CHAPTER SEVEN
DISCUSSIONS AND CONCLUSION

This study aimed at analysing the effect of women’s education on fertility in Rwanda.

Three objectives were assigned to this study, namely:

To estimate current level of fertility in Rwanda;

To identify the proximate determinants of fertility in Rwanda;

To examine the extent to which women’s education and other factors contribute to fertility behaviour in Rwanda. In addition, two hypotheses have guided this study.

These are:

1. Among proximate variables, the index of marriage is more likely to contribute to the reduction of fertility in Rwanda.

2. Among socioeconomic factors, women’s education is more likely to contribute to the reduction of fertility in Rwanda.

The findings of the study were presented in chapters 4, 5 and 6 above.

I hope the study has highlighted the similarities and differences of estimations for some respondents’ characteristics when compared to 2000 RDHS findings. In terms of socioeconomic characteristics, this study found that 27 % of respondents were no educated and 82 % were in rural residence. These results are almost similar to those of 2000 RDHS which provides 24.5% and 82.8% respectively. With regard to fertility behaviour, the study showed that the proportion of childless among all women aged 15-49 was 37.3 % and that of currently married women was 6.5 %. Results from 2000 RDHS showed almost the same proportion with 35.5 % and 6.4 % respectively. It was established that the completed family size (35-49) for currently married women was 6.7 children per women, which is higher than the TFR, indicating that fertility
declined over last decades. This finding is similar to that of 2000 RDHS. The indirect estimation of the Rwandan TFR gives 5.7 children per woman which is also similar to that of 2000 RDHS (5.8). Further, it is obvious that the Rwandan TFR is far higher than that estimated by Bongaarts (2002) for the developing world in the 1995-2000 period which is 3.1 children per woman. This may be explained by the low level of proximate and socioeconomic determinants as described in chapter 4.

Moreover, the findings of this study have shown that the proportion of marriage which accounts for 47.5 percent contributed most to the fertility reduction in Rwanda. This finding is similar to that of Odimegwu and Zerai (1996), in their study of proximate determinants of fertility among Igbo ethnic group in Nigeria. In fact, their study showed that index of marriage was the most important proximate determinant of fertility reduction, accounting for 34.9 per cent. Furthermore, Akindolani (2005), using 2003 Nigeria Demographic and Health Survey, found that marriage had the most inhibiting effect on fertility reduction accounting for 66%. Similarly, Mwanzu (2005), working on proximate determinant using 1992 Namibia DHS, stated that marriage played much more role in reducing fertility accounting for 39%.

Likewise, in his study of the proximate determinants of exceptionally high fertility countries, Bongaarts (1987) demonstrated that in countries with low contraceptive prevalence, marriage pattern explain most the reduction of fertility rates. The importance of marriage in fertility reduction in Rwanda comes from the fact that the proportions of women’s reproductive years spent unmarried, and therefore presumably not exposed to the risk of pregnancy increased especially during the war and the genocide of the 1990s (2000 RDHS). This normally refers to the number of
woman-years spent divorced, widowed or separated during and after the war. As a matter of fact, according to 1978 Rwanda Census and 2000 RDHS, the proportion of currently married women declined between 1978 and 2000 from 63.9 to 48.5; while the proportion of never married, widowed, divorced and separated women increased from respectively 29.4, 3.2, and 3.5 for both divorced and separated, to 34.1, 7.9, and 9.5 during the same period. Obviously, the above findings confirm our first hypothesis which had assumed that among proximate variables, the index of marriage is more likely to contribute to the reduction of fertility in Rwanda.

As a summary of the three models, this study reveals a moderate effect of socioeconomic variables included in the model, and this explains the moderate decline of fertility experienced in Rwanda during the last two decades as mentioned earlier. This is true because according to the 2000 RDHS, the modernisation indicators such as mass education, employment and urbanisation are still very low in Rwanda. With regard to mass education, only 16.4 per cent of women aged 15-19 completed the primary school, while those having the same level of education among women aged 45-49 were 5.2 per cent. Regarding urbanisation and employment status, only 18 percent of Rwandans are urban, and 82.5 per cent practice subsistence agriculture. This argument is supported by Mostert et al (1998) who maintained that the characteristics change of individuals is associated with the level of the socioeconomic development of a country.

Moreover, among the socioeconomic variables included in the model, women’s education and urban residence have a moderate total effect on fertility reduction while others have a very weak total effect. The weakness of these variables may not be
surprising because, the more people are educated, the more they are likely to live in urban areas and get well paid work. In addition to that, there is a tendency for the educated men to marry the educated women. Furthermore, the survival rates of children depend partly on the socioeconomic status of women such as education.

Furthermore, among the socioeconomic variables in the model, women’s education is found to be the most powerful predictor of fertility decline. The direct and indirect effect of women’s education on proximate variables and fertility are greater when associated with contraceptive use than other proximate variables accounting respectively for 0.47 (direct effect) and - 0.25 (indirect effect). As a matter of fact, if the use of contraceptive increases, the waiting time to conception will rise and the birth interval will lengthen accordingly. This argument is backed by that of Weeks (2005) who claims that an increase in education is strongly associated with the rational decision-making, encourages the diffusion of an innovation such as fertility limitation, offers to people a view of a world that expands their horizon beyond the boundaries of traditional societies and causes them to reassess the value of children and re-evaluate the role of women in the society. Further research has emphasized the higher effect of women’s education on fertility behaviour by focusing contraceptive use. In her study in Ghana, De Rose et al (2002) found that women with senior secondary school or higher education were more likely to offer knowledge of contraceptive means as a reason why educated women desired fewer children than the less educated women.

The study has also shown that the combined direct and indirect effect of women’s education also influence positively the age at first marriage accounting for 0.23. This is explained by the fact that education of mothers tends to increase the age at first
marriage, thereby decreasing the number of years that can be devoted to childbearing. In addition, besides delaying marriage, female education has been observed to be associated with greater numbers of women not marrying at all (Akmam, 2002). Women with higher education levels are more likely to be able to organize their lives outside marriage and family. Similar finding was described in Mali, where educated women increased the age at first marriage by 55 percent (Kabeer, 2005) if compared with no educated women. In the same line, according to Samara and Susheela (1996), in Sub-Saharan Africa, the most educated women marry at least four years later than uneducated women.

From the above findings, women’s education emerged as the most powerful predictor of fertility behaviour in Rwanda. We therefore confirm the second hypothesis of our study which assumed that among socioeconomic factors, women’s education is more likely to contribute to the reduction of fertility in Rwanda.

POLICY IMPLICATIONS

These findings have implications for policy, programme and research.

Policy

The study found the relationship between women’s education and fertility decline through contraceptive use and late age at marriage. Therefore, the government should be involved politically and financially by promoting women’s education, expanding family planning programs. The promotion of women’s education will predictably empower women to make individuals decisions and to act on those decisions and increase their participation in employment where they are exposed to ideas and attitudes that lead to desire smaller families. It is also imperative for government, to set up a legislation encouraging late age at first marriage.
This study has also shown that the level of knowledge of contraceptive methods is high in Rwanda but few women are actually using contraceptives. The use of modern contraceptive methods should be promoted by offering facilities and providing family planning services to all users. Policy should also target change of attitudes by educating women and men on the methods of family planning.

Research

Further research should be carried out in Rwanda in order to find out other socioeconomic variables that may contribute to reduce fertility since those of interest in this study show a moderate and weak contribution. Further studies should be done to understand why, in Rwanda, the knowledge of modern contraception is high while contraceptive use remains very low. This implies other research to be done such as:

- what is the attitude to family planning and Reproductive health issues
- study on family size preferences