GENERAL SUMMARY

The physical mechanisms underlying the absorption of ionising radiation in tissues are reviewed. In particular, the principles of radiation dosimetry, insofar as they affect reactions in the tissues and tumours of the various subjects studied, are considered in detail. The nature of radiation reactions in man is studied from the quantitative aspect, and the dosage data for specific end-results in a variety of tissues and tumours is tabulated. Tissue tolerances and tumour lethal doses are defined in terms of median effective doses and the associated coefficients of variation. Six technical variables (quality, time, volume, radiosensitivity, recovery, and diffusion constants) are shown to influence the reaction, and an 'iso-effect' formula incorporating these factors is proposed. This function has the general form

$$D = E \frac{F}{T} \frac{L^{-q}}{n}$$

where 'D' is the physical dose in rads, 'E' the standard radioactivity factor, 'T' the overall time in days, 'L' the field-diameter in decimeters, 'n' and 'q' the recovery and diffusion exponents respectively, and \(\gamma \) the relative biological efficiency for the particular quality of radiation used.

The quality factor, as assessed by the half-value layer, kilovoltage, average wavelength, or rate of linear energy transfer (LET) is considered in relation to the relative biological efficiency (RBE) for animal and human tissues of various types of radiation. By simple graphical interpolation, the RBE-factors required for incorporation into the iso-effect formulas are derived, and shown to be valid at least in the range of clinical interest. Taking \(\gamma = 1.00 \) for radium \(\gamma \)-rays and megavoltage radiations, its value is shown to be 1.403 (± .02%) for orthovoltage roentgen rays, and approaches a factor of 3 in the superficial therapy range.

The influence of the time factor upon the median effective doses is considered. Published data on the effects of variation in dose-rate, interruption of exposure, manner of fractionation, and over-all time are analysed and suitable parameters for various tissues and tumours are derived, the
recovery functions of skin and epidermoid cancer being $n = 0.33$ and 0.22 respectively. The critical time interval appropriate to a continually decaying isotope source is shown to be around 2.75 times the corresponding half-life. The effect of varying the size and shape of the irradiated volume upon the intensity of the reaction is analysed, and appropriate parameters for a variety of anatomical and geometrical configurations are estimated. The factor 'q' is 0.33 for skin and probably zero for tumours. This datum completes the information required to formulate a composite iso-effect function, incorporating all relevant tissue and tumour variates and parameters simultaneously.

The validity of the iso-effect formula is reconsidered as a physical or mathematical model system, and it is shown that the hypothesis of a single exponentially decaying substance is untenable. A heterogeneous mixture of such substances could give a satisfactory, though much more complex, function, but this is found to fit observed data little better than the simple empirical iso-effect formula given. A least-squares regression of skin reactions upon dosage, and a probit analysis of tumour dosage data derived from 310 patients (150 skin reactions, 100 cases of epidermoid cancer, and 60 mammary carcinomas) treated in the Hospital, gave estimates for the empirical parameters virtually identical with those obtained from published data.

The analysis introduces the therapeutic ratio as a strict biometrical concept associated with any given combination of technical factors, and the statistical prognosis (probability of uncomplicated cure) is shown to be a function of this ratio. Using the mathematical model, one could compute the optimal dose, the effect of time and area factors upon the prognosis, the comparative value of precalculated and individualised dosage schemes, and also devise clinical dosage nomograms whereby optimal treatment factors may be applied directly in practical radiotherapy. It is concluded that statistical analysis of enough relevant clinical data would permit the development of optimal dosage schemes for most human tumours, with a corresponding improvement in cancer cure rates.
The physical mechanisms underlying the absorption of ionizing radiation in tissues are reviewed. In particular, the principles of radiation dosimetry, insofar as they affect reactions in the tissues and tumours of the various subjects studied, are considered in detail. The nature of radiation reactions in man is studied from the quantitative aspect, and the dosage data for specific end-results in a variety of tissues and tumours is tabulated. Tissue tolerances and tumour lethal doses are defined in terms of median effective doses and the associated coefficients of variation. Six technical variables (quality, time, volume, radiosensitivity, recovery, and diffusion constants) are shown to influence the reaction, and an 'iso-effect' formula incorporating these factors is proposed. This function has the general form

$$D = E T^2 L^{-q/2}$$

where 'D' is the physical dose in rads, 'E' the standard radiosensitivity factors, 'T' the over-all time in days, 'L' the field-diameter in decimeters, 'n' and 'q' the recovery and diffusion exponents respectively, and γ the relative biological efficiency for the particular quality of radiation used.

The quality factor, as assessed by the half-value layer, kilovoltage, average wavelength, or rate of linear energy transfer (LET) is considered in relation to the relative biological efficiency (RBE) for animal and human tissues of various types of radiation. By simple graphical interpolation, the RBE-factors required for incorporation into the iso-effect formula are derived, and shown to be valid at least in the range of clinical interest. Taking $\gamma = 1.00$ for radium γ-rays and megavoltage radiations, its value is shown to be 1.403 (± 0.024) for orthovoltage rontgen rays, and approaches a factor of 3 in the superficial therapy range.

The influence of the time factor upon the median effective doses is considered. Published data on the effects of variation in dose-rate, interruption of exposure, manner of fractionation, and over-all time are analysed and suitable parameters for various tissues and tumours are derived, the
recovery functions of skin and epidermoid cancer being \(n = 0.33 \)
and 0.22 respectively. The critical time interval appropriate to
a continually decaying isotope source is shown to be around 2.75
times the corresponding half-life. The effect of varying the size
and shape of the irradiated volume upon the intensity of the
reaction is analysed, and appropriate parameters for a variety of
anatomical and geometrical configurations are estimated. The factor
'q' is 0.33 for skin and probably zero for tumours. This datum
completes the information required to formulate a composite iso-effect
function, incorporating all relevant tissue and tumour variates and
parameters simultaneously.

The validity of the iso-effect formula is reconsidered
as a physical or mathematical model system, and it is shown that
the hypothesis of a single exponentially decaying 'substance' is
untenable. A heterogeneous mixture of such substances could give a
satisfactory, though much more complex, function, but this is found
to fit observed data little better than the simple empirical iso-
effect formula given. A least-squares regression of skin reactions
upon dosage, and a probit analysis of tumour dosage data derived
from 310 patients (150 skin reactions, 100 cases of epidermoid
cancer, and 60 mammary carcinomas) treated in the Hospital, gave
estimates for the empirical parameters virtually identical with
those obtained from published data.

The analysis introduces the therapeutic ratio as a strict
biometrical concept associated with any given combination of technical
factors, and the statistical prognosis (probability of uncomplicated
cure) is shown to be a function of this ratio. Using the mathematical
model, one could compute the optimal dose, the effect of time and area
factors upon the prognosis, the comparative value of precalculated and
individualised dosage schemes, and also devise clinical dosage nomo-
grams whereby optimal treatment factors may be applied directly in
practical radiotherapy. It is concluded that statistical analysis of
enough relevant clinical data would permit the development of optimal
dosage schemes for most human tumours, with a corresponding
improvement in cancer cure rates.