CONTENTS

Declaration ii
Abstract iii
Dedication v
Acknowledgements vi
Contents vii
List of Figures xxii
List of Tables xxviii
Abbreviations xxix
Conference Proceedings xxxii
Publications xxxiii

CHAPTER 1 INTRODUCTION

SUMMARY 1

CELLULAR OSCILLATORY DYNAMICS 4

PROTEIN PHOSPHORYLATION AND PHOSPHATASES 11

THE PPP FAMILY 14

Phosphoprotein phosphatase 1 (PP1) 17
Phosphoprotein phosphatase 2A (PP2A) 19
Phosphoprotein phosphatase 2B (PP2B) 21
THE PPM FAMILY 22

PROTEIN TYROSINE PHOSPHATASES 23

Protein Tyrosine Structure and Function 24

Involvement of protein tyrosine phosphatases in the control
of the cell cycle 30

Protein tyrosine phosphatase substrate specificity 31

Regulation of protein tyrosine phosphatase function by reversible
oxidation 32

PROTEIN TYROSINE PHOSPHATASE-1B 34

The PTP-1B protein: distinct catalytic and regulatory domains 39

The architecture of PTP-1B 42

Molecular basis of phospho-peptides recognition by PTP-1B 46

Functional significance of PTP-1B active site plasticity 49

Protein tyrosine phosphatase-1B catalytic site organization 51

Structural elements leading to binding interaction
and substrate specificity 55

Catalytic mechanism of protein tyrosine phosphatases 60

Cleavage of the P-O bond of the tyrosine residue 60

Stabilization of the cysteinyl-phosphate structure 64

Protein tyrosine phosphatase inhibitor development 66

Protein tyrosine phosphatase-1B inhibitors 67

Protein tyrosine phosphatase-1B and oncogenesis 69
INHIBITORS OF REVERSIBLE PHOSPHORYLATION

Effect of genistein on reversible phosphorylation 72
Mechanism of action of genistein 73
Effect of okadaic acid on reversible phosphorylation 75
Mechanism of action of okadaic acid 77
Identification and quantitation of protein phosphatases using okadaic acid 78
The effect of okadaic acid in cell-free extracts 79
Effect of okadaic acid on intact cells 80
Okadaic acid tumour promotion and suppression 81
Mechanism of phosphatase inhibition by okadaic acid 82

THE HL-60 CELL LINE

HL-60 cell growth and proliferation 85
Differentiation of HL-60 cells 87
Granulocytic differentiation 87

RETINOIC ACID INDUCED GRANULOCYTIC DIFFERENTIATION

Retinoic acid receptors and retinoid-X receptors 89
The discovery of 9-cis retinoic acid 94
Interaction of 9-cis retinoic acid with retinoid receptors 96
9-cis Retinoic acid an endogenous ligand 98
Retinoid-X receptors and 9-cis retinoic acid are key regulators 98
DIMETHYL SULFOXIDE INDUCED GRANULOCYTIC DIFFERENTIATION 101

MONOCYTIC DIFFERENTIATION OF HL-60 CELLS 104

MACROPHAGELIKE DIFFERENTIATION OF HL-60 CELLS 106

EOSINOPHIL DIFFERENTIATION OF HL-60 CELLS 107

HL-60 ONCOGENE STRUCTURE AND EXPRESSION

$\textit{c-myc}$ 108

$\textit{N-ras}$ 109

$\textit{c-fos}$ 110

$\textit{c-fms}$ 111

$\textit{c-src}$ 111

$\textit{c-fgr}$ 112

$\textit{Tumour suppressor gene p53}$ 112

OBJECTIVE OF THIS STUDY 114
CHAPTER 2 EXPRESSION OF PHOSPHOPROTEIN PHOSPHATASES IN PROLIFERATING AND DIFFERENTIATING HL-60 CELLS

SUMMARY 115

MATERIALS AND METHODS

HL-60 CELL LINE 118

Maintenance of the HL-60 cell culture 118
Differentiation of HL-60 cell cultures 119
Assay for cellular differentiation 119

Determination of cell concentration and viability 120
Microbial contamination 120
Verification of cell line 120
Morphological Evaluation 121
Cryopreservation of cell cultures 122

Reconstitution of cryopreserved HL-60 cells 122

PREPARATION OF CELL EXTRACTS 123

Extraction of total cellular protein 123
Total protein concentration determination 123
PROTEIN ELECTROPHORESIS AND WESTERN IMMUNOBLOTTING

Preparation of polyacrylamide gels 124
Electrophoresis (PAGE) 124
Electrotransfer of proteins to nitrocellulose membrane 125
Immunodetection of proteins 126

Blocking of non-specific sites on the nitrocellulose membrane

Probing of electroblotted proteins with primary antibody 126
Incubation with secondary antibody 127
Chromogenic detection of antibody complexes 128
ECL™ detection of antibody complexes 128
Estimation of the molecular mass of proteins 129

QUANTITATION AND DATA ANALYSIS 129

RESULTS

HL-60 cell lactate dehydrogenase electrophoresis 130
The effect of differentiating agents on HL-60 cell concentration 131
The effect of differentiating agents on HL-60 cell differentiation 132
The effect of differentiating agents on cell viability 133

EXPRESSION OF PHOSPHOPROTEIN PHOSPHATASES 134

The effect of DMSO on the expression of phosphoprotein phosphatases 134
Effect of ATRA and PMA on the expression of PP1 136
Effect of ATRA on the expression of PP2A 137
CHAPTER 3

EXPRESSION OF PTP-1B MESSENGER RNA IN PROLIFERATING AND DIFFERENTIATING HL-60 CELLS

SUMMARY

MATERIALS AND METHODS

Extraction of total cellular RNA

Quantitation of RNA

Formaldehyde agarose gel electrophoresis of RNA

Northern blotting of RNA onto nylon membrane

Hybridization of Northern blots with a PTP-1B radiolabelled probe

Pre-hybridization of Northern blots
Labelling of the PTP-1B probe

Hybridization of 32P labelled PTP-1B probe to northern blots

Stringency washing of northern blots following hybridization

Stripping and re-probing of Northern blots

RESULTS

Determining the integrity of isolated RNA

PTP-1B northern blots

The effect of different concentrations of ATRA on the expression of PTP-1B mRNA in HL-60 cells

The effect of different concentrations of 9-cis RA on the expression of PTP-1B mRNA in HL-60 cells

The effect of different concentrations of 9-cis RA and ATRA on the expression of PTP-1B mRNA

DISCUSSION

CHAPTER 4

REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION TO INVESTIGATE PTP-1B mRNA EXPRESSION IN HL-60 CELLS

SUMMARY

MATERIALS AND METHODS
Polymerase Chain Reaction: BASIC PRINCIPLES 182

Reverse Transcription-Polymerase Chain Reaction Analysis of PTP-1B 185

Reverse transcription 185

PCR primer selection 186

PTP-1B PCR primers 186

Human PTP-1B mRNA sequence 187

The PCR cycling programme 189

Visualization of PCR products 189

Restriction endonuclease reaction of PCR product 190

Digestion protocol 191

Quantitation and data analysis 191

RESULTS

Optimization of PTP-1B RT-PCR using primer set 1 192

Optimization of RT-PCR for *taq* polymerase, magnesium chloride and primer set 2 concentration 193

PTP-1B RT-PCR product verification for primer set 2 by restriction digestion 195

The effect of ATRA and 9-cis RA on the expression of PTP-1B mRNA expression using RT-PCR 196

DISCUSSION 198
CHAPTER 5 PTP-1B CLONING AND RECOMBINANT PROTEIN EXPRESSION

SUMMARY 204

MATERIALS AND METHODS

Cloning of the PTP-1B PCR product 206

Growth and extraction of plasmid DNA 206

Preparation and storage of competent TOP 10 E.coli cells 207

Ligation reaction 207

Transformation protocol 208

Testing bacteria for α-complementation 208

Expression of recombinant protein 209

Purification of recombinant protein 209

RESULTS

Restriction endonuclease digestion of pBluescript® 210

Alkaline phosphorylation of restriction digested pBluescript® vector 211

Preparation of PCR product for cloning 212

Graphical representation of bluescript® II KS+ vector 214

Graphical representation of PTP-1B PCR fragment insert orientation in pBluescript® II KS+ vector clone 215

PTP-1B pBluescript® II KS+ clone selection 216

PTP-1B pBluescript® II KS+ clone orientation check 217
Graphical representation of PTP-1B PCR product cloning in
pBluescript® II KS+ vector 218
pBluescript® KS+ PTP-1B clone sequencing 219
pBluescript® KS+ PTP-1B clone 1 restriction digestion 220
Graphical representation of pGex-4T-1 expression vector 221
Restriction digestion of pGex-4T-1 expression vector 222
PTP-1B pGex-4T-1 clone selection 223
PTP-1B pGEX-4T-1 clone restriction digestion 224
PTP-1B pGex-4T-1 clone sequencing 225
Expression of PTP-1B recombinant protein 226
Western blot analysis of recombinant PTP-1B protein 227

DISCUSSION 228

CONCLUSION 230

APPENDICES 232

APPENDIX A
DESCRIPTION OF HL-60 CELL LINE (CCL 240) 232
APPENDIX B

CELL CULTURE MEDIA AND REAGENTS

B.1: Source of media and materials

B.2: RPMI 1640 medium

B.3: Trypan blue staining of cells

B.4: All-Trans Retinoic Acid (ATRA)

B.5: 0.9% Saline

APPENDIX C

PREPARATION OF LYSING BUFFER

C.1: Source of material

C.2: Phosphate buffered saline (PBS)

C.3: Lysing buffer

APPENDIX D

TOTAL PROTEIN DETERMINATION (LOWRY METHOD)

D.1: Source of materials

D.2: Bovine serum albumin (BSA)

D.3: 0.1M Sodium hydroxide

D.4: 2% w/v Sodium carbonate in 0.1M NaOH

D.5: 1% w/v Copper sulphate
APPENDIX E

SODIUM DODECYL SULPHATE POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE)

E.1: Reagents used for SDS-PAGE electrophoresis 243
E.2: Protein molecular weight markers 244
E.3: Electrophoresis running buffer 245
E.4: Stacking gel stock acrylamide solution 245
E.5: Stacking gel buffer 246
E.6: Resolving gel stock acrylamide solution 246
E.7: Resolving gel buffer 247
E.8: SDS gel loading buffer 247
E.9: 10% Resolving gel preparation 247
E.10: 4% Stacking gel preparation 248
E.11: 0.1% w/v Coomassie brilliant blue stain™ R-250 248
E.12: Destaining solution 249
APPENDIX F

REAGENTS AND BUFFERS USED IN WESTERN BLOTTING 250

F.1: Sources of chemicals and reagents 250

F.2: Antibodies 251

F.2.1: Monoclonal antibody to protein tyrosine phosphatase-1B (PTP-1B) 251

F.2.2: Anti-rabbit secondary antibody 253

F.3: Phosphate buffered saline (PBS) 254

F.4: Blocking solution 255

F.5: Wash buffer 255

F.6: Stripping buffer 255

APPENDIX G

EXTRACTION OF TOTAL RNA 256

G.1: Source of reagents 256

G.2: 0.1% v/v DEPC-treated water 257

G.3: 10X MOPS buffer 257

G.4: RNA sample buffer 257

G.5: RNA loading buffer 258

G.6: TRI REAGENT™ 258

G.6.1: Sample preparation 259

G.6.2: RNA isolation 260
APPENDIX H

RADIOACTIVE PROBING OF NORTHERN BLOTS 261

H.1: Source of reagents 261

H.2: Prehybridisation solution 261

H.3: Labelling of PTP-1B and β-actin probes 262

H.4: Hybridization solution 264

APPENDIX I

GROWTH AND EXTRACTION OF PLASMIDS 265

I.1: Source of reagents 265

I.2: Luria-Bertani (LB) broth 265

I.3: Agar plates 266

I.4: Transformation buffer 266

I.5: Alkaline phosphorylation 267

REFERENCES 268
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The role of protein phosphorylation and dephosphorylation in cellular function</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Protein tyrosine phosphatase family</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Structural relationship between transmembrane CD45 and PTP-1B</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Diagram illustrating the structural organization of T cell PTP</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>Secondary structure of PTP-1B</td>
<td>43</td>
</tr>
<tr>
<td>6 and 7</td>
<td>Ribbon representations of PTP 1B highlighting secondary structural elements</td>
<td>45</td>
</tr>
<tr>
<td>8 and 9</td>
<td>Surface views of the catalytic cleft of PTP-1B</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>The unusual buried environment of Arg-257 in PTP-1B</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>The O-gamma atom of Ser-215 in PTP-1B</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>Structure of the catalytically inactive form of PTP-1B</td>
<td>58</td>
</tr>
<tr>
<td>13</td>
<td>Proposed mechanism for the hydrolysis reaction catalyzed by PTP-1B</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>Hydrogen bonded cysteinyl-phosphate intermediate of PTP-1B</td>
<td>63</td>
</tr>
<tr>
<td>15</td>
<td>A sequestered water molecule of PTP-1B</td>
<td>65</td>
</tr>
</tbody>
</table>
Figure 16: Effect of okadaic acid and genistein on protein phosphorylation

Figure 17: A model of the general structure of nuclear retinoid receptors

Figure 18: Graphical representation of all-trans- and 9-cis retinoic acid structures

Figure 19: Beckman Paragon agarose gel lactate dehydrogenase analysis

Figure 20: The effect of differentiating agents on HL-60 cell concentration over 120 hours

Figure 21: Effect of differentiating agents on the percentage of HL-60 cells stained with nitroblue tetrazolium over 120 hours

Figure 22: Effect of various differentiating agents on HL-60 cell viability

Figure 23: Temporal changes in the expression of protein phosphatases in HL-60 cells; effect of dimethyl sulphoxide (DMSO)

Figure 24: Temporal changes in the expression of protein phosphatase 1 in HL-60 cells treated with ATRA or PMA

Figure 25: Temporal changes in the expression of protein phosphatase 2A in HL-60 cell treated with PMA

Figure 26: Temporal changes in the expression of PP2A in HL-60 cell treated with PMA

Figure 27: An example of a Western blot showing PTP-1B expression in HL-60 cells, effect of ATRA and PMA

Figure 28: Temporal changes in the expression of PTP-1B in HL-60 cells; effect of ATRA and PMA
Figure 29: Western blot showing the effect of different concentrations of ATRA on PTP-1B expression over 3 hours 141

Figure 30: Graphical representation of figure 29 demonstrating the effect of different concentrations of ATRA on PTP-1B 46 kDa protein expression in HL-60 cells over 3 hours 142

Figure 31: Western blot showing the effect of different concentrations of 9-cis RA on PTP-1B expression over 3 hours 143

Figure 32: Graphical representation of figure 31 demonstrating the effect of different concentrations of 9-cis RA on PTP-1B 46 kDa protein expression in HL-60 cells over 3 hours 144

Figure 33: Western blot showing the effect of 10mM 9-cis RA and 10mM ATRA on PTP-1B expression over 3 hours 145

Figure 34: Graphical representation of figure 33 demonstrating the effect of 10mM ATRA and 10mM 9-cis RA on PTP-1B 46 kDa protein expression in HL-60 cells over 3 hours 146

Figure 35: Western blot of PTP-1B protein expression after incubation with either okadaic acid or genistein for one hour 147

Figure 36: Example of a 1% agarose RNA integrity gel 173

Figure 37: Example of northern blot hybridized with a PTP-1B probe labelled with 32P dCTP 174

Figure 38: Graphical representation of the effect of different concentrations of ATRA on PTP-1B mRNA expression over 3 hours 175
Figure 39: Graphical representation of the effect of different concentrations of 9-cis RA on PTP-1B mRNA expression over 3 hours

Figure 40: Graphical representation of the effect of different concentrations of 9-cis RA and 1×10^{-4} M ATRA on PTP-1B mRNA expression over 3 hours

Figure 41(a): Graphical representation of the polymerase chain reaction

Figure 41(b): Graphical representation of PTP-1B mRNA demonstrating primer binding sites and restriction digestion sites

Figure 42: Optimization of PTP-1B RT-PCR

Figure 43: 1% Agarose gel electrophoresis of PTP-1B RT-PCR product: optimization of primer concentration

Figure 44: 1% Agarose gel electrophoresis of PTP-1B RT-PCR product optimization of MgCl$_2$ and Taq polymerase

Figure 45: 1% Agarose gel electrophoresis of PTP-1B PCR product digested with restriction endonucleases

Figure 46: PTP-1B RT-PCR product on a 1% agarose gel

Figure 47: Graphical representation of the effect of ATRA and 9-cis RA on PTP-1B mRNA expression

Figure 48: Agarose gel electrophoresis (0.5%) of pBluescript® II KS +/- phagemid digested with restriction endonucleases

Figure 49: Agarose gel electrophoresis (0.5%) of alkaline phosphorylated Bluescript® plasmid digested with restriction endonuclease BstZI
Figure 50: Agarose gel electrophoresis (1%) of PCR product digested with restriction endonuclease Eae I

Figure 51: Agarose gel electrophoresis (1%) of Bluescript vector and PTP-1B insert

Figure 52: Diagram of pBluescript® II KS+ vector demonstrating the restriction digestion sites used to clone the 558bp PTP-1B PCR product

Figure 53: Diagram of PTP-1B PCR product insert orientation

Figure 54: Agarose gel electrophoresis (1%) of clones selected to confirm PTP-1B PCR fragment insertion

Figure 55: Agarose gel electrophoresis (1%) to check PTP-1B insert orientation

Figure 56(a): Graphical representation of PTP-1B cloning

Figure 56(b): Graphical representation of bluescript® PTP-1B clone sequencing

Figure 57: Agarose gel electrophoresis (1%) of clone 1 digested with BamHI and Bst ZI

Figure 58: Map of pGex-4T-1 expression vector

Figure 59: Agarose gel electrophoresis (0.5%) of pGex-4T-1 GST expression vector restriction digested with Bam HI and Bst ZI

Figure 60: Agarose gel electrophoresis (1%) of pGex-4T-1 PTP-1B clone selection
Figure 61: Agarose gel electrophoresis (1%) of pGex-4T-1 clones digested with restriction endonuclease AVA I

Figure 62: Graphical representation of pGex-4T-1® PTP-1B clone sequencing

Figure 63: SDS-PAGE (10%) of purified PTP-1B recombinant protein

Figure 64: Western blot of PTP-1B recombinant protein
LIST OF TABLES

Table 1: Nomenclature of protein Ser/Thr phosphatase catalytic and regulatory subunits 15

Table 2: Correlation between effect of mutagenesis and structure of PTPases 29

Table 3: Brief summary of the reported effects of DMSO in the treatment of different human and experimental animal model diseases 102

Table 4: Brief summary of the reported effects of cell cycle, differentiation, and apoptosis studies, observed in experimental models 103

Table 5: Concentrations of primary and secondary antibody 127

Table 6: PTP-1B primers used and size of products produced 186
ABBREVIATIONS

32P phosphorus radioisotope
9-cis RA 9-cis retinoic acid
Ab antibody
Ag antigen
AML acute myelogenous leukaemia
ATP adenosine 5’-triphosphate
ATRA all-trans retinoic acid
BSA bovine serum albumin
cdc cell division cycle
cDNA complementary DNA
CO$_2$ carbon dioxide
dATP 2’-deoxyadenosine 5’-triphosphate
dCTP 2’-deoxycytidine 5’-triphosphate
DEPC diethyl pyrocarbonate
dGTP 2’-deoxyguanosine 5’-triphosphate
DMSO dimethylsulphoxide
dNTP deoxynucleotide triphosphate
DTT dithiothreitol
dTTP 2’-deoxythymidine 5’-triphosphate
EDTA ethylenediaminetetra-acetic acid
ELISA enzyme linked immuno serum assay
ER endoplasmic reticulum
FCS fetal calf serum
GC guanine-cytosine
HL-60 human acute promyelocytic leukaemic cells
Kb kilobase
Kbp kilobase pair
kDa kilodalton
MOPS 3-(N-morpholino)-propanesulphonic acid
mRNA messenger RNA
NaOH sodium hydroxide
PAGE polyacrylamide gel electrophoresis
PCR polymerase chain reaction
PEG polyethylene glycol
PMA phorbol-12-myristate 13-acetate
PTP-1B protein tyrosine phosphatase-1B
RE restriction endonuclease
RNA ribonucleic acid
RNase ribonuclease
RPMI Roswell Park Memorial Institute
rRNA ribosomal RNA
RT reverse transcription
RTase reverse transcriptase
SDS sodium dodecyl sulphate
SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis
SSC saline/ sodium citrate buffer
TBS tris buffered saline
TE tris EDTA
TEMED N,N,N’,N’-tetramethyl ethylene-diamine
UV ultraviolet
CONFERENCE PROCEEDINGS

Bhoola R and Hammond K.D. Differentiation of HL60 cells and the expression of phosphoprotein phosphatases 1/2A and protein tyrosine phosphatase-1B. Proceedings of the 34th Annual Congress of the Federation of South African Societies of Pathology, Cape Town, July 1994

Hammond K.D and Bhoola R. Expression of phosphoprotein phosphatase in proliferating and differentiating cells. The First UK-RSA Symposium on Cell Growth Control, Cape Town, January 1996

PUBLICATIONS
