<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
<th>no. families bred</th>
<th>no. adults pinned</th>
<th>Collection methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>coustani B</td>
<td>Johannesburg, Tvl.</td>
<td>1</td>
<td>13</td>
<td>Inside house</td>
</tr>
<tr>
<td></td>
<td>Benoni, Tvl.</td>
<td>3</td>
<td>12</td>
<td>Biting man outdoors</td>
</tr>
<tr>
<td>ziemanni A</td>
<td>Thankerton, Tvl.</td>
<td>1</td>
<td>6</td>
<td>Pit collection</td>
</tr>
<tr>
<td></td>
<td>Potgietersrus, Tvl. 10</td>
<td>79</td>
<td></td>
<td>Biting man outdoors</td>
</tr>
<tr>
<td></td>
<td>Grey Stones, Tvl. 3</td>
<td>25</td>
<td></td>
<td>" " " , man-baited net</td>
</tr>
<tr>
<td></td>
<td>Jaffray, Tvl. 2</td>
<td>19</td>
<td></td>
<td>" " "</td>
</tr>
<tr>
<td></td>
<td>Pusela, Tvl. 3</td>
<td>20</td>
<td></td>
<td>" " "</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>ziemanni B</td>
<td>Mahongo, Namibia</td>
<td>34</td>
<td>203</td>
<td>Cattle kraal</td>
</tr>
</tbody>
</table>

TOTAL: 114 743
APPENDIX II

DETAILED RECIPES FOR THE STAINS AND BUFFERS USED IN THE ELECTROPHORETIC ANALYSIS.

Electrode buffer: 6.2g boric acid, 20g Tris, 2g EDTA made up to 1 litre with distilled water and adjusted to pH8.6 with saturated boric acid (modified Barlow & Ridgway, 1971).

Gel buffer: 90ml electrode buffer made up to 300ml with distilled water and adjusted to pH8.2 with saturated boric acid.

Tris/Mal buffer: 1M Tris adjusted to pH6.4 with 1M maleic acid.

Tris/Hcl buffer: 1M Tris adjusted to pH8.5 with concentrated hydrochloric acid.

Phosphate buffer: 0.2M Sodium hydrogen phosphate adjusted to pH7.3 with 0.2M hydrochloric acid.

Esterase (Est): 50mg Fast Blue RR, 50ml 0.1M Tris/Mal buffer pH6.4, 4ml 1% alpha-naphthylacetate in acetone. Refrigerate for 1 hour or until bands appear.

Octanol dehydrogenase (Odh) and superoxide dismutase (Sod): 25mg NAD, 20mg NBT, 100ml 0.05M Tris/Hcl buffer pH8.5, 1.0ml ethanol, 0.2ml octanol. Incubate for 1 hour at 37°C. Add 5mg PMS. Blue in sunlight. Leave overnight (modified Mahon et al, 1976).

Glutamic-oxaloacetic transaminase (Got): 60mg 2-oxoglutaric acid, 100mg L-aspartic acid, 120mg Fast Blue RR, 50ml 0.2M phosphate buffer pH7.3. Warm buffer to 37°C. Make a paste
of the dry ingredients then add buffer. Incubate at 37°C for 20 minutes or until brown bands appear (modified Nichols & Ruddle, 1973).

Lactic dehydrogenase (Ldh): 20mg NAD, 12 mg NBT, 1mg PMS, 40ml substrate solution (40g sodium lactate, 1.2g sodium cyanide, 119mg magnesium chloride, 250ml 0.05M phosphate buffer pH7.5), 10ml distilled water. Incubate at 37°C until dark bands appear.

Xanthine dehydrogenase (Xdh): 20mg NAD, 12mg NBT, 1mg PMS, 20mg hypoxanthine, 50ml 0.05M Tris/Hcl buffer pH7.1. Incubate at 37°C until dark bands appear (Shaw & Prasad, 1970).

Alpha-glycerophosphate dehydrogenase (αGpdh): 20mg NAD, 12mg NBT, 1mg PMS, 90mg di-sodium EDTA, 100mg αglycerophosphate, 50:1 0.05M Tris/Hcl buffer pH8.5. Incubate at 37°C until bands appear.

Isocitric dehydrogenase (Idh): 75mg isocitric acid, 20mg NADP, 12mg NBT, 1mg PMS, 10 drops 10% magnesium chloride, 50ml 0.05M Tris/Hcl buffer pH8.5. Incubate at 37°C until bands appear.

Malic dehydrogenase (Mdh): 20mg NAD, 12mg NBT, 1mg PMS, 5ml 2M neutralised malic acid, 50ml 0.05M Tris/Hcl buffer pH8.5. Incubate at 37°C until bands appear.

Phosphoglucomutase (PgM): 20mg NADP, 12mg NBT, 1mg PMS, 10 drops 10% magnesium chloride, 25mg glucose-1-phosphate containing glucose 1.6 diphosphate, 25 units glucose-6-phosphate dehydrogenase, 50ml 0.05M Tris/Hcl buffer pH7.1. Incubate at 37°C until bands appear (modified Ayala et al.,
Abbreviations:
NAD - nicotinamide adenine dinucleotide
NADP - nicotinamide adenine dinucleotide phosphate
NBT - nitro-blue tetrazolium
PMS - phenazine methosulphate
EDTA - ethylenediamine tetraacetic acid.
1972).

Abbreviations:
NAD - nicotinamide adenine dinucleotide
NADP - nicotinamide adenine dinucleotide phosphate
NBT - nitro-blue tetrazolium
PMS - phenazine methosulphate
EDTA - ethylenediamine tetraacetic acid.
A SUMMARY OF THE STUDIES DONE ON THE IMMATURES OF
A. COUSTANI, A. ZIEMANNI AND A. TENEBROSUS, USING COMPUTER
TECHNIQUES *

No species-specific differences in the immature stages of
A. "cousiani", A. "ziemannii" and A. "tenebrosus" had been
previously reported (Gillies & De Meillon, 1968), so it
was decided to study the larvae and pupae using the
Belkin (1962) system and computer analysis.

Eight characters for 300 pupae and 11 characters for 100
larvae, from many families of the three species, were
measured and entered into the computer. The programme
used for the discriminant function analysis was SPSS
(Nie, et al, 1975) utilizing the stepwise method and
running all three groups at once. 99.33% discrimination
was obtained from the pupal data and 99% from the larval
data. Figs. 28 and 29 are examples of the computer
printouts showing the grouping of the three species.

The heavily branched antennal shaft hair of the larva and
the relatively few ribs on the pupal trumpets, make
tenebrosus quite distinctive, "cousiani" and "ziemannii"
being more difficult to separate (table 6).

* Published Coetzee & Newberry, 1980.
APPENDIX III

A SUMMARY OF THE STUDIES DONE ON THE IMMATURES OF A. COUSTANI, A. ZIEMANNI AND A. TENEBROSUS, USING COMPUTER TECHNIQUES *

No species-specific differences in the immature stages of A. "coustani", A. "ziemannii" and A. tenebrosus had been previously reported (Gillies & De Meillon, 1968), so it was decided to study the larvae and pupae using the Belkin (1962) system and computer analysis.

Eight characters for 300 pupae and 11 characters for 100 larvae, from many families of the three species, were measured and entered into the computer. The programme used for the discriminant function analysis was SPSS (Nie, et al, 1975) utilizing the stepwise method and running all three groups at once. 99.33% discrimination was obtained from the pupal data and 99% from the larval data. Figs. 28 and 29 are examples of the computer printouts showing the grouping of the three species.

The heavily branched antennal shaft hair of the larva and the relatively few ribs on the pupal trumpets, make tenebrosus quite distinctive, "coustani" and "ziemannii" being more difficult to separate (table 5).

* Published Coetzee & Newberry, 1980.
Table 6. Keys to the larvae and pupae of *A. "coustani"*, *A. tenebrosus* and *A. "ziemanni"*, whereby 91 and 89% correct identification respectively was obtained.

Larva.

1. The sum of seta 1-A, 23 or more branches...... *tenebrosus*
 The sum of this seta with 22 or less branches..........2

2. The sum of seta 2-I with 14 or more branches.... *"coustani"*
 The sum of seta 2-I with 13 or less branches.... *"ziemanni"*

Pupa.

1. The sum of seta 11-C with 8 or more branches...... *tenebrosus*
 The sum of seta 11-C with 7 or less branches..........2

2. Seta 6-IV simple.................................. *"coustani"*
 Seta 6-IV with either or both hairs split........ *"ziemanni"*
1 - Anopheles constani
2 - Anopheles tenebrosus * indicates a group centroid
3 - Anopheles ziemanni

Fig 28: Scatterplot of the computer analysis of the pupae.
1 - Anopheles constani
2 - Anopheles tenebrosus * indicates a group centroid
3 - Anopheles ziemanni

Fig. 29. Scatterplot of the computer analysis of the larvae.
REFERENCES

DE MEILLON, B. 1938. Remarks on the entomology of malaria in the tropics and sub-tropics of Africa. Primeiro Congresso Medico de Lourenco Marques. 3:63

DONITZ, W. 1902. Beitrage zur Kenntniss der Anopheles. Z. Hyg. Infektkr. 41:52

EDWARDS, F.W. 1928. Mosquito notes VII. Bull. ent. Res. 18:267

EDWARDS, F.W. 1932. Culicidae Gener. Insectorum Fasc. 194

EVANS, A.M. 1938. Mosquitoes of the Ethiopian Region II. (British Museum (Natural History).) London.

MULLER, H.J. 1922. Variation due to change in the individual gene. Am. Nat. 56:32

REID, J.A. 1975a. Pupal differences between species A and B of the Anopheles gambiae group from Kisumu, East Africa. Mos. Syst. 7:1

REID, J.A. 1975b. Pupal differences between species A and B of the Anopheles gambiae group from Kaduna, West Africa. Mos. Syst. 7:299

SINGH, R.S., HUBBY, J.L. & THROCKMORTON, L.H. 1975. The study of genic variation by electrophoretic and heat denaturation techniques at the octanol dehydrogenase locus in members of the Drosophila virilis group. Genetics 80:637

WHITE, G.B. 1977. The place of morphological studies in the investigation of Anopheles species complexes. Mos. Syst. 9:1

