CYCLIC STRAIN INDUCED CREEP IN THIN WALLED ALUMINIUM ALLOY TUBES

BY WULF EILERS

THESIS SUBMITTED TO THE UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG, FOR THE DEGREE OF MASTER OF SCIENCE IN ENGINEERING

JOHANNESBURG, FEBRUARY 1977
CYCLIC STRAIN INDUCED CREEP IN THIN WALLED ALUMINIUM TUBES SUBJECTED TO CYCLIC TORSION AND STEADY TENSION

Wulf Eilers

A Dissertation Submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg in Partial Fulfilment of the Requirements for the Degree of Master of Science in Engineering.

Johannesburg, February 1977
I hereby declare that all the work contained herein is my own and has not been submitted to any other university for a higher degree.

WULF EILERS
SUMMARY

An investigation was carried out into the progressive axial deformation, or cyclic strain induced creep, occurring in thin walled aluminium alloy tubes subjected to strain controlled plastic torsion cycles in the presence of a steady tensile load. The investigation aimed to examine whether it was possible to obtain cyclic creep predictions using basic mechanical test data.

An existing testing machine was modified and some control and transducer equipment built to achieve the desired loading conditions. Cyclic creep tests were carried out over a range of plastic shear strain amplitudes and axial loads and the results were compared with theory.

Two existing theoretical approaches were modified and used for creep predictions. An expanding yield surface theory gave reasonable estimates of the steady state cyclic creep rates provided that the plastic shear strain range was greater than a tensile stress dependent value. A viscoplastic theory was used to obtain total creep curve predictions, but did not give satisfactory results.
An Matti und Co. Vielen Dank für alles.
The author gratefully wishes to acknowledge the assistance of the following:
Dr. H.D. Chandler of the School of Mechanical Engineering, for his continuous guidance and encouragement as well as for numerous helpful suggestions.
Mr. J.P. Reynders of the Department of Electrical Engineering, for his help in designing and constructing the electronic comparator.
Mr. P.A.S. Bezuidenhout and the staff of the Mechanical Engineering Laboratory, for the manufacture and practical assistance in the design of the experimental equipment.
The C.S.I.R., for the financial assistance which made this work possible.
Huletts Aluminium (S A) Pty)Ltd, for supplying the aluminium at far below cost.
LIST OF SYMBOLS USED

\(b_{ij} \) = General stress tensor

\(\varepsilon_{ij} \) = General strain tensor

\(b_1, b_2, b_3 \) = Principal stresses

\(\delta_{ij} \) = Deviatoric stress = \(b_{ij} - \frac{1}{3} \delta_{ij} b_{kk} \)

\(\delta \) = Effective stress = \(\frac{1}{2} \delta_{ij} \delta_{ij} \)

\(\varepsilon_{ij} \) = Deviatoric strain = \(\varepsilon_{ij} - \frac{1}{3} \delta_{ij} \varepsilon_{kk} \)

\(\varepsilon \) = Effective strain = \(\frac{1}{2} \varepsilon_{ij} \varepsilon_{ij} \)

\(E \) = Elastic modulus in tension

\(G \) = Elastic modulus in torsion

\(\sigma \) = Tensile stress

\(\tau \) = Shear stress

\(\varepsilon \) = Axial strain

\(\gamma \) = Shear strain (Engineering definition)

\(N \) = Number of loading cycles

Prefixes

\(\Delta \) = Range

Subscripts

\(y \) = Yield quantity

\(c \) = Critical quantity

\(m \) = Maximum quantity

\(\text{max} \) = Maximum quantity

Superscripts

\(p \) = Plastic quantity
1. INTRODUCTION

2. REVIEW OF PREVIOUS WORK

2.1 Introduction

2.2 Plastic Behaviour of Metals

2.2.1 The Crystalline Structure of Metals

2.2.2 Yield Surfaces

2.2.3 Viscoplasticity and Thermodynamics

2.3 Yield Surface Theories for Cyclic Plasticity

2.4 Viscoplastic Theories for Cyclic Plasticity

2.5 Concluding Remarks

Figs. 2.1 - 2.6

3. EXPERIMENTAL EQUIPMENT

3.1 General

3.2 Material and Specimens

3.3 Torsion Test Modification

3.3.1 Motor, Gear Box and Chain Drive

3.3.2 Drive Train and Load Cells

3.3.3 Specimen Holders

3.4 Tensile Load Application

3.5 Instrumentation

3.5.1 Axial and Shear Strain Transducers

3.5.2 Recording and Amplification Equipment

3.5.3 Torsional Load Reversal
<table>
<thead>
<tr>
<th>CONTENTS (CONT'D)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 Setting up the Equipment</td>
<td>24</td>
</tr>
<tr>
<td>3.7 Testing Procedure</td>
<td>24</td>
</tr>
<tr>
<td>3.7.1 Pure Tension Testing</td>
<td>25</td>
</tr>
<tr>
<td>3.7.2 Combined Tension-Torsion Testing</td>
<td>25</td>
</tr>
<tr>
<td>3.8 Testing Programme</td>
<td>25</td>
</tr>
<tr>
<td>Figs. 3.1 - 3.16</td>
<td>27</td>
</tr>
</tbody>
</table>

4. EXPERIMENTAL RESULTS
4.1 Pure Reversed Torsion and Pure Tension | 43 |
4.2 Steady Tension and Alternating Torsion | 43 |
| 4.2.1 Cyclic Strain Induced Creep | 44 |
| 4.2.2 Torsional Hysteresis Loops | 44 |
| 4.2.3 Fracture Behaviour | 45 |
| 4.3 Tensile Response after Previous Torque Cycling | 45 |
| Figs. 4.1 - 4.13 | 46 |

5. YIELD SURFACE THEORY
5.1 General | 59 |
5.2 Determination of the Approximate Yield Surface | 60 |
5.3 Assumption of a Critical Plastic Shear Strain γ_c for Creep | 61 |
5.4 Discussion | 62 |
| Figs. 5.1 - 5.7 | 64 |

6. ENDOCHRONIC THEORY OF VISCOPLASTICITY
6.1 Basic Theory | 89 |
6.2 Pure Tensile Behaviour | 91 |
6.3 Pure Torsional Behaviour | 93 |
6.4 Combined Tension - Torsion Behaviour | 93 |
6.5 Cyclic Strain Induced Creep Behaviour | 95 |
6.6 Cyclic Strain Induced Creep in Aluminium | 96 |
6.7 Discussion | 97 |
<p>| Figs. 6.1 - 6.10 | 99 |</p>
<table>
<thead>
<tr>
<th>CONTENTS (CONT'D)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. CONCLUSIONS</td>
<td>123</td>
</tr>
<tr>
<td>8. SUGGESTIONS FOR FURTHER WORK</td>
<td>125</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A. SPECIFICATIONS OF EQUIPMENT</td>
<td>126</td>
</tr>
<tr>
<td>Figs. A.1 - A.6</td>
<td>127a</td>
</tr>
<tr>
<td>B. REFERENCES</td>
<td>128</td>
</tr>
</tbody>
</table>
There are many situations in which plastic flow may occur in metal structures or components subjected to mechanical and thermal loading conditions. Plastic deformation may take place unintentionally due to accidental damage during manufacture or may occur at stress concentrations arising due to machining errors or incorporated in the design. In other situations plastic flow is unavoidable such as creep at high temperatures. Under conditions of variable loads and temperatures, plastic flow may also occur. It has been found that in applications such as steam and gas power plant, pressure vessels and heat exchangers, there are large temperature gradients and hence high transient stresses during start up and shut down of the machinery. These stresses can produce plastic strains not accounted for in the steady state analysis of continuous running conditions.

In some instances a component may be deliberately designed to operate in the plastic region so as to utilize the added strength of the strain hardened metal at the expense of a reduced life. This is common in the aerospace industry where minimum weight is a very important design criterion. The designer thus needs information about the plastic behaviour of the material he is using to enable life predictions to be made. Empirical knowledge is useful, but often difficult to obtain and only of limited applicability. Extrapolation from data obtained for other, seemingly similar, situations may often be unwarranted and erroneous. It should rather be attempted to develop a sound framework of plasticity theories which enable the prediction of plastic behaviour from a minimum of readily obtainable basic data.

One particular aspect of plasticity is the behaviour of metals under conditions of cyclic loading where plastic strains occur during each cycle. Failure is then caused by either high strain fatigue fracture or cyclic creep. Cyclic creep, the subject of the present investigation, is caused by a steady or follow up load superimposed on plastic loading cycles. Although the follow up load alone is insufficient to
cause yield, it is responsible for a steadily accumulating creep deformation in the follow up load direction. A component thus loaded may then fail by gross deformation long before high strain fatigue fracture occurs.

Two types of cyclic creep can be distinguished:

(a) When the cyclic and follow up loads are in the same direction, the cyclic stress-strain curve is asymmetric, causing deformation to accumulate with each cycle.

(b) In the case of the follow up and cyclic loads not having the same direction, the cyclic stress-strain curve is symmetric, but creep occurs in the direction of the follow up load. This type of creep is sometimes called cyclic strain induced creep, ratchetting or incremental collapse.

The purpose of the present investigation was to study cyclic strain induced creep in an aluminium alloy for a range of cyclic and follow up loads. To do this, an existing testing machine was modified to enable testing of thin walled tubular specimens in alternating torsion and steady tension. Some theoretical approaches were investigated with the aim of predicting cyclic creep behaviour from a minimum of material data.
CHAPTER 2.

REVIEW OF PREVIOUS WORK

2.1 Introduction
When a metal is subjected to plastic loading cycles in the presence of a steady follow up load, a steadily accumulating deformation, termed cyclic creep, will occur in the direction of the follow up load, even though the latter alone is insufficient to cause yield. Cyclic creep has been observed for a variety of metals and loading conditions. Of particular interest is the case where the cyclic and follow up loads are not in the same direction. The term "cyclic strain induced creep" has been suggested by Coffin (1) for this situation.

Edmunds and Beer (2) found that cyclic strain induced creep occurred in cantilevers subjected to alternating bending in one plane with follow up bending or tensile stresses in another direction, as well as in pipes subjected to internal pressure and cyclic bending. Tests conducted by Ronay (3) in aluminium specimens subjected to reversed torsion cycles showed that axial elongation occurred, even in the absence of a tensile follow up load. The magnitude of the accumulated creep, however, was far smaller than could be obtained with a nonzero follow up load. Udaguchi and Asada (4) observed cyclic strain induced creep for several commercial steels subjected to axial strain cycling and a steady torque. They also obtained some empirical relations between axial strain range, accumulated shear strain, number of cycles and applied shear stress.

Two different types of cyclic strain induced creep have been observed, which are analogous to high temperature and room temperature thermally induced creep (fig. 2.1). For creep analogous to high temperature creep, Wood and Cousland (5) recognized four stages of creep in cylindrical specimens subjected to cyclic torsion and steady tension. The first torque application resulted in a relatively large axial strain. Upon further cycling, the creep increment per cycle fell rapidly, similar to the primary creep region in
high temperature thermal creep, until a region of constant cyclic creep rate was observed. This corresponded to the steady state or secondary creep region. Finally, just before fracture, the cyclic creep rate increased again as in tertiary creep.

The logarithmic type of creep was investigated by Reimann an' Wood (6) who tested armco iron in alternating torsion and steady tension. It was found that this type of creep occurred for small shear strain ranges (0.003 - 0.012).

2.2 Plastic Behaviour of Metals

2.2.1 The crystalline structure of metals

All commercially available metals consist of a large number of crystals or grains in which the atoms are stacked in a regular order. The stacking orientation, however, varies from grain to grain. In addition, each grain contains numerous stacking faults or dislocations. Permanent plastic deformation is caused by dislocations moving through the crystal under the influence of a stress greater than the yield stress. Strain hardening may be understood in terms of dislocations interacting with each other and piling up against grain boundaries and other obstacles. A comprehensive description of crystal defects and their role in plastic deformation may be found in (7).

Any investigation into plasticity should thus take account of the polycrystalline structure of metals. The slip theory of Batdorf and Budiansky (8, 9) has, in fact, been developed from considerations of dislocation slip but at present it is still of limited applicability. The same is true for Mura's continuum theory of dislocations (10) which attempts to formulate a plasticity theory in terms of a continuous distribution of dislocations. Similar work by other authors on the Bauschinger effect (11) and cycling loading (12) is essentially qualitatively useful, but difficult to apply quantitatively. Alternative approaches to plasticity thus need to be considered.
2.2.2 Yield surfaces

A yield surface is a surface in 9-dimensional stress space which gives the locus of all possible stress combinations which will cause a given material to yield. Plastic flow will occur when the stress vector touches the yield surface while any stress changes inside the surface will not cause yield. During plastic flow the yield surface moves with the stress vector. It is common to call the initial surface for the unstrained metal a yield surface while subsequent surfaces are termed loading surfaces. Drucker (13) has derived from quasi-thermodynamic considerations the following results.

(a) The increment of plastic strain ε_{ij}^p must be normal to the yield surface. If we define the yield surface as

$$f(b_{ij}) - \text{CONST} = 0 \quad 2.1$$

then

$$d\varepsilon_{ij}^p = \lambda \cdot df / db_{ij} \quad 2.2$$

where λ is a scalar value depending on the stress, strain, stress increment and loading history.

(b) λ is related to the stress increment.

$$d\lambda = G (df / db_{kl}) db_{kl} \quad 2.3$$

where G, also a scalar, now depends only on the stress, strain and loading history.

It is generally assumed that the hydrostatic stress component δb_{ij} has no effect on plastic deformation. In that case the yield surface may be represented graphically as a cylinder in principal stress space (b_1, b_2, b_3) along the hydrostatic stress axis $b_1 = b_2 = b_3$, or simply as a closed curve on the Π-plane, this being a plane through the origin of the stress space, normal to the hydrostatic stress axis.

To use the equations above, some information is required about the behaviour of the yield and loading surfaces. Paul (14) reviews some experimentally obtained yield and loading surfaces and it is shown that the shape and size of the surfaces are affected to a very large degree by the definition of yield used. A permanent set definition, for example, would indicate that the yield strength in one direction is affected by prestraining in another direction, while for a proportional
limit definition of yield this cross effect is absent, as
also shown by Phillips and Tang (15).

Michno and Findley (16, 17) determined yield and loading
surfaces for thin-walled SAE 1017 steel tubes under combinations
of axial and torsional loads. It was found that the normality
and convexity rules were obeyed. Sharp corners in the loading
surface, as predicted by the slip theory, were not encountered,
but occasionally well rounded corners were formed under
combined tension and torsion. The behaviour of the loading
surfaces, however, was quite complex.

It seems thus that an exact description of the loading
surface behaviour during plastic straining will be very
complicated. An alternative approach has been to assume a
form of loading surface behaviour and then check how this
predicted actual stress-strain behaviour. Some of the more
commonly used loading surface theories are discussed
below.

(a) Piecewise linear theory
Any yield surface can be described in terms of a series
of linear segments on the τ-plane. To decrease the
complexity, the number of planes should be small. An
example of this is Tresca's yield criterion which has
six planes (fig. 2.2). During yield the stress vector
carries with it that particular plane it is in contact
with. The theory is completely general if the planes
move independently. For the theory to have any
predictive value, the behaviour of the planes must
be specified as has been done in the following theories.

(b) Isotropic hardening theory
The yield surface expands uniformly while the centre
remains fixed (fig. 2.3). Von Mises yield criterion
is an example of this. The theory works fairly well
for single direction loading, but during reversed loading
the actual yield stress is lower than the original
yield stress. This is called the Bauschinger effect
which the isotropic theory makes no provision for.
For plastic load cycling with a superimposed follow
up load, deformation in the direction of the follow
up load will, according to this theory, occur only
during the first quarter loading cycle.

(c) **Kinematic hardening theory**

This theory assumes a yield surface of constant size which translates in stress space (fig. 2.4). The centre moves in the direction of the plastic strain increment by an amount which depends on the plastic work parameter \(b_j \dot{\epsilon}_j \). The Bauschinger effect is accounted for by this theory. However, the theory is only of limited applicability to the cyclic creep problem as, for a tubular specimen subjected to alternating torsion - steady tension conditions, it predicts a limit to the creep strain far below that observed in practice (18).

Combinations of the isotropic and kinematic theories are also possible but again are only of limited applicability to the creep problem as they tend to predict small limiting creep values. Such theories may be useful, however, for describing logarithmic cyclic creep.

2.2.3 **Viscoplasticity and Thermodynamics**

Viscoplasticity theories attempt to describe more general non-linear time-, temperature- and strain rate dependent behaviour of inelastic solids. In linear viscoelasticity the stress \(\sigma \) in a solid subjected to a strain history \(\epsilon(t) \) is given by the hereditary integral

\[
\sigma(t) = \int_0^t \epsilon(t-\tau) \cdot \dot{\epsilon} \, d\tau
data2.4
\]

Non-linear behaviour can also be represented in a similar fashion (19) although the actual equations are more complex.

One approach is to mathematically model the solid as a combination of springs (elastic elements), dashpots (linear viscoelastic elements) and friction blocks (perfectly plastic elements). Hilton (20) has shown how non-linear creep for time independent temperatures and stresses may be obtained from such a model.

A comparatively recent development is the application of the laws and concepts of classical thermodynamics to inelastic strained solids. The subject is reviewed by Martin
and it is shown that the general framework thus developed includes the description of viscoelastic materials, for example. This approach is promising, especially as regards the development of constitutive relations.

2.3 Yield surface theories for cyclic plasticity

The yield surface theory of Mroz (22) consists of a series of nested loading surfaces surrounding the yield surface (fig. 2.5). Each surface grows and translates once it has come into contact with the stress vector or another surface. Once a particular surface has started to move, the work hardening modulus stays constant until the next surface is contacted. This amounts to approximating the uni-axial stress-strain curve by a series of linear segments. During nonproportional loading, such as preloading in one direction and loading in another, it is assumed that the surfaces cannot intersect each other and in fact behave like a set of nested frictionless rings lying on a flat surface. This theory is then applied by Mroz (23) to the problem of alternating torsion and steady tension. For simplicity, only two loading surfaces are assumed, the inner and outer ones behaving in a purely kinematic and isotropic fashion respectively. Despite this simple model the strain equations become quite complex. No experimental results for comparison are presented.

A similar theory by Krieg (24) is described as a two surface Mroz theory with a continuum of intermediate loading surfaces whose distribution is assumed beforehand. The model consists of an isotropic - kinematic yield surface and an isotropic - kinematic limit surface. These two do not touch but are both affected by plastic straining. The work hardening modulus is determined by the distance between the surfaces at the tip of the stress vector. The theory is then applied to tension compression cycling but the resulting equations become quite complex. Agreement with experiment is good, but a large number of empirical relations had to be used.
Chandler (18) has suggested, from considerations of the cyclic behaviour of mild steel under steady tension and alternating torsion, a steady-state yield surface which can be described as a semi-ellipse in $b - \tau$ stress space expanding within a limiting isotropic ellipse (fig. 2.6). It is also shown that the plastic shear strain during each loading half cycle must exceed a critical value γ^p_c before any significant axial creep can occur. The steady state axial creep rate $d\varepsilon_p/dN$ is obtained from the following equation.

$$\frac{d\varepsilon_p}{dN} = \frac{b}{3}\tau_m \int \tau d\gamma^p$$

for $\gamma^p > \gamma^p_c$ 2.5

where $b =$ applied tensile stress
$\tau_m =$ maximum shear stress reached during cycle

The theory works well for larger plastic shear strain ranges (>0.025 for m3 and m19 steels) while it overestimated creep rates for smaller shear strain ranges.

Preudenthal and Ronay (25) showed that cyclic strain induced creep can also be interpreted as an irreversible second order effect amplified by an applied follow up load. The second order effect arises from a quadratic term in the constitutive equation which is usually ignored for monotonic loading. In a cyclic loading case its effect accumulates, however, and cyclic strain induced creep is predicted even in the absence of a follow up load, as was actually observed.

2.4 Viscoelastic theories for cyclic plasticity
Some work has already been done in the application of conventional creep equations to the cyclic loading case (26, 27), but only for coincident cyclic and follow up loads.

Rashid (28) briefly reviews some methods of creep analysis of structures subjected to variable mechanical and thermal loading histories at high temperatures. These methods include expressing the creep rate $\dot{\varepsilon}_{ij}^C$ as the gradient of a potential function f.

$$\dot{\varepsilon}_{ij}^C = \frac{\partial f}{\partial b_{ij}}$$

as well as using non-linear viscoelastic equations. Some methods of numerical analysis are described as is the
obtaining of material data. Three numerical examples are worked out to compare different equations but no experimental comparison is made.

It has been pointed out by Valanis (29) that, for time independent plasticity, the stress in a strained solid "depends on the set of all previous states of deformation of that neighbourhood, but it does not depend on the rapidity at which such deformation states have succeeded one another". For this reason, it is suggested that the history of deformation be related to a "time" scale, which is not measured by a clock, but intrinsically related to the deformation history of the material. This concept may be extended to time dependent plasticity by having the intrinsic "time" depend on both the deformation history and the external, real, time. It is suggested that an intrinsic time increment \(d\xi \) may be written as

\[
d\xi^2 = g^2 dt^2 + h^2 d\gamma^2
\]

where \(dt \) is a real time increment
\(d\gamma \) is a deformation increment
\(g \) and \(h \) are scalar material parameters.

Valanis then developed a theory of viscoplasticity from thermodynamical considerations and showed that stress and strain can be related by a hereditary integral similar to eq. 2.4 except that the integral is evaluated over an interval of intrinsic, rather than real, time. For the particular case of tension and torsion respectively,

\[
b = \int_{\xi}^{\xi'} E(z - z') \cdot \delta \varepsilon / \delta z' \cdot dz'
\]
\[
\tau = \int_{\xi}^{\xi'} G(z - z') \cdot \delta \gamma / \delta z' \cdot dz'
\]

where \(\xi \) is an internal time scale, which is a function of the time measure \(\xi \).

\[
d\xi = d\xi / f(\xi)
\]

\[\delta \xi, \text{ the deformation increment, may be written as}
\]

\[
d\xi^2 = k_1 \delta \varepsilon_{ij} \delta \varepsilon_{ij} + k_2 \delta \varepsilon_{ij} \delta \varepsilon_{ij}
\]

where \(k_1 \) and \(k_2 \) in general depend on \(\delta \varepsilon_{ij} \). \(E(\xi), G(\xi) \) are expressed as a sum of decaying exponential terms:

\[
E(\xi) = \sum_{r=0}^{m} E_r e^{-\alpha_r \xi}
\]

\[2.10 \]

\[2.11\]
\[G(z) = \sum_{i=0}^{m} G_r e^{-\alpha_r z} \]

where \(E_r, G_r, \alpha_r \), and \(\alpha_r \) were positive material constants.

In further work on this endochronic theory (30, 31, 32) Valanis found that:

(a) The form of \(f(\xi) \) in eq. 2.9 that gave the best results was

\[f(\xi) = 1 + \beta \xi \]

\[z = 1/\beta \cdot \log(1 + \beta \xi) \]

(b) For monotonic loading, a one term approximation of \(E(z) \) and \(G(z) \) could be used while for loading - unloading a two term approximation sufficed.

\[E(z) = E_o e^{-\alpha Z} \]

\[G(z) = G_o e^{-\alpha Z} \]

\[E(z) = E_i + E_x e^{-\alpha_z} \] for loading - unloading

\[G(z) = G_i + G_x e^{-\alpha_z} \]

where \(E_o \) and \(G_o \) are the initial slopes of the respective stress-strain curves.

The theory was then applied to various aspects of plasticity including cyclic strain induced creep (32) and good agreement with experimental results was obtained.

2.5 **Concluding remarks**

Of the foregoing theories, it was decided to select two for further investigation as these seemed the most promising.

These were the expanding ellipse yield surface theory (13)
and the endochronic theory of viscoplasticity by Valanis (32). They will be developed and discussed in more detail below.
Fig. 2.1 High Temperature and Room Temperature Thermally Induced Creep
FIG. 2.2 PIECEWISE LINEAR YIELD SURFACE THEORY
FIG. 2.3 ISOTROPIC HARDENING THEORY
FIG. 24 KINEMATIC HARDENING THEORY
FIG. 2.5 MULTIPLE LOADING SURFACE THEORY OF MROZ (22)

\[S = \text{STRESS VECTOR} \]
\[d = d\varepsilon_{ij}^{p} \]
FIG. 2.6 EXPANDING YIELD SURFACES (18) IN $\theta - \sqrt{3} \tau$ STRESS SPACE

LIMITING ISOTROPIC SURFACE

INTERMEDIATE SURFACE

$S =$ STRESS VECTOR
CHAPTER 3

EXPERIMENTAL EQUIPMENT

3.1 General
The equipment consisted of an Instron TT-CM testing machine of 50 kN capacity which was modified so that cyclic torsional loads could be superimposed on the normal tensile operating mode.

The modifications consisted of a tension-torsion drive train fitted between the Instron cross heads. The torque was applied to the drive train by an electrical motor via a V-belt, a 3600:1 reduction gear box and a chain drive. Tensile and torsional loads were measured by load cells incorporated in the drive train. The tensile load was applied by the Instron machine and the standard Instron equipment was used for load control and measurement. Shear and axial strains were obtained from a strain gauged clip on extensometer. Torque reversal was achieved by a purposely built electronic circuit capable of monitoring either the shear stress or shear strain signal voltage. Shear stress τ and shear strain γ were plotted on an X - Y pen recorder while axial strain ε as well as γ were recorded on an X-t recorder.

Fig. 3.1 is an schematic representation of the experimental equipment. Relevant specifications of equipment may be found in Appendix A.

3.2 Material and Specimens
The material used was a Huletts B515-TF aluminium silicon alloy, which was received and tested in the solution heat treated and aged condition. Fig. 3.2 gives its chemical composition and other properties stated in the test certificate of the batch. The material was received as 5m lengths of 27mm diameter extruded round bar and all material was from the same cast.

The specimens were thin walled tubes with ends designed to transmit both a torque and a tensile load to the gauge.
length (fig. 3.3). Similar specimens had been used in other investigations (18) and it had been found that the wall thickness was small enough to justify the assumption of constant stresses, yet large enough to prevent severe torsional buckling. In order to further inhibit torsional buckling, a lubricated mandrel was inserted into the specimen. To prevent binding and erroneous torque readings, especially when large negative diametral strains occurred, the mandrel was machined down to give a clearance of 1 mm between it and the tube wall over the gauge length (fig. 3.3). Even after considerable axial straining of the specimen, the mandrel could still be rotated freely.

Because of the dimensional accuracy required in the specimens, especially as regards the uniformity and constancy of the wall thickness, the machining procedure was as follows.

(a) The required lengths of round bar were cut, faced to the correct overall length and centres drilled in both faces.

(b) The bar was inserted between a centre and a driving centre and turned down to the maximum outer diameter (26 mm).

(c) It was then placed in a collet (high precision chuck) and the central hole drilled and reamed to the correct depth.

(d) A mandrel was placed in the hole and the specimen fixed between centres on a profile lathe where the profile was cut in three roughing cuts of 1 mm each and two finishing cuts of approximately 0.25 mm each.

(e) Finally the flats on the thickened specimen ends were milled.

3.3 Torsion test modification

3.3.1 Motor, gear box and chain drive

A three phase electric motor was chosen to apply the torque because it could be reversed almost instantaneously by changing over two of the phases. Since the torque required from the motor was very low (0.014 Nm) compared to its rated capacity of 4.8 Nm, the motor speed was practically
synchronous (750 rev/min) and produced a saw tooth twist-time curve.

The speed reduction required between motor and specimen was achieved by a Renold Crofts 3600:1 double reduction gear box mounted on the Instron frame and driven by the motor via two 80 mm PCD pulleys and an A-section V-Belt (fig. 3.4). The belt tension could be adjusted by lowering or raising the motor on its support.

Sprockets were fitted on the vertical output shaft of the gear box as well as on the top of the drive train and connected by a single 3/8 in. pitch chain. The chain tension could be adjusted by shifting the gear box on its supporting rails. Several sprocket sizes, all interchangeable, were available to obtain different twisting speeds. Throughout the present investigation, however, the twisting rate was maintained at 0.78 °/s.

3.3.2 Drive train and load cells
The upper part of the drive train consisted of a bearing housing bolted onto the upper Instron cross head, a torsion load cell and a thrust bearing (fig. 3.5). The bearings in the bearing housing were designed to accommodate the bending moment caused by the one-sided pull of the drive chain, while the thrust bearing prevented tensile loading of the torsional load cell.

The torsional cell was hollow for greater sensitivity and a bolted on cap provided for the driven sprocket. Four strain gauges were accurately mounted on the cell to form a complete bridge. The cell was calibrated by removing the sprocket cap and fitting the two adaptors (fig. 3.6) for insertion into a previously calibrated Avery torsion testing machine. The resulting calibration graph was found to be linear (fig. 3.7).

The tensile load cell (see fig. 3.8) was pinned to the fixture on the lower Instron cross head. Four strain gauges were accurately mounted on this cell, two at right angles and two parallel to its centre line, and spaced in 90°
intervals around its circumference. This was found to give good results. The calibration of this cell which was used with the Instron chart recorder was carried out by dead weight loading, using the standard weights provided. Pinned connections were used throughout the drive train to facilitate assembly.

3.3.3 Specimen holders
The jaws holding the specimen were of the self aligning type which had been used in other investigations (18). The jaw blocks (see fig. 3.9), made of ITAH hardened to R652, were able to slide in the jaw carrier, which in turn was free to move in the jaw head. The jaw blocks were tightened against the milled flats on the specimen by means of the bolt shown and a recess was provided for the unmilled specimen end (see fig. 3.10).

3.4 Tensile load application
The steady tensile load was applied to the specimen by the Instron machine which was set to operate in the load cycling mode. Thus the tensile load was varied and was kept to ±5% about the selected mean value. The variation was sufficiently small for the load to be regarded as static.

3.5 Instrumentation
3.5.1 Axial and shear strain transducers
The axial and shear strains were measured by a specially constructed strain gauge extensometer. This consisted of two spring loaded jaw pieces joined by two curved spring steel strips, one of which could deform when the specimen elongated, the other when it twisted. Each strip was fitted with a four strain gauge bridge for maximum sensitivity. Three pointed screws on each jaw piece fixed the extensometer firmly to the specimen. Fig. 3.11 shows the extensometer clamped in position on the specimen. During preliminary investigations with other types of extensometers, it was found that this arrangement was the best and that the cyclic creep rate was unaffected by the chosen clamping method.
The extensometer was calibrated for twist by fixing it to a standard torsion specimen of the same diameter as the tension-torsion specimen and twisting it in the Avery torsion testing machine. The linear relation between the shear strain in the torsion specimen and the number of drive wheel revolutions had been determined previously by means of a twist meter. The resulting calibration curve was linear (fig. 3.12). The slight deviation from linearity for $\delta > 0.025$ did not affect the results since torsional cycling was never carried out in that region. It was found that the effect of twisting on the axial strain signal was negligible.

Axial strain calibration was carried out by fitting the extensometer to a long mild steel tensile specimen, together with a dial gauge extensometer, and straining the specimen in an Amsler Universal testing machine. Care was taken to prestrain the specimen past the yield region, where strains were susceptible to local variations over the specimen length, before the extensometers were connected. The calibration was approximately linear (fig. 3.13). An axial strain also produced a reading on the extensometer's shear strain bridge. The effect of this during steady tension-cyclic torsion testing would be, due to the manner in which torque reversal was achieved, to cause a torsional cyclic creep accumulating with axial deformation. However, visual observation of the extensometer after prolonged cycling showed no such accumulated twist, indicating that the cross effect was absent during torsional cycling.

3.5.2 Recording and amplification equipment

The strain gauge bridges on the torsional load cell as well as on the axial- and shear strain transducers were supplied with a constant voltage (6.00 V) by a stabilised single DC power supply operating in the constant voltage mode. The tensile load cell bridge was supplied directly from the Instron machine.

Because of the small signal voltage generated by the torsional load cell and the strain transducers, a high gain DC amplifier was used to pre-amplify the signal voltages.
Gains of the order of 1000 were employed. The amplifier was also used to zero any initial imbalance in the bridge circuits.

The pre-amplified signal voltages were then fed into the respective recorders (fig. 3.1). The reason for duplicating the shear strain on the X-t recorder together with the axial strain ξ was to provide a time and cycle reference for ξ.

3.5.3 Torsional load reversal
To enable torque reversals at either preset shear stress or shear strain limits, an electronic comparator capable of reversing the electric motor was designed and built. This comparator was triggered when the input signal reached a preset maximum or minimum value. The comparator circuit was supplied with -12V - 0V +12V by a stabilized dual DC power source. Fig. 3.14 is a schematic view of the control system. Throughout the present investigation the pre-amplified shear strain signal voltage was used to trigger the torque reversals.

3.6 Setting up the equipment
The gear box and motor were installed as shown in fig. 3.4 and the belt tension adjusted. The upper part of the drive train (fig 3.5) was lowered through the hole in the upper Instron cross head after the torsional load cell wires had been threaded through the hollow cross head. The assembly was bolted down, the sprockets and chain placed in position and the chain tension adjusted. The tensile load cell and the jaws were inserted (fig. 3.8) and the load cell connected to the Instron machine.

The recording, amplification and control equipment was arranged as shown in figs. 3.15 and 3.16 and connected (fig. 3.1). The polarities of the load cell and extensometer outputs, the comparator input and the motor phases were checked for proper recording direction and torque reversal.

3.7 Testing procedure
A warm up period of at least half an hour was allowed before testing commenced so that the electronic components, and especially the strain gauge bridges, could attain thermal equilibrium.
3.7.1 Pure tension testing
Pure tensile tests were conducted on the Instron machine using an extension rate of 0.2 cm/min. No mandrel was required in the specimen. Stress and strain values were obtained from load-deflection curves from the Instron's chart recorder.

3.7.2 Combined tension-torsion testing
The tensile load cell was calibrated, the Instron switched to the load cycling mode and the tensile load limits set. The axial extension rate was retained as 0.2 cm/min. The required amplifier gains and recorder sensitivities for , and were calculated and set so as to give a simple relation between the signal voltage and the recorder pen deflection. Thus 1 cm on the Y-channel of the X-Y recorder was set to correspond to a shear stress of 20 MPa in the specimen, 20 cm on the X-channel of the X-Y recorder corresponded to the total shear strain range, while 1 in. on the X-t recorder represented 0.005 axial strain.

The specimen was then inserted, tightened and the extensometer fixed to it. A spacer between the extensometer jaw pieces was required to ensure conditions identical to those during calibration. After withdrawal of the spacer the axial strain signal was zeroed and the specimen preloaded in tension.

The zero screw on the amplifier was used to apply a simulated shear strain signal to the comparator in order to set the upper and lower shear strain limits. The shear stress and shear strain signals were then zeroed and the chart drive and motor switched on.

It was found to be advantageous to select a higher chart speed (~ 60 mm/min) on the X-t recorder during the first ten torsional loading cycles so as to note the transient axial strain behaviour. The calibration of the extensometer and load cells was checked after every few tests but very little variation was found.

3.8 Testing Programme
The main part of the testing consisted of steady tension - cyclic torsion tests to find the cyclic creep behaviour of
the aluminium. Shear strain ranges ranged from 0.01 to 0.04, while the applied tensile stresses varied from 0 MPa to 200 MPa. A maximum of four hours was allotted to each test.

In addition a number of pure tensile tests up to fracture as well as fully reversed torsion tests were conducted to obtain the elastic constants and the monotonic leading behaviour.

Additional tests consisted of subjecting specimens to a steady tension and a cyclic torque until the torsional hysteresis loop had settled down to a steady state. The specimens were then tested in pure tension up to fracture and the yield behaviour noted. This was done for a high and a low shear strain range (0.032 and 0.012) as well as for tensile stresses ranging from 0 MPa and 200 MPa.
FIG 3.1 SCHEMATIC VIEW OF EXPERIMENTAL EQUIPMENT
fig. 3.2 Properties of Aluminium Alloy Tested

Chemical analysis (%):

<table>
<thead>
<tr>
<th>Mg</th>
<th>Fe</th>
<th>Si</th>
<th>Mn</th>
<th>Ti</th>
<th>Cu</th>
<th>Zn</th>
<th>Cr</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58</td>
<td>0.28</td>
<td>1.03</td>
<td>0.53</td>
<td>0.018</td>
<td>0.079</td>
<td>0.015</td>
<td>0.010</td>
<td>Remainder</td>
</tr>
</tbody>
</table>

Alloy + temper: B51S-TP

B.S. designation: 1474/HE 30 TF

I.S.O designation: AlSi1MgMn

0.2% Proof stress: 265 MPa

UTS: 313 MPa

Elongation: 14%

Gauge length: 50 mm
FIG. 3.3 ELEVATION AND SECTIONED ELEVATION OF ALUMINIUM TENSION-TORSION SPECIMEN

SCALE = 4:3
MAT'L: MILD STEEL
1. Motor supports
2. Motor
3. V-belt
4. Gear box on supporting rails
5. Chain
6. Drive train

Fig. 3.4 Rear View of Instron Machine
1. Sprocket
2. Sprocket cap
3. Bearing housing
4. Torsion load cell
5. Thrust bearing
6. Old tensile load cell used as spacer
7. Supporting plate
8. Adaptor piece

Fig. 3.5 Torsion Load Cell Assembly
1. Adaptor no. 2
2. Adaptor no. 1

Fig. 3.6 Torsion Load Cell for Calibration
Fig. 3.7 Calibration Curve of Signal Voltage (S) against Torque (T) for Torsion Load Cell.
1. Torsion load cell assembly
2. Upper Instron cross head
3. Jaw
4. Specimen
5. Tensile load cell
6. Lower Instron cross head

Fig. 3.8 Drive Train
1. Jaw block
2. Jaw carrier
3. Jaw head
4. Hole for admitting specimen

Fig. 3.9 Specimen Holder
FIG. 3.10 SECTIONED ELEVATION OF
SCALE: 1:1 SPECIMEN HOLDER
MAT' L: MILD STEEL

END VIEW OF SPECIMEN HOLDER WITHOUT RETAINING PLATE
6 HOLES: DRILL AND TAP M8 x 15 DEEP

DRILL 7/16" AND BORE TO GIVE SLIDING FIT WITH LOADING PINS
1. Spring loaded jaw pieces
2. Axial strain transducer strip
3. Shear strain transducer strips

Fig. 3. Extensometer Fitted to Specimen
Fig. 3.12 Calibration Curve of Signal Voltage (S) against Shear Strain (ε) for Shear Strain Transducer.
Fig. 3.13 Calibration Curve of Signal Voltage (S) against Axial Strain (ε) for Axial Strain Transducer.
FIG. 3.14 SCHEMATIC VIEW OF CIRCUIT
MONITORING SHEAR STRAIN AND REVERSING TORQUE
1. DC amplifier
2. Single DC power supply for strain gauges
3. Dual DC power supply for comparator circuit
4. Comparator
5. Switching box

Fig. 3.15 Layout of Control and Amplification Equipment.
1. X – Y recorder
2. X – t recorder
3. Instron recorder

Fig. 3.16 Overall layout
CHAPTER 4.

EXPERIMENTAL RESULTS

4.1 Pure reversed torsion and pure tension
Two examples of the reversed torsion stress-strain curves are shown in fig. 4.1. It can be seen that, immediately after the drive motor reversal, slack in the drive train had to be taken up, allowing stress relaxation rather than elastic unloading to occur. This indicates that the material was strain rate sensitive and for that reason the twisting rate was kept constant throughout this investigation. The stress-strain curves were not quite identical which possibly indicates small variations in specimen dimensions.

Fig. 4.2 shows one tensile stress-strain curve. For comparison the effective stress-strain curve in torsion has been included in this figure. It can be seen that the aluminium possessed a considerable degree of plastic anisotropy although the work hardening slopes were very similar. The ratio of tensile to torsional yield strengths was obtained as 2.369. This anisotropy arose most probably from the extrusion process used in manufacture. Unfortunately further heat treatment failed to remove this and so subsequent tests were carried out on the as received material.

The elastic shear modulus G_σ was obtained from several torsional hysteresis loops and the mean value calculated to be $G_\sigma = 26,750$ MPa, which is similar to published figures. G_τ, the limiting tangent shear modulus, was obtained from fig. 5.1 and found to be $G_\tau = 260$ MPa. Young's modulus E_σ was found as 67,000 MPa.

4.2 Steady tension and alternating torsion.
Although the total shear strain range $\Delta \tau$ was one of the controlled variables, a more meaningful measure of deformation was the plastic shear strain range $\Delta \tau'$, which varied from 0.00119 to 0.02817. The creep strain values obtained from these tests were all referred to the strain at the end of the first quarter loading cycle.
4.2.1 Cyclic strain induced creep
Contrary to expectations, not all the creep curves were monotonically increasing. Figs. 4.3 to 4.6 are representative examples of the four types of creep curves observed. The only common feature of all curves was a region of constant cyclic creep rate. In some duplicated tests with the same loading parameters, the steady state cyclic creep rate was the same even though the transient behaviour differed (fig. 4.7).

It was noticed that the primary creep rate was usually negative for small values of $\Delta \gamma^p$ and b. For larger $\Delta \gamma^p$ or b, it became positive while for very large b no primary creep occurred at all. The steady state secondary creep rates were negative for small values of $\Delta \gamma^p$ or b but increased rapidly with increasing $\Delta \gamma^p$ and b. The tertiary creep behaviour was actually a tensile instability phenomenon and not of interest in the present investigation. The steady state creep rates have been plotted against b for each $\Delta \gamma^p$ in figs. 4.8 - 4.10.

It was interesting to note that Freudenthal and Ronay (25) had found a positive axial strain accumulation for aluminium subjected to pure torsional cycling, while the opposite occurred here, even for a nonzero tensile stress. The tube shortening was probably due to anisotropy and the results were as to be expected from Hill’s analysis (33). The aim of this investigation, however, primarily was to study the steady state cyclic creep behaviour, which was unaffected by any initial anisotropy.

4.2.2 Torsional hysteresis loops
Several of these were obtained during each cyclic strain induced creep test. It was found that the steady state loop was reached very soon (within 5 cycles) and changed little with progressing axial straining. Some cyclic hardening occurred which was more noticeable for the low plastic shear strain ranges (0.00119 - 0.00252) as evidenced by a shrinkage of the loop (fig. 4.11).

The steady state hysteresis loop was little affected by the presence of a tensile stress. This can be seen in fig. 4.12, where the areas of the loops have been plotted against b for different values of $\Delta \gamma^p$. The large deviations for a few of the
tests were most probably caused by variations in the specimen dimensions.

4.2.3 Fracture behaviour
Two types of fracture were observed in those specimens that failed within the allotted time. Specimens subjected to large tensile stresses failed by local necking and tensile fracture, the fracture plane being inclined at 45° to the specimen centre line. In some cases the crack did not completely propagate around the circumference, indicating nonuniform wall thickness. High strain fatigue fracture, evidenced by a longitudinal crack was observed in specimens subjected to smaller tensile stresses. If cycling continued after formation of the fatigue crack, further cracks started from the crack tip and spread in circumferential direction.

4.3 Tensile response after previous torque cycling
To obtain information about the material anisotropy after some torsional cycling, specimens were subjected to a cyclic torque and a steady tensile load until the hysteresis loop had reached a steady state. The specimens were then tested in tension up to fracture and the yield stresses determined by a bode extrapolation technique, taking into account the reduction in cross sectional area caused by the tensile load during previous cycling. The ratios of the tensile yield stress to the maximum shear stress attained during cycling have been plotted against the tensile stress during cycling for each $\Delta\phi'$ (fig. 4.13). For comparison the ratio of tensile to torsional yield stress for the previously unstrained material has also been included. It can be seen that the initial anisotropy was decreased by cycling at large plastic shear strain ranges and small applied tensile stresses. However some hardening was caused by large applied tensile stresses.
Fig. 4.1 Fully Reversed Stress - Strain Curves in Torsion.
Fig. 4.2 Effective Stress ($\bar{\sigma}$) against Effective Strain ($\bar{\epsilon}$) for Tension and Torsion.
Fig. 4.3 Experimental Cyclic Creep Strain (ε_p) against Number of Cycles (\bar{N}).
Fig. 4.4 Experimental Cyclic Creep Strain (ϵ^p) against Number of Cycles (N).
Fig. 4.5 Experimental Cyclic Creep Strain (e^p) against Number of Cycles (N).
Fig. 4.6 Experimental Cyclic Creep Strain (ε^P) against Number of Cycles (N).
Fig. 4.7 Experimental Cyclic Creep Strain (ε^c) against Number of Cycles (N).
Fig. 4.8 Experimental Steady State Cyclic Creep Strain Rates (de^p/dN) against Tensile Stress During Cycling (b) for Different Plastic Shear Strain Ranges ($\Delta \delta^p$).
Fig. 4.9 Experimental Steady State Cyclic Creep Strain Rates ($d\varepsilon^p/dN$) against Tensile Stress During Cycling (σ) for Different Plastic Shear Strain Ranges ($\Delta \gamma^p$).
Fig. 4.10 Experimental Steady State Cyclic Creep Strain Rates \(\frac{d\varepsilon^p}{dN}\) against Tensile Stress During Cycling \(\Delta \varepsilon^p\) for Different Plastic Shear Strain Ranges \(\Delta \varepsilon^p\).
Fig. 4.11 Torsional Hysteresis Loops for $\Delta \gamma^p$

= 0.00119 and γ = 200 MPa at N = 7 Cycles
and at N = 520 Cycles.
Fig. 4.12 Areas of Torsional Hysteresis Loops against Tensile Stress during Cycling for Different Plastic Shear Strain Ranges ($\Delta \gamma_p$).
Fig. 4.13 Ratio of Tensile Yield Stress (β_y) to Maximum Shear Stress Attained during Previous Cycling (τ_m) against Tensile Stress during Cycling (β) for Different Plastic Shear Strain Ranges ($\Delta \gamma_p$)
5.1 General

It has been suggested (18) that, for a material subjected to cyclic torsion and steady tension, the loading surface in $\tau - \gamma$ stress space may be represented by an expanding semi-ellipse within a limiting isotropic ellipse (fig. 2.6). This makes it possible to calculate the steady state cyclic strain induced creep rates.

For the material co-ordinate axes as in fig. 5.1, the equation of an intermediate loading surface may be written as

$$f = \frac{b^2}{a^2} + \frac{1}{2} \frac{\gamma^2}{b^2} + \frac{1}{2} \frac{\tau^2}{a^2} - 1 = 0$$

where a is a constant $= \sqrt{3} \tau_{\text{max}}$
b varies from 0 to τ_{max}

Since the plastic strain increment is normal to the yield surface

$$d\epsilon_{ij} = d\lambda \frac{\partial f}{\partial \gamma_{ij}}$$

Note that in eq. 5.1 the shear stresses τ_{ij} and τ_{ij} are numerically equal, but, as far as the differentiation in eq. 5.2 is concerned, they are not identical. Thus

$$d\epsilon^p = d\epsilon_{ij} = d\lambda \frac{2b^2}{a^2} = d\lambda \frac{2b}{a^2}$$

$$d\delta^p = 2 d\epsilon_{ij} = d\lambda \frac{2\gamma}{b^2} = d\lambda \frac{2\gamma}{b}$$

From eqs. 5.3 and 5.4

$$d\epsilon^p = \frac{b^2}{a^2} \frac{b}{\tau} d\delta^p$$

From eq. 5.1

$$b^2 = \frac{\tau^2}{1 - \frac{3\tau^2}{a^2}}$$
$$a^2 = 3 \tau^2_{\text{max}}$$

Substituting into eq. 5.5

$$d\epsilon^p = \frac{b\tau}{3 \tau^2_{\text{max}} - b^2} d\delta^p$$

From eq. 5.1, for $b = \tau_{\text{max}}$ and $\tau = \tau_{\text{m}}$
Substituting into eq. 5.6
\[\frac{d\varepsilon_p}{dN} = \frac{b}{3\tau_m} \int \tau d\gamma_p \]

Integrating this over one complete torsional loading cycle, the steady state cyclic creep rate is obtained
\[\frac{d\varepsilon_p}{dN} = \frac{b}{3\tau_m} \int \tau d\gamma_p \]

Note that \(\int \tau d\gamma_p \) is the specific plastic work done over one cycle. Since no net elastic work is done over that period, \(\int \tau d\gamma_p = \text{area inside torsional hysteresis loop} \). Because the hysteresis loop is hardly affected by either the tensile stress or by progressing axial deformation, cyclic creep calculations in a design situation may be based on the results of cyclic torsion tests. In the present work, however, each cyclic creep estimate has been calculated from the properties of the corresponding hysteresis loop. The experimental steady state creep rates together with those obtained from eq. 5.7 have been plotted against \(\beta \) in figs. 5.2a - 5.2j. It can be seen that the theory overestimates the creep rates considerably, especially for the smaller shear strain ranges and stresses.

5.2 Determination of the Approximate Yield Surface

The tests described in section 4.3 were used to determine whether the assumption of an isotropic limiting loading surface used in eq. 5.7 was justified. This assumption was based on the notion that cycling in the plastic region removes the effects of any previous deformation history (34). It would thus be expected that the initial material anisotropy as shown in fig 4.2 would have been removed once steady state cycling had been achieved. For a material, which has been cycled in torsion with a superimposed steady tension, the limiting yield surface, assumed to be elliptical, is given by

\[\frac{b^2}{\delta^2} + \frac{\tau^2}{\tau_{\text{max}}} = 1 \]
where σ_y is the tensile yield stress. For the particular value of σ during cycling, when $\tau = \tau_m$

$$\tau_{\max} = \tau_m \sqrt{1 - \frac{\sigma^2}{\sigma_y^2}}$$

5.9

From the tests mentioned above, the values of τ_{\max} and σ_y/τ_{\max} have been calculated the latter plotted in fig 5.3. It seems that the limiting loading surface, for this material at least, is not isotropic. There is a small dependence of σ_y/τ_{\max} on the shear strain range and the tensile stress, but as it is small, a mean value of 2.07 has been used in rederviving eq. 5.7. The latter is now changed by replacing the factor 3 by 2.07. Hence

$$\frac{d\sigma}{dN} = \frac{3}{4.28 \tau_m} \int \tau d\gamma_p$$

5.10

This decreases the previous estimates of the cyclic creep rate by a factor of 1.43 which is still not sufficient to give close agreement with actual behaviour. These results have been plotted in figs. 5.2a - 5.2j from which it can be seen that, although the theory considerably overestimates the creep rates, theoretical and experimental curves tend towards having similar slopes at higher tensile stress values.

5.3 Assumption of a Critical Plastic Shear Strain γ_c for Creep

The results shown in figs. 5.2a - 5.2j indicate that the expanding ellipse loading surface theory could be used provided modifications are made to the loading surface shape. It seems that the loading surface does not expand from the zero shear stress axis as the curvature, and hence the plastic strain increment, is too high. An alternative form has been assumed in which the loading surface translates along the τ-axis until a critical value of γ has been reached after which it expands elliptically as before (See fig. 5.4). To determine the loading surface behaviour, it is more convenient to introduce a critical shear strain γ_c at which the ellipse starts to expand, rather than at a critical τ_c. γ_c is clearly a function of the tensile stress σ, increasing with decreasing σ . Approximate values of γ_c could be obtained from experimental results by considering the value of σ at which the cyclic creep rates, for a particular plastic shear strain
range $\Delta \gamma^p$, began to increase rapidly. Values of $\Delta \gamma^p$ against b have been plotted in fig. 5.5 which may now be used to find γ^p_c from b. The modified theory is only approximate as it now only predicts creep that occurs for $\Delta \gamma^p > \gamma^p_c$.

Referring to fig. 5.5, it was assumed that the intermediate and limiting surfaces were semi-ellipses with the major axis situated at $\tau = \tau_c$. The equation of the ellipse is thus:

$$\frac{b^2}{a^2} + \left(\frac{\tau - \tau_c}{b}\right)^2 = 1$$ \hspace{1cm} 5.11

where a is a constant

b varies from 0 to $\tau_{max} - \tau_c$

τ varies from τ_c to τ_m

When $\tau = \tau_m$, $b = \tau_{max} - \tau_c$ and

$$\tau_m = \tau_c + (\tau_{max} - \tau_c)\sqrt{1 - \frac{\delta^2}{\alpha^2}}$$ \hspace{1cm} 5.12

The value of γ^p_c for each cyclic creep test was obtained in the following way. Using fig. 5.5, γ^p_c was found from b. A line parallel to the unloading line, but displaced from it by γ^p_c, was drawn on the actual torsional hysteresis loop. This line intersected the loop at $\tau = \tau_c$ (fig. 5.6).

Using this procedure and eq. 5.12, the values of τ_{max} were obtained for the specimens tested in tension after previous torsional cycling. It was found that the ratio of β / τ_{max} was virtually the same as before. The constant α in eq. 5.11 could thus be set equal to $2.07 \tau_{max}$.

The cyclic creep rate was then derived as before.

$$\frac{d\varepsilon^p}{dN} = \frac{b}{2.07\tau_{max} - \delta^p} \int (\tau - \tau_c) d\gamma^p$$ \hspace{1cm} 5.13

where the cyclic integral is evaluated only for $|\tau| > \tau_c$ and is in fact equal to the shaded area in fig. 5.6.

The creep rates predicted by eq. 5.13 have been compared to the actual creep rates in figs. 5.7a - 5.7j. The agreement is fairly good, especially at higher shear strain ranges.

5.4 Discussion

For design purposes, the original theory (eq. 5.7) is obviously preferable as it can be used to predict cyclic strain induced creep from a knowledge of the steady state torsion hysteresis loop only, the latter being theoretically
obtainable from tests on a single specimen. Unfortunately its agreement with experiment is rather poor as it considerably overestimates the axial creep rates. The modified loading surface (eq. 5.13) gives quite good results but predicts creep only for $\Delta \gamma' > \gamma'_c$. Unfortunately the creep rates can no longer be predicted from simple mechanical data. For the modified theory to be of use in a design situation, some simple method of determining γ'_c would have to be devised. Further investigation of the theory would have to be carried out to enable creep below the critical plastic shear strain range to be calculated.
FIG. 5.1 LOADING CONDITIONS AND MATERIAL CO-ORDINATE AXES FOR TUBULAR SPECIMENS
Fig. 5.2a Experimental and Theoretical Steady State Cyclic Creep Rates \(\frac{d\varepsilon}{dN} \) against Tensile Stress During Cycling (\(\Delta \sigma \)) for \(\Delta \varepsilon = 0.02817 \)
Fig. 5.2b Experimental and Theoretical Steady State Cyclic Creep Rates ($d\varepsilon_p/dN$) against Tensile Stress During Cycling (δ), $\Delta \varepsilon_p = 0.02348$
Fig. 5.2c Experimental and Theoretical Steady State Cyclic Creep Rates $(\frac{d\varepsilon^p}{dN})$ against Tensile Stress During Cycling (δ), $\Delta \varepsilon^p = 0.02000$
Fig. 5.2d Experimental and Theoretical Steady State Cyclic Creep Rates \((d\varepsilon^p/dN)\) against Tensile Stress During Cycling (b) for \(\Delta\varepsilon^p = 0.01852\)
Fig. 5.2e Experimental and Theoretical Steady State Cyclic Creep Rates \((\frac{d\varepsilon}{dN}) \) against Tensile Stress During Cycling \((\Delta \varepsilon)\) for \(\Delta \varepsilon = 0.01652\)
Fig. 5.2f Experimental and Theoretical Steady State Cyclic Creep Rates (dε/dN) against Tensile Stress During Cycling (Δ) for Δ= 0.01200
Fig. 5.2g Experimental and Theoretical Steady State Cyclic Creep Rates \((\Delta \varepsilon^n_P/dN) \) against Tensile Stress During Cycling \((\delta) \) for \(\Delta \varepsilon^n=0.00374 \).
Fig. 5.2H Experimental and Theoretical Steady State Cyclic Creep Rates \((d\varepsilon^p/dN) \) against Tensile Stress During Cycling \((\Delta \sigma) \) for \(\Delta \sigma^p = 0.00532 \)
Fig. 5.21 Experimental and Theoretical Steady State Cyclic Creep Rates ($\text{d} \varepsilon_p / \text{d} N$) against Tensile Stress During Cycling (Δ) for $\Delta \varepsilon_p = 0.00252$
Fig. 5.2j Experimental and Theoretical Steady State Cyclic Creep Rates (d\(\varepsilon^P\)/dN) against Tensile Stress During Cycling (b) for \(\Delta \sigma = 0.00119\)
Fig. 5.3 Ratio of Tensile Yield Stress (b_y) to Maximum Shear Stress (τ_{max} from Eq. 5-9) against Tensile Stress During Cycling (b) for Different Plastic Shear Strain Ranges ($\Delta\gamma^p$).
FIG. 5.4 MODIFIED YIELD SURFACE BEHAVIOUR

INTERMEDIATE TRANSLATING SURFACE

LIMITING SURFACE

INTERMEDIATE EXPANDING SURFACE

\(d = d_s \)

\(S = \text{STRESS VECTOR} \)
Fig. 5.5 Critical Plastic Shear Strain Range ($\Delta \gamma^p$ or γ^p) against Tensile Stress During Cycling (σ)
Fig. 5.6 Obtaining τ_c and $\int_{(\tau-\tau_c)}^{\tau} d\gamma^p$ from Actual Torsional Hysteresis Loop.
Fig. 5.7a Experimental and Theoretical Steady State Cyclic Creep Rates ($\frac{d\varepsilon^p}{dN}$) against Tensile Stress During Cycling (δ) for $\Delta\varepsilon^p = 0.02817$
Fig. 5.7b Experimental and Theoretical Steady State Cyclic Creep Rates \(\left(\frac{d\varepsilon^p}{dN} \right) \) against Tensile Stress During Cycling (b) for \(\Delta \varepsilon = 0.02348 \).
Fig. 5.7c Experimental and Theoretical Steady State Cyclic Creep Rates ($d\varepsilon/dN$) against Tensile Stress During Cycling (b) for $\Delta \varepsilon'=0.02000$
Fig. 5.7d Experimental and Theoretical Steady State Cyclic Creep Rates \(\frac{\Delta e^p}{dn} \) against Tensile Stress During Cycling (b) for \(\Delta \sigma^p = 0.01852 \)
Fig. 5.7c Experimental and Theoretical Steady State Cyclic Creep Rates $\left(\frac{d\varepsilon^p}{dN}\right)$ against Tensile Stress During Cycling $\left(\sigma\right)$ for $\Delta\varepsilon^p = 0.01652$
Fig. 5.7f Experimental and Theoretical Steady State Cyclic Creep Rates ($\frac{d\varepsilon}{dN}$) against Tensile Stress During Cycling (b) for $\Delta\gamma = 0.01200$
Fig. 5.7g Experimental and Theoretical Steady State Cyclic Creep Rates \((\frac{d\varepsilon}{dN})\) against Tensile Stress During Cycling (b) for \(\Delta \varepsilon^T = 0.00874\)
Fig. 5.7h Experimental and Theoretical Steady State Cyclic
Creep Rates (dεp/dt) against Tensile Stress During
Cycling (b) for ΔKP = 0.00532
Fig. 5.71 Experimental and Theoretical Steady State Cyclic Creep Rates ($d\varepsilon^p/dN$) against Tensile Stress During Cycling ($\Delta\varepsilon^p$) for $\Delta\varepsilon^p = 0.00252$
Fig. 5.7j Experimental and Theoretical Steady State Cyclic Creep Rates \(\frac{d\varepsilon_f}{dN} \) against Tensile Stress During Cycling \((b) \) for \(\Delta\varepsilon_p = 0.00119 \)
CHAPTER 6

ENDOCRHNIC THEORY OF VISCOPLASTICITY

6.1 Basic Theory

The endochronic theory of viscoplasticity, introduced in section 2.4, was applied by Valanis and Wu (32) to cyclic strain induced creep in metals subjected to alternating torsion and steady tension. The approach used will be briefly reviewed here.

Since the material behaviour is assumed to be time independent, the intrinsic time measure \(d \xi \) is equivalent to the deformation increment \(d \xi \). Thus

\[
\dot{x} = \frac{1}{T_0} \log (1 + \beta_f) \quad 6.1
\]

\[
d_{\xi}^2 = k_{11} d\epsilon_{ii} + k_{12} d\epsilon_{ij} d\epsilon_{ij} \quad 6.2
\]

For the material co-ordinate axes and loading conditions as in fig. 5.1

\[
\frac{d\gamma_{11}}{d\xi} = \frac{d\epsilon_{11}}{d\xi} = \frac{d\epsilon_{22}}{d\xi} = \frac{d\epsilon_{33}}{d\xi} = 0
\]

Eq. 6.2 thus becomes

\[
d_{\xi} = K \left(\epsilon, \gamma \right) \left[\frac{3}{2} d\epsilon + \frac{1}{2} d\gamma \right]^t \quad 6.3
\]

During cyclic strain induced creep, the axial strain increment is far smaller than a corresponding shear strain increment. In addition, it was assumed that \(I_{C} (6,20 = K (\gamma) \) only. Hence

\[
d_{\xi} = K' (\gamma) |d\xi|
\]

where \(K (\gamma) = K (-\gamma) \) and \(|d\xi| \) ensure a monotonically increasing "time" \(t \). For a one term approximation of \(E (\xi) \) and with \(z \) as in eq. 6.1, the tensile response is

\[
b = E_o (1 + \beta_f) \int_0^t \left(1 + \beta_f \right)^{-1} \frac{b_{xx}}{d_{\xi}} \frac{d\xi}{d\xi} \quad 6.4
\]
Differentiating w.r.t. \(f \) and noting that \(b = b_0 \)

\[\frac{d\varepsilon}{\varepsilon} = \frac{d f}{f} \]

\[\varepsilon = \frac{\alpha_0}{1 + \beta f} \log \left(1 + \beta f \right) \quad 6.5 \]

The creep strain is thus explicitly expressed in terms of the total deformation \(f \). After \(N \) torsional loading cycles

\[f = N \int K'(\gamma) d\gamma \]

which by the mean value theorem, becomes

\[f = 4N K'(\tilde{\gamma}) \gamma_{\max} \]

where \(0 < \tilde{\gamma} < \gamma_{\max} \)

\(\gamma_{\max} = \frac{1}{2} \times \) shear strain range \(\Delta \gamma \)

\(\tilde{\gamma} \) is some function of \(\gamma_{\max} \), such that

\[K'(\tilde{\gamma}) \gamma_{\max} = \tilde{R}(\gamma_{\max}) \]

Eq. 6.5 now becomes

\[\varepsilon = \frac{\alpha_0}{1 + \beta} \log \left(1 + 4N \beta \tilde{R}(\gamma_{\max}) \right) \quad 6.6 \]

The value of \(\frac{\alpha_0}{1 + \beta} \) was obtained from one experimental cyclic creep curve and used to find the variation of \(4\beta \tilde{R}(\gamma_{\max}) \) with \(\gamma_{\max} \) from a few other creep curves. Eq. 6.6 was then used to predict creep results for tests with the same applied stress \(b_0 \) but intermediate values of \(\gamma_{\max} \). Although the agreement with experiment was good, the theory in this form is of limited use since the material constants need to be obtained from a selection of creep curves before creep behaviour for intermediate loading conditions can be predicted. It is thus essentially an empirical approach.

This approach was used in the present investigation to predict cyclic creep in specimens subjected to a tensile stress of \(b_0 = 200 \) MPa and a shear strain half range of \(\gamma_{\max} = 0.005 \) to 0.02. The material constants were determined for \(\gamma_{\max} = 0.015 \), 0.01, 0.006 and 0.005 by choosing a value of \(4\beta \tilde{R}(\gamma_{\max}) \) and recasting eq. 6.6 into the following form

\[\varepsilon = A \gamma \]
where \[A = \frac{\frac{d}{d\varepsilon_0}}{p\varepsilon_0} \]
\[x = \log (1 + 4\beta \overline{K}(\varepsilon_{\text{max}})) \]

The value of \(A \) was then determined by a least squares technique and the sum of the squared errors calculated. It was found that the value of \(A \) giving the least sum of squared errors varied from 0.007 (for \(\varepsilon_{\text{max}} = 0.005 \)) to 0.2 (for \(\varepsilon_{\text{max}} = 0.015 \)). The best compromise was to take \(A = 0.02 \).

The corresponding values of \(4\beta \overline{K}(\varepsilon_{\text{max}}) \) for a least squares fit were then calculated and plotted against \(\varepsilon_{\text{max}} \) in fig. 6.1. Note the similarity between fig. 6.1 and the modified yield surface theory in the previous chapter where it had been shown that very little creep occurred below a critical shear strain range. This critical value would correspond to the point where the value of \(4\beta \overline{K}(\varepsilon_{\text{max}}) \) becomes zero.

From fig. 6.1 the value of \(4\beta \overline{K}(\varepsilon_{\text{max}}) \) were read off for \(\varepsilon_{\text{max}} = 0.006 \), 0.012, 0.014 and 0.02. With \(\varepsilon_{\text{max}} \beta \overline{K} \) set to 0.02, the theoretical creep curves were calculated from eq. 6.6 and plotted in figs. 6.2 - 6.5 together with the experimental curves. It can be seen that approximate agreement between theory and experiment is only attained for intermediate values of \(\varepsilon_{\text{max}} \). Although this approach is empirical, it may be satisfactory in many design situations as it is capable of giving a reasonable estimate of creep behaviour over a smaller range of loading conditions.

The purpose of the following sections is to attempt a modification of the theory to see whether it can be used to predict creep behaviour from simple material data, such as monotonic tensile and cyclic torsional stress-strain curves. The starting point used was to determine the function \(K(e,\delta) \) in eq. 6.3 from tension and torsion tests.

6.2 Pure Tensile behaviour
Since shear strains are absent, \(\varepsilon = \varepsilon(e) \) only and eq. 6.4 becomes
\[
\lambda = E_0 \left(1 + \beta \varepsilon(e)\right)^{\frac{d\varepsilon}{\varepsilon_0}} \int_0^\varepsilon \left(1 + \beta \varepsilon'\right)^{-\frac{d\varepsilon}{\varepsilon_0}} d\varepsilon'
\]

Differentiating w.r.t. \(\varepsilon \) and rearranging:
This is an ordinary differential equation in ε with the following solution
\[\Phi = e \int_{\varepsilon}^{\varepsilon'} \frac{d\varepsilon'}{\Phi(e')} e^{-\int_{\varepsilon}^{\varepsilon'} \frac{d\varepsilon'}{\Phi(e')}} d\varepsilon' \] 6.8

$\Phi(\varepsilon)$ and $\int \Phi(\varepsilon) d\varepsilon$ were found numerically from the tensile stress-strain curve in fig. 4.2 and plotted in fig. 6.6. The erratic behaviour of Φ at small values of ε was due to numerical errors. Three possible analytical approximations for Φ suggested themselves, as shown in fig. 6.6. The corresponding solutions for 6.8 are given below.

(a) $\Phi = k_b$ for all ε
\[1 + \beta \Phi = e^{k_b \varepsilon} \]
\[d\Phi = \frac{k_b}{\varepsilon} e^{k_b \varepsilon} d\varepsilon \] 6.9

(b) $\Phi = \frac{k_b}{\varepsilon_c} \varepsilon$ for $\varepsilon \leq \varepsilon_c'$
\[1 + \beta \Phi = e^{k_b \varepsilon} \]
\[d\Phi = \frac{k_b \varepsilon}{\varepsilon_c} \varepsilon^{2 \frac{\varepsilon}{\varepsilon_c}} d\varepsilon \] 6.10a

$\Phi = k_b$ for $\varepsilon > \varepsilon_c'$
\[1 + \beta \Phi = e^{k_b \varepsilon} \left(\frac{\varepsilon - \varepsilon_c'}{\varepsilon_c} + e^{k_b \varepsilon} - 1 \right) \]
\[d\Phi = \frac{k_b}{\varepsilon_c} \varepsilon^{k_b (\varepsilon - \varepsilon_c)} d\varepsilon \] 6.10b

(c) $\Phi = 0$ for $\varepsilon \leq \varepsilon_c$
\[1 + \beta \Phi = 1 \]
\[d\Phi = 0 \] 6.11a

$\Phi = k_b$ for $\varepsilon > \varepsilon_c$
\[1 + \beta \Phi = e^{k_b (\varepsilon - \varepsilon_c)} \] 6.11b
The tensile stress-strain equation resulting from the three forms of are briefly presented for comparison

(a) \(b = \frac{E_2}{k_2} (1 - e^{-\kappa_2 \varepsilon}) \)

(b) No simple solution exists except maybe an error function with complex variables

(c) \(b = E_0 \varepsilon \) \(\quad \varepsilon \leq \varepsilon_c \)

\(b = E_o \varepsilon_c + \frac{E_0}{k_3} (1 - e^{-\kappa_3 (\varepsilon - \varepsilon_c)}) \) \(\quad \varepsilon > \varepsilon_c \)

6.3 Pure Torsional Behaviour

In this case \(\sigma = \sigma (x) \) only and a two term approximation will be used for \(G(x) \). Thus

\[T = G \varphi + G_2 \int_0^x (1 + \beta f(x)) \frac{d2}{d3} \int_0^y (1 + \beta f(x')) \frac{d2}{d3} dy' \]

Differentiating w.r.t. and rearranging, an ordinary differential equation identical to eq. 6.7 is obtained

\[\frac{d^2 \phi}{dx^2} = \frac{G_0 - \frac{d\sigma}{dx}}{\tau - G_0} = \phi(x) \]

\(\phi(x) \) and \(\int \phi(x) dx \) were again found numerically and proved to be similar in appearance to \(\chi(\varepsilon) \) and \(\int \chi(\varepsilon) d\varepsilon \) respectively (fig. 6.7). The equations for \(d\phi \) and \(1 + \beta f(x) \) (eqs. 6.9 - 6.11) are thus unchanged for torsion except that \(k_3, \kappa_2, \xi, \xi' \) and \(\varepsilon \) now become \(k_4, \kappa_2, \xi, \xi' \) and \(\varepsilon_c \) respectively. It will now be attempted to develop a unified relation for \(\sigma \) for the case of simultaneous tension and torsion.

6.4 Combined Tension-Torsion Behaviour

During torsional cycling with a steady tensile load, plastic deformation, and hence an increase in \(\phi \), will occur when \(\sigma \), not \(\varepsilon \), exceeds its critical value. The critical axial strains \(\varepsilon'_c \) and \(\varepsilon_c \) will thus be assumed to be zero. Considering the
form \(k(\epsilon, \eta) \) in eq. 6.3 must take in order to predict the pure tensile and pure torsional material responses, the simplest is to let

\[
k(\epsilon, \eta) = k_1(\epsilon) \cdot k_2(\eta)\]

where

\[
k_1(\epsilon) = c_1, \quad k_2(\eta) = c_2.
\]

For pure tension, \(\eta = \frac{d\eta}{d\epsilon} = 0 \), and from eq. 6.9

\[
k_1(\epsilon) = \sqrt{\frac{1}{3}} \frac{k_2}{c_1} \epsilon \frac{k_2 e}{\alpha_1}.
\]

For pure torsion, \(\epsilon = \frac{d\epsilon}{d\eta} = 0 \), and from the torsional equivalents of eqs. 6.9 - 6.11, three possibilities exist for \(k_2(\eta) \)

(a) \(k_2(\eta) = \sqrt{\frac{1}{3}} \frac{k_2}{c_1} \epsilon \frac{k_2 e}{\alpha_1} \)
(b) \(k_2(\eta) = \sqrt{\frac{1}{3}} \frac{k_2}{c_1} \epsilon \frac{k_2 e}{\alpha_2} \)
(c) \(k_2(\eta) = 0 \)

From eq. 6.14, the additional result is obtained

\[
\sqrt{\frac{1}{3}} \frac{k_2}{\alpha_1} = \sqrt{\frac{1}{3}} \frac{k_2}{\alpha_2}.
\]

From eq. 6.15 - 6.19 three possible relations for \(d\eta \) may be derived.

(a) \(d\eta = \sqrt{\frac{1}{3}} \frac{k_2}{\alpha_1} \epsilon \frac{k_2 e}{\alpha_2} \left[\frac{3}{2} d\epsilon^2 + \frac{1}{2} d\eta^2 \right]^{\frac{1}{2}} \)

(b) \(d\eta = \sqrt{\frac{1}{3}} \frac{k_2}{\alpha_1} \epsilon \frac{k_2 e}{\alpha_2} \left[\frac{3}{2} d\epsilon^2 + \frac{1}{2} d\eta^2 \right]^{\frac{1}{2}} \eta < \eta_c \)

(c) \(d\eta = \sqrt{\frac{1}{3}} \frac{k_2}{\alpha_1} \epsilon \frac{k_2 e}{\alpha_2} \left[\frac{3}{2} d\epsilon^2 + \frac{1}{2} d\eta^2 \right]^{\frac{1}{2}} \eta > \eta_c \)
These will now be used in a rederivation of the cyclic strain induced creep equation.

6.5 Cyclic Strain Induced Creep Behaviour

Eq. 6.5, as originally derived by Valanis, will be used as a starting point. In addition, since $c^2 \ll d^2$

$$df = k(\epsilon, \gamma) \frac{1}{\sqrt{2}} |d\gamma|$$

From eq. 6.5

$$\epsilon^k \frac{\epsilon}{e_0} = \left(1 + \beta f\right)^{\frac{k_1 f}{e_0}}$$

6.23

Substituting in 6.20 - 6.22, we get

$$\frac{df}{(1 + \beta f)^{\frac{k_1 f}{e_0}}} = f(\gamma)|d\gamma|$$

6.24

where $f(\gamma)$ depends on the form of $k_1(\gamma)$. During one torsional cycle, γ varies as follows

$$\gamma = 0 \rightarrow \gamma_{max} \rightarrow 0 \rightarrow -\gamma_{max} \rightarrow 0$$

This implies, however, that the material "remembers" the original unstrained condition. Since this memory effect is absent in real metals, it would be better to let γ vary from 0 to $2\gamma_{max}$ during any half loading cycle. Integrating eq. 6.24 over N complete torsional cycles, and back substituting for eq. 6.23, the following result is obtained.

$$\epsilon = -\frac{k_0}{\beta} \frac{E_o}{E_o - k_1 k_0} \log \left[1 + \frac{2N}{E_o - k_1 k_0} f(\gamma_{max})\right]$$

6.25

where $F(\gamma_{max}) = \int_0^{2\gamma_{max}} \beta f(\gamma) d\gamma$

Consider the qualitative implications of eq. 6.25. For large tensile stresses, the creep strains are large but the factor $(k_0 - k_1 k_0)/E_o$ is small. This will cause the logarithmic term to increase linearly with N, as was actually observed. The same behaviour is predicted for small shear strain ranges but this did not occur in practice. It seems thus as if eq. 6.25 can only predict the logarithmic type of cyclic creep and hence is applicable only to tests with small shear strain ranges.

$f(\gamma)$ and $F(\gamma_{max})$ are, for the three cases of $k_1(\gamma)$
6.6 Cyclic Strain Induced Creep in Aluminium

Eqs. 6.25 - 6.28 above can now be used to predict cyclic strain induced creep in aluminium. The required material constants were:

\[\theta_0, G_0, G_1, \frac{d}{\beta}, \frac{d}{\gamma}, \alpha_2, k_3, k_4, \gamma_c' \text{ and } \delta_c \]

Although \(\theta_0 \) and \(G_0 \) do not appear in the creep equations, they were required in the calculation of \(\phi(\gamma) \) and hence in determining \(k_4 \). \(\theta_0, G_0 \) and \(G_1 \) were assumed to be constant regardless of the state of deformation and the values obtained in chapter 4 were used.

\(k_4 \) was found from the slope of the numerically obtained \(\int \phi(\gamma) \delta \gamma \) vs \(\delta \) for specimens tested in pure tension after initial torsional cycling. Little dependence of \(k_3 \) on either the shear strain range or on the tensile stress during cycling was observed (fig. 6.8).

A similar procedure was followed in determining \(k_4, \gamma_c' \) and \(\delta_c \) from torsional hysteresis loops with shear strain ranges varying from 0.016 - 0.04. It was found that \(k_3, \gamma_c' \) and \(\delta_c \)
remained relatively constant, regardless of the shear strain range (fig. 6.9).

The values of \(\frac{\Delta l}{\beta} \) and \(\frac{\Delta L}{\beta} \) could not be determined from the stress-strain curves eqs. 6.12 and 6.13. In section 6.1, however, it was found that for a similar type of creep equation and for \(\lambda = 200 \, \text{MPa} \)

\[
\frac{\Delta l}{\beta} = 0.02
\]

From this approximate values for \(\frac{\Delta l}{\beta} \) and \(\frac{\Delta L}{\beta} \) could be determined.

The values of the material constants used in predicting cyclic strain induced creep were:

\[
\begin{align*}
G_0 &= 67,000 \, \text{MPa} \\
G_1 &= 26,750 \, \text{MPa} \\
G_\lambda &= 260 \, \text{MPa} \\
k_1 &= 192 \\
k_2 &= 73.8 \\
K_3 &= 0.0176 \\
\gamma_t &= 0.0097 \\
\frac{\Delta l}{\beta} &= 0.02 \times \frac{27000}{100} = 6.7 \\
\frac{\Delta L}{\beta} &= \frac{3k_3 k_2}{k_3} \frac{\Delta l}{\beta} = 4.46 \quad \text{(from eq. 6.19)}
\end{align*}
\]

Figs. 6.10a - 6.10o compare the predicted and actual cyclic creep curves for \(\lambda = 50 \, \text{MPa} - 200 \, \text{MPa} \) and \(\gamma_{\max} = 0.005 - 0.02 \). Fair agreement was achieved for large tensile stresses and shear strain ranges while the creep strains were overestimated considerably for small shear strain ranges. It is thought that this is due to the choice of the value of \(\frac{\Delta l}{\beta} \). A smaller value would give better agreement, but only for smaller values of \(\lambda \) and \(\gamma_{\max} \). Note also that the three forms of \(F(\gamma_{\max}) \) in equations 6.26 - 6.28 only affect the theoretical creep curve to a small extent.

6.7 Discussion

The endoohronic theory as applied in this investigation does not offer a unified approach to cyclic strain induced creep in metals. The form of the creep equations derived suggests, however, that the theory could be used to predict logarithmic cyclic creep for small tensile stresses and shear strain.
ranges. This type of creep, although not observed in the present investigation, has been found to occur in steel, for example (6).

Alternatively, the theory could be used in a semi empirical manner in design situations where the range of loading conditions is small. The material constants would then have to be obtained from actual creep tests with similar loading parameters.

It is nevertheless felt that the endochronic theory does offer a possible theoretical approach to cyclic creep. More work in the field will be necessary, however, especially a more thorough investigation into the background of the theory.
Fig. 6.1 Variation of $4ar{r}k(x_{\text{max}})$ with x_{max} (Eq. 6.6)
Fig. 6.2 Experimental and Theoretical Cyclic Creep Strain (ε^p) against Number of Cycles (N) for $\gamma_{max} = 0.02$ and $R_0 = 200$ MPa.
Fig. 6.3 Experimental and Theoretical Cyclic Creep Strain (ε_p^E) against Number of Cycles (N) for $\delta_{\text{max}} = 0.014$ and $\delta_o = 200$ MPa
Fig. 6.4 Experimental and Theoretical Cyclic Creep Strain (ε^p) against Number of Cycles (N) for $\delta_{\text{max}} = 0.012$ and $\delta_0 = 200$ MPa
Fig. 6.5 Experimental and Theoretical Cyclic Creep Strain (ε^p) against Number of Cycles (N) for $\sigma_{max} = 0.008$ and $\sigma_0 = 200$ MPa
Fig. 6.6 $\chi(\varepsilon)$ and $\int \chi(\varepsilon) \, d\varepsilon$ (Eq. 6.7) against Axial Strain (ε) from Pure Tension Test
Fig. 6.7 \(\phi(x) \) and \(\int \phi(x) dx \) (Eq. 6.13a) against Shear

Strain \((\varepsilon) \) from Pure Torsion Test
Fig. 6.8 K_3 Obtained from Tension Tests after Initial Torque Cycling against Tensile Stress During Cycling (b) for Different Cyclic Shear Strain Ranges ($\Delta \gamma$)
Fig. 6.9 K_3, γ'_c and γ_c obtained from Steady State Torsional Hysteresis Loops against Cyclic Shear Strain Range ($\Delta \gamma$)
Fig. 6.10a Experimental and Theoretical Cyclic Creep
Strain (ϵ^p) against Number of Cycles (N)
for $\kappa_{eq} = 0.04$ and $\sigma_0 = 200$ MPa
Fig. 6.10b Experimental and Theoretical Cyclic Creep
Strain (ε^p) against Number of Cycles (N)

For $\Delta \varepsilon_{max} = 0.04$ and $\sigma = 150$ MPa.
Fig. 6.10c Experimental and Theoretical Cyclic Creep
Strain (ε̇) against Number of Cycles (N)
for ε̇_0 = 0.04 and δ_p = 100 MPa
The relationship between the experimental and theoretical data is shown in the graph.

(ii) The number of choices (n) can be calculated as follows:

\[\text{Choices} = \frac{100 - \text{Error}}{10} \times 50 \]
The Log Experimental and Theoretical Cyclic Creep

Strain (ε) vs. Number of Cycles

For ε = 0.4 and 50 lives
WALL: WIND SHEAR

SCALE: 1:3

PIECE AN NYBEW WALL CONNECTION BETWEEN A
tii

A

A

NOTICES

A-A NOTICES
<table>
<thead>
<tr>
<th>Voltage</th>
<th>Temperature Coefficient</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V, 0V</td>
<td>Low Impedance</td>
<td></td>
</tr>
<tr>
<td>5V, 0V</td>
<td>Low Impedance</td>
<td></td>
</tr>
<tr>
<td>5V, 0V</td>
<td>High Voltage</td>
<td></td>
</tr>
<tr>
<td>0V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX

SPECIFICATIONS OF EQUIPMENT

A.1. Family Type-01-5055 Test Machine

<table>
<thead>
<tr>
<th>Model</th>
<th>0-100 in</th>
<th>0.1 in</th>
<th>0-50 in</th>
<th>0.01 in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Cross head speed

A.2. AVANT-7700000000 Test Machine

<table>
<thead>
<tr>
<th>Model</th>
<th>0-100 in</th>
<th>0.1 in</th>
<th>0-50 in</th>
<th>0.01 in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Cross head speed

A.3. AVANT-7700000000 Test Machine

<table>
<thead>
<tr>
<th>Model</th>
<th>0-100 in</th>
<th>0.1 in</th>
<th>0-50 in</th>
<th>0.01 in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Cross head speed

A.4. KEEP CLEAR Rotating Test Machine

<table>
<thead>
<tr>
<th>Model</th>
<th>0-100 in</th>
<th>0.1 in</th>
<th>0-50 in</th>
<th>0.01 in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Cross head speed

A.5. Family Type-01-5055 Test Machine

<table>
<thead>
<tr>
<th>Model</th>
<th>0-100 in</th>
<th>0.1 in</th>
<th>0-50 in</th>
<th>0.01 in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Cross head speed

A.6. AVANT-7700000000 Test Machine

<table>
<thead>
<tr>
<th>Model</th>
<th>0-100 in</th>
<th>0.1 in</th>
<th>0-50 in</th>
<th>0.01 in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Cross head speed

A.7. AVANT-7700000000 Test Machine

<table>
<thead>
<tr>
<th>Model</th>
<th>0-100 in</th>
<th>0.1 in</th>
<th>0-50 in</th>
<th>0.01 in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Cross head speed

A.8. KEEP CLEAR Rotating Test Machine

<table>
<thead>
<tr>
<th>Model</th>
<th>0-100 in</th>
<th>0.1 in</th>
<th>0-50 in</th>
<th>0.01 in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Cross head speed
CHAPTER 8

SUGGESTIONS FOR FURTHER WORK

The work on forecasting yield was done as part of a broader study on the development of some simple methods for developing forecasts. The findings suggest that further investigation of this area may also be worthwhile. The recent advances in the econometric field (see, e.g., 5.2) provide a basis for extending the techniques used in the present research. This may require the formulation of more sophisticated models and the application of advanced statistical techniques to the problem.

If it is true that the econometric approach offers some advantages over simpler methods in general, further work would be desirable.
The 4% commission model is not a sustainable business strategy. It does not incentivize long-term thinking or innovation, which are essential for successful business growth. The focus should be on creating value for customers, not just maximizing short-term profits. This can be achieved through continuous improvement, customer satisfaction, and a commitment to providing high-quality products and services.
CHAPTER I

CONSIDERATION

I have a very wide range of research and development needs which are best met by a combination of in-house capabilities and external expertise. Although the company has invested significantly in R&D, it would be unrealistic to expect the company to undertake all the research required for a successful product.

We identified the need for a comprehensive external review of our R&D strategy. This review would help us understand the strengths and weaknesses of our current approach, as well as identify potential areas for improvement. The review should be conducted by a reputable firm with experience in this area.

We have decided to engage a consulting firm to conduct this review. The firm should have experience in the pharmaceutical industry and should be able to provide valuable insights into our R&D strategy.

The cost of the review will be substantial, but we believe the benefits will far outweigh the cost. A comprehensive review will help us make informed decisions about our R&D strategy and ensure that we are positioning the company for long-term success.

Thank you for your attention.
Author Eilers W
Name of thesis Cyclic Strain Induced Creep in Thin Walled Aluminium tubes Subjected to Cyclic Torsion and Steady tension. 1977

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.