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ABSTRACT 
 

The occurrence of large, massive iron oxide deposits throughout the Bushveld 

Complex, South Africa, and its associated roof-rocks is well known. The style of 

mineralisation and the associated alteration exhibits many characteristics of iron 

oxide-copper-gold (IOCG) type deposits. The contained mineralisation is 

dominated by iron oxide and fluorite and is accompanied by a diverse 

polymetallic association, with anomalous fluorite, copper, gold, barite, uranium 

and LREE.  

 
The Ruigtepoort orebody, located in the western Bushveld Complex, is such an 

example and is surrounded by some 20 smaller occurrences in the upper 

stratigraphic portions of the Bushveld Complex, all displaying strong structural 

control. These IOCG bodies occur as narrow veins, hydrothermal breccias, 

subhorizontal sheets, or as pipe-like intrusions usually utilising pre-existing 

structures. Set in red Nebo granite, the mineralised core consists of severely 

chloritised rock that is haloed by progressively less-altered granite.  The alteration 

passes from the chlorite core to more hematite-phyllosilicate-dominated 

alteration, to sericite-illite-dominated alteration; followed by the relatively fresh 

country granite.  These alteration haloes dissipate rapidly away from the body 

over only a few metres. Sodic-calcic alteration described in other IOCG is not 

locally observed. Extensive zones of barren feldspar-destructive alteration exist, 

including K-metasomatism, sericitisation and silicification. Multiple alteration 

episodes appear to have occurred, resulting in extensive overprinting and a very 

complex paragenesis. 

 
The primary mineral assemblage consists of Fe-chlorite, fluorite, quartz, hematite, 

and specularite, with accessory pyrite and chalcopyrite.  Multiple generations of 

hematite, quartz, fluorite and chlorite are also observed.  At other localities, the 

assemblage is dominated by magnetite-actinolite-britholite. Significantly enriched 

concentrations of Au (2 g/t), Cu (0,45 wt%), Ba, Y and LREE are encountered in 

the small, mineralised core.  
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A fluid mixing model is proposed characterised by an initial highly-saline, 

sulphur-poor magmatic fluid which mixed with a lower temperature oxidised, 

surficial fluid. Structure was probably a significant factor in determining the 

initial distribution of hydrothermal centres and the overall morphology of the 

entire system.  Subsequently, continuous brecciation, alteration, mineral 

precipitation and fault activity helped develop the hydrothermal centres into a 

complex array of variably mineralised, lenticular, pipe-like and irregularly shaped 

breccia bodies. 
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List of Plates 
 
 
Plate 1.1. All photographs and descriptions from Reeve et al., (1990). a) Granitic 

breccia with abundant hematite-rich matrix. Fine-grained orange clasts in the 
upper half largely consist of fine-grained felted sericite, which are presumably 
products of extreme alteration of intensely brecciated granite. Chalcopyrite (tan 
& brass colour) disseminated throughout clasts and matrix. b) Heterolithic 
matrix-rich breccia with subequal proportions of sericite clasts (orange-brown) 
and steely grey hematite clasts. Abundant quartz fragments. c) Heterolithic 
hematite breccia. Hematite clasts include a variety of red-brown, purplish and 
black types, many of which are fragments of pre-existing breccias. Subordinate 
clasts of sericitised granite breccia and hematite-quartz breccia also present. 
Chalcopyrite and bornite occur as non-visible disseminations. Fluorite present 
(jet-black) d) Sericite-chlorite altered granite clasts in orange brown network of 
very fine-grained sericite, ultra-fine iron oxide and angular relict quartz 
fragments. e) Intensely sericitised granite breccia in which original granite 
texture preserved. f) Intensely Fe-metasomatised granite in which primary 
feldspars and ferromagnesian minerals totally replaced by vuggy hematite. 

Plate 1.2. All photomicrographs and descriptions from (Hagni, unpubl.) a) 
Rounded chalcopyrite with coating of bornite then partial coating of later 
chalcopyrite. Subsequent fine-grained hematite has preferentially replaced parts 
of the bornite layer. Reflected light x 150; oil immersion. b) Rounded bornite in 
matrix of hematite. Reflected light x 150; oil immersion. c) Bornite partially 
replaced by subsequent uranium-bearing fluids. Bluish tinted coffinite with fine-
grained disseminations of covellite. Brannerite is locally formed in association 
with the abundant anatase. Although U mineralization shown here formed late, 
uranium was present in the early ore fluids indicated by the presence of trace 
amounts of uranium in hematite. Reflected light x 500; oil immersion. d) 
Exsolution intergrowth of bornite and chalcocite. Reflected light x 150; oil 
immersion. e) Exsolution intergrowth between bornite and chalcocite showing 
smooth boundaries between the two minerals that are typical for such exsolution 
intergrowth. Hematite occurs especially along the margins of the sulphide grain 
and probably occurs as a partial replacement of the sulphide grain. Reflected 
light x 500; oil immersion. f) Large pseudomorphic crystal of martite after 
magnetite, characterized by its fine-grained polycrystalline nature. Small 
remnants of magnetite remain in most martite grains. Bornite and chalcopyrite 
occur as veins and along the martite grain boundaries Finer grained hematite 
occurs in the groundmass between the martite. Reflected light x 150; oil 
immersion. 

Plate 2.1. Mineralised Fe-F breccia from Vergenoeg mine, South Africa. a) 
Hematite-fluorite ore sample from Vergenoeg mine. b) Thin section 
photomicrograph of typical magnetite-hematite-fluorite ore. Plane polars x 4; 
field of view is 2.75 mm wide; Photo ID: PO1-A. c) Hematite breccia with 
abundant sedimentary-derived fragments. Plane polars x 4; field of view is 2.75 
mm wide; Photo ID: PO2-A. d) Hematite breccia with abundant sedimentary-
derived fragments. Crossed polars x 4; field of view is 2.75 mm wide; Photo ID: 
PO2-B. 
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Plate 3.1. a) Flat, outcrop-poor weathered surface of Bushveld granites in the 
north, central and eastern portions of the area. b) Low hills and outcrops, often 
wooded, of the southern and western portions of the area. Fracture related 
depressions and drainage features tend to be more prominent. c) Rounded-
boulder granite outcrop of the southern portion of the area, usually well-
vegetated. d) Typical dull-pink perthitic Nebo granite from Blokspruit 157JQ; 
Sample #ID 11120. e) Grey hornblende-rich Nebo granite representing least 
differentiated material. Sharp contact with aplitic (Klipkloof) phase. From 
Paalkraal 556KQ. f) Porphyritic variety Nebo granite from Ruigtepoort 162JQ; 
Sample #ID 11141. 

Plate 3.2. a) Weathered surface of Nebo and Klipkloof granites. Coarse quartz 
grains in the Nebo granite weather prominently forming a rough, pitted surface; 
by contrast, the Klipkloof is smooth and even. b) Outcrop of Bobbejaankop 
granite with characteristic quartz chains weathering prominently. c) Red Nebo 
granite common throughout the area. The mafic phase is dominantly biotite, 
which is commonly chloritised. From Blokspruit 157JQ; Sample #ID 11103. d) 
Bobbejaankop variety Nebo granite from type-locality in the eastern Bushveld 
e) Klipkloof variety Nebo granite from Ruigtepoort 162JQ. 

Plate 3.3. a) Spherulitic rhyolite with greenish nodules from Slipfontein 551KQ; 
Sample #ID 11194. b) Heavily weathered spherulitic rhyolite from Blokspruit 
157JQ; Sample #ID 11153. c) Typical fine-grained red pseudogranophyre from 
Ruigtepoort 162JQ; Sample #ID 11070. d) Purplish-brown Rooiberg 
agglomerate from Elandslaagte 154JQ; Sample #ID 11076. e) Yellowish-brown 
silicified Rooiberg agglomerate with rhyolitic shards, from Elandslaagte 154JQ; 
Sample #ID 11202. 

Plate 3.4. a) Clean, highly-recrystallised meta-quartzitic xenolith consisting of up 
to 99 % quartz from Elandslaagte 154JQ; Sample #ID 11146. b) Finely-
laminated, hematite-rich sediment. c) Massive, fine-grained leptite from 
Ruigtepoort 162JQ. d) Iron oxide-rich grit of possible Karoo age, from 
Ruigtepoort 162JQ; Sample #ID 11081. 

Plate 3.5. a) Exaggerated reddening of Bobbejaankop granite due to K-
metasomatism from Blokspruit 157JQ. K-feldspar grains appear to be annealing. 
Sample #ID 11105. b) Episyenitic granite where quartz comprises less than 10 
% of the rock from Ruigtepoort 162JQ. Sample #ID 11177. c) Myrialitic 
episyenite with hematite cavity fill and anomalous metal contents from 
Blokspruit 157JQ. d) Sericitised fine-grained granite from Elandslaagte 154JQ. 
Sample #ID 11060. e) Intensely sericitised fine-grained granite from 
Elandslaagte 154JQ. Sample #ID 11201. f) Silicified-sericitised medium-
grained granite from Elandslaagte 154JQ with yellow-green colouration. Sample 
#ID 11145. 

Plate 3.6. a) Intensely hematised coarse Nebo granite from Ruigtepoort 162JQ. 
Sample #ID 11068. b) Intensely and pervasively chloritised medium-grained 
granite from Doornfontein 155JQ. Late fracture has introduced oxidised iron 
oxides and caused local overprinting. Sample #ID 11089. c) Alteration front 
between earlier sericitisation-silicification of fine-grained granite from 
Blokspruit 154JQ, with later hematite overprint. Hm=hematite, Ser-
Sil=sericitised-silicified. Sample #ID 11187. d) Compounded alteration 
overprinting of early sericitisation by intense hematisation, presumably followed 
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by intense chloritisation; from Blokspruit 154JQ. Hm=hematite, Ser= 
sericitised, Chl=chloritised.  Sample #ID 11122. e) Coarse granite country rock 
to the Ruigtepoort fluorspar mine; sample taken approximately 10 m from 
orebody contact. Intense hematisation developed away from the orebody and 
overprinted by intense chloritisation developed closer to the orebody. 
Hm=hematite, Chl=chloritised. Sample #ID 11067. f) Sericitised-silicified 
actinolite rock overprinted by gossanous hematite from Blokspruit 154JQ. 
Hm=hematite, Ser-Sil=sericitised-silicified.   

Plate 4.1. a) Typical hypersolvus, perthitic granite comprising perthite and quartz. 
Accessory phases not visible in this photograph. Crossed polars x4; field of 
view is 2.75 mm wide; Photo ID: 11097-F. b) Typical subsolvus Klipkloof 
granite with plagioclase needles, indicative of super-cooling. Plane polars x10; 
field of view is 0.85 mm wide; Photo ID: 11212-B. c) Transsolvus granite as 
defined by the occurrence of both albite plagioclase and perthite. Crossed polars 
x4; field of view is 2.75 mm wide; Photo ID: 11103-H. d) Anhedral comagmatic 
perthite and quartz, with quartz completely enclosing an albite plagioclase grain. 
Crossed polars x10; field of view is 0.85 mm wide; Photo ID: 11193-G. e) 
Anhedral perthitic K-feldspar. Plane polars x10; field of view is 0.85 mm wide; 
Photo ID: 11194-C. f) Anhedral perthitic K-feldspar. Crossed polars x10; field 
of view is 0.85 mm wide; Photo ID: 11194-D. 

Plate 4.2. a) Embayed and resorbed quartz grains intergrown with K-feldspar. 
Plane polars x4; field of view is 2.75 mm wide; Photo ID: 11121-C. b) Embayed 
and resorbed quartz grains intergrown with K-feldspar. Crossed polars x4; field 
of view is 2.75 mm wide; Photo ID: 11049-M. c) Biotite-quartz symplectite. 
Plane polars x4; field of view is 2.75 mm wide; Photo ID: 11023-K. d) Biotite-
quartz symplectite. Plane polars x4; field of view is 2.75 mm wide; Photo ID: 
11034-A. e) Cluster of accessory phases including zircons, chloritised biotite, 
magnetite and other iron oxides. Crossed polars x20; field of view is 0.45 mm 
wide; Photo ID: 11067-L. f) Interstitial biotite with subsolidus hydrothermal 
magnetite developed along cleavage planes demonstrating the relationship 
between K- and Fe- metasomatism. Crossed polars x10; field of view is 0.85 
mm wide; Photo ID: 11193-F. 

Plate 4.3. a) Granophyric texture of typical granophyre. Crossed polars x4; field 
of view is 2.75 mm wide; Photo ID: 11102-A. b) Granophyric texture with no 
discernible nucleation point Crossed polars x4; field of view is 2.75 mm wide; 
Photo ID: 11102-B. c) Typical massive Rooiberg rhyolite consisting of quartz, 
feldspar and minor biotite. Plane polars x4; field of view is 2.75 mm wide; 
Photo ID: 11049-J. d) Coarse pseudogranophyre from Elandslaagte 154JQ. Fine 
stringy quartz-feldspar symplectic intergrowth nucleating off the side of K-
feldspar grain. Crossed polars x4; field of view is 2.75 mm wide; Photo ID: 
11058-A. e) Donut graphic texture of pseudogranophyre. Plane polars x10; field 
of view is 0.85 mm wide; Photo ID: 11213-H. f) Streaky texture of 
pseudogranophyre. Crossed polars x4; field of view is 2.75 mm wide; Photo ID: 
11213-I. 

Plate 4.4. a) Spotted texture of pseudogranophyre. Crossed polars x10; field of 
view is 0.85 mm wide; Photo ID: 11213-E. b) Agglomerate groundmass 
composed of chalcedonic quartz and sericite. Plane polars x4; field of view is 
2.75 mm wide; Photo ID: 11076-E. c) Agglomerate groundmass composed of 

- xxi - 



chalcedonic quartz and sericite. Crossed polars x4; field of view is 2.75 mm 
wide; Photo ID: 11076-F.  d) Fine needles, altered and obscured by 
ferrohydroxides, in agglomerate possibly indicative of supercooling. Plane 
polars x4; field of view is 2.75 mm wide; Photo ID: 11088-A. e) Angular 
fragment in agglomerate with relict faces of feldspar crystal; completely altered. 
Plane polars x4; field of view is 2.75 mm wide; Photo ID: 11076-A. f) 
Subhedral lathlike fragments in agglomerate, presumably feldspar crystals, 
completely obscured by hematite and other ferrohydroxides. Plane polars x10; 
field of view is 0.85 mm wide; Photo ID: 11076-G. 

Plate 4.5. a) Quartzitic xenolith near granite roof principally composed of mosaic 
textured quartz, with iron oxides along grain boundaries and microfractures. 
Plane polars x4; field of view is 2.75 mm wide; Photo ID: 11072-A. b) 
Quartzitic xenolith near granite roof principally composed of mosaic textured 
quartz, with iron oxides along grain boundaries and microfractures. Crossed 
polars x4; field of view is 2.75 mm wide; Photo ID: 11072-B. c) Annealed 
quartz of sedimentary xenolith. Minor phases include sericite and iron oxides. 
Plane polars x4; field of view is 2.75 mm wide; Photo ID: 11150-A. 

Plate 4.6. a) Fresh yellowish-green ferroactinolite. Plane polars x4; field of view 
is 2.75 mm wide; Photo ID: 11091-A. b) Colourless to pale green, unaltered 
actinolite with rounded oxide grains. The brownish phase along grain margins 
and in fractures may be nontronite. Plane polars x4; field of view is 2.75 mm 
wide; Photo ID: 11139-D. c) Pervasive chloritisation alteration front over 
actinolite. Plane polars x4; field of view is 2.75 mm wide; Photo ID: 11139-C. 
d) Hematite replacement of actinolite. Plane polars x4; field of view is 2.75 mm 
wide; Photo ID: 11139-F. e) Silica-hematite pseudomorph after actinolite. Plane 
polars x4; field of view is 2.75 mm wide; Photo ID: 11046-A. f) Yellowish 
brown Y-britholite. Plane polars x4; field of view is 2.75 mm wide; Photo ID: 
11091-E. 

Plate 4.7. a) Euhedral magnetite in quartz partially oxidised to hematite. 
Mt=magnetite, Hm=hematite. Reflected light x50; field of view is 0.16 mm; 
Photo ID: 11194-N. b) Gossanous iron oxide of hematite with relict magnetite. 
Mt=magnetite, Hm=hematite. Reflected light x80; field of view is 0.10 mm; 
Photo ID: 11079-A. c) Specularite flakes from Ruigtepoort contact granite. 
Reflected light with Plane polars x4; field of view is 2.75 mm; Photo ID: 11067-
Q. d) Quartz-hematite vein demonstrating multiple episodes of quartz growth. 
Plane polars x4; field of view is 2.75 mm; Photo ID: 11074-J. e) Hematite 
gossan. Rhombic forms may be indicative of primary siderite-magnetite in ore. 
Reflected light x4; field of view is 2.75 mm; Photo ID: 11055-A. f) Hematite 
gossan from Elandslaagte 154JQ with pyrite in cores of gossan lattice. 
Py=pyrite, Hm=hematite. Reflected light x4; field of view is 2.75 mm; Photo 
ID: 11074-E. 

Plate 4.8. a) Hematite gossan. Primary fluorite still contained in some partitions. 
Hm=hematite, Fl=fluorite. Reflected light x20; field of view is 0.45 mm; Photo 
ID: 11055-A. b) Multiple growth phases of quartz associated to hematite ores. 
Plane polars x10; field of view is 0.85 mm; Photo ID: 11143-F. c) Quartz 
growth terminating in triple junction with hematite in final pore space. 
Qtz=quartz. Plane polars x4; field of view is 2.75 mm; Photo ID: 11055-H. d) 
Octahedral growth planes in high temperature fluorite. Plane polars x20; field of 
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view is 0.45 mm; Photo ID: 11068-G. e) Pseudomorphed quartz after actinolite 
needles with fine inclusions of hematite. Matrix is quartz. Plane polars x4; field 
of view is 2.75 mm; Photo ID: 11037-F. f) Pseudomorphed hematite after 
actinolite with crystalline quartz matrix. Plane polars x4; field of view is 2.75 
mm; Photo ID: 11037-C. 

Plate 4.9. a) Pseudomorphed quartz after actinolite needles with larger aggregates 
of hematite. Plane polars x4; field of view is 2.75 mm; Photo ID: 11017-F. b) 
Chloritised granite with iron oxides developed within perthite and along grain 
boundaries. Plane polars x10; field of view is 0.85 mm; Photo ID: 11008-P. c) 
Iron oxides occurring as veins and stringers in actinolite rock. Plane polars x4; 
field of view is 2.75 mm; Photo ID: 11056-A. d) Granite breccia with hematite 
fill. Plane polars x4; field of view is 2.75 mm; Photo ID: 11149-B. 

Plate 4.10. a) Chlorite-specularite-fluorite ore of Ruigtepoort Mine with 
fragmented pyrite grains and bright red iron oxides. Reflected with Plane polars 
x10; field of view is 0.85 mm; Photo ID: 11001-ZG. b) Chlorite and 
ferrohydroxides after actinolite in radiating growths. Plane polars x20; field of 
view is 0.45 mm; Photo ID: 11611-D. c) Chlorite groundmass with fluorite and 
minor sulphides. Black spots are radiation damage around thorium-rich 
minerals. Reflected with Plane polars x4; field of view is 2.75 mm; Photo ID: 
11001-R. d) Iron oxide staining within the chlorite groundmass. Euhedral pyrite 
grain in bottom field of view with small pyrite grains above. Reflected with 
Plane polars x80; field of view is 0.10 mm; Photo ID: 11001-ZC. e) Heavily-
pitted, euhedral pyrite crystal with pyritohedral habit; predates fluorite and 
chlorite. Reflected with Plane polars x4; field of view is 2.75 mm; Photo ID: 
11001-E. f) Pyritohedral pyrite with chalcopyrite core and small angular fluorite 
inclusion. Fine exsolution-type lamellae unidentified. Reflected with Plane 
polars x4; field of view is 2.75 mm; Photo ID: 11001-X. 

Plate 4.11. a) Inclusions in pyrite of earlier-formed ore phases magnetite. 
Reflected x40; field of view is 0.20 mm; Photo ID: 11160-T. b) Inclusions in 
pyrite of earlier-formed ore phase, possibly ilmenite. Reflected x80; field of 
view is 0.10 mm; Photo ID: 11160-J. c) Sub-euhedral pyrite enclosed by later-
formed fluorite. Reflected with Plane polars x4; field of view is 2.75 mm; Photo 
ID: 11001-G. d) Pyrite with flame-like chalcopyrite in chlorite-iron oxide 
groundmass. Reflected with Plane polars x80; field of view is 0.10 mm; Photo 
ID: 11001-ZF. e) Chalcopyrite with reddish brown alteration/exsolution in 
pyrite. Reflected with Plane polars x20; field of view is 0.45 mm; Photo ID: 
11001-U. f) Fine chalcopyrite and pyrite fragments in coarse fluorite. Reflected 
with Plane polars x10; field of view is 0.85 mm; Photo ID: 11002-C. 

Plate 4.12. a) Multiple growth quartz of sinter. Plane polars x4; field of view is 
2.75 mm; Photo ID: 11159-E. b) Mosaic textured epithermal quartz. Crossed 
polars x4; field of view is 2.75 mm; Photo ID: 11159-D. c) Highly-pitted and 
fractured pyrite grain. Reflected light x4; field of view is 2.75 mm; Photo ID: 
11159-A. d) Highly-fragmented arsenopyrite and pyrite. Reflected light x4; field 
of view is 2.75 mm; Photo ID: 11159-B. e) Gold grain in quartz 0.01 mm (10 µ) 
in size. Reflected light x80; field of view is 0.10 mm; Photo ID: 11160-ZT. f) 
Multiple gold grains in quartz approximately 0.015 mm (15 µ) in length. 
Reflected light x80; field of view is 0.10 mm; Photo ID: 11001-Y. 
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Plate 4.13. a) Tightly packed metaquartzitic rock with interstitial hematite. Small 
quartz grains included in larger grains (centre left) evidence for recrystallisation. 
Qtz=quartz, Hm=hematite. Crossed polars x4; field of view is 2.75 mm; Photo 
ID: 11150-D. b) Quartzitic xenolith where 40-50 % of field of view is 
replacement hematite. Plane polars x4; field of view is 2.75 mm; Photo ID: 
11087-C. c) Specularitic hematite replacement in sedimentary xenolith. 
Reflected light x4; field of view is 2.75 mm; Photo ID: 11150-E. d) High-relief 
rare earth mineral bastnaesite. Qtz=quartz, FeOx=iron oxide, Bast=bastnaesite. 
Plane polars x20; field of view is 0.45 mm; Photo ID: 11087-E. e) Sericite clot 
in sedimentary xenolith. Plane polars x4; field of view is 2.75 mm; Photo ID: 
11150-F. f) High birefringence of sericite clot in sedimentary xenolith. Crossed 
polars x4; field of view is 2.75 mm; Photo ID: 11150-G. 

Plate 4.14. a) Deuterically altered, reddened K-feldspar with interstitial 
symplectic biotite. Plane polars x4; field of view is 2.75 mm; Photo ID: 11023-
G. b) Deuteric chloritised symplectic biotite. Plane polars x4; field of view is 
2.75 mm; Photo ID: 11023-I. c) Microclinisation of albite feldspar. Crossed 
polars x4; field of view is 2.75 mm; Photo ID: 11120-D. d) Microclinisation of 
granite; new K-feldspar growth at the expense of quartz. Plane polars x4; field 
of view is 2.75 mm; Photo ID: 11004-J. e) Microclinisation of granite; new K-
feldspar growth at the expense of quartz. Plane polars x4; field of view is 2.75 
mm; Photo ID: 11177-B. f) Growth of secondary biotite related to K-
metasomatism; growing at expense of pre-existing feldspar. Crossed polars x4; 
field of view is 2.75 mm; Photo ID: 11120-H. 

Plate 4.15. a) Sericite replacement of perthite K-feldspar. Crossed polars x4; field 
of view is 2.75 mm; Photo ID: 11125-B. b) Sericitisation of K-feldspar; quartz 
grains unaffected. Crossed polars x10; field of view is 0.85 mm; Photo ID: 
11115-A. c) Near-complete replacement of K-feldspar in intensely altered zone. 
Crossed polars x4; field of view is 2.75 mm; Photo ID: 11078-D. d) Intensely 
sericitised K-feldspar exhibiting primary crystal habit; associated quartz and 
hematite. Crossed polars x4; field of view is 2.75 mm; Photo ID: 11201-E. e) 
Intensely sericitised granite; biotite replaced by muscovite with magnetite 
symplectic banding still apparent. Plane polars x10; field of view is 0.85 mm; 
Photo ID: 11111-D. f) Intense muscovite replacement of feldspars with 
associated iron oxides, possibly liberated from feldspar with alteration. Crossed 
polars x4; field of view is 2.75 mm; Photo ID: 11078-F. 

Plate 4.16. a) Quartz rim developed around K-feldspar grain likely derived from 
sericitisation. Abundant iron oxides. Plane polars x4; field of view is 2.75 mm; 
Photo ID: 11014-G. b) Epithermal sinter of Ruigtepoort mine where a quartz-
sulphide assemblage has wholly replaced the original chlorite ore assemblage. 
Crossed polars x4; field of view is 2.75 mm; Photo ID: 11159-D. c) Intensely 
chloritised feldspar with iron oxide staining. Plane polars x4; field of view is 
2.75 mm; Photo ID: 11066-B. d) Matted chlorite fans. Plane polars x4; field of 
view is 2.75 mm; Photo ID: 11067-F. e) Chlorite replacing quartz. Plane polars 
x4; field of view is 2.75 mm; Photo ID: 11059-A. f) Chlorite alteration of 
ferroactinolite. Plane polars x4; field of view is 2.75 mm; Photo ID: 11139-C. 

Plate 4.17. a) Hematisation of chloritised granites adjacent to Ruigtepoort mine; 
iron oxides distributed along fractures and between grains. Plane polars x20; 
field of view is 0.45 mm; Photo ID: 11066-E. b) Hematisation alteration front 
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consisting of fine stringer veins of hematite in fine-grained granite. Left portion 
of photograph unaltered assemblage. Plane polars x4; field of view is 2.75 mm; 
Photo ID: 11187-D. c) Iron oxides precipitated along grain boundaries in 
chloritised granite. Plane polars x10; field of view is 0.85 mm; Photo ID: 11008-
P. d) Iron oxides precipitated along grain boundaries. Plane polars x10; field of 
view is 0.85 mm; Photo ID: 11008-Q. e) Hematite precipitated in a patchwork 
pattern in coarse Bobbejaankop granite. Plane polars x4; field of view is 2.75 
mm; Photo ID: 11068-C. f) Bands of hematite in intensely sericitised feldspar; 
may be consequence of iron liberation during alteration. Plane polars x4; field of 
view is 2.75 mm; Photo ID: 11082-A. 

Plate 6.1. a) Defunct Ruigtepoort Fluorite Mine 100 m long by 40 m wide; person 
in blue for scale. b) Contact between Bobbejaankop granite country rock and 
Ruigtepoort Mine ore body. The granites to the left of the contact are chlorite 
altered nearest the contact, grading into pervasive hematite alteration, grading to 
common deuterically altered granite. The contact is steeply dipping (~80°), with 
numerous parallel fractures, and strikes N-S. FeOx=iron oxide, Chl=chlorite. c) 
Chlorite rock of the Ruigtepoort ore zone, consists of chlorite, fluorite with 
minor sulphides and quartz; here with large euhedral fluorite and abundant 
sulphides. The sulphides visible in the photograph are dominated by pyrite with 
minor chalcopyrite; Chl=chlorite, Py=pyrite, Fl=fluorite. Sample #ID 11215. d) 
Chlorite rock with milky quartz and chalcopyrite in abundance, oxidised to 
bornite and covellite. Chl=chlorite, Cp=chalcopyrite, Bn=bornite, Cv=covellite, 
Qtz=quartz. e) Kaolinite and halloysite associated with the chlorite rock is likely 
an alteration product after actinolite. f) Vermiform quartz chains in the chlorite 
rock. 

Plate 6.2. a) Specularitic hematite with milky quartz and occasional prismatic 
quartz crystals, and abundant iron oxides; Sample #ID 11013. b) Hematite-
chlorite altered country granite with specularitic vein. Hm=hematite, 
Chl=chlorite, Spu=specularite. c) Chlorite alteration overprinting earlier 
hematite alteration of country granite, where the chlorite alteration exists closest 
to ore body. The hematite alteration will grade into fresh country rock over a 
few 10’s of metres; Hm=hematite, Chl=chlorite. Sample #ID 11067. d) 
Sectioned country granite near Ruigtepoort mine; quartz chains and deep red 
colour indicative of Bobbejaankop variety and suggest close proximity to 
intrusion roof. Chlorite developed along fine fracture in rock; Sample #ID 
11089. e) Contact between altered country granite and chlorite rock ore zone. 
Granite altered to chlorite and sericite; Sample #ID 11004. f) Contact between 
chlorite rock and high-sulphidation quartz-pyrite-arsenopyrite sinter with 
conspicuous dividing oxidation front. Qtz=quartz, Py=pyrite.  

Plate 6.3. a) Quartz-pyrite-arsenopyrite sinter. Sulphides pseudomorph after 
actinolite blades with milky vein quartz filling pore spaces; Qtz=quartz, 
Flu=fluorite, Py + Apy=pyrite + arsenopyrite Sample #ID 11159. b) Quartz-
pyrite-arsenopyrite sinter. Minor late generation purple and colourless fluorite; 
Sample #ID 11159. c) Hand specimen of scoria-like material from Ruigtepoort 
mine, composed of abundant iron oxides and quartz. d) Scoria-like material in 
section showing gossanous hematite, limonite and other iron oxides and 
brecciated vein quartz fragments. FeOx=iron oxide, Hm=hematite, Qtz=quartz. 
e) Specularite-quartz vein in Bobbejaankop granite, near Ruigtepoort mine; 
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Sample #ID 11181. f) Hydrothermal granite breccia with hematite-magnetite-
quartz vein fill. Granite clasts affected by sericite alteration; Sample #ID 11178. 

Plate 6.4. a) Hematite-quartz-fluorite vein-fill of brecciated quartz blocks. b) Flat-
lying manto-shaped orebody with pegmatite sill base. c) Sericite-epidote altered 
granite near mineralised aplitic dykes; Sample #ID 11015. d) Gossan of 
hematite quartz and minor sulphides; Sample #ID 11217. e) Brecciated vein 
quartz with hematite-quartz-fluorite-sulphide vein fill. f) Siderite-magnetite ore 
in breccia vein fill; Sample #ID 11216. g) Coarse molybdenite flakes in 
pegmatitic quartz. 

Plate 6.5. a) Example of hematite-quartz pseudomorphed actinolite crystals with 
fluorite filling the residual vug. Fl=fluorite. b) Actinolite blades range in size 
from less than 1 cm to in excess of 10 cm. c) Actinolite rock in outcrop from the 
Ysterkop North prospect. d) Fresh ferroactinolite blades from Ysterkop North 
with pink britholite euhedral. In weathered examples the ferroactinolite may 
alter to lime-green nontrite and the britholite to goethite (Crocker et al., 2001); 
Act=actinolite, Brith=britholite. Sample #ID 11091. e) Mega-breccia of sub-
rounded and angular granite blocks set in dissaciated ferroactinolite matrix, 
from Ysterkop North. f) Mega-breccia from Ysterkop North of granite blocks in 
ferroactinolite matrix. Field of view approximately 4 m. 

Plate 6.6. a) Massive hematite with intermingled white adularia, from Blokspruit 
157JQ. b) Black hematite veining in fine-grained granite episyenite, the granite 
taking a deep red to purplish hue; Sample #ID 11057. c) Hematite infilling pore-
spaces of granite episyenite. Fe2O3 now accounts for 26 wt% of bulk rock; 
Sample #ID 11053. 

Plate 6.7. a) Hydrothermal granite breccia with hematite-quartz fracture fill 
associated with several mineralised occurrences on Elandslaagte 154JQ; Sample 
#ID 11147. b) Siliceous host rock to hematite-REE mineralisation, possibly 
bastnaesite-bearing; from Elandslaagte 154JQ; Sample #ID 11150. c) Siliceous 
host rock with abundant purplish hematite and fine specularite; Sample #ID 
11152. d) White, crystalline quartzitic xenolith found in association with centres 
of hydrothermal activity; Sample #ID 11146. e) Intensely sericite-epidote 
altered granite country host rock; Sample #ID 11145. f) Massive hematite-
quartz veins; Sample #ID 11079. 

Plate 6.8. a) Chlorite-altered granite from Doornfontein 155JQ; Sample #ID 
11085. b) Breccia of gossanous hematite after amphibole and chalcedonic 
quartz; Sample #ID 11073. c) Intense kaolinitisation of granite country rocks in 
immediate vicinity to mineralisation; Sample #ID 11083. d) Hydrothermal 
breccia with fragments of hematite-quartz gossan and granitic rocks; Sample 
#ID 11203. 
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