ELASTIC PROPERTIES
OF GLASSES AND GLASS CERAMICS
AT HIGH PRESSURES AND HIGH TEMPERATURES

by

Salomé Gravett
B Sc (Hons) UOFS

A thesis submitted in fulfilment of the requirements
for the degree of

Master of Science
in the
Department of Physics
University of the Witwatersrand
Johannesburg
1989
ABSTRACT

The elastic properties and behaviour of several glasses and glass ceramics have been measured in the 0-300 °C and 0-3 GPa ranges using an ultrasonic method. A solid pressure transmitting capsule with a resistance heater was used. The ultrasonic longitudinal and shear wave velocities through the material were measured with the pulse echo overlap method. C_{11}, C_{44}, E, C_{12}, σ and B were calculated from the velocities and the unit volume variation was established. Zerodur glass ceramic shows a phase transformation around 1.5 GPa and a simple phase diagram have been drawn up, indicating the versatility of this technique. Corning 9658 glass shows a linear unit volume variation with pressure. The results for Corning 9658 glass ceramic shows good agreement with previously published results. 119 MCY glass shows a positive $\left(\partial B/\partial P\right)_T$ but a negative $\left(\partial C_{44}/\partial P\right)_T$. 119 MCY glass ceramic behaves elastically "normal" for a crystalline material, in that the pressure derivatives are positive and the temperature derivatives are negative.
DECLARATION

I declare that this thesis is my own, unaided work. It is being submitted for the degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university.

[Signature]

11th day of May, 1951.
To my husband

Paul, thank you for your patience and encouragement during the completion of this thesis.
CONTENTS

Preface
Acknowledgements
Notation
List of tables
List of figures

CHAPTER PAGE

1. INTRODUCTION 1
1.1 Elastic properties 1
1.2 Glasses 3
1.3 Glass ceramics 5
1.4 High pressure and high temperature 7

2. THEORY 11
2.1 Introduction 11
2.2 Elasticity theory 11
2.2.1 Strain components 11
2.2.2 Stress components 14
2.2.3 Elastic constants 16
2.3 Elastic constants of glasses and glass ceramics with pressure and temperature 22
2.4 Measurement of elastic constants 26

3. EXPERIMENTAL TECHNIQUE 29
3.1 Elasticity and its measurement at high pressure and high temperature 29
3.1.1 Review of elasticity measurements 29
3.1.2 The pulse echo overlap method 30
3.1.3 The pulse echo overlap method at high pressure and high temperature 37
3.2 The high pressure and high temperature apparatus
3.3 The piston assembly
3.4 The high pressure and temperature ultrasonic capsule
3.5 Experimental procedure
 3.5.1 Pressure
 3.5.2 Temperature
 3.5.3 Frequency

4. DATA ANALYSIS
 4.1 Pressure
 4.2 Temperature
 4.3 Elastic moduli

5. RESULTS AND DISCUSSION
 5.1 Zerodur glass ceramic
 5.2 Corning 9658 glass ceramic
 5.3 Corning 9658 glass
 5.4 119 MCY glass
 5.5 119 MCY glass ceramic

6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7. REFERENCES
PREFACE

Recently the capability to measure ultrasonic sound velocities in a solid has been extended in this laboratory to measure the velocities at high pressures and high temperatures simultaneously. Fused quartz was the first material to be tested, using this apparatus, and the results were most rewarding. A variety of glassy and glass ceramic samples were supplied by Prof. Ashbee of the University of Tennessee, Knoxville, who is a glass ceramic specialist. The intention was to examine the elastic constants of glasses and glass ceramics, particularly where elastic constant determination is concerned. The major aim was to establish:

a) phase boundaries,
b) the phase (glassy or crystalline) within which the phase transition takes place, if it occurs at all, and
c) if no such transition is seen, to simply establish the unit volume variation in the materials and try to understand them in terms of their composition and structure.
PREFACE

Recently the capability to measure ultrasonic sound velocities in a solid has been extended in this laboratory to measure the velocities at high pressures and high temperatures simultaneously. Fused quartz was the first material to be tested, using this apparatus, and the results were most rewarding. A variety of glassy and glass ceramic samples were supplied by Prof. Ashbee of the University of Tennessee, Knoxville, who is a glass ceramic specialist. The intention was to examine the elastic constants of glasses and glass ceramics, particularly where elastic constant determination is concerned. The major aim was to establish:

a) phase boundaries,

b) the phase (glassy or crystalline) within which the phase transition takes place, if it occurs at all, and

c) if no such transition is seen, to simply establish the unit volume variation in the materials and try to understand them in terms of their composition and structure.
ACKNOWLEDGEMENTS

I would like to acknowledge the following people for their assistance in completing this study:

Dr G G Garrett, the Divisional Director of the Division of Material Science and Technology at the CSIR for the opportunity to perform this study.

Prof J D Comins of the Physics Department of the University of the Witwatersrand for encouragement, interest and assistance as supervisor.

Dr S Hart, former Divisional Head of the Ceramics Group in the previous Institute for Materials Research at the CSIR for sharing his knowledge as a specialist in this field.

Dr I Sigalas as co-supervisor and present programme manager in Composite Materials at the Division of Material Science and Technology, for the inspiration and chance to complete this thesis.

Prof K H G Ashbee of the University of Tennessee for information that he supplied and his interest in this work.

My colleagues for helping out whenever it was necessary and who made a contribution during this study.
NOTATION

\(a, \beta, \gamma \) angles
\(a, b, c, f, g, h \) unit cell axes
\(f', g', h' \) distorted axes
\(i, j, k, l \) integers taking the values 1, 2, ..., 6
\(q, r \) letters taking the values x, y, z
\(e_{q,r} \) strain components
\(e_{qr} \) strain components
\(E, E' \) particle position
\(X \) displacement
\(X_q, Y_q, Z_q \) stress components
\(S_{ij} \) elastic compliances or elastic moduli
\(u, v, w, x, y, z \) displacement components
\(C_{ij} \) elastic stiffnesses or elastic constants
\(C_{12} \) Lamé constant
\(\rho \) density
\(\rho \) Young's modulus
\(\nu \) extensional sound wave velocity
\(G \) shear modulus
\(\nu_s \) transverse or shear-polarized sound wave velocity
\(\lambda \) compressibility
\(V \) volume
\(P \) pressure
\(T \) temperature
\(B \) Bulk modulus
\(\sigma \) Poisson's ratio
\(\varepsilon_s \) transverse strain
\(\varepsilon_l \) longitudinal strain
\(A_1 \) wave amplitude
\(t \) time
\(f \) frequency
\(w \) wave frequency
\(k \) wave constant
\(\ell \) length of sample
\(w \) natural velocity
\(P_1 \) oil pressure
\(P_2 \) sample pressure
\(A_1 \) ram face area
\(A_2 \) piston face area
LIST OF TABLES

Chapter 2

Table 2.1 The connection between elastic constants of isotropic bodies

Chapter 5

Table 5.1.1 Chemical composition of a typical Zerodur sample
Table 5.1.2 Zerodur GC: Elastic properties and their polynomial coefficients
Table 5.1.3 Elastic moduli of Zerodur at room temperature
Table 5.1.4 Values indicating the high-to-low quartz phase boundary for Zerodur
Table 5.2.1 Density and longitudinal and shear phase velocities of 9658 GC
Table 5.2.2 Room temperature elastic properties and their pressure derivatives of 9658 GC
Table 5.2.3 9658 GC: Elastic properties and their polynomial coefficients
Table 5.3.1 9658 glass: Elastic properties and their polynomial coefficients
Table 5.4.1 Chemical composition of 119 MCY glass
Table 5.4.2 119 MCY glass: Elastic properties and their polynomial coefficients
Table 5.5.1 119 MCY GC: Elastic properties and their polynomial coefficients
LIST OF FIGURES

Chapter 1

Fig. 1.1 Two-dimensional representation of an oxide M_2O_3 in (a) the crystalline form (b) the glassy form

Chapter 2

Fig. 2.1 Coordinate axes for the description of the state of strain
Fig. 2.2 Demonstration that $y_x = y_y$ in order that the body may be in equilibrium

Chapter 3

Fig. 3.1 The essential components of the pulse echo overlap system
Fig. 3.2(a) A series of diminishing echoes
 (b) The echo train obtained when using a buffer rod
 (c) Two echoes being overlapped
Fig. 3.3 Circuit diagram of the MATEC system
Fig. 3.4 The Kennedy Press
Fig. 3.5 Main components, capsule, piston and cylinder
Fig. 3.6 The cylinder stack
Fig. 3.7 Block diagram of the auxiliary equipment
Fig. 3.8 Cross-sectional diagram of the piston assembly
Fig. 3.9(a) Exploded diagram of the cross-section of the high pressure and temperature ultrasonic capsule
 (b) Assembly diagram of capsule
Fig. 3.10 An assembled capsule and components on the pressure plate

Chapter 4

Fig. 4.1 Hysteresis loop obtained when a pressure-dependent variable f is plotted against pressure for a piston-cylinder device
Fig. 4.2 Hysteresis curve for the resistance of a manganin gauge versus pressure
Fig. 4.3 Pressure versus resistance as the independent variable
Fig. 4.4 Upstroke friction versus nominal upstroke pressure. The dotted line is a tangent fitted to the curve at B
Fig. 4.5a) Temperature profiles in the sample space had to be recorded at three points - the top, middle and bottom
b) The temperature read by the reference thermocouple had to be calibrated against the actual temperature read by the test thermocouple in the sample space
Fig. 4.6 Temperature profiles along the sample length at four mean temperatures
Fig. 4.7 Temperature at two end surfaces of sample (top and bottom) as a function of temperature at the middle of the sample
Fig. 4.8 Temperature read by the reference thermocouple versus temperature read by the test thermocouple

Chapter 5

Fig. 5.1.1 Thermal expansion behaviour of c axis
Fig. 5.1.2 Zerodur: Longitudinal frequency (long. freq.) vs pressure (P) for four isotherms
Fig. 5.1.3 Zerodur: Shear frequency (shear freq.) vs pressure for four isotherms
Fig. 5.1.4 Zerodur: Longitudinal modulus (L) vs pressure
Fig. 5.1.5 Zerodur: Shear modulus (G) vs pressure
Fig. 5.1.6 Zerodur: C_{11} vs pressure
Fig. 5.1.7 Zerodur: C_{44} vs pressure
Fig. 5.1.8 Zerodur: Young's modulus (E) vs pressure
Fig. 5.1.9 Zerodur: Lamé constant (C_{12}) vs pressure
Fig. 5.1.10 Zerodur: Poisson's ratio (\nu) vs pressure
Fig. 5.1.11 Zerodur: Bulk modulus (B) vs pressure
Fig. 5.1.12 Zerodur: Volume variation (V/V_0) vs pressure
Fig. 5.1.13 Zerodur: Volume variation vs pressure at room temperature as measured with the ultrasonic method and the static-compression method

Fig. 5.1.14 Phase diagram of SiO₂

Fig. 5.1.15 Phase diagram of Zerodur

Fig. 5.2.1 Electron micrograph of a machinable glass ceramic

Fig. 5.2.2 9658 glass ceramic (GC): Isotherms for the longitudinal frequency vs pressure

Fig. 5.2.3 9658 GC: Isotherms for the shear frequency vs pressure

Fig. 5.2.4 9658 GC: Longitudinal modulus vs pressure

Fig. 5.2.5 9658 GC: Shear modulus vs pressure

Fig. 5.2.6 9658 GC: C₁₁ vs pressure

Fig. 5.2.7 9658 GC: C₄₄ vs pressure

Fig. 5.2.8 9658 GC: Young's modulus vs pressure

Fig. 5.2.9 9658 GC: Lamé constant vs pressure

Fig. 5.2.10 9658 GC: Poisson's ratio vs pressure

Fig. 5.2.11 9658 GC: Bulk modulus vs pressure

Fig. 5.2.12 9658 GC: Temperature dependence of Young's and shear moduli produced by Nakano, et al.

Fig. 5.2.13 9658 CC: Volume variation vs pressure

Fig. 5.2.14 9658 GC: Volume variation vs pressure at room temperature compared with the result of Gerlich and Hart

Fig. 5.3.1 9658 glass: Longitudinal frequency vs pressure at temperature

Fig. 5.3.2 9658 glass: Shear frequency vs pressure at temperature

Fig. 5.3.3 9658 glass: Longitudinal modulus vs pressure

Fig. 5.3.4 9658 glass: Shear modulus vs pressure

Fig. 5.3.5 9658 glass: C₁₁ vs pressure

Fig. 5.3.6 9658 glass: C₄₄ vs pressure

Fig. 5.3.7 The relationships between dB/dP and dC₄₄/dP, vs SiO₂ content in the silicate glasses

Fig. 5.3.8 9658 glass: Young's modulus vs pressure

Fig. 5.3.9 9658 glass: Lamé constant vs pressure
Fig. 5.3.10 9658 glass: Poisson's ratio vs pressure
Fig. 5.3.11 9658 glass: Bulk modulus vs pressure
Fig. 5.3.12 9658 glass: Volume variation vs pressure

Fig. 5.4.1 119 MCY glass: Longitudinal frequency vs pressure at temperature
Fig. 5.4.2 119 MCY glass: Shear frequency vs pressure at temperature
Fig. 5.4.3 119 MCY glass: Longitudinal modulus vs pressure
Fig. 5.4.4 119 MCY glass: Shear modulus vs pressure
Fig. 5.4.5 119 MCY glass: C_{11} vs pressure
Fig. 5.4.6 119 MCY glass: C_{44} vs pressure
Fig. 5.4.7 119 MCY glass: Young's modulus vs pressure
Fig. 5.4.8 119 MCY glass: Lamé constant vs pressure
Fig. 5.4.9 119 MCY glass: Poisson's ratio vs pressure
Fig. 5.4.10 119 MCY glass: Bulk modulus vs pressure
Fig. 5.4.11 119 MCY glass: Volume variation vs pressure

Fig. 5.5.1 119 MCY GC: Longitudinal frequency vs pressure at temperature
Fig. 5.5.2 119 MCY GC: Shear frequency vs pressure at temperature
Fig. 5.5.3 119 MCY GC: Longitudinal modulus vs pressure
Fig. 5.5.4 119 MCY GC: Shear modulus vs pressure
Fig. 5.5.5 119 MCY GC: C_{11} vs pressure
Fig. 5.5.6 119 MCY GC: C_{44} vs pressure
Fig. 5.5.7 119 MCY GC: Young's modulus vs pressure
Fig. 5.5.8 119 MCY GC: Lamé constant vs pressure
Fig. 5.5.9 119 MCY GC: Poisson's ratio vs pressure
Fig. 5.5.10 119 MCY GC: Bulk modulus vs pressure
Fig. 5.5.11 119 MCY GC: Volume variation vs pressure
1. INTRODUCTION

The main aspects of this study are reviewed in this section.

1.1 Elastic properties

Many scientific-technological advances depend greatly on solid-state elastic properties, especially on their magnitudes as well as their responses to stress and temperature variables. Elastic constants relate to various fundamental solid-state phenomena, such as interatomic potentials or binding forces and equations of state. In thermodynamics they are related to specific heat, thermal expansivity, Debye temperature and Grüneisen’s constant. In engineering they are used in calculations for load deflection, residual stress, thermelastic stress, fracture toughness and elastic instabilities.

Velocities of longitudinal and transverse waves depend entirely on the elastic constants and the mass density. By using velocity methods, the measurements of elastic constants are highly precise. McSkimin and Andreatch (1967) have reported precision of one part in 10⁷, while Papadakis (1969) has reported precision of 5 parts in 10⁶. This capability enables one to use elastic constants in the study of the effects of temperature, pressure, mechanical stress, magnetic field, crystallographic transformations and superconducting transitions.

Thus, elastic constants are applicable to many disciplines: structural design, materials science, and solid-state physics. They may be applied to technological structural economics, safety, and may be used to describe various materials phenomena and fundamental interatomic forces.

In general the atomic structural arrangement of a material and the strength of its interatomic binding forces determine the elastic behaviour of a crystal (Sidek, et al., 1987). The elastic properties of a material are of great importance in determining its behaviour when it is subjected to deformation.
The moduli of elasticity for glass ceramics are higher than those of ordinary glasses and of some conventional ceramics, but they are lower than those of sintered pure oxide ceramics (McMillan, 1979). For glasses, the Young's modulus shows a roughly additive relationship with chemical composition and factors have been derived which enable the modulus to be calculated from the glass composition. The modulus of elasticity of a polyphase ceramic will also be an additive function of the individual characteristics of the crystalline and glassy phases. In a glass ceramic it is to be expected that the Young's modulus will be determined primarily by the elastic constants of the major crystalline phases although the presence in the glass phase of oxides which promote the development of high values of Young's modulus must be allowed for; in particular, calcium oxide, magnesium oxide, and aluminium oxide appear to exert a marked influence upon the elastic moduli of glasses.

Variation of the heat-treatment schedule of a glass ceramic allows different volume fractions of crystal phases to be developed and therefore permits the influence upon elastic properties to be examined.

The effect of temperature upon the elastic constants of glass ceramics can in some cases reveal marked influences resulting from the presence of certain crystal phases. Glass ceramics are remarkable for the very wide range of thermal expansion coefficients which can be obtained. At one extreme, materials having negative coefficients of thermal expansion are available while for other compositions very high positive coefficients are observed. Between these two extremes there exist glass ceramics having thermal expansion coefficients practically equal to zero and others whose expansion coefficients are similar to those of ordinary glasses or ceramics or to those of certain metals or alloys.

In this study the effects of pressure and temperature on elastic constants have been investigated. The focus is limited to several glasses and glass ceramics. In some cases the glassy samples come from the materials used to produce the glass ceramics by annealing.

There exists special merit for applying this high pressure, high temperature ultrasonic technique to solid materials, since not much work