ANALYSING SPATIAL DATA VIA GEOSTATISTICAL METHODS

Craig John Morgan

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science.

Johannesburg, 2005
DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

[Signature]

5th day of December 2005
ABSTRACT

This dissertation presents a detailed study of geostatistics. Included in this work are details of the development of geostatistics and its usefulness both in and outside of the mining industry, a comprehensive presentation of the theory of geostatistics, and a discussion of the application of this theory to practical situations. A published debate over the validity of geostatistics is also examined.

The ultimate goal of this dissertation is to provide a thorough investigation of geostatistics from both a theoretical and a practical perspective. The theory presented in this dissertation is thus tested on various spatial data sets, and from these tests it is concluded that geostatistics can be effectively used in practice provided that the practitioner fully understands the theory of geostatistics and the spatial data being analyzed. A particularly interesting conclusion to come out of this dissertation is the importance of using additive regionalized variables in all geostatistical analyses.
ACKNOWLEDGEMENTS

First of all, I wish to express thanks to my two supervisors, Professor Paul Fatti and Professor Dick Minnitt, for their assistance over the past three years. I would also like to thank Christina Dohm for supplying a sizeable spatial data set taken from the South African gold mining industry, and for allowing me to attend the three courses

1. Statistical Valuation of Ore Reserves (MINN 511)
2. Geostatistical Evaluation of Mineral Resources (MINN 510)
3. Practical Implementation of Geostatistical Evaluation (MINN 572)

given at the University of the Witwatersrand in 2003. Special thanks also goes out to Isobel Clark for making available the geostatistical computer package Geostokos Toolkit (c.2003), and for her general eagerness to help. Finally, I wish to thank the School of Statistics and Actuarial Science at the University of the Witwatersrand for financing the purchase of the geostatistical add-on package S+SpatialStats (2001).
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND COMMON NOTATION</td>
<td>xxii</td>
</tr>
<tr>
<td>CHAPTER ONE – INTRODUCTORY CHAPTER</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 An Elementary Description of Geostatistics</td>
<td>6</td>
</tr>
<tr>
<td>1.3 The History and Development of Geostatistics</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Plan and Purpose for this Dissertation</td>
<td>9</td>
</tr>
<tr>
<td>1.5 Justification for this Study</td>
<td>10</td>
</tr>
<tr>
<td>1.6 A Preview of the Chapters to Follow</td>
<td>11</td>
</tr>
<tr>
<td>1.7 The Spatial Data used in this Dissertation</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER TWO – GEOSTATISTICS AND THE MINING INDUSTRY</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Mining Terminology</td>
<td>16</td>
</tr>
<tr>
<td>2.3 The Application of Geostatistics in the Mining Industry</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Statistical Considerations when Applying Geostatistics in the Mining Industry</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1 Support and the support effect</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2 Statistical distributions</td>
<td>23</td>
</tr>
<tr>
<td>2.5 The Mining Industry in South Africa</td>
<td>24</td>
</tr>
<tr>
<td>CHAPTER THREE – CLASSICAL STATISTICAL THEORY IN GEOSTATISTICS</td>
<td>26</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>26</td>
</tr>
<tr>
<td>3.2 The Distribution of the Sample Population</td>
<td>27</td>
</tr>
<tr>
<td>3.2.1 Construction of the sample histogram</td>
<td>27</td>
</tr>
</tbody>
</table>
5.5 Estimation of the Semi-variogram .. 81
 5.5.1 Method-of-moments estimator of the semi-variogram 81
 5.5.2 The semi-variogram cloud ... 85
5.6 Fitting a Semi-variogram Model to the Estimated Semi-variogram . 86
5.7 Robust Estimates of the Semi-variogram 90
5.8 Relative Semi-variograms .. 91

CHAPTER SIX – EXPRESSIONS OF VARIANCE AND
REGULARIZATION 93
 6.1 Introduction .. 93
 6.2 Estimation Variance ... 94
 6.2.1 Extension variance .. 94
 6.2.2 Estimating a block by a weighted average 97
 6.3 Dispersion Variance .. 99
 6.3.1 Krige’s relationship .. 101
 6.4 Regularization .. 102
 6.5 Calculation of \(\gamma(V,v) \) .. 105
 6.5.1 Discretization ... 105
 6.5.2 Auxiliary functions ... 107
 6.6 The Effect of Nested Semi-variogram and Covariance Structures on
 the Estimation Variance, Dispersion Variance and Regularization.. 113

CHAPTER SEVEN – KRIGING 115
 7.1 Introduction .. 115
 7.1.1 The method of Lagrange multipliers for obtaining minima . 115
 7.2 Ordinary Kriging ... 116
 7.3 Simple Kriging ... 122
 7.4 Kriging Weights .. 128
 7.5 The Search Neighbourhood ... 136
 7.6 Kriging as an Exact Interpolator 137
 7.7 Kriging Variance .. 139
 7.8 The Smoothing Effect ... 141
 7.9 Cross Validation ... 142
 7.10 Universal Kriging .. 143
 7.11 Lognormal Kriging ... 149
 7.12 Additional Issues in Kriging .. 153
 7.12.1 Kriging using a relative (or proportional) semi-variogram
 model .. 153
 7.12.2 Testing spatial data for the presence of trend 156
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>The location of the nine random variables $Z(1)$, $Z(2)$, \ldots, $Z(9)$ in two-dimensional Euclidean space.</td>
<td>1</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>The relationship between $\rho \in (0,1)$ and $9^#$. The dotted line clearly shows that for $\rho = 0.2$ the nine correlated random variables provide the same precision in estimation of the overall mean μ as would be provided by 5.61 independent random variables.</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>An illustration of the difference between the statistical and geological concept of a sample, taken from Wellmer (1998 : 1).</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>A comparison of the distributions of values based on point and block supports, taken from Wackernagel (1995 : 55). Notice that the two distributions have the same overall average value, but due to averaging, the variability of the block distribution is smaller than that of the point distribution.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The proportion above cut-off for point and block support, taken from Wackernagel (1995 :56). Because the point support distribution has a larger variability and because cut-off is above the mean, a larger proportion of point support observations than block support observations will exist above the cut-off value.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The probability density function of $X \sim \text{LN}(2, \sigma^2)$ for $\sigma = 0.25$, 0.5, 0.75 and 1.00. This figure has been taken from Hogg & Tanis (1997 : 223) and shows the various shapes of the two-parameter lognormal distribution. It also illustrates that σ^2 is a good measure of spread of the lognormal distribution.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>‘Grade-tonnage’ type curve displaying graphically the information contained in Table 3.1.</td>
<td>47</td>
</tr>
</tbody>
</table>
Figure 4.1 The location of the seven measured point support samples, as well as the location of the point to be estimated (which is indicated by the arrow). Figure 4.1 has been taken directly from Isaaks & Srivastava (1989: 251).

Figure 5.1 Some common behaviours of semi-variograms near the origin. From left to right: parabolic behaviour; linear behaviour; discontinuity at the origin; pure nugget effect. Figure 5.1 is taken from Journel & Huijbregts (1978: 39).

Figure 5.2 A typical semi-variogram function displaying a sill and a range. This figure has been taken from Armstrong (1998: 26).

Figure 5.3 The example of geometric anisotropy and its elimination, as taken from Goovaerts (1997: 91).

Figure 5.4 The example of zonal anisotropy and its elimination, as taken from Goovaerts (1997: 94).

Figure 5.5 Basic shape of the nugget effect semi-variogram model.

Figure 5.6 The basic shape of the power semi-variogram models for a) \(r = 1 \) and b) \(r < 1 \) and \(r > 1 \).

Figure 5.7 The basic shape of the spherical semi-variogram model.

Figure 5.8 The basic shape of the exponential semi-variogram model.

Figure 5.9 The basic shape of the Gaussian semi-variogram model.

Figure 5.10 A flowchart by Armstrong (1998: 49) demonstrating the procedure followed for obtaining a method-of-moments semi-variogram estimate.

Figure 5.11 Plots of the four directional method-of-moments semi-variogram estimates. These plots have been taken from Armstrong (1998: 51).
Figure 5.12 The isotropic method-of-moments estimate of the semi-variogram. Armstrong (1998 : 52) mentions that “a linear [semi-variogram] model with a … nugget effect of about 3 gives a good fit [to this estimated semi-variogram].”

Figure 5.13 An example of a semi-variogram cloud taken from Wackernagel (1995).

Figure 5.14 a) A spherical semi-variogram model and b) a nested exponential semi-variogram model fitted to an experimental Cr concentration semi-variogram. Both models fit the experimental semi-variogram reasonably well. This figure is taken from Goovaerts (1997 : 100).

Figure 6.1 With $v \in V$, this figure displays just some of the blocks of volume v that would be contained within the ‘block’ $V(x)$.

Figure 6.2 The point and regularized semi-variograms defined over a particular spatial region. Notice that for the larger modulus values of the vector h, the two semi-variograms simply differ in value by $\gamma(v, v)$. This diagram has been taken from Journel & Huijbregts (1978 : 78).

Figure 6.3 The point support semi-variogram model for the metal accumulation in Example 6.1. This diagram is taken from Rendu (1981 : 30).

Figure 6.4 The 3×3 grid placed over the block $V(x)$ in Example 6.1. This diagram is also taken from Rendu (1981 : 30).

Figure 6.5 A line segment AB of length L. This figure is taken from Journel & Huijbregts (1978 : 108).

Figure 6.6 Rectangle ABCD with sides of length L and l. This figure is taken from Journel & Huijbregts (1978 : 109).

Figure 6.7 Visual summary of the four auxiliary functions defined in two dimensions. This figure has been taken from Rendu (1981 : 31), and the letters z' and z'' represent the two extremities of the vector h.

Figure 6.8 The location of the point support sample $z(x)$ and the block V.

xi
Figure 7.1 The data configuration of the five samples and the block to be estimated. .. 121

Figure 7.2 Situation 1: The location of the five point support samples \(\{z(x_i); i = 1 \text{ to } 5\} \) and the point to be estimated \(z(x_0) \). 130

Figure 7.3 Situation 2: The location of the five point support samples \(\{z(x_i); i = 1 \text{ to } 5\} \) and the point to be estimated \(z(x_0) \). 130

Figure 7.4 It is mentioned that the isotropic spherical covariance model in Equation 7.15 possesses a zero nugget effect and a unit sill. Now by introducing various nugget effect values, it can be seen how the ordinary kriging weights for the data configuration in Figure 7.3 are affected. The behaviour of the kriging weights discussed in the preceding paragraph is clearly displayed in this figure. Notice that when the entire unit sill is taken up by the nugget effect, all the kriging weights converge. The idea behind Figure 7.4 was taken from Goovaerts (1997 : 177). .. 133

Figure 7.5 The location of five point support samples \(\{z(x_i); i = 1 \text{ to } 5\} \) that will be used to estimate the point random variable \(Z(x_0) \) via ordinary kriging. Note that in this illustration, the location \(x_0 \) is exactly the same as the location \(x_1 \) (i.e. the point to be estimated is located at the exact same point as one of the available samples). .. 138

Figure 7.6 The estimation of point A via kriging for two situations: one having consistent data values, the other having highly variable data values. Note that the data configuration of each of these situations is identical. 140

Figure 7.7 Example 7.3: Location of the five point support samples and the point to be estimated. ... 154

Figure 7.8 Plots associated with the example taken from Kaluzny et al. (1998). This figure is taken from Kaluzny et al. (1998 : 38). 157

Figure 7.9 A linear regression surface fitted to the available sample values. This figure is taken from Clark & Harper (2000 : 177). 158

Figure 7.10 Scatter-plot displaying the location and the relative value of the available samples. ... 159
Figure 7.11 The semi-variogram from Clark & Harper (2000 : 226) displaying a parabolic increase from a lag distance of about seventy meters. ... 159

Figure 8.1 Contour plot of the simulated regionalized variable possessing the underlying Gaussian semi-variogram. 166

Figure 8.2 Contour plot of the simulated regionalized variable possessing the underlying spherical semi-variogram. 166

Figure 8.3 The isotropic experimental semi-variogram of the simulated data set containing 144 point support samples. 167

Figure 8.4 The Fitted Gaussian semi-variogram model. 168

Figure 8.5 The fitted spherical semi-variogram model. 168

Figure 8.6 The ordinary kriging prediction surface assuming the Gaussian semi-variogram model in Figure 8.4. 169

Figure 8.7 The ordinary kriging prediction surface assuming the spherical semi-variogram model in Figure 8.5. 169

Figure 8.8 A spherical semi-variogram model with a nugget effect fitted to the experimental semi-variogram displayed in Figure 8.3. 171

Figure 8.9 The ordinary kriging prediction surface assuming the nugget inclusive spherical semi-variogram model in Figure 8.8. 171

Figure 8.10 Histogram of the 144 point support values of the simulated spatial data set introduced in Section 8.2.1. 172

Figure 8.11 Histogram of the 144 point support values of the simulated spatial data set introduced in Section 8.2.1 after two of the values were replaced by larger outlying values. These two outliers can clearly be seen in this histogram. 173

Figure 8.12 The experimental semi-variogram of the simulated data set with two of the 144 values replaced by larger outliers. 174
Figure 8.13 The robust experimental semi-variogram of the outlier inclusive simulated data set, together with a fitted spherical semi-variogram model (cf. Figure 8.5).

Figure 8.14 Histogram of the 94 true values.

Figure 8.15 Histogram of the 94 polygonal estimates.

Figure 8.16 Histogram of the 94 inverse distance weighting estimates.

Figure 8.17 Histogram of the 94 ordinary kriging estimates.

Figure 8.18 Histogram of the estimation errors associated with the polygonal estimates.

Figure 8.19 Histogram of the estimation errors associated with the inverse distance weighting estimates.

Figure 8.20 Histogram of the estimation errors associated with the ordinary kriging estimates.

Figure 8.21 The spatial location of all 2321 point support gold-ore samples.

Figure 8.22 The spatial location of the 2321 point support samples of the gold mining data set provided by Dr. Dohm. The 384 red-coloured points represent the samples that will be removed from this data set. These samples are located in six distinct zones (or blocks, see Note 8.12). The remaining 1937 black-coloured samples will be used to re-estimate the gold grade at the location of each of the removed (red-coloured) samples.

Figure 8.23 Histogram of the gold-ore grade of the 1937 point support samples.

Figure 8.24 Histogram of gold-ore thickness of the 1937 point support samples.

Figure 8.25 Histogram of the gold-ore accumulation of the 1937 point support samples.
Figure 8.26 A histogram of the available 1937 ln[y(x)] values. The histogram displays a skewness of 0.04 and a kurtosis of 2.73.

Figure 8.27 The isotropic nested spherical semi-variogram model fitted to the experimental semi-variogram calculated from the 1937 ln[y(x)] values. This semi-variogram model is a combination of two spherical semi-variogram models, and also displays a relatively large nugget effect. Note that the size of the symbols is proportional to the number of sample pairs used to obtain that point.

Figure 8.28 A histogram of the available 1937 ln[u(x)] values. The histogram displays a skewness of 0.04 and a kurtosis of 2.57.

Figure 8.29 The isotropic nested exponential semi-variogram model fitted to the experimental semi-variogram calculated from the 1937 ln[u(x)] values. This semi-variogram model is a combination of two exponential semi-variogram models, and also displays a relatively large nugget effect. Note again that the size of the symbols is proportional to the number of sample pairs used to obtain that point.

Figure 8.30 The cubic trend surface over the ore deposit, fitted to the 1937 gold-ore thickness values by Geostokos Toolkit (c.2003).

Figure 8.31 The isotropic spherical semi-variogram model fitted to the experimental semi-variogram calculated from the 1937 cubic surface residuals of the gold-ore thickness.

Figure 8.32 The isotropic experimental semi-variogram calculated from the 1937 untransformed gold-ore grade sample values.

Figure 8.33 The spatial study area (i.e. the gold-ore deposit), which contains 1937 point support sample values (represented by the grey dots), is divided into nine non-overlapping rectangular zones in order to test for the presence of a proportional effect. All nine zones are of equal size and measure 150 Eastings x 175 Northings.

Figure 8.34 Scatterplot of the local mean versus the local standard deviation for each of the nine zonal areas in Figure 8.33 (see Table 8.5). The correlation between the local mean and the local standard deviation is calculated as 0.89.
Figure 8.35 The nine experimental gold-ore grade semi-variograms for each of the nine non-overlapping zones (see Figure 8.33) and the local relative gold-ore grade experimental semi-variogram calculated from these nine experimental semi-variograms.

Figure 8.36 The nested exponential semi-variogram model fitted to the local relative experimental semi-variogram.

Figure 8.37 Scatterplot of the local gold-ore accumulation mean versus the local gold-ore accumulation standard deviation for each of the nine zonal areas in Figure 8.33. The correlation between the local mean and the local standard deviation is calculated as 0.76.

Figure 8.38 The nine experimental gold-ore accumulation semi-variograms for each of the nine non-overlapping zones in Figure 8.33, and the local relative gold-ore accumulation experimental semi-variogram calculated from these nine experimental semi-variograms.

Figure 3.39 The nested exponential semi-variogram model fitted to the local relative experimental semi-variogram in Figure 8.38.

Figure 8.40 The isotropic nested exponential semi-variogram model fitted to the experimental semi-variogram calculated from the 1937 available gold-ore grade values. This semi-variogram model is a combination of two exponential semi-variogram models, and also displays a nugget effect.

Figure 8.41 The isotropic nested exponential semi-variogram model fitted to the experimental semi-variogram calculated from the 1937 gold-ore accumulation values. This semi-variogram model is a combination of two exponential semi-variogram models, and also displays a nugget effect.

Figure 8.42 A histogram showing the true gold-ore grade distribution of the 384 point support samples that are to be re-estimated by each of the six geostatistical analyses.

Figure 8.43 a) A histogram of the 384 point support gold-ore grade estimates produced by Geostatistical Analysis 1, and b) A histogram of the 384 estimation errors (i.e. the true gold-ore grade less the estimated gold-ore grade), associated with Geostatistical Analysis 1.
Figure 8.44 a) A histogram of the 384 point support gold-ore grade estimates produced by Geostatistical Analysis 2, and b) A histogram of the 384 estimation errors (i.e. the true gold-ore grade less the estimated gold-ore grade), associated with Geostatistical Analysis 2. 221

Figure 8.45 a) A histogram of the 384 point support gold-ore grade estimates produced by Geostatistical Analysis 3, and b) A histogram of the 384 estimation errors (i.e. the true gold-ore grade less the estimated gold-ore grade), associated with Geostatistical Analysis 3. 221

Figure 8.46 a) A histogram of the 384 point support gold-ore grade estimates produced by Geostatistical Analysis 4, and b) A histogram of the 384 estimation errors (i.e. the true gold-ore grade less the estimated gold-ore grade), associated with Geostatistical Analysis 4. 222

Figure 8.47 a) A histogram of the 384 point support gold-ore grade estimates produced by Geostatistical Analysis 5, and b) A histogram of the 384 estimation errors (i.e. the true gold-ore grade less the estimated gold-ore grade), associated with Geostatistical Analysis 5. 222

Figure 8.48 a) A histogram of the 384 point support gold-ore grade estimates produced by Geostatistical Analysis 6, and b) A histogram of the 384 estimation errors (i.e. the true gold-ore grade less the estimated gold-ore grade), associated with Geostatistical Analysis 6. 222

Figure 8.49 Scatterplots of the logarithms of the 384 estimated gold-ore grades versus the logarithms of the associated 384 true gold-ore grades, for each of the six geostatistical analyses. 227

Figure 8.50 Scatterplot of the logarithms of the 384 estimated gold-ore grades versus their associated 384 estimation errors for Geostatistical Analysis 2. The larger estimates are often associated with large positive errors. This is a direct consequence of the smoothing effect on the kriging estimates and the skew distribution of the true gold-ore grade values in Figure 8.42. 228
Figure A1 A chart for the auxiliary function $H(L ; l)$ of a spherical semi-variogram model with a sill and range value equal to one. The letter a in the axes refers to the range parameter of the non-standardized spherical semi-variogram model (see Equation 5.14). This chart is taken from Journel & Huijbregts (1978 : 127). ... 260

Figure B1 An example of a positively skew, symmetric and negatively skew distribution. ... 264

Figure B2 An example of a leptokurtic and a platykurtic distribution. . . 265

Figure B3 A normal probability distribution with mean μ and standard deviation σ^2, taken from Clark & Harper (2000 : 32). 266
LIST OF TABLES

Table 2.1 South Africa’s mineral reserves, 2001 (from Burger, c.2003). 25

Table 3.1 Table showing the proportion of the polluted area above the pollution cut-off level as well as the average pollution value of these regions, for a number of possible pollution cut-off values. ... 47

Table 4.1 Inverse distance weighting calculations for estimating the point $z(x_0)$, using the seven available sample values in Figure 4.1. .. 59

Table 4.2 The regression equation fitted to describe the proportion of pyritic sulphur in a certain type of coal (taken from Armstrong, 1998 : 17). .. 61

Table 5.1 The location of all sixty four values. This table is taken from Armstrong (1998 : 51). ... 84

Table 5.2 Calculations of $\hat{\gamma}(h)$ for various distances and directions, for the data in Table 5.1. The values in this table were taken directly from Armstrong (1998 : 51). Note that the values $M(h)$ correspond to the number of sample pairs associated with each of the lag distances h (see Equation 5.19). 84

Table 5.3 Calculation of the isotropic semi-variogram values $\hat{\gamma}(h)$ for various distances, for the data in Table 5.1. 85

Table 8.1 Summary of the distribution of the 94 true values, the 94 polygonal estimates, the 94 inverse distance weighting estimates, and the 94 ordinary kriging estimates. 178

Table 8.2 Summary of the estimation error distribution associated with the polygonal estimation, inverse distance weighting estimation and ordinary kriging estimation. 180

Table 8.3 Summary statistics of gold-ore grade, gold-ore thickness and gold-ore accumulation of the 1937 point support samples. . . 192
Table 8.4 Summary of the assumptions of the six geostatistical analyses. .. 197

Table 8.5 A table giving the local mean and the local standard deviation of gold-ore grade values within each zone, as well as the number of samples contained within each zone. 206

Table 8.6 Table giving the local mean and the local standard deviation of the gold-ore accumulation sample values within each zone, as well as the number of samples contained within each zone. 212

Table 8.7 Various summary statistics calculated for each of the six geostatistical analyses. .. 224

Table 8.8 Ranking of the performance of the six geostatistical analyses for each of the seven summary statistics presented in Table 8.7. A ranking of one is associated with the geostatistical analysis that performed the best with respect to the measured statistic; a ranking of six is associated with the geostatistical analysis that performed worst. The final row in this table gives the sum of the rankings for each of the geostatistical analyses. .. 229

Table 8.9 A summary of the relative performance of the six geostatistical analyses with respect to the sum of the rankings (see Table 8.8), the median squared error, and the median absolute error (see Table 8.7). .. 231

Table 8.10 Summary of the conclusions drawn from the comparison of the six geostatistical analyses in Section 8.4.3. 234

Table 8.11 Mean and median average percentage error calculated for each of the six geostatistical analyses studied in Section 8.4.3. 236

Table A1 Table of $\gamma_n(V_y)$ for various values V_y and n, taken from Sichel (1966 : 117-118). .. 257

Table A2 Table of $\psi_{0.05}(V_y, n)$ and $\psi_{0.95}(V_y, n)$, taken from Sichel (1966 : 119). .. 258

Table A3 Cumulative distribution of the standard normal distribution taken from Hogg & Tanis (1997). .. 259
Table A4 Various values of the auxiliary function $H(L;B)$ for a spherical model with sill and range value equal to one. This table is taken from Clark (1979 : 82).
LIST OF SYMBOLS AND COMMON NOTATION

\(i \) indicate the conclusion of a proof

\(n \) indicates the conclusion of an example

\(o \) indicates the conclusion of a note

\(\alpha(L ; l) \) an auxiliary function

\(\beta \) the threshold parameter of a three-parameter lognormal distribution

\(\beta_1 \) the square of the population skewness

\(\beta_2 \) the population kurtosis

\(c_0 \) a nugget-effect

\(C(0) \) the covariance value at a lag of zero; equal to the variance of a second-order stationary random function

\(C(h) \) a covariance function

\(\chi(L) \) and \(\chi(L ; l) \) auxiliary functions

\(C_I(h) \) the regularized covariance function of support \(V \), i.e. the covariance function of a random function of support \(V \)

\(\overline{C}(V , v) \) the mean value of \(C(h) \) when one extremity of vector \(h \) describes the domain \(V(x) \) and the other extremity independently describes the domain \(v(y) \)

\(C(x,y) \) or \(\text{cov}(x,y) \) the covariance between the random variables \(Z(x) \) and \(Z(y) \)
\(D^2(v/V) \) the dispersion variance of blocks \(v(y) \) within \(V(x) \)

\(E\{Z(x)\} \) the expectation of a random function or a random variable

\(F(L) \) and \(F(L ; l) \) auxiliary functions

\(f(x) \) generally indicates a function of the spatial co-ordinate \(x \), or a probability density function

\(\gamma(h) \) a semi-variogram. \(2\gamma(h) \) is the notation for a variogram.

\(\gamma(\mathbf{h}) \) the regularized semi-variogram of support \(V \), i.e. the semi-variogram of a random function of support \(V \)

\(\gamma(x,y) \) the semi-variogram value between the random variables \(Z(x) \) and \(Z(y) \)

\(\bar{F}(V,v) \) the mean value of \(\gamma(h) \) when one extremity of the vector \(h \) describes the domain \(V(x) \) and the other extremity independently describes the domain \(v(y) \)

\(h \) a separation vector of modulus \(||h|| \)

\(H(L ; l) \) an auxiliary function

\(\lambda_i , \lambda_j , \ldots \) generally refers to kriging weights or the weights of a linear combination

\(\mu \) the population mean

\(N(h) \) indicates the set containing all sample pairs separated by the vector \(h \)

\(\text{OK} \) ordinary kriging

\(\text{OLK} \) ordinary lognormal kriging

\(\Omega \) a spatial study area of two- or three-dimensions
\(\Phi(y) \) the cumulative distribution function of the standard normal distribution

\(1, 1^2, 1^3 \) one-, two- and three dimension Euclidean space respectively

\(\sigma^2 \) the population variance

\(\sigma^2_e \) the estimation variance

\(\sigma^2_{i(v,V)} \) the extension variance of \(v \) to \(V \)

\(\sigma^2_{OK} \) the ordinary kriging variance

\(\sigma^2_{OLK} \) the ordinary lognormal kriging variance

\(\sigma^2_{SK} \) the simple kriging variance

\(\sigma^2_{UK} \) the universal kriging variance

SK Simple kriging

\(\tau \) Sichel’s t-estimator

\(\tau \) the mean value of a two- or three-parameter lognormal distribution

UK universal kriging

\(\text{var}\{Z(x)\} \) the variability of a random function or a random variable

\(V(x) \) A volume (or area) \(V \) centred at the point location \(x \)

\(v(x) \) a volume (or area) \(v \), usually smaller than \(V \), centred at the point location \(x \)

\(\omega, \omega_i \) Lagrange multipliers

\(x, y, \ldots \) generally indicates a point co-ordinate in one-, two- or three-dimensional space
$Z_t(x)$ a block support random function or random variable, with a support volume (or area) of V

$z_t(x)$ a block support regionalized variable or a realization of a block support random variable, with a support volume (or area) of V

$Z(x), Y(x), \ldots$ a random function or a random variable at the point location x

$z(x), y(x), \ldots$ a regionalized variable or a realization of a random variable at the point location x