THE EFFECT OF CHOLECYSTECTOMY ON DUODENOGASTRIC REFLUX
AN EXPERIMENTAL STUDY

by DEMETRIOS DEMETRIADES

A thesis submitted to the Faculty of Medicine, University of the Witwatersrand, Johannesburg, for the degree of Doctor of Philosophy (Medicine).

For ELIZABETH
ABSTRACT

An experimental study was designed to investigate the possible relationship between cholecystectomy and subsequent bile reflux into the stomach under various conditions. Bile reflux was examined after cholecystectomy alone, after truncal vagotomy and pyloroplasty with and without cholecystectomy, and after highly selective vagotomy with and without cholecystectomy. The effect of secretin on bile reflux, alone and under the above conditions was also studied.

Bile reflux is an intermittent phenomenon varying markedly from time to time in the same experimental animal, even during one test. In order to obtain a more meaningful picture, reflux was measured over continuous 6-hour periods. Furthermore, each test was carried out on a number of occasions on each animal. The sum of the concentration of lecithin and lysolecithin in the gastric contents was used as an index of the amount of bile reflux. Lysolecithin is a cytotoxic agent produced from lecithin in the duodenum. Because the ratio of lecithin to lysolecithin in the duodenum varies markedly from time to time and depends on the experimental conditions (e.g., vagotomy or secretin infusion), use of only one of these phospholipids as an index of the amount of bile reflux could be misleading. For this reason, the total concentration of both phospholipids was used as an index of the amount of bile reflux. Gastric contents were obtained by means of a permanent gastrostomy cannula. By using this technique bile reflux could
be measured over long periods of time. Radioactive biliary markers were considered unsuitable because of certain problems: firstly, excretion of the marker by the liver is completed in about 1 hour, therefore they cannot be used to study reflux over long periods of time. Secondly, there is always some retention of the marker in the gall bladder, therefore the estimated amount of bile reflux before cholecystectomy cannot be compared with that after cholecystectomy.

Histological assessment of the gastric mucosa was carried out at the beginning of the experiments, at the time of cholecystectomy, and at the end of the experiments.

Cholecystectomy alone was found to promote bile reflux into the stomach. This change is probably the result of the continuous flow of bile into the duodenum which follows cholecystectomy. Other possible explanations are discussed. In 3 of the dogs the increased reflux persisted until they were sacrificed, 6 months after cholecystectomy. However, on a further 2 dogs the change was temporary, lasting for about 2 months after cholecystectomy and thereafter returning to pre-cholecystectomy levels. Overall, in 5 dogs the post-cholecystectomy bile reflux was significantly higher than that before cholecystectomy (35 tests before cholecystectomy, 80 tests after cholecystectomy, p < 0.01).

By the end of the experiments 2 dogs in whom increased bile reflux had persisted for 6 months had developed foveolar hyperplasia of the gastric mucosa. Foveolar hyperplasia is considered to be a marker of bile reflux.
Truncal vagotomy and pyloroplasty alone were not invariably associated with increased bile reflux. In 3 of the 4 dogs with truncal vagotomy and pyloroplasty the amount of bile reflux was not significantly different from that in dogs with an intact stomach. When cholecystectomy was added to the truncal vagotomy and pyloroplasty all dogs had persistently increased bile reflux. This reflux was not significantly higher than in dogs with only a cholecystectomy. These experimental findings lend support to the suggestion that the pylorus might not play a major role in preventing duodeno-gastric reflux. However, this statement is made with some reservation because in the present study pyloroplasty was combined with vagotomy, therefore factors other than pyloroplasty may have interfered with reflux. The ratio of lecithin to lysolecithin in dogs with truncal vagotomy and pyloroplasty was significantly more in favour of lecithin than that in dogs with intact vagi and an intact pylorus. This was so, both before and after cholecystectomy. It seems that truncal vagotomy inhibits the production of lysolecithin from lecithin. Physiologically, this is important because lysolecithin is a cytotoxic agent injurious to gastric mucosa. Two of the dogs had developed histological gastritis by the end of the experiments.

The amount of bile reflux in dogs after HSV was not significantly different from that seen in dogs with an intact stomach; nor was it different from dogs with TV+P in 3 out of 4 cases. Even when cholecystectomy was added to HSV, bile reflux did not increase as
in cholecystectomized dogs with an intact stomach or truncal vagotomy and pyloroplasty. It seems that highly selective vagotomy may actually prevent reflux. After highly selective vagotomy the receptive relaxation of the gastric fundus is lost, resulting in increased intragastric pressures. This high pressure, combined with an intact antro-pyloro-duodenal segment, may tend to prevent reflux or empty any refluxed material faster, before mixing with gastric contents can occur. Highly selective vagotomy seems to inhibit lysolecithin production, both before and after cholecystectomy. None of the dogs with highly selective vagotomy developed any mucosal abnormalities by the end of the experiments.

Secretin is a gastrointestinal hormone which might affect bile reflux by affecting bile flow into the duodenum and by changing the antroduodenal motility. Secretin (Boots) stimulation consistently and significantly promoted bile reflux into the stomach, in all groups of dogs, before and after cholecystectomy. The amount of bile reflux during secretin stimulation in dogs with truncal vagotomy and pyloroplasty was significantly higher than in dogs with an intact stomach or with highly selective vagotomy. The increased bile reflux after secretin stimulation could be the result of changes of pressures across the pylorus.

Secretin promoted lysolecithin production in all groups of dogs, both before and after cholecystectomy. This change could be due to the fact that secretin increases the flow of hepatic bile.
into the duodenum, promotes the secretion of pancreatic enzymes, and increases the pH of duodenal contents. These are factors which favour lyssolecithin formation.

While recognizing the danger of extrapolation of experimental studies to the human situation, the present experimental findings lend support to the suggestion that in some cases of the so-called port-cholecystectomy syndrome seen in human subjects, the cause could be gastritis caused by abnormal amounts of bile refluxing into the stomach. The therapeutic implication is that in appropriate cases, substances such as cholestyramine which bind bile salts may be beneficial. Again in appropriate cases, a surgical procedure designed to prevent reflux, could be considered.

The results in this study support the view that cholecystectomy combined with truncal vagotomy and pyloroplasty is associated with more reflux than that which occurs after TV+P alone. However, cholecystectomy combined with truncal vagotomy and pyloroplasty was not associated with more reflux than after cholecystectomy alone.

Highly selective vagotomy might be the operation of choice for peptic ulcer, especially when a cholecystectomy has to be carried out for co-existing biliary pathology.

Further investigations are needed to examine the relationship between bile reflux and the post-cholecystectomy syndrome in the human subject, and the possible beneficial effect that HSV may have in the management of the syndrome.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/G reflux</td>
<td>duodeno-gastric reflux</td>
</tr>
<tr>
<td>TV+P</td>
<td>truncal vagotomy with pyloroplasty</td>
</tr>
<tr>
<td>HSV</td>
<td>highly selective vagotomy</td>
</tr>
<tr>
<td>CCK</td>
<td>cholecystokinin</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>DU</td>
<td>duodenal ulcer</td>
</tr>
<tr>
<td>Total phos.</td>
<td>total phospholipids</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I should like to express my sincere thanks to Professor H.H. Lawson for his supervision, advice and encouragement.

I should also like to thank Professor D. Mendelsonn for his advice and the use of facilities in the Department of Chemical Pathology.

The help of Professor J. Allen with the statistics is deeply appreciated.

The author would like to thank Professor J.A. Myburgh for his constructive criticism and for making available facilities in the Surgery Department.

Professor R. Hinder's help with the recording of gastric potentials is most appreciated.

The assistance of the technical staff in the Department of Surgery was invaluable.

This work was supported by grants from the Medical Research Council and the Senate Research Council.
DECLARATION

This thesis is the original work of Demetrios Demetriades. Neither the substance or any part of this thesis has been submitted in the past or is to be submitted for a degree in any other university.

D. DEMETRIADES
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 THE OBJECT OF THE PRESENT INVESTIGATION</td>
<td>3</td>
</tr>
<tr>
<td>3 REVIEW OF THE RELEVANT LITERATURE</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Physiology of duodenogastric reflux</td>
<td>4</td>
</tr>
<tr>
<td>3.1.1 The pylorus and reflux</td>
<td>5</td>
</tr>
<tr>
<td>3.1.2 Gastric emptying and duodenogastric reflux</td>
<td>6</td>
</tr>
<tr>
<td>3.1.2.1 Hormones</td>
<td>7</td>
</tr>
<tr>
<td>3.1.2.2 Pylorus</td>
<td>7</td>
</tr>
<tr>
<td>3.1.2.3 Vagotomy</td>
<td>8</td>
</tr>
<tr>
<td>3.1.2.3.1 Physiology</td>
<td>8</td>
</tr>
<tr>
<td>3.1.2.3.2 Highly selective vagotomy and gastric emptying</td>
<td>8</td>
</tr>
<tr>
<td>3.1.2.3.3 Truncal vagotomy and gastric emptying</td>
<td>9</td>
</tr>
<tr>
<td>3.1.2.4 Other factors and gastric emptying</td>
<td>10</td>
</tr>
<tr>
<td>3.2 Cholecystectomy and biliary system changes</td>
<td>10</td>
</tr>
<tr>
<td>3.2.1 Anatomy of Oddi's sphincter in man and the dog</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2 Cholecystectomy and the common bile duct</td>
<td>11</td>
</tr>
<tr>
<td>3.2.3 Cholecystectomy and bile</td>
<td>12</td>
</tr>
<tr>
<td>3.2.3.1 Physiology</td>
<td>12</td>
</tr>
<tr>
<td>3.2.3.2 Cholecystectomy and bile circulation</td>
<td>12</td>
</tr>
<tr>
<td>3.2.3.3 Cholecystectomy and bile composition</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Truncal vagotomy and the biliary system</td>
<td>13</td>
</tr>
<tr>
<td>3.4 Truncal vagotomy and pancreatic secretion</td>
<td>14</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>3.5</td>
<td>Bile phospholipids</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Physiology</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Clinical significance of lysolecitnin</td>
</tr>
<tr>
<td>3.6</td>
<td>Physiology of secretin</td>
</tr>
<tr>
<td>3.7</td>
<td>Defence mechanisms of the gastric mucosa</td>
</tr>
<tr>
<td>3.8</td>
<td>Post-cholecystectomy syndrome</td>
</tr>
<tr>
<td>3.9</td>
<td>Assessment of adequacy of surgical vagotomy</td>
</tr>
<tr>
<td>3.10</td>
<td>Confirmation of the preservation of antral innervation after HSV</td>
</tr>
<tr>
<td>3.11</td>
<td>Gastric mucosa histology</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Normal stomach</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Chronic gastritis</td>
</tr>
<tr>
<td>3.11.2.1</td>
<td>Classification of chronic gastritis</td>
</tr>
<tr>
<td>3.11.2.2</td>
<td>Clinical significance of histological chronic gastritis</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Vagotomy and gastric mucosa</td>
</tr>
<tr>
<td>3.11.3.1</td>
<td>Truncal vagotomy and gastric mucosa</td>
</tr>
<tr>
<td>3.11.3.2</td>
<td>Highly selective vagotomy and gastric mucosa</td>
</tr>
<tr>
<td>4</td>
<td>A CRITICAL ASSESSMENT OF ASPECTS OF THE RELEVANT LITERATURE</td>
</tr>
<tr>
<td>4.1</td>
<td>Significance of duodenogastric reflux</td>
</tr>
<tr>
<td>4.2</td>
<td>Methods used for duodenogastric reflux measurement</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Detection in the stomach of a non-absorbable marker previously infused into the duodenum</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Detection of duodenal contents in the stomach</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.2.3 Radiological methods</td>
<td>32</td>
</tr>
<tr>
<td>4.3 The effect of secretin on duodenogastric reflux</td>
<td>33</td>
</tr>
<tr>
<td>4.4 The effect of vagotomy on duodenogastric reflux</td>
<td>35</td>
</tr>
<tr>
<td>4.4.1 Truncal vagotomy and pyloroplasty and reflux</td>
<td>35</td>
</tr>
<tr>
<td>4.4.2 Highly selective vagotomy and reflux</td>
<td>36</td>
</tr>
<tr>
<td>4.5 Cholecystectomy and bile reflux</td>
<td>36</td>
</tr>
</tbody>
</table>

WORK PRESENTED BY THE AUTHOR .. 40

5 THE EFFECT OF CHOLECYSTECTOMY ON BILE REFLUX 41

5.1 Material and methods | 41 |
5.1.1 Preparation of the experimental animal	41
5.1.1.1 The experimental animal	41
5.1.1.2 Anaesthesia	41
5.1.1.3 Insertion of the gastrostomy cannulae	41
5.1.1.4 Cholecystectomy	43
5.1.1.5 Post-operative management	44
5.1.2 Measurement of bile reflux	44
5.1.3 Collection of gastric contents	44
5.1.3.1 During fasting conditions	44
5.1.3.2 During fasting with secretin infusion	45
5.1.4 Method of lecithin and lysolecithin measurement	45
5.1.4.1 Phospholipid extraction and separation	45
5.1.4.2 Phosphorus determination	48
5.1.4.3 Lecithin and lysolecithin estimation	49
5.1.5 Measurement of gastric juice pH 50
5.1.6 Design of the gastrostomy cannula 50
5.1.7 Histological assessment 51
5.1.8 Assessment of the physical condition of the experimental animals ... 53
5.1.9 Postmortem examination 55
5.1.10 Design of the experimental study 55
5.1.11 Original techniques developed by the author 55
5.1.11.1 Measurement of D/G reflux 55
5.1.11.2 Duodenal markers used for measuring D/G reflux 56
5.1.11.3 The experimental study 57
5.1.12 Statistical methods employed 57
5.1.13 Critical evaluation of the techniques used 58
5.1.13.1 Method used to measure D/G reflux 58
5.1.13.2 Efficiency of phospholipid determination 59
5.1.13.3 Method used for histological assessment 60
5.1.13.4 Design of the experimental study 61
5.2 Results .. 61
5.2.1 Introduction .. 61
5.2.2 Presentation of data .. 62
5.2.3 Experimental animals .. 62
5.2.4 Number of experiments carried out 63
5.2.5 Reflux in the control animals 65
5.2.6 The effect of cholecystectomy on bile reflux 65
5.2.7 The effect of secretin on bile reflux before cholecystectomy ... 72
5.2.8 The effect of secretin on bile reflux in cholecystectomized dogs 79
5.2.9 Secretin stimulation and bile reflux before and after cholecystectomy .. 80
5.2.10 Volumes of gastric contents under basal fasting conditions before and after cholecystectomy ... 91
5.2.11 Volumes of gastric contents during secretin stimulation before and after cholecystectomy ... 92
5.2.12 pH of gastric contents under basal fasting conditions before and after cholecystectomy 93
5.2.13 pH of gastric contents during secretin stimulation ... 94
5.2.13.1 Before cholecystectomy .. 94
5.2.13.2 After cholecystectomy ... 95
5.2.13.3 Secretin infusion before cholecystectomy compared with infusion after cholecystectomy 96
5.2.14 Postmortem findings ... 97
5.2.14.1 Macroscopic findings ... 97
5.2.14.2 Histological findings ... 97
5.3 Discussion ... 109
5.3.1 Discussion of methods used ... 109
5.3.2 Discussion of biochemical results .. 111
5.3.3 Discussion of histological results .. 117
5.3.4 Clinical significance of the results of the present study .. 120
5.4 Conclusion ... 121
6 EFFECTS OF TV+P AND CHOLECYSTECTOMY ON D/G REFLUX

6.1 Materials and methods
6.1.1 Experimental animals
6.1.2 Preparation of the experimental animal
6.1.2.1 Anaesthesia
6.1.2.2 Insertion of gastrostomy cannula
6.1.2.3 Cholecystectomy
6.1.2.4 Truncal vagotomy with pyloroplasty
6.1.2.5 Post-operative management
6.1.2.6 Assessment of adequacy of surgical vagotomy
6.1.3 Collection of gastric contents
6.1.4 Technique of bile reflux estimation
6.1.5 Measurement of pH of gastric contents
6.1.5.1 Assessment of the physical condition of the experimental animals
6.1.7 Histological assessment
6.1.8 Postmortem examination
6.1.9 Design of the experimental study
6.2 Results
6.2.1 Introduction
6.2.2 Experimental animals
6.2.3 Number of experiments carried out
6.2.4 Adequacy of surgical vagotomy
6.2.5 D/G reflux in the control dogs
6.2.6 Cholecystectomy in dogs with TV+P: the effect on bile reflux
6.2.7 The effect of secretin stimulation on bile reflux in dogs with TV+P and intact gall bladder 138

6.2.8 The effect of secretin on bile reflux in dogs with TV+P and cholecystectomy 144

6.2.9 Secretin stimulation: bile reflux before and after cholecystectomy 149

6.2.10 Volumes of gastric contents under basal fasting conditions before and after cholecystectomy 154

6.2.11 Volumes of gastric contents during secretin stimulation before and after cholecystectomy .. 155

6.2.12 pH of gastric contents under basal fasting conditions before and after cholecystectomy .. 156

6.2.13 pH of gastric contents during secretin stimulation 157

6.2.13.1 Before cholecystectomy ... 157

6.2.13.2 After cholecystectomy ... 158

6.2.13.3 Secretin infusion before cholecystectomy compared with infusion after cholecystectomy 159

6.2.14 Postmortem findings 160

6.2.14.1 Macroscopic findings ... 160

6.2.14.2 Histological findings ... 160

6.2.15 Dogs with TV+P compared with dogs with an intact stomach .. 170

6.2.15.1 Bile reflux under basal fasting conditions .. 170

6.2.15.2 Bile reflux during secretin stimulation .. 170
6.2.15.3 Ratios of lecithin to lyssolecithin 171
6.2.15.3.1 Under basal fasting conditions 171
6.2.15.3.2 During secretin stimulation 172
6.2.15.4 Volumes of gastric contents 172
6.2.15.4.1 Under basal fasting conditions 172
6.2.15.4.2 During secretin stimulation 172
6.2.15.5 pH of gastric contents 173
6.2.15.5.1 Under basal fasting conditions 173
6.2.15.5.2 During secretin stimulation 173
6.2.15.6 Histological findings 173
6.3 Discussion 174
6.3.1 Discussion of biochemical results 174
6.3.2 Discussion of histological findings 179
6.3.3 Clinical significance of the results of the present study 180
6.4 Conclusion 181

7 THE EFFECT OF HSV AND CHOLECYSTECTOMY ON D/G REFLUX .. 183
7.1 Materials and methods 184
7.1.1 Experimental animals 184
7.1.2 Preparation of experimental animals 184
7.1.2.1 Anaesthesia 184
7.1.2.2 Insertion of gastrostomy cannula 184
7.1.2.3 Cholecystectomy 184
7.1.2.4 HSV 184
7.1.2.5 Post-operative management 185
7.1.3 Collection of gastric contents 185
7.1.4 Measurement of lecithin and lysolecithin concentrations 185
7.1.5 Measurement of gastric contents pH 185
7.1.6 Histological assessment 185
7.1.7 Assessment of adequacy of vagotomy 186
7.1.8 Assessment of integrity of vagal innervation of the antrum 186
7.1.9 Design of the experimental study 187
7.1.10 Statistical methods 188
7.2 Results 188
7.2.1 Experimental animals 188
7.2.2 Number of experiments carried out 191
7.2.3 D/G reflux after HSV 192
7.2.4 D/G reflux after HSV and cholecystectomy 192
7.2.5 The effect of secretin on D/G reflux 196
7.2.5.1 The effect of secretin on D/G reflux in dogs with HSV and an intact gall bladder 196
7.2.5.2 The effect of secretin on D/G reflux in dogs with HSV and cholecystectomy 201
7.2.5.3 D/G reflux with secretin stimulation before cholecystectomy compared with D/G reflux with secretin stimulation after cholecystectomy 205
7.2.6 Volume of gastric contents 205
7.2.6.1 Basal fasting conditions before and after cholecystectomy 205
7.2.6.2 Under secretin stimulation before and after cholecystectomy ... 206

7.2.7 pH of gastric contents under basal fasting conditions before and after cholecystectomy 206

7.2.8 pH of gastric contents during secretin stimulation ... 207

7.2.8.1 Before cholecystectomy ... 207

7.2.8.2 After cholecystectomy .. 208

7.2.8.3 Secretin infusion before cholecystectomy compared with infusion after cholecystectomy 208

7.2.9 Postmortem findings .. 209

7.2.9.1 Macroscopic findings .. 209

7.2.9.2 Histological findings ... 210

7.2.10 Comparison of dogs with HSV with (a) dogs with an intact stomach, and (b) with dogs with TV+P 211

7.2.10.1 Bile reflux under basal fasting conditions .. 211

7.2.10.2 Bile reflux during secretin stimulation .. 212

7.2.10.3 Ratios of lecithin to lysolecithin ... 212

7.2.10.3.1 Under basal fasting conditions ... 212

7.2.10.3.2 During secretin stimulation .. 213

7.2.10.4 Volumes of gastric contents .. 213

7.2.10.4.1 Under basal fasting conditions ... 213

7.2.10.4.2 During secretin stimulation .. 214

7.2.10.5 pH of gastric contents .. 215

7.2.10.5.1 Under basal fasting conditions ... 215

7.2.10.5.2 During secretin stimulation .. 215

7.2.10.6 Histological findings .. 216
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Modified Thomas cannula: Individual parts and a sectional view of an assembled cannula</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Swiss roll</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Bile reflux before and after cholecystectomy in Dog DD₄</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Bile reflux before and after cholecystectomy in Dog DD₅</td>
<td>68</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Bile reflux before and after cholecystectomy in Dog DD₆</td>
<td>69</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Bile reflux before and after cholecystectomy in Dog DD₂</td>
<td>70</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Bile reflux before and after cholecystectomy in Dog DD₃</td>
<td>71</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Bile reflux in DD₂ before and after secretin stimulation, with an intact gall bladder</td>
<td>74</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Bile reflux in DD₂ before and after secretin stimulation, with an intact gall bladder</td>
<td>75</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Bile reflux in DD₄ before and after secretin stimulation, with an intact gall bladder</td>
<td>76</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Bile reflux in DD₅ before and after secretin stimulation, with an intact gall bladder</td>
<td>77</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Bile reflux in DD₆ before and after secretin stimulation, with an intact gall bladder</td>
<td>78</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Bile reflux in DD₂ before and after secretin stimulation, after cholecystectomy</td>
<td>81</td>
</tr>
</tbody>
</table>
Figure 14 Bile reflux in DD\textsubscript{3} before and after secretin stimulation, after cholecystectomy

Figure 15 Bile reflux in DD\textsubscript{4} before and after secretin stimulation, after cholecystectomy

Figure 16 Bile reflux in DD\textsubscript{5} before and after secretin stimulation, after cholecystectomy

Figure 17 Bile reflux in DD\textsubscript{6} before and after secretin stimulation, after cholecystectomy

Figure 18 Bile reflux in DD\textsubscript{2} during secretin stimulation before and after cholecystectomy

Figure 19 Bile reflux in DD\textsubscript{3} during secretin stimulation before and after cholecystectomy

Figure 20 Bile reflux in DD\textsubscript{4} during secretin stimulation before and after cholecystectomy

Figure 21 Bile reflux in DD\textsubscript{5} during secretin stimulation before and after cholecystectomy

Figure 22 Bile reflux in DD\textsubscript{6} during secretin stimulation before and after cholecystectomy

Figure 23a Dog DD\textsubscript{4}. The histological changes along the anterior wall of the greater curvature of the antrum

Figure 23b Dog DD\textsubscript{4}. The histological changes along the anterior wall of the antrum

Figure 23c Dog DD\textsubscript{4}. The histological changes along the lesser curvature of the antrum

Figure 23d Dog DD\textsubscript{4}. The histological changes along the posterior wall of the antrum

Figure 23e Dog DD\textsubscript{4}. The histological changes along the posterior wall of the greater curvature of the antrum
Figure 24a Normal antral mucosa (lesser curvature) at the beginning of the experiments (X) 103

Figure 24b Normal antral mucosa (lesser curvature) at the time of cholecystectomy (X) 104

Figure 24c Antral mucosa (lesser curvature) 6 months after cholecystectomy, epithelial proliferation and glandular atrophy (X) 104

Figure 25a Dog DD_{5}. The histological changes along the anterior wall of the greater curvature of the antrum 106

Figure 25b Dog DD_{5}. The histological changes along the anterior wall of the antrum 106

Figure 25c Dog DD_{5}. The histological changes along the lesser curvature of the antrum 107

Figure 25d Dog DD_{5}. The histological changes along the posterior wall of the antrum 107

Figure 25e Dog DD_{5}. The histological changes along the posterior wall of the greater curvature of the antrum 108

Figure 26 Bile reflux in dog DD_{8} after TV+P and after a cholecystectomy was added to TV+P 134

Figure 27 Bile reflux in dog DD_{10} after TV+P and after a cholecystectomy was added to TV+P 135

Figure 28 Bile reflux in dog DD_{12} after TV+P and after a cholecystectomy was added to TV+P 136

Figure 29 Bile reflux in dog DD_{14} after TV+P and after a cholecystectomy was added to TV+P 137

Figure 30 Bile reflux in DD_{8} (TV+P) under basal fasting conditions and during secretin stimulation 140
Author: Demetriades D
Name of thesis: The effect of cholecystectomy on duodenogastric reflux an experimental study 1984

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.