1), IBFCNT
GOTO 500

CALL STPSWP(IBUF,0,IND)
IF (IND .NE. 1) GOTO 300
WRITE (5, 901)
WRITE (5, 900) IOSB(1), IBFCNT
GOTO 500

300 WRITE (5, 902)
WRITE (5, 900) IOSB(1), IBFCNT
GOTO 500

400 WRITE (5, 903) IBUFNO-1, IBFCNT
500 CLOSE(UNIT=1)
CALL ASSIGN(1, AA, 15)
CALL ASSIGN(2, 'DL1([2,4]SAMPLER, DAT1', 22)
READ(2,END=600)(BUF(I,1),I=1,1024)
WRITE(1)(BUF(I,1),I=1,1024)
GOTO 510
WRITE(1)(BUF(I,1),I=1,1024)
CALL CLOSE(1)
CALL CLOSE(2)
FORMAT(5X,'OPERATION COMPLETE WITH STATUS',I4,' AFTER WRITING',I7,' BUFFERS')
FORMAT(5X,'OPERATION COMPLETED SUCCESSFULLY')
FORMAT(5X,'SWEEP STOP ERROR')
FORMAT(5X,'BUFFER ',I2,' NOT RELEASED AFTER FILLING',I7,' BUFFER')
FORMAT(5X,'NO MORE BUFFERS TO BE EMTIED')
FORMAT(' SWEEP STARTED WITH STATUS =',I4)
FORMAT (3214)
END
E.5 Programme CALIB

This programme reads the unformatted output from SAMPLER, applies the correct scale factor and zero, and writes, in engineering units into a properly formatted file.

The output is initially interactive, requesting the following:

(i) Number of files to be converted. This is simply the number of data files created in sampling one set of tests. (IFIL)

(ii) Heading. This is the first line of all subsequent files to identify them, and is used on all outputs. (HEAD)

(iii) Data filename. This is the basic filename used on all analysis. (A)

(iv) Number of channels, samples each, bunts, time step and velocity. These are the number of channels sampled, the number of samples in each channel, the number of bunts passed in the section sampled, the time step between samples, and the hoisting velocity (NCHN, ISAMP, IBUNT, DWELL, VEL)

(v) Zero values and scale for each channel. These must be given in A/D convertor units i.e.:

\[
\begin{align*}
4096 & = +5 \text{ volts} \\
2048 & = 0 \text{ volts} \\
0 & = -5 \text{ volts}
\end{align*}
\]
The values used here can be calculated, or obtained from the programme INIT.

The programme then reads the output file from SAMPLER, scales it and corrects for zero and then writes two new datafiles in the same format as the DISCS output files.
Flowchart for CALIB

1. Read Input
2. Assign Logical Unit Numbers
3. Write Heading & Basic information to Files
4. Read Data Block
5. Correct for Zero and Scale and Arrange Data into correct channels
6. Write to File

Repeat for all Data Blocks

Repeat for all files

STOP
DIMENSION DATAA(15),DATAB(15),IDAT(15),JDAT(1100),ZERO(14)
DIMENSION SCALEC1 4)
INTEGER*4 ISAMP,HEAD(20,20),JSAMP
LOGICAL*1 A(20,15),B(15),P(15),D(5),E(5),G(5),H(15),AZ(4)
TYPE 15
15 FORMAT(' NUMBER OF FILES TO CONVERT ?')
ACCEPT *,IFIL
DO 16 JI=1,IFIL
16 TYPE 13
FORMAT(' ENTER HEADING (80 CHARS)')
READ(5,14)(HEAD(JI,IH),IH=1,20)
14 FORMAT(20A4)
TYPE 1
1 FORMAT(' DATA FILENAME ?')
16 READ(5,2)(A(JI,I),I=5,10)
2 FORMAT(6A1)
DATA AZ
'D','L','1','/
DATA D /'A','D','T'/
DATA E /'2','.','D','A','T'/'
DATA G /'3','»','D','A','T'/'
DO 25 KL=1,4
B(KL)=AZ(KL)
H(KL)=AZ(KL)
25 P(KL)=AZ(KL)
TYPE 4
4 FORMAT(NO: CHANNELS,SAMPLES EACH,BUNIONS & TIME STEP,VEL ?')
ACCEPT *,NCHN,ISAMP,IBUNT,DWELL,VEL
NCHN1=NCHN+1
TYPE 7
7 FORMAT(' ZERO VALUES AND SCALES FOR EACH CHANNEL ?')
DO 8 I=1,NCHN
8 ACCEPT *,ZERO(I),SCALE(I)
JI=1
17 DO 3 I=5,10
B(I)=A(JI,I)
H(I)=A(JI,I)
P(I)=A(JI,I)
IF(I.EQ.10)GOTO 3
P(I+6)=D(I-4)
B(I+6)=E(I-4)
H(I+6)=G(I-4)
3 CONTINUE
CALL ASSIGN(1,P,15)
CALL ASSIGN(2,B,15)
CALL ASSIGN(3,H,15)
WRITE(2,14)(HEAD(JI,IH),IH=1,20)
WRITE(3,14)(HEAD(JI,IH),IH=1,20)
WRITE(3,1400)DVET,VEL,IVBNT
DATAA(NCHN1)=0.0
IA=1
IB=1024
JSAMP=1
100 READ(1,ERR=200)(JDAT(I),I=IA,IB)
ICHN=IB/NCHN
DO 10 I=1,ICHN
K=(I-1)*NCHN
DO 9 J=1,NCHN
ADAT=(FLT16(JDAT(K+J))-ZERO(J))/SCALE(J)
9 DATAA(J)=ADAT
WRITE(2,1100)(DATAA(I),I=1,NCHN1)
DATAA(NCHN1)=DATAA(NCHN1)+DWELL
JSAMP=JSAMP+1
IF(JSAMP.GT.ISAMP)GOTO 110
CONTINUE
IC=ICHN*NCHN
IA=IB-IC
DO 11 I=1,IA
JDAT(I)=JDAT(IC+I)
IA=IA+1
IB=IB+1023
GOTO 100
110 CALL CLOSE(1)
CALL CLOSE(2)
JSAMP=JSAMP-1
WRITE(3,1500)JSAMP
CALL CLOSE(3)
JI=JI+1
IF(JI.LE.IFIL)GOTO 17
STOP
200 WRITE(5,1200)JSAMP
GOTO 110
1000 FORMAT(3214)
1100 FORMAT(<NCHN1>F11.3)
1200 FORMAT(5X,'READ ERROR AT SAMPLE NO ',I7)
1400 FORMAT(F12.8,F12.4,I6)
1500 FORMAT(17)
END
E.6 Programme INIT

This programme samples slowly, any specified channels. It is used to calculate zero correction and scale factors for sampled data.

The input is:

(i) Sampling time and number of channels. The sampling time should be 0.3 to 0.7 seconds usually. (ZDWell, NCHN)

The A/D convertor then reads the specified channels and the values are displayed on the terminal for as long as desired.
Flowchart for INIT

- Read Analogue Input
- Write Output to Terminal
- Set A/D Converter Using Standard Routines
- Input Rate and Channel Information
- Initialize and Set Buffers

Continue Until
Aborted
PROGRAMME INIT : Listing

IMPLICIT INTEGER (A-W)
DIMENSION BUF(308,8), IBUF(40), I0SB(2)
EQUIVALENCEx (IBUF(1), I0SB(1))

INITT : THE IBUF ARRAY FOR THE A/D SWEEP

CALL SETIBF (IBUF, IND, BUF(1,1), BUF(1,2), BUF(1,3),
* BUF(1,4), BUF(1,5), BUF(1,6), BUF(1,7), BUF(1,8))
WRITE (5, 900)
READ (5, *) ZDWell, NCHN
IF(NCHN.EQ. 1) JJB=22
IF(NCHN.EQ. 2) JJB=44
IF(NCHN.EQ. 3) JJB=66
IF(NCHN.EQ. 4) JJB=88
IF(NCHN.EQ. 5) JJB=110
IF(NCHN.EQ. 6) JJB=132
IF(NCHN.EQ. 7) JJB=154
IF(NCHN.EQ. 8) JJB=176
IF(NCHN.EQ. 9) JJB=198
IF(NCHN.EQ. 10) JJB=220
IF(NCHN.EQ. 11) JJB=242
IF(NCHN.EQ. 12) JJB=264
IF(NCHN.EQ. 13) JJB=286
IF(NCHN.EQ. 14) JJB=308
CALL XRATE(ZDWell, IRATE, IPRSET, 0)

SET THE CLOCK RATE AND PRESET FOR THE SWEEP

CALL CLOCKA (IRATE, IPRSET, IND)

THIS IS INPUT, SO RELEASE ALL BUFFERS TO SERVICE ROUTINE

CALL PLSRBUF (IBUF, IND, 0, 1, 2, 3, 4, 5, 6, 7)

START THE SWEEP, USE SPECIFIED SIZE BUFFERS, SAMPLE FOREVER, EVENT FLAG 30, SPECIFIED CHANNELS (0).

CALL ADSWP (IBUF, JJB, -1, 0, IPRSET,
* 30, 0, 0, NCHN)

HERE WE COULD CHECK THE I/O STATUS BLOCK TO ENSURE THAT THE SWEEP IS ACTUALLY RUNNING

WRITE (5, 910) I0SB(1)
IFBCNT=0

THIS IS THE TOP OF THE DATA PROCESSING LOOP. WE
WAIT FOR A BUFFER TO BE COMPLETED, AND THEN DUMP
THE BUFFER TO THE SCREEN

10

IBUFNO = IWTBUF(IBUF, 30)+1

IWTBUF WILL RETURN A POSITIVE NUMBER
AS LONG AS THERE IS A BUFFER OF DATA AVAILABLE
IF RESULT IS -1, WE PROBABLY HAD DATA OVERRUN, SO STOP

IF (IBUFNO .LE. 0) STOP

IBFCNT=IBFCNT+1

WRITE (5,920) IBFCNT

IF(NCHN.EQ. 1)WRITE(5,931)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ. 2)WRITE(5,932)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ. 3)WRITE(5,933)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ. 4)WRITE(5,934)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ. 5)WRITE(5,935)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ. 6)WRITE(5,936)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ. 7)WRITE(5,937)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ. 8)WRITE(5,938)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ. 9)WRITE(5,939)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ.10)WRITE(5,940)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ.11)WRITE(5,941)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ.12)WRITE(5,942)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ.13)WRITE(5,943)(BUF(I,IBUFNO),I=1,JJB)
IF(NCHN.EQ.14)WRITE(5,944)(BUF(I,IBUFNO),I=1,JJB)

RELEASE BUFFER FOR SERVICE ROUTINE TO REFILL

CALL RLSBUF(IBUF,IND,IBUFNO-1)

GOTO 10

900 FORMAT (' ENTER SAMPLING TIME, NO OF CHANNELS: ', $)
910 FORMAT (' STATUS IS ', I4)
920 FORMAT (' DUMP OF BUFFER NUMBER ',I5,/)
941 FORMAT(1X,11I5)
942 FORMAT(1X,12I5)
943 FORMAT(1X,13I5)
944 FORMAT(1X,14I5)
END
E.7 Programme DYNMAG

This programme calculates areas of high dynamic magnification, in accordance with both the CSIR and German methods mentioned in the text of this report.

The input is all interactive.

(i) Enter rotational inertia, mass, and (wheel) spring stiffness. (RI, AM, SS)

(ii) Enter conveyance length, i.e. the overall length between wheels. (Z)

(iii) Enter the guide inertia and bunton stiffness. (GI, BS)

(iv) Enter the distance from the centre of gravity to the bottom of the conveyance. (AL)

(v) Enter damping ratio as percentage. This should usually be entered as 1 or 2. (CS)

(vi) Enter '1' for CSIR and German, or '0' for German only. This simply refers to the method by which the areas of magnification are calculated. (ICG)

The output from this programme is in the form of a graph of hoisting velocity against bunton spacing, on which the areas of dynamic magnification are plotted.
Flowchart for DYNMAG

1. Initiate
2. Initiate Plotting and Plotting position
3. Read Interactive Input
4. Plot Axes
5. ICG = ?
 - Yes
 - Increment Velocity
 - Calculate CSIR Magnification
 - Magnification
 - Yes
 - Plot Position
 - No
 - Vel < 50
 - Yes
 - Solve German Equation
 - Plot solutions
 - Increment Bunton Spacing
 - Bunt SP < 10,5
 - Yes
 - STOP
 - NO
 - No
 - STOP
C THIS PROGRAMME CALCULATES DYNAMIC MAGNIFICATION IN
C ACCORDANCE WITH CSIR REPORT MEG 706,
C
DIMENSION RES(4),VEL(4)
REAL K1,K2,K3,K4,LE
REAL*8 CONS1,CONS2,CONS3,CONS4,FUNC
INTEGER IPL(2)
DATA IPL/'1','0'/
CALL ASSIGN(4,'PL:',3)
CALL PLINIT(1)
CALL PLON
CALL DWIND0(-10.5,5,-3.,52.)
CALL TWIND0(150,1850,150,2350)
CALL MOVEA(0.,0.)
TYPE 1
1 FORMAT(' ENTER ROT INERTIA, MASS, AND SPRING STIFF')
ACCEPT *,RI,AM,SS
THETA=RI
AMK=AM
TYPE 2
2 FORMAT(' ENTER CONV LENGTH')
ACCEPT *,Z
H=Z
A=0.5
I=Z/2.
TYPE 3
3 FORMAT(' ENTER GUIDE INERTIA AND BUNTON STIFFNESS')
ACCEPT *,GI,BS
TYPE 7
7 FORMAT(' ENTER DISTANCE FROM C.G.T0 BOTTOM')
ACCEPT *,AL
TYPE 8
8 FORMAT(' ENTER DAMPING RATIO AS %')
ACCEPT *,CS
PX=SQR(SS/AM)*2.
ROE=SQR(RI/AM)
TYPE 6
6 FORMAT(' ENTER '1' FOR CSIR & '0' FOR GERMAN ONLY')
ACCEPT *,ICG
CALL AXIS(0.,0.,90.,' V E L (m / s) ',13,10.,2,5)
CALL AXIS(0.,0.,180.,' B U N T S P A C I N G ',13,-2.,5,5)
CALL MOVEA(0.,50.)
CALL DRAWA(-10.,50.)
CALL DRAWA(-10.,0.)
5 V=O.
LE=A
IF (ICG, EQ, 0) GOTO 20
IF (Z, LT, A) ALPH = 6.283 * (2 * Z - A) / A
IF (Z, GE, A, AND, Z, LT, 1.5 * A) ALPH = 6.283 * (2 * Z - 2 * A) / A
IF (Z, GE, 1.5 * A, AND, Z, LT, 2.0 * A) ALPH = 6.283 * (2 * Z - 3 * A) / A
V = V + 1.0
ALPHA = 6.283 * V / A
BB = 2 * BB / (ROI)**2 * SQRT(2 * (1 - COS(ALPHA))) / 2 * (Z**2 / ROI**2 - ETA**2)
F = SQRT(ALPHA**2 + BB**2 - 2 * ALPHA * COS(ALPHA / 2))
IF (F, LT, 4) GOTO 19
CALL PLCHAR(20, 30)
CALL MOVEA(-ArV)
CALL A1OUT(1, IPL(1))
IF (U, LT, 50) GOTO 4
THIS PROGRAMME CALCULATES INSTABILITY FOLLOWING THE GERMAN REPORT
CC = 162.42 * 8.06 / (3 * LE)**3,
BS1 = 1. / (L / BS1**5)
BS2 = BS1**7 * 3 / (CC / BS1, 3)
GK = CC / (2.66 - 12.555 * BS1 * 0.111 * BS2)
CENS = CC / (3.375 - 16.531 * BS1)
CENS = CENS / (CENS + SS)
ALO = GK + CENS
AL1 = 0.5 * (GK - CENS)
AO = ALO
AL = AL1 * (1 + COS(6.2832 * H / LE))
AM = ALO / 2. * (H - A1)
AN = AL1 * (H - AL) / (6.2832 * H / LE)
AM1 = AL1 * H * SIN(6.2832 * H / LE)
Q0 = ALO / 2. * (H - AL)**2 + AL**2
Q1 = AL1 * (H - AL)**2 + AL**2 * COS(6.2832 * H / LE)
WO1 = SQRT(W0 / AMK)
WO2 = SQRT(Q0 / THETA)
RR = CS / 100 * W0 / AMK
R1 = 4. * RR / AMK
R2 = 2. * RR / (H - AL)**2 + AL**2 / THETA
C0 = AO / AMK + A1 / 2 / AMK
C1 = AO/AMK - A1/2 / AMK
C2 = GO/THETA + G1/2 / THETA
C3 = GO/THETA - G1/2 / THETA
K1 = AO/AMK + AM1/2 / AMK
K2 = AO/AMK - AM1/2 / AMK
K3 = AO/THETA + AM1/2 / THETA
K4 = AO/THETA - AM1/2 / THETA
BB = AM1/2 / AMK
AA = AM1/2 / THETA
PHI = 0.
J = 1
CONS1 = C0 + C1 + C2 + C3 - R1*2 - R2*2
CONS2 = C1 * C0 + C2 * C3 - 2 * AA*BB - K1*K3 - K2*K4 + (R1*2, - C1 - C0) * (R2*2, - C2)
CONS3 = C2*C3*(C0+C1) + C0*C1*(C2+C3) - AA*BB*(C0+C1+C2+C3) - R1*R2*(K1*K4+K2*K3) - R1*K2*C3 - R2*K2*C2 - C0*C1 - K3*C1 - K4*C2 + K3*K4 + K1*K3 + K2*K4 + C0*C2
CONS4 = - K1*K3*K4 + AA*BB*(C1+C2+C0+C3) - C0*C1*C2*C3 - AA*BB - K1*K2 + BB*2

100 FUNC = PHI**2 + PHI**6 + CONS1 - PHI**4 + CONS2 + PHI**2 + CONS3 + CONS4

IF (PHI .EQ. 0. AND. FUNC .LT. 0.) I = 1
IF (PHI .EQ. 0. AND. FUNC .GE. 0.) I = 2
IF (I .EQ. 1 .AND. FUNC .GE. 0.) GOTO 110
IF (I .EQ. 2 .AND. FUNC .LT. 0.) GOTO 110
IF (PHI .EQ. 0. OR. 50.) GOTO 120
PHI = PHI + 0.1
GOTO 100

110 RES (J) = FJ
IF (J .EQ. 4) GOTO 120
J = J + 1
I = 2 / I
PHI = PHI + 0.1
GOTO 100

120 DO 130 J = 1, 4
VEL (J) = RES (J) * LE / 3.1416
IF (VEL (J) .EQ. 0.0) GOTO 130
CALL MOVEA (- LE, VEL (J))
CALL AIDOUT (1, IPL (2))
RES (J) = 0.0

130 CONTINUE
A = A + 0.5
IF (A .LT. 10.5) GOTO 5
STOP
END
E.8 Programme TF

This programme calculates a transfer function between any two calculated power spectra. The interactive input is:

(i) Filename

(ii) Transfer function between versions 'N1' and 'N2'. Each power spectrum with the same filename, i.e. from the same run, is a new version of the same filename, versions being in octal.

i.e. Channel 1 = version 1
2 = 2
3 = 3
4 = 4
5 = 5
6 = 6
7 = 7
8 = 10
9 = 11
10 = 12
11 = 13

etc.

The specified power spectra are then read and the first one is divided by the second and the square root of the solution gives the result, which is printed out.
Flowchart of programme TF

1. Initialize
2. Read Input
3. Assign Files
4. Read Heading
5. Read size of Power Spectrum
6. Read Power Spectrum
7. Sum Consecutive Spectra
8. Calculate Transfer Function
 \[TF = \frac{\text{sum}_1}{\text{sum}_2} \]
9. Write Output
10. Stop
LISTING OF PROGRAMME TF

C PROGRAMME TF
C THIS PROGRAMME CALCULATES THE TRANSFER FUNCTION BETWEEN ANY TWO MEASURED FUNCTIONS,
LOGICAL*! A(18), B(18), HEAD(80)
DIMENSION X(512), XX(512), F(512)

TYPE 1
1 FORMAT(' FILENAME')
READ(5,2)(A(I), I=5,10)
2 FORMAT(6A1)
DATA A(1), A(2), A(3), A(4), 'D', 'L', 'L', '1', '1', /
DATA A(11), A(12), A(13), A(14), A(15), A(16), '5', '3', 'D', 'A', 'T', /

TYPE 2
3 FORMAT(' TRANSFER FUNCTION BETWEEN VERSIONS 'N1 & 'N2 (SEPARATE LINES)')
READ(5,4)(A(I), I=17,18)
READ(5,4)(B(I), I=17,18)
4 FORMAT(80A1)
DO 5 I=1,16
5 B(I)=A(I)
CALL ASSIGN(1, A, 18)
CALL ASSIGN(2, B, 18)

C READ INPUT
C READ(1,14) (HEAD(I), I=1,80)
READ(2,14) (HEAD(I), I=1,80)
L=0
6 READ(1,7, END=8) J
READ(2,7, END=8) J
DO 9 I=1, J
READ(1,10) DUM, Z, F(I)
IF (F(I), GE. 25.0, AND, L, EQ. 0) L=I/4
READ(2,10) DUM, Y, DOM
XX(I)=Y+XX(I)
9 X(I)=Z+X(I)
7 FORMAT(5X, I4)
10 FORMAT(5X, 3F10.6)
GOTO 6

C CALCULATE TRANSFER FUNCTION
C DO 11 I=1, J
IF (XX(I), EQ. 0,) XX(I)=0.0001
11 X(I)=SQR(T(X(I)/XX(I)))
WRITE(6,13) F(I+3L), F(I+4L), F(I+5L)

STOP

END

WRITE(6,13) F(I), F(I+L), F(I+2L), F(I+3L)

FORMAT(5X,BI4.0,5X,BI5.0)

DO 12 I = 1, 180, 1
 DO 11 J = 1, 17, 1
 WRITE(6,13) F(I), X(I+J), F(I+J)

 11 CONTINUE

12 CONTINUE

FORMAT(4(8X,F8.3,2X,F8.5))
APPENDIX E.9 PROGRAMME INTEG

This programme calculates the velocity and displacement of a conveyance from an acceleration record.

The data is initially corrected to zero mean and zero linear slope, and it is then integrated to give the curve of velocity. This is again corrected to zero mean and zero linear slope and integrated to give the displacement. The output is written into a file DL1: Filename 7.DAT which can then be plotted by VELPL (which is similar to DATAPL so it is not described here).

The input to INTEG is a filename and then the output from either DISCS or CALIB.
PROGRAMME INTEG : FLOWCHART

Assign I/O files

Read input

Subroutine AMEAN corrects data to zero mean

Integrate 2nd point using trapezoidal rule

Integrate 3rd point with Simpson’s \(\frac{3}{2} \) rule

Integrate 1st point using back extrapolation

Integrate remaining points using difference between Simpson’s \(\frac{3}{2} \) and \(\frac{3}{2} \) rules

Subroutine BMEAN corrects displacement for zero mean

Close files

STOP
C PROGRAMME INTEG
C THIS PROGRAMME PERFORMS A DOUBLE INTEGRATION ON A RECORD
C TO OBTAIN VELOCITY AND DISPLACEMENT FROM ACCELERATION

DIMENSION X(4,2000),Y(10),TC,,1TR.

LOGICAL! IN<15)>IM(15) iHEAD<80)113fI7»IPtl

TYPE 1
1 FORMAT(' FILENAME TO INTEGRATE')
READ(5,2)(IN(I),I=5,10)

2 DATA*IN(1),IN(2),IN(3),IN(4),IN(11),IN(12),IN(13),IN(14),IN(15)

DO 3 I=1,15
IP(I)=IN(I)
3 IM(I)=IN(I)
IP(11)=I3
IP(11)=17

TYPE 4
4 FORMAT(' CHANNEL & TOTAL NO OF CHANNELS')
ACCEPT #,ICHN,JCHN

TYPE 6
6 FORMAT(' START & END SAMPLE NUMBERS')
ACCEPT #,IST,IPT
IPT=IPT-IST
JCHN=JCHN+1

100 CALL ASSIGN(1,IN,15)
CALL ASSIGN(2,IM,15)
CALL ASSIGN(3,IP,15)
READ(1,5)(HEAD(I),I=1,80)
READ(2,5)(HEAD(I),I=1,80)
WRITE(3,5)(HEAD(I),I=1,80)

5 FORMAT(BOA1)
READ(2,7)H,VEL,IBUNT
7 FORMAT(3X,F12.4,F12.4,I6)
READ(2,8)IS
8 FORMAT(17)
IF(IPT.GT.IS)IPT=IS
DO 11 J=1,IST
11 READ(1,9)DUM
DO 16 J=1,IPT
READ(1,9)X(I,J),Y(I,J)
X(I,J)=Y(JCHN)
X(4,J)=Y(JCHN)
16 CONTINUE
9 FORMAT(<JCHN>F11.3)
C USE TRAPEZOIDAL RULE FOR SECOND POINT
C
DO 10 J=2,3
CALL AMEAN(X,IPT,J-1)
X(J,2)=H/2.*(X(J-1,1)+X(J-1,2))
C USE SIMPSON'S 1/3 RULE FOR 3RD POINT
C
X(J,3)=H/3.*(X(J-1,1)+4.*X(J-1,2)+X(J-1,3))
C USE LINEAR BACK EXTRAPOLATION FOR 1ST POINT
C
X(J,1)=2.*(X(J,2)-X(J,3))
DO 14 L=4,IPT
C USE DIFFERENCE BETWEEN SIMPSON'S 3/8 AND 1/3 RULES FOR EACH SUBSEQUENT POINT.
C
14 X(J,L)=H/24.*(X((J-1),(L-3))-5.*X(J-1),(L-2))+9.*X(J-1),(L-1)+X(J,L))
10 CONTINUE
IF(IPT.GT.500)CALL BMEAN(X,IPT)
DO 15 L=1,IPT
15 WRITE(3,13)X(1,L),X(2,L),X(3,L),X(4,L)
READ(2,2,END=101)(IN(I),I=5,10)
CALL CLOSE(3)
CALL CLOSE(2)
102 IP(I)=IN(I)
101 CALL CLOSE(2)
13 FORMAT(4F11.3)
STOP
END
C
C THIS SUBROUTINE CALCULATES THE MEAN OF THE DATA
C
SUBROUTINE AMEAN(X,IPT,J)
REAL*8 SUM4
DIMENSION X(4,2000)
KPT=IPT/2
SUM1=0.
SUM2=0.
DO 10 I=1,KPT
10 CONTINUE
C THIS SUBROUTINE CORRECTS DISPLACEMENT FOR ZERO
C
SUBROUTINE BMEANCX,IPT)
DIMENSION X(4,2000)
KPT=IPT/500
LPT=IPT-KPT*500
DO 10 I=1,KPT
SUM=0.
DO 20 J=(I-1)*500+1,1*500
20 SUM=SUM+X(3,J)
 SUM=SUM/500
DO 30 J=(I-1)*500+1,1*500
30 X(3,J)=X(3,J)-SUM
10 CONTINUE
SUM=0.
IF(LPT,EQ.0)GOTO 60
DO 40 I=KPT*KPT+1,IPT
40 SUM=SUM+X(3,I)
 SUM=SUM/LPT
DO 50 I=KPT*KPT+1,IPT
50 X(3,I)=X(3,I)-SUM
60 RETURN
END
E.10 PROGRAMME LAYOUT

The interrelation of all the programmes is shown schematically below:

PREDICTIONS || **MEASUREMENTS**
---|---
Basic input data | measurements from A/D convertor
DISCAT | SAMPLE
DL: filename 1.DAT | DL: filename 4.DAT
DISCS | CALIB
DL: filename 2.DAT | DL: filename 2.DAT
DL: filename 3.DAT | DL: filename 3.DAT

ANALYSIS

<table>
<thead>
<tr>
<th>DATAPL</th>
<th>PCNER</th>
<th>FFT</th>
<th>CMP</th>
<th>INTEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL: filename 8.DAT (permanent record of peak values)</td>
<td>Plotter and Printer output of transfer functions</td>
<td>Printer output of correlations or covariances</td>
<td>Plotter output of acceleration, velocity and displacement</td>
<td></td>
</tr>
</tbody>
</table>
This appendix shows the results from one run at Deelkraal No. 1 shaft in the 21 tonne skip running empty at 10 m/s, as well as the DISCS model of the same case. It was not felt necessary to include more results, which would in any case have been far too length. The results shown here represent one of eighteen runs completed at Deelkraal, which was typical of the sets of measurements obtained at each mine when tests were conducted.
RUN SAMPLER
DATA FILENAME ?
DK1009
NO OF SAMPLES PER CHANNEL AND NO OF CHANNELS ?
6000 6
SAMPLING RATE ?
1.0
ACTUAL SAMPLING TIME 0.01000 secs 1 -10000
Sweep started with status = 0
Operation completed successfully
Operation complete with status 0 after writing 36 buffers

RUN CALIB
NUMBER OF FILES TO CONVERT ?
1
ENTER HEADING (80 CHARs)
DEELKRAAL 11 21 T SKIP EMPTY 10H/S
DATA FILENAME ?
DK1009
NO OF CHANNELS;SAMPLES EACH;RUNTIONS & TIME STEP,VEL ?
6 6000 150 0.01 10.
ZERO VALUES AND SCALES FOR EACH CHANNEL ?
2075. -1.6
2230. -9.0
2270. 10.4
2860. 10.4
2040. 10.4
2035. 10.5\5\4
TT1 -- STOP.
RUN DATAPL
FILENAME TO PLOT ?
BK1008
TOTAL NO OF CHANNELS & HIGHEST WHEEL LOAD CHANNEL ?
6 2
NO OF CHANNELS TO PLOT (MAX 4) ?
4
VALUE TO PLOT & NUMBER OF PLOT ON PAGE ?
1 1
2 2
3 3
4
START TIME & TIME SCALE (1/10 OF RANGE) ?
0 . 1
VERT SCALE & MIN VALUE? (SCALE=0, FOR AUTO SCALING)
10 : 0
10 : -10
TT1 -- PAUSE : WHEN PLOTTER STOPS TYPE 'RES' TO RESUME
RES

TT1 -- PAUSE : WHEN PLOTTER STOPS TYPE 'RES' TO RESUME
RES

TT1 -- PAUSE : WHEN PLOTTER STOPS TYPE 'RES' TO RESUME
RES

IF MORE PLOTS ENTER 1 OTHERWISE 0
0

RUN DATAPL
FILENAME TO PLOT ?
BK1008
TOTAL NO OF CHANNELS & HIGHEST WHEEL LOAD CHANNEL ?
6 2
NO OF CHANNELS TO PLOT (MAX 4) ?
2
VALUE TO PLOT & NUMBER OF PLOT ON PAGE ?
5 2
6 3
START TIME & TIME SCALE (1/10 OF RANGE) ?
0 . 1
VERT SCALE & MIN VALUE? (SCALE=0, FOR AUTO SCALING)
10 : -10
10 : -10
TT1 -- PAUSE : WHEN PLOTTER STOPS TYPE 'RES' TO RESUME
RES

RAES\SE4\ES

IF MORE PLOTS ENTER 1 OTHERWISE 0
0
DEELKRAAL 10\degree DOWN EMPTY 10M/S
RUN POWER

INPUT DATA FILE NAME (6 CHAPS)
DK1001

ENTER NO OF RETURN EVENTS :
5

ENTER RETURN PERIODS ONE AT A TIME :
500...
10000
1000000
10000000
1000000000

NUMBER OF WHEEL LOADS IN DATA ?
2

ENTER '1' FOR DATA PRINTOUT, '2' TO STORE DATA. ----- ELSE NUMBER '0'
2
FIRST WHEEL ANALYSIS

STATISTICAL DATA

<table>
<thead>
<tr>
<th>UN TRANSFORMED</th>
<th>SMEMAX TRANSFORMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>STD DEV</td>
</tr>
<tr>
<td>5203.4199</td>
<td>2132.6109</td>
</tr>
<tr>
<td>3543.0081</td>
<td>2768.6421</td>
</tr>
</tbody>
</table>

PREDICTIONS

<table>
<thead>
<tr>
<th>RETURN PERIOD</th>
<th>PROBABILITY OF OCCURANCE</th>
<th>SMEMAX TRANSFORMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.0</td>
<td>0.000200000</td>
<td>15179.8390</td>
</tr>
<tr>
<td>10000.0</td>
<td>0.000100000</td>
<td>18654.1655</td>
</tr>
<tr>
<td>100000.0</td>
<td>0.000010000</td>
<td>20915.3312</td>
</tr>
<tr>
<td>1000000.0</td>
<td>0.000001000</td>
<td>22939.4121</td>
</tr>
<tr>
<td>10000000.0</td>
<td>0.000000100</td>
<td>26496.5273</td>
</tr>
</tbody>
</table>

SECOND WHEEL ANALYSIS

STATISTICAL DATA

<table>
<thead>
<tr>
<th>UN TRANSFORMED</th>
<th>SMEMAX TRANSFORMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>STD DEV</td>
</tr>
<tr>
<td>5151.8335</td>
<td>1740.3304</td>
</tr>
<tr>
<td>2086.1118</td>
<td>1614.4451</td>
</tr>
</tbody>
</table>

PREDICTIONS

<table>
<thead>
<tr>
<th>RETURN PERIOD</th>
<th>PROBABILITY OF OCCURANCE</th>
<th>SMEMAX TRANSFORMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.0</td>
<td>0.000200000</td>
<td>13034.8613</td>
</tr>
<tr>
<td>10000.0</td>
<td>0.000100000</td>
<td>16493.0039</td>
</tr>
<tr>
<td>100000.0</td>
<td>0.000010000</td>
<td>19725.1469</td>
</tr>
<tr>
<td>1000000.0</td>
<td>0.000001000</td>
<td>22409.9439</td>
</tr>
</tbody>
</table>
RUN FFTAUTO

ENTER INPUT DATA FILE NAME (6 CHRS) ie BULLEY
DK1002
NUMBER OF FFT'S ?
5

ENTER THE DEGREE OF POLYNOMIAL TO BE REMOVED
"0" FOR CONSTANT, "1" FOR LINEAR
0

ENTER PROPORTION OF DATA TO BE TAPERED (ie 0.2)
.2

ENTER SERIES LENGTH
512

ENTER DATA POINTS BEFORE ANALYSIS SECTION
1500

ENTER 'NO' FOR DATA CHANNEL TO BE ANALYSED
AND 'NCHN' FOR NUMBER OF CHANNELS
1 6
<table>
<thead>
<tr>
<th>FREQ</th>
<th>RDN SPEC</th>
<th>SUM SPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.1124</td>
<td>0.1124</td>
<td>0.29</td>
<td>0.0524</td>
<td>0.1604</td>
<td>1.20</td>
<td>0.0879</td>
<td>1.4225</td>
<td>0.78</td>
<td>0.2590</td>
<td>0.5583</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1471</td>
<td>0.1471</td>
<td>1.55</td>
<td>0.1503</td>
<td>0.3653</td>
<td>2.10</td>
<td>0.1425</td>
<td>1.4225</td>
<td>1.56</td>
<td>0.1503</td>
<td>0.3653</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2176</td>
<td>0.2176</td>
<td>1.55</td>
<td>0.1425</td>
<td>1.4225</td>
<td>2.10</td>
<td>0.1425</td>
<td>1.4225</td>
<td>1.56</td>
<td>0.1503</td>
<td>0.3653</td>
</tr>
<tr>
<td>1.5</td>
<td>0.1208</td>
<td>1.7841</td>
<td>2.93</td>
<td>0.0159</td>
<td>2.0437</td>
<td>7.47</td>
<td>0.0080</td>
<td>2.1144</td>
<td>4.47</td>
<td>0.0023</td>
<td>2.1167</td>
</tr>
<tr>
<td>2.0</td>
<td>0.2793</td>
<td>3.2881</td>
<td>8.05</td>
<td>0.0137</td>
<td>2.1263</td>
<td>12.02</td>
<td>0.0017</td>
<td>2.1313</td>
<td>5.47</td>
<td>0.0099</td>
<td>2.1222</td>
</tr>
<tr>
<td>2.5</td>
<td>0.1329</td>
<td>1.1034</td>
<td>6.04</td>
<td>0.0137</td>
<td>2.1263</td>
<td>12.02</td>
<td>0.0017</td>
<td>2.1313</td>
<td>6.25</td>
<td>0.0197</td>
<td>2.1201</td>
</tr>
<tr>
<td>3.0</td>
<td>0.2793</td>
<td>3.2881</td>
<td>2.52</td>
<td>0.0137</td>
<td>2.1263</td>
<td>12.02</td>
<td>0.0017</td>
<td>2.1313</td>
<td>7.03</td>
<td>0.0006</td>
<td>2.1228</td>
</tr>
<tr>
<td>3.5</td>
<td>0.1329</td>
<td>1.1034</td>
<td>6.04</td>
<td>0.0137</td>
<td>2.1263</td>
<td>12.02</td>
<td>0.0017</td>
<td>2.1313</td>
<td>7.81</td>
<td>0.0004</td>
<td>2.1357</td>
</tr>
<tr>
<td>4.0</td>
<td>0.2793</td>
<td>3.2881</td>
<td>2.52</td>
<td>0.0137</td>
<td>2.1263</td>
<td>12.02</td>
<td>0.0017</td>
<td>2.1313</td>
<td>8.59</td>
<td>0.0003</td>
<td>2.1302</td>
</tr>
<tr>
<td>4.5</td>
<td>0.1329</td>
<td>1.1034</td>
<td>6.04</td>
<td>0.0137</td>
<td>2.1263</td>
<td>12.02</td>
<td>0.0017</td>
<td>2.1313</td>
<td>9.37</td>
<td>0.0004</td>
<td>2.1400</td>
</tr>
<tr>
<td>5.0</td>
<td>0.2793</td>
<td>3.2881</td>
<td>2.52</td>
<td>0.0137</td>
<td>2.1263</td>
<td>12.02</td>
<td>0.0017</td>
<td>2.1313</td>
<td>10.16</td>
<td>0.0007</td>
<td>2.1421</td>
</tr>
</tbody>
</table>

ENTER 1, 2, 3 OR 4 FOR PLOT AT X2, X3 OR X4, OR X4.
Author: Krige G J
Name of thesis: The behaviour and design of mineshaft steelwork and conveyances 1983

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.