CONCEPTUAL MODELLING OF THE RAINFALL-RUNOFF PROCESS
IN SEMI-ARID CATCHMENTS IN SOUTH AFRICA

André Hermann Matheus Gørgens

A thesis submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy.

March 1983
CONCEPTUAL MODELLING OF THE RAINFALL-RUNOFF PROCESS
IN SEMI-ARID CATCHMENTS IN SOUTH AFRICA

André Hermann Matheus Görgens

A thesis submitted to the Faculty of Engineering, University of the
Witwatersrand, Johannesburg, in fulfilment of the requirements for the
degree of Master of Philosophy.

March 1983
DECLARATION

I declare that this thesis is my own, unaided work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

(A H H Gorgens)

15th day of March, 1983
This thesis comprises a study of the ability of mathematical conceptual models to simulate the hydrological response of semi-arid catchments to rainfall. Some of the conceptual rainfall-runoff models typically used by water resources engineers in South Africa and specific problems related to the application of such models in the semi-arid environment form the focal points of the research. For this purpose a set of seven conceptual models of differing complexity and with different requirements in respect of time resolution of input data was selected. The set of models consisted of three models developed at the Hydrological Research Unit, University of the Witwatersrand, Johannesburg, three models developed at the Hydrological Research Unit, Department of Geography, Rhodes University, Grahamstown and the Stanford Watershed Model. The data set used in the study was derived from three well-instrumented semi-arid research catchments (the "Ecca River catchments") in the Eastern Cape.

The suitability of the Ecca River data base for rainfall-runoff modelling research was investigated and a simple error analysis revealed ways in which hydrometeorological data thought to be suitable for research purposes could be contaminated with sizable errors. The effects of typical input data errors on model output were explored by employment of the Stanford Model.

Various aspects of the use of automatic optimization routines for the estimation of model parameters, known as model calibration, were studied. A satisfactory calibration procedure based on the Rosenbrock algorithm was devised.

The effect of the choice of calibration data sample on the reliability of estimated model parameters was investigated by means of six years of concurrent rainfall and runoff records that are available for the Ecca River catchments, as well as by means of a 101-year synthetic flow series generated by the Stanford Model. For the generation of the synthetic flows a long rainfall record that is typical of the semi-arid environment in the Eastern Cape was used. The
results suggest that for the adequate calibration of both monthly-input and daily-input models in semi-arid catchments a calibration period length well in excess of ten years is required. Vast improvements in the ability of the models to accurately reproduce long-term characteristics of streamflow can be effected by expanding a calibration sample from, say, a seven-year record to a fifteen-year record.

An investigation into adequate levels of complexity of model structure and of model input requirements took the form of an intercomparison of the performance of the seven selected models. Four different performance tests were executed in which the ability of the models to reproduce the monthly and daily flow series in the Ecca River catchments was measured by a varied set of statistical criteria commonly used in water resources engineering. The results indicate that increased complexity of model input requirements does not necessarily lead to improved accuracy of estimation of monthly or daily flow totals. Some evidence was found of a correspondence between superiority of model performance and higher structural complexity of the models in the hourly and daily input categories. A minimum level of model complexity is indicated for the generation of daily and monthly flow series of acceptable accuracy.

The feasibility of estimating streamflows in catchments for which no flow records exist by transferring model parameter values from gauged catchments with similar physical characteristics was studied in the following way. For each model and for each of two of the Ecca River catchments model parameters estimated in the one catchment were used to generate flow series in the remaining two catchments. Deterioration of the values of the statistical performance criteria as compared with the original model calibrations in each catchment signified the degree of success achieved with each parameter transfer operation. In general, parameter transfer between two of the catchments was successful but between these two and the third produced poor results. These results can be explained by subtle, but measurable, differences in catchment characteristics. No evidence was found that either increased structural complexity or more complex input requirements of the models corresponded with superior transferability of parameter values.
Conceptual modelling emerges as an approach that is viable for semi-arid water resources studies but which requires careful and, often, subtle *a priori* decision-making with respect to a number of factors. The most important among the factors are the choice of calibration sample and parameter estimation procedure, the time resolution of model output required by the application in mind which in turn dictates the time resolution of input data, the highest level of model complexity that can be accommodated and, last but not least, the desired level of accuracy of the generated flow series.
"Let us at least work towards a situation where the trans-scientific judgements which practical hydrologists are forced to make are informed and sustained by a truly scientific hydrology: a sceptical science with a coherent intellectual content firmly based on the real phenomena."

Philip (1975, p.29)
ACKNOWLEDGEMENTS

I am indebted to Professor D.C. Midgley, my supervisor, for his patient interest and encouragement and for providing a valuable advisory framework that in no way impeded the free use of initiative. I extend my thanks to Professor John Daniel for endless support and encouragement, to Dr Bill Pitman for crucial advice at forks in the road and to my colleague, Dr Denis Hughes, for constructive discussions and for translation of the optimizer routine from Algol into Fortran.

I salute my predecessor at the Rhodes Hydrological Research Unit, Dr Peter Roberts, who suffered the agony and the ecstasy of launching the Ecca research project and who paved the way.

I also gratefully acknowledge the kind support and services provided by the following people and institutions:

Jenny Gibson, Rhodes Hydrological Research Unit - word processing and cartographic assistance.
John Keulder, Debby Wiggert and Jan Reynolds, Rhodes Cartographic Unit - cartographic assistance.
Karen de Jager, Rhodes Hydrological Research Unit - word processing.
Oakley West, Rhodes Cartographic Unit - cartographic advice.
Computing Centre, University of the Witwatersrand - free use of computing services for the execution of work reported in Chapter 6.
Computing Centre, Rhodes University - free use of computing services and, often, crucial advice.
Weather Bureau, Department of Transport - supply of daily rainfall data on magnetic tape.
Water Research Commission, Pretoria - permission to use data from a Commission-funded research project.

Finally, I would like to thank Barbara Gail, for her skillful word processing, her brave and pregnant patience and, most importantly, her being-there-in-my-world.
CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS (vii)

LIST OF TABLES (xv)

LIST OF FIGURES (xxi)

CHAPTER

1. GENERAL FRAMEWORK 1
 1.1 Introduction 1
 1.2 Concepts and definitions 2
 1.3 Changing perspectives on conceptual modelling 4
 1.4 The role of comparative studies of conceptual models 7
 1.5 Research needs in South Africa 10
 1.5.1 Modelling in the semi-arid environment 10
 1.5.2 Model complexity 11
 1.5.3 Parameter estimation 12
 1.5.4 Quality of hydrometeorological data 13
 1.6 Aims of the research 13
 1.7 The selected models 15
 1.7.1 Hourly-input model 15
 1.7.2 Daily-input model 16
 1.7.3 Monthly-input models 16

2. THE ECCA RESEARCH CATCHMENTS AND THE HYDROMETEOROLOGICAL DATA BASE 17
 2.1 Introduction 17
 2.2 Description of the Ecca catchments 20
 2.2.1 General climate 20
 2.2.2 Vegetation 24
 2.2.3 Geology 24
 2.2.4 Physical features 25
List of contents continued

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Hydrometeorological data base</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1 Gauging network</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2 Data assembly and processing</td>
<td>32</td>
</tr>
<tr>
<td>2.3.3 Data quality, uncertainties and errors</td>
<td>35</td>
</tr>
<tr>
<td>2.3.4 Summary of monthly and annual data used in this study</td>
<td>51</td>
</tr>
<tr>
<td>2.4 Comparison of characteristics affecting the hydrological response of catchments A, B and E</td>
<td>55</td>
</tr>
<tr>
<td>2.4.1 Introduction</td>
<td>55</td>
</tr>
<tr>
<td>2.4.2 Comparison of physical characteristics</td>
<td>55</td>
</tr>
<tr>
<td>2.4.3 Comparison of observed rainfall-runoff behaviour</td>
<td>60</td>
</tr>
<tr>
<td>3. MODELS PITH AND PITR - PITMAN'S MODEL MODIFIED, IMPROVED AND COMPARED WITH THE STANFORD WATERSHED MODEL</td>
<td>63</td>
</tr>
<tr>
<td>3.1 History of Pitman's hourly model</td>
<td>63</td>
</tr>
<tr>
<td>3.2 Application of Pitman's original hourly model in semi-arid catchments</td>
<td>67</td>
</tr>
<tr>
<td>3.3 Modifications to Pitman's hourly model: versions PITI and PITR</td>
<td>75</td>
</tr>
<tr>
<td>3.4 Comparison of performance of model versions PITH and PITR</td>
<td>80</td>
</tr>
<tr>
<td>3.5 How well does Pitman's modelling approach represent the rainfall-runoff process?</td>
<td>91</td>
</tr>
<tr>
<td>3.5.1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td>3.5.2 Comparison of Stanford Watershed Model with PITH and PITR</td>
<td>92</td>
</tr>
<tr>
<td>3.5.3 Conclusions</td>
<td>94</td>
</tr>
</tbody>
</table>
List of contents continued

<table>
<thead>
<tr>
<th>3.6 Description of final structure of PITH and PITR</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.1 Introduction</td>
<td>99</td>
</tr>
<tr>
<td>3.6.2 Input data: precipitation and evaporation</td>
<td>99</td>
</tr>
<tr>
<td>3.6.3 Interception</td>
<td>102</td>
</tr>
<tr>
<td>3.6.4 Surface runoff</td>
<td>102</td>
</tr>
<tr>
<td>3.6.5 Depression storage and re-infiltration</td>
<td>104</td>
</tr>
<tr>
<td>3.6.6 Interflow/surface flow function</td>
<td>105</td>
</tr>
<tr>
<td>3.6.7 Evaporation - soil moisture relationships</td>
<td>105</td>
</tr>
<tr>
<td>3.6.8 Percolation of soil moisture to groundwater storage</td>
<td>109</td>
</tr>
<tr>
<td>3.6.9 Groundwater discharge</td>
<td>110</td>
</tr>
<tr>
<td>3.6.10 Time delay and attenuation routing of runoff</td>
<td>112</td>
</tr>
<tr>
<td>3.6.11 Initial storage states</td>
<td>114</td>
</tr>
<tr>
<td>3.6.12 Model parameter definitions</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. DESCRIPTION OF MODELS USED IN THE ECCA STUDY</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Description of hourly model FORD</td>
<td>117</td>
</tr>
<tr>
<td>4.1.1 Conceptual design</td>
<td>118</td>
</tr>
<tr>
<td>4.1.2 Physical representativeness</td>
<td>121</td>
</tr>
<tr>
<td>4.1.3 Footnote on Roberts's (1978) description and application of FORD</td>
<td>122</td>
</tr>
<tr>
<td>4.2 Description of hourly models PITH and PITR</td>
<td>123</td>
</tr>
<tr>
<td>4.2.1 Conceptual design</td>
<td>123</td>
</tr>
<tr>
<td>4.2.2 Physical representativeness</td>
<td>124</td>
</tr>
<tr>
<td>4.3 Description of daily model PITD</td>
<td>126</td>
</tr>
<tr>
<td>4.3.1 Conceptual design</td>
<td>126</td>
</tr>
<tr>
<td>4.3.2 Modifications to the original daily model</td>
<td>126</td>
</tr>
<tr>
<td>4.3.3 Physical representativeness</td>
<td>130</td>
</tr>
<tr>
<td>4.4 Description of daily model DALT</td>
<td>130</td>
</tr>
<tr>
<td>4.4.1 Conceptual design</td>
<td>132</td>
</tr>
<tr>
<td>4.4.2 Physical representativeness</td>
<td>134</td>
</tr>
<tr>
<td>4.5 Description of monthly model PITM</td>
<td>134</td>
</tr>
<tr>
<td>4.5.1 Conceptual design</td>
<td>137</td>
</tr>
<tr>
<td>4.5.2 Parameter estimates</td>
<td>137</td>
</tr>
<tr>
<td>4.6 Description of monthly model DALM</td>
<td>140</td>
</tr>
</tbody>
</table>
List of contents continued

5. A ROBUST AND RELIABLE APPROACH TO MODEL CALIBRATION 141

5.1 Introduction 141

5.2 State-of-the-art in parameter optimization for rainfall-runoff models 146

5.2.1 Optimization procedures used in catchment modelling 146

5.2.2 Problems common to optimization procedures and catchment modelling 150

5.2.3 The importance of the objective function 152

5.2.4 Summary of perspectives on optimization/objective function difficulties 158

5.2.5 Implications for the Ecca modelling studies 161

5.3 Selection of an optimization algorithm 161

5.3.1 The Rosenbrock optimization algorithm 162

5.3.2 Testing the Rosenbrock algorithm 163

5.4 Selection of objective functions 171

5.4.1 Procedure of selection 171

5.4.2 Description of objective functions 172

5.4.3 Description of goodness-of-fit criteria 176

5.4.4 Comparison of monthly objective functions 178

5.4.5 Comparison of daily objective functions 180

5.5 Robustness of selected optimizer/objective function combination 189

5.5.1 The monthly case 190

5.5.2 The daily case 191

5.6 Sensitivity of parameters 194

5.7 Footnote on measurement of persistence in model residual errors 196

5.8 Summary of calibration procedure 203

6. EFFECT OF CHOICE OF CALIBRATION PERIOD ON RELIABILITY OF MODEL CALIBRATION 204

6.1 Introduction 204

6.2 Variation in parameters estimated from different record periods 206
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Reliability of calibration of a monthly and a daily model</td>
<td></td>
</tr>
<tr>
<td>using semi-arid data</td>
<td>210</td>
</tr>
<tr>
<td>6.3.1 A synthetic semi-arid test data set</td>
<td>210</td>
</tr>
<tr>
<td>6.3.2 Experimental procedure</td>
<td>216</td>
</tr>
<tr>
<td>6.4 Results and discussion: monthly model PITM</td>
<td>223</td>
</tr>
<tr>
<td>6.4.1 Parameter variability</td>
<td>223</td>
</tr>
<tr>
<td>6.4.2 Errors in streamflow statistics</td>
<td>224</td>
</tr>
<tr>
<td>6.4.3 One-to-one fit</td>
<td>225</td>
</tr>
<tr>
<td>6.4.4 Frequency analysis of annual streamflows</td>
<td>225</td>
</tr>
<tr>
<td>6.4.5 Seasonal distribution of monthly streamflows</td>
<td>225</td>
</tr>
<tr>
<td>6.5 Results and discussion: daily model (PITD) calibrated on monthly</td>
<td></td>
</tr>
<tr>
<td>goodness-of-fit (MCE)</td>
<td>233</td>
</tr>
<tr>
<td>(first phase)</td>
<td></td>
</tr>
<tr>
<td>6.5.1 Parameter variability</td>
<td>233</td>
</tr>
<tr>
<td>6.5.2 Errors in streamflow statistics and one-to-one fit</td>
<td>234</td>
</tr>
<tr>
<td>6.5.3 Comparison of models PITD and PITM</td>
<td>234</td>
</tr>
<tr>
<td>6.6 Results and discussion: daily model (PITD) calibrated on daily</td>
<td></td>
</tr>
<tr>
<td>goodness-of-fit (WDCE)</td>
<td>240</td>
</tr>
<tr>
<td>(second phase)</td>
<td></td>
</tr>
<tr>
<td>6.6.1 Variability of parameters</td>
<td>240</td>
</tr>
<tr>
<td>6.6.2 Errors in flow statistics</td>
<td>241</td>
</tr>
<tr>
<td>6.7 General conclusions</td>
<td>242</td>
</tr>
<tr>
<td>7. COMPARISON OF PERFORMANCE OF SELECTED CONCEPTUAL RAINFALL-RUNOFF</td>
<td></td>
</tr>
<tr>
<td>MODELS</td>
<td>248</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>248</td>
</tr>
<tr>
<td>7.2 An exploratory model comparison based on manual calibration</td>
<td></td>
</tr>
<tr>
<td>7.2.1 Introduction</td>
<td>249</td>
</tr>
<tr>
<td>7.2.2 Model calibration and verification procedures</td>
<td>250</td>
</tr>
<tr>
<td>7.2.3 Comparison of model performance</td>
<td>253</td>
</tr>
<tr>
<td>7.2.4 Discussion</td>
<td>258</td>
</tr>
<tr>
<td>7.2.5 Conclusion</td>
<td>261</td>
</tr>
</tbody>
</table>
List of contents continued

<table>
<thead>
<tr>
<th>7.3</th>
<th>A complete model comparison based on automatic optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1</td>
<td>Format of the study</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Special considerations regarding the models and their calibration</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Statistical criteria of model performance</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Presentation of results</td>
</tr>
<tr>
<td>7.4</td>
<td>Comparison of model performance: calibration period 1976-1980</td>
</tr>
<tr>
<td>7.4.1</td>
<td>General observations</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Comparison of the hourly models</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Comparison of the daily models</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Comparison of the monthly models</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Comparison of daily with hourly models</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Comparison of monthly with daily and hourly models</td>
</tr>
<tr>
<td>7.5.1</td>
<td>General observations</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Comparison of daily with hourly models</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Comparison of monthly with daily and hourly models</td>
</tr>
<tr>
<td>7.6</td>
<td>Summary of findings</td>
</tr>
</tbody>
</table>

8. TRANSFER OF PARAMETER VALUES FROM GAUGED TO UNGAUGED CATCHMENTS

8.1	Introduction
8.2	Experimental Procedure
8.3	The feasibility of parameter transfer
8.4	Comparison of model performance
8.4.1	Complexity of model structure
8.4.2	Time resolution of model input requirements
8.5	Summary of findings
List of contents continued

9. CONCLUSIONS AND RESEARCH RECOMMENDATIONS
 9.1 Conclusions 330
 9.2 Recommendations for further research 332

REFERENCES 334

APPENDIX

A. DEFINITION OF STATISTICAL CRITERIA A1
 A.1 Notation A1
 A.2 Definitions A2

B. THE COMPUTER PROGRAMS B1
 Model FORD B1
 Model PITH B27
 Model PITR B34
 Model PITD B41
 Model DALT B48
 Model PITH B53
 Model DALM B59
 Statistical subroutine AFIT B64
 Statistical subroutine BFIT B71
 Rosenbrock optimizer (with model DALM) B76
LIST OF TABLES

Table Page
1.1 Notable intercomparisons of conceptual rainfall-runoff models 8
2.1 Ecca research catchment sizes 18
2.2 Climate statistics for the Ecca research area 18
2.3 Observed average rainfall and Class A-pan evaporation in Ecca catchment A 22
2.4 Details of hydrometeorological gauging network 30
2.5 Thiessen polygon weightings for estimation of average catchment rainfall 34
2.6 Comparison of catchment rainfall averages (in mm) calculated by different averaging techniques (runoff-producing storms only) 38
2.7 Difference (in %) of 4-weekly evaporation totals read at pan EEG1 relative to readings at pan EE01 41
2.8 Weightings applied to evaporation data for estimation of catchment average evaporation 41
2.9 Typical estimates of likely errors in hydrometeorological data used in this study 45
2.10 Changes (in %) in output from calibrated Stanford Model due to error contamination of input data 49
2.11 Summary of monthly totals of average catchment rainfall, average catchment pan evaporation and streamflow in catchment A 52
2.12 Summary of monthly totals of average catchment rainfall, average catchment pan evaporation and streamflow in catchment B 53
2.13 Summary of monthly totals of average catchment rainfall, average catchment pan evaporation and streamflow in catchment E 54
2.14 Physiographic indices of the Ecca catchments 57
2.15 Proportions (%) of catchment areas belonging to various categories of physical characteristics 58
2.16 Comparison of observed hydrological response variables 62
List of tables continued

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Dates of selected flow events</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of overall results for Pitman’s original hourly model fitted to selected flow events</td>
</tr>
<tr>
<td>3.3</td>
<td>Stages of model modifications and calibration runs</td>
</tr>
<tr>
<td>3.4(a)</td>
<td>Tests for goodness-of-fit on modified model PITR (with re-infiltration)</td>
</tr>
<tr>
<td>3.4(b)</td>
<td>Tests for goodness-of-fit on modified model PITH (without re-infiltration)</td>
</tr>
<tr>
<td>3.5</td>
<td>Adopted parameter sets of different model versions</td>
</tr>
<tr>
<td>3.6</td>
<td>Adopted primary parameter values for the Stanford Model</td>
</tr>
<tr>
<td>3.7</td>
<td>Tests for goodness-of-fit on the Stanford Watershed Model</td>
</tr>
<tr>
<td>3.8</td>
<td>Summary of model performance in major flood events</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters used in model FORD</td>
</tr>
<tr>
<td>4.2</td>
<td>A priori type parameters used by PITH and PITR</td>
</tr>
<tr>
<td>4.3</td>
<td>Parameters used in model PITD</td>
</tr>
<tr>
<td>4.4</td>
<td>Parameters used in models DALT and DALM</td>
</tr>
<tr>
<td>4.5</td>
<td>Parameters used in model PITM</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of optima derived by different objective functions: monthly flow series</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of objective function performance: monthly flow series used</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of optima derived by different objective functions: daily flow series used</td>
</tr>
<tr>
<td>5.4(a)</td>
<td>Comparison of objective function performance: daily flow series (first phase)</td>
</tr>
<tr>
<td>5.4(b)</td>
<td>Rankings of objective function performance: daily flow series used (first phase)</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison and ranking of objective function performance: daily flow series used (second phase)</td>
</tr>
<tr>
<td>5.6</td>
<td>Ability of selected optimizer/objective function combination to converge on true parameters: monthly flow series</td>
</tr>
</tbody>
</table>
List of tables continued

Table	Page
5.7 Ability of selected optimizer/objective function combination to converge on true parameters: daily flow series | 193
5.8 Sensitivity test on Stanford Model (FORD): parameter change = +10% | 197
5.9 Sensitivity test on Pitman's daily model (PITD): parameter change = +50% | 198
6.1 Variation in parameter estimates for models PITH, PITD and PITH associated with different calibration periods | 208
6.2 Comparison of characteristics of models PITH, PITD and FORD | 211
6.3 Ecca storms used for 24-hourly disaggregation of daily rainfalls (date and daily total in mm) | 213
6.4 Synthetic monthly flows generated for hypothetical semi-arid catchment | 214
6.5 Statistics of 101-year synthetic flow series compared with 6-year Ecca observed flow record | 215
6.6 Optimum values of fitting criteria for optimization runs, using calibration samples of varying length: model PITH | 219
6.7 Optimum values of fitting criteria for optimization runs, using calibration samples of varying length and daily coeff. of efficiency (DCEJ as objective function: model PITD | 220
6.8 Optimum values of fitting criteria for optimization runs, using calibration samples of varying length: model PITD (monthly fit) | 221
6.9 Optimum values of fitting criteria for optimization runs, using calibration samples of varying length: model PITD (daily fit) | 222
6.10 Variability of key model parameters (expressed as coefficient of variation) and consequent variability of some annual generated streamflow statistics: model PITH | 226
List of tables continued

Table

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.11</td>
<td>Variability of key model parameters (expressed as coefficients of variation in %) and consequent variability of some annual generated streamflow statistics: model PITD (first phase)</td>
<td>235</td>
</tr>
<tr>
<td>6.12</td>
<td>Changes in variability (expressed as coefficient of variation in %) of key model parameters associated with changes in calibration period length: model PITD (second phase)</td>
<td>243</td>
</tr>
<tr>
<td>7.1</td>
<td>Comparison of model characteristics</td>
<td>251</td>
</tr>
<tr>
<td>7.2</td>
<td>Results of statistical tests on monthly flows for the combined calibration and verification periods</td>
<td>257</td>
</tr>
<tr>
<td>7.3</td>
<td>Selected statistics of model performance for the verification period</td>
<td>260</td>
</tr>
<tr>
<td>7.4</td>
<td>Comparison of model characteristics</td>
<td>265</td>
</tr>
<tr>
<td>7.5</td>
<td>Final parameter values: model FORD</td>
<td>267</td>
</tr>
<tr>
<td>7.6</td>
<td>Final parameter values: models PITH and PITR</td>
<td>268</td>
</tr>
<tr>
<td>7.7</td>
<td>Final parameter values: models PIPO and PITM</td>
<td>269</td>
</tr>
<tr>
<td>7.8</td>
<td>Final parameter values: models DALT and DALT</td>
<td>270</td>
</tr>
<tr>
<td>7.9</td>
<td>Results of goodness-of-fit tests for the combined calibration and verification periods: catchment A</td>
<td>292</td>
</tr>
<tr>
<td>7.10</td>
<td>Results of goodness-of-fit tests for the combined calibration and verification periods: catchment B</td>
<td>293</td>
</tr>
<tr>
<td>7.11</td>
<td>Results of goodness-of-fit tests for the combined calibration and verification periods: catchment E</td>
<td>294</td>
</tr>
<tr>
<td>7.12</td>
<td>Rankings of models in terms of performance during the combined calibration and verification periods: catchment A</td>
<td>295</td>
</tr>
<tr>
<td>7.13</td>
<td>Rankings of models in terms of performance during the combined calibration and verification periods: catchment B</td>
<td>296</td>
</tr>
<tr>
<td>7.14</td>
<td>Rankings of models in terms of performance during the combined calibration and verification periods: catchment E</td>
<td>297</td>
</tr>
</tbody>
</table>
List of tables continued

Table

7.15 Rankings of models in terms of performance during the combined calibration and verification periods: all three catchments

7.16 Results of goodness-of-fit tests for the verification period: catchment A

7.17 Results of goodness-of-fit tests for the verification period: catchment B

7.18 Results of goodness-of-fit tests for the verification period: catchment E

7.19 Rankings of overall performance during the verification period: all three catchments

7.20 Results of goodness-of-fit tests for the complete period of record - 1979 excluded during calibration: catchment A

7.21 Results of goodness-of-fit tests for the complete period of record - 1979 excluded during calibration: catchment B

7.22 Results of goodness-of-fit tests for the complete period of record - 1979 excluded during calibration: catchment E

7.23 Ranking of overall performance during the complete record period (1979 excluded during calibration): all three catchments

7.24 Results of goodness-of-fit tests for the verification period (1979 excluded from the calibration period): catchment A

7.25 Results of goodness-of-fit tests for the verification period (1979 excluded from the calibration period): catchment B

7.26 Results of goodness-of-fit tests for the verification period (1979 excluded from the calibration period): catchment E

Page

298
299
300
301
302
305
306
307
308
309
310
311
List of tables continued

Table 7.27 Comparison of the average goodness-of-fit statistics obtained for the two performance tests on the verification period: all three catchments and all models 312

Table 7.28 Ranking of overall performance during verification period (1979 excluded during calibration): all three catchments 313

Table 7.29 Combined rankings of overall performance in all four performance tests: all three catchments 314

Table 8.1 Deterioration in statistics due to parameter transfer from catchment A to catchment B 322

Table 8.2 Deterioration in statistics due to parameter transfer from catchment A to catchment E 323

Table 8.3 Deterioration in statistics due to parameter transfer from catchment B to catchment A 324

Table 8.4 Deterioration in statistics due to parameter transfer from catchment B to catchment E 325

Table 8.5 Ranking of overall performance during parameter transfer tests (based on least deterioration in goodness-of-fit statistics) 327
List of tables continued

Table 7.27 Comparison of the average goodness-of-fit statistics obtained for the two performance tests on the verification period: all three catchments and all models 312

Table 7.28 Ranking of overall performance during verification period (1979 excluded during calibration): all three catchments 313

Table 7.29 Combined rankings of overall performance in all four performance tests: all three catchments 314

Table 8.1 Deterioration in statistics due to parameter transfer from catchment A to catchment B 322

Table 8.2 Deterioration in statistics due to parameter transfer from catchment A to catchment E 323

Table 8.3 Deterioration in statistics due to parameter transfer from catchment B to catchment A 324

Table 8.4 Deterioration in statistics due to parameter transfer from catchment B to catchment E 325

Table 8.5 Ranking of overall performance during parameter transfer tests (based on least deterioration in goodness-of-fit statistics) 327
LIST OF FIGURES

Figure Page
2.1 The Ecca River catchments and the gauging network 19
2.2 Mean annual precipitation over the research area (1975-1981) 23
2.3 Vegetation: combined ground and canopy cover (from Roberts, 1978) 26
2.4 Surface geology of the Ecca catchments (from Roberts, 1978) 27
2.5 Slope map of the Ecca catchments (from Roberts, 1978) 28
2.6 Changes in output from calibrated Stanford Model due to error contamination of input data 50
2.7 Hypsometric curves for the Ecca catchments (from Roberts, 1978) 59
2.8 Cumulative area/slope curves for the Ecca catchments (from Roberts, 1978) 59
2.9 Standardized flow duration curves for the Ecca catchments 61

3.1 Flow diagram for Pitman's original hourly model (after Pitman and Basson, 1978) 65
3.2(a) Observed and simulated hydrographs: catchment A 71
3.2(b) Observed and simulated hydrographs: catchment B 72
3.3(a) Isohyets for storm 20/3/76 73
3.3(b) Isohyets for storm 27/2/77 73
3.3(c) Isohyets for storm 28/2/77 73
3.3(d) Isohyets for storm 6/5/77 73
3.3(e) Isohyets for storm 7/6/77 73
3.3(f) Isohyets for storm 21/4/78 73
3.3(g) Isohyets for storm 19/7/79 73
3.3(h) Isohyets for storm 23/7/79 73
3.3(i) Isohyets for storm 19/8/79 73
3.4(a) Hourly distribution of selected storms: catchment A 74
3.4(b) Hourly distribution of selected storms: catchment B 74
3.4(c) Hourly distribution of selected storms: catchment E 74
List of figures continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5(a)</td>
<td>Results of model modifications by stages: catchment A</td>
<td>81</td>
</tr>
<tr>
<td>3.5(b)</td>
<td>Results of model modifications by stages: catchment B</td>
<td>82</td>
</tr>
<tr>
<td>3.6(a)</td>
<td>Observed and simulated hydrographs: catchment A</td>
<td>90</td>
</tr>
<tr>
<td>3.6(b)</td>
<td>Observed and simulated hydrographs: catchment B</td>
<td>90</td>
</tr>
<tr>
<td>3.6(c)</td>
<td>Observed and simulated hydrographs: catchment E</td>
<td>90</td>
</tr>
<tr>
<td>3.7(a)</td>
<td>Observed and simulated hydrographs: catchment A</td>
<td>98</td>
</tr>
<tr>
<td>3.7(b)</td>
<td>Observed and simulated hydrographs: catchment B</td>
<td>98</td>
</tr>
<tr>
<td>3.7(c)</td>
<td>Observed and simulated hydrographs: catchment E</td>
<td>98</td>
</tr>
<tr>
<td>3.8</td>
<td>Flow diagram: model PITH</td>
<td>100</td>
</tr>
<tr>
<td>3.9</td>
<td>Flow diagram: model PITR</td>
<td>101</td>
</tr>
<tr>
<td>3.10</td>
<td>Interflow separation function (after Pitman and Basson, 1979)</td>
<td>106</td>
</tr>
<tr>
<td>3.11</td>
<td>Evaporation - soil moisture function</td>
<td>108</td>
</tr>
<tr>
<td>3.12</td>
<td>Soil moisture percolation function (after Pitman, 1976)</td>
<td>111</td>
</tr>
<tr>
<td>3.13</td>
<td>Groundwater recession function (after Pitman, 1976)</td>
<td>111</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow diagram: model FORD (after Roberts, 1978)</td>
<td>120</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow diagram: model PITD</td>
<td>127</td>
</tr>
<tr>
<td>4.3</td>
<td>Flow diagram: models DALT and DALM (from Roberts, 1978)</td>
<td>133</td>
</tr>
<tr>
<td>4.4</td>
<td>Possible shapes of moisture stores (from Roberts, 1978)</td>
<td>135</td>
</tr>
<tr>
<td>4.5</td>
<td>Flow diagram: model PITM</td>
<td>138</td>
</tr>
<tr>
<td>4.6</td>
<td>Two-dimensional response surface (hypothetical)</td>
<td>148</td>
</tr>
<tr>
<td>4.7</td>
<td>Typical search pattern according to the Rosenbrock algorithm</td>
<td>166</td>
</tr>
<tr>
<td>4.8</td>
<td>Four different optimization searches: model PITD</td>
<td>167</td>
</tr>
<tr>
<td>4.9</td>
<td>Four different optimization searches: model PITD</td>
<td>168</td>
</tr>
<tr>
<td>4.10</td>
<td>Response surfaces with a combined objective function: model PITD</td>
<td>169</td>
</tr>
<tr>
<td>4.11</td>
<td>Response surfaces with a weighted objective function: model PITD</td>
<td>170</td>
</tr>
<tr>
<td>4.12</td>
<td>Results of parameter sensitivity test: model PITM</td>
<td>199</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of choice of calibration period on simulation</td>
<td>202</td>
</tr>
</tbody>
</table>
List of figures continued

Figure Page
6.1 Variation in key model parameters : model PITH 227
6.2 Effect of choice of calibration period on annual flows :
model PITH 228
6.3 Effect of choice of calibration period on goodness-of-fit : model PITH 229
6.4 Frequency analysis of simulated annual flows : model PITH 230
6.5 Variability of return periods of simulated annual flows :
model PITH 231
6.6 Seasonal distribution of simulated flows : model PITM 232
6.7 Variability of model parameters : model PITM (monthly
calibration) 236
6.8 Effect of choice of calibration period on annual flows :
model PITD 237
6.9 Effect of choice of calibration period on goodness-of-fit : model PITD 238
6.10 Seasonal distribution of monthly flows : model PITD 239
6.11 Variability of model parameters : model PITD (daily
calibration) 244
6.12 Effect of choice of calibration period on daily fit :
model PITD 245
6.13 Effect of choice of calibration period on monthly and
annual fit : model PITD 246
7.1 Observed and simulated monthly flows : catchment A
(calibration period) 254
7.2 Observed and simulated monthly flows : calendar year
1981 (verification period) 255
7.3 Residual mass curve< : full data period, 1976 - 1981 259
7.4 Scattergram : model FORD (catchment A) 274
7.5 Scattergram : model PITH (catchment A) 275
7.6 Scattergram : model PITR (catchment A) 276
7.7 Scattergram : model PITD (catchment A) 277
7.8 Scattergram : model DALT (catchment A) 278
7.9 Scattergram : model PITHM (catchment A) 279
List of figures continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.10</td>
<td>Scattergram: model DALM (catchment A)</td>
<td>280</td>
</tr>
<tr>
<td>7.11</td>
<td>Observed and simulated daily flows: model FORD</td>
<td>281</td>
</tr>
<tr>
<td>7.12</td>
<td>Observed and simulated daily flows: model PITH</td>
<td>282</td>
</tr>
<tr>
<td>7.13</td>
<td>Observed and simulated daily flows: model PITH</td>
<td>283</td>
</tr>
<tr>
<td>7.14</td>
<td>Observed and simulated daily flows: model PITD</td>
<td>284</td>
</tr>
<tr>
<td>7.15</td>
<td>Observed and simulated daily flows: model DALT</td>
<td>285</td>
</tr>
<tr>
<td>7.16</td>
<td>Errors in daily flow duration curve: hourly models</td>
<td>286</td>
</tr>
<tr>
<td>7.17</td>
<td>Errors in daily flow duration curve: daily models</td>
<td>287</td>
</tr>
<tr>
<td>7.18</td>
<td>Observed and simulated daily flow duration curves: daily models</td>
<td>288</td>
</tr>
</tbody>
</table>
CHAPTER 1

GENERAL FRAMEWORK

1.1 INTRODUCTION

South Africa relies almost exclusively on surface water resources for all major water supplies for urban, industrial and irrigation development. Exploitable groundwater resources are limited and play only a small role in national or regional water resources planning. It is now generally accepted that only about 60 percent of South Africa's mean annual runoff of 5.10^9 m3 can be exploited by means of storage. However, the distribution of exploitable resources does not conform favourably to the distribution of water demands (Van der Riet, 1980). Water supply planners currently accept a time horizon of less than 25 years for the maximum exploitation of local surface water resources in some parts of the country (Hobbs, 1980). Currently, large-scale water resource planning, development and management present an unequalled challenge to South African water resources engineers and hydrologists.

During the planning phase of a project water resources engineers are faced with three basic needs:

(i) a need to extend or "patch" inadequate streamflow records,
(ii) a need to estimate streamflows in ungauged catchments,
(iii) a need to predict the long-term effects on water supplies of man-induced changes to a catchment.

During the water resource development and management phases two additional needs may arise:

(iv) a need to forecast the short-term response of a catchment to flood-producing rainstorms for the purposes of possible flood control or urban stormwater management,
(v) a need to forecast the quantitative and qualitative effects on streamflow of human manipulation of the river system, such as reservoir releases, irrigation diversions and point effluent releases.

It is accepted practice that appraisal of the water resources of a particular river system, i.e. identifying river flow characteristics
and establishing relationships between reservoir capacity and yield, requires a long unbroken hydrograph representative of the complete flow regime of the river. Usually, these requirements imply a record length of 50 years or more. Unfortunately, long flow records are generally scarce and many records, affected by land-use changes, do not represent stationary time series.

In order to overcome these data problems and to meet the five basic needs outlined earlier, water resources engineers often have to resort to various forms of mathematical simulation or modelling of the hydrological response of catchments. Some of the models typically used by water resources engineers in South Africa and specific problems related to the use of such models form the focal points of the research reported in this thesis.

1.2 CONCEPTS AND DEFINITIONS

Models used in water resources engineering for the generation of streamflow (quantity and quality) can be broadly classified into two categories: statistical/stochastic or physical/deterministic. The statistical/stochastic approach recognizes the chance-dependence of hydrological processes while the physical/deterministic approach regards these processes as being chance-independent. Each of these categories can be subdivided into many classes of models. Hydrologists such as Clarke (1973 a,b) and Fleming (1975) have proposed more or less rigorous classification schemes in an attempt to bring order to the terminology used in the modelling field.

This thesis is concerned with a type of model generally known as conceptual rainfall-runoff models (conceptual catchment models), which falls in the physical/deterministic category. The conceptual models under consideration are of the "explicit moisture accounting" variety, one of three sub-classes of conceptual models defined in an international model intercomparison study by the World Meteorological Organization (WMO, 1975). In conceptual modelling the catchment is represented by one or more moisture storages through which rainfall inputs are routed by a process of moisture accounting, eventually to produce streamflow outputs. The storage sizes, the transfer of
moisture between storages and the exit of moisture as streamflow or evapotranspiration are all defined by mathematical relationships. The structures of the mathematical relationships are usually assumed to be constant for all catchments, but certain coefficients of these relationships, known as model parameters, are allowed to vary from catchment to catchment. The mathematical relationships are commonly devised in such a way that they describe (mostly empirically) the main processes known to occur in the land phase of the hydrological cycle. In this way, it is hoped, the model parameters can be expected to have physical meaning in terms of measurable catchment characteristics.

The procedure by which parameter values are determined for a specific catchment is known as the calibration of a model. Sometimes, certain model parameters can be derived by field observation of catchment processes; however, it is common practice to determine most parameter values by a trial-and-error procedure based on the correspondence between observed and simulated streamflows. If only one "average" set of parameters is specified for a whole catchment, the model concerned is known as a lumped-parameter model. Alternatively, the expression of the spatial variability common to all catchments in the form of different sets of parameters for different segments of a catchment is known as a distributed-parameter approach. This study is concerned specifically with the lumped-parameter conceptual modelling approach.

Conceptual models can be designed for either specific purpose or general purpose operation. Specific purpose models are developed to provide the highest level of simulation for those processes that are regarded as being important for the specific application of the model. Flood forecasting or low flow analysis models are typical examples in this category. Conceptual components unimportant to the specific purpose of the model are usually omitted from the model structure. General purpose models incorporate most of the flow components recognized in the land phase of the hydrological cycle and are often complex in structure. Such general models, in more or less complex form, have the potential to fulfill all five the needs of water resources engineers outlined in section 1.1 - given that certain minimum data requirements can be met.
1.3 Changing Perspectives on Conceptual Modelling

At the beginning of the seventies the "first generation" of conceptual rainfall-runoff models (Dawdy and O'Donnell, 1965; Crawford and Linsley, 1966) had been in use for about five years. At this point Nash and Sutcliffe (1970) described the central philosophy of conceptual modelling most succinctly: "The fact that a basin is not a random assembly of different parts, but a geomorphological system whose parts are related to each other by a long common history, encourages the hope that simplified concepts may be found adequate to describe the operation of the basin in converting rainfall to runoff. If in addition the relation between this operation and the physical features of the catchment can be recognised, the operation of even an ungauged catchment might be forecast from a study of these features". The Nash-Sutcliffe definition touched in a subtle way on the potential strengths and weaknesses of conceptual modelling, both of which, paradoxically, could be associated with the "hope" that simplified conceptualizations would provide adequate catchment models. Much of the hydrological literature of the ensuing decade concerns research into consolidation of the strengths and amelioration of the shortcomings implied above. Many aspects of this research are discussed and analysed, with ample referencing, in Chapters 5 and 6 of this thesis. At this juncture it may be appropriate to sketch the general perspectives on conceptual modelling existing at the end of the seventies (when this investigation was started).

By the end of the decade it was already clear that conceptual rainfall-runoff modelling had become a standard tool of non-specialist water resources engineering to a much greater extent than any statistical/stochastic technique. The "common sense" structure of the average conceptual model made the technique highly accessible to engineers and allowed them to develop a "feel" for operation of the models. Furthermore, ongoing research in developing countries such as South Africa and Australia, where hydrometeorological gauging networks have been relatively sparse until recent years, revealed that simpler models commensurate with the level of available input data could yield
results comparable with those of more complex models.

One of the dominant trends of the seventies concerns the last-mentioned point, i.e. a movement away from modelling the maximum number of physical processes. As Garrick, Cunnane and Nash (1978) have pointed out: "Experience in the current decade has indicated that it is surprisingly easy to develop simple conceptual models which, when suitable values of the parameters are chosen, can reasonably well simulate the rainfall-discharge relationship in a given catchment. One consequence of this experience is to bring in question the utility of the more elaborate models which seek to represent explicitly each of the several parts and paths of the earthbound portion of the hydrological cycle". Researchers working with the more complex general purpose models sometimes found that such models were "over-determined", i.e. that the models had too many parameters, resulting in some parameters "absorbing" errors in the input data. Such models performed poorly when verified on data not used during the calibration process.

An area in which perspectives on conceptual modelling changed drastically during the seventies is that of the physical meaning of model parameters. As the Nash and Sutcliffe (1970) quotation at the head of this section reveals, it was initially expected that reasonable relationships between parameter values and measurable catchment characteristics would be forthcoming. In such a situation model parameters could be obtained with a high level of confidence from field observation. Model application to ungauged catchments as well as reliable estimation of the effects on streamflow of land-use changes (by suitable changes to physically-realistic parameters) were two of the expected benefits of parameter/catchment characteristic relationships. However, in many cases clear relationships between model parameter values and measurable catchment characteristics could not be established, giving rise to a degree of disillusionment in complex models purported to possess a high level of correspondence between model components and all physical catchment processes. A key aspect of this problem was the fact that it was often impossible to determine unique parameter sets for specific catchments and that very different sets of parameter values could produce comparable outputs.
The reasons for this "failure" of conceptual modelling are explored in depth in Chapters 5 and 6.

The general disillusionment caused by the lack of success of reliable parameter estimation from physical features of a catchment placed the ungauged catchment "problem" in a new light. The only alternative way to derive parameter values for an ungauged catchment is by direct transfer of the values derived through calibration of a model on a gauged catchment which is hydrologically as similar as possible to the ungauged one. This parameter transfer technique was first recommended by the developers of the classic Stanford Watershed Model (Crawford and Linsley, 1966), but seemed by the early seventies to have fallen into disrepute among specialist hydrologists. The accent on the need for physically-realistic parameter values, combined with a great upsurge in the development of models based on partial/variable source area theories of runoff generation (Kirkby, 1978), resulted in a lack of systematic research on parameter transfer possibilities. Nevertheless, practising engineers, accustomed to traditional hydrological techniques based on regionalization of statistical relationships among hydrological variables, continued to use parameter transfer to good effect. In fact, in South Africa the technique acquired so much respectability in engineering circles that parameter transfer became one of the cornerstones of a national survey of water resources in which application of a conceptual rainfall-runoff model, developed by Pitman (1973), played a key role (Hydrological Research Unit, 1981-1982).

During the seventies a start was made with using lumped-parameter conceptual rainfall-runoff models as the "carriers" of water quality sub-models. In South Africa this approach was shown to be useful for planning purposes at a macro-scale (Hall and Görgens, 1979) or in catchments where point or man-made sources of water quality constituents dominate the natural production of the catchment (Herold, 1981). As a forecasting technique, however, this use of conceptual models has made less of an impact generally. All the shortcomings of the basic rainfall-runoff model are of course also incorporated in the combined "piggy-back" water quality model: the lack of physical meaning of parameters, the problem of deriving representative and unique model parameters, and the uncertainties involved in parameter value transfer from gauged to ungauged catchments.
The reasons for this "failure" of conceptual modelling are explored in depth in Chapters 5 and 6.

The general disillusionment caused by the lack of success of reliable parameter estimation from physical features of a catchment placed the ungauged catchment "problem" in a new light. The only alternative way to derive parameter values for an ungauged catchment is by direct transfer of the values derived through calibration of a model on a gauged catchment which is hydrologically as similar as possible to the ungauged one. This parameter transfer technique was first recommended by the developers of the classic Stanford Watershed Model (Crawford and Linsley, 1966), but seemed by the early seventies to have fallen into disrepute among specialist hydrologists. The accent on the need for physically-realistic parameter values, combined with a great upsurge in the development of models based on partial/variable source area theories of runoff generation (Kirkby, 1978), resulted in a lack of systematic research on parameter transfer possibilities. Nevertheless, practising engineers, accustomed to traditional hydrological techniques based on regionalization of statistical relationships among hydrological variables, continued to use parameter transfer to good effect. In fact, in South Africa the technique acquired so much respectability in engineering circles that parameter transfer became one of the cornerstones of a national survey of water resources in which application of a conceptual rainfall-runoff model, developed by Pitman (1973), played a key role (Hydrological Research Unit, 1981-1982).

During the seventies a start was made with using lumped-parameter conceptual rainfall-runoff models as the "carriers" of water quality sub-models. In South Africa this approach was shown to be useful for planning purposes at a macro-scale (Hall and Görgens, 1979) or in catchments where point or man-made sources of water quality constituents dominate the natural production of the catchment (Herold, 1981). As a forecasting technique, however, this use of conceptual models has made less of an impact generally. All the shortcomings of the basic rainfall-runoff model are of course also incorporated in the combined "piggy-back" water quality model: the lack of physical meaning of parameters, the problem of deriving representative and unique model parameters, and the uncertainties involved in parameter value transfer from gauged to ungauged catchments.
1.4 THE ROLE OF COMPARATIVE STUDIES OF CONCEPTUAL MODELS

During the past fifteen years a plethora of lumped-parameter conceptual rainfall-runoff models have been reported in hydrological literature. This proliferation has been partially a response to the ever increasing complexity of modern water resources planning, design and management, partly a movement with the trend towards less complex models, and partly a consequence of the increasing availability of high-speed digital computers. The non-specialist engineer or hydrologist, needing a model to solve a specific water resources problem, may find it very difficult to make a judicious choice of a model suitable to his needs and to the level of available data. Often, there must be a temptation to follow the route of least inconvenience, namely to choose whatever model is at hand or is easily acquired or seems reasonably uncomplicated to use. For some time now there has been a continuing need that more of the available models should be objectively tested and their performance compared.

By the early seventies the WMO (1975) recognised that model intercomparison studies offered a solution to the dilemma of model selection. Hoping to promote the establishment of guidelines for model selection the WMO coordinated an ambitious international intercomparison of performance of conceptual models used in flood forecasting. The results of the WMO study can unfortunately not be generalized as the models used were all fairly complex, with short time interval input data requirements. During the ensuing years a number of conceptual model intercomparisons have been reported internationally, the most notable of which are listed in Table 1.1.
Table 1.1
Notable intercomparisons of conceptual rainfall-runoff models

<table>
<thead>
<tr>
<th>Source</th>
<th>No. of models</th>
<th>No. of catchments</th>
<th>Countries</th>
<th>Climate range</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMO (1975)</td>
<td>10</td>
<td>6</td>
<td>6 different countries</td>
<td>wide range</td>
</tr>
<tr>
<td>Moore and Mein (1975)</td>
<td>3</td>
<td>4</td>
<td>Australia</td>
<td>wide range</td>
</tr>
<tr>
<td>Naef (1977, 1981)</td>
<td>10</td>
<td>3</td>
<td>Switzerland</td>
<td>similar climates</td>
</tr>
<tr>
<td>Black and Aitken (1977)</td>
<td>2</td>
<td>2</td>
<td>Australia</td>
<td>different climates</td>
</tr>
<tr>
<td>Pitman (1977, 1978)</td>
<td>4</td>
<td>3</td>
<td>South Africa</td>
<td>similar climates</td>
</tr>
<tr>
<td>Roberts (1978)</td>
<td>8</td>
<td>5</td>
<td>South Africa</td>
<td>similar climates</td>
</tr>
<tr>
<td>Weeks and Hebbert (1980)</td>
<td>5</td>
<td>3</td>
<td>Australia</td>
<td>similar climates</td>
</tr>
<tr>
<td>O'Connell and Clarke (1981)</td>
<td>4</td>
<td>1</td>
<td>U.K.</td>
<td>-</td>
</tr>
<tr>
<td>Moore and Clarke (1981)</td>
<td>2</td>
<td>4</td>
<td>U.K.</td>
<td>wide range</td>
</tr>
</tbody>
</table>
To enable a potential user of conceptual rainfall-runoff models to gain maximum benefit and guidance from a reported intercomparison of models on the same data set, the intercomparison should ideally meet four maximum requirements:

(i) The complete intercomparison should be executed by persons other than the developers of the models - to ensure true objectivity and independence and to give an indication of the effort required to obtain and transfer knowledge about each of the models.

(ii) The set of models should cover a range of complexities so that the minimum degree of complexity necessary for any specific model application can be inferred from the intercomparison.

(iii) The quality of the data set used should be of a research standard so that modelling errors do not obscure essential differences in performance among the respective models.

(iv) The comparison of model performance must at least partly be based on a verification data set, i.e. representative simultaneous input and output data series not used in the calibration of the models.

Obviously, further requirements can be formulated, but even measured by these four requirements only very few reported model comparisons would meet the information needs of a potential user searching, for example, for a reliable but time-efficient model to use in semi-arid water resources studies for which parameter transfers into ungauged catchments might be a necessity.

The need for research that will lead to the development of guidelines for the selection of suitable models for specific applications has been stressed by Dooge (1977): "There is no limit to the number of conceptual models that can be devised. Indeed, a grave defect in hydrological research in recent years has been the proliferation of conceptual models without a corresponding effort to devise methods of objectively comparing models and developing criteria for the best choice of model in a given situation". In South Africa
To enable a potential user of conceptual rainfall-runoff models to gain maximum benefit and guidance from a reported intercomparison of models on the same data set, the intercomparison should ideally meet four maximum requirements:

(i) The complete intercomparison should be executed by persons other than the developers of the models - to ensure true objectivity and independence and to give an indication of the effort required to obtain and transfer knowledge about each of the models.

(ii) The set of models should cover a range of complexities so that the minimum degree of complexity necessary for any specific model application can be inferred from the intercomparison.

(iii) The quality of the data set used should be of a research standard so that modelling errors do not obscure essential differences in performance among the respective models.

(iv) The comparison of model performance must at least partly be based on a verification data set, i.e. representative simultaneous input and output data series not used in the calibration of the models.

Obviously, further requirements can be formulated, but even measured by these four requirements only very few reported model comparisons would meet the information needs of a potential user searching, for example, for a reliable but time-efficient model to use in semi-arid water resources studies for which parameter transfers into ungauged catchments might be a necessity.

The need for research that will lead to the development of guidelines for the selection of suitable models for specific applications has been stressed by Dooge (1977): "There is no limit to the number of conceptual models that can be devised. Indeed, a grave defect in hydrological research in recent years has been the proliferation of conceptual models without a corresponding effort to devise methods of objectively comparing models and developing criteria for the best choice of model in a given situation". In South Africa
this need still exists today and it is hoped that the research reported in this document will contribute towards guidelines for the model selection process.

1.5 RESEARCH NEEDS IN SOUTH AFRICA

South African research needs in the field of lumped-parameter conceptual rainfall-runoff modelling can be expressed in terms of four interrelated factors:

(i) the predominance of climatic conditions in the semi-arid/near-semi-arid range,

(ii) the need for guidelines for the selection of adequate levels of conceptual model complexity for specific applications, using data from semi-arid regions,

(iii) the need for guidelines for the calibration of conceptual models in both gauged and ungauged semi-arid catchments,

(iv) the high variability of the quality of the national hydrometeorological data base.

1.5.1 Modelling in the semi-arid environment

Over 50 percent of the land surface of South Africa experiences a climate that can be described as semi-arid or near semi-arid. Consequently, research into rainfall-runoff modelling in semi-arid catchments is of great importance to the country. One aspect of the results of the WMO (1975) model intercomparison project (see Table 1.1) is of special relevance to the last-mentioned point: all seven moisture accounting models tested performed appreciably worse on the two semi-arid catchments than on the remaining four humid catchments. Regarding this finding Chapman (1975) cautions that "...it should not be inferred that matters would worsen further with increasing aridity, as the prediction errors are probably associated with failure to model the soil water status of the catchment, which can be done with the least error in catchments which are generally wet or generally dry. In
this regard, the most difficult catchments may well be those where the precipitation is in the range 30 to 60 percent of the potential evaporation.

Semi-arid rainfall-runoff modelling research in South Africa has been reported by Roberts (1978), Hall and Görgens (1979) and Murray and Görgens (1981). Though important in their own right, for various reasons none of these studies has produced definitive results. There is still a real need to assess the ability of typical general purpose conceptual models in use in South Africa to model semi-arid rainfall-runoff processes.

1.5.2 Model complexity

Pitman (1977, 1978) compared three of his own models of differing complexity with the Stanford Watershed Model using data from three temperate catchments near Johannesburg. The Stanford Model and the most complex Pitman model required hourly rainfall inputs, while the other two models required respectively daily and monthly rainfall inputs. The outcome of the study was that the two simpler models produced monthly and annual outputs at levels of accuracy comparable with those of the two complex models. Pitman concluded that his monthly model would be as suitable for water resources analysis as any of the more complex models.

The implications of Pitman's findings are far-reaching. The choice of a model that is just sufficiently complex in terms of input and structure to provide results at a level of accuracy that is adequate for the application in mind would minimize the cost of data collection and the time, effort and computer costs involved in familiarisation and calibration.

Inevitably the question arises as to whether Pitman's (1977, 1978) conclusion regarding model complexity is valid for the semi-arid environment. Phrased more generally, what is the minimum level of model complexity necessary for acceptable performance in terms of water resources analysis in semi-arid catchments? Roberts's (1978) investigation addressed this very point (see Table 1.1). The models
Roberts selected did not include Pitman's three models, but he arrived at a similar (tentative) conclusion - that simple models can produce output at a level of accuracy that is competitive with complex models. Unfortunately, three problems affected the merit of Roberts's conclusion. Firstly, he used relatively short records (17 months) which contained few flow events of which only one could be described as "sizable". Secondly, it has subsequently been discovered that the version of the model Roberts used to represent the complex end of his range of models, the Stanford Watershed Model, contained programming errors which seriously affected the performance of the model (see section 4.1.3). Thirdly, it has also been discovered that the flow records of two of the catchments Roberts included in his study, may have contained serious errors (see section 2.3.1).

There is another aspect of the model complexity issue which is of relevance to South Africa. During recent years Pitman's (1973, 1976) monthly and daily models have been rapidly gaining a reputation in water resources engineering circles as "standard" South African models (Hydrological Research Unit, 1981-1982). It is not too early to ask the question: how do their performances in semi-arid catchments compare with those of more complex models or indeed of simpler models? Research leading to an answer to this question would be of direct benefit to the South African water resources engineering fraternity and contribute to a general understanding of what level of conceptual model complexity is adequate for simulation of semi-arid rainfall-runoff processes.

1.5.3 Parameter estimation

It is now generally accepted that reliable parameter estimation in conceptual rainfall-runoff models is laden with pitfalls and complexities (see Chapters 5 and 6). At the same time there can be little doubt that such models will continue to enjoy widespread use in South Africa for many years, because more physically-based models require prohibitive numbers of field measurements prior to application, while the more empirical and the statistical/stochastic approaches offer little hope of benefits in terms of the ungauged catchment "problem" or estimation of the effects of land-use changes.
In this context research into parameter estimation techniques remains a necessity in South Africa, both for model calibration and for model application to ungauged catchments. Specifically, the technique of transferring parameter values from gauged to ungauged catchments needs to be explored in semi-arid catchments.

1.5.4. Quality of hydrometeorological data

The quality of the hydrometeorological data obtained from the national gauging networks of the Department of Environment Affairs and the Weather Bureau of the Department of Transport is highly variable, both spatially and temporally. Specifically in the semi-arid parts of the country, the quality of the data base is not satisfactory for in-depth rainfall-runoff modelling research (Görgens and Hughes, 1982). A common problem in many of these areas is non-stationarity of streamflow records due to changing land-use and other human interference with the flow regime.

For meaningful rainfall-runoff modelling research in South Africa, the development of a growing data bank of hydrological processes observed over short time-intervals (e.g. hourly) in research catchments in different climatic regions of the country is a dire necessity. The Ecca research catchments near Grahamstown (Roberts, 1978), maintained by the Hydrological Research Unit at Rhodes University, fulfill the aforementioned need in terms of the semi-arid environment. The Ecca River catchments are uncultivated, densely instrumented and fairly similar in climate, vegetation and lithology.

1.6 AIMS OF THE RESEARCH

The research described in this thesis was designed in terms of South African research needs in the field of conceptual rainfall-runoff modelling, as sketched in section 1.5. Care was also taken that all four requirements for meaningful comparative model studies, outlined in section 1.4, were met. Data needed for the project were derived from the hydrometeorological gauging networks in the semi-arid
Ecca research catchments. A summary of the aims of the research follows:

(i) To develop a hydrometeorological data bank of semi-arid rainfall-runoff processes suitable for testing of conceptual rainfall-runoff models. This would include an assessment of the accuracy of the various types of data (Chapters 2 and 6).

(ii) To examine for semi-arid conditions a selection of lumped-parameter conceptual rainfall-runoff models, developed in South Africa and covering a range of complexities and rainfall input requirements. This would include identifying inadequacies in the models under these conditions and incorporating any modifications thought to be necessary (Chapters 3 and 4).

(iii) To investigate problems associated with the estimation of parameter values for conceptual models in gauged catchments, otherwise known as model calibration. This would include both non-uniqueness of parameter values for a given data set (Chapter 5) and variability among parameter sets derived from different calibration samples for the same catchment (Chapter 6).

(iv) To compare the performance of the selected models within hourly, daily and monthly rainfall input categories in terms of selected statistical criteria. These criteria should include measures of performance commonly used in hydrological modelling, as well as error functions based on streamflow statistics commonly used in water resources engineering (Chapter 7).

(v) To compare the performance of models that require fine time-intervals for input data with those that require coarser time intervals to ascertain whether the use of fine time-intervals for input data is justified (Chapter 7).
(vi) To examine the feasibility of transferring parameter values for a model from the gauged to the ungauged catchment, that is, to test the premise that parameter values obtained by calibration may be transferred to a nearby ungauged catchment with similar vegetation, climate and lithology and (where suitable rainfall records are available) to provide a record of runoff where no measurements have been made (Chapter 8).

1.7 THE SELECTED MODELS

In order to pursue the above aims it is necessary to select models developed for South African conditions that comprise the following:

(i) A variety of uses. The selection should cover models designed for simulation of flow volume only as well as those designed to simulate the complete hydrograph.

(ii) A variety of time-intervals for input data, i.e. hourly, daily and monthly rainfall input requirements

(iii) Different complexities of model structure within each time-interval category for input; at least two models per category should be tested.

A selection of models was made with the above requirements in mind. These are discussed in Chapters 3 and 4 but are dealt with briefly here in descending order of complexity.

1.7.1 Hourly-input models

(i) Model FORD - a version of the Stanford Watershed Model by Crawford and Linsley (1966). Though not a South African model, this model was chosen because it is one of the most complex and most generally applicable conceptual models yet developed. As such its performance would provide a good "benchmark" against which the performance of all the South African models could be measured.

(ii) Model PITH - a version of an hourly-input model by Pitman (Pitman and Basson, 1979), designed for flood modelling on a continuous input-output basis. Pitman's original model was considerably modified for this research (as described in Chapter 3)
(iii) Model PITR - a modification of model PITH incorporating important changes to the infiltration functions.

1.7.2 Daily-input models

(i) Model PITD - a model by Pitman (1976) which is similar in structure to PITH.

(ii) Model DALT - a model developed by Roberts (1978). The model is very simple in structure and was designed to be "just sufficiently complex to compete (in terms of accuracy of output) with the complex models" (Roberts, 1978).

1.7.3 Monthly-input models

(i) Model PITH - a model by Pitman (1973) designed specifically for water resources analysis.

2.1 INTRODUCTION

During the years 1974 and 1975 the Geography Department of Rhodes University, Grahamstown, instrumented five nested catchments in a semi-arid zone about 20km from Grahamstown, with the express purpose of establishing a growing data bank for use in research on rainfall-runoff processes in a semi-arid environment. These research catchments vary in area from 1.1km2 to 73.1km2 and are all drained by tributaries of the Ecca River (previously known as the Drak River), a tributary of the Great Fish River, which drains the semi-arid eastern flank of the Karoo region of South Africa.

Fig. 2.1 depicts the Ecca catchments' location, configuration and hydrometeorological gauging network. Although all five catchments have been assigned code numbers by the Department of Environment Affairs (DEA) according to the national river gauging network code system, in this report the Hydrological Research Unit (HRU) codes A, B, C, D and E are used (see Table 2.1). The areas of the five catchments are listed in Table 2.1. The range of catchment sizes originally chosen for the Ecca monitoring network represents a rational compromise between the economic considerations of establishing and maintaining a gauging network of above average density, the need for reasonable homogeneity over the group of catchments and the objective that the catchments should be small enough to allow the rigorous testing of short time increment (e.g. hourly) modelling of land surface processes (Roberts, 1978).

In the context of the aims of this study set out in Chapter 1 the Ecca research catchments offer an excellent opportunity for the testing of explicit-soil-moisture-accounting conceptual rainfall-runoff models. Because of their relative smallness and their nested configuration, the Ecca catchments appear fairly similar in terms of climate, vegetation and lithology. The only prevailing form of land use is small livestock farming, which is practised in a stable manner.
Table 2.1
Ecca research catchment sizes

<table>
<thead>
<tr>
<th>DEA code</th>
<th>HRU code</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q9M20</td>
<td>A</td>
<td>73.1</td>
</tr>
<tr>
<td>Q9M21</td>
<td>B</td>
<td>9.1</td>
</tr>
<tr>
<td>Q9M22</td>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>Q9M23</td>
<td>D</td>
<td>1.1</td>
</tr>
<tr>
<td>Q9M24</td>
<td>E</td>
<td>23.1</td>
</tr>
</tbody>
</table>

*1 Department of Environment Affairs

Table 2.2
Climate statistics for the Ecca research area

<table>
<thead>
<tr>
<th>Month</th>
<th>Long-term mean rainfall (mm)</th>
<th>7-Year mean rainfall (mm)</th>
<th>Long-term mean free surface evaporation (mm)</th>
<th>Symons pan free surface factor</th>
<th>7-Year A-pan free surface factor</th>
<th>Regional A-pan evaporation (smoothed) factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td>37</td>
<td>41</td>
<td>173</td>
<td>0.96</td>
<td>167</td>
<td>0.76</td>
</tr>
<tr>
<td>Feb.</td>
<td>40</td>
<td>54</td>
<td>134</td>
<td>0.96</td>
<td>136</td>
<td>0.77</td>
</tr>
<tr>
<td>March</td>
<td>49</td>
<td>63</td>
<td>118</td>
<td>0.91</td>
<td>122</td>
<td>0.75</td>
</tr>
<tr>
<td>April</td>
<td>35</td>
<td>32</td>
<td>90</td>
<td>0.95</td>
<td>92</td>
<td>0.74</td>
</tr>
<tr>
<td>May</td>
<td>33</td>
<td>33</td>
<td>77</td>
<td>0.96</td>
<td>74</td>
<td>0.74</td>
</tr>
<tr>
<td>June</td>
<td>20</td>
<td>20</td>
<td>64</td>
<td>0.92</td>
<td>67</td>
<td>0.74</td>
</tr>
<tr>
<td>July</td>
<td>20</td>
<td>35</td>
<td>77</td>
<td>0.96</td>
<td>75</td>
<td>0.74</td>
</tr>
<tr>
<td>Aug.</td>
<td>25</td>
<td>36</td>
<td>91</td>
<td>0.96</td>
<td>90</td>
<td>0.72</td>
</tr>
<tr>
<td>Sep.</td>
<td>36</td>
<td>32</td>
<td>96</td>
<td>0.96</td>
<td>87</td>
<td>0.69</td>
</tr>
<tr>
<td>Oct.</td>
<td>43</td>
<td>41</td>
<td>123</td>
<td>0.96</td>
<td>128</td>
<td>0.71</td>
</tr>
<tr>
<td>Nov.</td>
<td>45</td>
<td>41</td>
<td>144</td>
<td>0.96</td>
<td>153</td>
<td>0.74</td>
</tr>
<tr>
<td>Dec.</td>
<td>37</td>
<td>49</td>
<td>173</td>
<td>0.90</td>
<td>173</td>
<td>0.75</td>
</tr>
<tr>
<td>Total</td>
<td>420</td>
<td>487</td>
<td>1362</td>
<td>1364</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Based on a 92-year reconstruction by Roberts (1978).
*2 Estimated from Symons pan values (Pitman, 1973) with regional conversion factors (Roberts, 1978) applied.
*3 Estimated from Class A-pan observations with smoothed regional conversion factors applied.
*4 Regional conversion factors used by Directorate of Water Affairs.
Figure 2.1 The Ecca River research catchments and the gauging network - scale in meters (see overleaf)
The vegetation is of a type (see section 2.2.2) that does not undergo appreciable transformations from season to season, nor is it very sensitive to grazing. All these characteristics render the Ecca catchments as unchanging and apparently as homogeneous as a general model user could hope to find in practice.

The Ecca catchments and the available data base are discussed in detail in subsequent sections. In the process extensive use will be made of the excellent physical description of the catchments by Roberts (1978), who processed a large volume of morphometric and physiographic data to provide a unified picture of the research area.

2.2 DESCRIPTION OF THE ECCA CATCHMENTS

2.2.1 General climate

The climate of the research area is harsh, with large differences between seasonal and daily extreme and average temperatures. According to synthetically reconstructed histories of rainfall in the lower Greet Fish River catchment, the long-term mean annual precipitation (MAP) of the greater Ecca catchment is between 420mm (Midgley and Pitman, 1969) and 532mm (HRU, 1981, Volume 5). Records from the raingauge network (discussed later in this chapter) in the Ecca catchment since 1975 yield a seven-year average annual rainfall of 487mm with a standard deviation of 99mm. Rain-days (daily fall > 0.1mm) averaged 101 per year during the 1975-1981 period. Long-term mean annual free water surface evaporation is estimated at approximately 1362mm, using monthly Symons pan figures from Pitman (1973) and regional conversion factors supplied by the Department of Environment Affairs (Roberts, 1978). The seven-year average annual free water surface evaporation measured by two Class A pans (and after applying regional conversion factors) amounts to 1364mm, with a standard deviation of 94mm.

Table 2.2 provides information on the monthly distribution of the above mean annual climate statistics. According to both the long term estimates and the seven-year observed period the major part of the annual rainfall occurs in the "summer" months (October to March - the
mean "summer" falls being 59.8% and 61.8% of the MAP, respectively. The dominant rainfall-producing mechanisms in summer and winter differ substantially. Convectional or convergence thunderstorm systems cause most of the summer rainfall, while winter rain is usually associated with large-scale frontal systems sweeping along the south coast of the South African sub-continent.

The analysis of the spatial distribution of both long-term mean point precipitation and major storms as observed with the raingauge network reveal a roughly consistent pattern of spatial variation in the rainfall. Fig. 2.2 illustrates the overall pattern of progressive decrease of raingauge catch from south to north, as well as from west to east. This variation in rainfall is also depicted in some of the isohyetal maps of the individual storms analysed for flood hydrograph prediction in Chapter 3 and shown as Figs. 3.2(a) to (i). As is clear from the latter group of figures some rainfall events deviate from the pattern shown in Fig. 2.2. These deviations are usually associated with convectional thunderstorms which produce random spatial distributions of falls, while the overall spatial trends in Fig. 2.2 are essentially due to frontal rainfall that "fares" in the northeasterly direction. The prevalence of cold fronts during the period April to October is the cause of the surprisingly large (for a semi-arid environment) average number of rain-days (101) reported earlier. These storms are typified by relatively small falls spread over a number of days.

The "mixed" and highly variable nature of the general climate of the Eccsa area is illustrated by Table 2.3 and can be related to the catchments' location in a climatic zone transitioning from the sub-humid all-year rainfall region of the southwest to the more arid summer rainfall regions of the northwest to the temperate summer rainfall regions of the east. On a regional scale the general climate of the Eccsa area is typical, albeit somewhat more arid than the rest of the Albany/Border area and somewhat less arid that the northern parts of the Great Fish River catchment. On a national scale the MAP and mean annual free surface evaporation are close to the average values calculated for the Republic of South Africa (Commission of Enquiry into Water Matters, 1970).
Table 2.3

Observed average rainfall and class A-pan evaporation in Ecca catchment A

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>31.0*</td>
<td>49.7</td>
<td>60.9</td>
<td>6.6</td>
<td>3.0</td>
<td>41.9</td>
<td>10.1</td>
<td>17.5</td>
<td>89.3</td>
<td>93.6</td>
<td>19.0</td>
<td>57.6</td>
<td>390.2</td>
</tr>
<tr>
<td>1976</td>
<td>55.6</td>
<td>81.4</td>
<td>155.3</td>
<td>12.3</td>
<td>24.8</td>
<td>10.9</td>
<td>36.2</td>
<td>8.7</td>
<td>16.5</td>
<td>62.0</td>
<td>39.8</td>
<td>23.7</td>
<td>527.2</td>
</tr>
<tr>
<td>1977</td>
<td>17.9</td>
<td>134.5</td>
<td>21.2</td>
<td>49.2</td>
<td>71.0</td>
<td>4.8</td>
<td>2.0</td>
<td>9.7</td>
<td>33.3</td>
<td>6.8</td>
<td>75.0</td>
<td>104.4</td>
<td>522.9</td>
</tr>
<tr>
<td>1978</td>
<td>56.5</td>
<td>31.5</td>
<td>32.2</td>
<td>11...9</td>
<td>17.2</td>
<td>25.3</td>
<td>2.0</td>
<td>11.9</td>
<td>13.4</td>
<td>81.4</td>
<td>35.7</td>
<td>19.4</td>
<td>468.7</td>
</tr>
<tr>
<td>1979</td>
<td>46.3</td>
<td>96.8</td>
<td>16.3</td>
<td>2.3</td>
<td>43.0</td>
<td>24.5</td>
<td>189.8</td>
<td>130.1</td>
<td>30.3</td>
<td>44.8</td>
<td>12.8</td>
<td>12.1</td>
<td>649.1</td>
</tr>
<tr>
<td>1980</td>
<td>33.9</td>
<td>37.1</td>
<td>43.3</td>
<td>27.4</td>
<td>0.8</td>
<td>23.4</td>
<td>1.6</td>
<td>10.3</td>
<td>27.6</td>
<td>23.3</td>
<td>79.6</td>
<td>39.0</td>
<td>347.3</td>
</tr>
<tr>
<td>1981</td>
<td>44.6</td>
<td>19.2</td>
<td>116.3</td>
<td>9.9</td>
<td>67.4</td>
<td>11.0</td>
<td>0.3</td>
<td>62.2</td>
<td>12.0</td>
<td>73.4</td>
<td>28.5</td>
<td>54.0</td>
<td>498.9</td>
</tr>
</tbody>
</table>

Mean 40.9 64.3 63.9 31.7 32.7 20.5 34.6 35.6 31.7 42.4 41.4 48.7 497.4

%Total 8.4 13.2 13.1 6.5 6.7 4.2 7.1 7.3 6.5 8.7 8.5 10.0 100.0

Class A-pan evaporation (mm)

<table>
<thead>
<tr>
<th>Year</th>
<th>186*</th>
<th>177</th>
<th>179</th>
<th>155</th>
<th>122</th>
<th>102</th>
<th>128</th>
<th>169</th>
<th>95</th>
<th>244</th>
<th>230</th>
<th>211</th>
<th>199</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>207</td>
<td>167</td>
<td>128</td>
<td>93</td>
<td>77</td>
<td>106</td>
<td>91</td>
<td>112</td>
<td>120</td>
<td>155</td>
<td>239</td>
<td>287</td>
<td>1782</td>
</tr>
<tr>
<td>1977</td>
<td>266</td>
<td>161</td>
<td>161</td>
<td>123</td>
<td>104</td>
<td>113</td>
<td>125</td>
<td>142</td>
<td>122</td>
<td>191</td>
<td>196</td>
<td>229</td>
<td>1929</td>
</tr>
<tr>
<td>1978</td>
<td>198</td>
<td>185</td>
<td>193</td>
<td>116</td>
<td>107</td>
<td>81</td>
<td>81</td>
<td>132</td>
<td>154</td>
<td>158</td>
<td>221</td>
<td>223</td>
<td>1850</td>
</tr>
<tr>
<td>1979</td>
<td>235</td>
<td>214</td>
<td>191</td>
<td>130</td>
<td>91</td>
<td>83</td>
<td>66</td>
<td>92</td>
<td>123</td>
<td>171</td>
<td>222</td>
<td>262</td>
<td>1899</td>
</tr>
<tr>
<td>1980</td>
<td>263</td>
<td>177</td>
<td>169</td>
<td>138</td>
<td>123</td>
<td>80</td>
<td>102</td>
<td>114</td>
<td>128</td>
<td>181</td>
<td>178</td>
<td>197</td>
<td>1849</td>
</tr>
<tr>
<td>1981</td>
<td>184</td>
<td>155</td>
<td>132</td>
<td>117</td>
<td>72</td>
<td>64</td>
<td>100</td>
<td>90</td>
<td>136</td>
<td>171</td>
<td>181</td>
<td>205</td>
<td>1605</td>
</tr>
</tbody>
</table>

Mean 220 177 164 124 100 91 102 122 126 181 209 231 1846

%Total 11.9 9.6 8.9 6.7 5.4 4.9 5.5 6.6 6.8 9.8 11.3 12.5 100.0

* Values estimated from Grahamstown data
Figure 2.2 Mean annual precipitation over the research area (1975-1981)
- scale in meters
(see overleaf)
2.2.2 Vegetation

Acocks (1953) classified the vegetation of the Ecca region under "Karoo and Karroid Bushveld Type iv", known as Valley Bushveld. The vegetation consists of tall sub-succulent bush in upper catchment areas and on the lower slopes of incised tributaries; this thins out to low succulent shrub on flatter areas and the lower parts of catchments B and A. There is a fair proportion of bare ground throughout the year, as was shown by Roberts (1978) who found, by detailed mapping from aerial and ground photographs, that the "ground cover" on 53% of catchment A could be described as "sparse" (or worse), while the "canopy cover" over 26% of the area fell in the same category. A "dense" classification for ground cover was given to 11% of the area, as opposed to 26% for canopy cover. Fig. 2.3 depicts the approximate spatial distribution of the vegetation categories.

2.2.3 Geology

As Fig. 2.4 illustrates, three major geological units are found in the Ecca area, namely the Witteberg Group, belonging to the Cape Supergroup, and the Dwyka and Ecca Groups, representing the Karoo Supergroup. Roberts (1978) describes the geological structure as "...relatively simple with the rocks dipping at approximately 40°N in the southern part of the catchment and the dip progressively decreases northwards until the Ecca shales are almost horizontal." The general strike of the formations is west/northwest to east/southeast. Two of the hardest formations present (Johnson, 1976), the Witteberg quartzite and the Dwyka tillite, together form the southern watershed of the research area (and the Great Fish River) while a broad band of the hardest of the shales (Johnson 1976), the Fort Brown shales (Ecca Group), forms the northern boundary. From Fig. 2.4 it is clear that about 90% of the surface geological formations of the research area represent the Karoo Supergroup. In this sense the research catchments can be regarded as fairly representative, geologically, of the middle to lower Great Fish River catchment (Tordiffe, 1978).
2.2.4 Physical features

The general physiography of the Ecca catchments is shown in Fig. 2.1. The Witteberg quartzite at Botha's Ridge in the south forms the highest ground at 738 metres, giving a maximum basin relief of 570 metres. The approximately west-east line of the main channel follows the strike of the rock formations and as a result of the alternating shale and sandstone bands (Fig. 2.4), the area is highly intersected, with the main tributaries forming deeply incised valleys at right angles to the strike. Soils tend to be shallow and stoney on hilltops and slopes and extensive rock outcrops are fairly common; however, surprisingly deep (±2m) colluvial deposits occur in the valley bottoms of the major tributaries. In more than one area the main channel cuts through a rudimentary flood plain formed by alluvial deposits. All stream channels are ephemeral and on average during the period 1976 to four discrete runoff events per year were observed.

Roberts (1978) compiled a slope map of the research area to illustrate the degree of dissection in the catchments. For this map, shown in Fig. 2.5, areas falling into five slope categories were delimited (condensed to three categories in Fig. 2.5 for clarity). Noteworthy are the flat "uplands" of catchment E and the extremely steep hillslopes where major tributaries break through the shale/sandstone bands of the Ecca Group. Sediment movement and, presumably, yield have been observed to vary considerably among sub-catchments. According to the sediment yield map for South Africa, developed by Rooseboom (1978) after comprehensive analyses of available reservoir sedimentation and soils data, a maximum annual yield of 200t/km² can be expected from "medium to large" catchments in the Ecca region. Both on a regional and national scale this figure can be regarded as moderate.

2.3 HYDROMETEOROLOGICAL DATA BASE

2.3.1 Gauging network

The hydrometeorological gauging network in the Ecca catchments is
Figure 2.3 Vegetation: combined ground and canopy cover (from Roberts, 1978)
Figure 4: Surface geology of the Ecca catchments (from Roberts, 1978)
Figure 2.5 Slope map of the Ecc River catchments
(from Roberts, 1978)

LEGEND
0-20%
21-40%
Above 40%

ECC RIVER CATCHMENT
SLOPE MAP
depicted in Fig. 2.1 and detailed in Table 2.4. As can be seen from Table 2.4 not all the gauges have been in operation over the same period. Rain gauge BP01 was closed down at the end of February 1980 because, being atop a very steep high hilltop, it was extremely difficult to reach during wet periods. Even in good weather the journey to the gauge made extreme demands on driver and vehicle, because the "track" to it was almost non-existent. It was decided to re-locate this gauge at the site CPO1, which was close to a tarred road and easily accessible. Care was taken to choose a site with approximately the same altitude and exposure as BP01. The location of CPO1 solved another problem - the lack of a rainfall gauging point in catchment C.

The success of rainfall-runoff modelling depends strongly on areal assessment of rainfall over the modelled catchment. Some (by now) classic investigations of this problem by Dawdy and Bergman (1969), Chapman (1970) and Ibbitt (1972) underlined the necessity for accurate rainfall estimates in modelling. In a much-quoted study Johanson (1971), in a catchment of about 1000Km^2 with 49 rain gauges, found, somewhat surprisingly, that the number of rain gauges required for "adequate" rainfall-runoff simulation was relatively independent of the area of the catchment, and suggested a general minimum of 4 rain gauges per catchment. However, more recent evidence of the necessity for high accuracy in rainfall inputs for catchment models is provided in reports by Basson (1978, Chapter 2), Wilson, Yalies and Rodriguez-Lurbe (1979) and Boughton (1981). Furthermore, Hall and Barclay (1975) warned in their thought-provoking synthesis of information on areal rainfall determination that "Areal rainfall estimates based on point observations should only be regarded as an index of the true mean rainfall over a catchment and errors between 10 and 20 percent can be regarded as normal. Where strong wind effects or mountainous catchments are being considered, errors up to 60 percent can be experienced".

In the light of these findings and given the existence of deeply incised terrain causing likely rain shadows during frontal storms in winter, as well as the prevalence of localized, "patchy" thunderstorms in summer, the highest possible density of rain gauges in
Table 2.4

Details of hydrometeorological gauging network

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gauge code</th>
<th>Gauge type</th>
<th>Observation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APO1</td>
<td>Casella: Syphoning, autographic, no wind shields</td>
<td>Feb. 1975 – present</td>
<td></td>
</tr>
<tr>
<td>APO2</td>
<td>ditto</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>APO3</td>
<td>ditto</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>BPO2</td>
<td>ditto</td>
<td>Feb. 1975 – present</td>
<td></td>
</tr>
<tr>
<td>CPO1</td>
<td>ditto</td>
<td>March 1980 – present</td>
<td></td>
</tr>
<tr>
<td>DPO1</td>
<td>ditto</td>
<td>Feb. 1975 – present</td>
<td></td>
</tr>
<tr>
<td>EP01</td>
<td>ditto</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>EP02</td>
<td>ditto</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>EPO'</td>
<td>ditto</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>EP04</td>
<td>ditto</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>Streamflow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR01</td>
<td>Multiple-notch, sharp-crested weir; continuous stage recording</td>
<td>Jan. 1976 – present</td>
<td></td>
</tr>
<tr>
<td>DR01</td>
<td>ditto</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>CR01</td>
<td>Crump weir flanked by broad-crested weir; continuous stage recording</td>
<td>Nov. 1980 – present</td>
<td></td>
</tr>
<tr>
<td>DRO1</td>
<td>ditto</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>ER01</td>
<td>Multiple-notch, sharp-crested weir; continuous stage recording</td>
<td>Jan. 1976 – present</td>
<td></td>
</tr>
<tr>
<td>Evaporation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE01</td>
<td>U.S. Weather Bureau Class A evaporation pan; read weekly</td>
<td>Feb. 1975 – present</td>
<td></td>
</tr>
<tr>
<td>EE01</td>
<td>ditto</td>
<td>Feb. 1980 – present</td>
<td></td>
</tr>
</tbody>
</table>
the research catchment would clearly be desirable. The existing network provides densities ranging from one raingauge per 0.7km² for catchment C to one raingauge per 7.3km² for catchment A. These densities compare most favourably with those employed in rainfall-runoff modelling research elsewhere in South Africa such as University of Zululand (5.0km² per gauge - Hope and Mulder, 1979) and the Bethlehem rainfall augmentation area (1.8km² to 13.3km² per gauge - Cousens, 1980) as well as in typical research catchments in the United Kingdom (1.0km² to 19.7km² per raingauge - Douglas, Clarke and Newton, 1976), Switzerland (0.5km² to 12.0km² per raingauge - Haef, 1977) and Australia (14.2km² per gauge - Boughton, 1981). The raingauge density is of course only a partial indication of adequacy of the rainfall monitoring network, as actual spatial distribution of the gauges is equally important. Scrutiny of the raingauge network in Fig. 2.1 will reveal that the present distribution of gauges in the whole easterly zone of the research area is weak compared with the rest of the area. As indicated before, this is the unfortunate result of limited accessibility.

The streamflow gauging sites, CROI and DROI, have also undergone extensive modifications. During 1975 trapezoidal flumes were built at these two sites for flow gauging. Given the evidently high sediment yield from these catchments, it was hoped that the self-cleansing characteristics of the flumes would prevent serious sedimentation during large flow events (Roberts, 1978). Unfortunately, it was discovered in 1979 that the stage-discharge table that Roberts (1978) had used for the flumes was completely unsuitable, as it had been empirically developed for a structure of very different dimensions. After studying the problem, Prof. A. Rooseboom of Pretoria University advised that the flumes were in any case poor measuring devices as they were not acting as proper hydraulic controls during medium to large flow events. Consequently the occurrence of super-critical flow in the throats of the flumes was common. On his advice the flumes were subsequently modified into low Crump weirs (for low to medium flow rates), flanked by broad-crested weirs (for high flow rates). Stage recording at these sites was resumed in November 1980. Attempts were made to assess the inaccuracies in the flume-gauged stage records by applying the backwater model developed by Weiss and Midgley (1975).
to the catchment D stream channel. It was hoped that these valuable data could be salvaged to some extent. This study, based on some fifteen cross-sections upstream and downstream of the flume, was, however, fraught with so many uncertainties that the attempt had to be abandoned. Consequently, the stage records at CR01 and DR01 for the period January 1976 to September 1980 were regarded as being unfit for research purposes. This effectively reduced the number of catchments with a reasonable length of record to three - catchments A, B and E.

It will be noted from Table 2.4 that evaporation pan EE01 has a much shorter record than pan AE01. It was installed in early 1980 to provide improved estimates of free water surface evaporation in the research area and its erection was dictated by the need to have evaporation data representing the higher ground of the Ecca area, given that AFO1 was situated on low ground in the Ecca valley.

2.3.2 Data assembly and processing

Rain gauge charts are replaced weekly, as are stage recorder charts. Evaporation pan readings are also taken on a weekly basis. All charts are digitized by means of a micro-computer system at the Rhodes Hydrological Research Unit (HRU). From the start of the project until December 1980 digitization was simply at one-hour increments. Since January 1981, however, break-point digitization has been employed. The programs were developed by Dr. D. Hughes of the Rhodes HRU.

"Missing" rainfall data at any gauge site are "synthesized" by simple replacement, on an hourly basis, from the geographically closest gauge. Average catchment falls are calculated by Thiessen polygon weighting of individual point falls on an hourly basis. The past and present Thiessen weightings for catchments A, B and E are listed in Table 2.5. There are, of course, numerous methods of estimating areal average rainfall from point raingauge measurements. The most common of these are: arithmetic averaging, Thiessen weighting, isohyetal mapping, interpolation to a regular grid, trend surface analysis, multiple regression and correlation analysis. Hall (1972) reviewed 15 versions of these six techniques and concluded that
provided there is a dense network of reasonably evenly spaced rain gauges, there is little to choose among these methods. The isohyetal and interpolation techniques not practicable for calculation of "continuous" inputs to rainfall-runoff models while the trend surface and regression techniques, though suitable for modelling use, require relatively long records (±15 - 25 years) for estimation of stable statistical coefficients. In view of the foregoing and given the relative brevity of the Ecca records as well as the fact that the research area does have a dense network of rain gauges, the Thiessen weighting technique was an obvious choice for this study. (This point is explored further in section 2.3.3).

In years to come, when continuing monitoring has provided longer rainfall records in the research area, the weightings in Table 2.5 can themselves be "improved" on some rational basis. For instance, each gauge weight can be adjusted by the ratio of its annual mean to the catchment annual mean, or, even better, twelve Thiessen weighting matrices can be developed from Table 2.5 by adjusting each gauge weight by the ratio of its mean for each calendar month to the equivalent catchment (calendar) monthly mean. These adjustments take into account (to a certain extent) the orographic and exposure influences on individual sites, and, in the monthly adjustment case, even the seasonal effects, such as dominant storm types.

Daily and monthly totals of average catchment rainfall and streamflow are calculated directly from the hourly average catchment falls and the hourly instantaneous discharges. Daily values of pan evaporation are derived from the weekly readings by simple proportion with weekly values obtained from a pan of the same type, installed on the Rhodes campus and read every day. Monthly pan evaporation totals are calculated from the derived daily values. Estimates of daily or monthly potential evaporation in the form of free water surface evaporation, which is a required input variable to all the models used in this study, are achieved by multiplying each daily or monthly pan evaporation total by a pan-to-free-water-surface conversion factor for that calendar month. A set of twelve such factors, one for each calendar month, and derived for the lower Great Fish River region, was obtained from the Directorate of Water Affairs (see Table 2.2).
Table 2.5
Thiessen polygon weightings for estimation of average catchment rainfall

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AP01</td>
<td>0.059</td>
<td>0.060</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>AP02</td>
<td>0.114</td>
<td>0.111</td>
<td>0.317</td>
<td>0.614</td>
<td>0.014</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>AP03</td>
<td>0.071</td>
<td>0.052</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>BP01</td>
<td>0.126</td>
<td>-</td>
<td>0.593</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>BP02</td>
<td>0.078</td>
<td>0.147</td>
<td>0.089</td>
<td>0.359</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CP01</td>
<td>-</td>
<td>0.152</td>
<td>-</td>
<td>0.036</td>
<td>-</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>DP01</td>
<td>0.119</td>
<td>0.089</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>EP01</td>
<td>0.122</td>
<td>0.138</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>EP02</td>
<td>0.087</td>
<td>0.090</td>
<td>0.0</td>
<td>0.0</td>
<td>0.359</td>
<td>0.444</td>
<td></td>
</tr>
<tr>
<td>EP03</td>
<td>0.140</td>
<td>0.079</td>
<td>0.0</td>
<td>0.0</td>
<td>0.15</td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td>EP04</td>
<td>0.085</td>
<td>0.084</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.252</td>
</tr>
</tbody>
</table>
The erratic nature of these regional factors seemed inexplicable and so they were subjectively smoothed for this study.

2.3.3 Data quality, uncertainties and errors

In order properly to evaluate the results of the rainfall-runoff modelling investigations discussed in later chapters, it was essential to assess the quality of and uncertainties in input data used in the models, i.e. the quality of hydrometeorological data provided by the Ecca gauging network. A theme that is becoming progressively more common in rainfall-runoff modelling is echoed in a conclusion reached by Boughton (1981) after studying the effects of rainfall variability on modelling: "... errors in (input) data are probably of the same order of magnitude as errors within the modelling process and now form a barrier to further accuracy in rainfall-runoff modelling".

(a) Rainfall:

As all the models used in this study require "lumped" values of areal rainfall input – i.e. point rainfalls in some way averaged over the catchment – areal rainfall errors deserve special attention. Total areal rainfall errors may result from a combination of different individual types of errors. Hall and Barclay (1975) consider areal rainfall errors as "... a systematic measurement error of a single (point) rainfall catch, systematic spatial and elevation variations of rainfall and a random error which is dependent on the type of storm, the raingauge density and the extent to which each gauge represents the area to which it is ascribed".

(i) Errors in point measurements: Contemplation of the extensive international literature dealing with the accuracy of measurement of rainfall, some of which is contained in an annotated bibliography by the WMO (1973), as well as in a comprehensive review by Larson and Peck (1974), leads to the inevitable conclusion that the likely magnitude of systematic errors in point measurements by standard vertical raingauges must be expected to be -5% to -20%, mainly caused by over-exposure to wind and deficient catches of inclined rainfall. A
recent South African study disclosed average errors of between -25% and -32% over 37 individual storms (De Villiers, 1980). Considering the fact that the Ecca raingauges are all standard and vertically-mounted, with variable exposure and without wind shields, then at least a degree of point rainfall underestimation must be prevalent - especially during rainstorms associated with cold fronts when strong southwesterly winds may prevail.

(ii) Areal extrapolation errors: These errors can be systematic and/or random. Systematic errors arise when the raingauge distribution and density are inadequate to capture a systematic spatial variation of rainfall (e.g. winter storms in the Ecca). Random errors arise as variations in the actual rainfall pattern during a storm and from storm to storm cause the representativeness of each gauge of the area to which it is ascribed to fluctuate randomly. Clearly, the latter type of error relates to the averaging technique used.

In this research project, systematic errors may be introduced by virtue of the fact, mentioned before, that the easterly zone, i.e. the more arid part, of the research area is less densely gauged than the remainder. Perusal of Thiessen weightings in Table 2.5 reveals that switching rainfall gauging from site BP01 to site CP01 (see Fig. 2.1) reduced total "eastern-input" weighting from 0.204 to 0.147 in catchment A and from 0.682 to 0.350 in catchment B. Given the known trend of decreasing rainfall (Fig. 2.2) from south to north and from west to east, this weighting change probably decreased the accuracy of areal rainfall estimates over catchment A. However, the weighting change may actually have improved catchment B estimates as its headwater areas had formerly been underrepresented. For catchment E estimates, the weighting change may have been a mixed blessing: it reduced the former importance of gauging site EP03 which was a poor site, being in a narrow "blind" valley surrounded by hills 80 to 150 metres high. On the other hand it may have exaggerated the importance of the headwater gauges, EP01 and EP04. An in-depth study by Huff and Schickedanz (1972) may provide some clues towards evaluating how serious the variable density of raingauges over the research area may be in terms of areal rainfall errors. Investigating the errors
inherent in sparse, relative to dense networks of gauges, they showed that the error in measuring areal hourly average rainfall decreased from \(\pm 11\% \) for a gauge density of \(21 \text{ km}^2/\text{gauge} \), to \(\pm 4\% \) at a gauge density of \(2.6 \text{ km}^2/\text{gauge} \). It seems that errors related to gauge density during any storm may be expected to vary from less than \(\pm 5\% \) in the west of the Eccas research area to about double that in the east.

A simple assessment of errors (systematic and random) attributable to the chosen averaging technique, Thiessen weighting, was made by comparing Thiessen averages of a limited sample of observed rainstorms over catchment A with isohyetal and arithmetic averages. Twenty-one selected events were representative of all types of storms that have produced runoff in the Eccas catchments. The comparison is shown in Table 2.6 and the isohyetal representation of some of the storms can be seen in Figs. 3.3(a) to (i) in Chapter 3. If one accepts the assumption that the isohyetal representation of rainfall distribution is one of the most accurate averaging approaches available (if done with due recognition of orographic effects, exposure and seasonal controls), then it appears from Table 2.6 that both the Thiessen polygon and arithmetic average techniques may be slightly underestimating the catchment average falls. Over the 21 storms the mean Thiessen under-estimation was \(-3.4\%\) while the mean arithmetic average "error" was \(-4.2\%\). These "errors" were dominated however, by two events, viz. the storms of 6/3/77 and 10/1/78. These two typical thunderstorms each straddled only a portion of catchment A, with the result that there were zero readings at certain raingauges. Without these two storms, the mean "errors" drop to \(-2.2\%\) for Thiessen and \(-2.8\%\) for arithmetic averaging respectively. According to the t-test, however, none of the differences is significant at the 5\% level. The foregoing analysis indicates that, based on storm totals and except for extremely localised thunderstorms, the Thiessen approach is as satisfactory as any for the purposes of this study and, at worst, leads to only minimal underestimation.

Errors introduced by the exact "mix" of raingauges producing the catchment average relate both to the final distribution of gauges and
Table 2.6

Comparison of catchment rainfall averages (in mm) calculated by different averaging techniques (runoff-producing storms only)

<table>
<thead>
<tr>
<th>Storm starting date</th>
<th>Isohyetal mapping</th>
<th>Thiessen polygon</th>
<th>Arithmetical average</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/3/76</td>
<td>57,0</td>
<td>54,0</td>
<td>53,3</td>
</tr>
<tr>
<td>28/3/76</td>
<td>16,0</td>
<td>14,4</td>
<td>14,6</td>
</tr>
<tr>
<td>4/10/76</td>
<td>14,0</td>
<td>15,8</td>
<td>13,1</td>
</tr>
<tr>
<td>26/2/77</td>
<td>31,0</td>
<td>30,8</td>
<td>30,3</td>
</tr>
<tr>
<td>28/2/77</td>
<td>26,0</td>
<td>25,8</td>
<td>25,5</td>
</tr>
<tr>
<td>6/3/77</td>
<td>12,0</td>
<td>7,0</td>
<td>6,9</td>
</tr>
<tr>
<td>6/5/77</td>
<td>37,0</td>
<td>34,8</td>
<td>33,9</td>
</tr>
<tr>
<td>7/5/77</td>
<td>25,0</td>
<td>20,9</td>
<td>21,9</td>
</tr>
<tr>
<td>1/12/77</td>
<td>17,0</td>
<td>15,8</td>
<td>16,0</td>
</tr>
<tr>
<td>30/12/77</td>
<td>53,0</td>
<td>52,1</td>
<td>51,3</td>
</tr>
<tr>
<td>9/1/78</td>
<td>19,7</td>
<td>19,4</td>
<td>19,4</td>
</tr>
<tr>
<td>10/1/78</td>
<td>15,0</td>
<td>8,0</td>
<td>8,8</td>
</tr>
<tr>
<td>3/2/78</td>
<td>21,0</td>
<td>22,4</td>
<td>22,0</td>
</tr>
<tr>
<td>19/4/78</td>
<td>44,0</td>
<td>45,3</td>
<td>44,4</td>
</tr>
<tr>
<td>21/4/78</td>
<td>35,0</td>
<td>35,5</td>
<td>35,7</td>
</tr>
<tr>
<td>5/10/78</td>
<td>45,0</td>
<td>41,6</td>
<td>41,5</td>
</tr>
<tr>
<td>1/11/78</td>
<td>22,0</td>
<td>21,2</td>
<td>21,5</td>
</tr>
<tr>
<td>28/2/79</td>
<td>25,0</td>
<td>27,0</td>
<td>26,6</td>
</tr>
<tr>
<td>20/7/79</td>
<td>159,6</td>
<td>154,3</td>
<td>157,1</td>
</tr>
<tr>
<td>23/7/79</td>
<td>29,0</td>
<td>28,6</td>
<td>28,5</td>
</tr>
<tr>
<td>19/8/79</td>
<td>95,0</td>
<td>93,2</td>
<td>94,1</td>
</tr>
</tbody>
</table>

Averages
Average 38,0 36,7 36,4
St. deviation 33,9 33,2 33,8
to the missing data "patching" technique used - in this case, substituting hourly totals from the "nearest neighbour". Due to the dusty and harsh conditions in the Ecca, syphon and clock failures - in spite of weekly maintenance - result in between 5 and 20 missed gauge-periods of one or more hours each per normal month, and these patched in the aforementioned way. Almost the only way to quantify the effects of any particular "mix" of raingauges on the accuracy of the output from any rainfall-runoff model is to operate the calibrated model on rainfall derived from different subsets of the total network and then to compare these model outputs with the original model outputs stemming from "total network" inputs. This is also a fruitful avenue along which to explore the relative importance of systematic or random errors in rainfall or evaporation input data in terms of their effects on model outputs: contaminate the original model inputs by the required error type and observe changes in model outputs. Such an exercise, using the Ecca data base and the Stanford Watershed Model (Crawford and Linsley, 1966), is discussed in paragraph 2.3.3(e).

(b) Streamflow: In an analysis of South African streamflow-gauging practice, Muller (1977) evaluates the errors inherent to the records produced by the best flow-gauging structures in the national network of the Directorate of Water Affairs (including stage-discharge rating errors) as between +5% and +10%. The multiple-notch, sharp-crested weirs used for gauging the outputs from catchments A, B and E are on a par with the best in South Africa. Consequently, flow records of these catchments can confidently be expected to be in error by no more than +5% to +10% at least for monthly totals. The compound Crump/broad-crested weirs serving catchments C and D may have an even higher accuracy than the above three weirs, but may suffer a deterioration in low-flow accuracy during large events that deposit large amounts of sediment in their relatively small weir-pools. Sediment deposition is in fact the single most serious threat to accurate flow-gauging in the Ecca catchments because it reduces the stilling-pond effect required to bring approach velocities to zero. Although the weir-pools at the outlets of catchments A, B and E are sizeable, the latter two had to be excavated after massive deposits of sediment during a flood in August 1979.
In summary, the quality of the flow records for catchments A, B and E can be regarded as very good, by South African standards, with the only suspect data belonging to the latter part of the August 1979 flood in catchments B and E. There were no periods of missing data in these three catchments.

(c) Evaporation: For a comprehensive review on the suitability, advantages and disadvantages of the use of pans for evaporation estimation, the reader is referred to Gangopadhyaya et al. (1966). There are four primary sources of errors in the use of evaporation pans for areal potential evaporation estimates: inadequate distribution of measuring sites, effects of the wind regime on individual pans, effects of advection of heat energy not representative of the natural environment, and the pan factor, i.e. the relationship of pan evaporation to free water surface or "lake" evaporation, commonly assumed to be equal to potential evaporation. Some random errors can also be related to pan discoloring and the observation time interval.

(i) Distribution of measuring sites: During the period February 1975 to January 1980 evaporation gauging took place at only one site in the research area, namely at AE01 (see Fig. 2.1). Table 2.7 compares the 4-weekly totals of weekly evaporation readings at AE01 with those at EE01, the pan installed in January 1980. Over the 32-month period the mean monthly evaporation has been slightly higher at EE01 than at AE01, viz. 126.2mm as opposed to 122.0mm. The t-test applied to pairs of 4-weekly totals could only detect a difference between the two samples at a probability level of 20%, which is commonly regarded as too high to exclude the possibility that the differences between the two sets of pan readings are due to chance alone. However, the monthly distribution of differences between the two sites as listed in Table 2.7 does suggest a pattern: pan evaporation at site EE01 appears to be higher in early to mid-winter and vice versa in early to mid-summer.

(ii) Effects of wind regime: Errors caused by wind patterns over the pan are likely to fluctuate in time and could be either random or systematic. A systematic error would be caused by a site
Table 2.7

Difference\(^*1\) (in %) of 4-weekly evaporation totals read at pan EE01 relative to readings at pan AE01

<table>
<thead>
<tr>
<th>Month</th>
<th>1980</th>
<th>1981</th>
<th>1982</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>+14,1</td>
<td>-9,3</td>
<td>+2,4</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>-0,6</td>
<td>0</td>
<td>-6,2</td>
<td>-3,4</td>
</tr>
<tr>
<td>March</td>
<td>+0,6</td>
<td>+1,7</td>
<td>+1,3</td>
<td>+3,9</td>
</tr>
<tr>
<td>April</td>
<td>+3,8</td>
<td>-3,7</td>
<td>-3,3</td>
<td>-1,1</td>
</tr>
<tr>
<td>May</td>
<td>+8,4</td>
<td>+4,8</td>
<td>+12,2</td>
<td>+8,5</td>
</tr>
<tr>
<td>June</td>
<td>-3,3</td>
<td>+11,1</td>
<td>+15,0</td>
<td>+7,6</td>
</tr>
<tr>
<td>July</td>
<td>+21,3</td>
<td>+8,1</td>
<td>+6,8</td>
<td>+12,1</td>
</tr>
<tr>
<td>August</td>
<td>+8,5</td>
<td>-10,5</td>
<td>-0,9</td>
<td>-1,0</td>
</tr>
<tr>
<td>September</td>
<td>+1,9</td>
<td>-18,2</td>
<td>0</td>
<td>-5,4</td>
</tr>
<tr>
<td>October</td>
<td>-6,5</td>
<td>-7,6</td>
<td>.</td>
<td>-7,1</td>
</tr>
<tr>
<td>November</td>
<td>-6,0</td>
<td>-10,2</td>
<td>.</td>
<td>-8,1</td>
</tr>
<tr>
<td>December</td>
<td>-0,1</td>
<td>-6,7</td>
<td>.</td>
<td>-3,4</td>
</tr>
</tbody>
</table>

\(^*1\) Difference = 100 \((\text{EE01} - \text{AE01})/\text{AE01}\)

Table 2.8

Weightings applied to evaporation pen data for estimation of catchment average evaporation\(^*1\)

<table>
<thead>
<tr>
<th>Catchments</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan AE01</td>
<td>0,58</td>
<td>0,58</td>
<td>0,74</td>
<td>1,0</td>
<td>0,21</td>
</tr>
<tr>
<td>Pan EE01</td>
<td>0,42</td>
<td>0,42</td>
<td>0,26</td>
<td>0,0</td>
<td>0,79</td>
</tr>
</tbody>
</table>

\(^*1\) In effect from February 1980.
that is over- or under-exposed relative to the major part of the catchment. Because of its altitude and greater exposure, a different wind regime almost certainly prevails in the EE01 meso-environment compared to the AE01 meso-environment. However, it was felt that an altitude/physiographic zone over the whole research area could probably be defined with a wind regime reasonably similar to that of EE01 and that EE01 evaporation values would be representative of wind-related evaporation from such a zone. After careful consideration and based on subjective assessment of advection and catchment conditions, all catchment areas above the 426.7 m (1400 ft) contour were classified as having EE01 evaporation and the rest of the research area as having AE01 evaporation. The resultant weightings of the two pans are listed in Table 2.8. This rather subjective weighting of data from the two pans could possibly be an additional source of systematic error, given the apparent systematic evaporation differences between the two pans evident in Table 2.7.

(iii) Advection effects: The location of AE01 in a deep valley almost certainly ensures a higher degree of advection than that experienced by EE01 on the flatter uplands. Higher advection leads to higher evaporation values, explaining perhaps the higher evaporation totals observed in summer at AE01. Along with consideration of the wind regime, the advection phenomena of the meso-environments of the two pans played a role in area-related weightings of the two evaporation records (Table 2.8).

(iv) Pan factors: The twelve monthly pan factors provided by the Directorate of Water Affairs (see Table 2.2) are of unknown accuracy. They were determined by comparing evaporation values in floating pans on certain large dams in the Great Fish River catchment with estimated dam evaporation losses. These estimates are based on a monthly mass balance of the dams, calculated from measured in-and outflows and assuming certain seepage losses. The errors involved in this form of mass balance are usually large, but even if one assumes that levels of accuracy can be reached equivalent to those achieved by the most accurate method for estimating dam evaporation, i.e. by complete energy budgeting, then one still has to accept errors of ±15% on a monthly basis (Winter, 1981). The pan factors can therefore be expected to contain errors larger than ±15% and their use on a daily basis will increase this error further. On an annual
basis the error should drop to below ±10% (Winter, 1981). The discontinuous change in pan factor from one month to the next is also likely to be a source of random and/or systematic error, as is the rather subjective smoothing of the original pan factors, mentioned earlier. A further systematic error would be introduced if the mesoenvironment of the Ecca pans are not representative of the environments of the regional dams used for the determination of the regional factors. On the basis of all the above facts, it does seem as if the errors in daily values introduced by the use of smoothed regional monthly pan factors in this project are unlikely to be smaller than ±20%.

(v) Effects of discolouring: The harsh and dusty conditions of the research area rapidly cause discolouring even of freshly painted or washed pans. Dust forms a layer on the bottom of the pans and along with discolouring and algal growth changes the albedo of the pans. Errors caused by these problems would be random, but could be sizeable. Gangopadhyaya et al. (1966) report a study on the effects of colour (albedo) where eight pans of different colours were compared with a new galvanized pan. The extremes of the differences between the pans were represented by an unpainted copper pan, +7% of the control pan's evaporation, and a white pan, -17% of the control pan evaporation.

(vi) Observation interval: The proportioning of weekly pan readings in the Ecca area by daily pan readings in Grahamstown could cause sizeable errors in daily evaporation data used in this project. In summer these errors would be small and random - probably about ±5% - but in winter the errors would be larger and could be systematic; up to ±20% would be possible. The winter/summer difference is due to the fact that in winter Grahamstown often experiences a light drizzle over a few consecutive days while the research area may be experiencing relatively hot, sunny weather.

(d) Error summary: In evaluating the foregoing discussion of
uncertainties and errors present in data produced by the hydrometeorological gauging network in the Ecca catchments, it is important to keep the percentages and time frames mentioned in perspective. A large percent difference in small numbers, for example, may not represent much water, but a small percent difference in large numbers can involve a considerable quantity of water. Also, long term averages generally have smaller errors of estimation than short term averages.

To summarize, and to integrate the errors in all aspects of the gauged hydrology of the research area, three sets of simple error estimates were made using Ecca data and representing a daily, a monthly and an annual time frame, respectively. For the daily time frame the event with the biggest daily runoff total was chosen, viz. 21-22 August 1979, for the monthly case the month containing the biggest daily event, August 1979, which also happens to be the highest runoff month, and for the annual case the year 1979. Details of the error estimates are contained in Table 2.9. Individual error percentages are based on typical values gleaned from literature referred to earlier, tempered by subjective assessment of the Ecca network. For each of the hydrological components, precipitation, streamflow and evaporation, a "total error" was derived following the principle (Winter, 1981) that the propagation of error in a measurement can be approximated by summing the variances and covariances of the measurement errors introduced by individual components of that measurement. Streamflow can be used as an example.

In section 2.3.3(b) it was stated that there are two known sources of error in the Ecca flow-gauging procedure: inherent errors associated with the combination of weir and stage/discharge relationship used (WSD) and errors introduced by weir-pool sedimentation (WPS). The propagation of streamflow (SF) error can now be written as:

\[\text{Var}(e_{SF}) = \text{Var}(e_{WSD}) + \text{Var}(e_{WPS}) + 2\text{Cov}(e_{WSD}, e_{WPS}) \]

\[(2.1) \]

where
\(e \) = error at each error source
\(\text{Var} \) = variance
\(\text{Cov} \) = covariance
The covariance term can be ignored because the two sources of streamflow errors are independent. By means of the volumetric errors derived from the percentages shown in Table 2.9, the total volumetric error in streamflow gauging during the 21-22 August 1979 event can be estimated:

\[e_{SF} \approx (3.0^2 + 3.0^2)^{0.5} = 4.2 \text{mm}. \]

An identical procedure is used to calculate the total volumetric error in precipitation and evaporation measurements.

The question arises as to how the total volumetric errors in the measurement of the three hydrometeorological data sets used in this study can be related to rainfall-runoff model performance. This can be done by following a procedure similar to that represented by 2.1, namely by approximating the "overall error" to which a model using the Ecca data set would be exposed by the variances and covariances of the individual total errors in each separate data set used. This leads to the equation:

\[\text{Var}(OE) = \text{Var}(P) + \text{Var}(E) + \text{Var}(e_{SF}) + 2\text{Cov}(P,e_{SF}) + 2\text{Cov}(P,e_{E}) + 2\text{Cov}(E,e_{SF}) \]

\[+ 2\text{Cov}(E,e_{E}) + 2\text{Cov}(E,e_{SF}) \]

\[\text{-------------}(2.2) \]

where \(OE \) = overall error
\(P \) = precipitation
\(E \) = evaporation
\(SF \) = streamflow

Because measurement of each hydrometeorological component is considered independent of the measurement of the other components, covariances can be ignored. By substituting the total volumetric compound errors from Table 2.9 into equation 2.2, overall errors which would affect a rainfall-runoff model during calibration or verification can be approximated. For instance, the overall volumetric error a model would "see" during simulation of the event of 21-22 August 1979 would be:
Table 2.9

Typical estimates of likely errors in hydrometeorological data used in this study

<table>
<thead>
<tr>
<th>Component or error source</th>
<th>2-daily total 21/22 Aug.1979</th>
<th>Monthly total August 1979</th>
<th>Annual total 1979</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Error (%) or gauged value (mm)</td>
<td>Error (%) or gauged value (mm)</td>
<td>Error (%) or gauged value (mm)</td>
</tr>
<tr>
<td>PRECIPITATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauge placement</td>
<td>7,5</td>
<td>6,4</td>
<td>9,8</td>
</tr>
<tr>
<td>Gauge density</td>
<td>7,5</td>
<td>6,4</td>
<td>5</td>
</tr>
<tr>
<td>Areal averaging</td>
<td>5</td>
<td>4,3</td>
<td>4</td>
</tr>
<tr>
<td>Data patching</td>
<td>6</td>
<td>5,1</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL ERROR</td>
<td>11,2</td>
<td></td>
<td>.3</td>
</tr>
<tr>
<td>STREAMFLOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharp-crested weir</td>
<td>10</td>
<td>3,0</td>
<td>5</td>
</tr>
<tr>
<td>Weir-pool sediment</td>
<td>10</td>
<td>3,0</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL ERROR</td>
<td>4,2</td>
<td></td>
<td>4,2</td>
</tr>
<tr>
<td>EVAPORATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class A pan</td>
<td>10</td>
<td>0,1</td>
<td>10</td>
</tr>
<tr>
<td>Pan factor</td>
<td>30</td>
<td>0,4</td>
<td>20</td>
</tr>
<tr>
<td>Gauge density</td>
<td>15</td>
<td>0,2</td>
<td>10</td>
</tr>
<tr>
<td>Areal averaging</td>
<td>10</td>
<td>0,1</td>
<td>7,5</td>
</tr>
<tr>
<td>Daily proportion</td>
<td>10</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL ERROR</td>
<td>0,5</td>
<td></td>
<td>23,5</td>
</tr>
<tr>
<td>OVERALL ERROR</td>
<td>12,0</td>
<td>27,4</td>
<td>209,6</td>
</tr>
</tbody>
</table>
overall error = \((11,2^2 + 4,2^2 + 0,5^2)^{0,5} = 12,0\text{mm}\)

The results in Table 2.9 put all statements made in later chapters of this document relating to the accuracy of hydrograph simulations, the soundness of model performances and the consequent representativeness of model structures and parameters, into a specific perspective: inherent overall volumetric errors in the total data set used can be more that 10mm per individual major runoff event, more that 25mm for large monthly totals and more than 200mm for large annual totals.

(e) Effects of data errors on model outputs: Studies of the effects of data errors on model outputs have been done for rainfall by Dawdy and Bergman (1969), Chapman (1970), Ibbitt (1972), Wilson et al. (1979), Boughton (1981); for evaporation by Parmele (1972) and Ibbitt (1972); for streamflow by Ibbitt (1972) and Sorooshian and Dracup (1980). Ibbitt (1972) found that the closeness of fit of simulated and observed runoff data was most influenced by random errors in the runoff record and least influenced by random errors in the evaporation record. It must be stressed that Ibbitt's finding is of a relative nature, as most of the researchers referred to the above showed in their efforts to quantify the sizeable errors in model outputs caused by input data errors. For instance, Parmele (1972) shows that in semi-arid catchments in Pennsylvania it may be necessary to estimate potential evapotranspiration to better than ±10% to achieve a reasonable fit between simulated and observed yields. The earlier discussion on errors in Ecca evaporation data makes one aware that Parmele's finding poses a formidable problem to modellers - a problem that can probably only be solved by using techniques of distributed modelling and mapping of potential evapotranspiration, such as developed by Schulze (1981) and Najjar, Ambroise and Mercier (1981).

As the main purpose of the earlier discussions on and analyses of the quality of the Ecca data sets was that evaluation of rainfall-runoff model performance may be facilitated, it follows logically that some of the foregoing ideas regarding model input data "contamination" by errors should be implemented by means of a modelling example. The well-known Stanford Watershed Model\(^3\), as calibrated for Ecca catchment
A (discussed in Chapter 3), was chosen to explore briefly the importance of various input error types and sizes in final model performance. The calibrated Stanford model was operated with each of eleven consecutive treatments of the original input data and the treatment effects judged by observing changes in the shapes, volumes and peaks of six representative runoff hydrographs, as well as in the MAR over the five-year calibration period. Table 2.10 lists some of the results of the exercise: the April 1978 event represents the most important thunderstorm flood hydrograph on record while the August 1979 event was the largest flood caused by a frontal weather system. Fig. 2.6 gives a visual impression of the hydrograph shape changes caused by some of the data input treatments.

For the first two treatments indicated in Table 2.10 the model was first run with a subset of five Thiessen-averaged raingauge records as input, namely AP02, EP01, EP02, EP03 and EP04, and secondly, with the subset, AP02, BP01 and BP02. As can be expected, a raingauge configuration biased to the higher rainfall zones in the catchment, i.e. treatment (1), will substantially increase the predicted MAR. The opposite volume and peak changes caused in the April 1978 event by treatments (1) and (2), reflect the storm pattern (Fig. 3.3(f)) that caused the runoff and illustrate the extent to which an unfavourable raingauge configuration can affect the simulation of individual events. Treatments (3), (4), (8) and (9) comprised constant proportional increases or decreases of hourly inputs in the case of rainfall and of daily inputs in the case of evaporation. It is worth noting that the model is much more sensitive to systematic errors in rainfall inputs than evaporation inputs, and also that in relative terms systematic under- or over-estimation of rainfall affects the simulation of smaller runoff events more than that of larger runoff events. This result can be related to the fact that soil-moisture-accounting models are usually highly non-linear (as are real-life catchments) in their response to rainfall while their moisture stores are still filling up, but become less non-linear under saturated conditions.

The "mixed" and random errors, introduced as treatments (5), (6), (7), (10) and (11), were selected from the error ranges shown on a
A (discussed in Chapter 3), was chosen to explore briefly the importance of various input error types and sizes in final model performance. The calibrated Stanford model was operated with each of eleven consecutive treatments of the original input data and the treatment effects judged by observing changes in the shapes, volumes and peaks of six representative runoff hydrographs, as well as in the MAR over the five-year calibration period. Table 2.10 lists some of the results of the exercise: the April 1978 event represents the most important thunderstorm flood hydrograph on record while the August 1979 event was the largest flood caused by a frontal weather system. Fig. 2.6 gives a visual impression of the hydrograph shape changes caused by some of the data input treatments.

For the first two treatments indicated in Table 2.10 the model was first run with a subset of five Thiessen-averaged rain gauge records as input, namely AP02, EP01, EP02, EP03 and EP04, and secondly, with the subset, AP02, BP01 and BP02. As can be expected, a rain gauge configuration biased to the higher rainfall zones in the catchment, i.e. treatment (1), will substantially increase the predicted MAR. The opposite volume and peak changes caused in the April 1978 event by treatments (1) and (2), reflect the storm pattern (Fig. 3.3(f)) that caused the runoff and illustrate the extent to which an unfavourable rain gauge configuration can affect the simulation of individual events. Treatments (3), (4), (8) and (9) comprised constant proportional increases or decreases of hourly inputs in the case of rainfall and of daily inputs in the case of evaporation. It is worth noting that the model is much more sensitive to systematic errors in rainfall inputs than evaporation inputs, and also that in relative terms systematic under- or over-estimation of rainfall affects the simulation of smaller runoff events more than that of larger runoff events. This result can be related to the fact that soil-moisture-accounting models are usually highly non-linear (as are real-life catchments) in their response to rainfall while their moisture stores are still filling up, but become less non-linear under saturated conditions.

The "mixed" and random errors, introduced as treatments (5), (6), (7), (10) and (11), were selected from the error ranges shown on a
Table 2.10

Changes (in %) in output from calibrated*1 Stanford Model due to error contamination of input data

<table>
<thead>
<tr>
<th>Data treatment</th>
<th>Event:</th>
<th></th>
<th></th>
<th></th>
<th>5-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>April 1978*2</td>
<td>August 1979*3</td>
<td></td>
<td></td>
<td>MAR</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
<td>Peak</td>
<td>Volume</td>
<td>Peak</td>
<td></td>
</tr>
</tbody>
</table>

RAINFALL

(1) 5 Rain gauges
(2) 3 Rain gauges
(3) -10% Systematic error
(4) +5% Systematic error
(5) +5 to -10% Mixed error
(6) +6 to -15% Mixed error
(7) +15 to -15% Random error

EVAPORATION

(8) -20% Systematic error
(9) +20% Systematic error
(10) +10 to -10% Random error
(11) +20 to -20% Random error

*1 One warm-up year and five years calibration period used; discussed in Chapter 3.
*2 Thunderstorm event: Observed volume and peak are 2.33mm and 2.68m³/s respectively.
*3 Frontal storm event: Observed volume and peak are 50.88mm and 35.40m³/s respectively.
Figure 2.6 Changes in output from calibrated Stanford Model due to error contamination of input data (see overleaf)
random basis by employing a pseudo-random number generator in the model computer program. Each of the five treatments under discussion was repeated a few times to ascertain the degree of variability caused by random errors. The repeat of course produced different outputs because a different array of errors was introduced (albeit from an identical error range), but the five examples shown are fairly typical of the size and type of model output changes. Treatments (5) and (6) represent "mixed" error conditions: a small systematic bias (-2.5\% to -3.5\%) towards under-estimation of rainfall with random errors superimposed, which can be a common situation in catchment modelling. Results for these two treatments show that even small systematic errors cannot be expected to be neutralized by random errors. Treatments (7), (10) and (11) suggest that completely random errors do not affect the MAR very much but individual events may be substantially affected. Again the model responses to errors in smaller runoff-producing rainstorms were in relative terms much more affected than in the case of major storms. Although Table 2.10 does not show it, individual runoff events simulated during months with high evaporative demands - November to February - are considerably affected by random evaporation errors.

2.3.4 Summary of monthly and annual data used in this study

The lack of reliable flow gauging in catchments C and D before November 1980 meant that this study had to be confined to the three catchments A, B and E. Tables 2.11, 2.12 and 2.13 list full summaries of monthly totals of average catchment rainfall, average catchment pan evaporation and streamflow.

The runoff during July and August 1979 clearly dominates the runoff record of all three catchments. Each of these months experienced a major frontal storm lasting several days and producing multiple-peaked flood hydrographs. The highest daily fall of the July 1979 storm was estimated to have a return period of well over 50 years, based on a probability analysis of regional rainfall, while the August 1979 storm was awarded a return period well over 25 years. A 101-year flow series, synthetically generated for the Ecc catchments by means of the Stanford Watershed Model and discussed in Chapter 6,
| YEAR | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | TOTAL |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 76 | 39.9| 1.2 | 1.0 | 4.7 | 5.1 | 5.6 | 46.7| 11.1| 17.5| 39.6| 19.0| 57.6| 340.9|
| 77 | 27.9| 3.3 | 3.8 | 4.3 | 7.8 | 3.0 | 24.4| 7.6 | 9.2 | 4.7 | 7.5 | 5.3 | 100.4|
| 78 | 17.8| 4.4 | 4.9 | 2.0 | 4.7 | 3.0 | 7.8 | 4.7 | 8.0 | 4.7 | 6.8 | 13.3| 93.0|
| 79 | 46.8| 16.3| 1.0 | 2.4 | 8.2 | 14.6| 24.3| 24.3| 24.3| 24.3| 24.3| 24.3| 192.3|
| 80 | 31.9| 17.2| 14.3| 7.6 | 12.3| 8.2 | 12.3| 12.3| 12.3| 12.3| 12.3| 12.3| 12.3|
| 81 | 44.8| 10.4| 11.3| 7.6 | 11.0| 11.0| 11.0| 11.0| 11.0| 11.0| 11.0| 11.0| 11.0|
| XTOTAL| 15.2| 13.7| 8.5| 6.7| 4.2| 7.1| 7.5| 6.5| 4.7| 4.5| 4.5| 100.0| |

MEAN ANNUAL RAINFALL = 467.4 MM.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>0.4</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>77</td>
<td>0.0</td>
</tr>
<tr>
<td>78</td>
<td>17.7</td>
<td>11.2</td>
<td>0.0</td>
</tr>
<tr>
<td>79</td>
<td>3.3</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>80</td>
<td>0.0</td>
</tr>
<tr>
<td>81</td>
<td>0.0</td>
</tr>
<tr>
<td>XTOTAL</td>
<td>0.8</td>
<td>0.4</td>
<td>8.6</td>
<td>8.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

MEAN ANNUAL RUNOFF = 167.0 THOUS. CUB. MET.

SUMMARY OF AVERAGE CATCH, EVAP. ABOVE USMRD (MM) (A-PAN)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>123.0</td>
</tr>
<tr>
<td>77</td>
<td>123.0</td>
</tr>
<tr>
<td>78</td>
<td>123.0</td>
</tr>
<tr>
<td>79</td>
<td>123.0</td>
</tr>
<tr>
<td>80</td>
<td>123.0</td>
</tr>
<tr>
<td>81</td>
<td>123.0</td>
</tr>
<tr>
<td>XTOTAL</td>
<td>119.9</td>
</tr>
</tbody>
</table>

MEAN ANNUAL EVAP. = 1840.0 MM.
Table 2.12

SUMMARY OF AVERAGE CATCH RAIN ABOVE Q9921 (MM)

PERIOD OF RECORD: JAN. 1975 TO DEC. 1981

<table>
<thead>
<tr>
<th>YEAR</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>11.1</td>
<td>33.0</td>
<td>92.3</td>
<td>8.7</td>
<td>4.7</td>
<td>47.6</td>
<td>11.1</td>
<td>16.6</td>
<td>19.3</td>
<td>1.0</td>
<td>16.3</td>
<td>26.7</td>
<td>464.</td>
</tr>
<tr>
<td>76</td>
<td>62.6</td>
<td>71.0</td>
<td>10.7</td>
<td>7.6</td>
<td>6.8</td>
<td>7.9</td>
<td>11.5</td>
<td>7.3</td>
<td>6.7</td>
<td>6.5</td>
<td>35.9</td>
<td>23.7</td>
<td>521.</td>
</tr>
<tr>
<td>77</td>
<td>14.9</td>
<td>137.3</td>
<td>25.1</td>
<td>65.0</td>
<td>68.8</td>
<td>5.3</td>
<td>2.3</td>
<td>8.4</td>
<td>6.3</td>
<td>6.6</td>
<td>104.2</td>
<td>528.</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>38.4</td>
<td>52.5</td>
<td>13.3</td>
<td>7.5</td>
<td>6.6</td>
<td>45.0</td>
<td>145.0</td>
<td>119.0</td>
<td>47.7</td>
<td>70.1</td>
<td>39.4</td>
<td>43.5</td>
<td>667.</td>
</tr>
<tr>
<td>79</td>
<td>46.0</td>
<td>66.7</td>
<td>13.3</td>
<td>7.5</td>
<td>6.6</td>
<td>45.0</td>
<td>145.0</td>
<td>119.0</td>
<td>47.7</td>
<td>70.1</td>
<td>39.4</td>
<td>43.5</td>
<td>667.</td>
</tr>
<tr>
<td>80</td>
<td>38.4</td>
<td>52.5</td>
<td>13.3</td>
<td>7.5</td>
<td>6.6</td>
<td>45.0</td>
<td>145.0</td>
<td>119.0</td>
<td>47.7</td>
<td>70.1</td>
<td>39.4</td>
<td>43.5</td>
<td>667.</td>
</tr>
<tr>
<td>81</td>
<td>46.0</td>
<td>66.7</td>
<td>13.3</td>
<td>7.5</td>
<td>6.6</td>
<td>45.0</td>
<td>145.0</td>
<td>119.0</td>
<td>47.7</td>
<td>70.1</td>
<td>39.4</td>
<td>43.5</td>
<td>667.</td>
</tr>
</tbody>
</table>

TOTAL | 47.8 |

MEAN ANNUAL RAINFALL = 478.8 MM.

SUMMARY OF OBSERVED FLOWS AT Q9921 (THOUS. CUB. MET.)

PERIOD OF RECORD: JAN. 1976 TO DEC. 1981

<table>
<thead>
<tr>
<th>YEAR</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>5.1</td>
<td>0.6</td>
<td>67.4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>75.1</td>
</tr>
<tr>
<td>77</td>
<td>9.0</td>
<td>6.0</td>
<td>11.0</td>
<td>3.3</td>
<td>20.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>38.2</td>
</tr>
<tr>
<td>78</td>
<td>5.2</td>
<td>0.0</td>
<td>67.4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>75.1</td>
</tr>
<tr>
<td>79</td>
<td>7.0</td>
<td>1.0</td>
<td>67.4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>38.2</td>
</tr>
<tr>
<td>80</td>
<td>7.0</td>
<td>1.0</td>
<td>67.4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>38.2</td>
</tr>
<tr>
<td>81</td>
<td>7.0</td>
<td>1.0</td>
<td>67.4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>38.2</td>
</tr>
</tbody>
</table>

TOTAL | 0.7 |

MEAN ANNUAL RUNOFF = 177.7 THOUS. CUB. MET.

SUMMARY OF AVERAGE CATCH EVAP ABOVE Q9921 (MM) (A-PAN)

PERIOD OF RECORD: JAN. 1975 TO DEC. 1981

<table>
<thead>
<tr>
<th>YEAR</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.5</td>
<td>177.2</td>
<td>15.4</td>
<td>151.6</td>
<td>121.7</td>
<td>102.0</td>
<td>147.9</td>
<td>169.4</td>
<td>94.8</td>
<td>224.1</td>
<td>62.0</td>
<td>108.4</td>
<td>1784.</td>
</tr>
<tr>
<td>76</td>
<td>266.6</td>
<td>167.6</td>
<td>128.1</td>
<td>93.0</td>
<td>76.5</td>
<td>106.4</td>
<td>90.7</td>
<td>113.0</td>
<td>120.2</td>
<td>155.0</td>
<td>269.3</td>
<td>287.9</td>
<td>1784.</td>
</tr>
<tr>
<td>77</td>
<td>265.0</td>
<td>168.4</td>
<td>105.5</td>
<td>122.6</td>
<td>103.9</td>
<td>113.0</td>
<td>142.6</td>
<td>162.1</td>
<td>122.1</td>
<td>191.2</td>
<td>193.7</td>
<td>229.2</td>
<td>1784.</td>
</tr>
<tr>
<td>78</td>
<td>196.4</td>
<td>184.9</td>
<td>114.4</td>
<td>151.1</td>
<td>131.1</td>
<td>87.2</td>
<td>97.1</td>
<td>121.9</td>
<td>154.0</td>
<td>158.0</td>
<td>229.2</td>
<td>262.5</td>
<td>1784.</td>
</tr>
<tr>
<td>79</td>
<td>244.6</td>
<td>212.2</td>
<td>190.0</td>
<td>129.2</td>
<td>141.3</td>
<td>72.3</td>
<td>81.9</td>
<td>119.2</td>
<td>134.5</td>
<td>171.6</td>
<td>229.2</td>
<td>262.5</td>
<td>1784.</td>
</tr>
<tr>
<td>80</td>
<td>263.0</td>
<td>177.2</td>
<td>169.3</td>
<td>137.6</td>
<td>126.2</td>
<td>80.0</td>
<td>101.5</td>
<td>113.8</td>
<td>127.6</td>
<td>181.0</td>
<td>177.5</td>
<td>198.7</td>
<td>1850.</td>
</tr>
<tr>
<td>81</td>
<td>104.4</td>
<td>154.8</td>
<td>102.1</td>
<td>116.8</td>
<td>77.5</td>
<td>63.8</td>
<td>59.8</td>
<td>66.9</td>
<td>135.6</td>
<td>171.2</td>
<td>181.0</td>
<td>209.1</td>
<td>1603.</td>
</tr>
</tbody>
</table>

TOTAL | 10.7 |

MEAN ANNUAL EVAP. = 7815.4 MM.
Table 2.13

Summary of Aver. Catch Rain Above Q9924 (mm)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>47.8</td>
<td>51.3</td>
<td>45.7</td>
<td>45.7</td>
<td>47.3</td>
<td>47.8</td>
<td>47.8</td>
<td>47.8</td>
<td>47.8</td>
<td>47.8</td>
<td>47.8</td>
<td>47.8</td>
<td>556.5</td>
</tr>
<tr>
<td>77</td>
<td>44.4</td>
<td>532.8</td>
</tr>
<tr>
<td>78</td>
<td>44.4</td>
<td>532.8</td>
</tr>
<tr>
<td>79</td>
<td>44.4</td>
<td>532.8</td>
</tr>
<tr>
<td>80</td>
<td>44.4</td>
<td>532.8</td>
</tr>
<tr>
<td>81</td>
<td>44.4</td>
<td>532.8</td>
</tr>
<tr>
<td>XTOTAL</td>
<td>6.5</td>
<td>15.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Mean Annual Rainfall = 220.3 mm.

Summary of Observed Flows at Q9924 (Thous. Cub. Met.)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>0.0</td>
</tr>
<tr>
<td>77</td>
<td>0.0</td>
</tr>
<tr>
<td>78</td>
<td>0.0</td>
</tr>
<tr>
<td>79</td>
<td>0.0</td>
</tr>
<tr>
<td>80</td>
<td>0.0</td>
</tr>
<tr>
<td>81</td>
<td>0.0</td>
</tr>
<tr>
<td>XTOTAL</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Mean Annual Runoff = 399.6 Thous. Cub. Met.

Summary of Aver. Catch, Evap Above Q9924 (mm) / (a-Pan)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>180.3</td>
</tr>
<tr>
<td>77</td>
<td>180.3</td>
</tr>
<tr>
<td>78</td>
<td>180.3</td>
</tr>
<tr>
<td>79</td>
<td>180.3</td>
</tr>
<tr>
<td>80</td>
<td>180.3</td>
</tr>
<tr>
<td>81</td>
<td>180.3</td>
</tr>
<tr>
<td>XTOTAL</td>
<td>12.0</td>
<td>120.0</td>
</tr>
</tbody>
</table>

Mean Annual Evap. = 1344.2 mm.
suggests that annual runoff of the order of magnitude of the 1979 total can be expected no more than two to three times in 100 years.

2.4 COMPARISON OF CHARACTERISTICS AFFECTING HYDROLOGICAL RESPONSE OF CATCHMENTS A, B and E

2.4.1 Introduction

One of the objectives of this study is to evaluate with how much success explicit soil moisture accounting rainfall-runoff models can be used in ungauged catchments to generate a runoff time series where no runoff record exists. Such an analysis is described in Chapter 8 in which the parameter values of the models calibrated in catchments A and B are transferred respectively to the remaining two catchments and runoff time series generated for these two catchments in each case. These flow series are then compared with the original observed flow series in these two catchments. Good correspondence between the observed and the new flow series (after parameter transfer) signifies successful parameter transfer and strengthens confidence in the usefulness of such a model in the ungauged situation.

The principal determinant of successful parameter transfer is the degree of hydrological similarity between the gauged and the ungauged catchments (Linsley, 1976). This similarity must encompass the maximum possible number of catchment characteristics, such as climate, lithology, soils, vegetation, physiographic and geomorphic parameters, drainage patterns and land use. Here the underlying principle is that a high degree of similarity in the above factors would ensure similarity in hydrological response, which in turn would ensure similarity of model parameters. Clearly interpretation of the outcome of parameter transfer between catchments A, B and E, discussed in Chapter 8, would be much enhanced by a synthesis of all information that has a bearing on the hydrological response of these three catchments. Such a synthesis is attempted below.

2.4.2 Comparison of physical characteristics

Table 2.14 lists the numerical values of certain geomorphic and
physiographic characteristics of the three catchments under consideration, while Table 2.15 details the spatial distribution of geological, vegetation and slope categories. The Table 2.14 values were digitized by micro-computer from 1:50000 maps, aided by aerial photographs, while the values in Table 2.15 were taken from Roberts (1978). Hypsometric analyses, illustrating the relation of horizontal cross-sectional drainage basin areas to elevation of the cross-section relative to the basin outlets, were reported in Roberts (1978). The hypsometric relationships of all five Ecca catchments, taken from the latter source, are shown in Fig. 2.7. Cumulative area vs. slope curves, according to Roberts (1978), are depicted in Fig. 2.8. The reader is also reminded of maps showing the spatial distribution of vegetation density, geological formations and slopes referred to earlier as Figs. 2.3, 2.4 and 2.5, respectively. The only hydrologically important characteristic in which no quantified information exists is soil type and distribution. A limited soil survey is at the time of writing (October 1982) in progress, but the results will not be available until well into 1983. The following inferences regarding hydrologic response are possible from the foregoing tabulated and graphic information.

Catchment E is a substantially flatter catchment than the other two - both in terms of the mean catchment slope and the proportion of catchment area with mild slopes. Superposition of the geology map (Fig. 2.4) on the slopes map (Fig. 2.5) reveals that geomorphological control may be exercised by the Dwyka and Witteberg formations, resulting in the flat uplands of E. Of the three catchments, E has by far the greatest percentage of "dense" vegetation cover, as well as the lowest drainage density. Field experience suggests that, proportionally speaking, deeper, fine-textured soils are more common in E. Without forcing the argument at this stage, the balance of the above physical evidence points to the likelihood of larger catchment losses and a much more dampened hydrological response in catchment E than in the other two. (This does not imply that A and B are completely similar; indeed catchment B is steeper than A, is less efficiently drained and has a different distribution of geological formations.)
Table 2.14

Physiographic indices of the Ecca catchments

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catchment area (km²)</td>
<td>73,1</td>
<td>9,1</td>
<td>23,1</td>
</tr>
<tr>
<td>Mean catchment slope</td>
<td>0,199</td>
<td>0,263</td>
<td>0,178</td>
</tr>
<tr>
<td>Catchment perimeter (km)</td>
<td>42,2</td>
<td>13,7</td>
<td>24,9</td>
</tr>
<tr>
<td>Maximum relief (m)</td>
<td>570</td>
<td>373</td>
<td>455</td>
</tr>
<tr>
<td>Median altitude above weir</td>
<td>0,41</td>
<td>0,61</td>
<td>0,56</td>
</tr>
<tr>
<td>as proportion of max. relief</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of main channel (km)</td>
<td>24,9</td>
<td>6,7</td>
<td>10,6</td>
</tr>
<tr>
<td>Centre of gravity of catchment:</td>
<td>9,8</td>
<td>4,4</td>
<td>6,3</td>
</tr>
<tr>
<td>channel distance from weir (km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope (10% : 85%) of main channel</td>
<td>0,016</td>
<td>0,037</td>
<td>0,030</td>
</tr>
<tr>
<td>Drainage density (km/km²)</td>
<td>4,34</td>
<td>2,33</td>
<td>1,83</td>
</tr>
<tr>
<td>Elongation ratio</td>
<td>0,39</td>
<td>0,51</td>
<td>0,52</td>
</tr>
<tr>
<td>Lemniscate ratio</td>
<td>0,58</td>
<td>0,61</td>
<td>0,56</td>
</tr>
</tbody>
</table>

*1 Mean catch. slope = total contour length . contour interval
catchment area

Slope (10%:85%) of main channel = (Hgg - Hig)/(0,75 . channel length)
with Hc = height at point c% of channel length

Drainage density = total tributary length / catchment area

Elongation ratio = 1,129. (catch. area)⁰.⁵ / catchment length
= catch. shape compared with circle

Lemniscate ratio = (catch. length)² / 4 . catchment area
= catch. shape compared with pear shape
Table 2.15

Proportions (%) of catchment areas*1 belonging to various categories of physical characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Category</th>
<th>Catchment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Geology</td>
<td>Shales</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Sandstone</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Tillite</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Quartzite</td>
<td>4</td>
</tr>
<tr>
<td>Vegetation density</td>
<td>Ground cover</td>
<td>Dense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sparse</td>
</tr>
<tr>
<td></td>
<td>Canopy cover</td>
<td>Dense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sparse</td>
</tr>
<tr>
<td>Slopes</td>
<td>Less than 10%</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>10% to 20%</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20% to 40%</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>More than 40%</td>
<td>12</td>
</tr>
</tbody>
</table>

*1 After Roberts (1978)
Figure 2.7 Hypsometric curves for the Ecca catchments (from Roberts, 1978)

Figure 2.8 Cumulative area/slope curves for the Ecca catchments (from Roberts, 1978)
2.4.3 Comparison of observed rainfall-runoff behaviour

Preliminary analyses of all storm runoff events in the three catchments for the period 1976-1979 were reported by Görgens (1980) and Murray and Görgens (1981). Both these studies revealed that catchment E generated storm runoff (measurable at the weir) much less frequently than A and B, produced fewer small-volume runoff events, displayed on the average a tendency towards lower hydrological response (i.e. larger losses) per major runoff-producing storm and required on the average higher antecedent rainfalls before stormflow was initiated.

A summary of the observed hydrological behaviour of the three Ecca catchments is provided in Table 2.16, while their standardized flow duration curves have been plotted in Fig. 2.9. Data contained in both the table and the figure corroborate the suggestion made in the preceding section on the basis of physical catchment characteristics that catchment E is hydrologically dissimilar to catchments A and B. It must be stressed, however, that the dissimilarity is expressed in relative terms only, and that the range of hydrological response types exemplified by the three Ecca catchments is quite typical of South African semi-arid catchments seen on a macro-scale, if compared with the analysis by Görgens and Hughes (1982) of streamflow records from 30 semi-arid catchments in South Africa (selected on the basis of representativeness and reasonable data quality). For example, over the 30 catchments the mean long-term runoff coefficient came out at 4.8%, the mean MAR at 19.1 mm, the mean monthly coefficient of variation at 56.2% and the mean percentage of zero-flow months at 37.1%. Nevertheless, on the basis of hydrological response types at the meso-scale, which is the scale relevant to the Ecca study, catchment E displays meaningful differences relative to catchments A and B. In terms of these differences the prognosis for parameter transfer between A, B and E must at this stage be that in general there should be more risk in transferring parameters to E from A or B than between A and B. Chapter 8 will address this question in depth.
Figure 2.9 Standardized flow duration curves for the Ecca catchments
Table 2.16
Comparison of observed hydrological response variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Catchment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Measured MAP (mm), 1975-1981</td>
<td>487</td>
</tr>
<tr>
<td>(Range)</td>
<td>347-649</td>
</tr>
<tr>
<td>Measured MRT (mm), 1976-1981</td>
<td>23,12</td>
</tr>
<tr>
<td>Measured MAB (10^3 m^3), 1976-1981</td>
<td>1691</td>
</tr>
<tr>
<td>(Range)</td>
<td>30-8563</td>
</tr>
<tr>
<td>Measured MAB/MAP (%) , 1976-1981</td>
<td>4,59</td>
</tr>
<tr>
<td>Zero-flow months (%) , 1976-1981</td>
<td>41,7</td>
</tr>
<tr>
<td>Coef. of variation: monthly flows, 1976-1981</td>
<td>4,7</td>
</tr>
<tr>
<td>No. of discrete hydrograph rises, 1976-1979*</td>
<td>20</td>
</tr>
<tr>
<td>Mean runoff coefficient per stormflow event (%) , 1976-1979*</td>
<td>4,89</td>
</tr>
<tr>
<td>Max. runoff coefficient (%) , 1976-1979*</td>
<td>34,27</td>
</tr>
<tr>
<td>Max. instantaneous discharge (mm/h)*</td>
<td>1,67</td>
</tr>
<tr>
<td>Max. stormflow runoff event (mm)*</td>
<td>36,05</td>
</tr>
</tbody>
</table>

* From Murray and Görgens (1981)
CHAPTER 3

MODELS PITH and PITR - PITMAN'S HOURLY MODEL MODIFIED
IMPROVED AND COMPARED WITH THE STANFORD WATERSHED MODEL

3.1 HISTORY OF PITMAN'S HOURLY MODEL

During the period 1972-1977 a suite of three explicit soil moisture-accounting conceptual rainfall-runoff models was developed at the Hydrological Research Unit (HRU), University of the Witwatersrand (Pitman, 1973; 1976; 1977) under guidance of Prof. D.C. Midgley. The three models require respectively monthly, daily and hourly rainfall totals, as well as long-term mean monthly Symons pan evaporation values, as input streams. Pitman designed his suite of models to operate satisfactorily in terms of commonly-used water resources engineering criteria when using input data typically available to the South African user, viz. records from the national hydro-meteorological monitoring networks of the Department of Environment Affairs, the Weather Bureau and the Department of Agriculture. The quality and accuracy of such data vary considerably and non-stationarities and periods of missing data are not uncommon. In the above context, Pitman thought it prudent to strive for simplicity in his models and considered the mathematical representations of the relevant hydrological processes as ".....just about sufficient for the purpose of simulating runoff to an acceptable degree of accuracy. Improvements in correlations between observed and simulated runoff could no doubt be achieved by introducing further more complex functions involving additional parameters but the task of calibrating such a model would be rendered highly complicated" (Pitman, 1976).

While the monthly and daily input versions of Pitman's model were intended for South African water resources analysis and planning purposes, the hourly model was specifically designed for flood forecasting application, as demonstrated in studies of flood forecasting for reservoir operation by Basson (1978) and Pitman and Basson (1979).
Figure 3.1 depicts the essential elements of the hourly model, as described in Pitman and Basson (1979). The following summary of the conceptualization of the model is taken directly from the latter source (pp. 2.1-2.3):

"The first storage that must be filled before rainfall reaches the ground is the interception store. Thereafter, water that does not infiltrate into the soil is held in depression storage as potential surface runoff. When this store (represented by parameter SU) is overtopped the surplus water becomes surface runoff.

"Water is evaporated from interception storage at the potential rate. Once this store is depleted evaporation takes place from the depression store, also at the potential rate. Evaporation from the soil itself is assumed to take place only when both interception and depression stores have been depleted.

"Spillage from depression storage is divided into surface flow and interflow. In modelling this separation it was assumed that low rates of spillage would generate a high proportion of the relatively slow response (interflow) and, conversely, that high rates of spillage would yield a high proportion of the quick response (surface flow)..... The parameter DIV can be envisaged as the limiting interflow rate....."

The hourly model was designed to be structurally similar to the daily model, so that the daily model could be used for initial calibration and for "warming-up" during pre-flood months. The internal variables in warmed-up status were then easily transferred from the daily to the hourly model a few days modelling time prior to the flood event to be simulated, so that the hourly model served for predictions during the flood proper. As this model was designed to operate in a practical real-time forecasting mode, its input data requirements were kept to a minimum, (i.e. long-term mean monthly Symons pan values). Furthermore, the use of the daily model during the warm-up period effected economies in both computer time and input data.
Figure 3.1 Flow diagram for Pitman's original hourly model (after Pitman and Basson, 1978)
Using this "mixed" model, Pitman and Basson (1979) reported a high degree of success in simulating flood volumes in the Hartbeespoort Dam catchment, but less success in simulating flood peaks. In a comparison of his hourly model with the Stanford Watershed model using data from the Jukseki catchment near Johannesburg, Pitman (1977) showed that as regards simulation of peak, volume and timing of flood hydrographs, the performance of the Stanford model was no better than that achieved by his hourly model. However, the two reported applications of Pitman's hourly model have revealed certain shortcomings in the performance of the model which needed further investigation with the view to improvements. These shortcomings can be summarised as follows:

Shortcoming 1: From the plots of simulated versus observed hydrographs in Pitman and Basson (1979, pp. 3.16-3.17) it appears that the model often failed to reproduce the later parts (both peak and volume) of composite flood hydrographs. Although inadequate representation of the distribution of storm rainfall, both in time and space, could account for some simulation errors, failure to reproduce the later parts of the composite hydrographs may be indicative of structural shortcomings in the model. As the later peaks of composite flood hydrographs usually represent the response of an already wet catchment to further rainfall (often neither much nor intense), those components of the model that dictate model output of quickflow during periods of exceedence of maximum soil moisture storage level, ST, perhaps need modification. The excess over ST, called SPILL, is added directly to the groundwater store, GWS. Conceptually, it may be more correct to divide SPILL between groundwater and quickflow.

Shortcoming 2: Rainfall of low intensity and prolonged duration caused simulation errors, because the mean monthly values of potential evaporation input resulted in serious overestimates of evaporation rates during such events, leading to underestimation of the consequent floods (Pitman and Basson, 1979, p. 3.20). However, this failure of the model could perhaps additionally be related to the model's inability to produce quickflow during wet catchment conditions, as stated in the previous paragraph. When using the model in forecast mode where the acquisition of potential evaporation data simultaneous
with incoming rainfall information may be difficult to arrange, the hourly evaporation values during storms, should perhaps be pre-set at some representatively low value, e.g. at an equivalent daily rate of between 0.1mm and 1.0mm.

Shortcoming 3: The model was "too sensitive" to high intensity rainfall (such as occurs in convectional thunderstorms) which led to exaggerated quick-flow generation (Pitman pers. comm., 1981). This problem implies inadequate infiltration and/or depression storage functions. There are two likely solutions to this problem. Firstly, the infiltration and depression storage functions could be reformulated to cope with high intensity rainfall. Secondly, these functions could remain unchanged, but the "potential surface runoff" already calculated could be allowed to undergo re-infiltration before being subjected to lagging and channel routing.

3.2 APPLICATION OF PITMAN'S ORIGINAL HOURLY MODEL IN SEMI-ARID CATCHMENTS

In the light of the aforementioned encouraging results of the applications of Pitman's hourly model to the Jukskei and Hartbeespoort Dam catchments, and taking cognisance of the fact that solutions might exist for all three of the model shortcomings outlined above, it was decided to make the attempted improvement of the model a special objective of this study. To this end, the computer program encompassing the hourly section of the forecast model algorithms was extracted from Pitman and Basson (1979). This program was then modified to run as an independent continuous catchment model with hourly rainfall inputs. To enhance accuracy further, the model was altered to accept inputs of daily A pan evaporation values and to spread each day's evaporation by a triangular distribution between 07h00 and 19h00. The model component controlling actual evaporation as a function of soil moisture storage state and potential evaporation (see section 3.6.8 for details) was also made more flexible.

At this level of modification it was felt that the model was still basically identical to Pitman's original version and its ability to simulate runoff in the Ecca catchments had to be ascertained to
provide a "baseline" for attempted improvements. Two different tests of the model were undertaken. Firstly, the model program was modified to enable it to be fitted to selected flow events only, whereafter it was manually calibrated on the six most important flow events in Ecca catchments A and B respectively. The results of this exercise are discussed in the next few paragraphs. The second test took the form of an intercomparison of Pitman's hourly model with his daily and monthly models, as well as with the Stanford model, based on an analysis of their ability to reproduce the monthly and annual streamflow statistics of Ecca catchments A, B and E for the six years for which streamflow gaugings were available. The results of this second test are discussed in detail in Chapter 7. Suffice it to say that the hourly model produced, relatively speaking, the poorest performance of the four models. All three shortcomings outlined in the previous section were evident in this application of the model.

Table 3.1 lists the dates of the flow events in the Ecca catchments selected for testing the model in its original and modified modes. An impression of the results of fitting the original model to the selected flow events in the Ecca catchments A and B can be gained from Table 3.2, as well as Fig. 3.2. Figs. 3.3(a) to (i) provide isohyetal maps of all storms used in this exercise, while Figs. 3.4(a) to (c) depict the temporal distribution of each storm on the basis of average catchment falls. A warm-up period of one year was used and the calibration was based on optimizing the statistical measures of fit shown in Table 3.2, as well as on the visual comparison of simulated with observed hydrographs. Not much attention was paid to the absolute minimization of errors in mean annual runoff (MAR) and standard deviation of monthly runoff totals, nor to overall fitting criteria and no verification was attempted. This procedure was followed because the exercise was essentially exploratory in nature and aimed at revealing weaknesses in the model structure and behaviour. Consequently, the focus had to fall on individual hydrographs and not on overall statistics.

The criteria shown in Table 3.2 were chosen because it was thought they would provide a balanced overall impression of the ability of the model to simulate a range of flow events. An exact
mathematical definition of these criteria (and all other statistical criteria used in this report) can be found in Appendix A. The coefficient of efficiency is a measure of one-to-one fit which measures the model's success at simulating the hydrograph shapes while the peak-volume objective function is designed to give approximately equal weight to the errors in peak and volume and, when minimized, should provide a balanced measure of the fit of these two important hydrograph characteristics.

Table 3.2 and Fig. 3.2 reveal that the model fared better on catchment A than on B. However, in both cases the later parts of the composite hydrographs were poorly simulated. The large positive error in mean peak flow rates and volumes on B and the lack of improvement in the peak-volume objective function were mostly due to the exaggerated response of the model to high intensity short duration convectional thunderstorm rainfall input during the events of 27/28 February 1977 (peak hourly total of rainfall = 25.3mm). While the above test provided further evidence of the shortcomings outlined in the previous section, it also uncovered additional shortcomings, all of which represent conceptual errors of a more or less serious nature in the model structure and the algorithms contained in the published computer program of the model (Pitman and Basson, 1979):

Shortcoming 4: Actual evaporation estimates are exaggerated because no provision was made in the computer program to ensure that evaporation from the soil store may take place only when both interception and depression stores have been depleted, and that in such a case only the residual potential evaporative demand was applied to the soil. This means that during time increments when the interception, depression and soil stores are all near full capacity, the actual evaporation for that time increment can be up to twice the input potential evaporation. This may be a simple oversight on the part of the model developer; nevertheless the evaporation algorithm in the model is conceptually very suspect, because the model effectively "creates" potential evaporation.

Shortcoming 5: Negative soil moisture states can occur in the
Table 3.1

Dates of selected flow events

<table>
<thead>
<tr>
<th>Event No.</th>
<th>Catchment A</th>
<th>Catchment B</th>
<th>Catchment E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>28/2/77-1/3/77</td>
<td>27/2/77 28/2/77</td>
<td>7/5/77-8/5/77</td>
</tr>
<tr>
<td>3</td>
<td>7/5/77-8/5/77</td>
<td>7/5/77-8/5/77</td>
<td>21/7/79-26/7/79</td>
</tr>
<tr>
<td>5</td>
<td>21/7/79-27/7/79</td>
<td>24/7/79-25/7/79</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2

Summary of overall results for Pitman's original hourly model fitted*1 to selected flow events

<table>
<thead>
<tr>
<th>Statistical Criteria</th>
<th>Catchment A (73,1 km²)</th>
<th>Catchment B (9,1 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall nCE*2</td>
<td>-0,79</td>
<td>0,57</td>
</tr>
<tr>
<td>Mean Peak Error (%)</td>
<td>-100,0</td>
<td>-100,0</td>
</tr>
<tr>
<td>Mean Volume Error (%)</td>
<td>-100 0</td>
<td>-100,0</td>
</tr>
<tr>
<td>Mean Peak Timing Error (hr)</td>
<td>-</td>
<td>+2</td>
</tr>
<tr>
<td>Peak Volume O.F.*3 (m³/s)²</td>
<td>4591</td>
<td>538</td>
</tr>
<tr>
<td>No. of Calibration Runs</td>
<td>20</td>
<td>31</td>
</tr>
</tbody>
</table>

*1 All statistical criteria of fit are defined in Appendix A
*2 Overall coefficient of efficiency based on hourly values
*3 Peak-Volume Objective Function
*4 Value of the statistic when simulated flows all set to zero
Figure 3.2(a) Observed and simulated hydrographs: catchment A (see overleaf)
Figure 3.2(a) Observed and simulated hydrographs: catchment A (see overleaf)
Figure 3.2(b) Observed and simulated hydrographs: catchment B (see overleaf)
Figure 3.3(a) to 3.3(f) Isoyetal maps for all storms used in hourly model tests (see following pages)
(scale in meters)
Figure 3.4(a) to 3.4(c) Hourly distribution of selected storms: catchments A, B and E (see following pages)
CATCHMENT A

- March 1976
- April 1978
- July 1979
- August 1979

Rainfall in millimetres

Hourly distribution
model, especially using semi-arid data, because the model program does not check for and correct this eventuality. Using a test parameter set and data from the Ecce catchments, it was found that negative soil moisture states actually do develop after prolonged dry spells. However, the effect on model simulations seems negligible for the data sets used. Nevertheless, though not serious in their model output consequences, negative soil moisture states are conceptually unacceptable.

Shortcoming 6: Only the surface flow part of the potential surface runoff of the model can be lagged. This implies that the model flow diagram given by Pitman and Basson (1979) is misleading (see Fig. 3.1). In this diagram the lagging function should appear in the surface runoff stream before the confluence of the three output streams. This error makes it theoretically possible for the interflow for a certain time increment to be output by the model before there has been surface flow for that time increment. Conceptually, this does not make sense, and the interflow component should be lagged as well.

Shortcoming 7: Outflow from the interflow linear store is calculated for a specific time increment from the storage state at the end of the previous time increment. This leads firstly to a built-in lag of one time increment in interflow which may or may not be acceptable and secondly, to a slightly erroneous interflow volume for any specific time interval. Analysis of simulated near-peak flow components revealed that interflow was often as important in the model's production of peaks as surface flow was - a fact confirmed by Pitman (pers. comm., 1982) for the Hartbeespoort Dam study as well. It is consequently important to improve the interflow component of the model. Preferably, outflow from the interflow linear store should be based upon the average storage state of the store for any time increment.

3.3 Modifications to Pitman's Hourly Model: Versions Pith and Pitr

Modifications to Pitman's hourly model that would overcome all the aforementioned shortcomings would constitute a major improvement
only if the inherent virtues - simplicity, case of calibration and unambiguous conceptual meaning of model parameters - were not sacrificed in the process. The re-infiltration function proposed in the discussion of shortcoming 3 would certainly compromise the virtues much more than apparent solutions to the other six shortcomings. For this reason, it was decided to undertake modifications in three separate but overlapping steps:

(a) solutions to shortcomings 4 and 5 as a matter of necessity because they represent errors in the model program,

(b) in addition to (a), modifications to overcome all shortcomings including a re-infiltration function,

(c) in addition to (a), modifications to overcome shortcomings 1, 2, 6 and 7 only, i.e. excluding re-infiltration.

Pre-conditions to all modifications were (i) that introduction of new model parameters was to be avoided if possible and (ii) that retention of the maximum possible degree of compatibility with Pitman's daily model would be sought to ensure the structural equivalence required by the "mixed" model flood forecasting approach used by Pitman and Basson (1979).

Development work on all modifications, except the introduction of interflow-lagging, was done on catchment B events only. It was hoped the minimal attenuation and lag in response of the small catchment would allow the focus to remain on other aspects of the modelling process. Promising modifications were subsequently applied to selected events on catchments A and E and the overall performance assessed. Again a warm-up period of one year was used. Assessment criteria were the same as those defined in Table 3.2, but in addition percent error in MAR was minimized to ensure that the model did approximately simulate the overall water balance of the catchment. The more important modifications are outlined below:

(1) Re-infiltration of "potential surface runoff": Re-infiltration of overland flow generated on a hillslope during a storm
is a well-known phenomenon (Knapp, 1978; Dunne, 1978). Surface ponding occurs at a source area on a hillslope due either to continued exceedence of the average infiltration rate or to saturation of the surface soil layers at that site. This leads to overland flow under the influence of gravity, with rills and micro-gullies acting as the main conduits. However, some of this water soon flows over soil having higher infiltration capacity than that of the source area and infiltrates at these points. Furthermore, overland flow arriving in a local depression or being trapped by a small obstruction can also be subjected to additional infiltration. Introduction of a re-infiltration function in the model requires answers to two questions:

* at what point in the structure of the models should re-infiltration act on "potential surface runoff" - before it enters the depression store (along with the latter's contents), or after it spills over from the depression store and before lag-routing takes place (along with the contents of the depression store), or only on the contents of the depression store?

* which infiltration rates should hold for re-infiltration?

The former question was explored by calibrating the model individually with each of the three stated options on catchment B events. As will be seen in the discussion of the results of modification applications in section 3.4, the third option, namely re-infiltrating only the contents of the depression store, was clearly the best of the three options. The second question was more difficult to answer, but after attempting options such as using either a constant re-infiltration rate which is a function of that time increment's existing infiltration rate, or a special re-infiltration function requiring a new model parameter (to be avoided), it was decided that the "tidiest", and perhaps conceptually safest, assumption would be that the model's original infiltration function (see section 3.4) should be re-employed at this point in the computer program. Inevitably, the incorporation of a re-infiltration function along these lines would affect the conceptual meaning of model parameters SU, ZMINN and ZMAXN (see Fig. 3.1).
At this juncture it may be informative to consider the little-known fact that the developers of the famous Stanford Watershed Model (Crawford and Linsley, 1966; Hydrocomp Inc., 1969) also employed the re-infiltration concept - albeit in an indirect way. Their solution to the twin problems of where re-infiltration fits into the model and at what rate it should take place was relatively pragmatic and simple. The Stanford model merely adds the contents of the "upper soil zone store" (roughly equivalent to Pitman's depression store, SU) at the start of any time increment to the residual incoming rainfall (after interception) for that time increment and then processes this combined moisture quantity through the infiltration function. It was felt that the three re-infiltration options outlined above for Pitman's model, though similar to the Stanford model approach, was conceptually more accurate.

(ii) Separation of spillage from soil moisture store, S: Given certain soil/slope/vegetation combinations, subsurface discharge can be a major contributor to the flood hydrograph (Hewlett and Hibbert, 1967; Dunne and Black, 1970; Heyman, 1973; Zaslavsky and Sinai, 1981). Such subsurface flow originates in up-slope soil zones that become saturated by infiltrating rainwater plus re-infiltrating overland flow particularly where there are favourable soil matrices or macro-pores to convey the water down-slope in the direction of the stream channel. Saturated subsurface flow can contribute to the rising limb, peak and early part of the falling limb of the flood hydrograph while unsaturated flow contributes to the hydrograph recession and even to the baseflow (Whipkey and Kirkby, 1978). Recharge of groundwater is obviously also enhanced by saturated soils. Conceptually, the variable SPILL, calculated in Pitman's hourly model as soil moisture excess over maximum soil store capacity ST, is roughly equivalent to potential subsurface discharge as described above. SPILL should therefore be divided into a quickflow component, as well as a delayed flow component, and not only the latter as in the original model version. Various formulations were rejected for failing adequately to simulate the multipeak hydrographs of July and August 1979 before the following successful approach was reached: SPILL is divided into
interflow and groundwater additions. In modelling this division the original assumption underlying interflow/surface flow separation (see section 3.1) was re-employed. It was assumed that low rates of spillage from the soil store would generate a high proportion of the relatively slow response (groundwater) and, conversely, that high rates of spillage would yield a high proportion of the quicker response (interflow). (These two model responses would then respectively represent real-life processes of unsaturated subsurface discharge plus groundwater recharge, and saturated subsurface stormflow.) The above separation needs to be governed by a model parameter, which in the case of interflow/surface flow separation in the original model, is the parameter DIV. In an endeavour to avoid the introduction of a new model parameter for groundwater/interflow separation, various unsuccessful attempts to relate this separation to some function of DIV was made. Ultimately, the incorporation of a new parameter, DIVG, had to be accepted as inevitable and the division of SPILL was represented by equation 3.12 (section 3.6.9).

(iii) Lagging and routing of the interflow components: Experimentation with separate lag parameters for interflow and surface flow, respectively, using selected floods in catchments A and E revealed that because most of the major flood hydrograph peaks comprised variable "mixtures" of these two flow components, the two optimum lag values always came out very close. Consequently, addition of another new parameter could be avoided by using the same lag parameter, LAG, for both surface runoff and interflow. The routing of interflow through a linear storage was furthermore modified such that release from storage is related to the average storage state during a time increment, instead of the starting storage state (original assumption). Equation 3.13 (section 3.6.10) represents this linear-storage routing of interflow.

In order to facilitate distinction between the modified model versions containing the three re-infiltration function options outlined above and the modified model without re-infiltration, the four versions were named P1TR(1), PITR(2), PITR and PITH, respectively.
3.4 COMPARISON OF PERFORMANCE OF MODEL VERSIONS PITH AND PITR

The comparison of model versions PITH and PITR was based firstly on their ability to simulate individual selected flood hydrographs in Ecca catchments A, B and E, and secondly on their ability to reproduce overall annual, monthly and daily streamflow statistics for these three catchments. The latter comparison is reported in Chapter 7 as part of the general model intercomparison, while the former comparison is discussed below.

Interim and final results of various stages of model modifications are shown in Figs. 3.5(a) and (b), while Table 3.3 details the modification stages referred to in Fig. 3.5. Tables 3.4(a) and (b) contain values of goodness-of-fit criteria for the final calibration runs for each model/catchment combination. Optimum parameter sets are listed in Table 3.5, and Figs. 3.6(a), (b) and (c) provide comparisons of simulated with observed flood hydrographs as produced by the final calibration runs.

Before discussing the results in detail, a few remarks on the search for a suitable re-infiltration function would be in order. While testing the three re-infiltration options outlined in section 3.3 it was soon recognized that subjecting all "potential surface runoff" to re-infiltration either before entering, or after leaving the depression store, i.e. PITR(1) and PITR(2), produced very similar outcomes. These two options caused exaggerated accretions to soil moisture storage - to the extent that, to maintain the same overall water balance, parameter ST had to be increased to values between 33 and 67 percent higher than those required by the other modified and unmodified versions of the model. (See Table 3.5). These two re-infiltration options had to be rejected because "optimum" ST/ZMAXN combinations caused most of the smaller flow events to be completely suppressed while the later parts of larger composite flood hydrographs and/or groundwater flow were severely over-predicted. It was clear that these options made the infiltration process far too dominant in the model structure and that the conceptual content of parameters ST, ZMAXN, ZMINN and SU was unacceptably altered by the model changes.
3.4 COMPARISON OF PERFORMANCE OF MODEL VERSIONS PITH AND PITR

The comparison of model versions PITH and PITR was based firstly on their ability to simulate individual selected flood hydrographs in Ecca catchments A, B and E, and secondly on their ability to reproduce overall annual, monthly and daily streamflow statistics for these three catchments. The latter comparison is reported in Chapter 7 as part of the general model intercomparison, while the former comparison is discussed below.

Interim and final results of various stages of model modifications are shown in Figs. 3.5(a) and (b), while Table 3.3 details the modification stages referred to in Fig. 3.5. Tables 3.4(a) and (b) contain values of goodness-of-fit criteria for the final calibration runs for each model/catchment combination. Optimum parameter sets are listed in Table 3.5, and Figs. 3.6(a), (b) and (c) provide comparisons of simulated with observed flood hydrographs as produced by the final calibration runs.

Before discussing the details in detail, a few remarks on the search for a suitable re-infiltration function would be in order. While testing the three re-infiltration options outlined in section 3.3 it was soon recognized that subjecting all "potential surface runoff" to re-infiltration either before entering, or after leaving the depression store, i.e. PITR(1) and PITR(2), produced very similar outcomes. These two options caused exaggerated accretions to soil moisture storage - to the extent that, to maintain the same overall water balance, parameter ST had to be increased to values between 33 and 67 percent higher than those required by the other modified and unmodified versions of the model (See Table 3.5). These two re-infiltration options had to be rejected because "optimum" ST/ZMAXN combinations caused most of the smaller flow events to be completely suppressed while the later parts of larger composite flood hydrographs and/or groundwater flow were severely over-predicted. It was clear that these options made the infiltration process far too dominant in the model structure and that the actual content of parameters ST, ZMAXN, ZMINN and SU was unacceptably altered by the model changes,
Figure 3.5(a) Results of model modifications by stages: catchment A
Figure 3.5(a) Results of model modifications by stages: catchment A.
Figure 3.5(b) Results of model modifications by stages:
catchment B

Mean Peak and Volume Error of Individual Events (%)

82 Peak-Volume Objective Function (m^3/s^2)

A-G Stage of Model Modification

PITR

PITH

PITR (2)
Table 7.3

Stages of model modifications and calibration runs

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Stage</th>
<th>Details of stage</th>
<th>No. of calibration runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Starting point</td>
<td>Calibrate Pitman's original hourly model (unmodified)</td>
<td>20</td>
</tr>
<tr>
<td>A</td>
<td>Run PITR (depression storage re-infiltration) without interflow lag and routing modification, using parameters from the calibration of the original model</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>Calibrate PITR without interflow lag and routing modification</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>C</td>
<td>Calibrate PITR, including interflow lag and routing modification</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>Run PITH (no re-infiltration) including all modifications, using parameters from the calibration of the original model</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Calibrate PITH including all modifications</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>Starting point</td>
<td>Calibrate Pitman's original hourly model (unmodified)</td>
<td>31</td>
</tr>
<tr>
<td>A</td>
<td>Run PITR(2) (re-infiltration of spillage from depression store), using parameters from the calibration of the original model and all modifications included</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Catchment</td>
<td>Stage*</td>
<td>Details of Stage</td>
<td>No. of calibration runs</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>Calibrate PITR(2), including all modifications</td>
<td>35</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Run PITR (depression store re-infiltration) using parameters from the calibration of the original model; all modifications, except SPILL division included</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>Calibrate PITR, all modifications, except SPILL division included</td>
<td>41</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>Calibrate PITR, incorporating SPILL division</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>Run PITH (no re-infiltration); including all modifications; using parameters from the calibration of the original model</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>Calibrate PITH, including all modifications</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>Calibrate PITR (depression store re-infiltration), including all modifications</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calibrate PITH (no re-infiltration), including all modifications</td>
<td>14</td>
</tr>
</tbody>
</table>

* Refers to Fig. 3.5(a) and (b)
thereby threatening the desired compatibility with Pitman's daily model. In contrast, re-infiltrating only the contents of the depression store seemed to offer fewer of the above undesirable side-effects so this was chosen as the "best" re-infiltration approach, and led to model version PITR. Fig. 3.5 shows that the best combination of goodness-of-fit criteria values that could be achieved with PITR(2) falls far short of the best achieved with both PITH and PITR and required a number of calibration runs (Table 3.3) of the same order of magnitude for PITR and much fewer for PITH.

From a comparison of the overall outcome of the tests for goodness-of-fit of the final PITR and PITH model runs shown in Tables 3.4(a) and (b), it can be concluded that the PITR performance is superior in catchment B, PITH is superior in catchment E and the performance of the two models is similar in catchment A. However, looking in detail at the goodness-of-fit statistics, it is notable that PITR produced no runoff (error = 100 percent) in the case of five small events, a failure not exhibited - . A visual comparison of simulated with observed hydrographs, Figs. 3.6(a), (b) and (c), reveals that the larger, composite hydrographs of July and August 1979 were somewhat better simulated by PITH in catchments A and E, while PITR modelled the equivalent events better in catchment B. It is abundantly clear from Figs. 3.5(a) and (b) and Figs. 3.6(a) and (b) that as far as simulating major composite flood hydrographs in the Ecc catchments is concerned, both PITH and PITR are superior to Pitman's original model.

Another point worth noting in Table 3.4(a) and (b) is the exact magnitude of the peak and volume errors in the simulation of the major events - catchment A events no. 5 and 6, catchment B events no. 4, 5 and 6 and catchment E events no. 3 and 4. The average peak and volume errors for PITH are +27% and +23%, respectively, while the average equivalent errors for PITR are +26% and +30%, respectively. It appears that although the shapes of these complex hydrographs could often be simulated fairly closely, occasional large errors in either peak or volume estimation could not be avoided. During calibration it was noticed that, especially with PITH, it could have been possible to
achieve parameter sets that would have minimized the average volume error to the region of \(\pm 10\% \), but greatly increased errors in peak estimation would have resulted. The final parameter sets chosen as "optimum" tended to distribute any errors among peak, volume and shape (coefficient of efficiency).

Noteworthy about Table 3.5 is that final parameter values listed there are in the case of PITH fairly similar for catchments A and B as far as the main runoff volume control parameters - ST, ZMAXN, ZMINN and SU - are concerned, with catchment E requiring somewhat different values. However, in the case of PITR no such trend is discernible. Common to both PITH and PITR is the fact that the major model store ST is required to take on a value for catchment E that is more than 50\% higher than for A and B. This may be a reflection of some of the physical inter-catchment differences discussed in section 2.4.

Specific criticisms of the performance of the two models can be summarised as follows:

PITH:

(a) Severe suppression of runoff from smaller rainstorms.

(b) Unrealistically sudden (and delayed) production of high rates for the July 1979 event.

(c) Exaggerated baseflow (groundwater flow) levels in catchment A.

(d) Requires more calibration runs than PITH (see Table 3.3) because the higher level of interdependence of model components makes it considerably more complex.

PITH:

(a) Too sensitive to very high rainfall intensities (see the February 1977 event in catchment B).
Table 3.4(a)

Tests for goodness-of-fit on modified model P1TR (with re-infiltration)

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Event number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Mean or overall value</th>
<th>No-model case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs. peak</td>
<td>m³/s</td>
<td></td>
<td>7,5</td>
<td>1,1</td>
<td>1,2</td>
<td>2,7</td>
<td>32,3</td>
<td>35,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>m³/s</td>
<td></td>
<td>5,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>29,6</td>
<td>26,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td></td>
<td></td>
<td>-27</td>
<td>-100</td>
<td>-100</td>
<td>-8</td>
<td>-26</td>
<td>-60</td>
<td>-100</td>
<td></td>
</tr>
<tr>
<td>Obs. volume</td>
<td>mm</td>
<td></td>
<td>7,3</td>
<td>0,6</td>
<td>0,9</td>
<td>2,3</td>
<td>45,2</td>
<td>50,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>mm</td>
<td></td>
<td>2,9</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>53,6</td>
<td>51,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td></td>
<td></td>
<td>-60</td>
<td>-100</td>
<td>-100</td>
<td>-100</td>
<td>+19</td>
<td>+2</td>
<td>-57</td>
<td>-100</td>
</tr>
<tr>
<td>Timing error</td>
<td>h</td>
<td></td>
<td>+3</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td></td>
<td></td>
<td>0,22</td>
<td>-2,88</td>
<td>-1,68</td>
<td>-0,92</td>
<td>0,59</td>
<td>0,81</td>
<td>0,70</td>
<td>-0,79</td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m³/s)²</td>
<td></td>
<td></td>
<td>176</td>
<td>4591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Catchment B

Obs. peak	m³/s		1,0	0,9	1,2	4,5	1,8	2,0		
Sim. peak	m³/s		0,2	2,5	0,0	3,2	1,7	2,4		
Error %			-84	+194	-100	-29	-7	+19	-1	-100
Obs. volume	mm		5,8	0,5	2,2	25,4	11,7	31,1		
Sim. volume	mm		0,8	4,2	0,0	20,9	15,4	32,3		
Error %			-86	+624	-100	-18	+32	+4	+76	-100
Timing error	h		+1				0	0	0	+1
HCE			-0,53	-10,3	-0,32	0,76	0,61	0,85	0,66	-1,49
Peak-Vol. O.F. (m³/s)²			17	101						

Catchment E

Obs. peak	m³/s		1,1	0,6	9,8	5,5				
Sim. peak	m³/s		0,0	0,3	6,0	9,1				
Error %			-100	-48	-39	+66			-30	-100
Obs. volume	mm		2,8	0,3	28,5	25,1				
Sim. volume	mm		0,0	0,3	10,6	43,3				
Error %			-100	-17	-63	+72			-27	-100
Timing error	h				+1	0	0	+1		
HCE			-2,56	0,59	-0,14	-1,20	-0,46	-1,01		
Peak-Vol. O.F. (m³/s)²			79	233						
Table 3.4 (b)

Tests for goodness-of-fit on modified model PITH (without re-infiltration)

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Event number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Mean or No-overall model value</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. peak</td>
<td>m³/s</td>
<td></td>
<td>7.5</td>
<td>1.1</td>
<td>1.2</td>
<td>2.7</td>
<td>32.3</td>
<td>35.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>m³/s</td>
<td></td>
<td>3.3</td>
<td>0.4</td>
<td>1.0</td>
<td>3.4</td>
<td>46.0</td>
<td>35.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td></td>
<td></td>
<td>-55</td>
<td>-68</td>
<td>-18</td>
<td>+27</td>
<td>+42</td>
<td>+2</td>
<td></td>
<td>-12</td>
</tr>
<tr>
<td></td>
<td>-100</td>
</tr>
<tr>
<td>Obs. volume</td>
<td>mm</td>
<td></td>
<td>7.3</td>
<td>0.6</td>
<td>0.9</td>
<td>2.3</td>
<td>45.2</td>
<td>50.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>mm</td>
<td></td>
<td>1.3</td>
<td>0.2</td>
<td>0.3</td>
<td>1.2</td>
<td>50.3</td>
<td>53.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td></td>
<td></td>
<td>-83</td>
<td>-75</td>
<td>-66</td>
<td>-48</td>
<td>+11</td>
<td>+6</td>
<td></td>
<td>-42</td>
</tr>
<tr>
<td></td>
<td>-100</td>
</tr>
<tr>
<td>Timing error</td>
<td>h</td>
<td></td>
<td>45</td>
<td>-4</td>
<td>-3</td>
<td>-4</td>
<td>+1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td></td>
<td></td>
<td>-0.27</td>
<td>-1.56</td>
<td>-0.61</td>
<td>-0.29</td>
<td>0.52</td>
<td>0.86</td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>-0.79</td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m³/s)²</td>
<td></td>
<td></td>
<td>280</td>
<td>4591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catchment B</td>
<td></td>
<td></td>
<td>1.0</td>
<td>0.9</td>
<td>1.2</td>
<td>4.5</td>
<td>1.8</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. peak</td>
<td>m³/s</td>
<td></td>
<td>0.3</td>
<td>5.6</td>
<td>0.7</td>
<td>5.9</td>
<td>2.2</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>m³/s</td>
<td></td>
<td>3.3</td>
<td>0.4</td>
<td>1.0</td>
<td>3.4</td>
<td>46.0</td>
<td>35.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td></td>
<td></td>
<td>-67</td>
<td>+555</td>
<td>-41</td>
<td>+32</td>
<td>+18</td>
<td>+68</td>
<td></td>
<td>+94</td>
</tr>
<tr>
<td></td>
<td>-100</td>
</tr>
<tr>
<td>Obs. volume</td>
<td>mm</td>
<td></td>
<td>5.8</td>
<td>0.6</td>
<td>2.2</td>
<td>25.4</td>
<td>11.7</td>
<td>31.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>mm</td>
<td></td>
<td>1.4</td>
<td>8.6</td>
<td>1.8</td>
<td>26.2</td>
<td>16.3</td>
<td>39.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td></td>
<td></td>
<td>-76</td>
<td>+1378</td>
<td>-17</td>
<td>+3</td>
<td>+40</td>
<td>+28</td>
<td></td>
<td>+226</td>
</tr>
<tr>
<td></td>
<td>-100</td>
</tr>
<tr>
<td>Timing error</td>
<td>h</td>
<td></td>
<td>+3</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td></td>
<td></td>
<td>-0.21</td>
<td>-76.9</td>
<td>0.85</td>
<td>0.78</td>
<td>0.21</td>
<td>0.34</td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>-1.49</td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m³/s)²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Catchment E</td>
<td></td>
<td></td>
<td>1.1</td>
<td>0.6</td>
<td>9.8</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. peak</td>
<td>m³/s</td>
<td></td>
<td>0.3</td>
<td>1.1</td>
<td>9.6</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>m³/s</td>
<td></td>
<td>2.8</td>
<td>0.3</td>
<td>28.5</td>
<td>25.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td></td>
<td></td>
<td>-69</td>
<td>+94</td>
<td>-2</td>
<td>+25</td>
<td></td>
<td></td>
<td></td>
<td>+12</td>
</tr>
<tr>
<td></td>
<td>-100</td>
</tr>
<tr>
<td>Obs. volume</td>
<td>mm</td>
<td></td>
<td>0.6</td>
<td>1.2</td>
<td>14.5</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>mm</td>
<td></td>
<td>2.8</td>
<td>0.3</td>
<td>28.5</td>
<td>25.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td></td>
<td></td>
<td>-77</td>
<td>+270</td>
<td>-49</td>
<td>+29</td>
<td></td>
<td></td>
<td></td>
<td>+43</td>
</tr>
<tr>
<td></td>
<td>-100</td>
</tr>
<tr>
<td>Timing error</td>
<td>h</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td></td>
<td></td>
<td>-0.99</td>
<td>-6.6</td>
<td>-0.11</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>-1.01</td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m³/s)²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>233</td>
</tr>
<tr>
<td>Item</td>
<td>Units (m³/s)</td>
<td>Event number</td>
<td>Mean or overall model value</td>
<td>Case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. peak</td>
<td>7.5, 1.1, 1.2, 2.7, 32.3, 35.4</td>
<td>Catchment A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>3.3, 0.4, 1.0, 3.4, 45.0, 35.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td>-55, -68, -18, +27, +42, +2</td>
<td></td>
<td>-12, -100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. volume</td>
<td>7.3, 0.6, 0.9, 2.3, 45.2, 50.9</td>
<td>Catchment A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>1.3, 0.2, 0.3, 1.2, 50.3, 53.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td>-83, -75, -66, -48, +11, +6</td>
<td></td>
<td>-42, -100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing error</td>
<td>h = 6, 4, 3, 3, 1, 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td>-0.27, -1.56, -0.61, -0.29, 0.52, 0.86</td>
<td></td>
<td>0.69, -0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m³/s)^2</td>
<td>280, 4591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. peak</td>
<td>1.0, 0.7, 4.5, 1.8, 2.0</td>
<td>Catchment B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>0.3, 0.7, 5.9, 2.2, 3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td>-67, +555, -41, +32, +18, +68</td>
<td></td>
<td>+94, -100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. volume</td>
<td>5.8, 0.6, 2.2, 25.4, 11.7, 31.1</td>
<td>Catchment B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>1.4, 8.6, 1.8, 26.2, 16.3, 39.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td>-75, +1378, -17, +3, +40, +28</td>
<td></td>
<td>+226, -100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing error</td>
<td>h = 3, 0, 0, 1, 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td>-0.21, -76.9, 0.85, 0.78, 0.21, 0.34</td>
<td></td>
<td>0.21, -1.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m³/s)^2</td>
<td>63, 101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. peak</td>
<td>1.1, 0.6, 9.8, 5.5</td>
<td>Catchment E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>0.3, 1.1, 9.6, 6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td>-69, +94, -2, +25</td>
<td></td>
<td>+12, -100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. volume</td>
<td>2.8, 0.3, 28.5, 25.1</td>
<td>Catchment E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>0.6, 1.2, 14.5, 32.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error %</td>
<td>-77, +270, -49, +29</td>
<td></td>
<td>+43, -100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing error</td>
<td>h = -1, +1, 0, 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td>-0.99, -6.6, -0.11, 0.15</td>
<td></td>
<td>-0.05, -1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m³/s)^2</td>
<td>25, 233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.5

Adopted parameter set: different model versions*1

<table>
<thead>
<tr>
<th>Parameter*2</th>
<th>Units</th>
<th>Original</th>
<th>PITH</th>
<th>PITR</th>
<th>Original</th>
<th>PITH</th>
<th>PITR</th>
<th>Original</th>
<th>PITH</th>
<th>PITR</th>
<th>Original</th>
<th>PITH</th>
<th>PITR</th>
</tr>
</thead>
<tbody>
<tr>
<td>POW</td>
<td>mm</td>
<td>2</td>
</tr>
<tr>
<td>SL</td>
<td>mm</td>
<td>0</td>
</tr>
<tr>
<td>FT</td>
<td>mm/day</td>
<td>0,001</td>
</tr>
<tr>
<td>PI</td>
<td>mm</td>
<td>1,5</td>
<td>2,5</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>0,01</td>
<td>0,01</td>
<td>0,5</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>AI</td>
<td>mm</td>
<td>0</td>
</tr>
<tr>
<td>ST</td>
<td>mm</td>
<td>165</td>
<td>148</td>
<td>140</td>
<td>150</td>
<td>148</td>
<td>150</td>
<td>148</td>
<td>150</td>
<td>148</td>
<td>150</td>
<td>148</td>
<td>150</td>
</tr>
<tr>
<td>ZMAXN</td>
<td>mm/h</td>
<td>11</td>
<td>11,5</td>
<td>7,5</td>
<td>9</td>
<td>11</td>
<td>11,5</td>
<td>9</td>
<td>11,5</td>
<td>9</td>
<td>11,5</td>
<td>9,5</td>
<td>10,5</td>
</tr>
<tr>
<td>ZMINN</td>
<td>mm/h</td>
<td>0</td>
<td>0,7</td>
<td>1,2</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>SU</td>
<td>mm</td>
<td>2</td>
<td>1,5</td>
<td>3,5</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>DIVY</td>
<td>mm/h</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>DIVG</td>
<td>mm/h</td>
<td>4</td>
<td>10</td>
<td>-</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>TL</td>
<td>h</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TLI</td>
<td>h</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>GL</td>
<td>day</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>LAG</td>
<td>h</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*1 Original - Pitman's original hourly model, essentially unmodified
PITR(2) - Spillage from depression store, as well as contents of depression store subjected to re-infiltration, plus all other modifications
PITR - Only contents of depression store subjected to re-infiltration, plus all other modifications
PITH - No re-infiltration function, but including all other modifications

*2 See Figs. 3.7 and 3.8 and section 3.6.12 for definitions of parameters
Figure 3.6(a) to 3.6(c) Observed and simulated hydrographs: catchments A, B and E (see following pages)
August 1879 July 1979
I V
July 1979 August 1979

Event No. 1 Event No. 2
March 1976 May 1977

Event No. 3

Event No. 4

CATCHMENT E

- Observed
- Simulated: PITH
- Simulated: PTR

Discharge in m³/s

July 1979

August 1979
On the balance of evidence provided by this study of individual flood hydrograph simulation, model PITH must be preferred to model PITR for flood forecasting in small to medium-sized semi-arid catchments with a "mixed" convective thunderstorm/frontal rainfall regime, similar to that experienced by the Ecca catchments. It may be that in a climatic region such as that in which the Hartbeespoort Dam catchment lies where according to Pitman and Basson (1979; p. 3.22) severe flooding is often caused by major localized convective thunderstorms, model PITR may indeed prove to be preferable to PITH; PITR's re-infiltration function certainly controls the excess of "potential surface runoff" produced by rainfall of high intensity more effectively than does PITH, as shown by comparison of their respective reproductions of the February 1977 event in catchment B (Fig. 3.6(b)).

3.5 HOW WELL DOES PITMAN'S MODELLING APPROACH REPRESENT THE RAINFALL-RUNOFF PROCESS?

3.5.1 Introduction

As models PITH and PITR currently represent the most refined "statements" on the modelling philosophy and approach underlying the suite of Pitman models, a tentative answer to the above question may legitimately be demanded by a prospective user faced with a divergent and confusing array of models to choose from. Before venturing an answer, it may be prudent to reiterate four considerations that may have a bearing on such an answer:

(a) Pitman strived for model simplicity, ease of calibration and unambiguous parameter conceptualization. In attempting improvements to Pitman's original hourly model reported in this chapter, the endeavour was to remain faithful to his criteria.

(b) Pitman's models, though conceptual, are not physically-based in the true sense of the word. This means that apart from the assumption that a catchment may be represented mathematically by a series of different storages, no function or parameter of the model can be directly related to specific, measurable soil, physiographic or other physical catchment characteristics.
(c) The performance tests executed on PITH and PITR described in earlier sections included no verification checks, i.e., tests on data not included in the calibration sample, because the available number of reasonable flood hydrographs was too small. The aforementioned test results provide therefore only a partial indication of model adequacy.

(d) The performance test results reported earlier are difficult to interpret in isolation and will gain full significance only if they are compared with the results of applying to the same data another conceptual rainfall-runoff model of greater complexity and proven "respectability" (and which is preferably more physically-based).

The well known Stanford Watershed Model (Crawford and Linsley, 1966) represents in all respects a good "base-line" with which the performance of Pitman's modified model versions can be compared. The following section, in which the performance of PITH and PITR is compared with that of the Stanford model, should therefore cast further light on the adequacy of Pitman's modelling approach.

3.5.2 Comparison of Stanford Watershed Model with PITH and PITR

An hourly-input, single-catchment version of the Stanford Watershed Model, as modified by Anderson of the U.S. Weather Bureau (Roberts, 1978), was calibrated on the same runoff events as models PITH and PITR (Table 3.1), using the same statistical measure of fit. As the structure of this model is discussed in chapter 4 as model FORD, suffice it here to say that the model is more complex than Pitman's models, has a greater number of parameters and is more physically-based in terms of its overland flow and channel process components.

The Stanford model was considered to be calibrated after 63 calibration runs in the case of catchment A, 44 runs in the case of catchment B and 24 runs in the case of E. Though this may not be
reflected by the number of calibrations for each type of model, the
author found the Stanford model more difficult both to analyse and to
calibrate than either PITH or PITR. The final parameter sets adopted
for the three catchments are listed in Table 3.6 (some trivial
parameters are not shown). As with both PITH and PITR it was found
that the major Stanford model moisture store LZSN - the nominal lower
soil moisture storage - was required to take on a much larger value
for catchment E than for A or B, larger in fact by more than 100%.

Table 3.7 contains goodness-of-fit statistics for all three
catchments while Figs. 3.7(a), (b) and (c) depict the actual
hydrographs produced by the calibrated Stanford model. The figures
also permit visual comparisons of the fit achieved by PITH and PITR.

Results in Table 3.7 disclose that the calibrated Stanford model
produces no response in the case of at least five of the small
events (among these, the problematic February 1977 event on B), but that it
fared much better in the simulation of the major events - reproducing
at least one major event in each catchment very well. The overall
results in Table 3.7 are not notably different from those for PITR and
PITH reported in Tables 3.4(a) and (b), respectively. However,
comparison of the performance statistics of the three models as far as
the major events are concerned, shown in Table 3.8, indicates that the
Stanford model was more successful in simulating the actual flood
events in the Ecca catchments. Especially in the reproduction of
flood volumes and the one-to-one fits the Stanford model seems
somewhat superior to the other two models. Visual comparison of
simulated with observed hydrographs in Fig. 3.7 confirms the above
finding.

It is likely, however, that this specific difference in
performance among the models can not be viewed as being significant,
given the small calibration sample, the lack of a verification sample,
the similarity of overall performance statistics listed in Tables
3.4(a) and (b) and 3.7 and the fact that all three models produced
notable failures and successes in simulating individual events. That
model version PITH was in fact able to produce a more balanced
simulation than the other two models of both small and major events,
may outweigh the importance of the good reproduction of major events
by the Stanford model. This "balanced" performance of model PITH may
imply superior long-term soil moisture accounting ability and may bode
well for the continuous simulation model inter-comparison that forms the central theme of Chapter 7.

3.5.3 Conclusions

Re-addressing the question posed at the head of this section regarding the adequacy of Pitman's modelling approach, the following answer can now be offered.

By employing model versions which embody Pitman's modelling approach in its most refined form and using research level input data, it was found that major flood events in the semi-arid Ecca catchments could be reproduced with average errors in peaks and volumes of between +23% and +30%. The magnitude of these errors can be regarded as just acceptable by common engineering standards nevertheless, the more physically-based complex Stanford Watershed model was able to produce somewhat smaller equivalent errors. On the other hand, model version PITH yielded a better balance between smaller and larger flow event simulations than the more complex Stanford model. In general terms, therefore, it does seem as if Pitman's hourly model, in refined form, can simulate semi-arid rainfall-runoff processes at a level comparable with that achieved by a more complex more physically-based model. The implication is that Pitman's modelling philosophy of structural simplicity and conceptual unambiguity - appropriate to the modest to poor quality of input data expected in most applied modelling situations in South Africa - has been shown to be sound even in a research environment.

Conversely, it must be realized that the fact that sizeable simulation errors were not uncommon in the above application of Pitman's refined model does point to persistent inadequacies in the
Table 3.6

Adopted primary parameter values for the Stanford model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>A</th>
<th>B</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPXM</td>
<td>inches</td>
<td>0.15</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>UZSN</td>
<td>inches</td>
<td>0.93</td>
<td>0.87</td>
<td>0.90</td>
</tr>
<tr>
<td>LZSN</td>
<td>inches</td>
<td>9.0</td>
<td>8.7</td>
<td>18.5</td>
</tr>
<tr>
<td>POWER</td>
<td>-</td>
<td>1.6</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>C8</td>
<td>inches/hr</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004 Trial</td>
</tr>
<tr>
<td>CC</td>
<td>-</td>
<td>2.7</td>
<td>2.3</td>
<td>1.85 and</td>
</tr>
<tr>
<td>K3</td>
<td>inches</td>
<td>0.34</td>
<td>0.35</td>
<td>0.4 error</td>
</tr>
<tr>
<td>K24L</td>
<td>-</td>
<td>0.5</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>K24EL</td>
<td>-</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>K51</td>
<td>-</td>
<td>0.87</td>
<td>0.82</td>
<td>0.75</td>
</tr>
<tr>
<td>IRC</td>
<td>-</td>
<td>0.92</td>
<td>0.75</td>
<td>0.8</td>
</tr>
<tr>
<td>KK24</td>
<td>-</td>
<td>0.85</td>
<td>0.20</td>
<td>0.97</td>
</tr>
<tr>
<td>L</td>
<td>feet</td>
<td>2500</td>
<td>1800</td>
<td>2200</td>
</tr>
<tr>
<td>SS</td>
<td>-</td>
<td>0.20</td>
<td>0.27</td>
<td>0.17 Physical</td>
</tr>
<tr>
<td>NN</td>
<td>-</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
</tbody>
</table>

*1 Parameter definitions can be found in Chapter 4
Table 3.7
Tests for goodness-of-fit on the Stanford Watershed Model

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Event number</th>
<th>Mean or Overall model value</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catchment A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. peak</td>
<td>m3/s</td>
<td>7.5 1.1 1.2 2.7 32.3 35.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>m3/s</td>
<td>2.5 0.1 0.1 2.8 35.4 28.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>%</td>
<td>-66 -93 -95 +3 +9 -20</td>
<td></td>
<td>-44 -100</td>
</tr>
<tr>
<td>Obs. volume</td>
<td>mm</td>
<td>7.3 0.6 0.9 2.3 45.2 50.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>mm</td>
<td>2.0 0.1 0.1 1.9 51.6 34.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>%</td>
<td>-73 -92 -87 -18 +14 -32</td>
<td></td>
<td>-48 -100</td>
</tr>
<tr>
<td>Timing error</td>
<td>h</td>
<td>+6 . . -3 +1 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td></td>
<td>-0.09 -2.43 -1.21 0.58 0.73 0.66</td>
<td>0.66 -0.79</td>
<td></td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m3/s)2</td>
<td></td>
<td>285 4591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catchment B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. peak</td>
<td>m3/s</td>
<td>1.0 0.9 1.2 4.5 1.8 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>m3/s</td>
<td>0.2 0.0 0.0 4.3 2.3 3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>%</td>
<td>-81 -99 -97 -5 +23 +67</td>
<td></td>
<td>-32 -100</td>
</tr>
<tr>
<td>Obs. volume</td>
<td>mm</td>
<td>5.8 0.6 2.2 28.8 10.8 31.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>mm</td>
<td>1.8 0.0 0.3 31.3 14.1 28.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>%</td>
<td>-69 -92 -86 +9 +31 -8</td>
<td></td>
<td>-36 -100</td>
</tr>
<tr>
<td>Timing error</td>
<td>h</td>
<td>0 . . -2 +1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td></td>
<td>-0.16 -0.15 -0.19 0.67 0.32 0.43</td>
<td>0.55 -1.49</td>
<td></td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m3/s)2</td>
<td></td>
<td>8 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catchment E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs. peak</td>
<td>m3/s</td>
<td>1.1 0.6 9.8 5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. peak</td>
<td>m3/s</td>
<td>0.2 0.0 4.9 5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>%</td>
<td>-80 -96 -50 +2</td>
<td></td>
<td>-56 -100</td>
</tr>
<tr>
<td>Obs. volume</td>
<td>mm</td>
<td>2.8 0.3 28.5 25.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. volume</td>
<td>mm</td>
<td>0.9 0.1 27.3 24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>%</td>
<td>-68 -86 -4 -3</td>
<td></td>
<td>-40 -100</td>
</tr>
<tr>
<td>Timing error</td>
<td>h</td>
<td>-1 . . -2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td></td>
<td>-0.99 -0.47 0.58 0.90</td>
<td></td>
<td>0.66 -1.01</td>
</tr>
<tr>
<td>Peak-Vol. O.F. (m3/s)2</td>
<td></td>
<td>28 233</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.8

Summary of model performance in major flood events*1

<table>
<thead>
<tr>
<th>Model</th>
<th>Catchment</th>
<th>Mean peak error (%)</th>
<th>Mean volume error (%)</th>
<th>Mean HCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PITR</td>
<td>A</td>
<td>+17</td>
<td>+11</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>+18</td>
<td>+18</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>+52</td>
<td>+68</td>
<td>-0.67</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>+28</td>
<td>+30</td>
<td>0.33</td>
</tr>
<tr>
<td>PITH</td>
<td>A</td>
<td>+22</td>
<td>+9</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>+39</td>
<td>+24</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>+14</td>
<td>+39</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>+27</td>
<td>+23</td>
<td>0.39</td>
</tr>
<tr>
<td>Stanford</td>
<td>A</td>
<td>+15</td>
<td>+23</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>+32</td>
<td>+16</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>+26</td>
<td>+14</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>+25</td>
<td>+14</td>
<td>0.51</td>
</tr>
</tbody>
</table>

*1 Events 5 and 6 in catchment A
Events 4, 5 and 6 in catchment B
Events 3 and 4 in catchment E
Figure 3.7(a) to 3.7(c) Observed and simulated hydrographs: catchments A, B and E
(see following pages)
general modelling procedure. If the presumption that a sound representation of storm rainfall is provided by the Ecca gauging network is accepted, then the above inadequacies can still be related to any combination of the following known problems: model structure inadequacy, illegitimate "lumping" of catchment areas and potential evaporation estimates of uncertain accuracy.

3.6 DESCRIPTION OF FINAL STRUCTURE OF PITH AND PITR

3.6.1 Introduction

Detailed descriptions of the main elements of Pitman's original hourly model can be found in Pitman (1976) while the interflow and depression storage functions are described in Pitman and Basson (1979). Taking into account the various modifications introduced into the model during this study, leading to model versions PITH and PITR, the inconvenience for a user of having a description spread over three different reports, as well as certain errors in the relevant text and computer program sections in Pitman and Basson (1979) (pp. 2.2, 2.3, 2.5, A6, A7, A8), it was deemed necessary to provide here a unified summarized description of all the model elements. In the description below many paragraphs relating to unmodified model elements are quoted or paraphrased directly from the original model descriptions in the aforementioned two reports, and descriptions of modifications are woven into the general text.

The essential elements of model version PITH appear in Fig. 3.8, while Fig. 3.9 depicts the elements of model version PITR. The computer program versions of PITR and PITH written in standard Fortran IV have been listed in Appendix B. Model parameters, variables and elements in the following description are referred to by the names appearing in the model computer program, and only in the case of re-infiltration is PITR distinguished from PITH. Model parameters are defined alphabetically in section 3.6.12.

3.6.2 Input data: Precipitation and evaporation

Hourly values of rainfall averaged over the catchment are
Figure 3.8 Flow diagram: model PITH

Key:
- Input/Output
- Model function
- Model storage

RECP, PE Input

PI, AI, ZMINN, ZMAXN, R, ST, SL, FT, POW, GL, TL, LAG, TL1, DIV, DIVG, SU Parameters

S, GWS, SUS Storage states
Figure 3.9 Flow diagram: model PITR
required as input data and are read in as variable RECP. No provision is made in the models for runoff from snowmelt. Daily values of A pan evaporation are also required as input data, from which values of daily potential evaporation (variable PE) are calculated by applying the regional monthly pan factors (variable ER). PE for each day is assumed to be symmetrically triangularly distributed between 07h00 and 19h00.

3.6.3 Interception

Vegetation and soil surfaces may be initially dry before a fall of rain and a small quantity of moisture is needed to wet these surfaces before runoff and infiltration can occur. This function is represented by an assumed interception storage (PI) which must be filled before precipitation is available for infiltration and runoff. Moisture from interception storage is removed at the potential evapotranspiration rate until exhausted (Pitman, 1976)

3.6.4 Surface runoff

Surface runoff is taken to be derived from two components, viz.:

(1) runoff from impervious areas and

(2) runoff resulting from rainfall that has not infiltrated.

Component (1) is computed by multiplying the rainfall available for infiltration and runoff by the area of catchment that is impervious. The impervious area (AI) is the proportion of the catchment that contributes directly to surface runoff. Impervious surfaces not directly connected to water courses must flow over pervious area before reaching a stream channel. Isolated impervious areas are therefore not included in the parameter AI.

In computing the runoff in component (2) it was recognised that infiltration would be highly unlikely to be uniform throughout the catchment. The spatial distribution of infiltration rate is no doubt strongly influenced by physical features such as geology, soil type,
vegetation and many others too numerous to mention. In most natural catchments these factors would result in a considerable spatial variation in infiltration rate. It was felt by Pitman that a reasonable approximation could be reached by assuming a frequency distribution of infiltration rate, thus reducing to a manageable number the parameters associated with this phenomenon. As in the case of the monthly model a symmetrical triangular frequency distribution was adopted (Pitman, 1976). In this distribution the minimum infiltration rate is Z_{MIN} (mm/h), the maximum Z_{MAX} (mm/h) and the mean $Z_{AVE} = 0.5 (Z_{MIN} + Z_{MAX})$

For any given rainfall input rate, HP, the surface runoff rate, $SURF$, is given by the following equations, derived from the triangular probability distribution:

For $Z_{MIN} < HP < Z_{AVE}$:
$$SURF = \frac{2(HP - Z_{MIN})^3}{3(Z_{MAX} - Z_{MIN})^2} \quad \ldots \ldots \ldots \ldots (3.1)$$

At $HP = Z_{AVE}$:
$$SURF = \frac{1}{12} (Z_{MAX} - Z_{MIN}) \quad \ldots \ldots \ldots \ldots (3.2)$$

For $Z_{AVE} < HP < Z_{MAX}$:
$$SURF = HP - Z_{AVE} + \frac{2(Z_{MAX} - HP)^3}{3(Z_{MAX} - Z_{MIN})^2} \quad \ldots \ldots \ldots \ldots (3.3)$$

At $HP = Z_{MAX}$:
$$SURF = 0.5(Z_{MAX} - Z_{MIN}) \quad \ldots \ldots \ldots \ldots (3.4)$$

For $HP > Z_{MAX}$:
$$SURF = HP - Z_{AVE} \quad \ldots \ldots \ldots \ldots (3.6)$$

Apart from varying spatially, the infiltration rate will also depend on the wetness of the catchment; after several hours of rain,
infiltration rates will generally be lower than at the onset of rain. To adjust infiltration capacity as rainfall continues, the coefficients ZMIN, ZAVE and ZMAX must be decreased as the soil moisture (S) increases. The relevant functions ensuring this effect are:

\[
Z_{\text{MAX}} = 4. \frac{Z_{\text{MAXN}}}{Z_{\text{MAXN}}(2S/ST)} \tag{3.6}
\]

and,

\[
Z_{\text{MIN}} = \frac{Z_{\text{MINN}}}{Z_{\text{MAXN}}} \cdot Z_{\text{MAX}} \tag{3.7}
\]

where,

- \(Z_{\text{MAXN}} \) = nominal maximum infiltration capacity (mm/h)
- \(Z_{\text{MINN}} \) = nominal minimum infiltration capacity (mm/h)
- \(S \) = soil moisture (mm)
- \(ST \) = soil moisture capacity (mm)

\(Z_{\text{MAXN}}, \, Z_{\text{MINN}} \) and \(ST \) are model parameters. Equation 3.6 bears a certain similarity to the infiltration function used in the original Stanford Watershed Model (Crawford and Linsley, 1966). Equation 3.7 implies the assumption that the ratio \(Z_{\text{MAX}}:Z_{\text{MIN}} \) remains constant under all conditions. Since by definition \(Z_{\text{AVE}} = 0.5 \cdot (Z_{\text{MAX}} + Z_{\text{MIN}}) \), infiltration and surface runoff are determined by the three model parameters \(Z_{\text{MINN}}, \, Z_{\text{MAXN}}, \, ST \) and soil moisture, \(S \).

3.6.5 Depression storage and re-infiltration

Water that does not infiltrate into the soil is held in depression storage as potential surface runoff (variable SURF). When the maximum capacity of this store (parameter SU) is exceeded, the surplus water (variable ADDSI) becomes surface runoff, ready to be separated into interflow and surface flow. In model PITH the average content of the depression store \(0.5(SU_{\text{S1}} + SU_{\text{S2}}) \) for each hour is subjected to infiltration, re-employing the infiltration function and parameters \(Z_{\text{MAXN}}, \, Z_{\text{MINN}} \) and \(ST \). This process is called "re-infiltration" and the infiltrate (variable DEPINF) is added to the soil moisture store. Model PITH has no re-infiltration function, but
in both models the content of the depression store is further diminished by the residual potential evaporation not satisfied by the interception store. Runoff derived from impervious areas bypasses depression storage (and is therefore subject only to lag and attenuation).

3.6.6 Interflow/surface flow function

Spillage from depression storage is divided into surface flow and interflow. In modelling this separation it is assumed that low rates of spillage generate a high proportion of the relatively slow response (interflow - variable FINT) and, conversely, that high rates of spillage yield a high proportion of the quick response (surface flow - variable TSURF).

This behaviour is represented by a function of the following form:

\[
DIVA = \frac{DIV}{DIV + ADDSI} \quad \text{(3.8)}
\]

where
- \(ADDSI\) = spillage from depression storage,
- \(DIVA\) = proportion of \(ADDSI\) that becomes interflow
- \(DIV\) = model parameter controlling the interflow/surface flow split

(Since the model works at hourly time steps the variables in equation 3.8 all have mm/h units).

Fig. 3.10(a) illustrates for \(DIV = 5\) mm/h the decreases of interflow proportion with increase in total runoff (surface flow + interflow). The parameter \(DIV\) can be envisaged as the limiting interflow rate as shown in Fig. 3.10(b) where both surface flow and interflow are shown to increase with increasing total flow (Pitman and Basson, 1979).

3.6.8 Evaporation - soil moisture relationships

Pitman designed his original hourly model to require only twelve long-term monthly mean Symons pan values as evaporation inputs and
Figure 3.10 Interflow separation function
(after Pitman and Basson, 1979)
devised an evaporation-soil moisture relationship (Pitman, 1976) at a level of simplicity commensurate with the level of evaporation inputs. To operate with actual daily pan readings as input, the evaporation-soil moisture relationship had to be modified. To this end, the essential assumptions made by Pitman were accepted as necessary guidelines to preserve continuity in the original suite of models. These assumptions were:

(a) actual evaporation (variable E) is a linear function of the level of soil moisture storage (S/ST) and potential evaporation PE;

(b) evaporation may cease at a S/ST ratio > zero;

(c) the evaporation-soil moisture relationship must be controllable by a single parameter, R.

After numerous trials employing a number of different functions, the relationships shown in Fig. 3.11a and (b) were chosen as offering a fair compromise of simplicity, viability and conceptual soundness. Recognising similar triangles it follows from Fig. 3.11(a) that

\[
E = \frac{(S - SZ) \cdot PE}{ST - SZ} \text{ (3.9)}
\]

where E and PE are in mm/day and S, SZ and ST are in mm.

Conceptually, the soil moisture threshold SZ, representing the evaporation cessation point could be expected not to be a constant, but to be dependent upon factors such as soil type, soil texture, soil structure, the energy gradient throughout the soil, the energy differential between the soil surface and the atmosphere, dominant vegetation rooting depths and wind patterns in the catchment. However, having to make do with limited information on these factors appropriate to the level of modelling pursued, it was postulated that SZ would be directly dependent on ST and inversely dependent on PE — with ST representing an index of soil characteristics and PE an index of energy available for the evapotranspiration process. The following
Figure 3.11 Evaporation - soil moisture function
relationship was found to be promising:

\[SZ = R \cdot (ST/PE)^{0.5} \] \hspace{1cm} (3.10)

Eq. 3.10 links the variability of \(SZ \) to the variability in \(PE \), as \(R \) and \(ST \) are constant parameters of the model. Fig. 3.11(b) illustrates the effect the various elements of equation 3.10 have on the evaporation-closure point \(SZ \). It is important to note that the \(PE \) value which is entered in equation 3.9 is the residual potential evaporation not satisfied by either the interception or the depression stores. At this juncture it should be pointed out that the above evaporation-moisture relationship needs further testing with data from humid and temperate catchments. Certainly, for semi-arid conditions such as the Ecca catchments and the lower Berg River (Daniel, 1982) it has been found to be reasonable. Present experience indicates that for semi-arid to arid catchments the likely range of \(R \) indicates that for semi-arid to arid catchments the likely range of \(R \) values is \(0 < R < 1 \) and for temperate to humid catchments the range is \(1 < R < 4 \).

3.6.8 Percolation of soil moisture to groundwater storage

The generalized relationship between soil moisture and the rate of percolation to groundwater is depicted in Fig. 3.12.

The \(Q-S \) relationship is a simple power curve. It is convenient to express the relationship in terms of the following four parameters:

- \(SL \) = Soil moisture content below which no percolation occurs (mm)
- \(ST \) = Total soil moisture capacity (mm)
- \(FT \) = Percolation at soil moisture equal to \(ST \) (mm/day)
- \(POW \) = Power of \(Q-S \) curve

The equation is of the form \(Q = A \cdot (S - SL)^{POW} \) and the constant \(A \) is determined by substituting \(Q = FT \) at \(S = ST \).
relationship was found to be promising:

\[\text{SZ} = R \cdot (\text{ST}/\text{PL})^{0.5} \](3.10)

Eq. 3.10 links the variability of SZ to the variability in PE, as \(R \) and \(\text{ST} \) are constant parameters of the model. Fig. 3.11(b) illustrates the effect the various elements of equation 3.10 have on the evaporation cessation point SZ. It is important to note that the PE value which is entered in equation 3.9 is the residual potential evaporation not satisfied by either the interception or the depression stores. At this juncture it should be pointed out that the above evaporation-soil moisture relationship needs further testing with data from humid and temperate catchments. Certainly, for semi-arid conditions such as the Ecca catchments and the lower Berg River (Daniel, 1982) it has been found to be reasonable. Present experience indicates that for semi-arid to arid catchments the likely range of \(R \) indicates that for semi-arid to arid catchments the likely range of \(R \) values is \(0 < R < 1 \) and for temperate to humid catchments the range is \(1 < R < 4 \).

3.6. Percolation of soil moisture to groundwater storage

The generalized relationship between soil moisture and the rate of percolation to groundwater is depicted in Fig. 3.12.

The O-S relationship is a simple power curve. It is convenient to express the relationship in terms of the following four parameters:

- \(\text{SL} \) = Soil moisture content below which no percolation occurs (mm)
- \(\text{ST} \) = Total soil moisture capacity (mm)
- \(\text{FT} \) = Percolation at soil moisture equal to \(\text{ST} \) (mm/day)
- \(\text{P0W} \) = Power of O-S curve

The equation is of the form \(Q = A \cdot (S - \text{SL})^{\text{P0W}} \) and the constant \(A \) is determined by substituting \(Q = \text{FT} \) at \(S = \text{ST} \).
therefore \(A = \frac{FT}{(ST - SL)^{1.0}} \)

and \(Q = FT \cdot \frac{(S - SL)/(ST - SL))^{1.0}}{\text{(3.11)}} \)

When the soil moisture capacity, \(ST \), is exceeded (variable \(\text{SPILL} \)), a function that divides this excess into interflow and groundwater additions comes into action:

\[\text{DIVB} = \text{DIVG}/(\text{DIVG} + \text{SPILL}) \quad \text{(3.12)} \]

where \(\text{SPILL} \) = spillage or excess from soil moisture store (mm)

\(\text{DIVB} \) = proportion of \(\text{SPILL} \) that becomes groundwater (mm/h)

\(\text{DIVG} \) = model parameter controlling the groundwater/interflow split

Equation 3.12 is based on the assumption that low rates of soil moisture excess would generate a high proportion of the slow responding groundwater and, conversely, that high rates of excess would yield a high proportion of the faster responding interflow. This function is of course identical to equation 3.8, the interflow/surface flow function, but controlled by a different model parameter, \(\text{DIVG} \).

3.6.9 Groundwater discharge

Numerous trials by Pitman (1976) revealed that adoption of a single recession constant was not satisfactory and that a variable recession constant, related to the groundwater storage state, led to more accurate results. The tests indicated the relationship depicted in Fig. 3.13 to be the most satisfactory for the catchments studied.

The above relationship assumes the recession constant \(\text{Kr} \) to be proportional to the square root of groundwater storage, i.e. that

\[\text{Kr} \cdot \text{(GWS)}^{0.5} \]. The position of the curve is fixed by the parameter \(\text{GW} \), which is the recession constant when GWS is equal to a fixed value. For convenience this fixed value is taken to be equal to

Figure 3.12 Soil moisture percolation function
(after Pitman, 1976)

Figure 3.13 Groundwater recession function
(after Pitman, 1976)
the soil moisture capacity ST. The equation to the curve in Fig. 3.13 is thus:-

\[K_r = GW \cdot \frac{GWS}{ST} \]

Groundwater outflow over a one-day period, GWF, is given by:-

\[GWF = K_r \cdot GWS \]

Substituting for \(K_r \):

\[GWF = GW \cdot GWS^{1.5}/ST \]

Groundwater discharge is therefore determined via the groundwater storage state and the factor GW. The reciprocal of GW is the model parameter GL, which has the units of days.

It should be be noted that, unlike soil moisture that is restricted to a maximum value equal to ST, GWS is allowed to attain any positive value (Pitman, 1976).

3.6.10 Time delay and attenuation routing of runoff

Since the rainfall-runoff approach embodied in this type of model characterizes the whole catchment by the processes taking place at a single location, the "runoff" produced by the various elements of the model is really nothing more than inflow into the channel system of the catchment. Usually, the components of model runoff have to be lagged to indicate the runoff at the catchment outlet. Furthermore, quickflow components are subject to attenuation as flow occurs across and through the soil surface layers and through the channel system. In PITH and PITT, the interflow and surface flow components calculated as "channel inflow" are first lagged and then attenuated or "routed". Groundwater discharge is not lagged, and its routing is "built into" the discharge function (Equation 3.13).

(a) Surface flow: Surface flow lagging is achieved with the aid of parameter LAG, which must be an integral number of hours, if not
zero. The surface flow computed for hour N is then assumed to appear at the catchment outlet at hour $(N + \text{LAG})$. Attenuation of surface flow is accomplished by application of the well-known Muskingum routing equation with the weighting factor, x, set to zero for reservoir type storage attenuation. This equation takes the following form:

$$RSURF_2 = RSURF_1 + CF_1 (TSURF_1 - R_s) + CF_2 (TSURF_2 - TSURF_1)$$

$$...(3.14)$$

in which $CF_1 = \frac{1}{TL + 0.5}$...(3.15)

and $CF_2 = \frac{CF_1}{2}$...(3.16)

The variables in these equations have the following meaning:

$RSURF_1, RSURF_2 =$ surface flow at catchment outlet for present and previous hours respectively (mm)

$TSURF_1, TSURF_2 =$ surface flow as channel inflow for present and previous hours respectively (mm)

$TL =$ storage factor (model parameter) (hours)

(b) Interflow: Parameter LAG is also used for interflow lagging. Since interflow rates change more slowly than surface flow rates it is assumed that routing through a simple linear storage adequately attenuates inter-flow. "Storage" of interflow at the beginning and end of any hour is represented by $\text{SINT}1$ and $\text{SINT}2$, respectively, and the release from "storage" over the hour (FINT) is computed by the equation:
\[F_{\text{INT}} = \frac{\text{RECI}. (S_{\text{INT1}} + S_{\text{INT2}})}{2} \] \hspace{1cm} (3.17)

where \(\text{RECI} \) = recession constant of interflow decay and is related to model parameter TLI (routing constant for interflow) according to the equation:

\[\text{RECI} = 1 - \frac{(2 - \text{TLI} - 1)}{(2 \cdot \text{TLI} + 1)} \] \hspace{1cm} (3.18)

Interflow "storage" at the end of the hour \(S_{\text{INT2}} \) is calculated through an iterative procedure by:

\[S_{\text{INT2}} = S_{\text{INT1}} - \frac{\text{RECI}. (S_{\text{INT1}} + S_{\text{INT2}}) + \text{DIVA ADDSI} + (\text{SPILL-DIVB.SPILL})}{2} \] \hspace{1cm} (3.19)

3.6.11 Initial storage states

At the start of simulation initial values for the various storages states of the model are an obvious necessity. By utilizing observed flow rates at the catchment outlet just prior to calibration, rough estimates can be made of the initial contents of the soil moisture store and groundwater store, as well as input values to the surface flow and interflow routing functions. By applying a simple form of "hydrograph separation" (Pitman, 1976) to the observed hydrograph for a day or two before the start of simulation, estimates of quickflow and baseflow can be made. The baseflow estimate, \(Q_{\text{BASE}} \), for the hour prior to simulation start becomes an input initial value from which the model calculates approximate storage states from equations 3.11 and 3.13. The average quickflow estimate, \(Q_{\text{DF}} \), for LAG number of hours prior to simulation start also serves as an input initial value and is divided evenly between interflow and surface flow. Over the first LAG number of hours the value \(Q_{\text{DF}}/2 \) serves as input and/or output value to both surface flow and interflow routing functions.
3.6.12 Model parameter definitions

For the convenience of the reader the parameters of PITH and PITR are listed alphabetically below, in categories according to their effective influence on model outputs and operation, i.e. runoff volume control; hydrograph shape, attenuation and timing control; initial or starting values and output option.

Parameters that control runoff volumes:

AREA - Catchment area (km²)

AI - Fraction of catchment area regarded as impervious and that is effectively connected to the channel network - 0 ≤ AI ≤ 1

ET - Soil moisture percolation rate to groundwater

PI - Maximum interception storage (mm)

POW - Power of soil moisture storage - percolation curve

R - Coefficient of evaporation - soil moisture relationship - 0 < R < 4

SL - Soil moisture storage below which no percolation occurs (mm)

ST - Maximum soil moisture capacity (mm)

SU - Maximum depression storage (mm)

ZMAXN - Nominal maximum infiltration rate when soil moisture storage = ST (mm/h)

ZMINH - Nominal minimum infiltration rate when soil moisture storage = ST (mm/h)

Parameters that control hydrograph shape indirectly:

DIV - Maximum expected interflow rate; controls division of potential surface runoff into surface flow and interflow (mm/h)

DIVG - Maximum groundwater recharge rate when soil moisture capacity ST is exceeded; controls division of excess soil moisture between interflow and groundwater (mm/h)
Parameters that control hydrograph attenuation and timing:

- **GL** - 1/Recession constant for groundwater depletion when groundwater storage = ST (day)
- **LAG** - Time delay of channel outflow (h)
- **TL** - Muskingum routing coefficient for surface flow (h)
- **TLI** - Linear-storage routing coefficient for interflow (h)

Initial values and control option

- **DGF** - Observed average quickflow rate during LAG no. of hours prior to start of simulation (10^{-3}.m^3/s)
- **QOBS** - Observed baseflow in hour prior to start of simulation (10^{-3}.m^3/s)
- **THRES** - Daily average flow above which hourly outputs are required; daily average flow in 10^{-3}.m^3/s and a monthly summary are always output (10^{-3}.m^3/s).
CHAPTER 4

DESCRIPTION OF MODELS USED IN THE ECCA STUDY

The conceptual rainfall-runoff models referred to in this document comprise sets of mathematical algorithms representing catchment and channel processes, coded in standard Fortran IV for use in digital computers. Since all the models under consideration have been described in detail elsewhere in easily obtainable reports, this chapter does not offer much in-depth information about the mathematical aspects of the models. Instead, attention is rather focused on the conceptual underpinnings of each model and, in the case of daily and hourly models, the level of physical representativeness of each model; from the latter, conclusions are drawn regarding the possibility of a priori determination of model parameter values on the basis of catchment information. Computer listings of all model programs appear in Appendix 8.

4.1 DESCRIPTION OF HOURLY MODEL FORD

Model FORD constitutes a version of the Stanford Watershed Model IV (Crawford and Linsley, 1966; Hydrocomp Inc., 1969) modified by Anderson (Parmale, 1972) of the U.S. Weather Bureau. The Anderson version is set up for simulation at a single flowpoint as opposed to the multi-flowpoint Stanford Model; it differs further from the original in that it uses a much enhanced infiltration function (at the cost of an additional parameter) and is coded in Fortran instead of Algol. Roberts (1978) further modified the Anderson version by basing the channel routing subroutine on a time delay histogram of quarter-hour (instead of multi-hour) increments - a necessity for small catchments. Apart from the original two reports on the Stanford Model (Crawford and Linsley 1956; Hydrocomp Inc., 1969), a valuable description of the model which he named, FORD, is offered by Roberts (1978), including presentation of some of the important functions in graphical form.

The general input requirements for FORD are quarter-hourly, hourly, or six-hourly rainfall totals, daily or average monthly pan
evaporation, twelve monthly pan to free water surface conversion factors and hourly or six-hourly flow data where the flow data are required for model calibration and verification. Irrespective of the selected time interval for rainfall input data, the model operates on quarter-hourly iterations for processing rainfall data while evaporation from the three non-groundwater storages are calculated on an hourly and, from groundwater storage, on a daily basis.

4.1.1 Conceptual design

Fig. 4.1 shows a flow diagram of model FORD while the model parameters are described in Table 4.1. It can be seen that the model is structured around a vertical arrangement of four conceptual storages, each representing a zone in the land surface vertical profile in which explicit moisture accounting takes place. Crawford and Linsley (1966) saw the conceptual role of the interconnected system of storages that make up FORD as follows: "The upper and lower zone storages, together with the groundwater storage, combine to represent variable soil moisture profiles and groundwater conditions. The upper- and lower-zone storages control overland flow, infiltration, and inflow to the groundwater storage. The upper zone control watershed response to major storms by controlling longer term infiltration rates. Groundwater storage supplies the baseflow to stream channels. Evaporation and transpiration may occur from all of the storages."

The interception storage, the first process to act on rainfall inputs to the model, is of finite size while the upper zone, lower zone and groundwater stores have infinite sizes. Deep groundwater percolation losses from the catchment can be seen as a fifth inactive moisture store, also of infinite capacity. The calibration parameters associated with the upper and lower zone storages UZSN and LZSN (see Table 4.1) represent specific, functionally-important moisture-holding states of these two infinite stores which have a dictating influence on the behaviour of the infiltration function, the upper zone function (i.e. increments to overland flow detention and interflow detention), the lower zone function (i.e. increments to active and inactive groundwater) and the percolation function (i.e.
Table 4.1

Parameters used in model FORD

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Parameter</th>
<th>Possible a priori source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume control parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>Rainfall scaling factor (usually inactive)</td>
<td>maps, aer. phot</td>
</tr>
<tr>
<td>IMPV</td>
<td>Impervious area (fraction)</td>
<td></td>
</tr>
<tr>
<td>EPXN</td>
<td>Interception storage (inches)</td>
<td>maps, field surveys</td>
</tr>
<tr>
<td>UZSN</td>
<td>Nominal upper zone soil moisture storage (inches)</td>
<td></td>
</tr>
<tr>
<td>LZSN</td>
<td>Nominal lower zone soil moisture storage (inches)</td>
<td></td>
</tr>
<tr>
<td>POWER</td>
<td>Exponent of infiltration curve equation</td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Infiltration index</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Interflow index</td>
<td>maps, aer. phot.</td>
</tr>
<tr>
<td>K3</td>
<td>Areal cover of deep-root vegetation (lower zone evapotranspiration parameter) (fraction)</td>
<td></td>
</tr>
<tr>
<td>K24</td>
<td>Seepage to inactive groundwater (fraction)</td>
<td></td>
</tr>
<tr>
<td>K24EL</td>
<td>Fraction of catchment where evapotranspiration occurs at potential rate from groundwater</td>
<td></td>
</tr>
<tr>
<td>Timing control parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Length of overland flow (feet)</td>
<td>maps, aer. phot.</td>
</tr>
<tr>
<td>SS</td>
<td>Overland flow slope (fraction)</td>
<td>maps, aer. phot.</td>
</tr>
<tr>
<td>NN</td>
<td>Manning's roughness coefficient for overland flow</td>
<td>hydraulics texts</td>
</tr>
<tr>
<td>IRC</td>
<td>Daily interflow recession rate (fraction)</td>
<td></td>
</tr>
<tr>
<td>KK24</td>
<td>Daily groundwater recession rate (fraction)</td>
<td>obs. hydrographs</td>
</tr>
<tr>
<td>KS1</td>
<td>Channel storage routing parameter (fraction)</td>
<td>obs. hydrographs</td>
</tr>
<tr>
<td>KV</td>
<td>Groundwater recession variable rate (fraction)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.1. Flow diagram: model FORD
(after Roberts, 1978)
moisture movement from upper to lower stores).

The interconnected system of storages that make up the central structure of FORD merely serves to calculate the inflow into a river channel during any specific time interval. This channel inflow has to be translated to the catchment exit or the channel point of interest to the simulation. Such translation constitutes two phases: time delay (or catchment lag") and channel storage attenuation. Time delay is achieved by the use of a time delay histogram obtained by planimetering contributing areas at successive points in the stream channel system where the distances between points represent equal flow times in the channel. The volume of channel inflow at any time interval is multiplied by successive elements of the time delay histogram to provide an outflow hydrograph that accommodates the effects of the channel travel times but not channel storage attenuation. Such attenuation is achieved by routing the lagged hydrograph through a pseudo-linear storage.

4.1.2 Physical representativeness

Though the alignment of components and the interaction between storages of FORD may be a rational and sound conceptualization of the way moisture distribution occurs during the catchment phase of the hydrological cycle, it does not imply that the whole model can be regarded as being physically realistic. In fact, the model is "an assemblage of empirical functions linked together into a system which conforms to our understanding of the real-world system The equations are empirical but the model as a whole is a physical description of the hydrological cycle" (Linsley, 1976). However, certain parts of the model are more physically-realistic than others. The most realistic component of the model is its overland flow function.

The overland flow function is based on the hydraulic principles governing unsteady flow over a plane and requires the formulation of an imaginary plane (representing the catchment surface) whose characteristics can be input to the model as parameters L (length), SS (slope) and NH (Manning's roughness coefficient). Though none of the
Stanford Model descriptions mentioned earlier give much guidance on how this imaginary plane should be inferred from catchment information, experimentation with Ecca data showed that good results can be achieved if the following procedure is followed. Plane length L can be taken as the mean slope length (in feet) from the channels of the main tributaries (and from the main channel) to the applicable interfluves. Plane slope SS can be based on the mean catchment slope calculated as (total contour length, contour interval)/catchment area (see Table 2.14). For semi-arid catchments Manning's roughness coefficient (NN) can be expected to be between 0.30 and 0.40.

For the above calculations of L and SS one would naturally rely on maps or aerial photographs of suitable scale. This process by which certain model parameters are determined from catchment information prior to overall model calibration is known as a priori calibration. Models with physically-realistic components, such as FORD's overland flow function above, hold the promise of easier calibration through a priori parameter estimates and inspire greater confidence in their output. However, though their functions may not be physically-realistic, certain parameters have enough physical meaning to allow their a priori estimation as well. In the case of FORD the following parameters belong to this category: IMPV, EPXM, K3, K24EL, L, SS, NN, KK24, KS1. Sources of a priori information on these parameters are indicated in Table 4.1.

4.1.3 Footnote on Roberts's (1978) description and application of FORD

The description of FORD by Roberts (1978) is recommended to a potential user as valuable in terms of good a priori understanding of the internal workings of the model. However, the reader is cautioned that certain errors exist in Roberts (1978) which may jeopardize understanding or successful application of the model. In Roberts's section 3.2, the description of FORD, the following errors were found. Firstly, the flow diagram of FORD (Fig. 17) shows no link between the groundwater function and the active groundwater storage. Secondly, equations 4 and 5, representing the excess precipitation after infiltration loss, are based on a variable D3FV, an index of the mean hourly infiltration rate. However, because the model operates on
quarter-hourly iterations. The variable D3FV in Roberts's equations 4 and 5 should be replaced by D3FV/4. In fact, Roberts's graphical representation of the infiltration function (Fig. 18) does not make sense without the above amendments.

Two serious errors exist in the computer listing of model FORD in Roberts's Appendix A. The errors occur in subroutine "CHANNEL" which affects channel delay and routing computations. These cause a more than 50% "loss" of channel inflow during routing in all months except the first month modelled. Roberts's version of FORD consequently operated with a corrupted moisture accounting system. This was confirmed by inspection of the original computer printouts of Roberts's applications of FORD to the Ecca catchments. A possible reason why Roberts did not detect the error may reside in the fact that the flow total of the first month simulated by him, March 1976, completely dominated the flow pattern during his whole simulation period, March 1976 to May 1977 - and the nature of the errors is such that the first month simulation is not affected by them. Further minor errors also exist in Roberts's computer listing in the main program and subroutine "READER" which cause problems during the printing of model outputs. All the foregoing errors were corrected and the computer listing of FORD appearing in this document in Appendix B should replace that in Roberts (1978).

4.2 DESCRIPTION OF HOURLY MODELS PITH AND PITR

Models PITH and PITR are modified versions of an hourly model developed by Pitman (1977; Pitman and Basson, 1979) as a flood-forecasting tool. Chapter 3 discusses apparent shortcomings in Pitman's original model and describes in detail the nature of the modifications that led to the final versions called PITH and PITR. Chapter 3 (section 3.6) also contains algebraic and graphical representations of all the model functions and a listing of all parameters.

4.2.1 Conceptual design

Figs. 3.7 and 3.8 provide flow charts of the two models under
consideration. Like FORD, these two models are structured around four vertically aligned moisture storages. As can be seen, the difference between PITH and PITR is that the contents of the depression storage are "re-infiltrated" in PITR whereas this is not the case in PITH. An important difference between these two models and FORD is that two of their soil zone storages have finite capacities (SU and ST) while FORD's equivalent storages are infinite. The relevance of this difference to likely hydrological response differences between the two types of models is that a finite size to, especially, soil zone stores causes discontinuities in model behaviour during periods of store capacity exceedence (Johnston and Pilgrim, 1973). During such events the otherwise smoothly non-linear response of the model with finite stores would display sudden increases. Such response changes would be much attenuated in models with infinite stores. (The presence of a finite soil moisture store in the various versions of PITR investigated in Chapter 3, may explain why it was concluded "re-infiltration" would make the infiltration process too dominant a part of the model, whereas this is not the case for FORD which also uses a form of "re-infiltration": the higher amounts of moisture entering the soil moisture store caused exceedence of ST too early and too often, leading to the aforementioned discontinuities in hydrological response).

PITH and PITR produce three flow phases: a quickflow phase, surface flow, an intermediate phase, interflow, and a delayed low phase, groundwater. Surface flow originates as spillage from depression storage, whereas interflow originates both as depression store spillage and as soil moisture exceedence runoff.

4.2.2 Physical representativeness

Though less complex than FORD, it is unlikely that PITH and PITR can be regarded as less physically-based - except for the overland flow function. Nevertheless, the individual functions that constitute these two models are empirical and are far from physically-realistic in the true sense of the word. Still, as with FORD, certain parameters have sufficient physical or conceptual meaning to allow their a priori estimation. Table 4.2 lists the relevant parameters and their likely a priori sources.
Table 4.2

A priori type parameters used by PITH and PITR

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Parameter</th>
<th>Possible source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Impervious fraction of catchment area</td>
<td>maps, aer. phot.</td>
</tr>
<tr>
<td>PI</td>
<td>Interception storage (mm)</td>
<td>maps, field surveys</td>
</tr>
<tr>
<td>TL</td>
<td>Muskingum routing coefficient for surface flow (h)</td>
<td>obs. hydrographs, Bauer and Midgley (1974)</td>
</tr>
<tr>
<td>DIV</td>
<td>Maximum expected interflow rate (mm/h)</td>
<td>obs. hydrographs</td>
</tr>
</tbody>
</table>
4.3 DESCRIPTION OF DAILY MODEL PUD

Model PUD is a slightly modified version of a daily model developed by Pitman (1976) at a level of complexity commensurate with the requirements of water resources engineering practice in South Africa and with the disparate availability of reasonable quality hydrometeorological data in various parts of the country. Modifications to Pitman's original model are threefold and are discussed in subsection 4.3.2. The general input requirements for PUD are daily rainfall and daily pan evaporation data and twelve monthly pan to free water surface conversion 'actors. Infiltration into and evaporation from soil are processed on an hourly or sub-daily basis on raindays and a daily basis on non-raindays. The groundwater and channel lag-routing functions always operate on daily iterations.

4.3.1 Conceptual design

Fig. 4.2 depicts a flow chart of model PUD. The model is structured around three vertically aligned moisture storages of which the upper two, interception and soil moisture storage, are finite and the lower storage, groundwater, is infinite. PUD produces only two flow phases: a quickflow phase, surface runoff, and a delayed flow phase, groundwater outflow. Surface runoff can originate both as infiltration excess runoff or soil moisture exceedence runoff. PUD displays more or less the same discontinuous hydrological response as PITH and PITR during soil store saturation, due to the finite nature of the soil moisture store. Channel inflows are lagged directly in terms of one or more days to represent time delay while channel storage attenuation is effected by means of the Muskingum routing approach.

4.3.2 Modifications to the original daily model

(a) Rainfall disaggregation function: Pitman (1976) disaggregates daily rainfall inputs into hourly distributions of specific duration by means of a simple linear regression relationship between duration in hours and daily rainfall in mm. Instead of the
Figure 4.2 Flow diagram: model PITD
single relationship offered by Pitman, two seasonal relationships were
developed for the Ecca catchments from autographic rainfall data. The
relationships are:

\[\text{summer duration of storms (h)} = 3.17 + 0.23 \times \text{daily fall (mm)} \]
\[\quad \ldots \ldots \ldots \ldots \ldots (4.1) \]

\[\text{winter duration of storms (h)} = 7.5 + 0.2 \times \text{daily fall (mm)} \]
\[\quad \ldots \ldots \ldots \ldots \ldots (4.2) \]

Summer is defined as the months October to March and winter as the
months April to September. Each of the two equations above was
developed using data from 50 Ecca storms. This seasonal hourly
disaggregation of daily rainfall produced modelling results far
superior to Pitman's original function.

(b) Evaporation - soil moisture relationship: Pitman (1976)
designed his original daily model to accept only twelve longterm
monthly mean Symons pan values as evaporation inputs and devised an
evaporation-soil moisture relationship at a level of simplicity
commensurate with the level of evaporation inputs. To operate with
actual daily pan readings as input, the evaporation-soil moisture
relationship had to be modified. Modifications identical to those
used in PITH and PITR, and described in subsection 3.6.7, were
incorporated.

c) Channel evaporation function: Inspection of Pitman (1976)
discloses that the catchments in which Pitman developed and tested his
original model all lie in temperate to humid climatic zones. A
characteristic of such zones is the presence of sustained baseflow
during dry months. The groundwater function Pitman devised is well
suited to such catchments as it causes unceasing outflow from the
groundwater storage. However, in semi-arid catchments long recessions
are rare phenomena due to small soil moisture storage capacities and
extremely high channel evaporation-seepage losses. Consequently,
as the applications of PIT with semi-arid data in Chapter 6
show, the model overpredicts outflow for many days, even months,
after a major storm. To remedy this baseflow problem a channel evaporation function was added to P1TD.

The channel evaporation function is based on the assumption that most of the losses from semi-arid river channels are due to evapotranspiration at a near-potential rate. These losses are a function of the total free water surface area in the main and tributary channels and the near-saturated area in the proximity of any free water surfaces. As such, the function utilizes the level of lag-routed potential channel discharge to calculate the total free water surface area. Near-saturated areas are assumed to increase the total evaporative surface by about 10%, while deeprooted riparian vegetation is assumed to have a permanent evaporative effect equivalent to a discharge level at 10% of the bankfull capacity. After experimentation with many different functions, it was found that a modified quadratic relationship best describes the increase in channel free water surface area with increase in the level of discharge (at least in terms of Ecc data). The resulting channel evaporation function is

\[\text{CLOS}_i = \text{FRAC}_i \cdot \text{AREA}_C \cdot 1.1 \cdot \text{PE}_i \]

\[\text{FRAC}_i = 0.1 + 2(\text{RAT}_i)^0.5 - \text{RAT}_i \]

where \(\text{CLOS}_i \) = channel loss for day \(i \), in mm,
\(\text{PE}_i \) = potential evaporation for day \(i \), in mm,
\(\text{AREA}_C \) = ratio of free water surface area at estimated bankfull discharge level to total catchment area,
and \(\text{FRAC}_i \) = ratio of free water surface area at mean discharge level of day \(i \) to free water surface area at bankfull discharge.
where $RAT_i = \frac{DOUT_i}{Q\text{BANK}}$

\begin{equation}
\text{(4.5)}
\end{equation}

and $DOUT_i =$ mean discharge level for day i, in mm

$Q\text{BANK} =$ estimated bankfull discharge level, in mm,

and $\text{AREA} = \text{TRIB.CHAN/AREA.1000}$

\begin{equation}
\text{(4.6)}
\end{equation}

where $\text{TRIB} =$ total tributary length, in km

$\text{CHAN} =$ average width of flow at bankfull discharge, in mm

$\text{AREA} =$ total catchment area in km2.

The channel evaporation function has created three additional parameters for PITO i.e. TRIB, CHAN and QBANK, but they are physical in nature and can therefore be estimated prior to calibration: TRIB through planimetering suitably scaled maps, CHAN from aerial photographs or a field visit and QBANK through a field visit or even approximated as the maximum discharge. It was found that the channel evaporation function considerably improved the ability of PITO to model the overall flow pattern in the Eccs catchments, both on a daily and a monthly basis. Daily peaks were hardly affected but recession fits were much improved, both in terms of daily and monthly totals. Monthly and daily standard deviation errors were also reduced.

The reader should note that the channel evaporation function was introduced to PITO only after all computations up to and including Chapter 6 had been completed. Improvements owing to the incorporation of equation 4.3 have thus a bearing only on Chapters 7 and 8.

4.3.3 Physical representativeness

As is the case with PITH and ..., the essential structure of PITO contains no truly physical-realistic functions, but certain parameters have sufficient conceptual meaning to allow their a priori estimation. Table 4.3 lists all PITO parameters and likely a priori sources where applicable.

4.4 DESCRIPTION OF DAILY MODEL DALT

Model DALT is a version of an extremely simple single-storage
Table 4.3
Parameters used in model PITD

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Parameter</th>
<th>Possible source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume control parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>Impervious fraction of catchment area connected to stream network</td>
<td>maps, aer. phot.</td>
</tr>
<tr>
<td>FT</td>
<td>Maximum soil moisture percolation rate to groundwater (mm/day)</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>Maximum interception storage (mm)</td>
<td>maps, field surveys</td>
</tr>
<tr>
<td>PDW</td>
<td>Power of soil moisture storage-percolation curve</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Coefficient of evaporation-soil moisture relationship</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Soil moisture storage below which no evaporation occurs (mm)</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>Maximum soil moisture capacity (mm)</td>
<td></td>
</tr>
<tr>
<td>ZMAXH</td>
<td>Nominal maximum infiltration rate when soil moisture storage = ST (mm/h)</td>
<td></td>
</tr>
<tr>
<td>ZMINN</td>
<td>Nominal minimum infiltration rate when soil moisture storage = ST (mm/h)</td>
<td></td>
</tr>
<tr>
<td>QBANK</td>
<td>Estimated bankfull discharge or maximum expected discharge (m3/s)</td>
<td>obs. hydrograph</td>
</tr>
<tr>
<td>TRIB</td>
<td>Total tributary length (km)</td>
<td>maps, aer. phot.</td>
</tr>
<tr>
<td>CHAN</td>
<td>Estimated width of flow at bankfull discharge (m)</td>
<td>aer. phot., field survey</td>
</tr>
<tr>
<td>Timing control parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIV</td>
<td>Proportion of soil capacity excess moisture routed to groundwater</td>
<td></td>
</tr>
<tr>
<td>TL</td>
<td>Muskingum routing coefficient for surface flow (day)</td>
<td>obs. hydrographs</td>
</tr>
<tr>
<td>GL</td>
<td>1/Recession constant for groundwater depletion when groundwater storage = ST (day)</td>
<td></td>
</tr>
<tr>
<td>LAG</td>
<td>Time delay of channel outflow (day)</td>
<td></td>
</tr>
</tbody>
</table>
model by Diskin, Buras and Zamir (1973), modified and extensively improved by Roberts (1978). The objective with the development of DALT was to "provide a model that could produce output at an acceptable level of accuracy with the least possible complexity of model structure". (Roberts, 1978). In modifying the original model Roberts imposed restraints such that "the modifications should not involve the addition of any further storages and that the addition of parameters involved in the calibration process should be kept to a minimum. Within these restraints, any additional function should, as far as possible, have physical relevance." The model input requirements are daily rainfall totals, daily pan evaporation totals or long term mean monthly pan evaporation values and monthly pan to free water surface conversion factors.

4.4. Conceptual design

Fig. 4.3 comprises a flow chart of DALT, showing its single (linear or non-linear) moisture storage of finite capacity (SSM) which represents the maximum soil moisture deficiency averaged over the catchment. No interception, depression storage or infiltration processes are recognized and the soil moisture level is increased by addition of daily rainfall and depleted by daily evaporation according to a modified quadratic function of soil moisture storage level. Runoff occurs either as soil moisture excess (storage level > SSM) which represents a quickflow phase or as baseflow (when storage level > threshold SSB) which is a delayed flow phase.

A novel aspect of model DALT is its flexibility: it is in fact a series of four models built into the same program, where each "model" is a bit more complex than its predecessor in the series. Roberts (1978) refers to the models run by program DALT as:

"(1) DALT1, a simple linear storage model as described by Diskin et al (1973) (sic) but with a modified evapotranspiration function,

"(2) DALT2, is model DALT1 with a base flow function and an optional deep percolation function,
Figure 4.3 Flow diagram: models DALT and DALM
(from Roberts, 1978)
"(3) DALT3 is a single non-linear storage model with the same evapotranspiration, base flow and deep percolation functions as DALT2, and a non-linear depth response function that is operative over the full range of storage values.

"(4) DALT4 is model DALT3 with the non-linear depth response function being restricted to storage values below the base flow threshold". The user is free to select any one of the models simply by setting the program control flags. If it is found that the simplest model, DALT1, does not provide output at an acceptable level of accuracy for the application in mind, the model complexity may be increased progressively by using the control flags. The non-linearity of the single store is a special feature of DALT; Fig. 4.4 shows the variety of "container" shapes that are possible. Roberts (1978) found that from its level 2 upwards, DALT performance was equal to or progressively better than that of certain other much more complex models tested on 15 months of Ecc data. Considering this fact and that at its most complex (DALT4) DALT has only seven parameters to calibrate, Roberts achieved quite a feat in the development of this model.

4.4.2 Physical representativeness

Table 4.4 lists all the parameters used in DALT. Though Roberts attempted to maintain a reasonable level of physical relevance in the parameters of DALT, none of them can actually be estimated by a priori means. The model ignores many of the traditional concepts underlying well-known rainfall-runoff models such as the Stanford Model and Pitman's models (see earlier sections) and which give rise to multi-storage structures and large numbers of parameters - and as such it may seem physically less representative. However, Roberts (1978) himself cautions that "Lack of confidence in the degree to which parameter values reflect reality does not necessarily imply a lack of confidence in the ability of the model to produce adequate simulation".

4.5 Description of Monthly Model PITM

Model PITM is a slightly modified version of a monthly model
MODEL DALT3

AMAX < 1
BCUR > 1

AMAX < 1
BCUR < 1

AMAX > 1
AMAX > 1
BCUR > 1
BCUR < 1

FAT = AMAX - ((AMAX - 1.0) * ((SSL/SSM) ** BCUR))

Figure 4.4 Possible shapes of moisture stores (from Roberts, 1978)
<table>
<thead>
<tr>
<th>Variable name</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM</td>
<td>Maximum capacity of storage (mm)</td>
</tr>
<tr>
<td>SS6</td>
<td>Storage level at which base flow begins (mm)</td>
</tr>
<tr>
<td>POWER</td>
<td>Power of base flow function</td>
</tr>
<tr>
<td>BCUR</td>
<td>Power of non-linear storage depth function</td>
</tr>
<tr>
<td>AMAX</td>
<td>Maximum value of storage depth factor</td>
</tr>
<tr>
<td>PERC</td>
<td>Maximum fraction moisture to deep percolation</td>
</tr>
<tr>
<td>LAG</td>
<td>Time delay (days or months)</td>
</tr>
</tbody>
</table>
developed by Pitman (1973), which has already enjoyed widespread use in South Africa. Amongst others, it was a major aid in the recently completed national survey of South Africa’s surface water resources (Hydrological Research Unit, 1981-1982). General input requirements for PITM are monthly rainfall totals, monthly pan evaporation totals and twelve monthly pan to free water surface conversion factors.

4.5.1 Conceptual design

A flow chart of PITM is presented in Fig. 4.5. The model is structured around two vertically aligned moisture storages, both of finite capacity. Two flow phases are produced: quickflow is generated either by infiltration excess or by a form of "interflow" runoff from the soil moisture store; delayed flow is produced by limited percolation from the soil moisture store. The two flow phases are Muskingum-routed separately to allow for channel attenuation.

As the original Pitman monthly model was designed to accept longterm mean monthly evaporation, PITM had to be modified to operate on observed monthly pan evaporation totals. Specifically, the soil moisture storage - evaporation relationship had to be changed. To this end, modifications identical to those used in PITH and PITR and described in subsection 3.6.8, were incorporated.

4.5.2 Parameter estimates

Table 4.5 lists all the parameters used in PITM. The only parameter that lends itself to direct a priori estimation is AI, the fraction of total catchment area which is impervious and directly linked to the channel network. However, a novel feature of PITM which has as yet not been equaled anywhere in the western world at the same scale is that regional values of the parameters have been determined for the whole of South Africa by the Hydrological Research Unit (1981-1982) of the University of the Witwatersrand. This was a necessary component of the national surface water resources survey by that Research Unit. In essence, the existence of proven regional parameters for PITM means that a priori estimates of all parameters are possible for application in any catchments, gauged or ungauged.
Figure 4.5 Flow diagram: model PITM
Table 4.5
Parameters used in model PITM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Impervious fraction of catchment area connected to stream network</td>
</tr>
<tr>
<td>FT</td>
<td>Maximum soil moisture percolation rate to groundwater (mm/month)</td>
</tr>
<tr>
<td>PI</td>
<td>Maximum interception storage (mm)</td>
</tr>
<tr>
<td>POW</td>
<td>Power of soil moisture storage-percolation curve</td>
</tr>
<tr>
<td>R</td>
<td>Coefficient of evaporation-soil moisture relationship</td>
</tr>
<tr>
<td>SL</td>
<td>Soil moisture storage below which no evaporation occurs (mm)</td>
</tr>
<tr>
<td>ST</td>
<td>Maximum soil moisture capacity (mm)</td>
</tr>
<tr>
<td>ZMAX</td>
<td>Maximum catchment absorption rate (mm/month)</td>
</tr>
<tr>
<td>ZMIN</td>
<td>Minimum catchment absorption rate (mm/month)</td>
</tr>
<tr>
<td>GW</td>
<td>Maximum groundwater discharge rate (mm/month)</td>
</tr>
</tbody>
</table>

Volume control parameters

Timing control parameters

| TL | Muskingum routing coefficient for surface flow (month) |
| GL | Muskingum routing coefficient for groundwater flow (month) |
4.6 DESCRIPTION OF MONTHLY MODEL DALM

Model DALM is a monthly-input version of daily model DALT described earlier, developed by Hughes (1982) for a monthly model parameter transfer study in catchments of the Southern Cape coastal lakes area. The model input requirements are monthly rainfall totals, monthly pan evaporation totals and twelve monthly pan to free water surface conversion factors. Because he used the model in forested catchments, Hughes (1982) added an interception storage function to DALM and this function is retained in the model program included in Appendix B. However, for application to the Ecca catchments, this function was bypassed so that DALM, like DALT, operated as a single-storage model. Consequently, Fig. 4.3 also represents the structure of model DALM while Table 4.4 also describes the DALM parameters.
DESCRIPTION OF MONTHLY MODEL DALM

Model DALM is a monthly-input version of daily model DALT described earlier, developed by Hughes (1982) for a monthly model parameter transfer study in catchments of the Southern Cape coastal lakes area. The model input requirements are monthly rainfall totals, monthly pan evaporation totals and twelve monthly pan to free water surface conversion factors. Because he used the model in forested catchments, Hughes (1982) added an interception storage function to DALM and this function is retained in the model program included in Appendix B. However, for application to the Ecca catchments, this function was bypassed so that DALM, like DALT, operated as a single-storage model. Consequently, Fig. 4.3 also represents the structure of model DALM while Table 4.4 also describes the DALM parameters.
CHAPTER 5

A ROBUST AND RELIABLE APPROACH TO MODEL CALIBRATION

5.1 INTRODUCTION

Essentially, estimation of parameters, or calibration, of conceptual rainfall-runoff models can be pursued in three ways.

(a) Model parameters can be inferred from measurable catchment characteristics. This is termed an a priori approach by Chapman (1975) and can be regarded as being reasonably objective. This approach obviously presupposes that the model in question is sufficiently deterministic or at least physically realistic to such an extent that field and/or laboratory measurements of catchment characteristics and processes become meaningful prerequisites for successful operation of the model.

(b) Model parameters can be inferred by curve-fitting or goodness-of-fit procedures, i.e. finding parameters that will ensure close correspondence between specific characteristics of one or more simulated hydrologic time series and their equivalent observed time series, such as runoff, soil moisture storage and groundwater storage. Exactly how closely the simulated and observed time series correspond is measured by one or more statistical procedures or goodness-of-fit criteria. The term objective function is now widely used to describe any specific fitting criterion employed in the parameter estimation process. Obviously, the nature of the objective function used, will dictate the outcome of the calibration process (Diskin and Simon, 1977). Consequently, a purely curve-fitting or goodness-of-fit approach to parameter estimation is usually accompanied by uncertainty as to whether or not the inferred parameters are "artifacts of the fitting process" (Chapman, 1975), and to what extent they can be related to the "true" values which they claim to represent. This approach can range from being completely objective, achieved by using automatic optimization routines (Ibbitt and O'Donnell, 1971b), to being pragmatically subjective - trial-and-error fitting by manual perturbation of model parameters and relying strongly on visual
impressions of the correspondence between the simulated and observed

time series (Pitman, 1976).

(c) All parameters can be inferred by a mixed approach
 employing both a priori and curve-fitting methods. Exactly what "mix"
of the two methods be employed in a specific situation will depend on
which, and how many, of the model components are physically-based to
an extent that warrants a priori parameter estimates; also, on
whether the objectives of the model application and available time and
facilities justify the effort and cost that a priori estimates may
entail. In practice the proportion (claimed by the authors) of
a priori determinable parameters in often-used "mixed" conceptual
models is found to vary through a wide range spanning 4 out of 13
parameters in a daily-input model by Pitman (1976), 5 out of 19
parameters in the Stanford Watershed Model (Crawford and Linsley,
1966), the majority of the 12 (Body and Goodspeed, 1979) or all 19
(Black and Atken, 1977) parameters of the Australian Representative
Basins Model, the majority of the 50 parameters of the USDAHL-74
revised model (Holtan, et al., 1975) and 14 out of 17 parameters of
to note in the foregoing type of application is that the a priori
component of the mixed calibration approach often does not comprise
more than merely basing initial estimates of so-called physically-
realistic parameters on catchment data. These initial estimates are
then further "hardened" by subsequent curve-fitting calibration
methods (Manley, 1978; Body and Goodspeed, 1979).

Fully deterministic, spatially-distributed, multi-dimensional
rainfall-runoff models have been shown to be theoretically workable by
Smith and Woolhisier (1971a and b), Freeze (1972a and b), Beven (1975)
and Beven, et al. (1980), and probably represent the only type of
conceptual models for which a priori measurement of catchment
characteristics can legitimately be claimed to be crucial. In a
comprehensive review of this modelling approach Freeze (1978)
concludes that, inter alia, the astronomical a priori parameter
estimation requirements involved will for many years to come restrict
the use of these models to "the examination of flow mechanisms on
hypothetical hillslopes or on small instrumented research watersheds".
It is no wonder that recent years have seen several attempts at the development of much simpler *a priori* physical models than the "Freeze generation" of models (Bultot and Dupriez, 1976; Beven and Kirkby, 1979; Jayawarden and White, 1979). The most promising amongst these must be the attempt by Beven and Kirkby (1979) to devise "a model for humid temperate areas that attempts to combine the advantages of simple lumped parameter models with the important distributed effects of variable contributing areas and flow routing through the channel network, while retaining the possibility of deriving parameters by direct measurement within the basin under study". The above model simulated the outflow from an 8km² catchment, subdivided into 23 segments, fairly well without any recourse to calibration. Nevertheless, even at this small basin size the authors found the task of deriving the parameters of all 23 segments directly by field measurement very daunting. "Wherever a hydrological process is to be modelled from strictly physical considerations, the spectre of spatial variability appears", is Moore and Clarke's (1981) apt formulation of this dilemma. It does seem therefore as if the outlook for operational application of the latest generation of simpler *a priori* physical models in the short term is fairly bleak.

The aforementioned situation leaves the practising hydrologist with little choice but to accept the inevitability of a certain amount of "curve-fitting" when using conceptual rainfall-runoff models in an applied or operational situation. Fortunately, some of the pitfalls of curve-fitting/goodness-of-fit methods can be redressed in two ways. Firstly, there is the *a priori* estimation of at least some parameters (outlined earlier) - even if only as initial values in the fitting process to ensure that the calibration starts in a realistic parameter environment, or as physically realistic boundaries for specific parameters to which they may be constrained during calibration. Very useful for this limited form of *a priori* parameter estimates would be compendia of physical characteristics of catchments, such as the paper by Jones (1976) who collated physical catchment data typically needed by conceptual models from published surveys spread over several disciplines. Employing initial parameter values derived from very small typical plots (7m² area) representing hydrological zones in small agricultural catchments is a further promising technique used by
the USDAHL modellers (Comer and Holtan, 1976). In Australia much research is being done on actual field observation and mapping at small to medium catchment scale of hydrologically significant physical catchment characteristics (Bell and Vorst, 1981; Laut et al., 1982).

In South Africa, mapping of a different variety is being employed to assist a priori parameter estimates (Hydrological Research Unit, 1981-1982): in this case the primary parameters of a specific model, i.e. Pitman's (1973) monthly model, have been mapped on a regional scale in association with regional maps of rainfall, vegetation, geology, soils and land use. A priori estimation of model parameters by multiple regression with physical catchment characteristics, valid for a specific region, has been used fairly successfully by James (1972) and Magette et al. (1976) in applications of the Kentucky Watershed Model in five southern states in the U.S.A., and by Betson et al. (1980) in applications of model TVA-HYSIM under the auspices of the Tennessee Valley Authority.

The second way of redressing curve-fitting shortcomings is to use other observed hydrological time series such as soil moisture or groundwater storage additional to streamflow records in model calibration, i.e. to fit both the model output and an internal state variable of the model to the corresponding observed records. In this way the amount of information utilized in the calibration is much expanded and confidence in the fitting method per se is enhanced. This multiple-time series calibration was first tentatively used by Johnston and Pilgrim (1973) and later strongly advocated by Chapman (1975), but reported results to date seem fairly inconclusive. Douglas et al. (1976) using monthly soil moisture readings and 6-hourly streamflow data in two catchments found that calibration was little improved by the soil moisture information. They ascribed this disappointing result to sparseness of soil moisture information. Similarly, Jackson et al. (1980) reported only partial success in using observed soil moisture additionally in the calibration of the USDAHL model. Kuczera (1982), on the other hand, reported much improved parameter estimates by incorporating 2-monthly groundwater depth readings, additional to streamflow, in the calibration of his simple catchment model by automatic optimization.
Undoubtedly, much research can still be expected on parameter estimation as a limited a priori process, as well as on the use of multiple observed time series in model calibration by curve-fitting/goodness-of-fit methods. Unfortunately, both these avenues towards more reliable model calibration are of little help in the modelling studies reported in this document. The only a priori estimates that can be attempted in this study are related to those parameters which can be read off or calculated from maps, aerial photographs and hydrographs of instantaneous discharge - a minor help for all models included in the study. Furthermore, additional observed time series of catchment storage variables such as soil moisture and groundwater are also unavailable for enhanced calibration. For the foregoing reasons and by reason of the sizeable number of models selected for application to the Ecca catchments, as well as the multiple objectives of this study, it was deemed essential that the establishment of a robust but reliable curve-fitting/goodness-of-fit approach to model calibration should precede any other developments. Moreover, during the early stages of the research reported in Chapter 3 it was already clear that the manual trial-and-error calibration approach was proving to be of only limited usefulness and that some form of automatic search or optimization procedure was going to be indispensable - for three principal reasons. Firstly, the envisaged modelling studies implied many tens of thousands of model calibration runs, sometimes with large input data sets. Manual procedures as the only calibration approach would have been immensely costly in man-hours. Secondly, the manual approach necessitates an intimate understanding of the workings of a model for rapid convergence on an optimal set of parameters. Though this may commonly be regarded as a fruitful pursuit in its own right, the evenhandedness of the planned model intercomparison (Chapter 7) might have been compromised by extensive experience the writer had had of two of the selected models, i.e. the daily- and monthly-input models developed by Pitman (1973; 1976). Thirdly, notwithstanding the fact that calibration by one person only should limit spurious subjectivity in the model intercomparison phase (as would be the case if each model was calibrated by a different person), it was felt that rational use of automatic optimization procedures would facilitate minimization of
the general subjectivity that is usually present in calibration by
goodness-of-fit criteria (Moore and Clarke, 1981).

It follows that rational decisions about items such as the exact
techniques and theoretical considerations that the parameter
estimation approach in the Ecca study should encompass could be made
only on the basis of a sound appreciation of the state-of-the-art
regarding parameter optimization for rainfall-runoff models. In what
follows, the discussion of the state-of-the-art in optimization leads
in the rest of the chapter. After discussion of relevant theory and
problems, the choice of a suitable automatic optimization procedure is
described. The influence of a large and varied set of objective
functions on the optimization procedure is explored and suitable
functions identified, using Ecca research data. This is followed by an
investigation into the robustness of the chosen objective function/automatic optimization combination. A discussion of
parameter sensitivity considerations leads on from the robustness
tests. A synthesis of the findings into a rational calibration
procedure concludes the chapter. At this point it must be stressed
that no attention is given in this chapter to the specific problem of
the optimal length of the calibration sample. The role of calibration
period length is analysed in Chapter 6 as a separate study because of
its importance.

5.2 STATE-OF-THE-ART IN PARAMETER OPTIMIZATION FOR RAINFALL-RUNOFF
MODELS

5.2.1 Optimization procedures used in catchment modelling

Automatic optimization procedures have attracted increasing
interest in the field of conceptual catchment modelling since Dawdy
and O'Donnell (1965) showed in the mid-sixties that this type of model
can be calibrated automatically. Automatic optimization procedures
are mathematical search algorithms (computer-coded) which seek to
minimize differences between selected features of modelled and
observed streamflows by systematic trial alterations in the values of
the model parameters. These trial alterations are called
"iterations". The objective function, i.e. the quantitative measure of the fit of the modelled runoff to the observed runoff, is calculated after each parameter iteration. Successful iterations are those which cause a reduction in the value of the objective function. During the search only the parameter set associated with the current least objective function value is retained, which, at the end of the search is regarded as the optimal parameter set. The end of a search can be decided by a convergence test of the rate of reduction of the objective function value, by a predetermined number of iterations, or by a computer run-time limitation.

For two-parameter models, the distribution of the objective function values produced by different pairs of parameter values can be plotted on two-dimensional diagrams as contours of equal values, as shown in Fig. 5.1. This distribution of objective function values in the two-parameter plane is known as a response surface. For a multi-parameter model the same concepts will hold: if there are \(n \) parameters and these are represented by \(N \) of the coordinates of an \(M \)-dimensional coordinate system (where \(M = N+1 \), and the remaining coordinate represents the objective function, then this function forms a surface in the \(M \)-dimensional space known as a response surface (Johnston and Pilgrim, 1973). For \(N>2 \) this surface obviously cannot be represented visually. The optimum parameter set is defined by the lowest point on the surface in the case of a minimizing objective function. This lowest point is known as the global optimum and discovery of the optimum is known as convergence. There may be other points on the surface which are lower than all others in their immediate vicinity, but not lower than the global optimum. Such points are known as local optima. Fig. 5.1(a) illustrates the aforementioned phenomena.

The response surface is a most useful concept: the optimizing procedure may be portrayed as a search on and across the response surface for its lowest point. Most search algorithms conduct a line-search, i.e. the objective function values at various points along a search direction are determined. When the line-optimum in that direction has been found, a new search direction is defined and a new search cycle starts. How the search directions are defined, how each subsequent search step is generated, how each line is searched and
Figure 5.1 Two-dimensional response surface (hypothetical)
which assumptions are made about the form of the response surface give rise to the different optimization algorithms reported in the literature.

Outlines of a number of different optimization procedures have been given by Ibbitt and O'Donnell (1971b), Clarke (1973a), Wood (1975) and Johnston and Pilgrim (1973), while Pickup (1977) recommended the work by Himmelblau (1972) as a primary source of information. The different procedures can be categorized as either deterministic or stochastic, with the former being much more common. The deterministic category can in turn be subdivided into direct search, steepest descent (also known as "hill-climbing") and least squares search methods.

(a) Direct search procedures: These methods merely require the ability to make simple comparisons of values of the objective function at different points along a directional search, using no information about the shape of the response surface.

(b) Steepest descent procedures: In contrast with direct search procedures, the descent methods make use of additional information about the surface being searched. Many of these methods require the slope of the surface in each coordinate direction, i.e. the partial derivative of the objective function with respect to each parameter, at each iteration. Additionally, some methods assume that close to the optimum the surface may be approximated by a positive quadratic shape.

(c) Least squares procedures: This approach assumes that the objective function is quadratic for all parameter sets. It finds the optimum by solving analytically for those parameter sets that will define a direction along which the partial derivatives of the objective function will tend to zero.

Comparisons of the fitting ability of different automatic optimization procedures using conceptual rainfall-runoff models have been reported by Ibbitt and O'Donnell (1971b) who tested nine different techniques, Johnston and Pilgrim (1973) who investigated four algorithms in depth, Wood (1975) who compared three techniques, Pickup (1977) who tested four different algorithms and Manley (1978)
who compared two techniques. From the aforesaid and other studies it can safely be concluded that, in general, direct search procedures perform better than steepest descent in that they are less susceptible to irregularity of the response surface such as local optima and discontinuities and that they converge more rapidly in the earlier stages of optimization. A second conclusion is possible further progress in the search from a point where convergence seems to cease is often possible by switching to another type of optimization. Ibbitt and O'Donnell (1971b) achieved unexpected progress beyond the apparent optimum by switching from a direct search to a stochastic search algorithm, Johnston and Pilgrim (1973) from direct search to steepest descent and Porter and McMahon (1975) also from direct search to steepest descent. A third conclusion stems from the second: a set of parameter values should not be accepted as an optimum until a number of attempts to make further improvements have been made. Apart from employing a different optimization algorithm, the complete optimization should be repeated from different initial parameter sets (spanning the uncertainties in the a priori estimates); in other words, starting from different points on the response surface.

5.2.2 Problems common to optimization procedures and catchment modelling

The effects of the unique problems encountered with optimization methods in conceptual rainfall-runoff modelling have been studied by a number of researchers: O'Connell, Nash and Farrell (1970); Ibbitt and O'Donnell (1971a, b); Plinston (1971); Johnston and Pilgrim (1973, 1976); Pickup (1977); Mein and Brown (1978); Sorooshian and Dracup (1980); Kuczera (1982). These effects are that different sets of "optimum" values are derived from different sets of initial values of the parameters and that quite different sets of parameter values often give very similar values of the same objective function and of the computed runoff, which also agree with the observed runoffs with acceptable accuracy. Reasons for these difficulties as summarised by Pilgrim (1975) and Moore and Clarke (1981) include the following points.

(1) Interdependence between model parameters, by which a large
number of combinations of parameter values will give similarly low values of the objective function - a change in one parameter may be compensated by changes in one or more of the other parameters. For a two parameter model, a long flat-bottomed valley results in the response surface, as shown in Fig. 5.1(b). Optimization methods make only slow or no progress along the floor of such a valley towards its lowest point. It could be argued, of course, that this interdependence is not a problem, since any of the pairs of values in the valley is almost an optimum and the resulting output sequence is none the worse for the interdependence. However, if any meaning is to be attached to individual parameter values - if, say, parameter values are to be correlated with catchment characteristics - the values obtained from such an optimization would be meaningless.

(i) Indifference of the objective function to parameter values such that appreciable changes in the value of one parameter may cause little or no change in the objective function. Plateau areas will result on the response surface, as shown in Fig. 5.1(b) for high values of \(X_1 \), and it may not be possible for search methods to make progress in such areas, leading to a declaration of a false optimum.

(iii) Discontinuities, or points on the response surface at which the objective function, while still continuous, is nondifferentiable.

(iv) Local optima, as shown in Fig. 5.1(a) - also leading to premature declaration of convergence.

(v) Scaling of parameters - the particular scales used for different parameters may result in unfavourable configurations of the response surface for search progress.

Possible solutions to these problems include the following measures. Problems (i) can be partially redressed by optimizing interdependent parameters individually in separate searches. Problem (ii) can be avoided by setting indifferent parameters to constant values or by starting more than one search from different points on the response surface. Problem (iii) affects only steepest descent
algorithms and cannot be solved except by multiple searches from different points on the response surface. Problem (iv) can often be overcome by direct search methods or by switching optimization algorithms when the search slows down. Point (v) is less of a problem in direct search than in steepest descent methods and can be redressed by either scaling parameters to the same order of magnitude or weighting the search steps for individual parameters according to parameter scale.

A measure that is often used to cope with more than one of the above difficulties is to constrain the values of certain parameters to a "likely range" during optimization, i.e. to prevent "impossible" values from being chosen by the search routine or for the routine to wander into one of the difficulty-prone areas of the response surface. Pilgrim (1975) argues that this procedure is unjustifiable because a parameter value might pass through an impossible region during the search but then return to a realistic level. Imposition of limits also implies that the model structure and the parameters are indeed physically realistic and that the data contain no serious errors. Chapman (1975) argues conversely, i.e. that modellers should consciously strive to make their models more physically-based; then crucial parameters must be constrained to known physical limits commensurate with each catchment situation.

The choice and the role of the objective function are aspects of optimization which also offer serious difficulties to the modeller. Because of their importance, these aspects are discussed under a separate heading in the next subsection.

5.2.3 The importance of the objective function

It is axiomatic that the optimal set of parameters arrived at by optimization is in fact optimal only in the context of the objective function used during the process. A substantially different objective function may converge on a substantially different optimum parameter set, though all other conditions of optimization remain unchanged (Diskin and Simon, 1977; Pilgrim, 1975). Perusal of the scores of modelling studies published since the mid-sixties discloses that in
the majority of cases calibration (manual or automatic) occurred, at least partially, by minimization of the sum of the squared deviations between modelled and simulated streamflows, or of a function based on the sum of squared deviations. These least squares-type objective functions can be said to have a general form:

$$\text{objective function} = f\left(\sum_{j=1}^{m} w_j |Q_{OBS,j} - Q_{SIM,j}|^k \right)$$

where \(f(.)\) signifies some function of the entity in brackets,
\(Q_{OBS,j}\) is the observed streamflow (or some characteristic of the hydrograph such as the peak) in time period \(j\),
\(Q_{SIM,j}\) is the simulated streamflow in time period \(j\),
\(n\) is the number of time periods being modelled,
\(m\) is the power transformation of the streamflows,
\(k\) is a power to which the deviation for each time period is raised,
\(w_j\) is a weight applicable to each time period (usually related to \(Q_{OBS,j}\)).

By algebraic analysis of two moisture stores typical of those in most explicit-soil-moisture-accounting models, Johnston and Pilgrim (1973) investigated the merits of different configurations of the exponents, \(m\) and \(k\), in equation 5.1, while keeping the weight \(w\) constant at one. This work resulted in five important findings:

(i) changing the values of the exponent \(k\) did not affect the optimum values of the parameters

(ii) leading on from (i) changing exponent \(k\) had no effect on the reproduction by the model of small or large events. This finding disproves the traditional assertion that changing the value of \(k\) varies the relative weighting given to small and large flow events

(iii) the shape of the response surface was altered by changes in exponent \(k\), affecting the ease or difficulty of optimization. The value of \(k=2\), i.e. the simple least squares function (Clarke, 1973b), was found to produce the most favourable shape - a parabolic shape.
(iv) changing the values of exponent m, i.e. transforming the streamflows, before calculation of deviations did affect the optimum parameter values considerably.

(v) setting $m=2$ favoured the reproduction of the large events while $m=0.5$ favoured the reproduction of small events.

One suspects that often the main reasons for the popularity of the least squares criterion must be familiarity and computational simplicity, because notably few of the many authors of modelling reports referred to earlier bother to motivate employment of least squares-type objective functions or to explore the implications their use and the use of specific weights and exponents (w, m and k in equation 5.1) might have for reliability of parameter estimates. Still, all modellers desire exactly that - estimators of reliable model parameters. This need for reliable parameter estimators is one of the main themes in Clarke's (1973b) benchmark review of the calibration and use of mathematical models in hydrology. Clarke points out that parameters estimated by analysis of the stochastic nature of model residuals through application of maximum likelihood theory must be regarded as the "most acceptable" parameters, because statistically sound (significance) statements about how "good" the estimates are may then be possible (also because such estimates are unbiased, have minimal variance and have computable confidence regions that converge as the number of observed data used in the calibration becomes large). A least squares objective function according to Clarke can lead to a maximum likelihood estimate only if four assumptions about the probability distribution of the model residuals, i.e. the deviations $Q_{OBSj} - OSIM_j$, are valid: that the residuals are normally distributed, have a zero mean and constant variance, are uncorrelated and produce a response surface of quadratic form (for all parameters) near the optimum. Clarke then goes on to show the numerous ways in which reported runoff model residuals invalidate one or more of these assumptions. Inevitably, the conclusion must be that more often than not the parameter estimates achieved by least squares objective functions are not of a maximum likelihood nature, are in fact of unknown statistical significance and may be mere artifacts of
the minimization process, thereby complicating attempts to attribute physical or conceptual meaning to them.

Clarke's (1973b) advocacy of the importance of model residual analysis in calibration can now be linked to two of the findings by Johnston and Pilgrim (1973) discussed earlier. Firstly, the finding that k=2 in equation 5.1 produces a parabolic response surface on which it is easiest to find the optimum validates one of Clarke's four assumptions for maximum likelihood estimates by a least squares objective function, i.e. quadracity of the response surface near the optimum. Secondly, awarding values to exponent m in equation 5.1 such that m≠1 changes the statistical characteristics of the model residuals and is analogous to transformation techniques used to try to achieve homogeneity of residual variance in linear regression applications. (Nonhomogeneous residual variance or heteroscedasticity typically arises in conceptual modelling when, due to measurement errors, the residual variance increases as discharge increases – a consequence of the concavity of the typical stage/discharge relationship. The result is that higher-stage errors translate into larger deviations in discharge than lower-stage errors; Soroshsian and Dracup, 1980). Choosing a value for m(m≠1, k=2) that stabilizes nonhomogeneous variance will validate another of Clarke's four assumptions. Unfortunately, selecting values for m has in the past been done rather arbitrarily by conceptual modellers and usually there is no certainty of achieving a stabilized residual variance situation.

Computing proper weights, \(w_j \) in equation 5.1, for individual deviations can be fraught with uncertainty. An example of the rule-of-thumb approach often used is the weighted least squares objective function in the parameter estimation routine of the flood hydrograph package (HEC-1) of the U.S. Army Corps of Engineers (1973). Here the weights are assigned according to the rule

\[
\begin{align*}
 w_j &= \frac{(Q_{OBS,j} + Q_{OBS})}{2Q_{OBS}} \\
 \text{.................................(5.2)}
\end{align*}
\]

where \(Q_{OBS} \) is the average of the historical discharge values. Although this weighting will accentuate peak flows in the minimization process,
it is likely that the derived parameters are not transferable in time or space. Sorooshian and Dracup (1980) show that rule-of-thumb weighting is in direct conflict with the principles of maximum likelihood theory and that the only legitimate form of weighting is one in which weights are derived during the optimization process by analysis of residuals.

The inadequacy of least squares-type objective functions \(m=1, k=2 \) in equation 5.1 for parameter estimation in the presence of input data errors is explored by Kuczera (1982) (uncorrelated and homoscedastic errors) and for the case of streamflow data errors by Sorooshian and Dracup (1980) and Sorooshian (1982) (correlated and heteroscedastic errors). All three studies demonstrate that careful attention to the stochastic structure of model residuals during the optimization process can lead to substantial gains in accuracy of parameter estimation in comparison with blind minimization of a simple or a weighted least squares objective function.

Despite increasing recognition in the past ten years that great uncertainty surrounds the physical or conceptual significance of model parameters derived by minimization of one or more objective functions without support by stochastic analysis of model residuals, this practice continues among water resources engineers and consulting hydrologists. In most cases, it is granted, the "feel" which the modeller has for his model and for the particular catchment he is modelling may dictate the final parameter choice. This "feel" of the modeller for a catchment, incorporating as it does the intangibles of his/her professional experience, may be a pragmatic way to evade the problems of parameter uncertainty analysis — an undertaking beyond the mathematical and computational resources of the average consulting engineer/hydrologist, as inspection of the attempts by Wood (1976), Douglas, Clarke and Newton (1976), Mein and Brown (1978) and Sorooshian and Dracup (1980) very quickly reveals. It must be expected therefore that model calibration practice comprising this blend of subjective experience and objective optimization, which has gradually developed in engineering-orientated modelling applications, will persist for many years to come — at least until model residual analysis and maximum likelihood estimation techniques can be
streamlined, packaged and "sold" to engineers, both as ideas and as products.

Recognising the need for pragmatism in water resources engineering practice, hydrologists such as Aitken (1973), Pitman (1977) and Weeks and Hebbert (1980) have continued research into reducing the subjectivity of objective function selection for common modelling applications. Pilgrim (1975) stresses that, without losing sight of the foregoing findings on parameter uncertainty, the choice of an objective function must be related to the aims of the modelling application, e.g. catchment yield studies, flood peak estimation for frequency analysis, low flow studies, land use effects on yield or on the whole hydrograph. This theme is echoed by Diskin and Simon (1977) in a comprehensive study of the problem of selection of objective functions in terms of specific engineering modelling applications. They analysed a configuration consisting of twelve different objective functions and six different engineering applications by optimizing two different models on data from three different catchments. Individual objective functions were not necessarily based on all observed flow data, but often on a specified subset of data. The subset used in any given case was such that the objective function became orientated towards a certain engineering application, e.g. only peaks or only low flows. In some cases the objective functions were calculated not from computed and observed values but from statistical parameters derived from these, such as variance, skewness and kurtosis.

The central aim of the Diskin and Simon (1977) study was "to investigate the effects of the objective function selection and to arrive if possible at some recommendations or guidelines for this selection which will reduce the apparent subjectivity involved". They demonstrate that a systematic procedure (albeit elaborate) for selection of objective functions is possible, that greatly improved results can be obtained if the objective function is formulated according to the engineering application for which modelling results will be used that it is desirable to use more than one objective function in the optimization procedure for a given model and a given engineering application. It is of interest to note that as an integrated result over the catchments, models and applications
considered in this study an objective function based on the sum of absolute deviations proved to be the most robust, with a simple least squares function second best. The worst two performances belonged to functions based on power-transformed observed and simulated values.

5.2.4 Summary of perspectives on optimization/objective function
difficulties

Perspectives on the role of objective functions in parameter estimation are currently still separable into two groups. On the one hand there are the practising engineers/hydrologists who are often hard-pressed to operate against a background of non-existent, inadequate or incomplete hydrometeorological records and having financial constraints and limited time to produce reasonable "answers". In this context the operation of conceptual rainfall-runoff models is regarded as completely deterministic and, consequently, model residual analysis is largely ignored in parameter estimation. However, uncertainty in derived model parameters is often indirectly acknowledged by steering model calibration towards simultaneous optimization of a group of objective functions, each measuring a different aspect of the goodness-of-fit (Aitken, 1973; Hydrological Research Unit, 1981-1982; Cundy and Brooks, 1981). Subjective but conservative judgement tempered by experience usually completes the optimization process.

The other group of perspectives is exemplified by the ideas of Clarke (1973b), namely that the operation of a conceptual model should be regarded as a stochastic process. Due to model structure inadequacies and data errors the true parameters of a model can be merely estimated and this parameter uncertainty must be defined via the stochastic structure of the model residuals. In other words, the objective function should be of a type that integrates the information in the statistical properties of model residuals to ensure appropriate minimization of uncertainty in model parameters and to make possible confidence statements about simulated streamflows. Although other workers are also making progress in this field, as shown above, Clarke has been developing his approach fairly consistently during the past ten years: Clarke (1973b); Douglas, Clarke and Newton (1976); O'Connell and Clarke (1981); Moore and Clarke (1981).
Perspectives on the general complexities of the calibration process, cited in subsection 5.2.2, and the possible solutions that are at hand vary from cautiously hopeful (Manley, 1978; Mein and Brown, 1978) to almost pessimistic (Moore and Clarke, 1981). There does seem to be consensus that the available measures by which the typical optimization problems of 5.2.2 can be redressed still do not guarantee convergence on the global optimum, so that the spectre of "false" optimum parameter sets or dubiously subjective parameter choices often cannot be escaped. A good example is the long and detailed searches for optimum parameters of the Roughton (1966) model conducted in three different instances by Johnston and Pilgrim (1976), Moore and Mein (1976), Mein and Brown (1978) and Pickup (1977) (in the case of Johnston and Pilgrim over two years of full-time work concentrated on one watershed). In none of these instances could the modellers claim to have found a truly optimum parameter set for the 13-parameter Roughton model, which is a typical example of the class of models under discussion. Indeed, the aforesaid complexities are so fundamental that they have led a prominent hydrologist such as R.T. Clarke to remark that "difficulties of the kind encountered by Johnston and Pilgrim (1973) and Pickup (1977), appear to have led to a decreasing emphasis on the use of conceptual models where it is necessary to forecast future runoff in real time instead, forecasters have turned to more empirical models in which there has been little or no attempt to use the principle of continuity that is embodied in all ESM (explicit-soil-moisture-accounting) models" (Tucci and Clarke, 1980).

Undoubtedly much research on the difficulties of optimizing conceptual models by objective functions can still be expected. However, it may be that the root cause of these difficulties should be sought in the complexity of the rainfall-runoff models containing anything from 6 to 30 parameters to be optimized and not in the objective functions or the optimization methods - whether they be automatic or trial-and-error. Moore and Clarke (1981) deliver a powerful verdict on existing rainfall-runoff models saying that because of model complexity
"the objective function cannot in practice be written down explicitly; even if it could be written, it would contain points in the parameter space at which derivatives were undefined. The result is that the existence of multiple optima cannot be satisfactorily explored in a systematic manner, and we are forced to use relatively slow direct search methods for the calculation of optima instead of a method using gradients, such as Newton-Raphson with quadratic convergence. Because the objective function cannot be written down, the hydrologist must have blind faith in the computer that he is using and in the program that he has written; his attention is so much occupied by the problems of optimization that he rarely gets to a full study of the residuals given by the model, which will indicate how it is unsatisfactory. He can acquire no feel for the statistical properties of these residuals, and therefore he cannot use existing statistical methods for testing hypotheses about the model, for making confidence statements about estimated streamflows, for making use of prior information about parameters, and for using additional measurements recorded within the basin that he is modelling."

Against the background of this rather destructive criticism, Moore and Clarke propose a new conceptual rainfall-runoff modelling approach in which the traditional few moisture stores are replaced by a statistical population of stores, while

"bearing in mind that the aim should be the development of models that are parsimonious of parameters (so that rationalization becomes more straightforward), with objective functions that are differentiable everywhere in the parameter space (so that faster optimization procedures may be used) and such that the relation between streamflow, rainfall, and potential evaporation can be written down explicitly (so that standard errors of estimated streamflows can be calculated easily)" (Moore and Clarke, 1981).

The first few preliminary tests of this modelling approach produced promising results, but a general purpose model along the aforesaid lines is still only a remote possibility.
5.2.5 Implications for the Ecca modelling studies

The group of models selected for application in the Ecca research catchments constitutes a fairly representative sample of the category of models affected by the formidable complexities of reliable parameter estimation. The implications for the Ecca study of the foregoing discussions are therefore that difficulties in defining unique parameters for each of the model/catchment combinations were to be expected from the outset and that the calibration procedure had to be designed to forestall the effects of these difficulties. A very important implication was the fact that a purely objective automatic optimization was not necessarily safer than a manual trial-and-error procedure and that rational manual intervention in the course of an automatic search was often essential to overcome complexities in the response surface geometry. Lastly, a calibration approach based on analysis of the stochastic nature of model residuals could not be employed in the Ecca study, as it would have been excessively costly in terms of man-hours and computer time owing to the complex computational and stringent mathematical demands involved; in addition, by treating the operation of the model as a deterministic process, results from such a study could be expected to be much more accessible to the engineering fraternity.

5.3 Selection of an optimization algorithm

Among the optimization algorithms that have been tested for catchment modelling purposes (discussed in the previous section), the direct search methods of Rosenbrock (1960) and Nelder and Mead (1965) (simplex method) and the steepest descent method known as the Davidson method (Fletcher and Powell, 1963) feature prominently. In general, it seems as if the former algorithms may be better than the Davidson method (Ibbitt and O'Donnell, 1971b; Wood, 1975; Pickup, 1977) but that there is little to choose between the Rosenbrock and Nelder/Mead algorithms (Pickup, 1977; Munley, 1978). Computer programs of all three algorithms are available in various published sources, e.g. Rosenbrock in Kuester and Mize (1973) and Douglas (1974), and the other two in Himmelblau (1972).
5.3.1 The Rosenbrock optimization algorithm

On the strength of its reported robustness, the Rosenbrock algorithm was selected as the automatic optimization technique that would be employed in the Ecca modelling studies. For this purpose a modified version of the optimizer computer program developed by Ibbitt (Ibbitt and O'Donnell, 1971b) was obtained and tested. A printout of this program is included in Appendix B. The Rosenbrock algorithm is well suited to the catchment model problem, since the particular class of problems for which the method was developed is one in which, firstly, the parameters are restricted by physical considerations and must fall within specific limits. Secondly, the objective function dependent on those parameters is such that partial derivatives of the objective function with respect to the various parameters cannot be stated analytically in usable forms (Dawdy and O'Donnell, 1968).

The Rosenbrock algorithm uses a so-called rotating coordinate search procedure, consisting of search cycles or orthogonalizations. The technique is illustrated for the 2-parameter case for three orthogonalizations in Fig. 5.2. In the first cycle it changes one parameter at a time until the line-optimum for that parameter is found. Each line-search is conducted in a series of steps, parallel to one of the coordinate axes. A step of arbitrary length, e, is attempted first. This is treated as successful if the resulting new value of the objective function presents an improvement of, or is equal to, the previous value. If a success, the step is allowed, and e is multiplied by $\alpha > 1$; if a failure, the step is not allowed and e is multiplied by $-\beta$, in which $0 < \beta < 1$. A new attempt is then made. These attempts are terminated as soon as at least one successful attempt, followed by one failed attempt, has been achieved in each parameter line-search. After the first cycle, however, changes are no longer made separately in each of the parameter directions; instead, orthogonal linear combinations of the parameters are changed. From its experience in the first cycle, the program defines the best direction of search as a line joining the starting point to the point reached at the end of the cycle. It uses this direction as the first axis of search in the second cycle, subsequent axes being defined.
orthogonally to this. At the end of each orthogonalization, this re-orientation of axes is made, so that the search is always made in the most likely direction (see Fig. 5.2).

5.3.2 Testing the Rosenbrock algorithm

Before any serious modelling studies were undertaken with its aid, some tentative testing of the Rosenbrock algorithm was done to gain familiarity with its behaviour and also to probe the nature of any convergence difficulties that may arise. For this purpose the daily-input conceptual rainfall-runoff model developed by Pitman (1976) was used. This model, called PITD, is described in Chapter 4. In addition, it was decided to use the full five years of data available for Ecca catchment A at the time (1976-1980) as the test data set. It was deemed important that the tests should be done on typical data used in the project and that a model of at least moderate complexity be used to gauge the power of the optimization technique fully, to probe for typical response surface complexities and to assess optimal computer run-time requirements in terms of adequate convergence. The objective functions, which were arbitrarily selected, were of a least squares nature, viz. functions of the coefficients of efficiency calculated on monthly flow values, MCE, and daily flow values, DCE — these are defined in Appendix A along with other objective functions and goodness-of-fit criteria used in this study. The objective functions were used in the form \((1-MCE)^{0.5}\) and \((1-DCE)^{0.5}\); subtraction from one allows minimization towards zero while the square root increases the sensitivity of the function to very small changes in MCE or DCE.

Model PITD was roughly calibrated by manual trial-and-error procedure at the start of the tests to establish a reference set of parameters, whereafter 56 individual searches were executed with the optimizer. The following phenomena were explored: sensitivity of individual parameters, response surface geometry for pairs of parameters, interdependence among parameters, occurrence of local optima, influence on the search of sequence of parameter changes relative to each other, influence on the search of different search starting points (initial parameter sets) on the response surface the
effect of constraining certain parameter values during the search,
typical convergence time requirements for different-sized parameter
perturbations around the reference parameter set, the potential
benefit or otherwise of manual intervention during the search, and the
advantage or otherwise of minimizing combined objective functions
instead of single objective functions.

Figs. 5.3 and 5.4 illustrate some of the typical results for the
three most sensitive parameters of PITO, (optimizing on monthly
streamflows): the soil moisture store capacity ST, the nominal maximum
infiltration rate ZMAXN, and the nominal minimum infiltration rate
ZMINN. Fig. 5.3 shows that the optimizer could converge on the
optimum in three out of four cases, starting from very distant points
on the response surface, in a fraction of the preset maximum number of
orthogonalizations. It is interesting to note that if the search
happened to enter the broad, flat valley surrounding the optimum at
one of the valley ends progress towards the optimum was much slower
than when the search entered the valley diagonally, where the gradient
was steeper. The horizontal nature of the valley implies no
interdependence between ST and ZMAXN, but the flatness of the valley
spells trouble for a search containing more than two parameters. Fig.
5.4 illustrates severe interdependence of parameters ZMINN and ZMAXN
and a response surface with a narrow but flat valley. As with the
previous surface, the optimizer converges rapidly across the contours
but progress is laborious from the flat end of the valley.

Fig. 5.5 depicts the response surfaces of the above two pairs of
parameters in the case where the search is conducted according to both
the daily and the monthly fits, using the coefficients of efficiency,
OCE and MCE, in a combined objective function. This combination was
devised when it became clear that optimization in terms of OCE alone
often did not converge on a parameter set that could restrict errors
in MAR and monthly standard deviation (SD) to reasonable levels.
Comparison with Figs. 5.3 and 5.4 reveals fairly similar response
surface geometry. As can be expected from the flatness of the
valleys, the optimizer often had difficulty converging lengthwise down
the valley. The response surfaces produced by another combined
objective function are shown in Fig. 5.6. In this equation the
(1-DCE)0.5 value is "penalised" or weighted by a function of the percentage difference between the MAR and SD and some acceptable percentage error limit in each case. Error limits of ±5\% for MAR and ±10\% for SD are shown in Fig. 5.6. If the MAR and SD errors are inside the preset limits, the weights revert to zero. It is clear that this function creates steep gradients on the response surface; but, more importantly, once the MAR and SD errors are within the specified limits, the search remains trapped inside a narrow valley commensurate with those limits. This valley, which also contains the optimum, is much narrower than the equivalent surface feature in the case of optimization against (1-DCE)0.5 unweighted. Convergence is also faster with the weighted objective function shown than in the unweighted case.

Apart from the results shown in the aforesaid diagrams, other important findings common to the model/objective function combinations used, were as follows. The volume parameters of the model (see Chapter 4) were much more sensitive, i.e. caused much bigger objective function value changes, proportionately speaking, than the delay and routing parameters; small amounts of interdependence existed between certain parameters, but of a lower order compared with the ZMINN/ZMAXN interdependence shown; local optima were absent in all the instances where pairs of parameters were investigated together, except for a trivial case shown in Fig. 5.6 (though they may exist for parameter combinations larger than pairs); some evidence of plateaus (parameter-indifference zones) were found in the regions of high volume parameter value combinations; the sequence in which parameters were changed made little difference to the ultimate outcome of the search, though certain sequences always seemed to produce a faster convergence (i.e. ZMAXN before ZMINN); optimization of more than five parameters simultaneously produced some "wandering" by the less sensitive parameters; different starting points have a crucial outcome on the success of the search (see Fig. 5.4); constraining parameter values to a reach inside which the optimum was suspected to lie accelerated the search noticeably (but how to know beforehand in a new situation?); in most searches where the optimum was found, it was in less than 15 orthogonalizations (see Fig. 5.3I which is equivalent to between 150 and 250 iterations (depending on the number of parameters optimized);
Figure 5.2 Typical search pattern according to the Rosenbrock algorithm
Figure 5.3 Four different optimization searches: model PITD
Objective Function = \(\sum C_b \) - \(\sum s \)

Figure 5.4 Four different optimization searches:
model PITD
Figure 5.5 Response surfaces with a combined objective function: model FITD
Figure 5.6 Response surfaces with a weighted objective function: model PITD.
manual intervention during the search proved to be highly beneficial in cases where progress in the search slowed down after just a few orthogonalizations: by manually adjusting two or three of the sensitive parameters by about 5% of their current value and continuing the optimization, the search path can perhaps be nudged over the edge of a plateau or out of a flat valley up its side-slopes from where the direction of the optimum is easier to find.

These tests indicated that the Rosenbrock algorithm would be a viable and often powerful calibration aid in the Ecca modelling studies as long as sight is not lost of the typical complexities associated with automatic search techniques. At this point a word of caution may be necessary: the reader should not be misled by the relative simplicity of the response surface, shown in Fig. 3.3 to 3.6 for a 2-parameter space. For example, a 3-parameter "valley", though hard to visualize, could be very difficult for an optimizer to traverse. After selection of and familiarisation with the Rosenbrock algorithm, selection of a robust objective function to use in the algorithm was necessary.

5.4 SELECTION OF OBJECTIVE FUNCTIONS

5.4.1 Procedure of selection

Since appraisal of models used in the Ecca study was to take place on the basis of the goodness-of-fit both of monthly and of daily flows, objective functions for both had to be selected from the many reported in the literature. It was decided to base this selection on the objective function/Rosenbrock optimizer combination that managed to produce the best overall fit on five years (1976-1980) of Ecca catchment A streamflow, employing model PITD, Pitman's (1976) daily-input model. This overall fit would be measured by a range of goodness-of-fit criteria. The steps leading to objective function selection can be summarized as follows:

Step 1: Select two groups of objective functions suitable for the monthly and daily cases, respectively. These are defined and discussed in the next subsection.
Step 2: Select those parameters of the model that are clearly more sensitive than the rest, based on the optimizer tests reported earlier. For the monthly case ST, ZMAXN, ZMINN (all defined earlier) and OIV, a parameter that divides excess soil moisture between groundwater storage and quickflow, were chosen. For the daily case parameters, ST, ZMAXN, ZMINN and TL, the channel routing parameter were the most sensitive.

Step 3: Perturb each of the eight parameters by an arbitrary amount larger than 30% away from the manually derived values mentioned earlier. This forms the initial parameter set at the start of each optimization.

Step 4: Using the starting parameter sets, optimize the model with each selected objective function for a preset maximum of 25 orthogonalizations in each case.

Step 5: Devise a meaningful set of performance or goodness-of-fit criteria to measure various aspects of the correspondence of simulated and observed flows. (Most of the objective functions are of course goodness-of-fit criteria in their own right).

Step 6: Run the model (without optimizer) with each “optimal” parameter set determined in step 4 and determine the overall goodness of-fit by means of the set of criteria assembled as step 5.

Step 7: Rank the performance of each objective function for each goodness-of-fit criterion and determine the best performance by summing the rankings.

5.4.2 Description of objective functions

The mathematical definition of all functions mentioned can be found in Appendix A.

(a) The monthly case
(i) Sum of squared residuals (SSRES): a dimensional measure of one-to-one fit and the most common version of equation 5.1 with \(w_j = 1 \), \(m = 1 \) and \(k = 2 \).

(ii) Sum of squared residuals (logarithms) (SSRESL): a measure of one-to-one fit biased towards low flows.

(iii) Coefficient of efficiency (MCE): a dimensionless measure of one-to-one fit sensitive to systematic error and first proposed by Nash and Sutcliffe (1970); here it is used in a slightly modified form though, namely the form suggested by Garrick, Cunnane and Nash (1978) where the model residuals are based on individual calendar month means instead of the overall monthly mean flow to allow for any seasonal effect; to allow minimization towards zero and to make the search more sensitive to small changes in objective function value, the \((1 - \text{MCE})^{0.5}\) was used in this study.

(iv) Relative sum of absolute errors (RAE): a dimensionless measure of one-to-one fit used in the WMO (1975) international conceptual model intercomparison as a goodness-of-fit criterion.

(v) Maximum equivalent constant error (MECE): a dimensionless measure of one-to-one fit used in the WMO (1975) model intercomparison as a so-called coefficient of variation of residuals; here it is used in modified form suggested by Weeks and Hobbett (1980) where the overall fit is expressed as an equivalent constant error in each value; it is a trivial matter to show that MECE, the traditional "standard error of estimate" and the "coefficient of variation of residuals" are all based on \((\text{SSRES})^{0.5}\) and that all three produce identical response surfaces.

(vi) Residual mass curve coefficient (Rh): a dimensionless measure of systematic error in the simulated time series; first proposed by Aitken (1973); actually measures the one-to-one fit of the cumulative observed and simulated residual time series; to allow minimization towards zero the function was used in the form \((1 - \text{RNCC})\) in this study.

(vii) Coefficient of persistence (CP): a dimensional measure of
systematic error (persistence in residual errors); first proposed by Wallis and Todini (1975) and used in the WHO (1975) project; accentuates the continuous runs of differences between observed and simulated time series, i.e. the areas between the curves that are being fitted.

(viii) Relative mean persistence (RMP): a dimensionless measure of systematic error (persistence in residual errors); developed by the author and represents an improvement on the CP (see (vi) above, and also section 5.7) which was found to be inconsistent during early tests on Ecca data.

(ix) Proportional error of estimate (PEE): a dimensionless measure of one-to-one fit with each residual weighted by the inverse of the observed flow \(w_j = (1/Q_{OBS_j})^2\) in equation 5.1) thereby giving equal proportional errors (instead of the equal weight...equal absolute errors by a sum of squares function); it was used by Banley (1978) to bias the fit in favour of medium to low flows.

(x) Sum of squared ratios of simulated to observed flows (SSRAT): a dimensionless measure of the one-to-one fit that is reasonably unaffected by the order of magnitude of the flows - suggested by Pitman (pers. comm., 1981).

(xi) Sum of squared ratios of logarithms of simulated to logarithms of observed flows (SSRATL): a dimensionless measure of one-to-one fit that is unaffected by the order of magnitude of the flows likely to favour medium to low flows.

(xii) Combined MCE and RHCC (COM1): a dimensionless measure of the combined one-to-one fit of both the observed and simulated flow series and the observed and simulated cumulative residual time series - an attempt to control systematic error while improving one-to-one fit; to allow minimization towards zero COM1 was used in the form \((1-MCE + (1-RHCC).\)
(b) The daily case

(i) Coefficient of efficiency (DCE): a dimensionless measure of one-to-one fit used in the form \((1 - DCE)^{0.5}\) (see (a) above).

(ii) Relative sum of absolute errors (RAE): a dimensionless measure of one-to-one fit (see (a) above).

(iii) Maximum equivalent constant error (MECE): a dimensionless measure of one-to-one fit (see (a) above).

(iv) Sum of squared residuals of logarithms (SSRESL): a dimensional measure of one-to-one fit, biased towards low to medium flows.

(v) Proportional error of estimate (FEE): a dimensionless measure of one-to-one fit, biased towards low to medium flows (see (a) above).

(vi) Sum of mean ratio and standard deviation of ratios (SMRAT): a dimensionless measure of one-to-one fit based on the mean and the standard deviation of the ratios formed by each simulated value divided by the equivalent observed value, thereby preventing a bias in fit in favour of high flows - first suggested by Cundy and Brooks (1981).

(vii) Coefficient of efficiency of flow duration curves (CEFDC): a measure of the model's ability to reproduce the frequency distribution of daily flows, regardless of the one-to-one fit of individual flow values - used in the form \((1 - CEFDC)^{0.5}\).

(viii) Combined DCE and RMCC (monthly flows) (COM2): a combined measure of the frequency distribution of daily one-to-one fit and monthly systematic error - used in the form \((1 - DCE) + (1 - RMCC)\).

(ix) Combined CEFDC and MCE (COM3): a combined measure of the frequency distribution of daily flows and the monthly one-to-one fit - used in the form \((1 - CEFDC) + (1 - MCE)\).

(x) Combined DCE and MCE (COM4): a combined measure of the one-to-one fit of both daily flows and monthly flows - used in the form
(1-DCE) + (1-MCE).

(x1) Weighted DCE (WDCE): a measure of one-to-one fit that brings the error in MAR and in monthly standard deviation into play during optimization (Manley, 1978); in this study a maximum acceptable error in MAR of ±5% and in standard deviation of ±10% was adopted, because if these error limits are set wider the constraint has little benefit and if set narrower then too many trials that improve the unweighted objective function are rejected because of contravention of the limits, thus slowing the optimization procedure—in this study the weighting was applied to the (1-DCE) form of the function.

5.4.3 Description of goodness-of-fit criteria

The ability of each objective function to lead the optimization search to an optimal parameter set was assessed by the following goodness-of-fit criteria (many of the objective functions previously described double up as goodness-of-fit criteria). The criteria were selected to focus on a variety of flow record characteristics that are of typical interest to engineering hydrology.

(a) Monthly case

(i) Percentage error in the MAR (aMAR)

(ii) Percentage error in the monthly variance (aVAR)

(iii) Coefficient of efficiency (MCE) - the Garrick, Cunnane and Nash (1978) version

(iv) Maximum equivalent constant error (MECE)

(v) Residual mass curve coefficient (RMCC)

(vi) Coefficient of persistence (CP)
(vii) Relative mean persistence (RMP).

(viii) Percentage error in the range of the residual mass curve (ΔR_a): a typical measure relating to storage requirements for long-term flow regulation (Aitken, 1973).

(ix) Percentage error in the index of seasonal variability (ΔI_s): a typical measure relating to storage requirements for seasonal flow regulation (Hydrological Research Unit, 1981-1982).

(b) Daily case

The goodness-of-fit criteria for the daily case are divided into four categories: the fit of the monthly values, the overall fit of daily values, the fit of the maximum daily flow per month (annual peaks are meaningless on 5 years of data), and the fit of low flows.

Overall monthly fit

(i) to (vii) Identical to the monthly goodness-of-fit criteria (i) to (iii), (v) and (vi), (viii) and (ix) above (the net for the RMP was not appreciated at the time of these model runs).

(ix) Percentage error in the average deficient flow period ($\Delta ADFP$): a low flow index based on continuous periods of monthly totals less than the mean monthly flow.

(x) Percentage error in the maximum deficient flow period ($\Delta MDFP$): a low flow index equal to the maximum continuous period of flow less than the monthly mean.

Overall daily fit

(xi) Percentage error in the daily variance (ΔVAR).

(xii) Coefficient of efficiency (DCE) - the Garrick, Cunnane and Nash version (1978).
(xiii) Coefficient of efficiency of logarithms of daily flows (OCEL).

(xiv) Coefficient of efficiency of daily flow duration curves (CEFDC).

(xv) Relative sum of absolute errors (RAE).

Peak daily flow/month for months with peaks > mean daily flows:

(xvi) Percentage error in mean peak daily flow/month (Δ MPF).

(xvii) Coefficient of efficiency (CE).

(xviii) Relative sum of absolute errors (RAE).

Low flow (all daily flows < mean daily flow):

(xix) Percentage error in mean of low flows (Δ HLF).

(xx) Coefficient of efficiency of low flows (CE).

(xxi) Relative sums of absolute errors (RAE).

After the foregoing goodness-of-fit criteria had been selected, statistical subroutines AFIT for monthly data and BFIT for daily data were developed to perform the actual calculations to evaluate the criteria, using model outputs of monthly and daily flows and inputs of the relevant observed time series. FORTRAN listings of the two subroutines appear in Appendix B.

5.4.4 Comparison of monthly objective functions

The optimal parameter sets defined by each of the 12 monthly objective functions after 25 orthogonalizations (≈350 iterations)
are listed in Table 5.1 along with other relevant information. Notable from these results are the following points:

(a) The three functions of which the sum of squared residuals is a major component - SSRES, MCE and MECE - produced almost identical optima, which were not too different from the RAE and COM1 optima.

(b) The objective functions based on proportions, PEE, SSRAT and SSRATL, converged on highly different parameter sets relative to each other and also to the aforesaid group of five residual-based functions.

(c) Both in terms of the overall degree of minimization in objective function value (Final OF/Start OF) and the speed of convergence (column: "Convergence ortho's") PEE, SSRAT and SSRATL performed more poorly than SSRES, MCE and MECE.

(d) The functions based on minimization of systematic errors, SSRESL and RMP converged on widely divergent parameter sets.

(e) The two functions using log-transformed data - SSRESL and SSRATL - produced parameters very different from those of their counterparts that used untransformed data.

(f) The column "Final OF/Start OF" reveals a surprising range in the degree of minimization achieved by the 12 functions over the same number of orthogonalizations, i.e. from a 99.2% reduction in MECE to a 39.9% reduction in SSRATL: this may be indicative of the complexity of the response surface or merely of whether or not a fortuitous starting point on the surface was chosen.

(g) Reasonably small errors in both MAR and SD were achieved by many of the objective functions, but for a range of parameter sets.

The performances of the monthly objective functions are compared
in Table 5.2. Because their optimal parameters came out almost identical, the group SSRES, MCE and MECE was treated as a single objective function using the MCE parameters. The performances of the 12 objective functions were ranked in terms of the proximity of the goodness-of-fit criteria values to their individual optimum values. The rankings confirm the pattern of performance discernible in Table 5.1. The MCE function performed best (lowest total ranking) followed closely by COM1 and RAE. The poorest performances were by SSRAT, SSRESL, PEE and SSRATL, in that order.

The search problem used in the objective function comparison was not regarded as very difficult, as inspection of the starting values in Table 5.1 will reveal; but even so, objective functions based on proportional or log-transformed versions of the flow sequences failed to find acceptable near-optimal parameters. In recognition that the above results could be fortuitous, the whole exercise was repeated for a different set of starting values, representing a more difficult search. The derived optimal parameters of this search revealed a pattern almost identical to that of Table 5.1. Unfortunately, the parameter sets cannot be compared with those of Table 5.1, because a different 24 hour rainfall distribution function (see Chapter 4) was accidentally used. This error should not cause any increase or reduction of complexity of response surfaces associated with objective functions on a monthly basis and therefore the observed pattern is accepted as genuine. Calculation of goodness-of-fit criteria based on parameters derived in the second comparison was not attempted as it was felt that evidence was already strong enough to prove that the objective functions based on simple or squared sums of residuals were more robust than any others tested, given a model of medium complexity and the specific data set used. Specifically, the monthly coefficient of efficiency MCE was selected as a suitably robust objective function for use in the Ecca modelling study whenever optimization on a monthly basis was required.

5.4.5 Comparison of daily objective functions

The comparison of daily objective functions was also in two
Table 5.1
Comparison of optima derived by different objective functions: monthly flow series

Objective function (OF)	Parameter values\(^1\)	Final Final OF/ Start OF MAR (\%) Convergence (\%) ortho's\(^2\)		
	ST ZMAXN ZMINN DIV	OF value		
SSRES (10^6 \cdot m^6)	163,3 5,0 0,6 3,8	193355 0,028 1,9	2,4 5	
SSRES	134,6 14,6 1,3	1982 0,109 7,4	23 24	
MCE	163,8 5,0 0,9 0,7	0,073 0,16^-	2,2 6	
RAE	161,6 5,3 0,8 0,8	0,122 0,33^-	e,2 5,5 10	
MECE	163,8 5,0 0,9 0,7	0,138 0,008 1,8	2,2 8	
RMCC	164,6 4,4 1,3 0,5	0,001 0,167 3,1	2,2 6	
CP (10^6 \cdot m^6)	186,7 7,4 0,1 1,0	1,05 0,440 -5,6	-13 10	
RMP	159,6 11,3 0,7 0,6	0,010 0,568 -8,9	5,0 4	
PEE	131,9 14,9 1,4 0,4	2,725 0,309 4,9	25 16	
SSRAT	87,5 6,4 0,3 0,9	15,83 0,593 86	66 25	
SSRATL	153,6 3,0 1,0 0,5	859,1 0,621 35	20 25	
COML	164,0 4,6 1,1 0,7	0,006 0,021 0,8	2,2 14	

Starting values 201,0 112 0,7 0,5 . . -34 -17 .

\(^1\) All other parameters held constant at approximately optimal values.

\(^2\) Number of orthogonalizations after which convergence slowed down significantly; a ‘-’ of 25 orthogonalizations was used in all cases.
Table 5.2

Comparison of objective function performance: monthly flow series used

<table>
<thead>
<tr>
<th>Criterion</th>
<th>SSRES</th>
<th>SSRESL</th>
<th>RAE</th>
<th>RMCC</th>
<th>CP</th>
<th>RMP</th>
<th>PEE</th>
<th>SSRAT</th>
<th>SSRATL</th>
<th>COMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCE</td>
<td></td>
</tr>
<tr>
<td>MEC</td>
<td></td>
</tr>
</tbody>
</table>

- VAR(%) 1,9 7,4 2,2 3,1 -5,6 -8,6 4,9 86 35 0,8
- VAR(%) 4,6 50,0 7,4 4,7 -13 10,3 57,0 179 28 4,7
- MCE 0,994 0,999 0,994 0,994 0,929 0,874 0,869 0,920 0,994
- MEC 0,005 0,023 0,006 0,005 0,025 0,012 0,025 0,065 0,020 0,005
- RMCC 0,999 0,884 0,999 0,999 0,958 0,972 0,844 0,754 0,966 0,999
- CP 0,91 1,18 0,44 1,20 1,05 1,18 1,02 1,25 1,33 0,99
- CMP 0,003 0,021 0,003 0,004 0,013 0,011 0,021 0,042 0,019 0,004
- Δ Rₐ (%) -0,5 20,1 1,0 -1,0 -17,0 2,8 22,5 53,5 6,2 -0,6
- Δ Iₗs (%) -1,0 24,4 0,1 5,2 -15,4 18,6 23,7 -16,0 -22 2,4

Ranking per goodness-of-fit criterion

ΔMAR	2	7	3	4	6	8	5	10	9	1
ΔVAR	1	8	4	2	6	5	9	10	7	2
MCE	1	8	1	1	6	4	9	10	7	1
MECE	1	7	4	1	8	5	8	10	6	1
RMCC	1	8	1	1	7	5	8	10	6	1
CP	2	6	1	8	5	6	4	9	10	3
RMP	1	8	1	1	3	6	5	8	10	7
Δ Rₐ	1	8	3	3	7	5	9	10	6	1
Δ Iₗs	2	10	1	4	5	7	9	6	8	3

Total 12 70 19 26 56 50 69 85 66 16
phases. In the first, all 11 selected daily objective functions were compared, while in the second phase only the five "best" performers from the first phase were compared. The first phase search was less difficult than the second phase, as the starting values in Table 5.3 illustrate. For daily optimizations the more sensitive TL (channel routing constant) replaced the less sensitive DIV. Table 5.3 also lists the optima derived by the objective functions in both phases. Tables 5.4(a) and (b) provide a comparison of performances of the objective functions during the first phase and Table 5.5 compares the second phase results. The following points about the first phase results can be noted.

(a) The objective functions based on simple or squared sums of residuals DCE, RAE, MECE, COM2, COM3, COM4 and WDCE converged on fairly similar parameter values.

(b) The average degree of minimization achieved by the various functions, as expressed in the proportion of the final value after 25 orthogonalizations to the starting value, is much smaller than in the monthly optimization case; partly due to the fact that the objective function is now based on a 30-fold larger number of values, thus providing more opportunity for different configuration of errors to produce the same result.

(c) The increasingly laborious nature of the search (implied under (b)) is also clear from the last column in Table 5.3 which shows that most functions needed many more orthogonalizations before the search slowed down significantly than in the monthly case.

(d) The low number of orthogonalizations required by CEFDC is a measure of the function's lack of sensitivity (perhaps a very flat response surface) rather than its power - attributed partly to the fact that it is based on only 44 points on a flow duration curve (distributed logarithmically).

(e) The performance of the functions DCE, MECE, RAE, PEE, COM4 and WDCE was overall notably better than any other, while SHRAT was notably poorer, overall.

(f) However, low flows were best simulated by parameters derived
by SMRAT and PEE, the two "proportional" functions.

(g) Peak flows were best simulated by parameters derived by the group of functions based on sums of simple or squared residuals.

(h) Functions WDCE and DCE were superior in the "all daily flows" category.

The second phase comparison was aimed at further exploration of the differences among the five best performers mentioned above. It was felt that the poor performers SMRAT, CEFDC, SSRESL AND COM3, did not need further testing, while the combined function COM4 was rejected on the grounds of uncertainty about the response surface of a combined objective function. The following observations are of interest:

(a) Final objective function values are higher than the first phase values in all cases except DCE AND PEE, implying that the first phase parameter sets derived by DCE and PEE were not optimal; this may mean that PEE's good performance in the first phase (2nd best) may have been coincidental.

(b) PEE converged on very different parameter values in the second search compared with the first, leading to the poorest overall performance in terms of goodness-of-fit values.

(c) DCE, RAE, MECE and WDCE converged on values fairly similar to those for the first phase, with RAE performing the best, followed closely by MECE in the overall rankings.

(d) PEE was again the best performer in terms of low flows, with DCE, RAE and MECE best in terms of peak flows.

On the grounds of the foregoing results it was decided that the daily coefficient of efficiency, DCE, would be a suitably robust
Table 5.3

Comparison of optima derived by different objective functions: daily flow series used

<table>
<thead>
<tr>
<th>Objective function (OF)</th>
<th>Parameter values(^*1)</th>
<th>Final OF/Start OF</th>
<th>Convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST ZMAX ZMIN TL</td>
<td>MAR SD</td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>165.5 5.6 0.7 0.9 0.300 0.584</td>
<td>1.7 1.3</td>
<td>15</td>
</tr>
<tr>
<td>RAE</td>
<td>162.2 5.7 0.9 0.7 0.334 0.672</td>
<td>1.0 3.5</td>
<td>15</td>
</tr>
<tr>
<td>MECE</td>
<td>165.2 5.4 0.8 0.9 0.999 0.582</td>
<td>0.2 1.5</td>
<td>21</td>
</tr>
<tr>
<td>SSRESL</td>
<td>118.8 4.3 2.2 3.5 10202 0.676</td>
<td>22 34</td>
<td>25</td>
</tr>
<tr>
<td>PEE</td>
<td>165.0 4.5 1.1 1.1 15.21 0.161</td>
<td>0.8 1.8</td>
<td>16</td>
</tr>
<tr>
<td>SMRAI</td>
<td>198.3 15.0 0.5 1.6 1.209 0.525</td>
<td>33 15</td>
<td>17</td>
</tr>
<tr>
<td>CEFDC</td>
<td>172.3 11.2 0.7 0.6 0.001 0.576</td>
<td>17 2.5</td>
<td>3</td>
</tr>
<tr>
<td>COMZ</td>
<td>163.6 5.9 0.5 0.6 0.330 0.390</td>
<td>5.2 2.5</td>
<td>23</td>
</tr>
<tr>
<td>COM3</td>
<td>164.1 5.6 0.6 1.2 0.063 0.158</td>
<td>4.7 2.2</td>
<td>6</td>
</tr>
<tr>
<td>COM4</td>
<td>164.0 5.7 0.6 0.8 0.370 0.408</td>
<td>3.4 2.3</td>
<td>21</td>
</tr>
<tr>
<td>WDCE</td>
<td>166.3 6.0 0.6 0.8 0.304 0.592</td>
<td>1.2 0.7</td>
<td>23</td>
</tr>
</tbody>
</table>

Starting values

DCE	165.6 6.0 0.5 0.8 0.091 0.113	4.9 1.1	18
RAE	165.5 6.3 0.4 0.7 0.382 0.208	3.8 1.2	20
MECE	166.8 6.0 0.4 0.8 1.014 0.337	5.3 0.4	20
PEE	195.3 10.9 0.8 1.4 0.861 0.029	31 14	16
WDCE	169.4 6.5 0.3 0.8 0.308 0.342	4.8 -1.4	17

*1 All other parameters held constant at approximately optimal values.

*2 Number of orthogonalizations after which convergence slowed down significantly; a limit of 25 orthogonalizations was used in all cases.
Table 5.4(a)

Comparison of objective function performance: daily flow series used (first phase)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DCE</th>
<th>RAE</th>
<th>SSRESL</th>
<th>PEE</th>
<th>SMRAT</th>
<th>CEFOC</th>
<th>COM2</th>
<th>COM3</th>
<th>COM4</th>
<th>WDCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
</tr>
<tr>
<td>△MAR(%)</td>
<td>0.6</td>
<td>-0.5</td>
<td>22.8</td>
<td>-0.1</td>
<td>-32.8</td>
<td>-16.5</td>
<td>5.9</td>
<td>5.4</td>
<td>4.0</td>
<td>1.7</td>
</tr>
<tr>
<td>△VAR(%)</td>
<td>2.6</td>
<td>6.6</td>
<td>79.9</td>
<td>3.2</td>
<td>-28.1</td>
<td>-5.3</td>
<td>4.6</td>
<td>3.9</td>
<td>4.1</td>
<td>1.7</td>
</tr>
<tr>
<td>MCE</td>
<td>0.994</td>
<td>0.994</td>
<td>0.111</td>
<td>0.995</td>
<td>0.810</td>
<td>0.961</td>
<td>0.994</td>
<td>0.994</td>
<td>0.994</td>
<td>0.993</td>
</tr>
<tr>
<td>RMCC</td>
<td>0.998</td>
<td>0.999</td>
<td>0.844</td>
<td>0.999</td>
<td>0.945</td>
<td>0.989</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
</tr>
<tr>
<td>CP</td>
<td>0.80</td>
<td>1.20</td>
<td>1.20</td>
<td>0.94</td>
<td>1.99</td>
<td>1.54</td>
<td>1.06</td>
<td>0.98</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>△R_a(%)</td>
<td>-1.5</td>
<td>0.7</td>
<td>31.4</td>
<td>-1.3</td>
<td>-24.3</td>
<td>-6.1</td>
<td>-0.5</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-2.3</td>
</tr>
<tr>
<td>△R_S(%)</td>
<td>0.1</td>
<td>4.3</td>
<td>12.6</td>
<td>1.3</td>
<td>15.0</td>
<td>16.8</td>
<td>-5.0</td>
<td>-4.8</td>
<td>-3.0</td>
<td>-1.8</td>
</tr>
<tr>
<td>△ADF_P(%)</td>
<td>0.0</td>
<td>35.7</td>
<td>35.7</td>
<td>0.0</td>
<td>107</td>
<td>35.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>△MDF_P(%)</td>
<td>4.2</td>
<td>62.5</td>
<td>62.5</td>
<td>4.2</td>
<td>75</td>
<td>62.5</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
</tr>
<tr>
<td>△VAR(%)</td>
<td>-17.8</td>
<td>-19.4</td>
<td>-13.2</td>
<td>-19.2</td>
<td>-59.8</td>
<td>-42.4</td>
<td>-16.5</td>
<td>-25.8</td>
<td>-16.0</td>
<td>-11.7</td>
</tr>
<tr>
<td>DCE</td>
<td>0.904</td>
<td>0.900</td>
<td>0.582</td>
<td>0.894</td>
<td>0.572</td>
<td>0.772</td>
<td>0.903</td>
<td>0.879</td>
<td>0.904</td>
<td>0.907</td>
</tr>
<tr>
<td>DCEL</td>
<td>0.225</td>
<td>0.250</td>
<td>0.386</td>
<td>0.318</td>
<td>0.246</td>
<td>0.253</td>
<td>0.109</td>
<td>0.117</td>
<td>0.158</td>
<td>0.148</td>
</tr>
<tr>
<td>CEFDC</td>
<td>0.996</td>
<td>0.973</td>
<td>0.903</td>
<td>0.994</td>
<td>0.967</td>
<td>0.882</td>
<td>0.977</td>
<td>0.953</td>
<td>0.995</td>
<td>0.998</td>
</tr>
<tr>
<td>RAE</td>
<td>0.345</td>
<td>0.353</td>
<td>0.798</td>
<td>0.348</td>
<td>0.610</td>
<td>0.525</td>
<td>0.377</td>
<td>0.423</td>
<td>0.362</td>
<td>0.364</td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
</tr>
<tr>
<td>△MDF_P(%)</td>
<td>-16.4</td>
<td>-16.3</td>
<td>-43.3</td>
<td>-19.2</td>
<td>-61.7</td>
<td>-43.9</td>
<td>-12.3</td>
<td>-20.7</td>
<td>-12.8</td>
<td>-12.8</td>
</tr>
<tr>
<td>CE</td>
<td>0.921</td>
<td>0.935</td>
<td>0.732</td>
<td>0.900</td>
<td>0.599</td>
<td>0.814</td>
<td>0.924</td>
<td>0.878</td>
<td>0.926</td>
<td>0.948</td>
</tr>
<tr>
<td>RAE</td>
<td>0.229</td>
<td>0.216</td>
<td>0.447</td>
<td>0.241</td>
<td>0.618</td>
<td>0.441</td>
<td>0.236</td>
<td>0.301</td>
<td>0.232</td>
<td>0.210</td>
</tr>
<tr>
<td>Low flows (< daily mean flow)</td>
<td></td>
</tr>
<tr>
<td>△MLF(%)</td>
<td>-4.1</td>
<td>-17.2</td>
<td>-6.4</td>
<td>-18.9</td>
<td>-37.3</td>
<td>-36.7</td>
<td>30.4</td>
<td>40.1</td>
<td>16.1</td>
<td>30.9</td>
</tr>
<tr>
<td>CE</td>
<td>-2.45</td>
<td>-1.72</td>
<td>-0.85</td>
<td>-0.81</td>
<td>0.21</td>
<td>-0.27</td>
<td>-6.50</td>
<td>-4.53</td>
<td>-4.87</td>
<td>-4.90</td>
</tr>
<tr>
<td>RAE</td>
<td>0.983</td>
<td>0.967</td>
<td>0.907</td>
<td>0.824</td>
<td>0.713</td>
<td>0.861</td>
<td>1.27</td>
<td>1.23</td>
<td>1.16</td>
<td>1.19</td>
</tr>
</tbody>
</table>
Table 5.4(b)

Rankings of objective function performance: daily flow series used (first phase)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DCE</th>
<th>RAE</th>
<th>SSRESL</th>
<th>PEE</th>
<th>SMRAT</th>
<th>CEFDC</th>
<th>CON2</th>
<th>CON3</th>
<th>CON4</th>
<th>WOCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
</tr>
<tr>
<td>ΔMAR</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ΔVAR</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>MCE</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>RMCC</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ΔR²</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>ΔIs</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>ΔADF</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ΔWDF</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
</tr>
<tr>
<td>ΔVAR</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>DCE</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>OCEL</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>CEFDC</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>RAE</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
</tr>
<tr>
<td>ΔMPF</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CE</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>RAE</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Low flows (< daily mean flow)</td>
<td></td>
</tr>
<tr>
<td>ΔMLF</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>CE</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>RAE</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Total ranking</td>
<td>59</td>
<td>84</td>
<td>145</td>
<td>66</td>
<td>172</td>
<td></td>
<td>98</td>
<td>115</td>
<td>70</td>
<td>71</td>
</tr>
</tbody>
</table>
Comparison and ranking of objective function performance: daily flow series used (second phase)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{MAR}(%))</td>
<td>5.5</td>
<td>4.5</td>
<td>6.0</td>
<td>-30.5</td>
<td>5.7</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>(\Delta \text{VAR}(%))</td>
<td>2.5</td>
<td>2.6</td>
<td>0.9</td>
<td>-26.4</td>
<td>-2.6</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>MCE</td>
<td>0.993</td>
<td>0.993</td>
<td>0.992</td>
<td>0.849</td>
<td>0.989</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>RMCC</td>
<td>0.998</td>
<td>0.999</td>
<td>0.997</td>
<td>0.955</td>
<td>0.955</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>(\Delta \text{ISR}(%))</td>
<td>-2.0</td>
<td>-1.9</td>
<td>-2.8</td>
<td>-22.2</td>
<td>-4.4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>(\Delta \text{ADFP}(%))</td>
<td>0.0</td>
<td>0.0</td>
<td>-21.5</td>
<td>35.7</td>
<td>-35.7</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(\Delta \text{MDFP}(%))</td>
<td>4.2</td>
<td>4.2</td>
<td>-25.0</td>
<td>82.5</td>
<td>-33.3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

All monthly flows

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{VAR}(%))</td>
<td>-12.5</td>
<td>-10.9</td>
<td>-13.1</td>
<td>-54.4</td>
<td>-16.3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>DCE</td>
<td>0.908</td>
<td>0.905</td>
<td>0.908</td>
<td>0.662</td>
<td>0.905</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>DCEL</td>
<td>0.084</td>
<td>0.075</td>
<td>0.048</td>
<td>0.292</td>
<td>-0.04</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CEFD</td>
<td>0.972</td>
<td>0.979</td>
<td>0.951</td>
<td>0.864</td>
<td>0.903</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>RAE</td>
<td>0.389</td>
<td>0.384</td>
<td>0.401</td>
<td>0.543</td>
<td>0.423</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>(\Delta \text{MPF}(%))</td>
<td>-10.8</td>
<td>-11.0</td>
<td>-10.2</td>
<td>-5.0</td>
<td>-12.6</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>CE</td>
<td>0.944</td>
<td>0.953</td>
<td>0.944</td>
<td>0.662</td>
<td>0.937</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>RAE</td>
<td>0.226</td>
<td>0.223</td>
<td>0.231</td>
<td>0.569</td>
<td>0.244</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

All daily flows

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{MLF}(%))</td>
<td>33.3</td>
<td>29.6</td>
<td>42.3</td>
<td>-44.7</td>
<td>70.3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>CE</td>
<td>-7.2</td>
<td>-7.4</td>
<td>-8.5</td>
<td>0.39</td>
<td>-8.7</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>RAE</td>
<td>1.27</td>
<td>1.29</td>
<td>1.34</td>
<td>0.68</td>
<td>1.47</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Peak daily: low/month

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{MLF}(%))</td>
<td>-10.8</td>
<td>-11.0</td>
<td>-10.2</td>
<td>-5.0</td>
<td>-12.5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>CE</td>
<td>0.944</td>
<td>0.953</td>
<td>0.944</td>
<td>0.662</td>
<td>0.937</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>RAE</td>
<td>0.226</td>
<td>0.223</td>
<td>0.231</td>
<td>0.569</td>
<td>0.244</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Low flows (< daily < an flow)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
<th>DCE</th>
<th>RAE</th>
<th>MECE</th>
<th>PEE</th>
<th>WDECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{MLF}(%))</td>
<td>33.3</td>
<td>29.6</td>
<td>42.3</td>
<td>-44.7</td>
<td>70.3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>CE</td>
<td>-7.2</td>
<td>-7.4</td>
<td>-8.5</td>
<td>0.39</td>
<td>-8.7</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>RAE</td>
<td>1.27</td>
<td>1.29</td>
<td>1.34</td>
<td>0.68</td>
<td>1.47</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Total ranking 37 32 58 86 78
OBJECTIVE FUNCTION TO USE IN THE ECCA MODELLING STUDY WHENEVER OPTIMIZATION ON A DAILY BASIS WAS REQUIRED. BECAUSE EXPERIMENTATION REVEALED THAT THE DCE DID NOT ALWAYS ENSURE CONVERGENCE IN TERMS OF ACCEPTABLE MAR AND SD ERRORS, THIS DECISION WAS AMENDED: VIZ. WHEN THE LAST-MENTIONED PROBLEMS AROSE, THE WEIGHTED COEFFICIENT OF EFFICIENCY, WOCCE, WOULD BE USED TO ENSURE PARAMETER VALUES THAT WOULD RESTRICT THE MAR AND SD ERRORS WHILE PROVIDING A REASONABLE ONE-TO-ONE FIT. ALTHOUGH WDCE WAS RANKED ONLY FOURTH IN BOTH SEARCHES, TABLES 5.4(A) AND 5.5 SHOW THAT THE ACTUAL DIFFERENCES IN GOODNESS-OF-FIT CRITERIA VALUES FOR DCE AND WDCE ARE MINIMAL.

5.5 ROBUSTNESS OF SELECTED OPTIMIZER/OBJECTIVE FUNCTION COMBINATION

A SHORTCOMING OF THE OPTIMIZER/OBJECTIVE FUNCTION TESTS DESCRIBED IN 5.4 IS THAT THE TRUE OPTIMAL PARAMETER VALUES WERE UNKNOWN AND THE COMPARISONS HAD TO BE BASED ON A GROUP OF GOODNESS-OF-FIT CRITERIA MEASURING THE CORRESPONDENCE OF OBSERVED FLOWS AND FLOWS GENERATED BY THE SO-CALLED OPTIMAL PARAMETERS. THIS SECTION WILL OBViate THIS SHORTCOMING IN THAT IT COMPILED A STRINGENT TEST OF EXACTLY HOW ROBUST THE SELECTED COMBINATION OF ROSENBROCK OPTIMIZER/MCE-OCE-OBJECTIVE FUNCTION IS. THE TEST CONSISTS OF THE FOLLOWING STEPS.

STEP 1: SELECT A SET OF PARAMETERS FOR PITQ, ACCEPT THESE AS "TRUE" AND GENERATE A MONTHLY OR DAILY FLOW SEQUENCE, USING THE SAME FIVE YEARS OF RAINFALL AND EVAPORATION DATA AS BEFORE.

STEP 2: USING THE GENERATED FLOW SERIES NOW AS AN "OBSERVED" SERIES, OPTIMIZE THE MODEL FOR THE SAME FOUR PARAMETERS AS BEFORE, THREE TIMES OVER, EACH TIME WITH A DIFFERENT CONFIGURATION OF INITIAL VALUES. CLEARLY, IF SUFFICIENTLY ROBUST, THE OPTIMIZING ROUTINE SHOULD CONVERGE ON PARAMETER VALUES VERY CLOSE TO IF NOT IDENTICAL WITH THE "TRUE" VALUES.

STEP 3: AGAIN EMPLOYING THE GENERATED FLOW SERIES OF STEP 1, AS AN "OBSERVED" SERIES, OPTIMIZE THE MODEL FOR SEVEN PARAMETERS THIS TIME, COMPRISING FOUR VOLUME CONTROL PARAMETERS AND THREE DELAY AND ROUTING PARAMETERS. THIS OPTIMIZATION IS DONE IN TWO DIFFERENT WAYS: "STAGED" OPTIMIZATION IN WHICH THE FOUR VOLUME PARAMETERS ARE
optimized separately from the three timing parameters in alternating searches; and "blunt" optimization where the seven parameters are optimized simultaneously. Again, a robust procedure should derive parameter values very close to the "true" values.

5.5.1 The monthly case

Table 5.6 lists the outcome of the 4-parameter and 7-parameter searches described above, for the case of optimization on monthly values using the MCE objective function. The "observed" monthly flow sequence used in this case was generated by the optimal parameters derived by MCE in the monthly objective function intercomparison (Table 5.1). It is interesting to see that in the 4-parameter searches after 15 orthogonalizations (+210 iterations) the most sensitive parameters, ST, ZMAXN and ZMINN were close to their true values. The proximity of the final MCE value to its perfect fit-status, i.e. MCE=1.0, implies that progress in the convergence must have been exceedingly slow by this stage. Interdependence of ZMAXN and ZMINN (see Fig. 5.4) would also retard the search at this stage. On a monthly basis parameter TL is obviously too insensitive to be optimized efficiently.

The 7-parameter search was terminated after about 900 iterations in each case. It is clear from Table 5.6 that at this point the staged optimization had made notably superior progress in the important parameters, ZMAXN and ZMINN, and had achieved a higher MCE value. To assess the status of the blunt search at the termination point, this search was continued for a further 20 orthogonalizations (400 iterations), the outcome of which is also shown in Table 5.6. Surprisingly enough, much further improvement in a number of parameters was achieved without appreciable improvement in MCE value: notable is the fact that parameters ST, GL (groundwater recession constant) and FT (max. percolation rate to groundwater) had arrived at their true values.

The following conclusions are possible in the light of these results. With the selected optimization procedure, a monthly optimization restricted to four or fewer parameters has a good chance
of converging to the proximity of sound parameter values in the case of parameters that affect monthly flow totals meaningfully - within a modest number of iterations such as 50-60 iterations per parameter. Optimization in terms of larger numbers of parameters may require a staged approach where volume parameters are estimated independently of delay or routing parameters - especially if only a restricted number of iterations is possible. If optimization time is not a serious problem, it is likely that there will be little to choose between the staged and the blunt approaches.

4.6.2 The daily case

The outcomes of the 4-parameter and 7-parameter searches for the case of optimization on daily values using the OCE objective function are listed in Table 5.7. The "observed" daily flow series used was generated with the optimal parameters derived by DCE in the daily objective function inter-comparison (Table 5.3). In the 4-parameter searches the optimization procedure proved extremely accurate after 15 orthogonalizations (±245 iterations) despite the known interdependence of Z_{MAX} and Z_{MIN}. Estimates for ST and TL were near perfect.

The 7-parameter search was terminated after about 840 iterations in each case. The parameter values in Table 5.7 show that at this point the blunt search approach had progressed to a position very close to the true parameter set, while the staged optimization had been much less successful. It appears that interaction between the parameters ST and FT may have been compensating the effects on the DCE value of changes in each others values. Pitman (1973) recommends that FT be set close to zero when the model is used in semi-arid to arid catchments; the ST/FT interdependence should therefore not affect the Ecca study. An additional 20 orthogonalizations using the blunt approach progressed fractionally closer to a perfect fit in all parameter values.

The following conclusions are possible regarding optimization by the Rosenbrock/DCE procedure. An optimization in terms of four to
Table 5.6

Ability of selected optimizer/objective function combination to converge on true parameters: monthly flow series

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameters</th>
<th>Objective function value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST</td>
<td>ZMAXN</td>
</tr>
<tr>
<td>True parameter</td>
<td>163.8</td>
<td>5.0</td>
</tr>
<tr>
<td>Test no.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1: start</td>
<td>81.9</td>
<td>2.0</td>
</tr>
<tr>
<td>1: final</td>
<td>164.4</td>
<td>4.33</td>
</tr>
<tr>
<td>2: start</td>
<td>81.9</td>
<td>7.5</td>
</tr>
<tr>
<td>2: final</td>
<td>163.5</td>
<td>4.28</td>
</tr>
<tr>
<td>3: start</td>
<td>81.9</td>
<td>3.0</td>
</tr>
<tr>
<td>3: final</td>
<td>163.7</td>
<td>4.19</td>
</tr>
<tr>
<td>4-Parameter search</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting values</td>
<td>81.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Staged*2</td>
<td>166.2</td>
<td>4.64</td>
</tr>
<tr>
<td>Blunt*2</td>
<td>165.8</td>
<td>7.07</td>
</tr>
<tr>
<td>Blunt*3 (extra)</td>
<td>163.8</td>
<td>6.51</td>
</tr>
</tbody>
</table>

*1 Each test: 16 orthogonalizations (±210 parameter iterations)
*2 State of convergence after approximately 900 parameter iterations in each case.
*3 State of convergence after an additional 400 iterations.
Table 5.7

Ability of selected optimizer/objective function combination to converge on true parameters: daily flow series

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameters</th>
<th>Objective function value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ST</td>
</tr>
<tr>
<td>True parameter value</td>
<td>165.6 5.97</td>
<td>0.47</td>
</tr>
<tr>
<td>Test no. 1</td>
<td></td>
<td>4-Parameter search</td>
</tr>
<tr>
<td>1: start</td>
<td>81.9 2.6</td>
<td>0.25</td>
</tr>
<tr>
<td>1: final</td>
<td>165.9 6.22</td>
<td>0.30</td>
</tr>
<tr>
<td>2: start</td>
<td>81.9 7.5</td>
<td>1.8</td>
</tr>
<tr>
<td>2: final</td>
<td>165.2 5.88</td>
<td>0.51</td>
</tr>
<tr>
<td>3: start</td>
<td>81.9 3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>3: final</td>
<td>165.1 5.55</td>
<td>0.69</td>
</tr>
<tr>
<td>Test no. 2</td>
<td></td>
<td>7-Parameter search</td>
</tr>
<tr>
<td>Starting values</td>
<td>81.9 2.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Staged2</td>
<td>187.8 5.66</td>
<td>0.39</td>
</tr>
<tr>
<td>Blunt2</td>
<td>165.8 6.01</td>
<td>0.42</td>
</tr>
<tr>
<td>Blunt3 (extra)</td>
<td>165.7 5.99</td>
<td>0.44</td>
</tr>
</tbody>
</table>

*1 Each test: 15 orthogonalizations (1245 iterations)
*2 State of convergence after >840 parameter iterations in each case
*3 State of convergence after an additional 388 iterations
seven parameters and based on daily flows has a very good chance of converging on sound parameter values if between 60 and 120 iterations per parameter can be allowed. If serious interdependence among volume parameters exists then a blunt optimization may be preferable to a staged approach.

5.6 SENSITIVITY OF PARAMETERS

Optimization procedures rely implicitly for their success upon the relative significance each model parameter plays in the performance of the whole model. This "relative significance" is what is meant by "sensitivity" of parameters. When Dawdy and O'Donnell (1965) introduced the use of optimization algorithms for model fitting, they also presented a simple method to examine the sensitivity of the model performance to any given parameter. This was done by first determining the optimum parameter set by minimization of an objective function and then computing increases in the objective function value for perturbations of 1%, 5% and 10% in each of the parameters about their optimum values.

Despite its attractiveness owing to its "common sense" nature, the Dawdy-O'Donnell sensitivity concept soon proved inadequate in terms of making statistically meaningful statements about the parameter sensitivity; only relative statements such as "X is more sensitive than Y" were possible. As Nash and Sutcliffe (1970) pointed out "... if it is hoped eventually to use the model for basins without records by establishing relations between the model parameters and basin characteristics, it is essential to obtain some guide to the relative significance of model parts and the accuracy of parametric values. Methods of measuring significance and accuracy of determination must be found which are applicable to complex non-linear models". From this position various research strains developed aimed at establishing modelling approaches that would make statistical significance or analytically pure statements possible about model outputs, model state variables, model residuals and, relevant to this point, optimization-derived parameter values. In general there are the developments by R.T. Clarke discussed earlier in this chapter but,
regarding parameter sensitivity specifically, the following two themes
developed: firstly, sensitivity analysis by analytical or statistical
examination of the shape of the response surface in the region
surrounding the optimum: Plinston (1971), Douglas (1974) and Mein and
Brown (1978), and secondly, sensitivity analysis of the sampling
variance of each model parameter: McCuen (1973), Douglas, Clarke and

In the Ecca modelling studies the less ambitious Dawdy-O'Donnell
approach to sensitivity analysis is preferred for the following
reason. The use of an optimizing routine with its concomitant
restrictions on the number of parameters simultaneously optimized,
requires identification of the most sensitive parameters of each
model. For this purpose only relative measures of sensitivity would
be sufficient. However, instead of relying on changes in a single
objective function for information about parameter sensitivity as
Dawdy and O'Donnell (1965) did, the approach by Pickup (1977) is
preferred. Here, a number of characteristics of the generated flow
sequence are simultaneously monitored as parameter values are being
perturbed. In the case of each model in the Ecca study, a
sensitivity analysis was performed according to the following steps.

Step 1: Estimate the most likely set of parameters for the Ecca
catchments; for this any source of a priori information may have to be
used, including some rough manual trial-and-error "calibration".

Step 2: Using a subset of Ecca data that includes a variety of
runoff events, i.e. the 1976-1978 record, generate a flow sequence by
means of the estimated parameters.

Step 3: Regard the generated flow sequence as an "observed"
sequence and run the model repeatedly with each parameter in turn
changed by +10%, +50%, -10% and -50% while keeping all others constant
at the original values, each time calculating a set of goodness-of-fit
criteria (see section 5.4) based on the newly generated and the
"observed" flow series.

Step 4: Rank the changes in each parameter for each goodness-of-
fit criterion and sum the rankings to identify the more sensitive parameters.

The advantage of the above step-wise procedure over the Dawdy-O'Donnell approach is that the sensitivity of the parameters is determined in terms of a range of desired flow characteristics (instead of just one), and against a background of error-free "data"; hopefully, this simple procedure makes an unbiased interpretation of parameter sensitivity possible.

For reasons of space economy not all the results of the sensitivity analysis will be reported here. Instead, three examples from three different models will be given to illustrate the procedure. The models in question are Pitman's daily model PITD, Pitman's monthly model PITM and the Stanford model FORD (descriptions in Chapter 4). Tables 5.8 and 5.9 show some results for models FORD and PITD respectively, while Fig. 5.7 depicts some results for model PITM. As can be seen from the rankings in the two tables, sensitivity tests based on any single criterion could be highly deceptive. In general terms, the technique illustrated provides the modeller with a wealth of information about the behaviour of the model apart from identifying relative sensitivity among parameters.

5.7 FOOTNOTE ON MEASUREMENT OF PERSISTENCE IN MODEL RESIDUAL ERRORS

Aitken (1973) brought to the field of rainfall-runoff modelling an awareness that measurement of the persistence in residual errors (also known as systematic errors) should be an essential component of assessing the goodness-of-fit of a calibrated model, especially if the model is to be used in water resources analysis and planning. Three useful measures of persistence were suggested by Aitken: firstly, a difference between the coefficient of efficiency and the coefficient of determination (correlation coefficient squared) indicates systematic error; secondly, a Chi-square test of the randomness (or lack thereof) of the number of positive and negative residual runs (also known as the "sign" test); thirdly, the residual mass curve coefficient (RMCC). Aitken (1973) accentuates the usefulness of the RMCC in that "it measures the relationship between the sequence of flows and not simply the relationship between individual flow events."
Table 5.8

Sensitivity test on Stanford Model (FORD) parameter change = +10%

<table>
<thead>
<tr>
<th>Item</th>
<th>EPXM</th>
<th>UZSN</th>
<th>LZSN</th>
<th>POWER</th>
<th>CR</th>
<th>CC</th>
<th>K3</th>
<th>Y24L</th>
<th>IRC</th>
<th>KK24</th>
</tr>
</thead>
<tbody>
<tr>
<td>True values</td>
<td>0.15</td>
<td>0.92</td>
<td>9.0</td>
<td>1.7</td>
<td>0.003</td>
<td>1.7</td>
<td>0.34</td>
<td>0.5</td>
<td>0.75</td>
<td>0.9</td>
</tr>
<tr>
<td>All monthly flows</td>
<td></td>
</tr>
<tr>
<td>ΔMAR(%)</td>
<td>-4.4</td>
<td>-27.4</td>
<td>-3.7</td>
<td>-7.8</td>
<td>-3.2</td>
<td>9.0</td>
<td>-4.9</td>
<td>-1.3</td>
<td>0.2</td>
<td>-3.8</td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>-8.2</td>
<td>-55.1</td>
<td>-8.4</td>
<td>-18.3</td>
<td>-8.2</td>
<td>18.2</td>
<td>-9.6</td>
<td>-1.0</td>
<td>-10.3</td>
<td>-7.8</td>
</tr>
<tr>
<td>ΔIG(%)</td>
<td>0.1</td>
<td>-3.9</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-0.8</td>
<td>0.3</td>
<td>-0.2</td>
<td>0.5</td>
<td>1.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>MCE</td>
<td>0.947</td>
<td>0.805</td>
<td>0.996</td>
<td>0.979</td>
<td>0.997</td>
<td>0.986</td>
<td>0.995</td>
<td>1.0</td>
<td>0.981</td>
<td>0.995</td>
</tr>
<tr>
<td>Ranking</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>-10.4</td>
<td>-62.7</td>
<td>-11.3</td>
<td>-29.2</td>
<td>-13.5</td>
<td>10.7</td>
<td>-13.6</td>
<td>-0.6</td>
<td>-18.7</td>
<td>-4.4</td>
</tr>
<tr>
<td>DCE</td>
<td>0.996</td>
<td>0.799</td>
<td>0.995</td>
<td>0.954</td>
<td>0.992</td>
<td>0.992</td>
<td>0.990</td>
<td>1.0</td>
<td>0.973</td>
<td>0.999</td>
</tr>
<tr>
<td>CEFDC</td>
<td>0.998</td>
<td>0.968</td>
<td>0.998</td>
<td>0.995</td>
<td>0.998</td>
<td>0.994</td>
<td>0.997</td>
<td>0.998</td>
<td>0.974</td>
<td>0.992</td>
</tr>
<tr>
<td>Ranking</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily peak flow/month</td>
<td></td>
</tr>
<tr>
<td>ΔHPF(%)</td>
<td>-6.6</td>
<td>-40.4</td>
<td>-7.4</td>
<td>-21.6</td>
<td>-9.2</td>
<td>2.5</td>
<td>-8.7</td>
<td>-0.3</td>
<td>-10.9</td>
<td>-2.5</td>
</tr>
<tr>
<td>CE</td>
<td>0.992</td>
<td>0.631</td>
<td>0.908</td>
<td>0.866</td>
<td>0.979</td>
<td>0.996</td>
<td>0.981</td>
<td>1.0</td>
<td>0.981</td>
<td>1.0</td>
</tr>
<tr>
<td>Ranking</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily low flows</td>
<td></td>
</tr>
<tr>
<td>ΔMLF(%)</td>
<td>-7.4</td>
<td>-10.6</td>
<td>-3.7</td>
<td>5.5</td>
<td>-0.2</td>
<td>3.1</td>
<td>-6.2</td>
<td>-8.5</td>
<td>23.9</td>
<td>-26.3</td>
</tr>
<tr>
<td>CE</td>
<td>0.985</td>
<td>0.951</td>
<td>0.990</td>
<td>0.974</td>
<td>0.990</td>
<td>0.977</td>
<td>0.987</td>
<td>0.986</td>
<td>0.429</td>
<td>0.812</td>
</tr>
<tr>
<td>Ranking</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.9

Sensitivity test on Pitman's daily model (PITD): parameter change = +50%

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameters</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PW</td>
<td>ST</td>
<td>ZMAKN</td>
<td>ZMINN</td>
<td>PI</td>
<td>GL</td>
</tr>
<tr>
<td>True values</td>
<td>2.0</td>
<td>165.6</td>
<td>5.97</td>
<td>0.47</td>
<td>2.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

All monthly flows

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>△MAR(%)</td>
<td>-0.3</td>
<td>-26.6</td>
<td>-55.9</td>
<td>-26.1</td>
<td>-14.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>△VAR(%)</td>
<td>0</td>
<td>-56.1</td>
<td>-79.9</td>
<td>-30.0</td>
<td>-30.9</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>△IS(%)</td>
<td>0.3</td>
<td>-7.1</td>
<td>0.6</td>
<td>9.9</td>
<td>-1.7</td>
<td>0.0</td>
<td>-0.0</td>
</tr>
<tr>
<td>MCE</td>
<td>1.0</td>
<td>0.818</td>
<td>0.503</td>
<td>0.943</td>
<td>0.953</td>
<td>1.0</td>
<td>0.996</td>
</tr>
<tr>
<td>Ranking</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All daily flows

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>△VAR(%)</td>
<td>0</td>
<td>-54.9</td>
<td>-80.0</td>
<td>-28.5</td>
<td>-24.8</td>
<td>0.0</td>
<td>-23.2</td>
</tr>
<tr>
<td>DCE</td>
<td>1.0</td>
<td>0.828</td>
<td>0.679</td>
<td>0.968</td>
<td>0.980</td>
<td>1.0</td>
<td>0.952</td>
</tr>
<tr>
<td>CEFDC</td>
<td>1.0</td>
<td>0.981</td>
<td>0.745</td>
<td>0.887</td>
<td>0.979</td>
<td>1.0</td>
<td>0.943</td>
</tr>
<tr>
<td>Ranking</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Daily peak flow/month

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>△MPF(%)</td>
<td>0</td>
<td>-27.1</td>
<td>-56.3</td>
<td>-23.7</td>
<td>-11.9</td>
<td>0.0</td>
<td>-11.2</td>
</tr>
<tr>
<td>CE</td>
<td>1.0</td>
<td>0.828</td>
<td>0.529</td>
<td>0.953</td>
<td>0.974</td>
<td>1.0</td>
<td>0.975</td>
</tr>
<tr>
<td>Ranking</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Daily low flows

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>△MLF(%)</td>
<td>-1.8</td>
<td>-8.3</td>
<td>-56.5</td>
<td>-60.8</td>
<td>-29.4</td>
<td>-1.0</td>
<td>91.9</td>
</tr>
<tr>
<td>CE</td>
<td>0.996</td>
<td>0.907</td>
<td>0.321</td>
<td>0.177</td>
<td>0.726</td>
<td>0.997</td>
<td>-4.67</td>
</tr>
<tr>
<td>Ranking</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Only selected parameters are included (descriptions in Chapter 4)
Figure 5.7 Results of parameter sensitivity test: model PITM
Wallis and Adini (1975) respond to Aitken's suggestions by showing several conditions under which the RMCC is incapable of detecting the correct degree of persistence in a time series. They recommend a "totally new approach to measuring persistence" by the statistic known as the coefficient of persistence (CP) in the WMO (1975) international model intercomparison. The CP accentuates the areas between the fitted and observed hydrographs. A further measure of persistence is suggested by Sorooshian and Dracup (1980) in the form of the Durban-Watson d-test, a statistical test sensitive to correlated residuals in time series analysis, i.e. to persistence in the residuals.

As can be seen in foregoing sections and will be seen later, most of the above measures of persistence were employed in the Ecca modelling study. However, it was often noticed that the coefficient of persistence was producing inconsistent results, when compared with the other measures. The following three examples will serve to illustrate this point. Firstly, in the parameter sensitivity study CP was identifying completely different parameters as highly sensitive in comparison with other goodness-of-fit criteria. Fig. 5.7 illustrates this point well for the case of model P11M. The diagrams represent changes in each criterion's value with a 50% change in each parameter's value while all other parameters are held constant.

Secondly, in the monthly objective function intercomparison, CP converged on a parameter set very different to that of RMCC, the other persistence measure, in both searches attempted. RMCC's parameters, however, compared favourably with those derived by MCE, the "best" objective function (see subsection 5.4.4).

Thirdly, in the investigation into optimal calibration period lengths for the fitting of monthly- and daily-input models described in Chapter 6, CP provided goodness-of-fit information contrary to that provided by RMCC or MCE. Fig. 5.8 illustrates this point clearly. The dots on the diagrams represent goodness-of-fit values for each of 50 verification runs by model P11M on 101 years of a synthetic flow
sequence after 10 calibrations on each of the five lengths of calibration period shown. The curves shown connect the average values for each calibration period. It is clear from Fig. 5.8 that whereas RHCC and MCE registered greatly improved goodness-of-fit with increased calibration sample size, CP showed an opposite pattern.

With programming errors eliminated, an analysis of the structure of the CP equation, as suggested by Wallis and Todini (1975), revealed a possible cause of the inconsistencies. The equation is as follows:

\[
CP = \frac{x_Ak^2}{SSRES}
\]

(5.3)

where \(A_k \) represents the area between the observed and simulated hydrographs for positive or negative run, \(k \), and \(SSRES \) is the sum of squared residuals as defined before.

Wallis and Todini (1975) show tests of equation 5.3 on short "well-behaved" flow series only. However, if the following points are considered, it may be that weighting the persistence term \(x_Ak^2 \) by a goodness-of-fit measure was a judgemental error on their part.

It is conceivable that CP may be used on two time series that are a very close fit, but with one consistently smaller than the other by a small amount. Under these conditions \(SSRES \) could be much smaller than \(x_Ak^2 \), especially with long time series. This would lead to large values of CP, thereby providing false information about the goodness-of-fit or about the severity of the systematic error. Fig. 5.7 is an exact case in point: the 50% changes to the above two inactive parameters of PITM, PDS and FT caused a minute but systematic shift of the generated flow away from the "observed" flows, leading to large CP values. Moreover, when CP is used as an objective function (subsection 5.4.4), the conflicting roles of \(x_Ak^2 \) and \(SSRES \) could easily lead to CP changes that would deceive the optimizer about the progress of the search. Lastly, the fact that CP is not dimensionless may also restrict its value in intercomparison of models on different catchments.
Figure 5.8 Effect of choice of calibration period on simulation
The term $\sum a_k^2$ is an obvious powerful indicator of persistence, but has the disadvantage of being dimensional. To utilize this term, but to avoid the pitfalls of equation 5.3, the author devised the concept of "relative mean persistence" (RMP) referred to in subsection 5.4.2:

$$RMP = (\sum a_k^2/N)^{0.5}/(Q_{OBS})^2$$...(5.4)

where a_k is as before,

N is the total number of negative or positive runs, and

Q_{OBS} is the mean observed flow.

The RMP is dimensionless, "standardized" by the squared mean flow, and usually lies in a convenient range of 0-1.0. Figs. 5.7 and 5.8 show that RMP provides information on goodness-of-fit that is in harmony with that provided by RMCC and MCE.

5.8 SUMMARY OF CALIBRATION PROCEDURE

In the modelling studies reported in the next few chapters, the following general calibration procedure was used. A priori estimates of all parameters of a specific model were made according to the best information possible. This sometimes included rough "calibration" by manual trial-and-error approach. By means of a flow sequence generated by the a priori parameters a sensitivity analysis by the procedures of section 5.6 was performed and the most sensitive parameters identified. This was followed by automatic optimization of the model based on the selected parameters and using the Rosenbrock algorithm combined with MCE for monthly flows, or DCE/NDCE for daily flows. Automatic optimization was by the "staged" approach in the case of hourly models and by the "blunt" approach in the case of daily and monthly models. For the studies of Chapter 7 invariably more than one configuration of starting values was used and manual intervention to redirect the automatic search was often attempted - usually with success. Calibration was sometimes concluded with minor manual adjustment of parameters. Decisions on final convergence were always taken on the basis of the DCE and/or MCE values, the percentage error in MAE and monthly SD and a visual comparison of observed and computed flow sequences.
CHAPTER 6

EFFECT OF CHOICE OF CALIBRATION PERIOD ON RELIABILITY OF MODEL CALIBRATION

6.1 INTRODUCTION

A primary uncertainty associated with the use of lumped-parameter conceptual rainfall-runoff models that was not explored in Chapter 5 is the effect of choice of calibration data sample on reliability of the model parameter estimates. It follows axiomatically that the shorter the period of observed data used for model calibration the less likely the calibration sample will contain a broad enough range of rainfall and runoff events to ensure activation of all flow paths in a model or to reveal particular model deficiencies - such as inability to model extreme events. Parameters obtained from such a sample are subject to uncertainty as to how they relate to "true" parameters for the catchment under consideration; in other words, short sample calibrations produce parameters of suspect reliability. There is a distinct danger that estimated parameters may be mere artifacts not only of an unreliable fitting procedure (see Chapter 5) but also of an unrepresentative calibration period.

In both applied and research situations the question has to be faced: how many years of calibration data does the chosen model require for the establishment of representative or at least stable parameter values? Phrased differently, how does the accuracy of model predictions improve if the calibration period is increased from N to M years, and is this improvement worth the extra effort involved in data collection and preparation, as well as extra computer charges? Often the modeller uses whatever length of concurrent hydrometeorological records are available, generally in a split-record approach: the model is calibrated on one part of the record and verified (tested) on an independent part of the record. The split-record procedure imparts increased intuitive confidence in the reliability of the model fitting than if all the records are used in the fitting process without verification; and if the verification succeeds the above questions are presumed to have been adequately answered. However, if
verification fails, in other words, if the error variance of the verification period is greatly in excess of the error variance of the fitting period (known as "model divergence" - Sorooshian and Dracup, 1980), the question again looms: is it the model that is inadequate or is it merely the calibration or the verification period that was unrepresentative (ignoring for a moment data errors)? Moreover, available records are in practice sometimes so short that there can be no question of split-record testing and the modeller has to face an unquantified risk that his parameter estimates are not reliable. This state of affairs is aptly described by O'Donnell and Canedo (1980):

"Practising modellers have little quantitative guidance on how much reliability they can place on their modelling results. Much more attention has been given to the development of models for specific hydrological purposes, or to the improvement of parameter optimization techniques. The impression given is that a single split-record procedure giving satisfactory results is a sufficient, not merely a necessary, condition. If that hurdle is successfully cleared, it is implied that one can proceed to use a model with confidence; there is no mention of confidence limits" (my underlining).

The above issues reflect directly on the Ecca modelling studies reported in chapters preceding and following this one: on the one hand, intuition would lead to the expectation that because of their semi-arid nature, the Ecca catchments would require "fairly long" records for reliable calibration - at least, longer records than, say, catchments in temperate to humid areas. On the other hand, the whole data base for the Ecca comprises only six years (1976-1981) of concurrent rainfall, runoff and evaporation records. Many questions arise: How representative of the longterm flow regime is this data base? Is a split-record approach feasible with such short records? How much reliability should typically be placed on the estimated parameters in this study? Are model comparisons valid when based on such relatively short hydro meteorological records? Can parameter transfers reasonably be expected to yield meaningful results under these conditions?

With Ecca data used in various ways, an attempt is made in this chapter to throw some light on these questions, both for the general
case of streamflow generation in semi-arid catchments and for the Ecca modelling studies specifically. Firstly, Pitman's models PITM, PITD and PITH (see Chapters 3 and 1) are used to explore how serious the variations in parameter values are for "typical" models covering a range of complexities, when each model is calibrated for different calibration samples extracted from the full six years of Ecca records. This is followed by the main study comprising the calibration of models PITM and PITD (regarded as "typical" models) for each of 159 calibration samples of variable lengths, drawn from a synthetic 101-year streamflow series. The ability of each model to reproduce the original 101 years of streamflows for each of the calibrations was subsequently examined against a set of statistics of annual and daily and/or monthly flows. The variabilities of important model parameters for different calibration samples of the same length, as well as between lengths, were also investigated. The chapter is closed with some general conclusions and with a résumé of the implications for the Ecca modelling studies.

6.2 VARIATION IN PARAMETERS ESTIMATED FROM DIFFERENT ECCA RECORD PERIODS

The relationship between parameter stability (i.e. that different calibration periods produce near-identical parameter values) and differing degrees of model complexity does not seem to have been examined extensively in the literature. Therefore, apart from being an essential preliminary for meaningful model comparisons using Ecca data, such a study would have value in its own right.

It was decided to use the full six years of available data for Ecca catchment A as the population from which three individual calibration samples were extracted, covering the periods 1976-1980 (sample 1), 1976-1978 + 1981 (sample 2) and 1976-1978 (sample 3) respectively. These periods have the following special attributes: sample 1, containing as it does the very extreme events of 1979 and the severe drought of 1980 (see Chapter 2), as well as a range of other events, represents the "best" calibration period available if split-record testing is considered. Sample 2 excludes these two years and represents a broad range of small to medium runoff events. Sample
3 represents a typical "short-sample" situation. Further to allowing for the influence of model complexity, it was thought wise to allow for possible effects of objective function choice by basing the optimization of the daily and hourly models PITD and PITH on minimization of both DCE and MCE (see Chapter 5) in the case of each model. In total, therefore, 15 optimizations were executed, the results of which are listed in Table 6.1. Optimization was by the Rosenbrock algorithm (see Chapter 5) using the same set of starting parameter values in all runs with the same model, viz. parameter values determined by manual calibration earlier (see Chapter 7), and the same number of orthogonalizations in the case of each model.

Perusal of Table 6.1 reveals that parameter instability is present in the case of all three models but that the degree of variability in parameter values is different for each model. It must be conceded that some of the variability may be the result of an incomplete optimization search (due to response surface complexities) but, in the face of the regular pattern of the parameter value differences between calibration samples 1, 2 and 3, it is highly likely that imperfect calibration played a minor role. If this suggestion is accepted the following conclusions follow:

(a) Parameter instability is not so much dependent on calibration sample length as on whether or not the sample includes major runoff events: in the case of all three models and both objective functions only minor differences exist between optimal values for most primary (volume) parameters derived from sample 2 and 3, but either or both these parameter sets show notable differences with the values derived by sample 1 - the calibration period containing the extreme events of 1979.

(b) The more complex the model, the more relevant parameter instability seems to be: model PITH's "optimal" parameters seem much more variable than those of PITM, with PITD somewhere inbetween; this trend corresponds with similar findings by Pickup (1977), Mein and Brown (1978) and Moore and Clarke (1981), and can partially be explained in terms of the greater number of degrees of freedom in the
Table 6.1
Variation in parameter estimates for models PITM, PITD and PITH associated with different calibration periods.

<table>
<thead>
<tr>
<th>Calibration sample no.*1</th>
<th>Parameter values</th>
<th>Objective function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model PITM</td>
<td>ST ZMAX ZMIN GW TL GL MCE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>126.9 400 0.1 0.1 0.1 0.24 0.982</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>137.0 476 0.7 0.1 0.0 0.36 0.836</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>137.0 500 0.0 0.1 0.0 0.27 0.841</td>
<td></td>
</tr>
<tr>
<td>Model PITD</td>
<td>ST ZMAXN ZMINN DIV TL GL DCE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>167.7 5.2 0.81 0.3 0.9 1.8 0.909</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>117.9 8.5 0.60 0.2 1.5 2.1 0.788</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>118.9 5.7 1.28 0.2 1.5 2.2 0.793</td>
<td></td>
</tr>
<tr>
<td>Model PITH*2</td>
<td>ST ZMAXN ZMINN SU TL GL TLI DIV DCE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>140.6 8.2 0.01 1.1 4.1 14 1.5 18 2.6 0.874</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>121.3 12.0 0.03 2.4 6.2 1.4 33 6.4 0.748</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>123.3 12.2 0.36 2.2 3.1 0.7 13 2.4 0.827</td>
<td></td>
</tr>
<tr>
<td>Model PITH*2</td>
<td>ST ZMAXN ZMINN SU TL GL TLI DIV MCE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>159.9 10.2 0.36 1.7 0.2 2.0 43 5.0 0.965</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>126.7 11.2 0.22 2.6 20 1.3 48 14 0.858</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>126.8 11.9 0.22 2.2 14 1.5 69 14 0.841</td>
<td></td>
</tr>
</tbody>
</table>

*1 1976-1980: sample 1
1976-1978: sample 3

*2 Pitman's original hourly model (Pitman and Rasson, 1970) more complex models.
(c) Parameter instability cannot be contained by using a "coarser" objective function, such as MCE instead of DCE: for both the daily and hourly models, more or less the same degree of parameter variability due to variation of calibration sample seems to exist in the case of both objective functions.

The tentative investigation described above shows clearly that the choice of a suitable calibration period for model testing and comparison from the available Ecca data set is not as straightforward as it may seem, and may have a crucial bearing on the performance of individual models. In addition, the results signal a need to quantify just how adequate the Ecca data set is in terms of the general calibration period length requirements that may exist for confident use of the type of model under investigation in a semi-arid environment. The rest of this chapter is devoted to such a general investigation of calibration reliability. The original idea for the study was gleaned from a paper by O'Donnell and Canedo (1980) on model reliability.
6.3 RELIABILITY OF CALIBRATION OF A MONTHLY AND A DAILY MODEL USING SEMI-ARID DATA

6.3.1 A synthetic semi-arid test data set

(a) Requirements of the data set

An investigation into the reliability of calibration of a rainfall-runoff model employed for water resources appraisal should focus on the calibrated model's ability to reproduce the characteristics of very long flow records, from which the calibration samples are drawn. To achieve this in the face of non-availability of such records in a semi-arid part of South Africa, it was decided to synthesize a long semi-arid flow "record" using a modified version of the Stanford Watershed Model, as set up and calibrated for the Ecca catchment A. (The calibration of the Stanford model is described in Chapter 7.) The calibrated Stanford model may be regarded - for the purposes of this study - as a "semi-arid catchment prototype".

The Stanford Watershed Model (here called FORD) was chosen for prototype flow sequence generation for the following reasons:

* It has achieved high credibility through many successful applications in many parts of the world.
* In the intercomparison with the three Pitman models described in Chapter 7 using seven years of data from the Ecca catchments, the Stanford model produced somewhat superior results and proved that it is competent to generate typical semi-arid flow sequences.
* It differs sufficiently from the models chosen for this study, PITM and PITD, as the simple comparison in Table 6.2 may help to illustrate, to ensure that the results of the study are not dictated by crucial similarities between the models.

(b) Development of the test data set

A fundamental requirement for the study was the establishment of a long observed daily rainfall record from which the long synthetic
6.3 RELIABILITY OF CALIBRATION OF A MONTHLY AND A DAILY MODEL USING SEMI-ARID DATA

6.3.1 A synthetic semi-arid test data set

(a) Requirements of the data set

An investigation into the reliability of calibration of a rainfall-runoff model employed for water resources appraisal should focus on the calibrated model's ability to reproduce the characteristics of very long flow records, from which the calibration samples are drawn. To achieve this in the face of non-availability of such records in a semi-arid part of South Africa, it was decided to synthesize a long semi-arid flow "record" using a modified version of the Stanford Watershed Model, as set up and calibrated for the Ecca catchment A. (The calibration of the Stanford model is described in Chapter 7.) The calibrated Stanford model may be regarded - for the purposes of this study - as a "semi-arid catchment prototype".

The Stanford Watershed Model (here called FORD) was chosen for prototype flow sequence generation for the following reasons:

* It has achieved high credibility through many successful applications in many parts of the world.
* In the intercomparison with the three Pitman models described in Chapter 7 using seven years of data from the Ecca catchments, the Stanford model produced somewhat superior results and proved that it is competent to generate typical semi-arid flow sequences.
* It differs sufficiently from the models chosen for this study, PITM and PITO, as the simple comparison in Table 6.2 may help to illustrate, to ensure that the results of the study are not dictated by crucial similarities between the models.

(b) Development of the test data set

A fundamental requirement for the study was the establishment of a long observed daily rainfall record from which the long synthetic
6.3 RELIABILITY OF CALIBRATION OF A MONTHLY AND A DAILY MODEL USING SEMI-ARID DATA

6.3.1 A synthetic semi-arid test data set

(a) Requirements of the data set

An investigation into the reliability of calibration of a rainfall-runoff model employed for water resources appraisal should focus on the calibrated model's ability to reproduce the characteristics of very long flow records, from which the calibration samples are drawn. To achieve this in the face of non-availability of such records in a semi-arid part of South Africa, it was decided to synthesize a long semi-arid flow "record" using a modified version of the Stanford Watershed Model, as set up and calibrated for the Ecca catchment A. (The calibration of the Stanford model is described in Chapter 7.) The calibrated Stanford model may be regarded - for the purposes of this study - as a "semi-arid catchment prototype".

The Stanford Watershed Model (here called FORD) was chosen for prototype flow sequence generation for the following reasons:

* It has achieved high credibility through many successful applications in many parts of the world.
* In the intercomparison with the three Pitman models described in Chapter 7 using seven years of data from the Ecca catchments, the Stanford model produced somewhat superior results and proved that it is competent to generate typical semi-arid flow sequences.
* It differs sufficiently from the models chosen for this study, PITH and PITD, as the simple comparison in Table 6.2 may help to illustrate, to ensure that the results of the study are not dictated by crucial similarities between the models.

(b) Development of the test data set

A fundamental requirement for the study was the establishment of a long observed daily rainfall record from which the long synthetic
Table 6.2

Comparison of characteristics of models PITM, PITD and FORD

<table>
<thead>
<tr>
<th>Model</th>
<th>No. of conceptual model storages</th>
<th>No. of parameters</th>
<th>Input/ output interval</th>
<th>Iteration execution time**</th>
</tr>
</thead>
<tbody>
<tr>
<td>PITM</td>
<td>2</td>
<td>12</td>
<td>1 month</td>
<td>0.25 month</td>
</tr>
<tr>
<td>PITD</td>
<td>3</td>
<td>13</td>
<td>1 day</td>
<td>1 hour (rain days)</td>
</tr>
<tr>
<td>FORD</td>
<td>4</td>
<td>19</td>
<td>1 hour</td>
<td>0.25 hour</td>
</tr>
</tbody>
</table>

**1 CPU time on ICL 1904 computer for a 6-year calibration run

flow record could be generated. After consideration of a number of Eastern Cape rainfall station records held by the Weather Bureau in Pretoria, the choice fell on Alice Dale, 35km from the Eccra area: Weather Bureau station no. 56/138. Apart from being geographically close to the Eccra River, this station revealed for an overlapping period of five years a monthly rainfall distribution similar to that of the Eccra catchment, mean annual precipitation and monthly standard deviation figures within 12 percent of those of the Eccra and a daily rainfall frequency curve almost identical above the 2mm total. The total Alice Dale record of 102 years - 1890 to 1991 - was consequently regarded as suitably representative of the Eastern Cape semi-arid climate. Statistical tests (split-sample t-tests) could not detect any non-stationariness over the 102 years. The 40 months that had one or more missing daily values were "patched" by substitution from the Grahamstown Weather Bureau record (station 57/048), after correction for mean and variance. The resulting record has a MAP of 411mm and a monthly standard deviation of 33mm.

As the Stanford model requires hourly rainfall input, a way had to be found to express the 102 years of daily totals as representative
24-hour distributions. This was done by selecting 80 one-day storm prototypes from the Ecca autographic data, 40 each for winter and summer. Each group of 40 storms was further divided into 5 categories of 8 storms each, based on magnitude. Table 6.3 provides information on the storms used for this purpose. As each daily rainfall was input to the model it was categorized according to season and magnitude, and was assigned a 24-hour distribution equivalent to one of the 8 Ecca distributions in that category, selected by a pseudo-random number between 1 and 8.

Daily A-pan evaporation values required by the Stanford model were chosen from the Ecca records as well. The complete set of daily values for 1978, being an "average" year, was chosen for this purpose, and re-used for each of the 102 years of flow generation. The only random variability between years allowed for in this case was that on all winter days with rainfall higher than 1mm the daily pan evaporation was set 1mm. This was done to prevent high 1978 winter Ecca daily evaporations from obscuring "simultaneous" modest winter daily rainfalls in any of the 102 years.

Finally, 101 years of hourly and daily flow totals were generated by the Stanford Model, calibrated for the Ecca catchment A as described in Chapter 7, with the aforementioned rainfall and evaporation records as inputs. Rainfall for the first year, 1880, was used as a "warm-up" year for the model. Monthly flow totals were summed from the generated daily values to provide a hypothetical but typical semi-arid monthly streamflow time series 101 years long. Equivalent monthly rainfall totals were then calculated from the 102 years of daily falls. Table 6.4 lists the synthetic monthly flows and comparison with the Ecca flow data reported in Chapter 2 reveals the typical semi-arid nature of the synthetic flow series. The statistical characteristics of this flow series are provided in Table 6.5, along with a comparison of observed Ecca statistics.

The foregoing technique for developing a hypothetical prototype catchment (with concomitant inputs and outputs) holds some notable advantages for specific investigations related to rainfall-runoff.
Table 6.3

Eccot storms used for 24-hourly disaggregation of daily rainfalls (date and daily total in mm).

Summer (October to March)

<table>
<thead>
<tr>
<th>Date</th>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
<th>Category 4</th>
<th>Category 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-5mm</td>
<td>5-10mm</td>
<td>10-18mm</td>
<td>18-27mm</td>
<td>>27mm</td>
</tr>
<tr>
<td>20/1/76</td>
<td>3,5</td>
<td>7,9</td>
<td>14,1</td>
<td>20,3</td>
<td>54,0</td>
</tr>
<tr>
<td>13/10/76</td>
<td>3,2</td>
<td>6,4</td>
<td>15,4</td>
<td>23,3</td>
<td>30,0</td>
</tr>
<tr>
<td>4/11/77</td>
<td>1,4</td>
<td>5,3</td>
<td>17,7</td>
<td>25,8</td>
<td>34,1</td>
</tr>
<tr>
<td>12/1/78</td>
<td>1,2</td>
<td>8,5</td>
<td>16,3</td>
<td>18,8</td>
<td>46,8</td>
</tr>
<tr>
<td>22/12/78</td>
<td>2,7</td>
<td>6,6</td>
<td>12,0</td>
<td>22,4</td>
<td>30,6</td>
</tr>
<tr>
<td>6/2/79</td>
<td>4,8</td>
<td>9,4</td>
<td>13,1</td>
<td>25,7</td>
<td>31,8</td>
</tr>
<tr>
<td>5/3/80</td>
<td>3,1</td>
<td>9,6</td>
<td>10,2</td>
<td>28,9</td>
<td>39,0</td>
</tr>
<tr>
<td>12/12/81</td>
<td>4,2</td>
<td>7,8</td>
<td>14,4</td>
<td>25,1</td>
<td>35,1</td>
</tr>
</tbody>
</table>

Winter (April to September)

<table>
<thead>
<tr>
<th>Date</th>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
<th>Category 4</th>
<th>Category 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-5mm</td>
<td>5-10mm</td>
<td>10-15mm</td>
<td>15-27mm</td>
<td>>27mm</td>
</tr>
<tr>
<td>30/8/75</td>
<td>4,4</td>
<td>8,0</td>
<td>13,1</td>
<td>17,7</td>
<td>37,5</td>
</tr>
<tr>
<td>2/5/76</td>
<td>4,8</td>
<td>8,8</td>
<td>11,6</td>
<td>16,4</td>
<td>53,9</td>
</tr>
<tr>
<td>18/7/76</td>
<td>2,9</td>
<td>5,2</td>
<td>11,6</td>
<td>24,4</td>
<td>35,2</td>
</tr>
<tr>
<td>13/6/77</td>
<td>1,3</td>
<td>7,4</td>
<td>13,0</td>
<td>16,7</td>
<td>36,3</td>
</tr>
<tr>
<td>28/9/77</td>
<td>3,8</td>
<td>7,1</td>
<td>12,4</td>
<td>19,6</td>
<td>44,0</td>
</tr>
<tr>
<td>13/6/78</td>
<td>3,3</td>
<td>5,7</td>
<td>14,6</td>
<td>21,2</td>
<td>106,1</td>
</tr>
<tr>
<td>15/6/80</td>
<td>1,7</td>
<td>9,6</td>
<td>10,7</td>
<td>23,7</td>
<td>27,4</td>
</tr>
<tr>
<td>30/8/81</td>
<td>2,5</td>
<td>6,5</td>
<td>14,6</td>
<td>22,4</td>
<td>70,4</td>
</tr>
<tr>
<td>Month</td>
<td>Synthetic Monthly Flows Generated for Hypothetical Semi-Arid Catchment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(See following pages)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 1 4 (a)

T a b le 6 .4 (C on tin u ed)

YEAR

JAN

FEB

MAR

1881
1 89 2
1883
1884
1885

0.0
0 .0
0.8

0 0
0*. 2

9.4
0.0
2.0
0.0

4.3
0.0

1889
1889
1890

1 994
1895
1. 89 6
! 89 7
1898
1899
1 90 0

s la

8.0
1.1
0.0
0.0
7 .1

0.2
123.2
0.0
0 .0
0.0
0.0
0.2
20.9
0.0

1904
190- 5
!«■}£>
1 937
! 908
1C 5.4
7.9
1.4

1918
l°t9
1920
1 9 21

O.'t
0.0
0.0
0.?
0.0
0.0

1.7
8 .8
19373 6 1 3 .8

11.5
0.0
18.2
0. 0

8 .2
0.0
0.0
0.0
0.0
3.9
0.0

JUN

JUL

AUG

SEP

OCT

NOV

10.9

12 2 .8

27.7

7.4

0.4

0.0

0.8
2.0
0. 8
O.C
f .8
0.0
3.5
0.0

0.4
0.4
0.0
0.0
0.0
0.0
0.0
O.C
3.8
1 .6

0.0
0.0
16.7

12.9
1.2
2:3
0 .33317.8

6.0
4.7
0.0
0.0
0.9

0.0
2.8
4.=.
0 .0
1.5
37.8
1.2
0.6
O .C
42.5
1.6
0.0
4.8
1.2
0.0
1.2
O.C
O.C
11.7
0.0
0.0
0.0
0.0
0.0
0 .0
0.4
0 .6
0.0
0.0
i'.Z
261 . 2
0 .0
0.0
0.0
0. 8
0.0
1.5
31.0
0.0
9.3
th e
O.C
8.814 6 0 .3

67.3
0.6
0.0
1.4
0 .0
0.0
4.1
0.4
0 .2
0.0
0.0
0.0
0.0
0.0 1 6 1 5 .8
0.0

SiS

1*5 . ‘j
0.0
0.1
4.2
1.S
0.0

MAY

6 .a
5 .7
11.1
0.7
0.0
1 .7
76.1
16.9
65.6
3.7
4 .2
13. 7 152.1
0.0
0.0
0.0
0 .0
23.4
0 .2
0.0
5.6
4.6
3. 3
0.0

APR

1.3
0.0
0.0
1.1
23.9
0.0

4*4
0.0
0.0 4 1 5 5 .5
0.0
0.0
1.1
0.0
0.0
0.0
0.0
O.C
11.6
1.6
2.4
C.O
0.0
0.0
0 .0
O.C
0 .0
O.C
0.4
1.3
9 .?
O .C
0.0
0I 0
0.0
0.0
5. =:
0.0
3.5
0. 0

2.1
0.9
4.0
0.0
151.3
4 .9
9.2
0.0
5oIo
0.0
2.2
3.0
0.0
0.0
O .C
53. e
0.0
O .C
1 .5
O .C
O .C
0.0
0.0
1 .2
O .C
0.0
0.0
32I 3

0.0
0.0
0.0
1.0
91.6
3.8
9.0
0 .0
6.5
18.8
3I4
3 1.3
0 .6
0.5
2l7
0.0
0.0
0.0
0.0
0.0
0.0
4 .3
0 .2
0.0
0 .0 552.8
18.0
1.6 5 1 8 .4
0.0
0.5
0.0
0 .0
0.7
2.9
4.2
0 .0
0.0
0.0
0.0
0.0
2.1 2 0 4 .2
0.0
0 .0 227.9
2.8
0.0
C .O
14.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6.9
0.0
14.6
6.1
0.0
3.8
0.0
99.1
0.0
0 .0
0.0
9.5
0.0
0.2
0.2
1.2
0.0 223.51237.8
1.5
27.0
0.0
2.1
0.0
0.0
0,0
0.0
0.0
4c . ;
1 .1
0.0
0.0
0.0
0.0
0 .0
2 .3
5.5
0.0
6.6
1 .6
0.2
2.9
0.0
1.3
0.0
0.8
11.4
10. 1
0.0
4.6
0. 0
0 .0
43.1
0.0
0.0
0.0
0.0
0.0
0.0
0 .0
(>'.2
3.5
0.2
2.0
0.0
4.1
10.0
0.0
0.0
0.0
0.6
0.2
0.0
0.0
0.8
O. C
0.0
61.0
1
9
1.0
2.1
0.0
0.0
0.0
0.0
0.0
0.0
1.0
C.O
0.0
0.6
0.0
5.3
0.2
5 .9
0.0
0.6
0.0
0.0
10.?
8.3
0.0
0.0
13.7
5 .6
0.5
0.0
16.5
0.6
0.0
0.0
0.0
0.6
0.0
11.2
4 .7
0.8
0.0
22.1
9.5
16.5
0 .0
0.4
1.?
0.0
10.7
10.4
19.9
0.0

olo
0.0
1.1
0.0
C.O
0.0
C.O
1.4
1.0
2.1
5.8
0.0
1.7
0.2
0.0
O.C
0.0
15". 9
9.7
0.0
1.7
old
O.C
0.4
C.O
6.9
2.9
0.0
6.?
0. C

DEC
0.0
1.5
0I0
0 .0
38.3
0.0
0 .0

31.8
0.0
0 ,0
5.8
0.0
0 .0
0.2
12.9
0 .0
0.2
0.0
0 .0
0.0
170.2
1.2
0 .2
0 .6
4.9
0 .0
0*0
0 .5
0 .3
8.1
2.8
0.0
0.0
10. I
2.1
1.9
0.0

0.0
0 .0
0.9
124^8
0.0
0.0
0.0
0.4


214(b)

T a b le '5.4 (C ontinued)

YEAR

JAN

1936
’• 9 3 7
1938
1939
’ 94]
1 94 ?
1 947
1944
1945
"1947
1 949
1949
1950
19 5 ?
1952
195?
1954
1955
1956
1957
1955
1959
’ 960
1961
1962
1943
1964
1965
1964
1967
1948
1969
1971
1 97 ?
1973

1974
1979
?. 9 8 9
1981

0.0
?,0
6.2
0.4
0*0

0 .0
0 .0
1.0
7.5
0.0

3 .o
0.0

0.0
3.0
0.0
0 >
0.0
0 .0

0.8
0.0
0.9
= 3.6
0.2
0.0
0.6

FEB

MAR

APR

0.5
0.0
53.2
6.6
0.0
3.2
2.0
0.0
0.5
5 .6
0 .0
0 .0
3.2
0 .0
0.0
0.3
310.7
2 .5
0.0
0.0

12.1
0.0
15.4
2 .8
133.9
0 .0
1.5
1.3
22.3
0. 0
1.7
0 .2
1.8
0.0
0. 2
0.0
2 8.7
0. 0
3.9
0 .0

1.6

1 0 6.8
0.2
0 .0
0.0
5 .0
0.2
0.2
79.0
0.?
0.0
0.0
0.0

19:6
0.0
1.1
5.6
7.0
10.9
261.3
0.3
0.0
0.0
3.1
0.0
21.9
3 .0
3 .4
0.0
18.0
35-0.7
15.9
136.1
10.0
9.0
16.4
0.0
5 4.9

0 .0

0 .0
3 .0
0.0
0 .0
0 .2
1 7.5
1 .1
2.5
5.8
2 ll
3.0
3.0

MAY

1 4.1
0.0
0. C
0 .24927.5
2 .0
0.0

0.0
0.0
0. C
3.3
0.0
0.0
0.0
0.0
2.8
2.7
0.8
2.2
394.0
O .C
0 .9
0.0
0.4
3.8
3 .2
0. C
42.7
O .C
3.0
6 .1
0. 0
11.8
2. 7
16 1 .C
O .C
O .C
18.4

OUN
0.0
0.0
0.0
0.0
0.0
0.0
1.4
5 5.2
3 6 9 .8
1.1
0.0
O.C
0.0
0.0
O .C

0 .0

JUL
1.9
0.0
0.0
5.4
0.0
0.0
0.0
5.5
14.5
0.0
0.0
1.2
4.0
0.0
0.0
3. I
0.0
0.0
1.3
O.C
0.0
O.C
0. 0
37.1
0. 0

AUG
0.0
0.0
0.0
4.4
0.0
0.0
0. 0
1.4
0.0
0.0
0.0
3.0
3.0
0.0
0.0
1.7

SEP

OCT

5 .7
0.0
1 .3
12.5
0.0
104.9
2 5.6
0.0
0.0
0.0
0 .8
4 .3
0:0
0.0
0.0
0 .0
0.0
32.5
0,024 6 3 .9

0.0
0.0
0 .0
3 .6
0.0
0.0
0.4
0.0
2.5
0.0
0.0

0.0
0.0
15 1 . 9 4 4 8 9 . 2
0.4
0.4
0.0
0.0
0.0
9 .8
O.C
3. 0
0.0
0.0
0.0
1. 5
0.0
5.5
0.0
0.0
0 .2
3.0
0 .0
0.0
1.7
4. 1
0.0
0.0
c .c
1 .8
0.0
0.0
0 .3
0.0
1.1
0.0
5
.
0
1
0
.
8
0.0
21-5
0.0
0. 3
6.9
0
.
5
0
.
6
3
4.0
ic :a
0.0
0.2
0.0
0.0
0.0
0.0
154.2
25. 5
0.0
0.0
91 . 0
1.5
0 .02535.4
0.2
3.5
0.4
0 .0
0.0
l:2
0 .71035.4
0.0
0.0
0.0
0.0
0.0
0 .0
0.0
2.7
0.0
O.C
0.8
<=0. 5
1.4 7 5 1 .9
0:0
0 .0
11.9
0.0
4.9
0.0
0.0
0.2
2 .7
0.0
0.0
0 .0
0.2
0.0
0.0
47.4
0.0
3 .0
0.0
0.0
2 .8
0.0
3.0
0. C
6.2
1 . 5 3 9 5 1 ,6 2 7 7 5 .6 196.1
2 .6
0.3
3.0
0 .0
4
:
3
1
.
2
2 .0
c:o

NOV

DEC

18.6
1.0
30.9
0 .7

C.O
18.1
0.2
0.0
0 .0
1.8

2 6 6.2
5.4
10.9
0.3
0.0
0 .3
0.0
0.3
7 .3
0.0
0.3
214.9
1 .5
50.3
3 .9
0.3
0.0
0.0
0.0
0.0
9. 1
0.3

0.6
0 .0
1 .1
0 .0
1 .0

0 .0

4 .5
0.0
0.0
0.0
0.0
0.0

6 16:4
5.2
O.C
0.0
0.0
0.0
0.0
0.0
1 2.43143.0
0.0
o.n
2.4
0.0

2 .1

0.6
0.0
2 .6
3.4

1 7.6
0.6
0.0
75.4


Table 6.5

Statistics of 101-year synthetic flow series compared with 6-year Ecca observed flow record.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Synthetic series</th>
<th>Ecca record</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean annual precipitation</td>
<td>411</td>
<td>487</td>
<td>mm</td>
</tr>
<tr>
<td>(Range)</td>
<td>207-735</td>
<td>347-649</td>
<td>mm</td>
</tr>
<tr>
<td>Longterm runoff coefficient</td>
<td>1.87</td>
<td>4.59</td>
<td>%</td>
</tr>
<tr>
<td>Annual flow totals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean annual runoff</td>
<td>562.5</td>
<td>1690.8</td>
<td>10^3m³</td>
</tr>
<tr>
<td>(Range)</td>
<td>0-6447</td>
<td>30-8563</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1266</td>
<td>3375</td>
<td>10^3m³</td>
</tr>
<tr>
<td>Skewness coefficient</td>
<td>2.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean annual runoff (logarithms)</td>
<td>4.32</td>
<td>5.97</td>
<td></td>
</tr>
<tr>
<td>Skewness coefficient (logarithms)</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly flow totals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>343.3</td>
<td>662.2</td>
<td>10^3m³</td>
</tr>
<tr>
<td>Range of residual mass curve</td>
<td>14098</td>
<td>8027</td>
<td>10^3m³</td>
</tr>
<tr>
<td>Index of seasonal variability</td>
<td>20.8</td>
<td>61.4</td>
<td>%</td>
</tr>
<tr>
<td>Maximum monthly total</td>
<td>4928</td>
<td>4417</td>
<td>10^3m³</td>
</tr>
<tr>
<td>Mean deficient flow period</td>
<td>19</td>
<td>17</td>
<td>months</td>
</tr>
<tr>
<td>Maximum deficient flow period</td>
<td>1/8</td>
<td>28</td>
<td>months</td>
</tr>
<tr>
<td>Daily flow totals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.53</td>
<td>0.66</td>
<td>m³/s</td>
</tr>
<tr>
<td>Maximum daily peak flow</td>
<td>52.3</td>
<td>21.1</td>
<td>m³/s</td>
</tr>
<tr>
<td>Second highest peak flow</td>
<td>37.8</td>
<td>12.5</td>
<td>m³/s</td>
</tr>
</tbody>
</table>
modelling. Firstly, the synthetic streamflow sequence representing the output from the hypothetical catchment is free of the effects of landuse or upstream diversions. Secondly, the rainfall and potential evaporation inputs to a model that is being investigated with the aid of the synthetic flow-sequence are 100 percent accurate estimates of the hypothetical catchment inputs and conditions - a situation impossible to achieve in real catchments. Thirdly, as with rainfall, there are no measurement inaccuracies in the streamflow "record" - always a serious problem in practice. Fourthly, known non-stationarities, trends, gaps in both rainfall and flow records and other inaccuracies can be super-imposed on the inputs and outputs of the hypothetical catchment and their implications for rainfall-runoff modelling assessed.

6.3.2 Experimental procedure

(a) Model calibrations

Models PITM and PIDS were selected for this study as exemplifying the type of model for which quantified guidance on parameter stability and optimal calibration period length is required, both for the general case of semi-arid catchment modelling and for the specific case of the Ecca modelling investigations. In the case of the monthly model, PITM, the study was based on calibration periods of 3, 6, 10, 15 and 20-year lengths, respectively, with 10 samples per calibration period. For a 101-year flow series, this meant the 3, 6 and 10-year samples could be chosen to be independent, but that overlaps of 33% and 50% between successive calibration periods had to be accepted in the case of the 15 and 20-year samples respectively.

The investigation of parameter variability in the daily model was executed in two phases. In the first phase parameter estimates were based on reproduction of the monthly flow series; in the second phase the reproduction of the daily flow series dictated the parameter estimates. Optimizing a daily model such as PIDS mainly on monthly flow reproduction as in the first phase enables comparison to be made of its reliability of calibration with that of a monthly model such as PITM. If data availability and computer run-time are not serious constraints, such a comparison may offer useful guidance on the preferability of either type of model in water resources apprais...
studies where the focus usually is on monthly flow series.

For the first phase, calibration period lengths of 3, 5, 7, 10, 15, 25, 33 and 50 years were chosen, while the second phase samples were 3, 5, 10 and 13 years in length. (Computer run-time limitations necessitated a smaller sample length in the fifth category of the second phase). Smaller increments between the five calibration categories were used in the case of PITD than for PITM because it was expected that PITD might very well turn out to have an optimal calibration length shorter than 10 years. Ten samples per calibration period were used in all cases except the 25, 33 and 50-year lengths; in these three cases only non-overlapping samples were used.

The semi-automatic calibration procedure set out at the end of Chapter 5 was pursued for the 50 and 109 individual calibrations of PITM and PITD respectively. For PITM the Rosenbrock algorithm was combined with objective function MCE and the calibration achieved by maximizing the one-to-one fit (MCE) of monthly "observed" and simulated values, while minimizing the errors in simulated MAR and monthly SD. Only the seven most sensitive parameters of the model were optimized, and in all cases the optimizer was set to allow a maximum of 300 parameter iterations. The most acceptable combination of one-to-one fit and minimal errors in MAR and monthly SD was always achieved before optimizer run termination. Table 6.6 depicts the optimum status of the three calibration criteria for each calibration. It can be seen that monthly SD often had to be "sacrificed" in exchange for more acceptable values in the other two criteria and sometimes reasonable one-to-one fits without systematic error were not possible at all, as some of small the coefficient of efficiency (MCE) values indicate. The consistent negative errors in SD are due to the fact that the model in most cases overpredicted baseflow.

For PITD the Rosenbrock algorithm was combined with objective function MCE in the first phase and with WDCE in the second phase. The unweighted function DCE was attempted in the second phase but converged on reasonable MAR and monthly SD errors in none of the 15 calibration runs tried, as Table 6.7 clearly illustrates. Only the six most sensitive parameters were optimized and in all cases the
optimizer was set to terminate the search after 250 parameter iterations. In the first phase convergence was decided not only in terms of maximum MCE value and minimum MAR and monthly SD error, but also in terms of the highest DCE value that corresponds with a good combination of the other three criteria. In this way, it was hoped, some allowance for reasonable daily fits could be made. In the second phase convergence was declared in the vicinity of the best WDCE value achieved, which automatically implied relatively low errors in MAR and monthly SD and a fairly high MCE; however, more than one search from different starting parameter sets were often required to ensure that convergence was not declared prematurely. Tables 6.8 and 6.9 depict the optimum status of the four calibration criteria for each calibration in the first and second phases respectively. As with PITH, the monthly SD often had to be sacrificed in exchange for more acceptable values in the other two criteria. More important, however, is the fact that high DCE values were only infrequently achieved; even in the second phase study where a weighted DCE was the objective function. This was mainly due to the fact that PITD consistently overpredicted daily baseflows, causing a systematic error which no amount of legitimate parameter "juggling" could amend. Possible reasons for the apparently poor daily fit achieved in this instance, are explored in section 6.6 where the overall results for model PITD are discussed.

(b) Model verification

Utilizing the parameter sets associated with each triplet of criteria in Table 6.6, the full 101 years of monthly streamflow totals were regenerated with model PITH, using the 102 years of monthly rainfalls, the 1978 monthly A pan totals for the Ecca and a warm-up year at the start. A similar procedure was followed with model PITD, employing the relevant daily input time series and outputting both daily and monthly flows. The equivalence of each of the 159 reconstructed flow series to the original synthetic flow series was measured by means of the array of fitting criteria and statistical tests contained in statistical subroutines AFIT (monthly) and BFIT
Table 6.6

Optimum values of fitting criteria for optimization runs, using calibration samples of varying length: model PITM

<table>
<thead>
<tr>
<th>Calibration period in years</th>
<th>Calibration run number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>3: MCE</td>
<td>0.775 0.194 0.265 0.715 0.982 0.388 0.440 0.380 0.120 0.876 0.046 0.453</td>
<td></td>
</tr>
<tr>
<td>±MAR</td>
<td>0.7 -0.1 -0.1 2.7 0.5 -0.4 10.9 -0.7 4.7 0.7</td>
<td></td>
</tr>
<tr>
<td>±SD</td>
<td>-13.2 -30.4 -28.1 -25.0 -0.7 -33.0 -16.7 -65.1 -39.5 -2.1 -25.4</td>
<td></td>
</tr>
<tr>
<td>6: MCE</td>
<td>0.983 0.207 0.252 0.669 0.998 0.270 0.980 0.430 0.846 0.896 0.552</td>
<td></td>
</tr>
<tr>
<td>±MAR</td>
<td>3.2 7.3 2.5 2.0 2.3 -0.3 11.8 7.8 5.9 1.0 4.4</td>
<td></td>
</tr>
<tr>
<td>±SD</td>
<td>-2.5 -41.3 -26.3 -16.2 -0.2 -37.5 -4.2 -29.4 -10.4 -2.2 -17.0</td>
<td></td>
</tr>
<tr>
<td>10: MCE</td>
<td>0.984 0.837 0.556 0.353 0.997 0.117 0.919 0.872 0.503 0.793 0.696</td>
<td></td>
</tr>
<tr>
<td>±MAR</td>
<td>2.5 4.1 2.8 0.9 2.7 0.9 5.2 -6.8 5.9 -0.3 1.8</td>
<td></td>
</tr>
<tr>
<td>±SD</td>
<td>-2.4 -8.4 -10.8 -35.7 -0.2 -56.3 2.5 -10.9 -71.9 -7.2 -15.1</td>
<td></td>
</tr>
<tr>
<td>15: MCE</td>
<td>0.911 0.754 0.533 0.326 0.894 0.290 0.917 0.790 0.511 0.689 0.676</td>
<td></td>
</tr>
<tr>
<td>±MAR</td>
<td>3.7 3.1 5.3 4.8 2.8 7.3 2.0 3.8 1.4 3.0 3.7</td>
<td></td>
</tr>
<tr>
<td>±SD</td>
<td>-13.5 -12.1 -7.0 -32.3 0.0 -38.3 1.7 0.3 -27.9 -14.5 -14.5</td>
<td></td>
</tr>
<tr>
<td>20: MCE</td>
<td>0.909 0.905 0.343 0.390 0.296 0.669 0.842 0.849 0.759 0.636 0.660</td>
<td></td>
</tr>
<tr>
<td>±MAR</td>
<td>2.1 2.8 -0.7 2.6 3.0 -4.5 -1.8 0.8 0.1 0.8 0.3</td>
<td></td>
</tr>
<tr>
<td>±SD</td>
<td>-13.6 -10.1 -31.9 -37.3 -40.1 -20.3 -4.4 -2.8 -17.3 -15.9 -19.4</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.7

Optimum values of fitting criteria for optimization runs, using calibration samples of varying length and daily coef. of efficiency (DCE) as objective function: model PITD*1.

<table>
<thead>
<tr>
<th>Calibration period in years</th>
<th>Calibration run number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:</td>
<td></td>
<td>0.98</td>
<td>0.94</td>
<td>0.77</td>
<td>0.87</td>
<td>0.59</td>
<td>0.83</td>
</tr>
<tr>
<td>DCE</td>
<td>0.78</td>
<td>0.75</td>
<td>0.52</td>
<td>0.78</td>
<td>0.80</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td>81</td>
<td>64</td>
<td>34</td>
<td>44</td>
<td>9.2</td>
<td>42.8</td>
<td></td>
</tr>
<tr>
<td>HAR</td>
<td>4.8</td>
<td>9.7</td>
<td>-1.3</td>
<td>0.0</td>
<td>-3.1</td>
<td>-3.6</td>
<td></td>
</tr>
<tr>
<td>10:</td>
<td></td>
<td>0.70</td>
<td>0.92</td>
<td>0.63</td>
<td>0.59</td>
<td>0.48</td>
<td>0.56</td>
</tr>
<tr>
<td>DCE</td>
<td>0.65</td>
<td>0.78</td>
<td>0.66</td>
<td>0.77</td>
<td>0.61</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td>30</td>
<td>40</td>
<td>60</td>
<td>-6.4</td>
<td>-23</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>HAR</td>
<td>-9.0</td>
<td>3.9</td>
<td>-23</td>
<td>-39</td>
<td>-37</td>
<td>-20.8</td>
<td></td>
</tr>
<tr>
<td>15:</td>
<td></td>
<td>0.63</td>
<td>0.83</td>
<td>0.61</td>
<td>0.55</td>
<td>0.53</td>
<td>0.63</td>
</tr>
<tr>
<td>DCE</td>
<td>0.74</td>
<td>0.96</td>
<td>0.62</td>
<td>0.70</td>
<td>0.69</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>HCE</td>
<td>47</td>
<td>-31</td>
<td>126</td>
<td>-21</td>
<td>-29</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>HAR</td>
<td>-9.4</td>
<td>-16</td>
<td>-9.5</td>
<td>-4.8</td>
<td>-37</td>
<td>-4.0</td>
<td></td>
</tr>
</tbody>
</table>

*1 Note that the large HAR and monthly SD errors associated with convergence by DCE in the optimization routine, caused this objective function to be abandoned in favour of WDC (see Table 6.9).
Table 5.8

Optimum values of fitting criteria for optimization runs, using calibration samples of varying length: model PITD (monthly fit).

<table>
<thead>
<tr>
<th>Calibration period in years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:</td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>0.94</td>
<td>0.80</td>
<td>0.90</td>
<td>0.93</td>
<td>0.99</td>
<td>0.77</td>
<td>0.61</td>
<td>0.92</td>
<td>0.82</td>
<td>0.98</td>
<td>0.87</td>
</tr>
<tr>
<td>DCE</td>
<td>-3.5</td>
<td>0.69</td>
<td>0.90</td>
<td>-1.0</td>
<td>0.19</td>
<td>0.76</td>
<td>0.64</td>
<td>0.87</td>
<td>0.58</td>
<td>0.47</td>
<td>0.06</td>
</tr>
<tr>
<td>(\Delta \text{MAR})</td>
<td>1.3</td>
<td>-0.2</td>
<td>9.3</td>
<td>-9.6</td>
<td>-3.8</td>
<td>4.8</td>
<td>10</td>
<td>-1.5</td>
<td>4.4</td>
<td>9.7</td>
<td>1.84</td>
</tr>
<tr>
<td>(\Delta \text{SD})</td>
<td>-3.9</td>
<td>-9.7</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-5.1</td>
<td>-6.1</td>
<td>-1.4</td>
<td>0.6</td>
<td>-3.1</td>
<td>-8.5</td>
<td>-5.03</td>
</tr>
<tr>
<td>5:</td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>0.79</td>
<td>0.98</td>
<td>0.99</td>
<td>0.91</td>
<td>0.99</td>
<td>0.55</td>
<td>0.99</td>
<td>0.90</td>
<td>0.90</td>
<td>0.95</td>
<td>0.90</td>
</tr>
<tr>
<td>DCE</td>
<td>0.69</td>
<td>0.98</td>
<td>0.62</td>
<td>0.92</td>
<td>0.34</td>
<td>0.59</td>
<td>0.54</td>
<td>0.66</td>
<td>0.27</td>
<td>0.39</td>
<td>0.62</td>
</tr>
<tr>
<td>(\Delta \text{MAR})</td>
<td>-0.5</td>
<td>-1.9</td>
<td>2.4</td>
<td>-3.8</td>
<td>-2.8</td>
<td>8.5</td>
<td>2.0</td>
<td>-1.5</td>
<td>3.1</td>
<td>3.6</td>
<td>1.16</td>
</tr>
<tr>
<td>(\Delta \text{SD})</td>
<td>-19</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-3.5</td>
<td>-3.0</td>
<td>-21</td>
<td>0.3</td>
<td>-10</td>
<td>-19</td>
<td>-12</td>
<td>-8.97</td>
</tr>
<tr>
<td>7:</td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>0.97</td>
<td>0.93</td>
<td>0.97</td>
<td>3.60</td>
<td>0.99</td>
<td>0.99</td>
<td>0.98</td>
<td>0.99</td>
<td>0.90</td>
<td>0.95</td>
<td>0.74</td>
</tr>
<tr>
<td>DCE</td>
<td>0.24</td>
<td>0.43</td>
<td>0.69</td>
<td>0.96</td>
<td>0.30</td>
<td>0.53</td>
<td>0.36</td>
<td>0.53</td>
<td>0.33</td>
<td>0.34</td>
<td>0.47</td>
</tr>
<tr>
<td>(\Delta \text{MAR})</td>
<td>-3.5</td>
<td>-7.2</td>
<td>-7.4</td>
<td>8.0</td>
<td>2.7</td>
<td>3.4</td>
<td>-2.4</td>
<td>6.3</td>
<td>-2.0</td>
<td>7.0</td>
<td>0.49</td>
</tr>
<tr>
<td>(\Delta \text{SD})</td>
<td>-16</td>
<td>-19</td>
<td>0.3</td>
<td>-15</td>
<td>2.6</td>
<td>-1.8</td>
<td>1.5</td>
<td>-0.8</td>
<td>-4.9</td>
<td>3.9</td>
<td>-0.49</td>
</tr>
<tr>
<td>10:</td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>0.97</td>
<td>0.99</td>
<td>0.78</td>
<td>0.86</td>
<td>0.99</td>
<td>0.65</td>
<td>0.97</td>
<td>0.93</td>
<td>0.87</td>
<td>0.77</td>
<td>0.68</td>
</tr>
<tr>
<td>DCE</td>
<td>0.26</td>
<td>0.82</td>
<td>0.59</td>
<td>0.91</td>
<td>0.39</td>
<td>0.18</td>
<td>0.31</td>
<td>0.24</td>
<td>0.27</td>
<td>0.22</td>
<td>0.42</td>
</tr>
<tr>
<td>(\Delta \text{MAR})</td>
<td>-0.8</td>
<td>3.8</td>
<td>-3.5</td>
<td>3.6</td>
<td>2.2</td>
<td>4.3</td>
<td>-3.4</td>
<td>5.4</td>
<td>7.8</td>
<td>6.1</td>
<td>1.47</td>
</tr>
<tr>
<td>(\Delta \text{SD})</td>
<td>-16</td>
<td>-4</td>
<td>-33</td>
<td>-10</td>
<td>4.6</td>
<td>-31</td>
<td>-3.7</td>
<td>-8.7</td>
<td>-16</td>
<td>5.0</td>
<td>-11.3</td>
</tr>
<tr>
<td>15:</td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>0.97</td>
<td>0.79</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.71</td>
<td>0.94</td>
<td>0.97</td>
<td>0.87</td>
<td>0.62</td>
<td>0.89</td>
</tr>
<tr>
<td>DCE</td>
<td>0.26</td>
<td>0.38</td>
<td>0.82</td>
<td>0.83</td>
<td>0.35</td>
<td>0.45</td>
<td>0.25</td>
<td>0.31</td>
<td>0.27</td>
<td>0.37</td>
<td>0.43</td>
</tr>
<tr>
<td>(\Delta \text{MAR})</td>
<td>4.1</td>
<td>0.1</td>
<td>-4.4</td>
<td>5.4</td>
<td>-2.7</td>
<td>7.5</td>
<td>-0.5</td>
<td>-1.9</td>
<td>8.9</td>
<td>6.7</td>
<td>2.32</td>
</tr>
<tr>
<td>(\Delta \text{SD})</td>
<td>-10</td>
<td>-18</td>
<td>-9.8</td>
<td>-1.5</td>
<td>-8.5</td>
<td>-18</td>
<td>-2.2</td>
<td>-20</td>
<td>-17</td>
<td>-2.7</td>
<td>-10.7</td>
</tr>
<tr>
<td>25:</td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>0.97</td>
<td>0.99</td>
<td>0.85</td>
<td>0.82</td>
<td>0.91</td>
<td>0.71</td>
<td>0.94</td>
<td>0.97</td>
<td>0.87</td>
<td>0.62</td>
<td>0.89</td>
</tr>
<tr>
<td>DCE</td>
<td>0.27</td>
<td>0.73</td>
<td>0.26</td>
<td>0.39</td>
<td>0.41</td>
<td>0.1</td>
<td>-4.4</td>
<td>-2.7</td>
<td>7.5</td>
<td>-0.5</td>
<td>-1.9</td>
</tr>
<tr>
<td>(\Delta \text{MAR})</td>
<td>3.6</td>
<td>-6.2</td>
<td>2.3</td>
<td>4.1</td>
<td>0.95</td>
<td>0.37</td>
<td>0.71</td>
<td>0.97</td>
<td>0.87</td>
<td>0.62</td>
<td>0.89</td>
</tr>
<tr>
<td>(\Delta \text{SD})</td>
<td>-11</td>
<td>3.5</td>
<td>-18</td>
<td>-2.6</td>
<td>0.91</td>
<td>0.71</td>
<td>0.94</td>
<td>0.97</td>
<td>0.87</td>
<td>0.62</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Table 6.9

Optimum values of fitting criteria for optimization runs, using calibration samples of varying length: model PITD (daily fit).

<table>
<thead>
<tr>
<th>Calibration period in years</th>
<th>Calibration run number</th>
<th>DCE</th>
<th>HC</th>
<th>MAR</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>0.57</td>
<td>0.41</td>
<td>0.74</td>
<td>0.16</td>
<td>0.46</td>
</tr>
<tr>
<td>HC</td>
<td>0.84</td>
<td>0.43</td>
<td>0.62</td>
<td>0.70</td>
<td>0.97</td>
</tr>
<tr>
<td>MAR</td>
<td>5.8</td>
<td>6.8</td>
<td>-0.9</td>
<td>9.4</td>
<td>5.1</td>
</tr>
<tr>
<td>SD</td>
<td>-22</td>
<td>-6.2</td>
<td>-12</td>
<td>-28</td>
<td>-9.9</td>
</tr>
<tr>
<td>5:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>0.65</td>
<td>0.55</td>
<td>0.74</td>
<td>0.79</td>
<td>0.40</td>
</tr>
<tr>
<td>HC</td>
<td>0.72</td>
<td>0.54</td>
<td>0.98</td>
<td>0.85</td>
<td>0.89</td>
</tr>
<tr>
<td>MAR</td>
<td>7.5</td>
<td>4.8</td>
<td>2.3</td>
<td>1.4</td>
<td>4.6</td>
</tr>
<tr>
<td>SD</td>
<td>-12</td>
<td>-45</td>
<td>-9.9</td>
<td>-17</td>
<td>-3.0</td>
</tr>
<tr>
<td>7:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>0.53</td>
<td>0.54</td>
<td>0.37</td>
<td>0.70</td>
<td>0.38</td>
</tr>
<tr>
<td>HC</td>
<td>0.99</td>
<td>0.71</td>
<td>0.88</td>
<td>0.76</td>
<td>0.99</td>
</tr>
<tr>
<td>MAR</td>
<td>2.7</td>
<td>5.2</td>
<td>8.5</td>
<td>-1.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>SD</td>
<td>-3.6</td>
<td>-31</td>
<td>-9.9</td>
<td>18</td>
<td>-2.7</td>
</tr>
<tr>
<td>10:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>0.54</td>
<td>0.61</td>
<td>0.58</td>
<td>0.69</td>
<td>0.28</td>
</tr>
<tr>
<td>HC</td>
<td>0.99</td>
<td>0.72</td>
<td>0.96</td>
<td>0.69</td>
<td>0.86</td>
</tr>
<tr>
<td>MAR</td>
<td>-4.0</td>
<td>5.1</td>
<td>7.2</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>SD</td>
<td>-9.7</td>
<td>-34</td>
<td>-12</td>
<td>-23</td>
<td>-33</td>
</tr>
<tr>
<td>13:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>0.55</td>
<td>0.57</td>
<td>0.56</td>
<td>0.74</td>
<td>0.37</td>
</tr>
<tr>
<td>HC</td>
<td>0.98</td>
<td>0.67</td>
<td>0.95</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>MAR</td>
<td>-2.1</td>
<td>5.0</td>
<td>6.2</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>SD</td>
<td>-9.2</td>
<td>-38</td>
<td>-13</td>
<td>-13</td>
<td>-10</td>
</tr>
</tbody>
</table>
(daily), included in Appendix B. The most informative results of these verification tests are discussed in the next sections.

6.4 RESULTS AND DISCUSSION: MONTHLY MODEL PITM

6.4.1 Parameter variability

Fig. 6.1 depicts the decrease, with increase in length of calibration period, in variability of the optimum values of two key parameters of semi-arid calibration. ST is the maximum capacity of the soil moisture store and ZMAX is the maximum catchment absorption rate. A third key parameter not shown, ZMIN, the minimum catchment absorption rate, shows a variability pattern similar to that of ZMAX. The other four parameters included in the optimization runs showed much less variability.

It may seem somewhat alarming that the variability in optimum parameter values does not decrease more rapidly with longer calibration periods. However, Table 6.10 provides evidence to suggest that the variability of the streamflow statistics, resulting mostly from the variability of the key parameters, converges much faster with increase in calibration sample length. This convergence is equally pronounced for certain monthly statistics and the one-to-one fit of arithmetic values. Further investigation showed that because of varying amounts of interdependence among ST, ZMAX and ZMIN alternative configurations of these three parameters can lead to equivalent streamflow statistics. Convergence of variability in these statistics is therefore possible with longer calibration periods while variability of the parameters themselves remains high. It is of course also possible that some of the apparent parameter variability is caused simply by imperfect model calibration.

It is likely that parameter interdependence makes complete parameter stability, i.e. parameter uniqueness, with long calibration periods, an unrealizable ideal. It may also be an unnecessary ideal in
case, where the model is being used only for streamflow time series extension (i.e. no undue significance attached to the physical meaning of parameters), as the rapid convergence of the statistics of reconstructed streamflows indicates. Furthermore, in a parameter transfer study on three monthly models which included Pitman's, Hughes (1982) shows that in practice one is well advised to calibrate monthly conceptual catchment models in a regional context, rather than against a single streamflow record. This should make coping with unavoidable parameter variability a lot easier.

A practical way to reduce the variability of interdependent parameters is to hold one or more of the affected parameters constant while determining optimum values for the remaining parameters (Chapter 5). Only at that point are the held parameters brought back into play. However, this technique brings a level of subjectivity into the optimisation procedure which, although very useful in practice, was considered unacceptable in the present study. It was deemed important to keep the parameter search objective to avoid biasing the model performance in any way, either favourably or adversely.

6.4.2 Errors in streamflow statistics

Figs. 6.1(a), (b), (c) and 6.3(a) depict changes in errors of some important reconstructed streamflow statistics with increase in length of calibration period. Notable is the fact that for the three annual statistics in Fig. 6.2 there is little further convergence beyond 15 years and that for NAR and annual SD an arithmetic mean error close to zero is possible at any period longer than 10 years. The consistently positive error in annual Cs can be related to the overprediction of baseflows by the model, thus skewing the frequency distribution of annual flows excessively to the left.

Errors in the range (Aitken, 1973) of the residual mass curve (RMC) calculated from the monthly flow series is of importance if the model is to be used in storage-yield analyses, as range is indicative of the theoretical volume of storage required for complete regulation of flow. Fig. 6.3(a) shows consistent convergence in errors in the RMC range up to the 15-year calibration period, with a bias towards an overprediction of the range for the longer periods.
6.4.3 One-to-one fit

Two different criteria of one-to-one fit were employed. The coefficient of efficiency (MCE) measures the fit of monthly streamflows, whereas the RM coefficient (RMCC) measures the one-to-one fit of the individual values in the residual mass curves. The RMCC is an important model test in the context of storage-yield analyses (Aitken, 1973). Figs. 6.3(b) and (c) illustrate the steady improvement in both RMCC and MCE achieved with increasing length of calibration period. Again, little improvement is obtained by calibration samples longer than 15 years.

It is worth noting in almost all cases the mean absolute errors in annual and monthly statistics may be reduced by 30 to 50 percent by merely increasing the calibration sample length from 6 to 10 years.

6.4.4 Frequency analysis of annual streamflows

It was found that the logarithms of the "observed" annual streamflows approximate the normal distribution. Consequently, frequency analyses of all 50 regenerated annual flow series were based on the log-normal distribution and plotted on suitable probability paper. Fig. 6.4 depicts the outcome of this undertaking for the 6-, 10- and 15-year cases. Fig. 6.5, based on plots such as in Fig. 6.4, may be more instructive on this point. The latter diagram shows the spread of the reconstructed return periods about the "observed" value for 10- and 100-year return periods. Again, convergence in the spread of estimates is very slow for calibration samples longer than 15 years.

6.4.5 Seasonal distribution of monthly streamflows

The use of a conceptual model in a catchment where streamflow is highly seasonal in character dictates that the model should be able to reproduce the longterm seasonal distribution of streamflow fairly
Table 6.10

Variability of key model parameters (expressed as coefficient of variation*1) and consequent variability of some annual generated streamflow statistics.

<table>
<thead>
<tr>
<th>Calibration period</th>
<th>ST</th>
<th>ZMAX</th>
<th>ZMIN</th>
<th>Mean</th>
<th>STD</th>
<th>CS</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 year</td>
<td>36.0</td>
<td>51.3</td>
<td>38.8</td>
<td>42.6</td>
<td>52.8</td>
<td>46.8</td>
<td>25.0</td>
</tr>
<tr>
<td>10 year</td>
<td>24.1</td>
<td>37.8</td>
<td>27.0</td>
<td>29.6</td>
<td>28.7</td>
<td>22.7</td>
<td>19.2</td>
</tr>
<tr>
<td>15 year</td>
<td>23.9</td>
<td>42.6</td>
<td>22.0</td>
<td>29.5</td>
<td>16.9</td>
<td>18.3</td>
<td>7.2</td>
</tr>
</tbody>
</table>

*1 Coefficient of variation = (standard deviation/mean) x 100 (%)
Table 6.10

Variability of key model parameters (expressed as coefficient of variation\(^*\)) and consequent variability of some annual generated streamflow statistics.

<table>
<thead>
<tr>
<th>Calibration period</th>
<th>ST</th>
<th>ZMAX</th>
<th>ZMIN</th>
<th>Mean</th>
<th>MAR</th>
<th>SD</th>
<th>Cs</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 year</td>
<td>36.0</td>
<td>51.3</td>
<td>38.8</td>
<td>42.0</td>
<td>52.8</td>
<td>46.8</td>
<td>25.0</td>
<td>41.5</td>
</tr>
<tr>
<td>10 year</td>
<td>24.1</td>
<td>37.8</td>
<td>27.0</td>
<td>29.6</td>
<td>28.7</td>
<td>22.7</td>
<td>19.2</td>
<td>23.5</td>
</tr>
<tr>
<td>15 year</td>
<td>23.9</td>
<td>42.6</td>
<td>22.0</td>
<td>29.5</td>
<td>16.9</td>
<td>16.3</td>
<td>7.2</td>
<td>14.1</td>
</tr>
</tbody>
</table>

\(^*\) Coefficient of variation = (standard deviation/mean) \times 100 (%)
Variation in key model parameters:

Figure 6.1 Variation in key model parameters
Figure 6.2 Effect of choice of calibration period on annual flows: model PITM
Figure 6.3 Effect of choice of calibration period on on goodness-of-fit: model PITM
Figure 6.4 Frequency analysis of simulated annual flows: model PITEM
Figure 6.4 Frequency analysis of simulated annual flows: model PITM
Figure 6.5 Variability of return periods of simulated annual flows: model PITH
Figure 6.6 Seasonal distribution of simulated flows: model PITH
well. In the Eastern Cape, e.g. the hypothetical catchment used in this study, the seasonality of streamflow is not well-defined because of the 65:35 division of rainfall between summer and winter, on the average. Nevertheless, it was thought worthwhile to investigate the improvements, if any, in prediction of the long-term monthly distribution of flow that can be associated with longer calibration periods. Fig. 6.6 illustrates that there is a consistent though diminishing improvement of the error boundaries of the predicted flow distributions with increases in calibration lengths. A safe conclusion would be that increases in calibration period up to at least 10 years would benefit predicted seasonal distributions most of all.

Results and Discussion: Daily Model (PITD) Calibrated on Monthly Goodness-of-Fit (MCE) (First Phase)

Parameter variability

The variability of the six optimized parameters due to different calibration periods is shown in Fig. 6.7, where each dot is associated with a specific calibration period. It is gratifying to see that two parameters, SI and ZMAXH, converge strongly with longer calibration periods. Other parameters such as ZMINH and TL are probably too insensitive in terms of monthly flow totals to allow proper optimization by an automatic routine. On the whole, it is clear that longer calibration periods do not eradicate parameter variability completely. Table 6.11 lists the coefficients of variation of the key parameters against those of the annual streamflow statistics. In contrast with the case of PITM (Table 6.10) the parameter variability converges at about the same rate as the variability of the annual flow statistics. The variability of PITD values in Table 6.11 for the 15-year calibration period is lower, in general, than the variability of equivalent PITM values in Table 6.10. This may imply greater stability of key parameters in model PITD than in model PITM for longer calibration periods.
6.5.2 Errors in streamflow statistics and one-to-one fit

Errors in streamflow statistics and improvements in the one-to-one fit associated with increased calibration period lengths are plotted in Figs. 6.8 and 6.9 (note that the RMCC axis is demarcated by two different scales). There is a useful convergence both in errors and in fitting statistics from the 10 to the 15-year cases, but very little difference among the 5, 7 and 10-year cases. This may be a fortuitous result caused by combinations of parameter interdependence and imperfect calibration, however, taken at face value, this may imply that in situations where the user is "unhappy" with an existing calibration sample that is seven years or shorter in length, he could expect to effect meaningful improvement in model reliability only if he could more than double the calibration period. Fig. 6.19, depicting the reproduction of the seasonal distribution of flows, provides further evidence regarding this point.

Inspection of the results for the longer calibration samples in Figs. 6.8 and 6.9 leads to the conclusion that a calibration sample size of approximately 15 years represents a point of "diminishing returns" in terms of improvement in regenerated flow statistics and reduction of errors. The range of values for the non-overlapping samples of 25 years and 33 years is not much smaller than that for the overlapping 15-year samples. The two 50-year samples produced very similar results (and almost identical parameter sets).

A strong bias towards overprediction of annual statistics and the range of the residual mass curve is evident from the plots in Figs. 6.8 and 6.9. This may be related to sometimes excessive overprediction of baseflows by model PITD - a fact confirmed by visual inspection of the regenerated monthly flow series. Fig. 6.9 reveals that the mean coefficient of determination and the mean coefficient of efficiency converge with longer calibration periods; this implies a decreasing systematic error with larger calibration samples.

6.5.3 Comparison of models PITD and PIM

As stated in section 6.3 it may be useful to compare relative
Table 6.11

Variability of key model parameters (expressed as coefficients of variation in %) and consequent variability of some annual generated streamflow statistics: model PITD (first phase)

<table>
<thead>
<tr>
<th>Calibration period</th>
<th>ST</th>
<th>ZMAX</th>
<th>ZMIN</th>
<th>Mean</th>
<th>MAR</th>
<th>SD</th>
<th>CS</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ye.</td>
<td>51.3</td>
<td>36.1</td>
<td>36.0</td>
<td>36.0</td>
<td>53.3</td>
<td>50.0</td>
<td>34.4</td>
<td>45.9</td>
</tr>
<tr>
<td>5 year</td>
<td>24.9</td>
<td>24.1</td>
<td>25.6</td>
<td>25.2</td>
<td>26.2</td>
<td>24.3</td>
<td>14.7</td>
<td>19.1</td>
</tr>
<tr>
<td>7 year</td>
<td>19.7</td>
<td>23.0</td>
<td>29.9</td>
<td>24.2</td>
<td>43.9</td>
<td>40.4</td>
<td>21.3</td>
<td>35.2</td>
</tr>
<tr>
<td>10 year</td>
<td>18.6</td>
<td>22.9</td>
<td>27.4</td>
<td>27.0</td>
<td>37.9</td>
<td>28.6</td>
<td>18.6</td>
<td>28.4</td>
</tr>
<tr>
<td>15 year</td>
<td>10.6</td>
<td>11.5</td>
<td>24.5</td>
<td>15.5</td>
<td>14.4</td>
<td>13.4</td>
<td>7.7</td>
<td>11.8</td>
</tr>
</tbody>
</table>
Figure 6.7 Variability of model parameters: model PITD (monthly calibration)
Figure 6.8 Effect of choice of calibration period on annual flows: model PITD
Figure 6.9 Effect of choice of calibration period on goodness-of-fit: model PITD
Figure 6.10 Seasonal distribution of monthly flows: model PITD
differences in calibration reliability between models PITD and PITM in terms of their potential as "tools" for water resources appraisal. The first notable point is that the expected difference in the optimum calibration length did not materialise. Both models seem to need a calibration period length of about 15 years for optimal reduction in regenerated flow series errors and errors in one-to-one fit. Secondly, comparison of coefficients of variation listed in Tables 6.10 and 6.11 discloses that at least for the three parameters most important for the use of each model in semi-arid catchments, model PITD seems more stable than PITM. Thirdly, PITD seems to be slightly superior to PITM in terms of reproduction of seasonal flow distribution and achieving one-to-one fits on monthly flows (this may, however, be partially the result of PITD having a structure that is marginally closer than PITM's structure to that of FURD, which generated the synthetic flow series). A fourth point, which is in favour of PITM, is that PITM showed much less bias than PITD in reproduction of annual streamflow statistics, resulting in lower mean errors.

6.6 RESULTS AND DISCUSSION: DAILY MODEL (PITD) CALIBRATED ON DAILY GOODNESS-OF-FIT (WDCE) (second phase)

6.6.1 Variability of parameters

There is little reduction in the variability of all six parameters optimized for calibration lengths greater than 7 years, as Fig. 6.11 clearly illustrates and the overall degree of variability remains fairly high. Table 6.12 provides further evidence of this phenomenon. It is difficult to say whether this variability is the result of imperfect calibration or whether it reflects the inherent instability of model PITD when calibrated on a semi-arid daily flow series. Calibrating PITD during this phase of the study was much more difficult than the first phase calibration on monthly flows. On average, three optimization runs per calibration sample, each with a different starting parameter set had to be attempted before a decision on convergence could be made. The relatively low DCE values in Table 6.9 indicate that convergence often had to be declared even though the fit of daily values was less than good.
Perusal of the annual maximum daily peak flows produced by the model revealed that the model easily reproduced small to medium peaks but that the 15 highest peaks (out of 101) were not matched in a single case. The consistently negative errors in mean annual peak flows (ΔMPF) plotted in Fig. 6.12, mirror this deficiency of the model and/or the calibration procedure. This fact, combined with persistent overprediction of daily baseflows, are probably the main reasons for the low DCE values. The large MAR errors in Table 6.7 provide a clue to the reasons for the last-mentioned fitting-problems. Table 6.7 shows that the only way the optimization procedure could arrive at high DCE values, i.e. match the peaks of large events, was by deriving parameter sets that produced very large hydrographs, thereby causing the large MAR errors. The reason for the inability of PITD to reproduce large peaks can be found in the way it calculates the hourly distribution of daily rainfall inputs, i.e. by a simple linear regression equation (see Chapter 4). This equation could attenuate the hourly intensities of an extremely intense rainstorm from which FORD synthesized any specific original flood peak. It seems therefore that the parameter variability of PITD could be the result of both imperfect calibration (because the optimizer would be deceived by apparently low DCE values) and of model structure problems (because PITD tended to attenuate extreme rainfall intensities).

6.6.2 Errors in flow statistics

Fig. 6.12 illustrates improvements in selected reconstructed daily flow statistics with increase in calibration period. Although the variabilities do not decrease much there is a general trend of improvement in the daily fit with larger calibration samples, especially in the cases of DCE and ΔMPF. This trend also exists in the case of other daily statistics, to a lesser or greater degree. It does seem, therefore, that in terms of improving the reliability of calibrations based on daily fit, a point of "diminishing returns" does not exist below calibration period of 13 years.

The annual and monthly statistics, which selected values are shown in Fig. 6.13, show a different however. The errors in
MAR and the relative mean persistence (RMP) show little improvement for calibration sample size increases above seven years; even the MCE and CD values improve on average only slightly (although the variability of these statistics does decrease notably). A possible conclusion from the last-mentioned two figures is that in general a 7-year sample should enable calibration of a daily model to home in on parameters that ensure an approximate annual and monthly water balance, but that for a reasonable daily water balance about double that length of calibration period is required in a semi-arid catchment application. Such a doubling of calibration sample could improve the overall daily fit by over 50%.

6.7 GENERAL CONCLUSIONS

1. In the semi-arid case and for application to water resources analysis it is well worthwhile to increase the calibration sample length when using monthly and daily models such as Pitman's PITM and PITO. At a calibration period of approximately 15 years a point of diminishing returns seems to be reached, in terms of the accompanying reduction in errors in reconstructed streamflow statistics.

2. In the case of monthly model PITM, doubling the length of a calibration period that is initially well below 10 years may decrease the error in most regenerated monthly and annual flow statistics by 30 to 50%. However, the daily model revealed less dramatic equivalent improvements for equivalent calibration sample increases.

3. The daily model PITU, when calibrated in terms of a daily one-to-one fit (as may be required for a run-of-river project), seems to have an optimum calibration length of not much more than seven years if only monthly and annual flow reproduction is considered, but a calibration sample size about double that is required to improve the overall daily fit substantially. Improvements of over 50% in daily fit seem possible with such doubling of the calibration period.
Table 6.12

Changes in variability (expressed as coefficient of variation in %) of key model parameters associated with changes in calibration period length: model PITD (second phase)

<table>
<thead>
<tr>
<th>Calibration period</th>
<th>ST</th>
<th>ZMAXN</th>
<th>ZMINN</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 year</td>
<td>12.4</td>
<td>25.3</td>
<td>11.7</td>
<td>16.5</td>
</tr>
<tr>
<td>5 year</td>
<td>25.4</td>
<td>16.2</td>
<td>30.8</td>
<td>24.1</td>
</tr>
<tr>
<td>7 year</td>
<td>14.8</td>
<td>23.2</td>
<td>29.4</td>
<td>22.5</td>
</tr>
<tr>
<td>10 year</td>
<td>12.6</td>
<td>19.1</td>
<td></td>
<td>17.7</td>
</tr>
<tr>
<td>13 year</td>
<td>10.3</td>
<td>22.7</td>
<td>18.0</td>
<td>17.0</td>
</tr>
</tbody>
</table>
Figure 6.11 Variability of model parameters:
model PITD (daily calibration)
Figure 6.12 Effect of choice of calibration period on daily fit: model P270.
Figure 6.13 Effect of choice of calibration period on monthly and annual fit: model PITD
Figure 6.13 Effect of choice of calibration period on monthly and annual fit: model PITD
4. Significant parameter variability in "optimum" parameters seems unavoidable, even at long calibration periods, because of factors such as parameter interdependence, and an unknown degree of imperfection of calibration.

5. The effects of parameter uncertainty were less alarming than expected, as evidenced by an encouraging convergence of regenerated monthly and annual flow statistics with increase in calibration sample length.

6. There is faint evidence that for use in water resources appraisal of semi-arid catchments daily model PITD may be preferable to monthly model PITM. When calibrated on a monthly flow total basis, PITD seems to be slightly more stable in terms of key parameters. When calibrated on a daily basis, it seems to need a shorter calibration period. It also seems to produce better one-to-one fits of monthly totals.

7. The implications of the results of this study for the Ecca modelling studies are twofold. Firstly, the longest possible calibration period should be used for more reliable parameters. As only 6 years of data are available this may mean a calibration sample of 5 years. Secondly, because of the short calibration period (by the standards of the foregoing study), a fair amount of uncertainty in parameter estimates can be expected - this should be borne in mind during model verification assessments.
CHAPTER 7

COMPARISON OF PERFORMANCE OF SELECTED CONCEPTUAL RAINFALL-RUNOFF MODELS

7.1 INTRODUCTION

A comparative assessment of the performance of South African conceptual rainfall-runoff models under semi-arid conditions is a pivotal aspect of the research described in this thesis. Preceding chapters, though geared to specific aims, serve an essential purpose to set the scene for the model comparison study. In Chapter 2 the available data set is described and analysed, with specific reference to its suitability for conceptual model testing. In Chapters 3 and 4 the selected models are described, as well as any modifications thought to be necessary. Chapter 5 comprises a search for a robust and reliable approach to model calibration, specifically focused on the type of data, i.e. semi-arid, to be used in the model intercomparison. Chapter 6 provides to "optimal" calibration period lengths that should be in modelling semi-arid catchments.

The comparison of model performance is intended to provide guidelines to model selection, specific to the semi-arid environment. This is done by determining whether or not models of complex structure and/or fine time-interval requirements for rainfall inputs provide superior output with respect to statistical criteria commonly used in water resources engineering. The complexity of a model, in terms of both structure and input requirements, dictates data preparation time, the time required for adequate calibration and the computer time of each operation of the model. The time involved in and the cost of generating streamflow series at an acceptable level of accuracy are key considerations for the practising engineer or hydrologist. These model users often have to deal with computer facilities of limited sophistication or may be paying commercial rates for computer time.

The research was executed in two phases: an early, exploratory phase during which a limited number of models were manually calibrated
CHAPTER 7

COMPARISON OF PERFORMANCE OF SELECTED CONCEPTUAL
RAINFALL-RUNOFF MODELS

7.1 INTRODUCTION

A comparative assessment of the performance of South African conceptual rainfall-runoff models under semi-arid conditions is a pivotal aspect of the research described in this thesis. Preceding chapters, though geared to specific aims, serve an essential purpose to set the scene for the model comparison study. In Chapter 2 the available data set is described and analysed, with specific reference to its suitability for conceptual model testing. In Chapters 3 and 4 the selected models are described, as well as any modifications thought to be necessary. Chapter 5 comprises a search for a robust and reliable approach to model calibration, specifically focused on the type of data, i.e. semi-arid, to be used in the model intercomparison. Chapter 6 provides guidance to "optimal" calibration period lengths that should be used when modelling semi-arid catchments.

The comparison of model performance is intended to provide guidelines to model selection, specific to the semi-arid environment. This is done by determining whether or not models of complex structure and/or fine time-interval requirements for rainfall inputs provide superior output with respect to statistical criteria commonly used in water resources engineering. The complexity of a model, in terms of both structure and input requirements, dictates data preparation time, the time required for adequate calibration and the computer time of each operation of the model. The time involved in and the cost of generating streamflow series at an acceptable level of accuracy are key considerations for the practising engineer or hydrologist. These model users often have to deal with computer facilities of limited sophistication or may be paying commercial rates for computer time.

The research was executed in two phases: an early, exploratory phase during which a limited number of models were manually calibrated
and compared, and later complete investigation involving all the models and calibration according to the semi-automatic procedure described in Chapter 5. In a sense, the questions raised by the first phase study gave rise to much of the work described in Chapters 2 to 6. How could the models tested be improved? How adequate was the manual calibration procedure? How suitable was the calibration period chosen? What statistical criteria should be used to assess model performance? It was felt that answers to these and related questions should be sought before a meaningful model intercomparison could be done. Nevertheless, the exploratory comparison of model performance based on manual calibration is extremely useful in its own right, as the following section will show.

7.2 AN EXPLORATORY MODEL COMPARISON BASED ON MANUAL CALIBRATION

7.2.1 Introduction

It seemed prudent that the format of the exploratory model intercomparison should be designed to meet the information needs of a potential user searching for a time-efficient model to use in semi-arid water resources analyses. In such analyses storage-yield determinations based on monthly runoff data are of prime importance.

The hourly, daily and monthly models developed by Pitman (1973, 1976) (Pitman and Basson, 1979) and the Stanford Watershed Model were chosen for the exploratory study. The Pitman models were only slightly modified to allow use of the particular input data set chosen and are therefore prefixed by "HRII" in this section to distinguish them from the modified versions described in Chapter 4, viz. PITH, PITD and PITM. The complete data set for the Ecca catchments A, B and E, as described in Chapter 2, was used in the study. In terms of the chosen format and models this study can be regarded as an extension of work initiated by Pitman (1977, 1978), who compared his own three models with the Stanford model. He used four years of calibration data from three temperate catchments, but particular inadequacies in instrumentation and data consistency hampered his study. No verification data set was used by Pitman. In the present study the model comparison is done by an independent user, relying only on
published information about the four models, using data of generally higher reliability, consistency and areal representativeness than Pitman's, and employing both calibration and verification data sets. In fact, all four requirements for meaningful model comparisons suggested in section 1.4 are met in this study.

A brief summary of the characteristics or the models used in this study is given in Table 7.1. The range of complexities covered by the four models is well illustrated by the fact that the total amount of computer time needed for the calibration of the Stanford and the HRU hourly models was order of magnitude greater than that needed for calibration of the HRU daily or monthly models.

7.2.2 Model calibration and verification procedures

After some initial experimentation it was decided to follow a "three-stage" calibration/verification strategy in this study. The year 1975, for which no runoff data exist for any of the three Ecca catchments, was used as a "warm-up" year for all four models. Data for the years 1976 to 1980, inclusively, were used as a calibration sample in all cases and the year 1981 as a verification sample. A fair number of runoff events occurred in 1981, which therefore represented a reasonable verification sample on its own. In this way it was hoped that robust model parameters could be ensured by the largest possible calibration sample and that an extraordinary sequence of very high rainfall in 1979 (649mm for catchment A) which included two multiple-day winter rainstorms of large return period, followed by a very dry 1980 (347mm for A) which produced only one runoff event towards December, would especially strengthen the model calibrations.

Calibration of the models was undertaken manually. Manual calibration is deemed the most likely approach by a potential conceptual model user in a non-research environment, because of the computer time costs associated with automatic optimization.

The general manual calibration strategy was to focus on
Table 7.1

Comparison of model characteristics

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of conceptual storages</th>
<th>Number of parameters</th>
<th>Input/Output</th>
<th>Execution time(^*1) (s)</th>
<th>Average no. calibration runs per catchment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRU monthly</td>
<td>2</td>
<td>12</td>
<td>1 month</td>
<td>7</td>
<td>33</td>
</tr>
<tr>
<td>HRU daily</td>
<td>3</td>
<td>13</td>
<td>1 day</td>
<td>41</td>
<td>19</td>
</tr>
<tr>
<td>HRU hourly</td>
<td>4</td>
<td>15</td>
<td>1 hour</td>
<td>169</td>
<td>49</td>
</tr>
<tr>
<td>Stanford</td>
<td>4</td>
<td>19</td>
<td>1 hour</td>
<td>204</td>
<td>31</td>
</tr>
</tbody>
</table>

\(^*1\) CPU time on ICL 1904 computer for a 5 year calibration run.
subjective comparisons of simulated and observed monthly totals and, sometimes individual hydrographs, while all the time attempting to keep certain objective criteria of model performance within an acceptable range of their optimum values. These objective criteria were (see Appendix A for definitions):

(a) % error in mean annual runoff (aMAR),
(b) % error in variance of monthly totals (aSD),
(c) coefficient of efficiency based on individual monthly means (Garrick, Cunnane and Nash, 1978) (MCE),
(d) residual mass curve coefficient (Aitken, 1978) (RMCC).

The procedure used for each model was to choose initial parameter values for catchment A according to guidance provided in the relevant model documentation. Once an approximate fit was achieved on A, the new parameters were transferred to B and E and approximate model fits on these catchments were sought. Final calibrations on all three catchments were then attempted more or less simultaneously for each model. It was hoped that the above procedure would make maximum use of any possible internal consistency of each model's parameters among such "similar" catchments and that such a "feed-back" loop based on the similarity of the three modelling situations would ensure sound, if not optimum, final parameters.

The verification test was done by running each model with the full seven years of input data using the above final parameters and assessing the models' performance separately for each of the calibration period, the verification period and the total runoff period. In this study a set of eleven statistical criteria that measure the ability of the models to reproduce the observed flow series were utilized, calculated on the basis of simulated and observed monthly totals. These criteria are described in Appendix A and are listed below. All are calculated by statistical subroutine AFIT which is provided in Appendix B.
(i) Percent error in mean annual runoff (AMAR)

(ii) Percent error in monthly variance (AVAR)

(iii) Two related, but different, criteria of one-to-one fit - the coefficient of efficiency based on individual monthly means (MCE) (Garrick, Cunnane and Nash, 1978) and the maximum equivalent "constant" error, (MECE) (Weeks and Hebbert, 1980).

(iv) Two different criteria to measure persistence in model residual errors - the residual mass curve coefficient (RMCC) (Aitken, 1973) and the coefficient of persistence (CP) suggested by Wallis and Todini (1975).

(v) Two different indexes relating to storage requirements flow regulation - percent error in the range of the residual mass curve (Rd) and percent error in the index of seasonal variability (Is).

(vi) A simple measure of low flow simulation - percent error in maximum deficient flow duration (AMDFP) i.e., the maximum continuous duration of flow smaller than the mean monthly flow.

(vii) Two further measures of the existence of systematic or correlated errors in the simulated time series - the one sample runs test or "sign test" (ST) (Aitken, 1973) and the Durbin-Watson d-statistic (DT) (Sorooshian and Dracup, 1980).

7.2.3 Comparison of model performance

A visual impression of the nature of the observed flow record used for the calibration and verification periods, respectively, as well as the one-to-one fit achieved by the four models, may be gained by inspection of Figs. 7.1 and 7.2. These diagrams show the typically erratic nature of the semi-arid runoff regime and highlight the magnitude of the 1979 winter flows compared to the rest of the available record. All the models seem to fit various parts of the calibration record for catchment A (Fig 7.1) with varying degrees of
Figure 7.1 Observed and simulated monthly flows: catchment A (calibration period)
Figure 7.2 Observed and simulated monthly flows:
calendar year 1981 (verification period)
success. (This observation also holds for the other two catchments). However, Fig. 7.2 shows distinct differences in the calibrated models' individual abilities to predict runoff for the verification year. Based on visual comparison for all three catchments it may be concluded that for the calendar year 1981 the HRU hourly model (as calibrated) shows the least predictive ability, with the Stanford model performing slightly better that the HRU daily and monthly versions.

The numerical criteria of goodness-of-fit of all three model/catchment combinations for the complete flow record period are shown in Table 7.2. Selected criteria for the verification period are given in Table 7.3. As the relative performance of the models according to the criteria for the calibration period is little different from that for the total flow-record period, only the latter period's criteria are shown for reasons of space economy.

Judging by the mean values in Table 7.2 of the respective criteria for each model, it can be seen that the performance of the Stanford and HRU daily models are more or less equivalent, while the HRU hourly and monthly models are comparable. The numerical goodness-of-fit values for the Stanford and HRU daily models are generally "better" than those for the other two, but the nominal differences between the two sets of values for the two pairs of models are not dramatic. Table 7.2 shows that on average all the models reproduce the overall water balance well enough. However, the HRU monthly model tends to underestimate the monthly variance and the Stanford model exaggerates the monthly variance. The NCE and MECE values indicate a high overall one-to-one correspondence for all the models on catchments A and B but a much lower quality of fit for the HRU hourly and monthly models on catchment E. At this juncture, it should be pointed out that the NCE and MECE values may be disproportionately influenced by the closeness of the one-to-one fit on the high winter flows of 1979, mentioned earlier.

The small persistence in model residual errors suggested by the high RMCE and low CP values in Table 7.2 is deceptive, as the residual mass curve plots in Fig. 7.3 show. These diagrams reveal error
Table 7.2

Results of statistical tests*1 on monthly flows for the combined calibration and verification periods.*2

<table>
<thead>
<tr>
<th>Model</th>
<th>Catch</th>
<th>ΔMCE</th>
<th>MECE</th>
<th>RM-CP</th>
<th>ΔRM-CP</th>
<th>ΔΔMΔCE</th>
<th>ST</th>
<th>IT</th>
<th>FP</th>
<th>significant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-3.5</td>
<td>-9.6</td>
<td>0.98</td>
<td>1.2</td>
<td>0.97</td>
<td>1.71</td>
<td>-7.0</td>
<td>-5.3</td>
<td>0.0</td>
<td>no</td>
</tr>
<tr>
<td>HRU</td>
<td>-1.6</td>
<td>-1.9</td>
<td>0.94</td>
<td>5.9</td>
<td>0.99</td>
<td>1.01</td>
<td>-3.1</td>
<td>-1.8</td>
<td>0.0</td>
<td>yes</td>
</tr>
<tr>
<td>monthly E</td>
<td>-7.1</td>
<td>-14.5</td>
<td>0.69</td>
<td>10.1</td>
<td>0.92</td>
<td>1.39</td>
<td>-19.4</td>
<td>-17.3</td>
<td>-28.2</td>
<td>no</td>
</tr>
<tr>
<td>mean</td>
<td>-4.1</td>
<td>-8.7</td>
<td>0.87</td>
<td>5.7</td>
<td>0.96</td>
<td>1.37</td>
<td>-9.8</td>
<td>-8.1</td>
<td>-9.4</td>
<td>no</td>
</tr>
<tr>
<td>A</td>
<td>-2.2</td>
<td>3.7</td>
<td>0.99</td>
<td>0.7</td>
<td>0.99</td>
<td>1.09</td>
<td>-1.4</td>
<td>5.2</td>
<td>39.3</td>
<td>yes</td>
</tr>
<tr>
<td>HRU</td>
<td>-3.7</td>
<td>7.9</td>
<td>0.95</td>
<td>5.3</td>
<td>0.99</td>
<td>0.86</td>
<td>-3.9</td>
<td>5.8</td>
<td>0.0</td>
<td>yes</td>
</tr>
<tr>
<td>daily E</td>
<td>8.8</td>
<td>-3.5</td>
<td>0.86</td>
<td>6.0</td>
<td>0.97</td>
<td>0.36</td>
<td>-13.4</td>
<td>-19.6</td>
<td>-35.9</td>
<td>no</td>
</tr>
<tr>
<td>mean</td>
<td>1.0</td>
<td>2.7</td>
<td>0.93</td>
<td>4.3</td>
<td>0.98</td>
<td>0.77</td>
<td>-6.2</td>
<td>-2.9</td>
<td>1.1</td>
<td>no</td>
</tr>
<tr>
<td>A</td>
<td>-3.7</td>
<td>-1.6</td>
<td>0.94</td>
<td>1.9</td>
<td>0.97</td>
<td>1.11</td>
<td>-4.8</td>
<td>-1.0</td>
<td>-14.3</td>
<td>yes</td>
</tr>
<tr>
<td>HRU</td>
<td>1.4</td>
<td>5.3</td>
<td>0.86</td>
<td>8.5</td>
<td>0.98</td>
<td>1.07</td>
<td>-1.7</td>
<td>4.2</td>
<td>0.0</td>
<td>no</td>
</tr>
<tr>
<td>hourly E</td>
<td>11.4</td>
<td>-2.7</td>
<td>0.73</td>
<td>9.5</td>
<td>0.92</td>
<td>0.56</td>
<td>-7.9</td>
<td>-27.9</td>
<td>-51.1</td>
<td>no</td>
</tr>
<tr>
<td>mean</td>
<td>3.0</td>
<td>0.3</td>
<td>0.84</td>
<td>6.6</td>
<td>0.96</td>
<td>0.91</td>
<td>-4.8</td>
<td>-11.0</td>
<td>-6.5</td>
<td>no</td>
</tr>
<tr>
<td>Stanford A</td>
<td>-7.4</td>
<td>0.4</td>
<td>0.92</td>
<td>2.2</td>
<td>0.99</td>
<td>0.61</td>
<td>-3.5</td>
<td>11.2</td>
<td>0.0</td>
<td>no</td>
</tr>
<tr>
<td>B</td>
<td>-8.0</td>
<td>14.1</td>
<td>0.91</td>
<td>6.9</td>
<td>0.99</td>
<td>0.83</td>
<td>-5.5</td>
<td>14.9</td>
<td>0.0</td>
<td>yes</td>
</tr>
<tr>
<td>E</td>
<td>0.0</td>
<td>12.3</td>
<td>0.97</td>
<td>3.1</td>
<td>0.99</td>
<td>0.71</td>
<td>-1.6</td>
<td>7.5</td>
<td>0.0</td>
<td>yes</td>
</tr>
<tr>
<td>mean</td>
<td>-5.1</td>
<td>8.9</td>
<td>0.93</td>
<td>4.1</td>
<td>0.99</td>
<td>0.72</td>
<td>-3.5</td>
<td>11.2</td>
<td>0.0</td>
<td>no</td>
</tr>
</tbody>
</table>

*1 See Appendix A for explanation of symbols

*2 1976-1981, inclusive
persistence in at least the HRU hourly and monthly model simulations. All the models consistently underestimate the range ΔR_g of the residual mass curves, but show little consistency and a low success rate in estimating the index of seasonality ΔI_g. The three HRU models all produce one or more serious errors in estimating the maximum deficient flow period NOFP. A presence of systematic errors is indicated by the sign test for at least one catchment in the case of all the models, but the Durban-Watson d-test could not detect any systematic errors.

The apparently poor predictive performance of the models (as calibrated) depicted in Fig. 7.2 is further substantiated by Table 7.3. The three HRU models grossly overestimate total runoff, variance, and range of residual mass curve, while the Stanford model shows random variation in errors among the catchments. The best single prediction is achieved by the HRU daily model on catchment A, but the earlier suggestion that the Stanford model shows better predictive ability for 1981, based on overall performance, is further underlined by the values in Table 7.3.

7.2.4 Discussion

In the light of the apparent adequacy of the performance of all the models on most of the catchments suggested by Table 7.2, the generally poor predictions for 1981 are somewhat surprising, if not puzzling. Some or all of the following arguments and counter-arguments will constitute an explanation of the verification results.

(a) The calibration of the models may have been biased towards the reproduction of high runoff events by the presence of the winter 1979 flows in the calibration record, while 1981, the verification year, was a "normal" runoff year. This implies that the calibration sample was too small or too dominated by a few extreme events. The predictive performance of the Stanford model seems to negate this explanation, but perhaps the study reveals that the HRU models need a longer calibration period than the Stanford model for the same quality of optimization on semi-arid data.
Figure 7.3 Residual m-s curves: full data period, 1976-1991.
Figure 7.3 Residual mass curves: full data period, 1976 - 1981
Table 7.3

Selected statistics of model performance for the verification period*

<table>
<thead>
<tr>
<th>Model</th>
<th>Catchment</th>
<th>△MAR</th>
<th>△VAR</th>
<th>MECE</th>
<th>△Ra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>-24.9</td>
<td>-23.9</td>
<td>23.6</td>
<td>7.9</td>
</tr>
<tr>
<td>HRU</td>
<td>B</td>
<td>39.4</td>
<td>226.1</td>
<td>134.4</td>
<td>122.0</td>
</tr>
<tr>
<td>monthly</td>
<td>E</td>
<td>166.4</td>
<td>333.4</td>
<td>207.7</td>
<td>127.7</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>60.3</td>
<td>178.5</td>
<td>121.9</td>
<td>85.9</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>19.3</td>
<td>-0.7</td>
<td>12.8</td>
<td>8.8</td>
</tr>
<tr>
<td>HRU</td>
<td>B</td>
<td>41.6</td>
<td>241.4</td>
<td>100.1</td>
<td>75.1</td>
</tr>
<tr>
<td>daily</td>
<td>E</td>
<td>562.3</td>
<td>1021.2</td>
<td>313.8</td>
<td>204.5</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>207.7</td>
<td>420.6</td>
<td>142.2</td>
<td>96.1</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>108.8</td>
<td>536.0</td>
<td>51.1</td>
<td>260.4</td>
</tr>
<tr>
<td>HRU</td>
<td>B</td>
<td>159.0</td>
<td>1510.1</td>
<td>273.0</td>
<td>364.7</td>
</tr>
<tr>
<td>hourly</td>
<td>E</td>
<td>1204.1</td>
<td>9162.4</td>
<td>820.2</td>
<td>1084.5</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>490.1</td>
<td>3736.2</td>
<td>381.4</td>
<td>569.9</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>-35.9</td>
<td>-72.4</td>
<td>20.2</td>
<td>-30.2</td>
</tr>
<tr>
<td>Stanford</td>
<td>B</td>
<td>3.6</td>
<td>18.4</td>
<td>62.4</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>32.6</td>
<td>-72.2</td>
<td>97.4</td>
<td>-53.5</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>0.1</td>
<td>-42.1</td>
<td>66.7</td>
<td>-22.4</td>
</tr>
</tbody>
</table>

* Calendar year 1981
(b) The calibration itself may have been inexpertly executed, resulting for some catchment/model combinations in non-optimum parameter sets: The verification experience with the Stanford, HRU daily and HRU monthly models on catchment A appears to refute this point. Also, the calibration procedure described in the previous section does seem intuitively sound.

(c) The verification sample may include rainstorm types poorly represented in the calibration sample: Of the bigger runoff events of 1981 the ones earlier in the year were the result of widespread frontal rainfall while the events later in the year were caused by high-intensity convective thunderstorms. Although these storm types are both well represented in the calibration sample it was noted that localised thunderstorm runoff was poorly simulated by all the models at some points during the calibration period. The verification plots (Fig. 7.2) suggest that the HRU hourly model was calibrated to be hypersensitive and the HRU monthly and the Stanford models to be insensitive to high-intensity rainfall.

(d) The models may inherently be inadequate for the simulation of rainfall-runoff processes in the semi-arid environment: All model/catchment combinations yielded one or more dramatic simulation failures for specific storm events. Also, the three HRU models tended to sustain baseflow for too long while the Stanford model produced too little baseflow.

7.2.4 Conclusions

(i) A comprehensive set of statistical tests on simulated monthly flows for a combined calibration and verification period of six years indicated that there is no great difference in performance of the simpler HRU monthly and daily input models as compared with the more complex HRU hourly and Stanford models. In fact, the HRU daily model along with the Stanford model, can be regarded as yielding the best overall results.
(ii) All the models showed a serious divergence in values of selected goodness-of-fit criteria moving from the calibration to the verification period. For the verification period (calendar year 1981) the Stanford model showed the highest predictive ability, followed by the HRU monthly and daily models.

(iii) The large errors yielded by the verification tests may be attributed to any one or a combination of factors such as calibration sample too small, inadequate calibration causing poor ability to simulate runoff from high-intensity rainstorms, and inherent model inadequacies.

(iv) None of the four models was entirely convincing in simulating the vastly variable range of runoff-generation conditions in semi-arid catchments, and all model/catchment combinations yielded one or more dramatic simulation failures for specific storm events. However, the general performance of the relatively simple HRU daily model is encouraging.

(v) The results provided some evidence that it may not be wise to blindly adopt the most complex available model for a water resources study where, for example, storage-yield determinations are based on monthly flow data.

There was enough uncertainty, however, as to the reasons for the poor performance of the models during the verification period (see (iii)) to warrant suspension of the study until these factors had been investigated in depth. This decision gave rise to much of the work reported in Chapters 3, 5 and 6, at the completion of which the model intercomparison was resumed. The rest of this chapter comprises a description of this final comparison of model performance.
7.3 A COMPLETE MODEL COMPARISON BASED ON AUTOMATIC OPTIMIZATION

7.3.1 Format of the study

The set of seven models outlined in Chapter 4 was employed for a complete intercomparison of performance using the entire Ecca data set as described in Chapter 2. It will be recalled that these models cover a range of complexities, comprising three hourly-input models (FORD, PITH and PITR), two daily-input models (PITD and DALT) and two monthly-input models (PITM and DALK).

The investigation of the effect of the choice of calibration period on reliability of model calibration, described in Chapter 6, led to some findings which are very important for the model intercomparison under consideration. In section 6.2 it is concluded that "...Parameter instability is not so much dependent on calibration sample length as on whether or not the sample includes major runoff events". The general conclusions in section 6.7 strongly underline the need for fairly large calibration samples to ensure representative model parameters. Calibration periods upwards of 10 years seem to be necessary for reliable parameter estimation in monthly and daily models.

In the light of these findings and given the fact that the Ecca data set comprises only six years of concurrent rainfall and streamflow records it was decided to conduct two separate model intercomparisons:

(i) A study based on the most representative calibration sample possible, i.e. the data for the five-year period 1976-1980,

(ii) A study based on a calibration in which the goodness-of-fit of simulation of the most extreme runoff events are ignored but which is nevertheless based on a representative range of small to medium runoff events, i.e. the data for the four years of 1976, 1977, 1978 and 1980. The first study would represent the most complete intercomparison of model performance possible with the available data set. The second study would, it was hoped, provide some insight into
whether or not certain models were more "robust" than others with respect to parameter estimation from "limited" data, i.e. from records that do not contain any extreme runoff events.

7.3.2 Special considerations regarding the models and their calibration

The main characteristics of the seven models used in the intercomparison are given in Table 7.4. It should be noted that in all cases only a portion of the total number of parameters of each model was allowed to change during the calibration. All parameters which had physical meaning (e.g. FORD and PITD) or were found to be insensitive during the model sensitivity studies were held at constant values determined at the start of the study. All inactive parameters are identified in Tables 7.5, 7.6 and 7.7.

In the case of models DALT and DALM some initial experimentation with the four complexity levels that are possible with these models (see section 4.4) showed that at least the "DALT2" version of the model was needed for reasonable simulation. At this level the model consists of a single linear storage, an evapotranspiration function, a base flow function and a deep percolation loss function. It was also clear that a higher level version of the model such as DALT4 could provide improvements in model output accuracy but the range of improvement was thought not to justify the extra two parameters required for such a modification (section 4.4). At this level the model has six active parameters which brings it into the range of PITD and PITM, with seven and six active parameters respectively (Table 7.4). In terms of the objectives of the study it seemed prudent to use DALT and DALM at a level of complexity just sufficient to produce reasonable output under semi-arid conditions, i.e. at the "DALT2" level.

A three-stage calibration/verification ("split-sample") strategy was used in both phases of the model intercomparison. The data set was divided into a "warm-up" year, 1975, for which no streamflow information was available, a calibration period of either five years (1976-1980) or four years (1976 to 1978 & 1980) and a one-year
Table 7.4
Comparison of model characteristics

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Total no. of storages</th>
<th>No.of parameters</th>
<th>No.of active parameters</th>
<th>Interaction interval</th>
<th>Execution time*1 (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORD 19</td>
<td>11</td>
<td>204</td>
<td>0.25 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITH 4</td>
<td>11</td>
<td>170</td>
<td>1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITR 4</td>
<td>11</td>
<td>171</td>
<td>1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITH 3</td>
<td>7</td>
<td>41</td>
<td>1 hour (raindays)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DALT2 1</td>
<td>4</td>
<td>26</td>
<td>1 day (non-raindays)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITH 2</td>
<td>6</td>
<td>7</td>
<td>0.25 month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DALT2 1</td>
<td>4</td>
<td>4</td>
<td>0.25 month</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 CPU time on ICL 1904 computer for a 6-year run.
verification period, 1981. Each model was calibrated following the semi-automatic procedure outlined in section 5.8, in which the Rosenbrock optimizing algorithm proved extremely useful.

Some difficulty was experienced, however, with the chosen procedure in the optimization of models FORD, DALT and DALM. The complexity of model FORD often was the cause of slow convergence during the optimization search and necessitated frequent manual interventions to redirect the search. Extreme interdependence of the DALT/DALM parameters SSM, the moisture storage level at which base flow starts, POWER, the power of the base flow function, and SSM, the maximum moisture storage level, also caused problems. These three parameters compensate very effectively for changes in each other's values, leading to "false" declarations of convergence by the optimizer. This undesirable effect had to be circumvented by optimizing the problem parameters separately.

Statistical criteria of model performance

The comparison of model performances was based on the ability of the models in the respective rainfall input categories to reproduce the observed monthly flow series - all three categories - and the observed daily flow series - the hourly and daily input categories. (A comparative study of the ability of the three hourly models to reproduce the hourly hydrographs of individual stormflow events is described in Chapter 3). The correspondence between observed and simulated flow series was measured by means of statistical criteria selected to focus on a variety of streamflow characteristics that are of typical interest to engineering hydrology, as well as a variety of recognized goodness-of-fit criteria. The criteria are listed below, while their mathematical definitions appear in Appendix A. All are calculated by statistical subroutines AFIT and BFIT provided in Appendix B.

(a) Monthly fit

(i) Percentage error in MAR (\(\Delta\text{MAR}\)).

(ii) Percentage error in monthly variance (\(\Delta\text{VAR}\)).
Table 7.5

Final parameter values: model FORD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A</th>
<th>B</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1 K1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>*1 MPV</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>EPXH</td>
<td>0.15</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>UZSN</td>
<td>0.95</td>
<td>0.86</td>
<td>0.93</td>
</tr>
<tr>
<td>LZSN</td>
<td>9.12</td>
<td>8.68</td>
<td>18.54</td>
</tr>
<tr>
<td>CB</td>
<td>0.0025</td>
<td>0.0040</td>
<td>0.0040</td>
</tr>
<tr>
<td>CC</td>
<td>2.71</td>
<td>2.32</td>
<td>1.86</td>
</tr>
<tr>
<td>K3</td>
<td>0.34</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>K24L</td>
<td>0.51</td>
<td>0.12</td>
<td>0.50</td>
</tr>
<tr>
<td>*1 K24EL</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>*2 L</td>
<td>2500</td>
<td>1800</td>
<td>2200</td>
</tr>
<tr>
<td>*2 SS</td>
<td>0.20</td>
<td>0.27</td>
<td>0.17</td>
</tr>
<tr>
<td>*2 NN</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>IRC</td>
<td>0.91</td>
<td>0.74</td>
<td>0.82</td>
</tr>
<tr>
<td>KK24</td>
<td>0.94</td>
<td>0.22</td>
<td>0.97</td>
</tr>
<tr>
<td>*1 KV</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>POWER</td>
<td>1.6</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>*1 UZSN WT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>KS1</td>
<td>0.86</td>
<td>0.83</td>
<td>0.76</td>
</tr>
</tbody>
</table>

*1 Regarded as inactive parameters
*2 Physical parameters
Table 7.6

Final parameter values: models PITH and PITR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PITH</th>
<th></th>
<th></th>
<th>PITH</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>E</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>* PDW</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>* SL</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>* AI</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>* FT</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>ST</td>
<td>154.0</td>
<td>159.0</td>
<td>240.0</td>
<td>157.0</td>
<td>162.9</td>
<td>241.8</td>
</tr>
<tr>
<td>LAG</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DIV</td>
<td>15.9</td>
<td>23.9</td>
<td>20.0</td>
<td>3.8</td>
<td>20.0</td>
<td>23.8</td>
</tr>
<tr>
<td>ZMINN</td>
<td>0.7</td>
<td>0.7</td>
<td>0.3</td>
<td>0.6</td>
<td>1.9</td>
<td>0.6</td>
</tr>
<tr>
<td>ZMAXH</td>
<td>10.7</td>
<td>10.5</td>
<td>10.1</td>
<td>10.6</td>
<td>10.4</td>
<td>6.8</td>
</tr>
<tr>
<td>PI</td>
<td>2.5</td>
<td>2.5</td>
<td>4.0</td>
<td>2.5</td>
<td>2.5</td>
<td>4.0</td>
</tr>
<tr>
<td>GL</td>
<td>3.2</td>
<td>3.7</td>
<td>3.0</td>
<td>2.7</td>
<td>5.7</td>
<td>4.9</td>
</tr>
<tr>
<td>TL</td>
<td>1.1</td>
<td>4.1</td>
<td>5.9</td>
<td>1.6</td>
<td>0.5</td>
<td>2.4</td>
</tr>
<tr>
<td>* R</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>SV</td>
<td>1.5</td>
<td>1.5</td>
<td>2.7</td>
<td>1.5</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>TLI</td>
<td>11.1</td>
<td>13.1</td>
<td>17.3</td>
<td>9.1</td>
<td>8.2</td>
<td>14.9</td>
</tr>
<tr>
<td>DIVG</td>
<td>2.7</td>
<td>5.8</td>
<td>7.2</td>
<td>2.9</td>
<td>5.5</td>
<td>7.0</td>
</tr>
</tbody>
</table>

* Regarded as inactive parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>PITD</th>
<th>Parameter</th>
<th>PITM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catchment</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>*1 PDW</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>*1 SL</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>*1 FT</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>*1 AI</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ST</td>
<td>166.5</td>
<td>160.0</td>
<td>229.9</td>
</tr>
<tr>
<td>ZHINH</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>ZMAXN</td>
<td>5.8</td>
<td>6.3</td>
<td>7.3</td>
</tr>
<tr>
<td>PI</td>
<td>2.5</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>LAG</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DIV</td>
<td>0.45</td>
<td>0.68</td>
<td>0.74</td>
</tr>
<tr>
<td>GL</td>
<td>1.5</td>
<td>5.0</td>
<td>4.5</td>
</tr>
<tr>
<td>TL</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>*1 R</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>*2 TRIB</td>
<td>317.3</td>
<td>21.2</td>
<td>42.3</td>
</tr>
<tr>
<td>*2 CHAN</td>
<td>6.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>*2 DBANK</td>
<td>21.0</td>
<td>1.7</td>
<td>2.7</td>
</tr>
</tbody>
</table>

*1 Regarded as inactive parameters
*2 Physical parameters
Table 7.8

Final parameter values: models DALT and DALM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DALT</th>
<th></th>
<th></th>
<th>DALM</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catchment</td>
<td>A</td>
<td>B</td>
<td>E</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>SSM</td>
<td>212,3</td>
<td>216,6</td>
<td>212,6</td>
<td>142,8</td>
<td>185,3</td>
<td>241,1</td>
</tr>
<tr>
<td>SSR</td>
<td>61,0</td>
<td>63,8</td>
<td>38,8</td>
<td>36,5</td>
<td>38,0</td>
<td>94,1</td>
</tr>
<tr>
<td>POWER</td>
<td>3,33</td>
<td>3,20</td>
<td>2,85</td>
<td>5,11</td>
<td>3,34</td>
<td>2,18</td>
</tr>
<tr>
<td>PERC</td>
<td>0,0</td>
<td>0,0</td>
<td>0,05</td>
<td>0,0</td>
<td>0,01</td>
<td>0,0</td>
</tr>
</tbody>
</table>
(iii) Coefficient of efficiency (MCE) - Garrick, Cunnane and Nash (1978) version, replaced by ordinary coefficient of efficiency (CE) (Aitken, 1973) during the verification tests.

(iv) Difference between coefficient of determination and coefficient of efficiency - degree of systematic error (DSE).

(v) Residual mass curve coefficient (RMCC).

(vi) Relative mean persistence (RMP).

(vii) Percentage error in range of residual mass curve (\(AR_3\)).

(viii) Percentage error in index of seasonal variability (\(AS\)).

(ix) Percentage error in maximum deficient flow period (\(AMD\)).

(b) Overall daily fit

(i) Percentage error in daily variance (\(AV\)).

(ii) Coefficient of efficiency (DCE) (Garrick, Cunnane and Nash, 1978).

(iii) Coefficient of efficiency of logarithms (DCEL).

(iv) Coefficient of efficiency of daily flow duration curves (CEDFC).

(v) Relative sum of absolute errors (RAE).

(c) Peak daily flow/month (for months with peaks > 2 mean daily flow)

(i) Percentage error in mean peak daily flow/month (\(AMPF\)).

(ii) Coefficient of efficiency (CE).

(iii) Percentage error in maximum daily peak (\(AMD\)).

(d) Low flow (all non-zero daily flows < 2 mean daily flow)

(i) Percentage error in mean of low flows (\(MLF\)).

(ii) Coefficient of efficiency (CE).

(iii) Percentage error in mean deficient flow period (\(MDPF\)) - a low flow index based on continuous periods of daily flows less than 2 mean daily flow.

Most of the above criteria were also used in section 5.4 for the selection of the most robust objective functions. The reader should
note, however, that there are important differences in the overall selection of criteria. These changes were thought to be necessary to expand the range of streamflow characteristics under consideration and also to eliminate a small degree of duplication (where two different criteria consistently produced similar rankings).

7.3.4 Presentation of results

The results of the model intercomparison are mostly presented in tabular form and appear as Tables 7.9 to 7.29. For each catchment four performance tests were executed, two based on the calibration on years 1976-1980 and two based on the calibration on years 1976-1978 and 1980. Each pair of tests consists of a series of goodness-of-fit tests on each of the full data period, 1976-1981, and the verification year, 1981. The performances of the full range of models are therefore reported in four tables per catchment, e.g. Tables 7.9, 7.16, 7.20 and 7.24 for catchment A.

For each goodness-of-fit criterion used the performances of the seven models (monthly flows) or the five models (daily flows) are ranked from best to worst on a scale of 1 to 7 or 1 to 5 as the case may be, e.g. Tables 7.12, 7.13, 7.14. By summing the rankings for each model in each of the monthly and daily flow categories as well as the two categories combined, overall performance in each category as well as the total performance of each model can be assessed relative to the other models in the case of each catchment. If these total rankings per catchment are now added together in each category then the combined overall performances over the three catchments can be summarized in the case of each of the four individual performance tests. For example, Table 7.15 summarizes the result of the performance test on the full data period based on the 1976-1980 calibration. The integrated results for all models, all three catchments and all four performance tests are listed in Table 7.29.

A visual impression of the general performance of the models can be gained from selected scattergrams of observed and simulated monthly flows depicted in Figs. 7.4 to 7.10. All values less than 1000 m3 are plotted as 1000 m3. The ability of the hourly and daily models to
reproduce the daily flows in catchment A during the two wettest months on record, July and August 1979, can be gauged from the plots in Figs. 7.11 to 7.15. The general ability of the models to reproduce daily flows in catchment A is illustrated in Figs. 7.16 and 7.17 by a variation on the flow duration curve concept. This method of representation was chosen because a conventional flow duration plot does not allow enough distinction between individual curves, as Fig. 7.18 clearly illustrates.

7.4 COMPARISON OF MODEL PERFORMANCE: CALIBRATION PERIOD 1976-1980

7.4.1 General observations

Before proceeding with the actual model intercomparison it is necessary to make a few general observations about the modelling results. The values obtained for the goodness-of-fit criteria in the performance test reported in Tables 7.9 to 7.11 show that over the full data period all models could attain a high level of one-to-one fit on monthly flows on catchment A and B. Furthermore, systematic errors in simulated monthly flows were fairly small for these two catchments. All models produced worse results on catchment E than on the other two catchments. In general, the statistics of daily flows were reproduced fairly well, but there was a clear tendency towards under-prediction of peak flows and over-prediction of low flows. In the latter case the simple model DALT was an exception, with consistent under-estimation of low flows.

As with the manual calibration model tests reported in section 7.2 all models showed a serious divergence in values of goodness-of-fit criteria moving from the calibration to the verification period - Tables 7.16 to 7.18. Of the verification tests run on the three catchments those on catchment E produced the worst results for all the models. The generally inadequate performance of all the models during the verification period after both a manual calibration (section 7.2) and a semi-automatic calibration provides some evidence of model inadequacy. The two single-storage models DALT and DALM consistently and seriously under-estimated flow, while the five multiple-storage models consistently over-estimated flow during the verification year. The contradicting nature of these errors implies that erroneous data cannot seriously be considered as an explanation for the
Figure 7.4 Scattergram: model FORD (catchment A)
Figure 7.5 Scattergram: model PITH (catchment A)
Figure 7.6 Scattergram: model PITR (catchment A)
Figure 7.7 Scattergram: model PITD (catchment A)
Figure 7.8 Scattergram: model DALT (catchment A)

DALT
Monthly Streamflow ($10^2 m^3$)

Coefficient Determination 0.989
Coefficient Efficiency 0.977

OBSERVED

S. M I. U. L A T E D
Figure 7.9 Scattergram: model PITM (catchment A)
Figure 7.10 Scattergram: model DALM (catchment A)
Figure 7.11 Observed and simulated daily flows:
model FORD
Figure 7.12 Observed and simulated daily flows: model PITH
Figure 7.13 Observed and simulated daily flows:
model PITR
Figure 7.14 Observed and simulated daily flows:
model PITD
Figure 7.15 Observed and simulated daily flows:
model DALT
Figure 7.16 Errors in daily flow duration curve: hourly models
Figure 7.17 Errors in daily flow duration curve: daily models
Figure 7.18 Observed and simulated daily flow duration curves: daily models
aforementioned model divergence. It is more likely that the problem lies with a combination of imperfect model structure and "biased" calibration. The major runoff events of July and August 1979 dominated the calibration period to such an extent that a model not calibrated to reproduce flow fairly accurately during these two months had little chance of returning reasonable goodness-of-fit statistics on the full data period. Consequently, simulation of smallish events, such as those of 1981, was inevitably laden with a high degree of uncertainty.

7.4.2 Comparison of the hourly models

The combined results, Tables 7.15 and 7.19, of the two performance tests relevant to this section show that in simulating both monthly and daily flow series FORD consistently gave better results than its hourly counterparts PITH and PITR. Inspection of the values obtained for the goodness-of-fit criteria (Tables 7.9 to 7.11) reveals that the actual difference in performance between PITH and FORD for the full data period simulation was slight. However, the performance of model FORD during the verification period (Tables 7.16 to 7.19) was notably superior to that of PITH and PITR. In general, the superiority of model FORD was more prominent in the reproduction of the monthly flow statistics than in the reproduction of the daily flow statistics. There is little to choose between the general performances of PITH and PITR.

7.4.3 Comparison of the daily models

The rankings listed in Tables 7.15 and 7.19 show that the overall performance of model PITH is far superior to that of its daily counterpart DALT. This is especially the case in catchments A and B. However, model DALT attained much lower overall rankings than PITH in catchment E. In the case of the verification test (Table 7.19) these lower rankings are misleading for the following reasons. Model DALT produced almost zero flow for the twelve month period, as the values in Tables 7.16 to 7.18 clearly show. As -100% is a natural lower limit for negative simulation errors a model producing near-zero flow may produce goodness-of-fit statistics that seem "better" than those
produced by a model that over-predicts flow. This is possible because there is no natural upper limit to positive errors, i.e. errors well in excess of +100% are always possible whereas errors more negative than -100% are impossible. Comparison of model performance based on absolute errors will therefore usually favour the model that produces non-zero flows.

Inspection of the actual values calculated for the goodness-of-fit criteria shown in Tables 7.9 to 7.11 discloses that there are really only small differences between the performances of the two models seen over the whole data period. However, a consistent pattern, even in catchment E, is that daily flows are generally more accurately simulated by model PITD.

1.4.1 Comparison of monthly models

The impression given by the total rankings in Tables 7.15 and 7.16 of the overall performance of monthly models PITM and DALM is that the performance of the simple model is slightly superior to that of the more complex counterpart. This is a misleading impression, as scrutiny of the actual goodness-of-fit values in Tables 7.9 to 7.11 will reveal. During the performance test on the full data period the two models gave comparable results. However, during the verification period model DALM produced near-zero flows in two catchments whereas PITM both under- and over-estimated flows. To a certain extent, the argument offered in the preceding section regarding the performance of model DALM is valid here, namely that the overall statistics favour the model that seriously under-predicts. An objective comparison, while keeping the above arguments in mind, must lead to the conclusion that there is little to choose between the two models in terms of the two performance tests under consideration.

1.4.2 Comparison of daily with hourly models

The combined total rankings listed in Tables 7.15 and 7.19 show that daily model PITD and hourly model FORD produced by far the best overall results of the five models under consideration. No clear pattern of increasing accuracy of simulation with increasing
complexity of model input requirements is discernible, since the two hourly models PITH and PITR gave the worst results. In both performance tests model PITD achieved the best rankings for simulation of daily flows. Unfortunately, no clear evidence was forthcoming that the simple model DALM was definitely competitive with the more complex models in the reproduction of daily flows.

7.4.6 Comparison of monthly with daily and hourly models

In terms of reproduction of monthly flows model FORD was by far superior to the six other models, as the total rankings in Tables 7.15 and 7.19 clearly show. Although the simple model DALM appears to deserve a second place, its low ranking in the verification test is partly due to the effects of near-zero flows in catchments A and E. However, the good performance by DALM during the "full-period" test is encouraging. A representative ranking of the seven models based on general performance (monthly flows) would be: FORD, PITD, PITM, DALM, PITH and PITR. No clear tendency of increasing superiority of performance with increasing complexity of model input requirements is discernible, but the foregoing model ranking suggests some evidence that better performances may be associated with higher structural complexity.

7.5 COMPARISON OF MODEL PERFORMANCE: CALIBRATION PERIOD 1976 to 1978 and 1980

7.5.1 General observations

The calibration sample consisting of data for the years 1976, 1977, 1978 and 1980 covers a range of small to medium flow events caused by a variety of different storm types, but excludes the extreme events of July and August 1979. This exclusion implies a less than optimum calibration procedure but does allow an assessment of model robustness if verification tests are based on a data set that includes such extreme events. Alternatively, if model verification is based on a data set fairly similar to the calibration sample, such as is available for calendar year 1991, it may be possible to explore the reasons for the poor verification performances reported in section 7.4.
Table 7.9

Results of goodness-of-fit tests *1 for the combined calibration and verification periods *2: catchment A

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δMAR(%)</td>
<td>-0.4</td>
<td>1.5</td>
<td>1.5</td>
<td>-5.8</td>
<td>-6.7</td>
<td>-7.9</td>
<td></td>
</tr>
<tr>
<td>δVAR(%)</td>
<td>1.0</td>
<td>2.1</td>
<td>2.6</td>
<td>0.8</td>
<td>-0.1</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>NCE</td>
<td>0.957</td>
<td>0.965</td>
<td>0.956</td>
<td>0.997</td>
<td>0.967</td>
<td>0.956</td>
<td>0.974</td>
</tr>
<tr>
<td>DSE</td>
<td>0.001</td>
<td>0.014</td>
<td>0.018</td>
<td>0.0</td>
<td>0.012</td>
<td>0.002</td>
<td>0.009</td>
</tr>
<tr>
<td>RMCC</td>
<td>0.998</td>
<td>0.929</td>
<td>0.913</td>
<td>0.997</td>
<td>0.967</td>
<td>0.951</td>
<td>0.988</td>
</tr>
<tr>
<td>RMP(%)</td>
<td>0.6</td>
<td>1.7</td>
<td>1.6</td>
<td>0.4</td>
<td>0.5</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>δR0(%)</td>
<td>4.3</td>
<td>11</td>
<td>12</td>
<td>-3.7</td>
<td>9.4</td>
<td>-10</td>
<td>2.7</td>
</tr>
<tr>
<td>δI5(%)</td>
<td>-7.8</td>
<td>2.1</td>
<td>13</td>
<td>-2.4</td>
<td>21</td>
<td>-3.8</td>
<td>21</td>
</tr>
<tr>
<td>δMOFP(%)</td>
<td>-29</td>
<td>-10</td>
<td>-7.1</td>
<td>-36</td>
<td>39</td>
<td>0.0</td>
<td>39</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δVAR(%)</td>
<td>-19</td>
<td>-6.9</td>
<td>-6.8</td>
<td>-7.5</td>
<td>-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCE</td>
<td>0.855</td>
<td>0.932</td>
<td>0.902</td>
<td>0.908</td>
<td>0.675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCEL</td>
<td>-0.47</td>
<td>-2.0</td>
<td>-2.3</td>
<td>0.56</td>
<td>-0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFDC</td>
<td>0.202</td>
<td>0.938</td>
<td>0.865</td>
<td>0.968</td>
<td>0.718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE(%)</td>
<td>57</td>
<td>43</td>
<td>48</td>
<td>40</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δMPF(%)</td>
<td>-22</td>
<td>-12</td>
<td>-18</td>
<td>-8.3</td>
<td>-41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>0.857</td>
<td>0.953</td>
<td>0.948</td>
<td>0.959</td>
<td>0.825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>-34</td>
<td>-9.6</td>
<td>-8.3</td>
<td>-20</td>
<td>-39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2 mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δMLF(%)</td>
<td>246</td>
<td>91</td>
<td>34</td>
<td>3.6</td>
<td>-49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-5.8</td>
<td>-29</td>
<td>-12</td>
<td>-3.2</td>
<td>-0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δADF(%)</td>
<td>125</td>
<td>33</td>
<td>79</td>
<td>-30</td>
<td>170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 See Appendix A for definitions
*2 1976-1981, inclusive
Table 7.10

Results of goodness-of-fit tests for the combined calibration and verification periods: catchment B.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORO</th>
<th>PITH</th>
<th>PIR0</th>
<th>PITO</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMAR(%)</td>
<td>-2.1</td>
<td>9.1</td>
<td>2.6</td>
<td>4.5</td>
<td>-6.1</td>
<td>-0.9</td>
<td>-6.9</td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>17</td>
<td>16</td>
<td>24</td>
<td>11</td>
<td>43</td>
<td>-8.0</td>
<td>30.6</td>
</tr>
<tr>
<td>MCE</td>
<td>0.910</td>
<td>0.880</td>
<td>0.887</td>
<td>0.975</td>
<td>0.982</td>
<td>0.927</td>
<td>0.890</td>
</tr>
<tr>
<td>MSE</td>
<td>0.013</td>
<td>0.015</td>
<td>0.023</td>
<td>0.004</td>
<td>0.052</td>
<td>0.0</td>
<td>0.031</td>
</tr>
<tr>
<td>RMCC</td>
<td>0.990</td>
<td>0.978</td>
<td>0.944</td>
<td>0.933</td>
<td>0.937</td>
<td>0.945</td>
<td>0.994</td>
</tr>
<tr>
<td>RMP(%)</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>5.7</td>
<td>7.5</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>ΔR0(%)</td>
<td>-4.5</td>
<td>2.3</td>
<td>9.1</td>
<td>2.4</td>
<td>11</td>
<td>-9.4</td>
<td>1.9</td>
</tr>
<tr>
<td>ΔIg(%)</td>
<td>8.1</td>
<td>-8.5</td>
<td>7.5</td>
<td>-3.3</td>
<td>30</td>
<td>-11</td>
<td>25</td>
</tr>
<tr>
<td>ΔMDP</td>
<td>0.0</td>
<td>-14</td>
<td>0.0</td>
<td>-11</td>
<td>50</td>
<td>-39</td>
<td>3.6</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>8.6</td>
<td>-15</td>
<td>-20</td>
<td>-2.4</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>0.941</td>
<td>0.844</td>
<td>0.809</td>
<td>0.896</td>
<td>0.653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSE</td>
<td>-1.08</td>
<td>-20</td>
<td>-44</td>
<td>0.126</td>
<td>-0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMCC</td>
<td>0.866</td>
<td>0.952</td>
<td>0.981</td>
<td>0.933</td>
<td>0.721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE(%)</td>
<td>48</td>
<td>55</td>
<td>58</td>
<td>38</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMDF(%)</td>
<td>-16</td>
<td>-3.8</td>
<td>-21</td>
<td>-8.8</td>
<td>-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>0.970</td>
<td>0.842</td>
<td>0.810</td>
<td>0.900</td>
<td>0.919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMDP(%)</td>
<td>4.4</td>
<td>-30</td>
<td>-35</td>
<td>-7.8</td>
<td>-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2, mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMLF(%)</td>
<td>45</td>
<td>143</td>
<td>107</td>
<td>125</td>
<td>-63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-11</td>
<td>-53</td>
<td>-17</td>
<td>-12</td>
<td>-2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔADF(%)</td>
<td>31</td>
<td>13</td>
<td>112</td>
<td>-1.2</td>
<td>187</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.11

Results of goodness-of-fit tests for the combined calibration and verification periods: catchment E.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMAR(%)</td>
<td>9,9</td>
<td>2,2</td>
<td>9,9</td>
<td>9,9</td>
<td>-5,8</td>
<td>-3,8</td>
<td>-5,2</td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>27</td>
<td>-15</td>
<td>-12</td>
<td>-19</td>
<td>15</td>
<td>-25</td>
<td>46</td>
</tr>
<tr>
<td>MCE</td>
<td>0,967</td>
<td>0,729</td>
<td>0,538</td>
<td>0,877</td>
<td>0,906</td>
<td>0,825</td>
<td>0,498</td>
</tr>
<tr>
<td>DSE</td>
<td>0,018</td>
<td>0,002</td>
<td>0,022</td>
<td>0,002</td>
<td>0,012</td>
<td>0,003</td>
<td>0,137</td>
</tr>
<tr>
<td>RMSCC</td>
<td>0,958</td>
<td>0,930</td>
<td>0,853</td>
<td>0,983</td>
<td>0,997</td>
<td>0,896</td>
<td>0,968</td>
</tr>
<tr>
<td>RMP(%)</td>
<td>14</td>
<td>23</td>
<td>35</td>
<td>13</td>
<td>4,8</td>
<td>19</td>
<td>8,0</td>
</tr>
<tr>
<td>ΔR₈(%)</td>
<td>7,8</td>
<td>-13</td>
<td>-13</td>
<td>-9,5</td>
<td>-2,4</td>
<td>-15</td>
<td>-3,3</td>
</tr>
<tr>
<td>ΔL₅(%)</td>
<td>-2,4</td>
<td>-23</td>
<td>-29</td>
<td>-25</td>
<td>11</td>
<td>-15</td>
<td>5,1</td>
</tr>
<tr>
<td>ΔMDFP(%)</td>
<td>-10</td>
<td>-5,1</td>
<td>-5,1</td>
<td>-36</td>
<td>0,0</td>
<td>-2,5</td>
<td>0,0</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>-11</td>
<td>-17</td>
<td>-22</td>
<td>-18</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>0,908</td>
<td>0,684</td>
<td>0,524</td>
<td>0,836</td>
<td>0,694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCEL</td>
<td>-6,4</td>
<td>-38</td>
<td>-39</td>
<td>-0,73</td>
<td>-0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEPDC</td>
<td>0,889</td>
<td>0,974</td>
<td>0,841</td>
<td>0,319</td>
<td>0,864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE(%)</td>
<td>48</td>
<td>71</td>
<td>90</td>
<td>52</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔHFP(%)</td>
<td>-21</td>
<td>-9,1</td>
<td>-13</td>
<td>-3,6</td>
<td>-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>0,952</td>
<td>0,887</td>
<td>0,704</td>
<td>0,971</td>
<td>0,930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMDP(%)</td>
<td>-8,1</td>
<td>1,2</td>
<td>5,5</td>
<td>-2,4</td>
<td>4,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2 mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMF(%)</td>
<td>179</td>
<td>518</td>
<td>826</td>
<td>481</td>
<td>-1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-24</td>
<td>-468</td>
<td>-999</td>
<td>-111</td>
<td>-6,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔADFP(%)</td>
<td>14</td>
<td>-11</td>
<td>-12</td>
<td>-60</td>
<td>61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.12

Ranking* of models in terms of performance during the combined calibration and verification periods: catchment A

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITO</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>5(4)</td>
<td>7(5)</td>
<td>1(1)</td>
<td>1(1)</td>
<td>3(3)</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>VAR</td>
<td>2(2)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>1(1)</td>
<td>5(3)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>MCE</td>
<td>5(4)</td>
<td>4(3)</td>
<td>6(5)</td>
<td>1(1)</td>
<td>3(2)</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>DSE</td>
<td>2(2)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>1(1)</td>
<td>5(3)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>RMCC</td>
<td>3(2)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>2(1)</td>
<td>4(3)</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>RMP</td>
<td>3(3)</td>
<td>7(5)</td>
<td>6(4)</td>
<td>1(1)</td>
<td>2(2)</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Ra</td>
<td>3(2)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>2(1)</td>
<td>4(3)</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Is</td>
<td>4(3)</td>
<td>1(1)</td>
<td>5(4)</td>
<td>2(2)</td>
<td>6(5)</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>MDFP</td>
<td>4(3)</td>
<td>3(2)</td>
<td>2(1)</td>
<td>5(4)</td>
<td>6(5)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Sub-total</td>
<td>31(25)</td>
<td>46(32)</td>
<td>48(35)</td>
<td>16(13)</td>
<td>38(29)</td>
<td>35</td>
<td>34</td>
</tr>
</tbody>
</table>

All daily flows							
VAR	4	2	1	3	5		
DCE	4	1	3	2	5		
DCEL	3	4	5	1	2		
CEFDC	5	2	3	1	4		
RAE	4	2	3	1	5		

Peak daily flow/month							
MDFP	4	2	3	1	6		
CE	4	2	3	1	5		
MDFP	4	2	1	3	5		

Low flows (<2. mean daily flow)							
MDFP	5	4	2	1	3		
CE	3	5	4	2	1		
ADFP	4	2	3	1	5		
Sub-total	44	28	31	17	45		
TOTAL	69	60	66	30	74		

*Rankings in brackets for hourly and daily models only.
Table 7.13

Ranking of models in terms of performance during the combined
calibration and verification periods: catchment B

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>HITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>2(1)</td>
<td>7(5)</td>
<td>3(2)</td>
<td>4(3)</td>
<td>5(4)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>VAR</td>
<td>4(3)</td>
<td>3(2)</td>
<td>5(4)</td>
<td>2(1)</td>
<td>7(5)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>NSC</td>
<td>3(2)</td>
<td>7(5)</td>
<td>5(3)</td>
<td>1(1)</td>
<td>6(4)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>DSE</td>
<td>3(2)</td>
<td>4(3)</td>
<td>5(4)</td>
<td>2(1)</td>
<td>7(5)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>RMCC</td>
<td>3(2)</td>
<td>4(3)</td>
<td>6(4)</td>
<td>2(1)</td>
<td>7(5)</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>RMP</td>
<td>7(5)</td>
<td>4(2)</td>
<td>5(4)</td>
<td>1(1)</td>
<td>2(2)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Pd</td>
<td>4(3)</td>
<td>2(1)</td>
<td>5(4)</td>
<td>3(2)</td>
<td>7(5)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Is</td>
<td>3(3)</td>
<td>4(4)</td>
<td>2(2)</td>
<td>1(1)</td>
<td>7(5)</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>MDFP</td>
<td>1(1)</td>
<td>5(4)</td>
<td>1(1)</td>
<td>6(3)</td>
<td>7(5)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Sub-total</td>
<td>30(22)</td>
<td>40(30)</td>
<td>37(28)</td>
<td>20(14)</td>
<td>55(40)</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSC</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERDC</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPF</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPD</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2, mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLE</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADPP</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>22</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>47</td>
<td>67</td>
<td>72</td>
<td>36</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Rankings in brackets for hourly and daily models only.
Table 7.14

Ranking* of models in terms of performance during the combined calibration and verification periods: catchment E

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>5(3)</td>
<td>1(1)</td>
<td>5(3)</td>
<td>5(3)</td>
<td>4(2)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>VAR</td>
<td>2(2)</td>
<td>2(2)</td>
<td>1(1)</td>
<td>4(4)</td>
<td>2(2)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>MCE</td>
<td>1(1)</td>
<td>5(4)</td>
<td>6(3)</td>
<td>3(3)</td>
<td>2(2)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>DSE</td>
<td>5(4)</td>
<td>1(1)</td>
<td>6(3)</td>
<td>1(1)</td>
<td>4(3)</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>RMCC</td>
<td>2(2)</td>
<td>5(4)</td>
<td>7(5)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>RMP</td>
<td>4(3)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>3(2)</td>
<td>1(1)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Ra</td>
<td>3(2)</td>
<td>5(4)</td>
<td>5(4)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Is</td>
<td>1(1)</td>
<td>5(3)</td>
<td>7(5)</td>
<td>6(4)</td>
<td>3(2)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>NDFP</td>
<td>6(4)</td>
<td>4(2)</td>
<td>4(2)</td>
<td>7(5)</td>
<td>1(1)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sub-total</td>
<td>33(25)</td>
<td>34(25)</td>
<td>48(25)</td>
<td>37(28)</td>
<td>19(15)</td>
<td>39</td>
<td>34</td>
</tr>
</tbody>
</table>

All monthly flows

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>5(3)</td>
<td>1(1)</td>
<td>5(3)</td>
<td>5(3)</td>
<td>4(2)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>VAR</td>
<td>2(2)</td>
<td>2(2)</td>
<td>1(1)</td>
<td>4(4)</td>
<td>2(2)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>MCE</td>
<td>1(1)</td>
<td>5(4)</td>
<td>6(3)</td>
<td>3(3)</td>
<td>2(2)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>DSE</td>
<td>5(4)</td>
<td>1(1)</td>
<td>6(3)</td>
<td>1(1)</td>
<td>4(3)</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>RMCC</td>
<td>2(2)</td>
<td>5(4)</td>
<td>7(5)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>RMP</td>
<td>4(3)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>3(2)</td>
<td>1(1)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Ra</td>
<td>3(2)</td>
<td>5(4)</td>
<td>5(4)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Is</td>
<td>1(1)</td>
<td>5(3)</td>
<td>7(5)</td>
<td>6(4)</td>
<td>3(2)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>NDFP</td>
<td>6(4)</td>
<td>4(2)</td>
<td>4(2)</td>
<td>7(5)</td>
<td>1(1)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sub-total</td>
<td>33(25)</td>
<td>34(25)</td>
<td>48(25)</td>
<td>37(28)</td>
<td>19(15)</td>
<td>39</td>
<td>34</td>
</tr>
</tbody>
</table>

All daily flows

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>5(3)</td>
<td>1(1)</td>
<td>5(3)</td>
<td>5(3)</td>
<td>4(2)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>VAR</td>
<td>2(2)</td>
<td>2(2)</td>
<td>1(1)</td>
<td>4(4)</td>
<td>2(2)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>MCE</td>
<td>1(1)</td>
<td>5(4)</td>
<td>6(3)</td>
<td>3(3)</td>
<td>2(2)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>DSE</td>
<td>5(4)</td>
<td>1(1)</td>
<td>6(3)</td>
<td>1(1)</td>
<td>4(3)</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>RMCC</td>
<td>2(2)</td>
<td>5(4)</td>
<td>7(5)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>RMP</td>
<td>4(3)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>3(2)</td>
<td>1(1)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Ra</td>
<td>3(2)</td>
<td>5(4)</td>
<td>5(4)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Is</td>
<td>1(1)</td>
<td>5(3)</td>
<td>7(5)</td>
<td>6(4)</td>
<td>3(2)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>NDFP</td>
<td>6(4)</td>
<td>4(2)</td>
<td>4(2)</td>
<td>7(5)</td>
<td>1(1)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sub-total</td>
<td>33(25)</td>
<td>34(25)</td>
<td>48(25)</td>
<td>37(28)</td>
<td>19(15)</td>
<td>39</td>
<td>34</td>
</tr>
</tbody>
</table>

Peak daily flow/month

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>5(3)</td>
<td>1(1)</td>
<td>5(3)</td>
<td>5(3)</td>
<td>4(2)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>VAR</td>
<td>2(2)</td>
<td>2(2)</td>
<td>1(1)</td>
<td>4(4)</td>
<td>2(2)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>MCE</td>
<td>1(1)</td>
<td>5(4)</td>
<td>6(3)</td>
<td>3(3)</td>
<td>2(2)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>DSE</td>
<td>5(4)</td>
<td>1(1)</td>
<td>6(3)</td>
<td>1(1)</td>
<td>4(3)</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>RMCC</td>
<td>2(2)</td>
<td>5(4)</td>
<td>7(5)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>RMP</td>
<td>4(3)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>3(2)</td>
<td>1(1)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Ra</td>
<td>3(2)</td>
<td>5(4)</td>
<td>5(4)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Is</td>
<td>1(1)</td>
<td>5(3)</td>
<td>7(5)</td>
<td>6(4)</td>
<td>3(2)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>NDFP</td>
<td>6(4)</td>
<td>4(2)</td>
<td>4(2)</td>
<td>7(5)</td>
<td>1(1)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sub-total</td>
<td>33(25)</td>
<td>34(25)</td>
<td>48(25)</td>
<td>37(28)</td>
<td>19(15)</td>
<td>39</td>
<td>34</td>
</tr>
</tbody>
</table>

Low flows (<2. mean daily flow)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>5(3)</td>
<td>1(1)</td>
<td>5(3)</td>
<td>5(3)</td>
<td>4(2)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>VAR</td>
<td>2(2)</td>
<td>2(2)</td>
<td>1(1)</td>
<td>4(4)</td>
<td>2(2)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>MCE</td>
<td>1(1)</td>
<td>5(4)</td>
<td>6(3)</td>
<td>3(3)</td>
<td>2(2)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>DSE</td>
<td>5(4)</td>
<td>1(1)</td>
<td>6(3)</td>
<td>1(1)</td>
<td>4(3)</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>RMCC</td>
<td>2(2)</td>
<td>5(4)</td>
<td>7(5)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>RMP</td>
<td>4(3)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>3(2)</td>
<td>1(1)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Ra</td>
<td>3(2)</td>
<td>5(4)</td>
<td>5(4)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Is</td>
<td>1(1)</td>
<td>5(3)</td>
<td>7(5)</td>
<td>6(4)</td>
<td>3(2)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>NDFP</td>
<td>6(4)</td>
<td>4(2)</td>
<td>4(2)</td>
<td>7(5)</td>
<td>1(1)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sub-total</td>
<td>33(25)</td>
<td>34(25)</td>
<td>48(25)</td>
<td>37(28)</td>
<td>19(15)</td>
<td>39</td>
<td>34</td>
</tr>
</tbody>
</table>

*Rankings in brackets for hourly and daily models only.
Table 7.14

Ranking* of models in terms of performance during the combined calibration and verification periods: catchment E

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FOAD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAR</td>
<td>5(3)</td>
<td>1(1)</td>
<td>5(3)</td>
<td>5(3)</td>
<td>4(2)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>VAR</td>
<td>6(6)</td>
<td>2(2)</td>
<td>1(1)</td>
<td>4(4)</td>
<td>2(2)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>MCE</td>
<td>1(1)</td>
<td>5(4)</td>
<td>6(5)</td>
<td>3(3)</td>
<td>2(2)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>DSE</td>
<td>5(4)</td>
<td>1(1)</td>
<td>6(5)</td>
<td>1(1)</td>
<td>4(3)</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>RHCC</td>
<td>2(2)</td>
<td>5(4)</td>
<td>7(5)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>RHP</td>
<td>4(3)</td>
<td>6(4)</td>
<td>7(5)</td>
<td>3(2)</td>
<td>1(1)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Rn</td>
<td>3(2)</td>
<td>5(4)</td>
<td>5(4)</td>
<td>4(3)</td>
<td>1(1)</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Is</td>
<td>1(1)</td>
<td>5(3)</td>
<td>7(5)</td>
<td>6(4)</td>
<td>3(2)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>NDFP</td>
<td>6(4)</td>
<td>4(2)</td>
<td>4(2)</td>
<td>7(5)</td>
<td>1(1)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sub-total</td>
<td>33(25)</td>
<td>34(25)</td>
<td>48(35)</td>
<td>37(28)</td>
<td>19(15)</td>
<td>39</td>
<td>34</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCEL</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEdC</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPF</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDFP</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2. mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFL</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADFP</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td>28</td>
<td>32</td>
<td>28</td>
<td>26</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>63</td>
<td>57</td>
<td>56</td>
<td>41</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Rankings in brackets for hourly and daily models only.
Table 7.15

Rankings*1 of overall performance during the combined calibration and verification periods*2 : all three catchments.

<table>
<thead>
<tr>
<th></th>
<th>FORD</th>
<th>PITH</th>
<th>PITD</th>
<th>PITM</th>
<th>DALI</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly A</td>
<td>31(25)</td>
<td>46(32)</td>
<td>48(36)</td>
<td>16(13)</td>
<td>38(29)</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td>Sub-totals E</td>
<td>30(22)</td>
<td>40(30)</td>
<td>37(28)</td>
<td>20(14)</td>
<td>55(40)</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>33(25)</td>
<td>34(25)</td>
<td>48(35)</td>
<td>37(28)</td>
<td>19(15)</td>
<td>39</td>
<td>34</td>
</tr>
<tr>
<td>Daily</td>
<td>44</td>
<td>28</td>
<td>31</td>
<td>17</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-totals E</td>
<td>25</td>
<td>37</td>
<td>44</td>
<td>22</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>37</td>
<td>48</td>
<td>28</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined total</td>
<td>94(72)</td>
<td>120(87)</td>
<td>133(98)</td>
<td>73(55)</td>
<td>112(84)</td>
<td>106</td>
<td>104</td>
</tr>
<tr>
<td>Monthly rank.</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Daily rank.</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined rank.</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Rankings in brackets for hourly and daily models only.
Table 7.16

Results of goodness-of-fit tests for the verification period: catchment A

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITO</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>13</td>
<td>72</td>
<td>33</td>
<td>19</td>
<td>-98</td>
<td>-30</td>
<td>-91</td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>-34</td>
<td>336</td>
<td>167</td>
<td>140</td>
<td>-100</td>
<td>31</td>
<td>-97</td>
</tr>
<tr>
<td>CE</td>
<td>-0.42</td>
<td>-2.13</td>
<td>-0.95</td>
<td>-0.01</td>
<td>-0.25</td>
<td>-0.35</td>
<td>-0.12</td>
</tr>
<tr>
<td>DSE</td>
<td>0.45</td>
<td>2.46</td>
<td>1.24</td>
<td>0.79</td>
<td>0.44</td>
<td>0.64</td>
<td>0.31</td>
</tr>
<tr>
<td>RMCC</td>
<td>-6.0</td>
<td>-20.6</td>
<td>-10.9</td>
<td>-1.50</td>
<td>-0.78</td>
<td>-7.3</td>
<td>-1.1</td>
</tr>
<tr>
<td>RMP(%)</td>
<td>17</td>
<td>27</td>
<td>24</td>
<td>3.4</td>
<td>30</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>ΔR_b(%)</td>
<td>23</td>
<td>167</td>
<td></td>
<td>68</td>
<td>-95</td>
<td>36</td>
<td>-78</td>
</tr>
<tr>
<td>ΔI_b(%)</td>
<td>8.6</td>
<td>73</td>
<td></td>
<td>-5.0</td>
<td>104</td>
<td>93</td>
<td>112</td>
</tr>
<tr>
<td>ΔHDFP(%)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>67</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>-84</td>
<td>659</td>
<td>437</td>
<td>128</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>-0.05</td>
<td>-4.55</td>
<td>-2.86</td>
<td>-0.10</td>
<td>-0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCFL</td>
<td>-3.2</td>
<td>-11.3</td>
<td>-10.7</td>
<td>0.41</td>
<td>-3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEFP</td>
<td>-1.5</td>
<td>0.543</td>
<td>0.388</td>
<td>0.430</td>
<td>-0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAEP(%)</td>
<td>162</td>
<td>162</td>
<td>124</td>
<td>113</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMF(%)</td>
<td>-84</td>
<td>147</td>
<td>116</td>
<td>49</td>
<td>-99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔDFP(%)</td>
<td>-97</td>
<td>47</td>
<td>30</td>
<td>-19</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (< 2.1% of daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMLF(%)</td>
<td>704</td>
<td>82</td>
<td>-20</td>
<td>-29</td>
<td>-94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta ADFP$(%)</td>
<td>41</td>
<td>106</td>
<td>116</td>
<td>-15</td>
<td>208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.17

Results of goodness-of-fit tests for the verification period: catchment B

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORO</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σMAR(%)</td>
<td>57</td>
<td>203</td>
<td>26</td>
<td>84</td>
<td>-97</td>
<td>53</td>
<td>-63</td>
</tr>
<tr>
<td>σVAR(%)</td>
<td>98</td>
<td>2061</td>
<td>394</td>
<td>385</td>
<td>-100</td>
<td>596</td>
<td>-37</td>
</tr>
<tr>
<td>CE</td>
<td>-0.67</td>
<td>-15.8</td>
<td>-0.78</td>
<td>-1.62</td>
<td>-0.33</td>
<td>-4.8</td>
<td>-0.04</td>
</tr>
<tr>
<td>DSE</td>
<td>0.93</td>
<td>16.4</td>
<td>1.42</td>
<td>2.25</td>
<td>0.56</td>
<td>5.0</td>
<td>0.26</td>
</tr>
<tr>
<td>RHCC</td>
<td>-9.1</td>
<td>-74</td>
<td>-6.8</td>
<td>-5.6</td>
<td>-1.6</td>
<td>-32</td>
<td>-4.9</td>
</tr>
<tr>
<td>RHDP(%)</td>
<td>290</td>
<td>535</td>
<td>181</td>
<td>19</td>
<td>215</td>
<td>486</td>
<td>259</td>
</tr>
<tr>
<td>σRq(%)</td>
<td>50</td>
<td>447</td>
<td>128</td>
<td>106</td>
<td>-93</td>
<td>208</td>
<td>-18</td>
</tr>
<tr>
<td>σI5(1)</td>
<td>-4.7</td>
<td>81</td>
<td>81</td>
<td>12</td>
<td>114</td>
<td>101</td>
<td>120</td>
</tr>
<tr>
<td>σNDFP(%)</td>
<td>-33</td>
<td>50</td>
<td>50</td>
<td>0.0</td>
<td>67</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σVAR(%)</td>
<td>-30</td>
<td>1605</td>
<td>273</td>
<td>161</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>-0.11</td>
<td>-17</td>
<td>-3.6</td>
<td>-0.83</td>
<td>-0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCEL</td>
<td>-4.5</td>
<td>-138</td>
<td>-370</td>
<td>1.68</td>
<td>-4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEFDCC</td>
<td>0.665</td>
<td>-0.453</td>
<td>0.575</td>
<td>0.508</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE(%)</td>
<td>175</td>
<td>356</td>
<td>194</td>
<td>177</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σMPF(%)</td>
<td>-44</td>
<td>169</td>
<td>29</td>
<td>9.1</td>
<td>-99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σMDP(%)</td>
<td>-69</td>
<td>407</td>
<td>174</td>
<td>-59</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σMLF(%)</td>
<td>221</td>
<td>-99</td>
<td>-100</td>
<td>-46</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σADFP(%)</td>
<td>-50</td>
<td>138</td>
<td>139</td>
<td>-14</td>
<td>257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2, mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.18

Results of goodness-of-fit tests for the verification period: catchment E

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITO</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{\circ})MAR(%)</td>
<td>98</td>
<td>912</td>
<td>1405</td>
<td>471</td>
<td>-100</td>
<td>14</td>
<td>-100</td>
</tr>
<tr>
<td>(^{\circ})VAR(%)</td>
<td>-9</td>
<td>5605</td>
<td>9999</td>
<td>727</td>
<td>-100</td>
<td>-15</td>
<td>-100</td>
</tr>
<tr>
<td>CR</td>
<td>-0.44</td>
<td>-56</td>
<td>-131</td>
<td>-9.3</td>
<td>-0.11</td>
<td>-1.1</td>
<td>-0.11</td>
</tr>
<tr>
<td>DSf</td>
<td>0.47</td>
<td>56</td>
<td>132</td>
<td>9.4</td>
<td>0.12</td>
<td>1.1</td>
<td>0.12</td>
</tr>
<tr>
<td>RMCC</td>
<td>-3.3</td>
<td>-215</td>
<td>-525</td>
<td>-2.7</td>
<td>-2.7</td>
<td>-9.5</td>
<td>-2.7</td>
</tr>
<tr>
<td>RMF(%)</td>
<td>778</td>
<td>4684</td>
<td>7169</td>
<td>1090</td>
<td>25</td>
<td>735</td>
<td>25</td>
</tr>
<tr>
<td>RA(%)</td>
<td>47</td>
<td>820</td>
<td>1268</td>
<td>160</td>
<td>-100</td>
<td>14</td>
<td>-100</td>
</tr>
<tr>
<td>(^{\circ})Lq(%)</td>
<td>-72</td>
<td>-9.1</td>
<td>-45</td>
<td>11</td>
<td>0.5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{\circ})MAR(%)</td>
<td>-95</td>
<td>4324</td>
<td>9999</td>
<td>322</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{\circ})VAR(%)</td>
<td>-0.079</td>
<td>-37</td>
<td>-92</td>
<td>-3.0</td>
<td>-0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSf</td>
<td>-20</td>
<td>-452</td>
<td>-511</td>
<td>-6.4</td>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMFOC</td>
<td>-0.22</td>
<td>-17.8</td>
<td>-20.5</td>
<td>-49.2</td>
<td>-0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE(%)</td>
<td>268</td>
<td>918</td>
<td>1412</td>
<td>519</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{\circ})MDF(%</td>
<td>-92</td>
<td>717</td>
<td>1174</td>
<td>56</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{\circ})ADF(%</td>
<td>-98</td>
<td>391</td>
<td>631</td>
<td>-35</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2. mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{\circ})MDF(%)</td>
<td>744</td>
<td>-100</td>
<td>-100</td>
<td>9999</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{\circ})ADF(%)</td>
<td>-46</td>
<td>-1.1</td>
<td>-1.1</td>
<td>-69</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.19

Rankings*1 of overall performance during the verification period*2:
all three catchments.

<table>
<thead>
<tr>
<th></th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITO</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly</td>
<td>A</td>
<td>22(17)</td>
<td>50(38)</td>
<td>41(30)</td>
<td>25(18)</td>
<td>41(29)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>25(19)</td>
<td>55(41)</td>
<td>30(25)</td>
<td>31(24)</td>
<td>32(24)</td>
<td>46</td>
</tr>
<tr>
<td>Sub-totals</td>
<td>E</td>
<td>34(22)</td>
<td>47(31)</td>
<td>54(38)</td>
<td>43(27)</td>
<td>18(14)</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>82(58)</td>
<td>152(110)</td>
<td>125(93)</td>
<td>99(69)</td>
<td>91(67)</td>
<td>96</td>
<td>82</td>
</tr>
<tr>
<td>Daily</td>
<td>A</td>
<td>26</td>
<td>31</td>
<td>29</td>
<td>16</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>Sub-totals</td>
<td>E</td>
<td>20</td>
<td>39</td>
<td>32</td>
<td>17</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>100</td>
<td>98</td>
<td>69</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined total</td>
<td>124</td>
<td>210</td>
<td>191</td>
<td>128</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly rank.</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Daily rank.</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined rank.</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Rankings in brackets for hourly and daily models only.
*2 Calendar year 1981
50%, if compared with the performance based on the five-year calibration. This finding provides firm evidence that the generally inadequate performance of the models reported in section 7.4 for the verification tests was, at least in the case of the five multi-storage models, due to a calibration biased towards simulation of extreme events.

7.5.2 Comparison of daily with hourly models

It is evident from the combined rankings resulting from the two performance tests under consideration here (Tables 7.23 and 7.28) that models PITD and FORD can be regarded as the most robust of the five general-purpose models tested. Although the total rankings of model DALT are competitive with those of the aforementioned two models, it has to be left out of contention because of artificially low rankings caused by near-zero flow estimation during the verification period in catchment E (Table 7.26). Models PITH and PITR are again the poorest performers, except for two instances: a good performance by PITH in catchment A during the performance test based on the full data period and a fair performance by PITR in catchment B during the verification period. In general, model PITD was again superior in terms of the reproduction of daily flow statistics, with model FORD following in a close second position. Furthermore, there is some evidence that the ability of the simple model DALT to reproduce daily flows is reasonably competitive with that of the more complex models, judged by the actual values of the criteria listed in Tables 7.20, 7.21, 7.22 and 7.25.

7.5.3 Comparison of monthly with daily and hourly models

In terms of simulation of monthly flows the general performances of models FORD, PITD, DALM and DALT are more or less on a par. The overall results achieved by the simple monthly model DALM during the performance test based on the full data period (Tables 7.20 to 7.22) are far superior to those achieved by the other models, all of which are more complex in structure than DALM. Unfortunately, the performance of DALM during the verification period was marred by the prediction of near-zero flows in catchments A and E. The same Table 7.20
50%, if compared with the performance based on the five-year calibration. This finding provides firm evidence that the generally inadequate performance of the models reported in section 7.4 for the verification tests was, at least in the case of the five multi-storage models, due to a calibration biased towards simulation of extreme events.

7.5.2 Comparison of daily with hourly models

It is evident from the combined rankings resulting from the two performance tests under consideration here (Tables 7.23 and 7.28) that models PITD and FORD can be regarded as the most robust of the five general-purpose models tested. Although the total rankings of model DALT are competitive with those of the aforementioned two models, it has to be left out of contention because of artificially low rankings caused by near-zero flow estimation during the verification period in catchment E (Table 7.26). Models PITH and PITR are again the poorest performers, except for two instances: a good performance by PITH in catchment A during the performance test based on the full data period and a fair performance by PITR in catchment B during the verification period. In general, model PITD was again superior in terms of the reproduction of daily flow statistics, with model FORD following in a close second position. Furthermore, there is some evidence that the ability of the simple model DALT to reproduce daily flows is reasonably competitive with that of the more complex models, judged by the actual values of the criteria listed in Tables 7.20, 7.21, 7.22 and 7.25.

7.5.3 Comparison of monthly with daily and hourly models

In terms of simulation of monthly flows the general performances of models FORD, PITD, DALT and DALT are more or less on a par. The overall results achieved by the simple monthly model DALT during the performance test based on the full data period (Tables 7.20 to 7.22) are far superior to those achieved by the other models, all of which are more complex in structure than DALT. Unfortunately, the performance of DALT during the verification period was marred by the prediction of near-zero flows in catchments A and E. The same Table 7.20
50%, if compared with the performance based on the five-year calibration. This finding provides firm evidence that the generally inadequate performance of the models reported in section 7.4 for the verification tests was, at least in the case of the five multi-storage models, due to a calibration biased towards simulation of extreme events.

7.5.2 Comparison of daily with hourly models

It is evident from the combined rankings resulting from the two performance tests under consideration here (Tables 7.23 and 7.28) that models PITD and FORD can be regarded as the most robust of the five general-purpose models tested. Although the total rankings of model DALT are competitive with those of the aforementioned two models, it has to be left out of contention because of artificially low rankings caused by near-zero flow estimation during the verification period in catchment E (Table 7.26). Models PITH and PITR are again the poorest performers, except for two instances: good performance by PITH in catchment A during the performance test based on the full data period and a fair performance by PITR in catchment B during the verification period. In general, model PITD was again superior in terms of the reproduction of daily flow statistics, with model FORD following in a close second position. Furthermore, there is some evidence that the ability of the simple model DALT to reproduce daily flows is reasonably competitive with that of the more complex models, judged by the actual values of the criteria listed in Tables 7.20, 7.21, 7.22 and 7.25.

7.5.3 Comparison of monthly with daily and hourly models

In terms of simulation of monthly flows the general performances of models FORD, PITD, DALM and DALT are more or less on a par. The overall results achieved by the simple monthly model DALM during the performance test based on the full data period (Tables 7.20 to 7.22) are far superior to those achieved by the other models, all of which are more complex in structure than DALM. Unfortunately, the performance of DALM during the verification period was marred by the prediction of near-zero flows in catchments A and E. The same Table 7.20
Table 7.20

Results of goodness-of-fit tests*1 for the complete period of record*2 - 1979 excluded during calibration: catchment A

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALH</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR(%)</td>
<td>-19</td>
<td>77</td>
<td>24</td>
<td>21</td>
<td>-25</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>VAR(%)</td>
<td>-19</td>
<td>74</td>
<td>73</td>
<td>85</td>
<td>63</td>
<td>-32</td>
<td>55</td>
</tr>
<tr>
<td>MCE</td>
<td>0.855</td>
<td>0.855</td>
<td>0.863</td>
<td>0.755</td>
<td>0.892</td>
<td>0.936</td>
<td>0.912</td>
</tr>
<tr>
<td>DSE</td>
<td>0.182</td>
<td>0.110</td>
<td>0.107</td>
<td>0.154</td>
<td>0.082</td>
<td>0.028</td>
<td>0.064</td>
</tr>
<tr>
<td>RMCC</td>
<td>0.903</td>
<td>0.903</td>
<td>0.894</td>
<td>0.899</td>
<td>0.924</td>
<td>0.943</td>
<td>0.957</td>
</tr>
<tr>
<td>RMCP(%)</td>
<td>0.862</td>
<td>0.110</td>
<td>0.107</td>
<td>0.154</td>
<td>0.082</td>
<td>0.028</td>
<td>0.064</td>
</tr>
<tr>
<td>Rg(%)</td>
<td>-24</td>
<td>30</td>
<td>32</td>
<td>30</td>
<td>27</td>
<td>-21</td>
<td>20</td>
</tr>
<tr>
<td>ARg(%)</td>
<td>6.4</td>
<td>6.4</td>
<td>4.2</td>
<td>12</td>
<td>6.3</td>
<td>7.7</td>
<td>22</td>
</tr>
<tr>
<td>MDFPH(%)</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>39</td>
<td>0.0</td>
<td>0.0</td>
<td>39</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR(%)</td>
<td>2.5</td>
<td>20</td>
<td>1.4</td>
<td>48</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>0.733</td>
<td>0.897</td>
<td>0.888</td>
<td>0.733</td>
<td>0.689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCEL</td>
<td>-0.51</td>
<td>-1.85</td>
<td>-1.62</td>
<td>0.57</td>
<td>-3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEFDC</td>
<td>0.931</td>
<td>0.981</td>
<td>0.982</td>
<td>0.987</td>
<td>0.968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAEC(%)</td>
<td>62</td>
<td>50</td>
<td>57</td>
<td>62</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDP(%)</td>
<td>-14</td>
<td>-2.0</td>
<td>-13</td>
<td>-3.7</td>
<td>-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>0.924</td>
<td>0.957</td>
<td>0.924</td>
<td>0.913</td>
<td>0.918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDW(%)</td>
<td>-22</td>
<td>-16</td>
<td>-27</td>
<td>-21</td>
<td>-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2 mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLF(%)</td>
<td>76</td>
<td>76</td>
<td>121</td>
<td>31</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-10</td>
<td>-11</td>
<td>-11</td>
<td>-0.7</td>
<td>-5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDW(%)</td>
<td>71</td>
<td>23</td>
<td>60</td>
<td>25</td>
<td>79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 See Appendix A for definitions
Table 7.21

Results of goodness-of-fit tests for the complete period of record — 1979 excluded during calibration: catchment B

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITH</th>
<th>PITD</th>
<th>DALY</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMAR(%)</td>
<td>-0,3</td>
<td>27</td>
<td>35</td>
<td>5,2</td>
<td>26</td>
<td>-22</td>
<td>2,3</td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>26</td>
<td>98</td>
<td>127</td>
<td>20</td>
<td>108</td>
<td>-33</td>
<td>38</td>
</tr>
<tr>
<td>NCE</td>
<td>0,867</td>
<td>0,739</td>
<td>0,664</td>
<td>0,950</td>
<td>0,730</td>
<td>0,905</td>
<td>0,669</td>
</tr>
<tr>
<td>GSE</td>
<td>0,028</td>
<td>0,187</td>
<td>0,174</td>
<td>0,013</td>
<td>0,211</td>
<td>0,025</td>
<td>0,045</td>
</tr>
<tr>
<td>RMCC</td>
<td>0,308</td>
<td>0,882</td>
<td>0,797</td>
<td>0,995</td>
<td>0,960</td>
<td>0,918</td>
<td>0,951</td>
</tr>
<tr>
<td>RMP(%)</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>8,3</td>
<td>12</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>ΔR(%)</td>
<td>-2,5</td>
<td>30</td>
<td>43</td>
<td>2,5</td>
<td>34</td>
<td>-23</td>
<td>6,1</td>
</tr>
<tr>
<td>Δs(%)</td>
<td>9,1</td>
<td>11</td>
<td>11</td>
<td>1,5</td>
<td>15</td>
<td>1,0</td>
<td>13</td>
</tr>
<tr>
<td>ΔMDFP(%)</td>
<td>3,6</td>
<td>-14</td>
<td>0,0</td>
<td>-39</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>84</td>
<td>34</td>
<td>53</td>
<td>1,2</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>0,731</td>
<td>0,785</td>
<td>0,816</td>
<td>0,908</td>
<td>0,714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSEL</td>
<td>-1,27</td>
<td>-20</td>
<td>-17</td>
<td>0,051</td>
<td>-1,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEFDI</td>
<td>0,635</td>
<td>0,952</td>
<td>0,253</td>
<td>0,945</td>
<td>0,959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE(%)</td>
<td>63</td>
<td>69</td>
<td>65</td>
<td>42</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMFP(%)</td>
<td>22</td>
<td>-8,6</td>
<td>-2,2</td>
<td>-7,6</td>
<td>-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>0,659</td>
<td>0,907</td>
<td>0,966</td>
<td>0,991</td>
<td>0,973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMDF(%)</td>
<td>67</td>
<td>-16</td>
<td>14</td>
<td>-7,5</td>
<td>-3,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (2. mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMLF(%)</td>
<td>32</td>
<td>63</td>
<td>95</td>
<td>84</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔADF(%)</td>
<td>15</td>
<td>42</td>
<td>325</td>
<td>-6</td>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.22

Results of goodness-of-fit tests for the complete period of record - 1979 excluded during calibration: catchment E

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMAR(%)</td>
<td>-3R</td>
<td>93</td>
<td>92</td>
<td>26</td>
<td>49</td>
<td>-81</td>
<td>-3,8</td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>-64</td>
<td>271</td>
<td>247</td>
<td>127</td>
<td>178</td>
<td>-95</td>
<td>46</td>
</tr>
<tr>
<td>MCE</td>
<td>0,782</td>
<td>-0,09</td>
<td>0,045</td>
<td>0,291</td>
<td>0,297</td>
<td>0,129</td>
<td>0,513</td>
</tr>
<tr>
<td>DCE</td>
<td>0,162</td>
<td>0,816</td>
<td>0,801</td>
<td>0,359</td>
<td>0,518</td>
<td>0,297</td>
<td>0,133</td>
</tr>
<tr>
<td>RMCC</td>
<td>0,784</td>
<td>0,20</td>
<td>0,269</td>
<td>0,893</td>
<td>0,655</td>
<td>0,110</td>
<td>0,985</td>
</tr>
<tr>
<td>RMF(%)</td>
<td>38</td>
<td>35</td>
<td>109</td>
<td>22</td>
<td>19</td>
<td>74</td>
<td>7,9</td>
</tr>
<tr>
<td>ΔRd(%)</td>
<td>-46</td>
<td>79</td>
<td>79</td>
<td>27</td>
<td>54</td>
<td>-85</td>
<td>-2,3</td>
</tr>
<tr>
<td>ΔIs(%)</td>
<td>-4,5</td>
<td>-1,6</td>
<td>-6,2</td>
<td>11</td>
<td>6,9</td>
<td>-22</td>
<td>4,0</td>
</tr>
<tr>
<td>ΔHDFP(%)</td>
<td>0,0</td>
<td>-13</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>-2,6</td>
<td>0,0</td>
</tr>
</tbody>
</table>

All daily flows								
ΔVAR(%)	-37	334	200	155	134			
DCE	0,793	-0,43	0,28	0,04	0,148			
DCEL	-0,91	-23	-19	0,142	-3,8			
CEFEC	0,510	0,852	0,139	0,793	0,975			
RAE(%)	57	104	98	88	89			

Peak daily flow/month								
ΔNFP(%)	-18	107	74	25	23			
ΔMF(%)	0,94R	-1,47	-0,07	0,04	0,618			
ΔMDP(%)	2,2	74	103	101	65			

Low flows (<2% mean daily flow)								
ΔMLF(%)	5,5	635	779	101	122			
ΔMF(%)	-5,0	-373	-408	-14	-25			
ΔMDP(%)	-80	0,0	-1,0	-33	60			
Table 7.23

Rankings*1 of overall performance during the complete record period *2 (1979 excluded during calibration): all three catchments

<table>
<thead>
<tr>
<th></th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>26(15)</td>
<td>41(27)</td>
<td>45(31)</td>
<td>52(38)</td>
<td>28(15)</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>B</td>
<td>26(18)</td>
<td>46(33)</td>
<td>51(37)</td>
<td>18(14)</td>
<td>46(30)</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>E</td>
<td>23(16)</td>
<td>51(38)</td>
<td>46(33)</td>
<td>27(17)</td>
<td>34(24)</td>
<td>49</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>75(49)</td>
<td>139(98)</td>
<td>143(101)</td>
<td>97(69)</td>
<td>108(69)</td>
<td>101</td>
<td>63</td>
</tr>
<tr>
<td>Sub-totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>38</td>
<td>38</td>
<td>34</td>
<td>20</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>19</td>
<td>44</td>
<td>44</td>
<td>30</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
<td>105</td>
<td>108</td>
<td>80</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined total</td>
<td>139</td>
<td>203</td>
<td>209</td>
<td>149</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly rank.</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Daily rank.</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined rank.</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Rankings in brackets for hourly and daily models only.
Table 7.4

Results of goodness-of-fit tests *1 for the verification period *2 (1979 excluded during calibration): catchment A

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PID</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{MAR}(%))</td>
<td>-10</td>
<td>-17</td>
<td>-35</td>
<td>25</td>
<td>-61</td>
<td>-90</td>
<td>-87</td>
</tr>
<tr>
<td>(\Delta \text{VAR}(%))</td>
<td>4.9</td>
<td>4.9</td>
<td>-26</td>
<td>53</td>
<td>-74</td>
<td>-98</td>
<td>-95</td>
</tr>
<tr>
<td>CE</td>
<td>0.156</td>
<td>-0.07</td>
<td>-0.17</td>
<td>0.31</td>
<td>0.038</td>
<td>-0.13</td>
<td>-0.07</td>
</tr>
<tr>
<td>DSE</td>
<td>0.19</td>
<td>0.21</td>
<td>0.29</td>
<td>0.25</td>
<td>0.20</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>RMCC</td>
<td>-4.2</td>
<td>-2.6</td>
<td>-1.3</td>
<td>-2.5</td>
<td>-2.9</td>
<td>-1.1</td>
<td>-1.3</td>
</tr>
<tr>
<td>RMP(%)</td>
<td>18</td>
<td>18</td>
<td>11</td>
<td>33</td>
<td>-36</td>
<td>-81</td>
<td>-73</td>
</tr>
<tr>
<td>(\Delta \text{R}_a(%))</td>
<td>19</td>
<td>41</td>
<td>11</td>
<td>33</td>
<td>-36</td>
<td>-81</td>
<td>-73</td>
</tr>
<tr>
<td>(\Delta \text{R}_b(%))</td>
<td>33</td>
<td>71</td>
<td>71</td>
<td>6.1</td>
<td>66</td>
<td>92</td>
<td>106</td>
</tr>
<tr>
<td>(\Delta \text{MFDFP}(%))</td>
<td>0.0</td>
<td>50</td>
<td>50</td>
<td>0.0</td>
<td>50</td>
<td>50</td>
<td>57</td>
</tr>
</tbody>
</table>

All daily flows | | | | | | | |
\(\Delta \text{VAR}(\%) \)	-37	63	24	4.9	-89
DCE	0.14	-0.32	-0.22	0.286	0.036
DCEL	0.041	-8.7	-9.6	0.616	-14
CEFDC	0.182	0.571	0.482	0.949	0.739
RAE(\%)	98	107	111	100	95

Peak daily flow/month | | | | | | | |
| \(\Delta \text{MFP}(\%) \) | -40 | 15 | -4 | -12 | -86 |
| \(\Delta \text{MFDP}(\%) \) | -85 | -35 | -62 | -50 | -100 |

Low flows (<2. mean daily flow) | | | | | | | |
| \(\Delta \text{MLF}(\%) \) | 83 | 67 | 33 | 64 | 118 |
| \(\Delta \text{ADFP}(\%) \) | -17 | 106 | 106 | -16 | 97 |

*1 See Appendix A for definitions
*2 Calendar year 1981
Table 7.25.

Results of goodness-of-fit tests for the verification period
(1979 excluded during calibration) : catchment B

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PIRT</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{MAR} %)</td>
<td>54</td>
<td>89</td>
<td>-98</td>
<td>100</td>
<td>-31</td>
<td>-28</td>
<td>-17</td>
</tr>
<tr>
<td>(\Delta \text{VAR} %)</td>
<td>178</td>
<td>795</td>
<td>-100</td>
<td>466</td>
<td>40</td>
<td>69</td>
<td>155</td>
</tr>
<tr>
<td>CE</td>
<td>-4,5</td>
<td>0,4</td>
<td>-2,2</td>
<td>-0,4</td>
<td>-0,67</td>
<td>-1,1</td>
<td></td>
</tr>
<tr>
<td>DSE</td>
<td>5,1</td>
<td>0,41</td>
<td>2,9</td>
<td>0,59</td>
<td>0,77</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>RMCC</td>
<td>-9,4</td>
<td>-22</td>
<td>-1,4</td>
<td>-6,2</td>
<td>-8,5</td>
<td>-10,2</td>
<td>-12</td>
</tr>
<tr>
<td>RMP(%)</td>
<td>283</td>
<td>321</td>
<td>260</td>
<td>60</td>
<td>276</td>
<td>322</td>
<td>405</td>
</tr>
<tr>
<td>(\Delta \text{R} %)</td>
<td>69</td>
<td>239</td>
<td>-99</td>
<td>122</td>
<td>29</td>
<td>44</td>
<td>69</td>
</tr>
<tr>
<td>(\Delta \text{I} %)</td>
<td>9,7</td>
<td>79</td>
<td>-49</td>
<td>11</td>
<td>86</td>
<td>101</td>
<td>102</td>
</tr>
<tr>
<td>(\Delta \text{HPF} %)</td>
<td>-33</td>
<td>50</td>
<td>-17</td>
<td>0,0</td>
<td>50</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{VAR} %)</td>
<td>22</td>
<td>449</td>
<td>-100</td>
<td>188</td>
<td>-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>-0,28</td>
<td>-5,4</td>
<td>-0,07</td>
<td>-1,0</td>
<td>-0,09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCEL</td>
<td>-4,0</td>
<td>-111</td>
<td>-127</td>
<td>-4,4</td>
<td>-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEFD</td>
<td>0,888</td>
<td>0,039</td>
<td>-0,14</td>
<td>0,173</td>
<td>0,754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE(%)</td>
<td>159</td>
<td>258</td>
<td>102</td>
<td>190</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{HPF} %)</td>
<td>-30</td>
<td>33</td>
<td>-100</td>
<td>14</td>
<td>-79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{MDP} %)</td>
<td>-89</td>
<td>161</td>
<td>-100</td>
<td>-25</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2. mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{MLF} %)</td>
<td>169</td>
<td>-97</td>
<td>-99</td>
<td>-14</td>
<td>-94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{AUPF} %)</td>
<td>-34</td>
<td>137</td>
<td>630</td>
<td>-14</td>
<td>133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.26

Results of goodness-of-fit tests for the verification period (1979 excluded due to calibration): catchment E

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMAR(%)</td>
<td>112</td>
<td>585</td>
<td>541</td>
<td>90</td>
<td>-99</td>
<td>-86</td>
<td>-100</td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>-34</td>
<td>2557</td>
<td>2464</td>
<td>9,1</td>
<td>-100</td>
<td>-98</td>
<td>-100</td>
</tr>
<tr>
<td>CE</td>
<td>-0,82</td>
<td>-25</td>
<td>-24</td>
<td>-0,73</td>
<td>-0,13</td>
<td>-0,13</td>
<td>-0,13</td>
</tr>
<tr>
<td>DSE</td>
<td>0,82</td>
<td>25</td>
<td>24</td>
<td>0,83</td>
<td>0,14</td>
<td>0,14</td>
<td>0,14</td>
</tr>
<tr>
<td>RMCC</td>
<td>-5,0</td>
<td>-73</td>
<td>-69</td>
<td>-1,5</td>
<td>-2,7</td>
<td>-3,3</td>
<td>-2,7</td>
</tr>
<tr>
<td>RMCP(%)</td>
<td>501</td>
<td>2883</td>
<td>2764</td>
<td>289</td>
<td>29</td>
<td>487</td>
<td>25</td>
</tr>
<tr>
<td>ΔRMP(%)</td>
<td>-25</td>
<td>495</td>
<td>483</td>
<td>-6,1</td>
<td>-99</td>
<td>-86</td>
<td>-100</td>
</tr>
<tr>
<td>ΔI(%)</td>
<td>-65</td>
<td>-9,1</td>
<td>-9,1</td>
<td>-54</td>
<td>6,1</td>
<td>0,5</td>
<td>11</td>
</tr>
<tr>
<td>ΔMBF(%)</td>
<td>-73</td>
<td>-18</td>
<td>-18</td>
<td>-45</td>
<td>-9,1</td>
<td>-18</td>
<td>-18</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>-63</td>
<td>1926</td>
<td>1905</td>
<td>-48</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSE</td>
<td>-0,17</td>
<td>-17</td>
<td>-16</td>
<td>-0,14</td>
<td>-0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCEL</td>
<td>-3,7</td>
<td>-381</td>
<td>-410</td>
<td>-9,0</td>
<td>-57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEFD</td>
<td>-8,2</td>
<td>-12</td>
<td>-9,9</td>
<td>-8,8</td>
<td>-0,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE(%)</td>
<td>271</td>
<td>556</td>
<td>546</td>
<td>237</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMBF(%)</td>
<td>-73</td>
<td>441</td>
<td>427</td>
<td>-51</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMPF(%)</td>
<td>-86</td>
<td>81</td>
<td>126</td>
<td>-81</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (<2 mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMLF(%)</td>
<td>3178</td>
<td>-100</td>
<td>-100</td>
<td>4284</td>
<td>-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔADFP(%)</td>
<td>-75</td>
<td>-1,1</td>
<td>-1,1</td>
<td>-60</td>
<td>-1,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.2

Comparison of the average goodness-of-fit statistics obtained for the two performance tests on the verification period *: all three catchments and all models

<table>
<thead>
<tr>
<th>Criterion</th>
<th>5-Year calibration</th>
<th>4-Year calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR(%)</td>
<td>139</td>
<td>39</td>
</tr>
<tr>
<td>VAR(%)</td>
<td>942</td>
<td>290</td>
</tr>
<tr>
<td>CE</td>
<td>10.0</td>
<td>-2.91</td>
</tr>
<tr>
<td>DSE</td>
<td>11.1</td>
<td>3.11</td>
</tr>
<tr>
<td>RMCC</td>
<td>44.9</td>
<td>-11.6</td>
</tr>
<tr>
<td>RHP(%)</td>
<td>793</td>
<td>430</td>
</tr>
<tr>
<td>Ra(%)</td>
<td>156</td>
<td>50</td>
</tr>
<tr>
<td>I5(%)</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>MDFP(%)</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR(%)</td>
<td>1160</td>
<td>272</td>
</tr>
<tr>
<td>OCE</td>
<td>-10.8</td>
<td>-2.7</td>
</tr>
<tr>
<td>OCEL</td>
<td>-103</td>
<td>-77</td>
</tr>
<tr>
<td>CEFC</td>
<td>-5.8</td>
<td>-2.3</td>
</tr>
<tr>
<td>RAE(%)</td>
<td>325</td>
<td>204</td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF(%)</td>
<td>130</td>
<td>24</td>
</tr>
<tr>
<td>MDFP(%)</td>
<td>68</td>
<td>-37</td>
</tr>
<tr>
<td>Low flows (<2. mean daily flow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLF(%)</td>
<td>730</td>
<td>493</td>
</tr>
<tr>
<td>ADFP(%)</td>
<td>67</td>
<td>66</td>
</tr>
</tbody>
</table>

* Calendar year 1981
Table 7.28

Ranking *1 of overall performance during verification period* *2
(1979 excluded during calibration) : all three catchments

<table>
<thead>
<tr>
<th></th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DA1T</th>
<th>PITH</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>19(17)</td>
<td>23(27)</td>
<td>32(28)</td>
<td>22(20)</td>
<td>33(31)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Sub-totals B</td>
<td>32(25)</td>
<td>53(41)</td>
<td>24(19)</td>
<td>37(27)</td>
<td>24(22)</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>E</td>
<td>42(28)</td>
<td>54(39)</td>
<td>47(32)</td>
<td>29(19)</td>
<td>20(15)</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>93(70)</td>
<td>136(107)</td>
<td>103(94)</td>
<td>88(66)</td>
<td>77(68)</td>
<td>103</td>
<td>120</td>
</tr>
<tr>
<td>Daily</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>24</td>
<td>20</td>
<td>28</td>
<td>18</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-totals B</td>
<td>20</td>
<td>38</td>
<td>32</td>
<td>21</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>25</td>
<td>33</td>
<td>33</td>
<td>21</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>100</td>
<td>93</td>
<td>60</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined total</td>
<td>139</td>
<td>207</td>
<td>187</td>
<td>126</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly rank.</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Daily rank.</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined rank.</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Rankings in brackets for hourly and daily models only.
*2 Calendar year 1981
Table 7.29

Combined rankings * of overall performance in all four performance tests: all three catchments

<table>
<thead>
<tr>
<th></th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly A</td>
<td>115(74)</td>
<td>166(124)</td>
<td>167(124)</td>
<td>115(89)</td>
<td>140(104)</td>
<td>136</td>
<td>145</td>
</tr>
<tr>
<td>Sub-totals B</td>
<td>114(84)</td>
<td>194(145)</td>
<td>142(109)</td>
<td>106(79)</td>
<td>157(116)</td>
<td>139</td>
<td>135</td>
</tr>
<tr>
<td>E</td>
<td>132(91)</td>
<td>186(126)</td>
<td>195(139)</td>
<td>136(91)</td>
<td>91(68)</td>
<td>131</td>
<td>88</td>
</tr>
<tr>
<td>Total</td>
<td>361(249)</td>
<td>546(395)</td>
<td>504(371)</td>
<td>357(259)</td>
<td>388(288)</td>
<td>406</td>
<td>369</td>
</tr>
<tr>
<td>Daily A</td>
<td>127</td>
<td>111</td>
<td>116</td>
<td>81</td>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-totals B</td>
<td>103</td>
<td>152</td>
<td>142</td>
<td>80</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>92</td>
<td>139</td>
<td>162</td>
<td>105</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>322</td>
<td>402</td>
<td>422</td>
<td>266</td>
<td>364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined total</td>
<td>571</td>
<td>797</td>
<td>793</td>
<td>525</td>
<td>652</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monthly rank.	2	7	6	1	4	5	3
Daily rank.	2	4	5	1	3		
Combined rank.	2	5	4	1	3		

* Rankings in brackets for hourly and daily models only.
problem, i.e. near-zero flows in catchment E, makes it difficult to assess the real merit of the low ranking model DALT attained in the verification period test. Models FORD and PITD produced the most stable performance with both a second and a third place each. As with the performance tests reported in section 7.4 no clear trend of improvement of performance with increasing complexity of model input requirements is discernible in the monthly simulation results discussed in this section.

7.5 SUMMARY OF FINDINGS

The combined rankings of overall model performance in all four performance tests in all three catchments appear in Table 7.29. The final ranking of the models in terms of monthly goodness-of-fit statistics is (from "best" to "worst"): PITH, FORD, DALM, DALT, PITH, PITR and PITH; in terms of daily criteria: PITD, FORD, DALM, PITH and PITR; and in terms of combined monthly and daily statistics: PITD, FORD, DALM, PITR and PITH. It must be stressed that the low rankings of model DALM and, to a certain extent, model DALT are misleading and may be traced to the artificially beneficial effects on goodness-of-fit statistics of near-zero flow estimations in certain catchments during the verification period tests.

In spite of the last-mentioned problem a number of firm conclusions can be drawn from the results reported in this chapter:

(i) Models that require fine time resolutions for input data do not necessarily produce more accurate estimates of daily or monthly flows than models with coarser input requirements. This finding is in accordance with conclusions arrived at by Pitman (1977), Roberts (1978) and Naef (1977, 1981).

(ii) With respect to the daily and hourly models used in this study some correspondence was found between increased complexity of model structure and superior performance of the model. This result is contrary to conclusions by Roberts (1978) and Naef (1977, 1981) but the sample of models tested in each input category is too small to deduce if this finding can be generalized.

(iii) None of the seven models was entirely convincing in simulating the vastly variable range of runoff-generation conditions in semi-arid
catchments and all model/catchment combinations yielded one or more simulation failures with respect to specific storm events.

(iv) The question of the adequacy of Pitman's three models for flow generation in semi-arid catchments: Pitman's (1978) conclusion that his monthly model could reproduce monthly flow series at a level competitive with that of more complex models requiring input of finer time resolution, was only partially confirmed in this study. The version of Pitman's monthly model used here, PITH, generally performed better than the modified versions of his hourly model, PITH and PITR, but was not competitive with the version of his daily model, PIDO, and the Stanford Model (FORD). In fact, PIDO must be regarded as the model most capable of simulating semi-arid rainfall-runoff processes of all the models tested here - both in terms of performance relative to other models and in terms of accuracy of actual flow estimates. This finding confirms the tentative conclusion drawn in this regard in the "manual calibration" study. The performance of hourly models PITH and PITR, though good for a few specific catchment/performance test combinations, was generally disappointing. It is likely that these two models would benefit by incorporation of a channel evaporation function such as that used in PIDO. An analysis of the behaviour of PITH and PITR during the verification period (1981) suggests that their response to high intensity rainfall is highly exaggerated. This exaggerated response is to a certain extent counteracted by the re-infiltration function in PITR. The basic infiltration function used in these two models is most likely at the root of the problem, which has only partially been solved by addition of the re-infiltration function.

(v) The two models of simple structure DALT and DALM achieved results that were often most encouraging. It is worth noting that especially in catchment E, the catchment with very high losses and low hydrological response (see Chapter 2), the performances by these two models were among the best in terms of the two performance tests based on the full period of record. As catchment E behaves more like an arid catchment than like a semi-arid one, the implication is that the structure of the DALT/DALM model series may be highly suitable for arid catchment modelling. The fact that the performance of model DALT often was not excessively worse than that of PIDO suggests that the "DALT2" level of application may be just not complex enough to ensure
consistently good results in the semi-arid environment. This finding is highly useful in that it provides a clear "lower limit" answer to the question of what level of complexity in model structure is required for a general-purpose model to be used in semi-arid catchments. The tendency of both DALT and DALM to produce near-zero flow during verification period tests provides a clue to changes required in the model structure. These changes involve exaggerating the soil moisture level response to rainfall during dry periods so that the soil moisture level exceeds the "baseflow" threshold more often. This can be achieved by replacing the linear moisture store by a non-linear store such as the "bowl-shaped" container of Fig. 4.4(e), i.e. by switching to Roberts's (1978) version of the model known as DALT3. Unfortunately, such a change involves two additional parameters that have to be estimated during calibration. It must furthermore be stressed that the severe interdependence of the two baseflow parameters SSB and POWER and the soil moisture capacity SSM is a serious shortcoming of the DALT/DALM model series.

(vi) The performance test based on a model calibration procedure which excluded the extreme events of 1979 revealed models FORD, PITD and DALM as being robust. The verification period tests based on the last-mentioned calibration procedure confirmed that the poor verification performance of all the models reported in both section 7.2 (manual calibration) and section 7.4 (semi-automatic calibration on a sample that included the extreme events of 1979) was the result of a calibration biased towards reproduction of extreme runoff events.
CHAPTER 8
TRANSFER OF PARAMETERS VALUES FROM GAUGED TO UNGAUGED CATCHMENTS

8.1 INTRODUCTION

The estimation of runoff from catchments for which no flow records exist ("ungauged" catchments) is one of the major challenges of engineering hydrology. In earlier chapters it was explained that, in theory, conceptual rainfall-runoff modelling constitutes a valuable approach for dealing with the ungauged catchment "problem" - on condition that the model parameter values somehow are estimable for the catchment under consideration. In this situation parameter values can be estimated by three different techniques, if the circumstances allow it.

(a) Parameter values can be inferred by measurable catchment characteristics. This approach presupposes availability of a model that is physically-based to a very high degree. Such models exist, but for practical reasons are out of consideration in a conventional engineering setting (see Chapter 5).

(b) Parameter values can be based on regionalized trends. Some model developers have published regionalized sets of parameter values, based on numerous calibrations of their models in one or more regions (Hydrological Research Unit, 1981-1982; Betson et al., 1980). An obstacle to the full utilization of such publications is that the authors usually omit information on the degree of uncertainty involved in applying such regionalized parameters. Consequently, practising engineers are unable to place confidence limits on runoff estimates based on such regionalized parameters.

(c) Parameters can be estimated by calibrating the model on one or more catchments that are thought to be physically similar to the ungauged one and then assigning those parameters to the problem catchment. This is in fact the first step towards regionalization, but if practising engineers can perform this step themselves, they can at least form an impression of the uncertainties involved in such a
Intuitively it may be expected that the parameter sets of models that are structurally more complex should display a higher level of transferability that those of simple models - based on the assumption that more complex models simulate rainfall-runoff processes at a higher level of physical representativeness. Similarly, models requiring a finer time resolution of input data may be expected to give better results in a parameter transfer operation, because they incorporate higher levels of input information. To the practising engineer, who is considering a parameter transfer application of a model, the issue of adequate levels of structural and input data complexity is important. He may feel satisfied with the performance of a simple model in a gauged catchment, but may be hesitant to risk such a model in a parameter transfer operation. On the other hand, the costs and time involved in switching to a more complex (and presumably more reliable) model may be unacceptable.

Very little has been reported in hydrological literature on the magnitude of errors involved in and the general feasibility of parameter transfer operations. The research reported in this Chapter is aimed at providing some guidelines to the South African model user on the feasibility of parameter transfer in the semi-arid environment. In the process, the relationships between parameter transferability and complexity of model structure and of model input requirements will be explored.

8.2 EXPERIMENTAL PROCEDURE

The Ecca River research catchments are probably as "similar" in climate, vegetation, lithology and land-use as the practising engineer can ever hope to find in a water resources study that may require a parameter transfer approach. Also, the quality of data derived from the Ecca River gauging network is probably better than what is available in most practical design situations. Conclusions drawn from a parameter transfer investigation using Ecca River data should therefore be reasonably reliable.
In a succinct discussion of the underlying assumptions of the parameter transfer procedure Roberts (1978) points out that the definition of the "similarity" of two or more catchments is highly problematic. He poses the question whether or not 'similarity' in climate, vegetation and lithology (the usual definition) is in reality commensurate with similarity in hydrological response. Similar hydrological response, according to Linsley (1976) who can be regarded as the "father" of the parameter transfer procedure, is the key to the success of the technique. In section 2.4 a simple analysis of the physical characteristics of the Ecca research catchments is described. It was concluded that "...the balance of the physical evidence points to the likelihood of larger catchment losses and a much more dampened hydrological response in catchment E relative to the other two". This conclusion is followed by a comparison of the observed rainfall-runoff behaviour of the three catchments. The comparison led to the conclusion that catchment E does in fact display a meaningfully different hydrological response from catchment A and B and that "...in general there should be more risk in transferring parameters to E from A or B than between A and B".

The parameter transfer tests were structured to investigate the last-mentioned suggestion and proceeded as follows. For all seven models the parameter sets derived by calibration on the 1976-1980 period of record were chosen for the experiment (see Tables 7.5 to 7.8). This calibration is regarded as the most reliable because it includes the widest range of runoff events. For each model two pairs of parameter transfer tests were executed. Certain parameter values estimated for catchment A were transferred into catchments B and E, followed by a transfer of catchment B values into A and E. In the first case the main catchment, A, can be considered to be the gauged catchment and the sub-catchments, B and E, the "ungauged" ones; similar considerations hold for the second case. Only parameters that affect the overall volume of runoff estimated by the models were transferred while lag, routing and physically-based parameters were kept at the values originally derived in each catchment by calibration (see section 7.3.2). After each transfer a streamflow series for the period 1976-1991 was generated using the rainfall and evaporation records of the catchment "receiving" the parameters. This was
followed by the calculation of a set of goodness-of-fit criteria with the aid of subroutines AFIT and BFIT. The success of each transfer operation was assessed in terms of the deterioration in the value of each criterion compared with the performance test values given in Tables 7.9 to 7.11. These results are listed in Tables 8.1 to 8.4. A negative value signifies a deterioration and a positive value an improvement.

8.3 FEASIBILITY OF PARAMETER TRANSFER

The values in Tables 8.1 and 8.3 suggest that, in general, parameter transfer between catchments A and B is highly feasible in terms of the reproduction of monthly flow statistics and marginally less so in terms of the daily criteria. For most models the deterioration in goodness-of-fit associated with transferred instead of calibrated parameters falls inside tolerance levels acceptable to engineering practice. However, parameter transfer from either catchment A or catchment B into catchment E results for all models in severe errors in estimated streamflow, as Tables 8.2 and 8.4 clearly illustrate.

This result conforms with the prognosis made in section 2.4 and mentioned earlier in this Chapter. The question arises whether or not, on the basis of the analysis of catchment characteristics in section 2.4, relevant model parameters could not have been adjusted before transfer from either catchment A or B to catchment E to accommodate the known differences in vegetation, lithology and crucial physiographic indices (such as mean catchment slope and drainage density). Such adjustments, if possible to make, could enhance confidence in the representativeness of the estimated streamflows. However, in most practical situations such parameter adjustments would be highly subjective. The success thereof would be strongly dependent on the modeller's "feel" for his technique and the thoroughness of his analysis of the catchment characteristics. If parameter adjustments were to have been made in the case of the Ecca parameter transfer study, such adjustments would have focused on three parameter types, i.e. interception storage (small increase), depression storage (small increase) and the principal moisture storage (large increase).
followed by the calculation of a set of goodness-of-fit criteria with the aid of subroutines AFIT and BFIT. The success of each transfer operation was assessed in terms of the deterioration in the value of each criterion compared with the performance test values given in Tables 7.9 to 7.11. These results are listed in Tables 8.1 to 8.4. A negative value signifies a deterioration and a positive value an improvement.

8.3 FEASIBILITY OF PARAMETER TRANSFER

The values in Tables 8.1 and 8.3 suggest that, in general, parameter transfer between catchments A and B is highly feasible in terms of the reproduction of monthly flow statistics and marginally less so in terms of the daily criteria. For most models the deterioration in goodness-of-fit associated with transferred instead of calibrated parameters falls inside tolerance levels acceptable to engineering practice. However, parameter transfer from either catchment A or catchment B into catchment E results for all models in severe errors in estimated streamflow, as Tables 8.2 and 8.4 clearly illustrate.

This result conforms with the prognosis made in section 2.4 and mentioned earlier in this Chapter. The question arises whether or not, on the basis of the analysis of catchment characteristics in section 2.4, relevant model parameters could not have been adjusted before transfer from either catchment A or B to catchment E to accommodate the known differences in vegetation, lithology and crucial physiographic indices (such as mean catchment slope and drainage density). Such adjustments, if possible to make, could enhance confidence in the representativeness of the estimated streamflows. However, in most practical situations such parameter adjustments would be highly subjective. The success thereof would be strongly dependent on the modeller's "feel" for his technique and the thoroughness of his analysis of the catchment characteristics. If parameter adjustments were to have been made in the case of the Ecca parameter transfer study, such adjustments would have focused on three parameter types, i.e. interception storage (small increase), depression storage (small increase) and the principal moisture storage (large increase).
Table 8.1

Deterioration in statistics due to parameter transfer from catchment A to catchment B

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITA</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{VAR}%)</td>
<td>-12</td>
<td>-10</td>
<td>-9</td>
<td>-2</td>
<td>+1</td>
<td>-5</td>
<td>-2</td>
</tr>
<tr>
<td>(\Delta \text{VAR}%)</td>
<td>-42</td>
<td>-38</td>
<td>-15</td>
<td>-11</td>
<td>-3</td>
<td>+4</td>
<td>-8</td>
</tr>
<tr>
<td>MCE</td>
<td>-0,19</td>
<td>-0,03</td>
<td>0</td>
<td>-0,05</td>
<td>0</td>
<td>-0,03</td>
<td>-0,02</td>
</tr>
<tr>
<td>DCE</td>
<td>-0,08</td>
<td>-0,06</td>
<td>-0,02</td>
<td>-0,01</td>
<td>-0,01</td>
<td>-0,01</td>
<td>-0,02</td>
</tr>
<tr>
<td>RMCC</td>
<td>-0,02</td>
<td>-0,03</td>
<td>-0,01</td>
<td>-0,01</td>
<td>0</td>
<td>+0,03</td>
<td>-0,01</td>
</tr>
<tr>
<td>(\Delta \text{Rg}%)</td>
<td>-5</td>
<td>+1</td>
<td>+2</td>
<td>-7</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>(\Delta \text{Is}%)</td>
<td>-5</td>
<td>-13</td>
<td>-5</td>
<td>+2</td>
<td>-2</td>
<td>+1</td>
<td>-4</td>
</tr>
<tr>
<td>(\Delta \text{NDFP}%)</td>
<td>-50</td>
<td>0</td>
<td>-18</td>
<td>-28</td>
<td>0</td>
<td>+39</td>
<td>-35</td>
</tr>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{VAR}%)</td>
<td>-74</td>
<td>-28</td>
<td>-3</td>
<td>-27</td>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCE</td>
<td>-0,19</td>
<td>-0,03</td>
<td>-0,15</td>
<td>-0,05</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>-1,44</td>
<td>-1,2</td>
<td>0</td>
<td>-0,03</td>
<td>-0,62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEFD (%)</td>
<td>+0,07</td>
<td>+0,02</td>
<td>+0,01</td>
<td>-0,03</td>
<td>+0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE(%)</td>
<td>-25</td>
<td>-94</td>
<td>0</td>
<td>-12</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{MPF}%)</td>
<td>-1</td>
<td>-12</td>
<td>+16</td>
<td>+3</td>
<td>+3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-0,27</td>
<td>-0,02</td>
<td>-0,04</td>
<td>-0,03</td>
<td>+0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{NDP}%)</td>
<td>-51</td>
<td>+20</td>
<td>+19</td>
<td>+7</td>
<td>+3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{MLF}%)</td>
<td>-12</td>
<td>+45</td>
<td>-8</td>
<td>+51</td>
<td>+2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-15</td>
<td>+4</td>
<td>-7</td>
<td>-6</td>
<td>-0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{ADFP}%)</td>
<td>-24</td>
<td>0</td>
<td>+58</td>
<td>-18</td>
<td>+72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8.2

Deterioration in statistics due to parameter transfer from catchment A to catchment E

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITU</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMAR(%)</td>
<td>-94</td>
<td>-121</td>
<td>-101</td>
<td>-93</td>
<td>-76</td>
<td>-81</td>
<td>-78</td>
</tr>
<tr>
<td>ΔVAR(%)</td>
<td>-234</td>
<td>-255</td>
<td>-224</td>
<td>-185</td>
<td>-226</td>
<td>-157</td>
<td>-211</td>
</tr>
<tr>
<td>ΔCE</td>
<td>-2,04</td>
<td>-0,81</td>
<td>-0,47</td>
<td>-0,65</td>
<td>-0,93</td>
<td>-0,64</td>
<td>-0,63</td>
</tr>
<tr>
<td>ΔDSE</td>
<td>-0,88</td>
<td>-0,90</td>
<td>-0,75</td>
<td>-0,62</td>
<td>-0,83</td>
<td>-0,58</td>
<td>-0,76</td>
</tr>
<tr>
<td>ΔRMCC</td>
<td>-0,56</td>
<td>-0,65</td>
<td>-0,54</td>
<td>-0,28</td>
<td>-0,55</td>
<td>-0,16</td>
<td>-0,38</td>
</tr>
<tr>
<td>ΔRMP(%)</td>
<td>-115</td>
<td>-158</td>
<td>-129</td>
<td>-3</td>
<td>-23</td>
<td>-11</td>
<td>-5</td>
</tr>
<tr>
<td>ΔRf(%)</td>
<td>-69</td>
<td>-66</td>
<td>-64</td>
<td>-49</td>
<td>-75</td>
<td>-32</td>
<td>-62</td>
</tr>
<tr>
<td>ΔI5(%)</td>
<td>-13</td>
<td>+2</td>
<td>+10</td>
<td>+5</td>
<td>+11</td>
<td>+6</td>
<td>+3</td>
</tr>
<tr>
<td>ΔMFDP(%)</td>
<td>-36</td>
<td>-33</td>
<td>-10</td>
<td>0</td>
<td>-3</td>
<td>-25</td>
<td>0</td>
</tr>
</tbody>
</table>

All daily flows							
ΔMAR(%)	-284	-218	-195	-76	-186		
ΔVAR(%)	-1,05	-0,56	-0,34	-0,80	-0,61		
ΔCE	-4,2	+18	+24	-0,1	-2,0		
ΔDCE	-2,08	-1,51	-1,50	-0,91	-0,01		
ΔRAE(%)	-76	-247	-22	-65	-55		

All daily flows/month							
ΔMPF(%)	-75	-83	-74	-90	-25		
ΔCE	-1,05	-1,10	-0,94	-1,25	-0,43		
ΔNDP(%)	-68	-104	-101	-58	-62		

Low flows (<2. mean daily flow)							
ΔVLF(%)	-333	-917	-552	-579	-373		
ΔCE	-82	-1,089	-1,560	-492	-142		
ΔADFP(%)	-20	-28	-16	-7	41		
Table 8.3

Deterioration in statistics due to parameter transfer from catchment B to catchment A

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All monthly flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>△VAR(%)</td>
<td>+1</td>
<td>+6</td>
<td>-5</td>
<td>+1</td>
<td>-1</td>
<td>+6</td>
<td>+3</td>
</tr>
<tr>
<td>△VAR(%)</td>
<td>-27</td>
<td>+16</td>
<td>+24</td>
<td>-9</td>
<td>+2</td>
<td>-11</td>
<td>+1</td>
</tr>
<tr>
<td>NCE</td>
<td>0</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0</td>
<td>+0.01</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>DSE</td>
<td>-0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RNCC</td>
<td>+0.01</td>
<td>+0.03</td>
<td>+0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPM(%)</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>△Rg(%)</td>
<td>-6</td>
<td>+10</td>
<td>+6</td>
<td>+2</td>
<td>+1</td>
<td>-2</td>
<td>+2</td>
</tr>
<tr>
<td>△Is(%)</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-4</td>
<td>0</td>
<td>-15</td>
<td>+7</td>
</tr>
<tr>
<td>△MDFP(%)</td>
<td>+29</td>
<td>-4</td>
<td>-43</td>
<td>+32</td>
<td>0</td>
<td>-39</td>
<td>0</td>
</tr>
<tr>
<td>All daily flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>△VAR(%)</td>
<td>-40</td>
<td>-29</td>
<td>-39</td>
<td>-22</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>-0.06</td>
<td>-0.11</td>
<td>-0.12</td>
<td>-0.02</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCEL</td>
<td>+0.15</td>
<td>-0.3</td>
<td>-6.5</td>
<td>-0.11</td>
<td>-0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEFDC</td>
<td>-0.21</td>
<td>-0.03</td>
<td>-0.09</td>
<td>-0.03</td>
<td>-0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAE(%)</td>
<td>-4</td>
<td>-13</td>
<td>-14</td>
<td>+1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak daily flow/month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>△MPF(%)</td>
<td>-26</td>
<td>-21</td>
<td>-23</td>
<td>-13</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-0.12</td>
<td>-0.13</td>
<td>-0.12</td>
<td>-0.07</td>
<td>-0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>△MDP(%)</td>
<td>-14</td>
<td>-20</td>
<td>-25</td>
<td>-14</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low flows (2< mean daily flow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>△MLF(%)</td>
<td>410</td>
<td>424</td>
<td>-0.7</td>
<td>-42</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-1.1</td>
<td>43.6</td>
<td>42.8</td>
<td>+1.1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>△ADF(%)</td>
<td>-91</td>
<td>+10</td>
<td>-0.3</td>
<td>+13</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8.4

Deterioration in statistics due to parameter transfer from catchment B to catchment E

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{MAR}(%))</td>
<td>-75</td>
<td>-92</td>
<td>-98</td>
<td>-87</td>
<td>-74</td>
<td>-94</td>
<td>-91</td>
</tr>
<tr>
<td>(\Delta \text{VAR}(%))</td>
<td>-137</td>
<td>-176</td>
<td>-188</td>
<td>-151</td>
<td>-229</td>
<td>-121</td>
<td>-212</td>
</tr>
<tr>
<td>MCE</td>
<td>-0.49</td>
<td>-0.47</td>
<td>-0.31</td>
<td>-0.45</td>
<td>-0.90</td>
<td>-0.47</td>
<td>-0.66</td>
</tr>
<tr>
<td>DSE</td>
<td>-0.41</td>
<td>-0.60</td>
<td>-0.59</td>
<td>-0.47</td>
<td>-0.78</td>
<td>-0.44</td>
<td>-0.78</td>
</tr>
<tr>
<td>RMCC</td>
<td>-0.27</td>
<td>-0.60</td>
<td>-0.48</td>
<td>-0.33</td>
<td>-0.54</td>
<td>-0.21</td>
<td>-0.37</td>
</tr>
<tr>
<td>RHMP(%)</td>
<td>-59</td>
<td>-82</td>
<td>-44</td>
<td>-45</td>
<td>-23</td>
<td>-43</td>
<td>-4</td>
</tr>
<tr>
<td>(\Delta \text{I}_{\text{a}}(%))</td>
<td>-46</td>
<td>-48</td>
<td>-58</td>
<td>-51</td>
<td>-73</td>
<td>-30</td>
<td>-61</td>
</tr>
<tr>
<td>(\Delta \text{I}_{\text{b}}(%))</td>
<td>-13</td>
<td>+3</td>
<td>+17</td>
<td>+1</td>
<td>+11</td>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>(\Delta \text{NDFF}(%))</td>
<td>-14</td>
<td>-33</td>
<td>+3</td>
<td>0</td>
<td>-3</td>
<td>-64</td>
<td>0</td>
</tr>
</tbody>
</table>

All monthly flows

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{MAR}(%))</td>
<td>-115</td>
<td>-88</td>
<td>-73</td>
<td>-111</td>
<td>-175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>-0.22</td>
<td>-0.14</td>
<td>+0.15</td>
<td>-0.28</td>
<td>-0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCEL</td>
<td>+3.2</td>
<td>+1.8</td>
<td>+24</td>
<td>-0.3</td>
<td>-1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEFDC</td>
<td>-1.24</td>
<td>-1.22</td>
<td>-1.53</td>
<td>-2.2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAEC(%)</td>
<td>-46</td>
<td>-35</td>
<td>-7</td>
<td>-51</td>
<td>-54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peak daily Flow/month

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{MPF}(%))</td>
<td>-17</td>
<td>-26</td>
<td>-21</td>
<td>-57</td>
<td>-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-0.28</td>
<td>-0.16</td>
<td>+0.02</td>
<td>-0.43</td>
<td>-0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{MDP}(%))</td>
<td>-37</td>
<td>-49</td>
<td>-50</td>
<td>-48</td>
<td>-59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low flows (<2. mean daily flow)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{MLF}(%))</td>
<td>-254</td>
<td>-856</td>
<td>-283</td>
<td>-557</td>
<td>-357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-62</td>
<td>-1056</td>
<td>+68</td>
<td>-302</td>
<td>-133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{ADFP}(%))</td>
<td>-14</td>
<td>-32</td>
<td>+10</td>
<td>+3</td>
<td>+1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.4 COMPARISON OF MODEL PERFORMANCE

For each criterion in Tables 8.1 to 8.4 the values were ranked from 1 to 7 (monthly flows) or 1 to 5 (daily flows) on a scale representing the least deterioration (or highest improvement) to the worst deterioration. These rankings were summed in the case of each transfer operation and formed the basis for a comparison of overall model performance given in Table 8.5. It must be stressed that in this Chapter "model performance" does not imply goodness-of-fit of simulated flow series, but is defined in terms of "transferability" of parameter values.

8.4.1 Complexity of model structure

The overall rankings listed in Table 8.5 are: for monthly flows, PITD, PITR, PITH/DALM, DALT, PITH, FORD; for daily flows, DALT, PITR, PITD, PITH, FORD; for combined performance, DALT, PITR, PITD, PITH, FORD. In all three categories no correspondence between higher structural complexity and superior transferability of parameter sets is discernible. This finding conforms to a conclusion reached by Roberts (1978). The placing of models PITR and FORD is of interest. Results in Chapter 7 showed that the ability of model PITR to reproduce the observed flows was consistently poor whereas the output for model FORD was consistently good. Hence, if the choice of a model for a water resources study that requires parameter transfer is based merely on highest parameter transferability as expressed in Table 8.5, then an inadequate simulation may still result. If the model cannot produce output of acceptable accuracy in the gauged catchment it is not likely to fare any better with transferred parameters.

The correct criterion would be to compare parameter transferability among the "best" models according to the rankings of Chapter 7 (eg. Table 7.15). In this context models PITD and DALM (monthly flows) and PITD and DALT (combined daily and monthly performance) stand out as the best.
Table 8.5

Ranking* of overall performance during parameter transfer tests (based on least deterioration in goodness-of-fit statistics)

<table>
<thead>
<tr>
<th></th>
<th>FORD</th>
<th>PITH</th>
<th>PITR</th>
<th>PITD</th>
<th>DALT</th>
<th>PITM</th>
<th>DALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly A-B</td>
<td>58(41)</td>
<td>41(29)</td>
<td>31(22)</td>
<td>32(23)</td>
<td>22(17)</td>
<td>21</td>
<td>37</td>
</tr>
<tr>
<td>totals A-E</td>
<td>54(36)</td>
<td>56(39)</td>
<td>34(22)</td>
<td>21(13)</td>
<td>37(24)</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>B-A</td>
<td>37(28)</td>
<td>23(19)</td>
<td>29(23)</td>
<td>29(25)</td>
<td>28(25)</td>
<td>50</td>
<td>26</td>
</tr>
<tr>
<td>B-E</td>
<td>31(23)</td>
<td>44(35)</td>
<td>29(22)</td>
<td>31(24)</td>
<td>42(31)</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>180(128)</td>
<td>164(122)</td>
<td>123(89)</td>
<td>113(85)</td>
<td>129(97)</td>
<td>127</td>
<td>127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A-B</th>
<th>A-E</th>
<th>B-A</th>
<th>B-E</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>47</td>
<td>29</td>
<td>27</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>totals</td>
<td>38</td>
<td>43</td>
<td>29</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>34</td>
<td>43</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>34</td>
<td>10</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>152</td>
<td>140</td>
<td>118</td>
<td>133</td>
<td>108</td>
</tr>
</tbody>
</table>

Combined total 280 262 207 218 205

Monthly rank 7 6 2 1 5 3 3

Daily rank 5 4 2 3 1

Combined rank 5 4 2 3 1

*Rankings in brackets for hourly and daily models only.
8.4.2 Time resolution of model input requirements

From the rankings in Table 8.5 no relationship between the time-interval used for input data and the degree of parameter transfer of the models is discernible. It is noteworthy that Roberts (1978) drew the opposite conclusion. He found that hourly models are more suitable for parameter transfer than daily models and ascribed the phenomenon to the higher level of information contained in the input record of hourly models. However, he speculated that this difference would decrease with increasing length of record for calibration (he used a 15-month record). In the study reported here the two daily models produced results that are convincingly competitive with those of the three hourly models with respect to reliability of parameter transfers.

8.5 SUMMARY OF FINDINGS

By application of a varied set of models the feasibility of transferring parameter values from the gauged to the ungauged catchment has been tested with data from three apparently similar catchments. An analysis of data on the physical characteristics of each catchment, such as vegetation cover, surface geology and a range of physiographic indices, revealed subtle differences among the catchments (Chapter 2). These differences can be interpreted in terms of differences in hydrological response and are therefore important considerations in the parameter transfer process. The two catchments deduced to be the most "similar" physically allowed highly successful parameter transfer between them. However, very poor transfer results were achieved in the third catchment, deduced to be meaningfully different to the other two in terms of physical characteristics. A point to note here is that the "apparently similar" catchments could be identified as potentially problematic with respect to parameter transfer prior to the exercise by means of data that are within the reach of any practising engineer, i.e. topographical maps, aerial photographs, geological maps and some field observations. An analysis of such data prior to a transfer operation seems indispensable and should enhance the practising engineer's "feel" for his technique considerably.
The parameter transfer study provided no evidence that models with highly complex structure necessarily produce better results in the ungauged catchment than simple models. The very simple daily model, DALT, displayed the highest degree of parameter transferability based on overall goodness-of-fit, while the most complex model, FORD, was the least successful. Furthermore, no correspondence between finer time resolution of model input requirements and superior parameter transferability could be discerned.
CHAPTER 9
CONCLUSIONS AND RESEARCH RECOMMENDATIONS

9.1 CONCLUSIONS

The long term need for guidelines for the selection and application of rainfall-runoff models in semi-arid catchments in South Africa guided the planning and execution of the research project. For this reason the set of models selected for examination and testing with data derived from the semi-arid Ecca River catchments mostly comprised models developed in South Africa. The inclusion of the well-known Pitman models was regarded as especially important in the light of their widespread use in South Africa. It is realized that the data base used, i.e. six years of concurrent rainfall, pan evaporation and streamflow records, is perhaps too limited to allow definitive model tests. However, a wide range of small, medium and extreme runoff events are contained in the data set. By virtue of this fact and because the selected models represent a range of complexities from a very simple monthly-input model to complex hourly-input models, the following firm conclusions are nevertheless possible.

(i) Data errors: A simple error analysis of the Ecca River data set disclosed numerous ways in which hydrometeorological data thought to be suitable for research on rainfall-runoff modelling could be contaminated with sizable errors. Operation of the calibrated Stanford Model (model FORD) with contaminated data showed that random errors do not affect the mean annual runoff very much but individual flow events may be substantially affected, even small systematic errors cannot be expected to be neutralized by random errors, simulation errors are much more dependent on systematic errors in rainfall inputs than evaporation inputs and an unfavourable raingage configuration can affect the simulation of individual events very severely.

(ii) Estimation of parameters - optimization: A direct search optimization algorithm (Rosenbrock) was found to be a powerful aid to
In automatic optimization the choice of objective function plays a crucial role and a comparison of a number of objective functions revealed that functions based on the sum of squared residuals consistently provided the best results.

(iii) Estimation of parameters - choice of calibration sample: The results of this study suggest that a calibration period length of about 15 years may be optimal for the calibration of monthly- or daily-input models in semi-arid catchments. Vast improvements in the ability of the models to accurately reproduce the long-term characteristics of streamflow can be effected by expanding a calibration sample from, say, a six-year record to a fifteen-year record.

(iv) Comparison of performance - model complexity: Some evidence was found of a correspondence between superiority of model performance and higher structural complexity of the models in the hourly- and daily-input categories. The results indicate a minimum level of model complexity for the generation of daily and monthly flow series of acceptable accuracy.

(v) Comparison of performance - time resolution of input: The results suggest that increased complexity (finer time resolution) of model input requirements does not necessarily lead to improved accuracy of flow estimation. The implication is that for, say, a run-of-river scheme requiring a daily flow duration analysis an hourly-input model need not be more suitable than a daily-input model; equally so, for a water resources appraisal based on monthly flow totals a monthly-input model may be quite adequate. However, there is an important proviso to this finding: that the daily or monthly model selected should meet the minimum structural requirements referred to under (iv) above.

(vi) Parameter transfer - feasibility: In general, parameter transfer between two of the three apparently “similar” catchments was highly successful but between these two and the third produced poor results. This finding can be explained by subtle but measurable
differences in physical characteristics among the catchments. Such physical differences could be signals of crucially different hydrological response characteristics and can be quantified before parameter transfer is embarked upon.

(vii) Parameter transfer - model performance: No evidence was found that either increased structural complexity or more complex input requirements of the models corresponded with superior transferability of parameter values. In terms of general overall performance during both the performance tests and the parameter transfer study the two daily-input models, PITD and DALT, in that order, can be regarded as the most successful of the seven models tested.

(viii) Pitman's models: A modified version of Pitman's hourly-input model, PITH, produced a performance comparable with that of the Stanford Model in a flood simulation mode. In the simulation of daily or monthly flows, however, the Stanford Model was far superior to PITH. A further modification to PITH, i.e., introduction of a re-infiltration function to attenuate model sensitivity to intense rainfall, was only partially successful. In the general model comparison study Pitman's daily-input model produced the best overall results of the seven models tested but his monthly fared less well, being ranked fourth.

(ix) None of the seven models was entirely convincing in simulating the vastly variable range of runoff-generation conditions in semi-arid catchments and all model/catchment combinations yielded one or more serious simulation failures with respect to specific runoff events.

Conceptual modelling emerges as an approach that is viable for semi-arid water resources studies but which requires careful and, often, subtle a priori decision-making. It is hoped that the conclusions outlined above can be employed by the prospective model user as guidelines in the search for an adequate modelling approach.

9.2 RECOMMENDATIONS FOR FURTHER RESEARCH

The encouraging performance of relatively simple models such as
PITD, DALT, PALM and PITH suggest a direction for further research in the Ecca catchments. Comparison of the performance of these conceptual models with that of multiple regression rainfall-runoff models, as well as with stochastic flow-generation models, is a logical extension to the Ecca research programme. Furthermore, the question of adequate calibration periods for statistical streamflow models, as well as with stochastic flow-generation models, is a logical extension to the Ecca research programme. Furthermore, the question of adequate calibration periods for statistical streamflow models using data from semi-arid catchments is relatively unresearched and there is a real need for guidelines relating to the reliability of the calibration of statistical models, specific to the semi-arid environment.

In the light of growing concern about the effects of land-use changes on the hydrological regime of a catchment, both in terms of water quality and quantity, much emphasis is currently being placed on the development of distributed-parameter rainfall-runoff models based on "partial and variable source area" concepts (Kirkby, 1978). It is believed that distributed/source area modelling is required to overcome the high degree of empiricism of rainfall-runoff models currently in general use. In order to be useful in catchment studies water quality models require reliable rainfall-runoff models as "carriers". The "signals" of the diffuse effects of land-use changes are usually fairly weak, therefore the rainfall-runoff models used as "carriers" must have a high level of physical representativeness. The existing monitoring network and research infrastructure in the Ecca catchments provides a firm basis for the initiation of research into distributed/source area modelling under semi-arid conditions.
REFERENCES

Hobbs, L.O. (1980). Opening address to Workshop on the effects of rural land-use and catchment management on water resources, CSIR, Pretoria.

Hydrological Research Unit. (1981-1982). Surface water resources of South Africa. Reports R/81 to 13/R1 (various authors), University of the Witwatersrand, Johannesburg. Six vols.

river flows from meteorological data in South Africa. Report 2/73, Hydrological Research Unit, University of the Witwatersrand, Johannesburg.

Vallis, J.R. and Todini, E. (1975). Comment upon the residual mass
curve coefficient. *Journal of Hydrology*, 24, 201-205.

curve coefficient. *Journal of Hydrology*, 24, 201-205.

APPENDIX A
DEFINITION OF STATISTICAL CRITERIA

A.1 Notation

- A_n: area of positive or negative residual run
- B: number of positive or negative residual runs
- d: departure from the mean for the residual mass curve
- \bar{d}: mean of the residual mass curve
- F: total number of flood events
- H: number of hours in one flood event
- I_s: range of the residual mass curve of overall mean monthly flow distribution
- i: index of items included in either observed or simulated flow series, or residual mass curve series, or sample of flood events
- j: index of calendar month, i.e., $j = 1$ to 12
- N: total number of data in record
- n: index of positive or negative residual run
- p: peak flow rate for event i
- R_m: range of residual mass curve
- SD: standard deviation
- σ_x: variance of observed flow series
- σ_y: variance of simulated flow series
- V: volume of flood event i
- x: observed flows
- \bar{x}: mean of observed flows of a specific category
- x_{ij}: mean of observed flows for calendar month j
- y: simulated flows
- \bar{y}: mean of simulated flows of a specific category
A.2 DEFINITIONS

Notation used in the equations below are detailed in section A.1. The arrangement of the statistical criteria is alphabetical (usually in terms of the abbreviations).

A.2.1 Statistics used in flood modelling (Chapter 3)

1. Mean peak error = \[100 \cdot \frac{(P_y - P_x) / P_x}{F} \] (%)

2. Mean volume error = \[100 \cdot \frac{(W_y - W_x) / W_x}{F} \] (%)

\[
M \sum_{F} (y - x)^2 / \sum_{H} (x - \overline{x}_h)^2
\]

where \(\overline{x}_h = \frac{\sum x}{H}\)

3. Overall HCE

4. Peak-volume O.F. = \[
\sum_{H} \left[\frac{(P_y - P_x)^2 + 25 \cdot (y_h - \overline{x}_h)^2}{F} \right]
\]

where \(y_h = \frac{\sum y}{H}\) and \(\overline{x}_h = \frac{\sum x}{H}\)

A.2.2 All other statistics

1. \(aADFP\) = Error in average deficient flow period (%) where "deficient flow period" = no. of consecutive monthly or daily flows < mean monthly or daily flow

2. \(COM1\) = \((1 - MCE) + (1 - RMCC)\) (objective function)

3. \(COM2\) = \((1 - DCE) + (1 - RMCC)\) (objective function)

4. \(COM3\) = \((1 - CEFDG) + (1 - MCE)\) (objective function)

5. \(COM4\) = \((1 - DCE) + (1 - MCE)\) (objective function)
(6) CE

\[CE = \text{coefficient of efficiency (one-to-one fit)} \]

\[CE = 1 - \frac{\sum_{i=1}^{N} (y_i - x_i)^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \]

(7) CD

\[CD = \text{coefficient of determination (one-to-one fit)} \]

\[CD = (\text{correlation coefficient})^2 \]

(8) CP

\[CP = \text{coefficient of persistence (systematic error)} \]

\[CP = \frac{\sum_{i=1}^{B} \hat{x}_i^2}{\text{SSRES}} \]

(9) DCE

\[DCE = \text{daily coefficient of efficiency based on the mean daily flow for each calendar month (one-to-one fit)} \]

\[DCE = 1 - \frac{\sum_{i=1}^{N} (y_i - x_i)^2}{\sum_{i=1}^{N} (x_i - \bar{x}_{d2})^2} \]

(10) OC

\[OC = \text{OC based on logarithms} \]

(11) DCEL

\[DCEL = \text{DCE based on logarithms} \]

(12) DSE

\[DSE = \text{difference between coefficient of determination and coefficient of efficiency (systematic error)} \]

\[DSE = CD - CE \]

(13) DT

\[DT = \text{significance of sign test, based on the number of runs of residuals of either positive or negative sign: Chi-square two-tailed test} \]

(14) \(\Delta I_s \)

\[\Delta I_s = \text{error in index of seasonal variation (see A.1)} \]

\[\Delta I_s = 100 \left(\frac{I_{y_s} - I_{x_s}}{I_{x_s}} \right) \]

(15) \(\Delta \text{MAR} \)

\[\Delta \text{MAR} = \text{error in mean annual runoff} \]

\[\Delta \text{MAR} = 100 \left(\frac{\text{MAR}_y - \text{MAR}_x}{\text{MAR}_x} \right) \]
(16) **MCE** = monthly coefficient of efficiency based on the mean flow for each calendar month (one-to-one fit)

\[
MCE = 1 - \frac{\sum (y - x)^2}{\sum (x - \bar{x})^2}
\]

(17) **MDFP** = error in maximum deficient flow period (%)

where "deficient flow period" = no. of consecutive monthly or daily flows < mean monthly or daily flow

\[
MDFP = error \text{ in } \max \text{ equivalent constant error (one-to-one fit)}
\]

which is calculated from

\[
M = \text{MCE} \cdot [C_y^2 (N - 1)/N + 1]^{0.25} \text{ where}
\]

\[
C_y = \frac{(SSRES/N)^{0.5}}{\bar{x}} \text{ and}
\]

\[
v_x = \frac{\bar{x}}{\bar{x}^2}
\]

(18) **MECE** = maximum equivalent constant error (one-to-one fit)

(19) **MLF** = errors in mean daily "low flow" (%)

where "low flow" = all daily flows < some predetermined threshold, eg. 2. mean daily flow

\[
MLF = 100(y - \bar{x})/\bar{x}
\]

(20) **MPF** = error in mean peak daily flow/month (%)

for months where the peak daily flow > some predetermined threshold, eg. 2. mean daily flow

(21) **PEE** = proportional error of estimate (one-to-one fit of small to medium flows)

\[
PEE = \left(\sum \frac{(y-x)^2}{\bar{x}^2} \right)^{0.5}
\]

(22) **R_a** = error in range of residual mass curve (%)

\[
R_a = 100(R_y - R_{xa})/R_{xa}
\]

(23) **RAE** = relative absolute error (one-to-one fit)

\[
RAE = \frac{\sum |y - x|}{R}
\]
(24) RNCC = residual mass curve coefficient (systematic error)
\[RNCC = 1 - \sum_{i=1}^{N} \frac{(dy - dx)^2}{\sum_{i=1}^{N} (dx - dx)^2}\]

(25) RMP = relative mean persistence (systematic error)
\[RMP = \left(\sum_{i=1}^{N} A_i^2 / \text{mean} \right)^{0.5} / \sigma_x^2\]

(26) eSD = error in standard deviation
\[eSD = 100 (SD_y - SD_x) / SD_x\]

(27) SSRAT = sum of mean ratio and standard deviation of ratios of simulated to observed daily flows (one-to-one fit)
\[SSRAT = \bar{z} + \text{SD}z\]
where \(\bar{z} = y/x\)

(28) SSRAT = sum of squared ratios of simulated to observed flows (one-to-one fit)
\[SSRAT = \sum_{i=1}^{N} \frac{(y/x)^2}{x^2}\]

(29) SSRATL = SSRAT calculated on logarithms (one-to-one fit of low to medium flows)

(30) SSRES = sum of squared residuals (one-to-one fit)
\[SSRES = \sum_{i=1}^{N} (y - x)^2\]

(31) SSRESL = SSRES calculated on logarithms (one-to-one fit on low to medium flows)

(32) ST = significance level of Durban-Watson d-test, based on the auto-correlation of the series of residuals
\[ST = N / \sum_{i=1}^{N} \left(e_i - e_{i-1} \right)^2 / \sum_{i=1}^{N} e_i^2\]
where \(e_i = y - x\)
\[\text{(33) } \Delta \text{VAR} = \text{error in variance of flows (\%)} \]
\[= 100 \left(\frac{v_y - v_x}{v_x} \right) \]
\[\text{(34) } W\text{DE} = \text{weighted daily coefficient of efficiency (one-to-one fit biased by the error in MAR and SD)} \]
\[= \text{DCE} \left(1 + Z\text{MAR} \right) \left(1 + Z\text{SD} \right) \]
where
\[Z\text{MAR} = \left(\frac{\Delta \text{MAR} - 5}{10} \right)^2 \]
and
\[Z\text{SD} = \left(\frac{\Delta \text{SD} - 10}{10} \right)^2 \]
(33) \[\Delta \text{VAR} = \text{error in variance of flows (\%)} \]
\[= 100 \times \frac{v_y - v_x}{v_x} \]

(34) \[\text{WDOE} = \text{weighted daily coefficient of efficiency (one-to-one fit biased by the error in MAR and SD)} \]
\[= \text{DCE} \times (1 + Z\text{MAR})(1 + Z\text{SD}) \]

where \[Z\text{MAR} = (\Delta \text{MAR} - 5)^2/10 \]
and \[Z\text{SD} = (\Delta \text{SD} - 10)^2/10 \]
SUBFILE: FORD LC=820U LENGTH: 179 HRAG

LIST
PROGRAM (FORD)
INPUT 5=CR4
INPUT 6=CR1
INPUT 7=CR2
INPUT 8=CR3
OUTPUT 6=LPO
OUTPUT 7=LPO
COMpress INTEGER AND LOGICAL
TRACE U
END

MASTER FORD
C STANFORD WATERSHED MODEL -- WEATHER BUREAU, ANDERSON VERSION
C THIS VERSION SET UP FOR THE FOLLOWING
C 1 RAINGAUGE
C 1 FLOWPOINT
C 1 POTENTIAL EVAPOTRANSPIRATION STATION
C 10 ELEMENT HISTOGRAMS = 1 HOUR IS THE MINIMUM TIME INTERVAL
C 48 HOURS OF TRANSLATED FLOW ARE RETAINED
C THAT IS MAXL MUST BE (1,2,4)
C *********** EXPETED USE
C THROUGHOUT PROGRAM O MEANS NO MEANS YES WHEN APPROPRIATE
C *********** EXPETED USE
C FORTRAN IDENTIER FORMAT REMARKS
C INFRO () 20A4 GENERAL RUN INFORMATION
C *********** EXPETED USE
C RASIN () 20A4 BASIN NAME
C *********** EXPETED USE
C MU1 15 FIRST MONTH AND LAST 2 DIGITS OF
C YR1 15 OF THE RUN
C MU2 15 SAME FOR LAST MONTH OF RUN
C YN2 15
C *********** EXPETED USE
C OUTHR 15 OUTPUT HourLY FLOWS ABOVE PRESET BASE
C AVEPE 15 USE MEAN MONTHLY PE IF YES
C IFORCE 15 USE MEAN MONTHLY FORCE IF YES
C POWER $5.1 EXPONENT OF THE INFILTRATION CURVE
C SIXHR 15 AVERAGE 6 HR. PRECIPITATION RATE USED
C CR6HR 15 D HR. PRECIPITATION USED AS INPUT
C TRSOUT 15 TRANSLATED FLOW OUTPUT AT END OF
C THSIN 15 INPUT TRANSLATED FLOW FOR 1ST MONTH
C STORE 15 STORES CHANNEL INFLOW ON DATA SET
C ROUTE 15 ROUTE ONLY IF YES - CHANNEL INFLOW
C OSRO 15 DAY WHEN CHANNEL INFLOW
C VAREP 15 VARIATION OF PE IF YES
C UZSNW 15 WT. FACTOR IN EQUATION UZSNTS
C QUART 12 30-MINUTE PRECIP USED IF YES SIXHR
C *********** EXPETED USE
C PEADJ () 12F5.3 MONTHLY PE ADJUSTMENT FACTOR
C *********** EXPETED USE
C GAGEPE () F5.2 MONTHLY PE ADJUSTMENT FACTOR
C *********** EXPETED USE
C FWAMD 12F5.3 AVERAGE MONTHLY PE -- ONLY IF AVEPER = 1
C *********** EXPETED USE
C SDEV 12F5.2 STANDARD DEVIATION OF PE IN PERCENT
B2

PE Bias in Percent

Starting odd integer for R.N., VAREP=1

RA N G A NAME

LAND

VOLUME

20X - FS.0

PARAMETERS

INITIAL

STORAGES

ANTECEDENT PE INDEX

FLOW-POINT NAME

AREA-SQUARE MILES

CHANNEL ATTENUATION PARAMETER

VARIABLE K IF YES

VARIABLE LAG IF YES

ROUTING INTERVAL - HOURS

NO. OF ELEMENTS IN TIME-DELAY

VAR. K INTERVAL - VARK=1

VAR. K CURVE

REMAINDER OF CURVE

VAR. LAG, INTERVAL - CFS VARK=2

VAR. LAG, CURVE

IF OBSERVED SIX HOUR FLOW

PRESENT BASE FOR OUTPUT OF

MAX. ORDINATE MEAN DAILY PLOT

OUTPUT HOURS FLOWS & 60 HR. PLOT

SET OF COMPLETE 12-MON.YRS

CHANNEL TIME DELAY HISTOGRAM

INITIAL PREVIOUS FLOW - CFS, TRSN=1
TRANSL() 107.0 INITIAL TRANSLATED FLOW -CFS

TRANSL() 10X=107.0 FORM FOR ADDITIONAL CARDS

NEXT GROUP OF CARDS IS BY A WATER YEAR OR PART WATER YEAR BASIS

FVAP() DAILY DAILY RE DATA - ONLY IF AVEPE=0

ACTFLW() INPUT OBSERVED MEAN DAILY FLOW

OISN= 15 ONLY IF ROUTE=0

DSN= 15 DATA SET NUMBER FOR PRECIP IF STORED

SKIP= 15 NO. OF RECORDS ON TAPE OR DISK TO

PA() SWM CARD PRECIP DATA

FLOW= HOURLY OBSERVED HOURLY FLOW FOR SELECTED

CARD FORMATS

DAILY INPUT

IDENTIFICATION 7X

YW= 12 LAST TWO DIGITS OF YEAR

MN= 12 MONTH

CN= 11 =1 DAYS 1-10 =2 DAYS 11-20 =3 DAYS

R=CO=0() 11F6.X OBSERVED VALUE

SWM PRECIPITATION CARDS

SWM CAN HANDLE 6-HOURLY OR 15-MINUTE PRECIP DATA

IN EACH CASE CARD FORMAT IS THE SAME:

STATE= 12 WEATHER BUREAU STATE NUMBER

IDENTIFICATION 7X

YW= 15 LAST TWO DIGITS OF YEAR

MN= 13 MONTH

DA= 13 DAY

CN= 12 CARD NO. - VALUE IS BETWEEN 1 & 8

RECFLX() 14/11:15 OBSERVED PRECIP IN 1/10 MN

FOR 6-HOURLY DATA THE 6 VALUES FOR EACH DAY ARE CODED IN THE FIRST

4 PLACES OF THE FIRST CARD(CN=1). FOR HOURLY DATA TWO CARDS ARE

USED FOR A DAY'S INFO (CN=1 & 2). FOR 15-MINUTE DATA ALL 8 CARDS

ARE USED, EACH COVERING A 3-HOUR PERIOD.

IN EVERY CASE A CARD IS ONLY READ IF PRECIP IS>0 FOR THAT CARD

HOURLY FLOW

STATE= 16 USGS STATE NUMBER

IDENTIFICATION 7X

MN= 15 MONTH

DA= 15 DAY

YW= 15 YEAR

CN= 16 =1 HOURS 1-6 =2 HOURS 7-12

=3 HOURS 13-18 =4 HOURS 19-24

HREFW() 6F70.0 OBSERVED HOURLY FLOW -CFS- SELECTED

SIX HOUR FLOW

STATE= 16 USGS STATE NUMBER

IDENTIFICATION 7X

MN= 15 MONTH

DA= 15 DAY

YW= 15 YEAR

RECFLX() 24/10.0 FLOW IN CFS AT 6 A.M., NOON, 6 P.M., MID

10 = 15 24 HOUR CLOCK TIME FOR FLOW
MAIN PROGRAM VARIABLES

INTEGER TITLE
REAL INCHES(12), SGW1, RES1, L Z S1, SRGX1, UZS1, S EPI

MAIN/INIT AND READER PROGRAM VARIABLES

INTEGER YK2, COMPARE, BASE, CTES7, OUTHR,
1PTES7, PLOT, PLOTHR, CKTEST, HRTES7,
2DSRO, CMXHR, TRSOUT, STORE, ROUTE,
3NUM(12), LASTDA(2,12), YR1,
4MAY, MON, IFORE, M0, INIT7, NEWFY, YEAR, FINAL, LEAPYR, H7
REAL MINH, MOCHAR, 12,
1SSF(12), SAF(12), AREA,
RAISIN(20), RGNAME(5), INFRO(20)
COMMON/MIR/YR2, COMPARE, BASE, CTES7, OUTHR,
1PTES7, PLOT, PLOTHR, CKTEST, HRTES7,
2DSRO, CMXHR, TRSOUT, STORE, ROUTE,
3NUM, LASTDA, YR1,
4MAY, MON, IFORE, M0, INIT7, NEWFY,
5IINFW, MOCHAR,
6INFRO, LEAPYR, N, YEAR, FINAL,
7SSF, SAF, AREA,
8RAISIN, RGNAME

MAIN/INIT, READER, HOURLY AND DAILY VARIABLES

INTEGER FIRST/ checkout
COMMON/MIR/FLOW(744), PARMX, FNAME(7), PLOTMX,
1ACF(LW(744), P T E S7(74, 31), SIMFW(744, 31), FIRST/checkout

MAIN/INIT, READER, LAND AND CHANNEL VARIABLES

INTEGER ELE, ELEMENTS,
1REINT/AVEPE, VARK,
2VARL/VAREP
REAL IMPV, LSN(12), K24L, K24EL, KV, LKK,
1MAYF(72, 31), LRC4, LSAI, KS1, KSTV(20), K24L, SAFX(12)
COMMON/MEL/HOURST(24), EPXM, UZSN, CB, ELC, SRC, BGC,
1UZSI, SGWL, GUSI, RESI, SRGVI, S EPI, BPI,
2CFS, PERFIL, TRANS(48), FVAP(I4, 72),
3FLOW(744), RO(744), EVAPM(12), SHO, SROS, SIMP, SINTF,
4SUF, SRECH, SPK, SPF, SET, TMEAR(1), PEADJ(12),
5GAGE, F/U, BASE, BASEL, IMPV, LSN(12), K24L, K24EL, KV,
6K1K4L, LRC4, LSA1, KS1, KSTV, MAXL, LMIN, LAG(10),
7K1K4L, MOHR1, MOHR2/ELE, FLEMTS, VAREP, SDEP, KPIAS, KEX,
8TSTF, TST2, RTE, INT/AVEPE, VARK, VADL, UZSNW
9AEP, MSTAT

MAIN/LAND, CHANNEL VARIABLES (II)

INTEGER PX(31, 94), QUART
INTEGER SIXHR
REAL K1, QSIN(100), QONS(100), XSIN(12), XUBS(12)
COMMON/KLCS/KOHLEY/PES(31), K1LST/IDA/1HR/MONTH, I, SIXHR,
1QUART, PX

INITIALISE VARIABLES AND READ IN BASIC RUN INFORMATION

CALL INIT

END OF RUN, RAINGAGE AND FLOW-POINT INPUT DATA

105 MONTH=M01
YEAR=YR1
LKY=

START OF MONTHLY LOOP

C INITIAL MONTHLY VALUES

105 LEAPYR=0
IF ((YEAR-4) % (YEAR/4), EQ, 0) LEAPYR=1
LAST=LASTDA((LEAPYR+1),MONTH)
U2S1=U2S1
L2S1=L2S1
SGWI=SGWI
RES1=RES1
SRGXI=SRGXI
SCEP1=SCEP1
SR0=S0,0
SRO=S0,0
SIMP=S0,0
SINT=S0,0
SGWF=SGWF
SRECH=SRECH
SPR=SPR
SPE=SPE

106 INPUT OF MONTHLY DATA
CALL READER
122 IF (ROUTE,EQ,0) GO TO 120
READ(5,980) NST
IF(INSTR,GT,7) READ(5,980) NST
120 IF (ROUTE,EQ,0) GO TO 113
GO TO 114

113 COMPUTATION OF SIMULATED CHANNEL INFLOW AND STREAMFLOW
114 CALL LAND
CALL CHANNEL
IF(HSTAT,GT,0.1)G0T0 1257

120 WRITE(6,923) BASIN
WRITE(6,924) MOCHAR(MONTH),YEAR
WRITE(6,925)
WRITE(6,940)
WRITE(6,942)

1258 IF(NROUT,GT,0.0) GO TO 1257
WRITE(6,983) MOCHAR(MONTH),YEAR
WRITE(6,980)

1255 WRITE(6,981) PREVFI,(TRANSI(IE),IE=1,20)
IF (1,GT,20) GO TO 1255
WRITE(6,981) PREVFI,(TRANSI(IE),IE=1,1)
GO TO 1257
C COMPUTE MEAN DAILY SIMULATED FLOW

1257 SSF(MONTH)=0.0
DU 128 IDA=1-LAST
I=(IDA-1)*24
TEMPFL=0.0
DU 127 IHr=1,24
MHR=I+1Hr

127 TEMPFL=TEMPFL+FLOW(MHR)
TEMPFL=TEMPFL/24.0
SIMFLW(MONTH,IDA)=TEMPFL
IF (lx,IE,12) GOTO 128
DAYF(LI-12,IDA)=TEMPFL/35.314

128 SSF(MONTH)=SSF(MONTH)+TEMPFL
QSIM(LX)=SSF(MONTH)*86.4/35.314
SUBS(LX)=SAF(MONTH)*86.4/35.314
SAFX(MONTH)=SAF(MONTH)

C CHECK IF MONTHLY FLOWS AND STATS OUTPUT REQUIRED

C IF(MSTAT,LE.1) GOTO 1361
C OUTPUT HOURLY SIMULATED FLOWS ABOVE PRESET VALUE
C IF (OUTHR,LE.0) GOTO 137
TITLE=0
TITLE=1
DU 140 IDA=1-LAST
IF (SIMFLW(MONTH,IDA),LT,MINFW) GOTO 140
IF (TITLE,LE.1) GOTO 1391

1391 IF (TITLE,LE.1) GOTO 1392
TITLE=1
WRITE(6,906) FNAME,MINDW

1392 MHRS1=IDA*24+12
MHRS1=MHRS1+11
WRITE(6,947) IDA,FLOW(MHR),MHR=MHRS1,MHRS2
MHRS1=MHRS1+12
MHRS1=MHRS1+12
WRITE(6,948) FLOW(MHR),MHR=MHRS1,MHRS2
SIMFLW(MONTH,IDA)

140 CONTINUE

C OUTPUT MEAN DAILY SIMULATED AND ACTUAL FLOWS

137 WRITE(6,900)
WRITE(6,903) HASIN
WRITE(6,924) MOCHAR(MONTH)/YEAR
IF (TEST,LE.11) GOTO 131
WRITE(6,928)
WRITE(6,929)
WRITE(6,903)
DU 129 IDA=1-LAST

129 WRITE(6,930) IDA,SIMFLW(MONTH,IDA)
WRITE(6,935) SSF(MONTH)
GOTO 1362

131 WRITE(6,933)
WRITE(6,934)
WRITE(6,903)
DU 136 IDA=1-LAST

136 WRITE(6,931) IDA,SIMFLW(MONTH,IDA),ACTFLW(MONTH,IDA)
WRITE(6,936) SSF(MONTH),SAF(MONTH)
C PLOTTING OF HOURLY FLOW
1362 IF(HKTEST.EQ.0).AND.(CKTEST.EQ.0) GO TO 1363
 IF(PLOTHE.EQ.0) GO TO 1365
 CALL HOURLY(INFLOW,MONT,YEAR,FLOW)

C WATER YEAR SUMMARY SECTION
1363 IF(MONT.HN.YR) GO TO 1361
 C WATER YEAR SIMULATED FLOW SUMMARY TABLES
 WRITE(6,952) FPNAME
 WRITE(6,953) YEAR
 WRITE(6,954)
 WRITE(6,955)
 WRITE(6,956)
 N=28
 IF(LEAPYR.FL.1) N=29
 DO 812 IDA=1,N
 WRITE(6,957) IDA,(SIMFLU(MO,IDA),MO=10,12),
 SIMFLW(MO,IDA),MO=1,Y)
 IF((IDA-5*(IDA/5)).EQ.0) WRITE(6,956)
812 CONTINUE
 N=N+1
 DO 815 MO=1,12
 WRITE(6,958) IDA,(SIMFLU(MO,IDA),MO=10,12),SIMFLW(1,IDA),
 SIMFLW(MO,IDA),MO=1,Y)
813 CONTINUE
 IDA=31
 WRITE(6,959) IDA,(SIMFLU(10,31),SIMFLW(12,31),
 SIMFLW(7,31),SIMFLW(8,31))
 CONV=29.9*AREA
 WYFLOW=0.0
 DO 814 MO=1,12
 TEMPFL=SSF(MO)
 INCHES(MO)=TEMPFL/CONV
 WRITE(6,960) (SSF(MO),MO=10,12), (SSF(MO),MO=1,9),WYFLOW
 WYFLOW=WYFLOW+CONV
 WRITE(6,961) (INCHES(MO),MO=10,12), (INCHES(MO),MO=1,9),WYFLOW
 WYFLOW=WYFLOW+CONV*1.986
 WRITE(6,962) WYFLOW
 IF(CUMPAR.EQ.0) GO TO 810
 WYFLOW=0.0
 DO 815 MO=1,12
 TEMPFL=SAFX(MO)
 INCHES(MO)=TEMPFL/CONV
814 WYFLOW=WYFLOW+TEMPFL
 WRITE(6,963) (SAFX(MO),MO=10,12), (SAFX(MO),MO=1,9),WYFLOW
 WYFLOW=WYFLOW+CONV
 WRITE(6,964) (INCHES(MO),MO=10,12), (INCHES(MO),MO=1,9),WYFLOW
 WYFLOW=WYFLOW+CONV*1.986
 WRITE(6,965) WYFLOW

C PLOT OF SIMULATED VS OBSERVED MEAN DAILY FLOW--BY WATER YEAR
810 IF(PLOT.EQ.0) GO TO 1361
 IF(FIRST.EQ.1) GO TO 800
 FIRST=1
 B00 IF(PLOT.EQ.0) GO TO 801
 CALL DAILY(INFRO,MONT,YEAR)
801 CONTINUE
 N INCREMENT TO THE NEXT MONTH
1361 IF(YEAR.EQ.YR2).AND.(MONT.EQ.MO2) GO TO 13U
 MONT=MONT+1
 LFRL+1

C WATER YEAR SIMULATED FLOW SUMMARY TABLES
WRITE(6,952) FPNAME
WRITE(6,953) YEAR
WRITE(6,954)
WRITE(6,955)
WRITE(6,956)
N=28
IF(LEAPYR.FL.1) N=29
DO 812 IDA=1,N
WRITE(6,957) IDA,(SIMFLU(MO,IDA),MO=10,12),
SIMFLW(MO,IDA),MO=1,Y)
IF((IDA-5*(IDA/5)).EQ.0) WRITE(6,956)
812 CONTINUE
N=N+1
DO 815 MO=1,12
WRITE(6,958) IDA,(SIMFLU(MO,IDA),MO=10,12),SIMFLW(1,IDA),
SIMFLW(MO,IDA),MO=1,Y)
813 CONTINUE
IDA=31
WRITE(6,959) IDA,(SIMFLU(10,31),SIMFLW(12,31),
SIMFLW(7,31),SIMFLW(8,31))
CONV=29.9*AREA
WYFLOW=0.0
DO 814 MO=1,12
TEMPFL=SSF(MO)
INCHES(MO)=TEMPFL/CONV
WRITE(6,960) (SSF(MO),MO=10,12), (SSF(MO),MO=1,9),WYFLOW
WYFLOW=WYFLOW+CONV
WRITE(6,961) (INCHES(MO),MO=10,12), (INCHES(MO),MO=1,9),WYFLOW
WYFLOW=WYFLOW+CONV*1.986
WRITE(6,962) WYFLOW
IF(CUMPAR.EQ.0) GO TO 810
WYFLOW=0.0
DO 815 MO=1,12
TEMPFL=SAFX(MO)
INCHES(MO)=TEMPFL/CONV
814 WYFLOW=WYFLOW+TEMPFL
WRITE(6,963) (SAFX(MO),MO=10,12), (SAFX(MO),MO=1,9),WYFLOW
WYFLOW=WYFLOW+CONV
WRITE(6,964) (INCHES(MO),MO=10,12), (INCHES(MO),MO=1,9),WYFLOW
WYFLOW=WYFLOW+CONV*1.986
WRITE(6,965) WYFLOW

C PLOT OF SIMULATED VS OBSERVED MEAN DAILY FLOW--BY WATER YEAR
810 IF(PLOT.EQ.0) GO TO 1361
 IF(FIRST.EQ.1) GO TO 800
 FIRST=1
 B00 IF(PLOT.EQ.0) GO TO 801
 CALL DAILY(INFRO,MONT,YEAR)
801 CONTINUE
 N INCREMENT TO THE NEXT MONTH
1361 IF(YEAR.EQ.YR2).AND.(MONT.EQ.MO2) GO TO 13U
 MONT=MONT+1
 LFRL+1
IF (MONTH.LE.12) GO TO 105
MONTH=1
YEAR=YEAR+1
GO TO 105

130 CONTINUE

C WRITE MONTHLY FLOWS AND INVOKE AFIT

1372 NM=(YR-YR1+1)*12
DO 1373 M=13,NM,12
NE=NE+1
FYC=U,U
XYC=U,U
DO 1374 MJ=M,YE

XSIM(K)=QSIM(J)
QSIM(J-12)=QSIM(J)
QBS(K)=QBS(J)
QBS(J-12)=QBS(J)

FXC=FXC*XSIM(K)
WRITE(6,1375)(XSIM(N),NE1,12)/FXC

1374 CONTINUE

NM=NM-12
CALL AFIT(QBS,QSIM,NE1)
LY9=YEAR+1
CALL SF9N(DT,LY9,FPERSON(1,YF,VM,ZL,YV))
IF (FIRST,E0.1) WRITE(V70)

C PROGRAM FORMAT STATEMENTS

900 FORMAT (1H1)
903 FORMAT (1H,2O,20A4)
923 FORMAT (1H,19HMONTHLY SUMMARY FOR/1X,20A4)
924 FORMAT (1H,40,20X,20A4)
925 FORMAT (1H,55X,16HRAINEAGE SUMMARY)
926 FORMAT (1H,6X,13HRAINEAGE NAME,10X,8HTOTAL RO,3X,
11HFOURFACE RO,3X,7HMPV RO,3X,9HINTERFLOW,3X,7HGW FLOW,3X,
28HRRECHARGE,3X,6HPRECIP,1X,12HPOTENTIAL-ET,3X,9HACTUAL-ET)
927 FORMAT (1H,6X,5A4,F10.1,3F12.3,4F11.3,F9.6,2F13.3)
928 FORMAT (1H,35HSIMULATED MEAN DAILY FLOW SUMMARY)
929 FORMAT (1H,55HDATE,AX,4HFLOW(CFSO))
930 FORMAT (1H,19,5X,10F10.1)
933 FORMAT (1H,19,5X,10F10.1)
934 FORMAT (1H,55HDATE,10X,9HSIMULATED(CFSO) ACTUAL(CFSO))
935 FORMAT (1H,55HDATE,10X,10F10.1)
936 FORMAT (1H,55HDATE,10X,10F10.1)
937 FORMAT (1H,55HDATE,10X,10F10.1)
940 FORMAT (1H,34X,5SMRUNOFF, PRECIPITATION AND EVAPOTRANSPIRATION COMPONENTS)
941 FORMAT (1H,52X,16HSTORAGE COMPONENTS)
942 FORMAT (1H,13XRAINEAGE NAME,16X,3H24,S4X,5HLZS,4X,3HSGW,4X,
13HGSU,4X,3HRES,3X,4HSGX,3X,4MCEP,3X,4HAP,4X,7HRAINEAGE)
943 FORMAT (1H,54A4,6X,AF,2.X,10F10.1)
945 FORMAT (1H,45A4,2HSIMULATED MOURLY FLOW SUMMARY)
946 FORMAT (1H,74A4,10X,4HMJOIN,7HAN DAILY FLOW CAUSING OUTPUT IS,
11F1,17H CFS)
947 FORMAT (1H,13X,2X,3AMAX,AF,4X,5FV,1)
948 FORMAT (1H,6X,4H24H4FV,1,4X,4F9.1,1F10.1)
C MAIN,INITL,READER,HOURLY AND DAILY VARIABLES
INTEGER FIRST, CHECK
COMMON/MHD/FL0W1(74A)/PHRHX,FF,NAM€(7)/PLOTMX,
FIRST,CHECK
C MAIN,LAND,CHAMEL VARIABLES
INTEGER PX(31,96), QUART
REAL K1
COMMON/MLCS/KOHLER/PE(31),K1,LASTIDA, IHR,MONTH, I/SIXHR,
QUART, PX
C INITIALIZATION OF DATA
INITL = U
FIRST = U
NEWY = U
CTEST = U
PTEST = U
CTEST = O
HRTES = O
DO 170 I = 1, 24
170 EPDIST(1) = 0.0
EPDIST(7) = 0.019
EPDIST(8) = 0.041
EPDIST(9) = 0.067
EPDIST(10) = 0.088
EPDIST(11) = 0.102
EPDIST(12) = 0.11
EPDIST(13) = 0.11
EPDIST(14) = 0.11
EPDIST(15) = 0.105
EPDIST(16) = 0.095
EPDIST(17) = 0.081
EPDIST(18) = 0.055
EPDIST(19) = 0.017
C RUN, RAINAGE AND FLOW-POINT INPUT DATA
C BASIC RUN INFORMATION
READ(5,901) INFRO
READ(5,901) BASIN
WRITE(6,900)
WRITE(6,903) BASIN
WRITE(6,902) INFRO
WRITE(6,904)
READ(5,905) M01,YR1,M02,YR2
READ(5,905) OUTHR,AVEPE,STORE,POWER,SIXHR,CN6HR,TSOUT,TRSN,
STORE,ROUTE,DSRO,VARPE,USNW,F,QUAT
IF (DSRO,GT,0) REWIND D$40
IF (STORE,EQ,1) ROUTE=0
IF (CN6HR,EQ,1) SIXHR=1
READ(5,965) READ
READ(5,965) AVEPE
IF (AVEPE,GT,0) GOTO 1003
READ(5,965) EVAPM
DO 1004 1=1,12
1004 EVAPM(I)=EVAPM(I)*READ(I)
1003 LEAPYR=0
IF (VAREP,GT,1) READ(5,999) SEP,EPIAS,ISEP
IF (YR2-4*(YRZ/6),EQ,0) LEAPYR=1
LAST=LASTDA(LEAPYR+1),MO2
WRITE(6,936) MCHAR(M01),YR1,MCHAR(MO2),LAST,YR2
WRITE(6,936)
1003 WRITE(6,904)
C BASIC RAINAGE INFORMATION
READ(5,909) RNAME,K1,MPV,EPXM,USZN,LSZN,CC,K3,K24L,K24EL
READ(5,939) L8S,NM,IRC,KK24,KV
SNC=1000,UP506(F(33)/EMN=1)
DEC=0,10052*14/(NNL,LSRT(3,1)+0.6)
LKK=41.0,KK24**((1.0/96,0))
LRC7=1.0-I(1/140,0)
READ(5,910) USZLI,ZSIZI,USNI,ZSNI,RSXI,RESI,SRGI,EPI
REPI=0.0
WRITE(6,911) RNAME,K1,MPV,EPXM,USZN,LSZN,CC,K3,K24L,K24EL,L,
156,NM,IRC,KK24,KV
WRITE(6,912) POWER,USNW
WRITE(6,912)
WRITE(6,913) RNAME,USZI,ZSIZI,USNI,ZSNI,RESI,SRGI,EPI
WRITE(6,938)
1002 WRITE(6,914)
C BASIC FLOW POINT INFORMATION
READ(5,915) FPNAME,AREA,K31,VARK,VALR,REINT,ELE
IF (VARK,GT,0) GOTO 1504
READ(5,984) BASEK,(kS1V(1),1=1,10)
READ(5,980) (K3TV(1),1=1,20)
K3=71
150 IF (VARK,GT,0) GOTO 1249
READ(5,988) BASEL,(LA61(I),1=1,10)
1249 READ(5,975) CHECK,COMPAR,PL0T,PL0TH,MINFM,PL0TM,PHRMX,
*MS1AT
ELE=ELEMTS
IF (COMPAR,GT,1) GOTO 1241
PL0TM=U
G0 TO 1245
1241 CEST=1
1245 IF (PL0T,GT,0) G0 TO 124
PTEST=1
124 IF (CHECK,GT,1) G0 TO 1246
IF (CHECK,GT,2) G0 TO 1247
PLOTHK=0
GO TO 1240
1246 C=TEST=1
GO TO 1246
1247 H=TEST=1
1248 READ(5,917) (T1=PAR(1,E),1=1,ELF)
CFn=26,9=24,0*AREA
WRITE(6,918) FPNAME,AREA,K,RTFINI,COMPAR,CHECK,(TIMEAR(1),
1=1,ELF)
IF (VARL.EQ.0) GO TO 1062
WRITE(6,925) BASEL,(XTV(I),I=1,20)
1042 IF (VARL.EQ.0) GO TO 1041
WRITE(5,987) BASEL,LAG(I),i=1,10)
1041 PREVFI=0,0
IF (RTFINI.GE.0)GOTO 200
INTR=-1*RTFINI
KNX=ELEMENTS-(ELEMENTS/INTR)*INTR
ELELEMENTS/INTR
IF (K=X.GT.0) FLE=EL+E
GOTO 210
200 FLE=EL*RTFINI
210 MLAG=U
IF (VARL.EQ.0) GO TO 1043
DO 1044 I=1,10
IF (LAG(I).GT.MLAG) MLAG=LAG(I)
1044 CONTINUE
DO 1045 I=2,10
IF (LAG(I).EQ.0) GO TO 1045
MLAG=1
GO TO 1043
1045 CONTINUE
1043 MAXL=EL+MLAG
ELE=ELE+MLAG
DO 104 IE=1,FLE
104 TRANS(IE)=0,0
IF (TNSIN.EQ.0) GO TO 1032
N=MAXL/104
DO 1035 I=1,N
FINAL=1+N
BASEFINAL=0
IF (I.LT.1) FINAL=MAXL
IF (I.LT.1) GO TO 1030
READ(5,949) PREVFI,(TRANS(I),I=BASE,FINAL)
GO TO 1035
1036 READ(5,964) (TRANS(I),I=BASE,FINAL)
1035 CONTINUE
1032 WRITE(6,972)
WRITE(6,973) (NUM(I),I=1,12)
WRITE(6,974) (PEADJ(I),I=1,12)
WRITE(6,975) GAGEPE
900 FORMAT (11H1)
901 FORMAT (20A4)
902 FORMAT (10H0,20A4)
903 FORMAT (1H ,20X,20A4)
904 FORMAT (10H0,53X,21HRAING NAME,1UX,2HK1,3X,4HIMPY,2X,
14HHR2X,5X,4HHR2X,4X,2WCB,4X,2HC,4X,2HC,4X,4HK2,4X,
25H24,4X,1HL,5X,2HSS,5X,2HNM,4X,3X,1X,4H24,4X,2HKV)
905 FORMAT (715,513)
906 FORMAT (10H0,10RUN RELINS,1X,A4,5H 1,1V,1C,5X,5HRUN ENDS,1X,A4,1X,
11C,5H,10,12)
908 FORMAT (110,6X,13HRAINAGE NAME,1UX,2HK1,3X,4HIMPY,2X,
14HHR2X,5X,4HHR2X,4X,2WCB,4X,2HC,4X,2HC,4X,4HK2,4X,
25H24,4X,1HL,5X,2HSS,5X,2HNM,4X,3X,1X,4H24,4X,2HKV)
RETURN
SUBROUTINE READER
SUBROUTINE INVOKED EACH MONTH TO READ IN DATA
READER SUBROUTINE VARIABLES
INTEGER WY,DISP,ST,'.TE/DSN,YR,T1,T2,SKP,CN,RECPX(12),PXSIX(4)
REAL HTCOS(33),HHF4(6),RECFWU,RECPM12)
MAIN,1MTL, AND READER PROGRAM VARIABLES
INTEGER Y[<2,COMPAR/BASE,CTEST/POLLUT/ST/R0,HRTEST/OSRO,CN6
HR/TRSOUT,STORE,ro
UTE/NU
m
(12)/LAS TDA (2)/YRV
2MO1,m
02,JFORF/MO,INIT/NFWY,
yEAR,FINAL/LEAPYR/N,YEAR,FINAL,
REAL M1NFU,MOCHAR(12)/SSF(12)/SAF(12)/AREA,RASIN(2)/S AFNAME(5),
INFAPYR/N
COMMON/MIR/YR2,COMPAR/BASE,CTEST/OUTHR,PTST/PLOT/PLOTHR,CTEST,
HRTEST/DSR,CMHR,TRSOUT,STORE,ROUTE,NU(12),LASTDA(2)/YR1
2MO1,MOD,IFORE,MO,INT,NEWNYYEAR,FINAL/LEAPYR/N
REAL MIFN,MCHAR(12)/SSF(12)/SAF(12)/AREA,BASIN(Z0),RNAME(5),
INFAPYR/N
C
COMMON/MIR/YR2,COMPAR/BASE,CTEST/OUTHR,PTST/PLOT/PLOTHR,CTEST,
HRTEST/DSR,CMHR,TRSOUT,STORE,ROUTE,NU(12),LASTDA,MO1,MO2,
2MOD,1MO,INT,NEWNY,MINFA/MCHR,MINFA/MCHR,MINFA/LEAPYR/N,YES/NO,
3SSF,SAF,AREA,BASIN,RNAME
C
MAIN,INIT,READER,HOURLY AND DAILY VARIABLES
INTEGER FIRST,CHECK
COMMON/MIR/FLOW(74),PMDMX,FR,1WE(7)/PLOTMX,
ACTFL(12,31)/SIMFLW(12,31),FIRST,CHECK
C
MAIN,INIT,READER,HOURLY, AND DAILY VARIABLES
INTEGER FLE,FLEMT,HELP,AVEPE,VARK,VARL,VAREP
REAL IMP,175K,5K2,6K4,24EL,5K4,1LRC4,1351,KS1,KS1V(Z0)
C
RETURN
END
COMMON /IMC/IPFST(24),EPX,MUZSN,CC,SRG,DEC/
COMMON /USIT,SNH,GT1,RESL,SRGY,SEPFL,EP,
2CESM,PREVI,TRANS(6),EVAP(1<,31)/
3FLOW(74),RO(74),EVAPM(12),SRO,SRO3,SIMPYSINTF,
4SAMW,SECH,SPR,SET,TIMEAY(10),PEAD(112),
5SA4EP,POWER,BASEK,BASEF,IMVYLISHN,K3,K24L,K24L,KV,
6LKK3,LIR(4251),LSK1,K,S,
MAXL,MINL,LAG(10)
7E/JHRJ,MARKH,MONRH,CE1,CC,SRC,OECE,
8TEST1,TEST2,REINT,AVEPF,ARK,VARL,UZSNWF,AEPI,MSTAT
C MAIN,LAND,CHANNEL VARIABLES (11)
INTEGER PY(31),Q,
INTEGER SIXHR
REAL K1
COMMON/MLS/KOHLE,PE(31),K1,LAST,IDA,JHR,M0NTH,1/SIXHR,QUART,PX
IF ((YEAR,EQ,YR) .AND. (MONTH,EQ,MO)) GO TO 1311
GO TO 751
1311 DU 1312 M0=1,12
SSF(M0)=0,0
DU 1311 IDA=1,31
1312 SIMPLW(M0,IDA)=0,0
FW=YEAR
GOTO 138
131 IF (M0NTH,EQ,1)GOTO 137
C****** NEWY HAS BEEN CHANGED FROM 1 TO ZERO
NEWY=0
LEAPYR=1
138 IF ((WY - 4*(WY/4)),EQ,0) LEAPYR=1
C***** READ ALL INPUT DATA BY MONTH
C DAILY POTENTIAL EVAPOTRANSPIRATION
137 IF (AVEPE,EO,1) GO TO 1331
DU 1331 M0=1,12
REAC(N=9,3)
FINAL=FINAL+0
C(A,V,E,1) GO TO 25
IF (C(U,P,K),EQ,0) GO TO 1361
DO 1341 M0=1,12
C****** READ ALL INPUT DATA ON EVAP FILE
1341 ACTFLW(M0,IDA)=RECOS(IDA)
GO TO 25
1342 DU 1343 MU=1,12
1343 SAF(MU)=0,0
READ(0,932)MU,RECOS(KK),KK=1,33
DU 1335 IDA=1,31
C****** CHANGE METRIC TO BRITISH
RECOS(1DA)=RECOS(IDA)*0.0353147
IF(RECOS(IDA),LE,0,0)GOTO 139
SAF(MU)=SAF(MU),RECOS(IDA)
135 ACTFLW(M0,IDA)=RECOS(IDA)
25 IF (SUETE,F0,0) GO TO 1320
READ (0,SKM) W0
INTERCEPTION STORAGE - SCEP IS INTERCEPTION STORAGE VOLUME

210 IF (EPX.LT.O.U) EPX=0.0
 IF (PK, GE, EPX) GO TO 216
END IF
SCfcp=SCEP+PK
GO TO 121

C P3 IS RAIN REACHING THE GROUND
C UPPER ZONE CALCULATIONS
SIMD=SIMH+P3*AT
C P3*AT IS IMPERVIOUS AREA RUNOFF VOLUME

212 LNRAF=LS / LSN
UP=PK+P4
C P4 IS P3 PLUS SURFACE DETENTION STORAGE
D4F=CF/((LNRAF)**POWER)
D4=0.25*D3FV
P4=CC*(2.0*LNRAF)
IF (RATIO, LT, 1.0) RATIO=1.0
IF (P4, GE, D4F) GO TO 220
SHRn=P4/(2.0*D4F)
GO TO 221

210 IF (P4, LT, 0.5*D4F)
GO TO 227

213 IF (P4, GT, 0.5*D4F*RAF)
GO TO 223

220 RXX=SHP*PRF
C RXX IS THE PERCENT OF RX AND RGXX NOT RETAINED IN UPPER ZONE STORAGE

225 RXX=RXX*PRF
C RX IS THE VOLUME TO INTERFLOW DETENTION STORAGE

220 RX IS THE VOLUME TO OVERLAND FLOW AND SURFACE DETENTION

225 RX=UZS*SHRD-KEX-RX
C UZS IS UPPER ZONE STORAGE VOLUME
C OVERLAND FLOW
IF (RX, LE, RFS) GO TO 226
D3=0.5*(UZS/SHRD)**0.6
GO TO 227

226 RX=RX-(RX,GE, RFS, GE, RX)*0.6
GO TO 227

227 RX=(RX,GE, RFS, GE, RX)**0.6
GO TO 227
C INITIAL VALUES OF PARAMETERS
AT=IMPV
P4=1.0-AT
IHR=1
I=1

C BEGINNING OF HOUR AND DAY LOOP
C VALUES OF POT, EVAP. AND PRECIPITATION
203 IF (IHR.LE.1) GO TO 206
IF (KUHLER.EQ.1) GO TO 204
IF (AVEPE.EQ.0) GO TO 205
FP=EVAP*(MONTH)
GO TO 203
205 FP=EVAP*(MONTH,IDA)*PEADJ(MONTH)/25.4
GO TO 203
204 FP=PE*(IDA)*PEADJ(MONTH)/25.4
2032 IF (VAKEP.EQ.0) GO TO 2032
SP=SP*EP
AEPI*AEPI
202 FP=EP*GAGEPE
SP=SP*EP
AEPI*AEPI*U,9)*EP
206 IF (OUAR1.EQ.0) GO TO 217
C 15-MINUTE DATA
NO=(IHR-1)*4
DO 218 I=1,4
218 P(I)=PX(I/1.4)
GO TO 218
C SIX-HOUR DATA
217 IF (SIXHR,EQ.0) GO TO 20A
IS=(IHR/5)/6
PA=PX(IDA,IS)/0,0
GO TO 217
C HOURLY DATA
208 PA=PX(IDA,IHR)
207 PA=PA*K1
GO 235 I=1,6
233 PA=PA*U,25
C PA IS HOURLY PRECIPITATION—PR IS 15 MINUTE PRECIPITATION
219 PR=0,0
C BEGINNING OF 15-MINUTE LOOP
DO 200 I=1,4
C CONVERT 1/10 IN TO INCHES
PH=P(I/1.5)/244
SP=SP+PR
IF (PH.GT.0,0,0) GO TO 210
210 IF (RES,EQ.0,0) GO TO 211
P3=0,0
GO TO 210
211 IF (SHGK,EQ.0,0) GO TO 213

404 \texttt{FLOW1(MHR)=HRFW(1)}

401 \texttt{IF (CKTEST,EQ.,0) RETURN}
\texttt{C SIX HOUR FLOWS}
\texttt{IF (CHECK,NE.,1) RETURN}
\texttt{DO 407 I=1,7;44}

407 \texttt{FLOW1(I)=0.0}

408 \texttt{READ(3,970) STATE,M0,DA,VR,RECFW,T1,P1,T2,P2}
\texttt{IF (STATE,EQ.,0) RETURN}
\texttt{BASE=(DA-1)*24}
\texttt{DO 409 I=1,4}
\texttt{MHR=BASE+(I*6)}

409 \texttt{FLOW1(MHR)=RECFW(I)}
\texttt{IF (T1.EQ.0) GO TO 406}
\texttt{MHR=BASE+1}
\texttt{FLOW1(MHR)=P1}
\texttt{IF (T2.EQ.0) GO TO 408}
\texttt{MHR=BASE+2}
\texttt{FLOW1(MHR)=P2}
\texttt{GO TO 408}

922 \texttt{FORMAT (12,7X,313,12,12F5.1)}

931 \texttt{FORMAT (9X,12,17,11F6.2)}

932 \texttt{FORMAT (I2)}

951 \texttt{FORMAT (3X,I3,I2,6F10.0)}

970 \texttt{FORMAT (I2/I7X/I3,12F5.0)}

SUBROUTINE \texttt{LAND}

\texttt{LAND SURFACE RUNOFF SUBROUTINE}

\texttt{C LAND VARIABLES}
\texttt{REAL LZS,INTF,INFL,LI1,LOS,LMAT,P(4)}

\texttt{C MAIN,INITL/READER/LAND AND CHANNEL VARIABLES}
\texttt{INTEGER ELI,ELEMTS,PREVPL,AVEPE,VARK,VARL,VAPEP}
\texttt{REAL IMPV,LISHN,K3,K24L,K24EL,KV,LKK4,LIRC4,LZSI,K51,K51V(20)}
\texttt{COMMON/KCL/EPDIS(24),EPXN,USN,CC,SRP,DEC1}
\texttt{UZS1,SW1,GWS1,RES1,SAGY1,SEFI,REP1,}
\texttt{UFHM,PREVFL,TRAN(24),EVAP(12,31),}
\texttt{FLOW(744),RO(744),EVAPM(17),SRF,SROS,SI3F,SI1T,}
\texttt{4GW,RECSPR,RPRSET,RETHM,REPJ,PEADJ(12),}
\texttt{5AGEPE,POWER,BASEK,BASEL,IMPV,LISHN,K3,K24L,K24EL,KV,}
\texttt{6LKK4,LIRC4,LZSI,K51,K51V,MAXLMINL,LAG(10),}
\texttt{7痕迹,MOHR,ELEMTS,VARREP,SEP,EPIIAS,IKEP,}
\texttt{HTEST1,TEST2,PTEINT,AVEPE,VARK,VARL,USN,}
\texttt{9APL,ISTAT}

\texttt{C MAIN,LAND,CHANNEL VARIABLES (II)}
\texttt{INTEGER PX(31,9A),QUST}
\texttt{INTEGER SIXHR}
\texttt{REAL K1}
\texttt{COMMON/MLCS/KOHNER,PET31,K1,LASTCIDA,INHR,MONTH,ISIXHR,QUART,PX}

\texttt{C LAND INITIAL VALUES}
\texttt{SH=0.0}
\texttt{SWD=0.0}
\texttt{SINTF=0.0}
\texttt{SWF=0.0}
\texttt{SIMPV=0.0}
\texttt{SREC=0.0}
\texttt{SET=0.0}
\texttt{SPR=0.0}
\texttt{SPR=0.0}

\texttt{C INITIAL VALUES OF VARIABLES}
GO TO 400

1520 IF (NEWWY,EQ.,0) GO TO 1321
READ(5,978) DISP,DSN,SKIP
IF ((DSN,GT.,O),AND.((INIT,EQ.,0))) REWIND DSN
INIT=1
NEWWY=0
IF (SKIP.EQ.,0) GO TO 1521
DO 1329 I=1,SKIP
1329 READ (DSN)
C ESTABLISH NO OF VALUES IN PX() ARRAY THAT WE WILL USE
C DEFAULT IS 26 -- FOR HOURLY DATA
1321 KNO=24
IF (SIXHR,EQ.,1) KNO=4
IF (QUART,EQ.,1) KNO=96
IF (DISP,EQ.,1) GO TO 1530
IF (DSN,GT.,0) GO TO 1522
C PRECIPITATION -- BY MONTH
1330 DO 109 IDA=1,31
DO 108 NO=1,12
109 PX(IDA,NO)=0
110 READ(9,922) STATE, YR, MO, DA, CH, (RECPZ(LL), LL=1/12)
IF (STATE,EQ.,94) GO TO 107
IF (SIXHR,EQ.,1) GO TO 1081
BASE=(CN-1)*12
DO 108 IHR=1,12
108 NO=BAS*IHR
C CHANGE RAIN INPUT IN MM TO INCHER IN 7/1U MM
RECPX(IHR)=IF1X(RECPZ(IHR)*10.0)
108 PX(IDA,NO)=RECPX(IHR)
DO 109 IDA=1,31
DO 108 NO=1,12
1065 PX(INCH,NO)=RECPX(NO)
1086 CONTINUE
GO TO 111
107 IF (DISP,EQ.,0) GO TO 400
1327 WRITE (DSN) ((PX(IDA,NO), IDA=1/31),/NO=1,KNO)
GO TO 400
1322 READ (DSN) ((PX(IDA,NO), IDA=1/31),/NO=1,KNO)
C INSTANTANEOUS ACTUAL FLOWS BY MONTH
400 IF (HRTEST,EQ.,0) GO TO 401
IF (CHECK,NE,2) GO TO 401
DU 402 I=1,744
402 FLOW(I)=0.0
403 READ(5,971) STATE, YR, MO, DA, CH, HRFW
IF (STATE,EQ.,94) GO TO 401
BASE=(DA-1)*24-(CH-1)*6
DO 404 I=1,6
404 MHR=BAS*IHR

B19

227 \[D = \frac{(R_{ES} + RX)}{2} \times \frac{U}{2} \]
C \[D \] IS AVERAGE SURFACE DETENTION
IF \(D > U \), \[D = D \]
IF \(D < U, 0.005 \) GO TO 226
\[R_{US} = 0.25 + R_{SC} \times (0.1 + 1.67) \times \left(\frac{0.02 + 1.67}{D/D} \right) \times 3.0 \]
GO TO 229

228 \[R_{US} = 0 \]

229 IF \(R_{US} > 0.75 \times RX \) \(R_{US} = 0.75 \times RX \)
C \[R_{US} \] IS OVERLAND FLOW VOLUME
\[S_{RUS} = S_{RUS} + R_{US} \]
\[R_{US} = R_{US} - R_{US} \]
C \[R_{US} \] IS SURFACE DETENTION STORAGE VOLUME
IF \(R_{US} < 0.005 \) GO TO 230
\[L_{US} = L_{US} + R_{US} \]
\[R_{US} = 0 \]
C LOWER ZONE AND GROUNDWATER CALCULATIONS

230 \[L_{US} = L_{US} + S_{RUS} \times (L_{US} + L_{CN}^{-1}) - 1.0 \]
C \[L_{US} \] IS LOWER ZONE STORAGE VOLUME
IF \(L_{US} > 1.0 \)
\[L_{US} = 1.0 \]
\[L_{US} = L_{US} \]
C \[L_{US} \] IS DEEP GROUNDWATER RECHARGE
\[S_{RECH} = S_{RECH} + L_{US} \]
\[S_{GW} = S_{GW} + L_{US} \]
C \[S_{GW} \] IS GROUNDWATER STORAGE VOLUME
\[S_{GW} = S_{GW} + L_{US} \]
C \[S_{GW} \] IS ANTECEDENT GW INFLOW INDEX
\[S_{RGX} = S_{RGX} + L_{US} \]
C \[S_{RGX} \] IS INTERFLOW DETENTION STORAGE
C INTERFLOW CALCULATIONS

234 \[L_{INTF} = L_{INTF} \]
C \[L_{INTF} \] IS INTERFACE VOLUME
\[L_{INTF} = L_{INTF} + \text{INTF} \]
\[S_{INTF} = S_{INTF} + \text{INTF} \]
\[S_{RGX} = S_{RGX} + \text{INTF} \]
IF \(S_{RGX} < 0.0001 \) GO TO 235
\[L_{US} = L_{US} + S_{RGX} \]
\[S_{RGX} = 0 \]
C GROUNDWATER FLOW CALCULATIONS

235 \[L_{GW} = L_{GW} \]
C \[L_{GW} \] IS GROUNDWATER FLOW VOLUME
\[L_{GW} = L_{GW} \]
C \[L_{GW} \] IS TOTAL LAND SURFACE RUNOFF VOLUME
\[R_{US} = R_{US} \]
\[R_{US} = R_{US} \]
C EVAP-TRANS LOSS FROM INTERCEPTION AND UPPER ZONE STORAGES
IF \(I_{US} > 1.0 \) GO TO 200
\[E_{P} = P_{D} \]
IF \(E_{P} > 1.0 \) GO TO 200
IF \(E_{P} = 0 \) GO TO 200
\[E_{P} = E_{P} \]
C EVAP-TRANS LOSS FROM INTERCEPTION AND UPPER ZONE STORAGES
IF \(I_{US} > 1.0 \) GO TO 200
\[E_{P} = P_{D} \]
IF \(E_{P} > 1.0 \) GO TO 200
SET=SET+EPHR
EPHR=U.*
GO TO 234

234 SET=SET+SCEP
EPHR=EPHR-SCEP
SCEP=U.*

236 IF (UZS.LE.0.0) GO TO 237
IF (UZS.LE.EPHR) GO TO 238
SET=SET+PA*EPHR
UZS=UZS-EPHR
EPHR=U.*
GO TO 234

238 SET=SET+UZS*PA
EPHR=EPHR-UZS
UZS=U.*

237 REP=REP+EPHR
C REP IS RESIDUAL POTENTIAL EVAPOTRANSPIRATION
C SLOW PERCUl-ATION FROM UPPER ZONE

234 UZSN=UZS+UZSN*EP*EP*EPIT
DEEPL=(UZS/0.75)-0.75/EPSNT*(DEEPL*3,0)
UZS=UZS-RECE
LZ1=1.*ABS(LNZ1-LNZ2)/LNZ1
PRE=1.0/1.0+1.0
IF (UZS.LT.LZSN) PRE=1.0-PREALNRAT
FJ*PRE=RECE
F1A=(1.0-PRE)*RECE
F1A=(1.0-K24)*PA
RECH=SRECH+RECH
LZS=LZS+3
SWS=SWS+1

C EVAP-TRANS FROM GROUNDWATER AND LOWER ZONE

239 IF (LHR.NE.27) Go TO 209
IF (GWS.GT.0.0001) GWS=0.97*GWS
EP=EP
IF (EP.EQ.0.0) Go TO 209
LUS=SGW*K24L*EP*PA
C LOS IS GROUNDWATER EVAPOTRANSPIRATION VOLUME

240 AETR=AETR*(K3*10.0-EP*(2.0*K3*LHR))
LHS=LHS-AETR
GO TO 241

241 SET=SET+PA*AETR
C AETR IS LOWER ZONE EVAPOTRANSPIRATION VOLUME

REP=U.*

209 CONTINUE
C END OF 15 MINUTE LOOP
MHR=(10*A-1)*24+IH
RUXMN=U.*
SUBROUTINE CHANNEL

CHANNEL ROUTING SUBROUTINE

CHANNEL VARIABLES

INTEGER HALFR, IHR
REAL K, IN, K
DIMENSION TRS(792), XRS(54)

MAIN, INIT, READER, LAND AND CHANNEL VARIABLES

INTEGER ELE, ELEMTS,
1 RTEINT, AVEPE, VARK,
2 VARL, VAREP
REAL IMPV, LSNI, K2, K24L, K24EL, KV, LKK4,
1 LIRC4, L2SI, KS1, KS1V(20)
COMMON/MCL/EODIST(24), EPXM, UZSN, CB, CC, SRC, DEC,
1 UZSI, SGWI, GWSI, RESI, SGXI, SCEP, REP, REPT,
2 CSR, PHEVFI, TRANS1(48), EVAP(16, 37),
3 EFOU(74), RO(74), EVAPM(12), SR0, SROS, IMPV, SINTF,
4 SGW, RHECH, EPHN, SPE, SET, TIMEA(17), PEOA(12),
5 SAGEPE, POWER, BASK, BASEL, IMPV, LSNI, K2, K24L, K24EL, KV,
6 LIRC4, LIRC4, L2SI, K51, K51V, MAXL, MINL, LAG(10),
7 EPEL, EPBI, ELE, ELEMTS, VAREP, SREP, SPF, MBIA, SREP,
8 TEST, TEST2, RTEINT, AVEPE, VARK, VARL, UZSNW,
9 AVEP, PSTAT

MAIN, LAND, CHANDEL VARIABLES (II)

INTEGER PX(31,96), QUART
INTEGER SIXHR
REAL K,
COMMON/MCL/KOHLS, PEF(31), K1, LAST, IDA, IHR, MONTH, I, SIXHR,
1 QUART, PX

CHANNEL INITIAL VALUES

MOHR1 = 1
MOHR2 = LAST + 24
IE = MOHR2 + 48
DIM JU = IHR + IE
3001
3000 IF (RTEINT, LT, 0) GOTO 100
HALFR = RTEINT - 1/2
IF (VARK, EQ, 0) GOTO 3004
3004 IF (VARL, EQ, 0) GOTO 3002
C TRANSLATION IN TIME
3002 DO 3004 HR = HR + 1, MOHR2
DIM = HR + HALFR

00 304 IE=1,ELEMTS
 I=0HR+KEINT+IE-1)
 TRS(I)=TR(S(I)+RO(MHR)*CFSM*TIMEAR(IE)
 GOTO 305
100 IE=1,ELEMTS
 TRS=TR(S(I)+TR(S(I-1)+CON
 KHR=ELEMTS+((ELEMTS/INTR)*INTR)
 MHR=MOHR1/MOHR2
 IM=0
 IX=0
 CON=0
 DU 120 IE=1,ELEMTS
 TRS(I)=CON+TR(S(I)
 CON=0,0
 IX=0

120 CONTINUE
 IF(KHR,GT,0)TR(S(I+1)=TR(S(I)+CON
 CONTINUE
305 IF (.VARL.EQ.0) GOTO 3051
 C VARIABLE LAG
 IE=MOHR2+HALF+K1+KEINT+(ELEMTS-1)
 DU 51 IHR=MOHR1,IE
 MHR=MOHR1-IHR
 R=TR(S(MHR)/BASEL)+1.0
 IF (.LT.MINL) GOTO 51
 IF (1.IE.10) GOTO 52
 C INFLOW GREATER THAN 10*BASEL
 L=LAG(10)
 PART=TR(S(MHR)-BASEL+1.0
 TKS(MHR)=TR(S(MHR)-PART
 TKS(MHR+1)=TR(S(MHR+1)+PART
 I=10
 GOTO 57
 C INFLOW BETWEEN ((LNL-1)*BASEL) AND (BASEL*10,0)
 51 LTOP=LAG(I)
 LDO=LAG(I+1)
 PART=1
 IF (LTOP.LT.LBOT) GOTO 53
 IF (LBOT,LT,0) GOTO 55
 LTOP=LBOT+P*(LTOP-1.0)
 PART=TR(S(MHR)-BASEL+(I-1)
 TR(S(MHR)=TR(S(MHR)-PART
 PART=PART/LBOT+1.0
 DU 54 L=LBOT+LTOP
 TKS(MHR+1)=TR(S(MHR+1)+PART
 GOTO 55
 53 LTOP=LTOP+P
 LTOP=LBOT*(P*(LBOT+1.0)
 PART=TR(S(MHR)-BASEL+(I-1)
 TKS(MHR)=TR(S(MHR)-PART
 PART=PART/LBOT+1.0
 DU 56 L=LBOT+LTOP
 TKS(MHR+1)=TR(S(MHR+1)+PART
 GOTO 55
 55 IF (I.LE.MINL) GOTO 51
IF (iY) 5,6,6
5 iY=iY+743647+1
6 vFl=vY
C END RANDU
ix=iY
50 a=a+vFl
u=(a-6.0)*s+a
RETURN
END
C SUBROUTINE IGauss (ix, s, am, v)
C SUBROUTINE TO COMPUTE NORMAL RANDOM N
C IX=ODD INTEGER ,LT,9 DIGITS TO BEGIN U.
C ix=ODD INTEGER ,LT,9 DIGITS TO BEGIN
C AM=MEAN =VALUE OF COMPUTED NORMAL
C PRECISION u,v,c
u,u
01 50 I=1,12
C START RANDU
ix=ix-05559
SUBROUTINE HOUFLY(INFD, MONTH, YEAR, FLOW)
C SUBROUTINE GENERATES SCALED INPUT FOR AUXILIARY PLOT PROGRAM
INTEGER YEAR, DAY, DA2
REAL INFD(20), MOCHAR(17)
DIMENSION YA(752), YS(752), A(31), UM(31), FLOW(744)
C MAIN INIT, READER, HOURLY AND DAILY VARIABLES
INTEGER FIRST, CHECK
COMMON/MNCHAR/FLOW(744), FHYMX, FPNAME(7), PLOTMX,
1ACTFLW(12,31), SIMFLW(12,31), FIRST, CHECK
DATA MOCHAR/3HJAN, 3HFEB, 3HMAR, 3HMAR, 3HAPR, 3HMAY, 4HJUNE, 4HJULY, 3HAUG,
14HSEPT, 3HNOV, 3HHDEC,
MOHR=1
M6=6
880 IF (CHECK, 50, 1) GO TO 855
C DETERMINE FIRST AND LAST HOUR OF PLOT AND NUMBER OF POINTS
C HOURLY FLOW
DO 850 MHR=MOHR1, 744
IF (FLOW(MHR), EQ, 0.0) GO TO 850
MHR=MOHR1
GO TO 851
850 CONTINUE
GO TO 899
851 FIRST=1
DO 852 MHR=MOHR1, 744
IF (FLOW(MHR), GT, 0.0) GO TO 852
MHR2=MHR-1
GO TO 870
852 CONTINUE
MHR2=744
GO TO 870
C SIX HOURLY FLOWS
855 DO 856 MHR=MOHR1, 744/6
IF (FLOW(MHR), EQ, 0.0) GO TO 856
M6=MHR
GO TO 857
856 CONTINUE
GO TO 899
857 IF (3T=1
DO 858 MHR=MOHR1, 744, 6
IF (FLOW(MHR), GT, 0.0) GO TO 858
MHR2=MHR-6
GO TO 859
858 CONTINUE
MHR2=744
859 MHR1=M6-5
DO 860 MHR=MOHR1, 46
IF (FLOW(MHR), EQ, 0.0) GO TO 860
MHR=MOHR1
GO TO 861
860 CONTINUE
861 FP=FLOW(MHR1)
M7=MHR1+1
864 DO 866 MHR=M7, MHR2
IF (FLOW(MHR), EQ, 0.0) GO TO 866
M2=MHR
FP=FP*FLOW(MHR)
GO TO 863
862 CONTINUE
863 IF (M1, EQ, M7) GO TO 865
FP=(FP-1)/(M2-M1+1)
T=2-1
NUM=MHR-M1+1
X=NUM-T
866 FLOW(MHR)=FP*X
IF (M2.EQ.MOHHR2) GO TO 870
M1=M2+1
F1=F2
GO TO 864
870 NPT=MOHR2-MOHHR1+1
DA1=(MOHR1-1)/24+1
DA2=(MOHR2-1)/24+1
NDA=DA2-DA1+1
I=MOHR1-(DA1-1)*24
XI=I+U,1
DO 871 I=1,NDA
NUM(I)=DA1-1+1
871 A(I)= (1,4)+1
PMAX=PMHR1
DELTAP=PMAX+1
WHITE(7,900)NDA,DELTAX1,NPT
WHITE(7,901)A(I),I=1,NDA
WHITE(7,902)NUM(I),I=1,NDA
IF (CHECK,EQ,1) GO TO 872
WHITE(7,903)
GO TO 873
872 WHITE(7,904)
873 WHITE(7,905)FPNAME
WHITE(7,906)MOHR(MONTH),YEAR
WHITE(7,907)INFR0
WHITE(7,908)
DO 875 MOHR=MOHR1,MOHR2
I=MHR-MOHHR1+1
YA(I)=(FLOW(MHR)/PMAX)*10.0
YS(I)=(FLOW(MHR)/PMAX)*10.0
IF (YAI(I),GT,10.0) YAI(I)=10.0
IF (YSI(I),GT,10.0) YSI(I)=10.0
875 CONTINUE
WRITE(7,909)(YA(I),I=1,NPT)
WRITE(7,910)(YS(I),I=1,NPT)
IF (MUHR2,EQ,44) GO TO 879
MUHR1=MOHR2+1
MOD=MOHR2+6
GO TO 880
879 CONTINUE
C H O U R L Y F O R M A T S T A T E M E N T S
900 FORMAT (25,F1O,2,F5.1,15)
901 FORMAT (16,F5.1)
902 FORMAT (2013)
903 FORMAT (16)H O U R L Y F L O W -- C F S
904 FORMAT (2OHSFY H O U R L Y F L O W -- C F S)
905 FORMAT (7A4)
906 FORMAT (4,2H 19,12)
907 FORMAT (2,64)
908 FORMAT (35H L A C K IS O B S E R V E D -- R E D IS S I M U L A T E D)
909 FORMAT (16,2)
RETURN
END
SUBROUTINE DALLYDNL,MONTH,YEAR
C CALCULATION OF SCALED VALUES FOR MEAN DAILY FLOW PLOT
C PLOT CALLS CAN BE ADDED IF COMPUTER HAS PLOT ROUTINES
INTEGER YEAR,START(2,12),YR1
REAL INF(70),M0CHAR(12)
DIMENSION LASTDA(2,12),YA(368),YS(368)
C MAIN LIMIT READER, HOUCLY AND DAILY VARIABLES
INTEGER FIRST,CHECK
COMMON/MHD/FLOUTC44),PHRMX,FPNAME(7),PLOTMX,
ACTFLW(12,31),SIMFLW(12,31),FIRST,CHECK
DATA M0CHAR/\HCT,\HNV,\HDEC,\HJAN,\HFE\R,\HMAR,\HMAY,\HJUN,\HUJUL,\HAUG,\HS\P/
DATA A/3.0,3.0,6.0,0.6,0.9,1.9,1.2,1.2,2.2,1.5,1.5,1.8,1.8,2.2,
151,31,30,30,31,31/
DATA START/92,92,123,123,151,152,182,183,122,213,443,244,273,274,
1304,310,335,336,340,31,31,61,61/
LEAPYR=0
IF (YEAR-4*(YEAR/4)) .EQ.0 LEAPYR=1
N=12
PMAX=PLOTMX
DELTA=PMAX/1
X=0
L=LEAPYR+1
NPT=ACTFLW(L,1)/PMAX*10
WHITE(/,Y0UN)\NDELTA,X1,NPT
WHITE(/,Y01)\A(L,J),J=1,12
WHITE(/,Y02)M0CHAR
WHITE(/,Y04)FPNAME
YR=YEAR-1
IF (YR.LT.0) YR=99
WHITE(/,Y05)YR,YEAR
WRITE(/,Y06)INFR0
WHITE(/,Y07)
C SCALE ACTUAL AND SIMULATED FLOW
DO 801 MO=1,12
LAST=LASTDA(L,M0)
BASE=START(L,M0)
DO 801 IDA=1,LAST
FA=(ACTFLW(M0,IDA)/PMAX)*10,0
FS=(SIMFLW(M0,IDA)/PMAX)*10,0
IF (FA,GT,10,U) FA=10,U
IF (FS,GT,10,U) FS=10,U
I=BASE+IDA
VA(I)=FA
VS(I)=FS
801 CONTINUE

C FORMAT STATEMENTS
900 FORMAT (13,F14.2)
901 FORMAT (12F5.1)
902 FORMAT (12A3)
903 FORMAT (21HMEAN DAILY FLOW-CFS0)
904 FORMAT (7A4)
905 FORMAT (13HVALUE YEAR 19,12,1H-,12)
906 FORMAT (21A4)
907 FORMAT (33HVALUE IS OBSERVED=-RFD IS SIMULATED)
908 FORMAT (16F5.2)
RETURN
END
INPUT A = CR6
INPUT b = CRO
INPUT 7 = CH1
INPUT i$ = CR2
INPUT y = CR3
OUTPUT 6 = LPO

CUMORESS INTEGER AND LOGICAL
CUMPPACT DATA
THCE U
RND
MATER PITE

C********** PITHAN HOUHLY MODEL WITH ONE YEAR WARM-UP PERIOD WHICH
C********** IS NOT INCLUDED IN CALCS OF RUNOFF STATISTICS
C MODIFIED INTO A CONTINUOUS CATCHMENT MODEL & IMPROVED
C IN VARIOUS WAYS BY A.GORGENS,H.R., U., RHODES UNIVERSITY
C 1981+1YR
C
DIMENSION PE(31),FLOW(100),PERC(12),FIN(12),B(31)
*DATE(72,12),XOBS(12),FOR3(72),CUF(24),FMR(12),C(31),DIN(31)
DIMENSION DOUT(32),DC(12),HR(24),NT(12),DTE(24),HRP(31,24)
*PEP(12),HRR(24),TSURF(50),SURF(50),FIN(24)
READ(9,1) G1,62,AREA,DOM,SL,ST,TAI,MINN,MAXN,P1,TL,LAG,G
*L,R,DU,DIV,DOM
READ(9,209)TL,TRES,DIF,DIV
C
READ CATCHMENT INFORMATION
G1,62 = GAUGE IDENTIFICATION
AREA = CATCHMENT AREA - SQ.KM
PSW = POWER OF SOIL MOISTURE - PERCOLATION CURVE
SL = SOIL MOISTURE STORAGE BFLOW WHICH NO PERCOLATION OCCURS -
AI = IMPERVIOUS AREA AS PROPORTION OF TOTAL
ZMINN = NOMINAL MINIMUM INFILTRATION RATE (AT S=ST) -MM/HOUR
MAXN = NOMINAL MAXIMUM INFILTRATION RATE (AT S=ST) -MM/HOUR
P1 = INTERCEPTION STORAGE -MH
TL = ROUTING K FOR SURFACE RUNOFF - HOURS
LAG = LAG OF RUNOFF - HOURS
SL = 1/RECESSION CONSTANT OF GROUNDWATER DEPLETION FOR GWS = ST
P = COEFFICIENT OF EVAPORATION - SOIL MOISTURE RELATIONSHIP
SU = DEPRESSION STORAGA=MM
DIV = MAX,EXPECTED INTERFLOW RATE,
C CONTROLS DIVISION OF INTERFLOW AND SURFACE FLOWS >>DIV FOR
C HIGH INTERFLOW PRODUCTION) - MM/H
DIVG = MAXIMUM GROUNDWATER RECHARGE RATE WHEN ST IS EXCEEDED,
C CONTROLS DIVISION OF EXCESS BETWEEN INTERFLOW AND
C GROUNDWATER - MM/H
WBS = OBSERVED GROUNDWATER DISCHARGE ON DAY PRIOR TO START OF SI
MULATION = THOUSANDS OF CUMULCS
TL = ROUTING K FOR INTERFLOW(AT S=ST) -HOURS
THRES = DAILY AVERAGE FLOW ABOVE WHICH HOURLY OUTPUTS ARE
PERMDITED (IN CUMEC+1000)}
C DF = OBSERVED AVERAGE QUICKFLOW RATE DURING LAG+1 HOURS
C PRIOR TO START OF SIMULATION - MM
C
R=ZMINN/ZMAXN
1 FORMAT(2A3,F6.0,2F5.0,F5.0,2F5.2,2F4.0,F4.1,F3.0,12,F4.0,2F3.1,F5.2)
209 FORMAT(2F4.1,2F5.3)
C
READ EVAPORATION PAN MONTHLY COEFFICIENTS
C
36 FORMAT(12F5,2)
SUB=0.U.
PR=U.
04 471 K=4/12
471 PREC(K)=0.0
CF1=1./(TL+5.)
CF2=5.*CF1
LAG1=LAG+1
G=1./(24.*GL)
DT=DF/G/2.0
C
C CUMEC = FACTOR TO CHANGE MM TO THOUSANDS OF CUMEC
C
C CUMEC=(1-A1)*AREA*1000./3.6
R=2.*(TL-TL1)/1.0/(2.0*TL1+1.0)
&G(T)=1.0-R1
TNO=0.
DT=1.0/24.0
C
C SET TRIANGULAR DISTRIBUTION OF EVAP OVER 0700 TO 1900 HOURS
C
XK=0.0
04 767 L=1.24
IF(L.LT.8.0.LT.19.)GOTO 768
LX=L-2
IF(LX.LT.0.)LX=12-LX
XPE=LX/56.0
DTE(L)=0.5*(XK+XPE)
XK=XPE
GOTO 767
768 DTE(L)=0.0
767 CONTINUE
11 M=U
526 TFLOW=U.
SINT=0.0
C
C SET INITIAL CONDITIONS
C
S1=SL+(ST-SL)*(GOAS/(FT*CUMEC))**1.0
IF(ST-ST1)01,15,14
6=6*SQRT(ST)/CUMEC**.666666
FF=FT/(ST-SL)**POW
14 G=0.0.
GOTO 7U
15 G1=G*(ST1-SL)**POW
70 WRITE(6,172) G1,G2
172 FORMAT(' AVERAGE HOURLY AND DAILY FLOWS FOR GAUGE ',
 1 ZA3, ' IN THOUSANDS OF CUMEC', T4X,*10X,'74(*1)',1/1)
C
READ FIRST AND LAST YEARS OF SIMULATION PERIOD

READ(5,5) : Y1, LY2
5 FORMAT(2I5)
 N = LY2 - LY1 + 1
 NY = 12 * N
 NV = NY
 DO 896 N = 1,NV
 NE = 12 * N
 NB = NE - 11
 READ(5,895) (FOB(J), J = NB, NE)
895 FORMAT(2X, 12F6, 1)
896 CONTINUE

START OF LOOP COMPUTING MONTHLY RUNOFFS

DO 49 J = 1, N
 *Y = LY1 + (J-1)/12
 M = *Y
 IF (M - W) 1 3 , 15, 12
 12 M = M - 12
 13 FLOW(J) = 0,
FILL IN ZERO RAIN HOURS

DO 701 ND = 1, 31
 DO 701 NH = 1, 24
 HRP(ND, NH) = 0.0
READ DAILY PAN DATA - MM

READ(5,20) JY, MON, (ORN(ND), ND = 1, 31)
20 FORMAT(2I3, (11F6.2))
READ(5,21) JY, MON, (PE(ND), ND = 1, 31)
21 FORMAT(2I3, (11F6.2))
DO 81 NO = 1, 31
 NOFT = ND - 1
 OFT = NOFT
 GOTO 83
81 CONTINUE
 NOFT = 31
 OFT = 31,
EXCLUDE WARMUP YEAR FROM STATISTICS

83 IF (JY.EQ.99) GOTO 27
 TNDR = TN + OFT
READ HOURLY RAIN DATA FOR THIS MONTH

READ(7,700) IDENT, JY, MM, ND, NUM, (RECP(I), I = 1, 12)
700 FORMAT(12X, 7X, 3I3, 12, 16F5.1)
 IF (IDENT.EQ.99) GOTO 27
 DO 702 I = 1, 12
 NH = (NUM - 1) * 12 + I
 702 HRP(ND, NH) = RECP(I)
GOTO 703
START OF LOOP COMPUTING DAILY RUNOFFS
27 DO 48 IT=1,NOFT
PE(IT)=PE(IT)*ER(MON)
SI=SI*(ST/PE(IT))*0.5
B(IT)=PE(IT)/(ST-SI)
C(IT)=PE(IT)*SI/(ST-SI)
DO 711 NH=1,24
711 HP(NH)=HP(IT,NH)
C C START OF LOOP COMPUTING HOURLY RUNOFFS
C
507 DO 509 K=1,24
SURF=0,0
C C INTERCEPTION
C
507 PIS=PIS+MH(K)-PE(IT)*DTE(K)
DP1=PE(IT)*DTE(K)
IF(PIS)515,516,516
515 DP1=PE(IT)*DTE(K)+PIS
PIS=0,
516 IF(PIS=PIS)517,510,511
510 HP(K)=0,
GOTO 512
511 HP(K)=(PIS-PI)
PIS=PI
C C SURFACE RUNOFF
C
512 ADS=0,0
SUS=SUS+SURF-PE(IT)*DTE(K)+DP1
DSU=PE(IT)*DTE(K)-DP1
IF(SUS)120,120,121
121 ADS=SUS
SUS=SU
GOTO 142
120 IF(SUS.LE.0,0)GOTO 122
SU=PE(IT)*DTE(K)-DP1+SUS
SUS=0,0
122 DIVA=DIV/(ADS+DIV)
FINT(K+LAG1)=DIVA*ANDS1
ADS(1,0)=DIVA*ANDS1
TSURF(K+LAG1)=ANDS+RIMP
C C COMPUTE SOIL MOISTURE, EVAPORATION AND PERCOLATION
C
IF(PIS.0,0)123,127,33
IF(SUS=0.0)125,125,33
125 IF(DTE(K),EP,0,0)GOTO 33
 E1=C1*IT+B1*IT+ST+((SU+P1)*S1/ST)/DTE(K)
 IF(E1,0,0,0)GOTO 36
33 E1=0.
126 IF(D1)34,34,35
34 SLOPE=U,
 GOTO 39
35 SLOPE*=POW*(S1-SL)**(POW-1,)
 GOTO 39
36 IF(D1)37,37,38
37 SLOPE*=IT
 GOTO 39
38 SLOPE=H1*IT)*A*POW*(S1-SL)**(POW-1,)
39 QM=(Q1+5*HP(K)*SLOPE)/(1.+S*SLOPE)
 EM=E1/(1.0+S1*PT*SLOPE)
 S1+HP(K)-QM*DT-EM*DT*(K)
 IF(S2-ST)41,41,41
40 EX=S2-ST
 T1=EX/(EX+ST-SL)
 T2=1.,-T1
 QM=,(Q1+FT)*T2+FT*T1
 IF(DTE(K),EP,0,0)GOTO 241
 EM=,(E1+PE(1T)-(DPI+DSU)/DTE(K))*T2+(PE(1T)-(DPI+DSU)/DTE(K))*T1
241 SPILL=S1-ST+HP(K)-(QM)*DT-EM*DE(K)
 Q1=FT
 S1=ST

C DIVIDE SPILLAGE AND ADJUST INTERFLOW
C DIVB=(DIVG)/(SPILL+(DIVG))
 ADDG=DIVB*SPILL
 FIN(K+LAG1)=FIN(K+LAG1)+(SPILL+ADDG)
 FILT=NH+DT+ADDG
 GOTO 47
41 IF(S2-SL)42,42,43
42 Qd=0,
 IF(S2,LT,0,0)S2=0,0
 GOTO 44
43 Qd=A*(S2-SL)**POW
44 FILT=0.5*DT*(Q1+Q2)
 Q1=Q2
 47 S1=S2

C COMPUTE GROUNDWATER STORAGE AND DRAINAGE
C GWF(K)=GW*GW**1.5/SRT(ST)
 GW=GW*FILT-GWF(K)
509 CONTINUE
C LAG AND ROUTE OF SURFACE RUNOFF AND INTERFLOW
C IF(J,NE,1,OR,LT,NE,1)GOTO 803
 DO R04 NH=1,LAG1
 TSURF(NH)=DFF
 804 PSURF(NH)=DFF
 TSURF(NH+LAG)=RNSURF(NH+LAG-1)+CF1*(TSURF(NH+LAG-1)-RSURF(NH+LAG-1))
 TSURF(NH+LAG)=RNSURF(NH+LAG-1)
 CF2=(TSURF(NH+LAG)-RNSURF(NH+LAG-1))
 800 IF(RSURF(NH+LAG),LT,0,0,F=06)RSURF(NH+LAG)=G,0
 PROD=TT+U,0
125 IF(DT(K),EQ,0,0)GOTO 38
E1=(IT)+b(IT)+S1-((oSU+oP1)*S1/ST)/DTE(K)
IF(E1,GT,0,0)GOTO 35
35 SLOPE=0
GOTO 37
36 IF(DT(K),GT,37,37
37 SLOPE=0
GOTO 39
38 SLOPE=Q1*POW*(S1-SL)**(POW-1.)
GOTO 39
39 QM=(Q1+.5*HP(K)*SLOPE)/(1.+.5*DT*SLOPE)
EM=1/(1,5+0,5*DT*SLOPE)
SE=1+HP(K)-QM*DT-EM*DTF(K)
IF(S2=ST)GO TO 40
40 EM=Q2/ST
T1=EX/(EX+ST-SL)
F1=EL*PE*(EX+S1-ST)**1.
1 T2=(QP1+(QP1+QH)+DTE(K)+S1-ST)**1.
241 SPILL=Q1+QH*DT-EM*DTF(K)
STM=Q1+QH*DT-EM*DTF(K)
SM=Q1+S1-ST
C DIVIDE SPILLAGE AND ADJUST INTERFLOW
C DIV=(DIVG)/(SPILL+DIVG)
ADDG=(DIV*SPILL)
FIN(T(K)+LAG)=FIN(T(K)+LAG)+SPILL+ADDG
FILT=UM+ST+ADDG
GOTO 47
41 IF(S2=SL)GO TO 42,42,43
42 Q=0
IF(S2,LT,0,0)S2=0,0
GOTO 44
43 Q=Q+(S2-SL)**POW
44 FINT=0,5*BT+(Q1+Q2)
Q1=Q2
47 ST=SL
C COMPUTE GROUNDWATER STORAGE AND DISCHARGE
C GWF(K)=GWS*GUS**1,5/SQR(ST)
GWS=GWS+FILT-GWF(K)
509 CONTINUE
C Lag AND ROUTE OF SURFACE RUNOFF AND INTERFLOW
C IF(J,NE,1,0#1,ST,NE,1)GOTO 803
DO 804 NH=1,LAG1
804 TSURF(NH)=DTF
803 ND 804 NH=NH+LAG1 TSURF(NH)=DSF
805 RSURF(NH)=DSF
803 ND 805 ND=DSF RSURF(NH+LAG1)=RSURF(NH+LAG1)+CF1*(TSURF(NH+LAG1)-RSURF(NH+LAG1))
CF2(TSURF(NH+LAG)-TSURF(NH+LAG1))
800 IF(RSURF(NH+LAG),LT,0,0)RSURF(NH+LAG)=0,0
DOUT(1)=U,0
DO 837 NH=2,25
RINT=REC1*SINT1
SINT2=SINT1-RINT+FINT(NH+LAG)
RINT=REC1*0.5*(SINT1+SINT2)
SINT2=SINT1-RINT+FINT(NH+LAG)
FINT(NH+LAG)=RINT

837 SINT1=SINT2
DO 802 NH=1,24
HRF(NH)=CGF(NH)*FINT(NH+1)*RSURF(NH+1)*CUMEC

802 DOUT(IT)=DOUT(IT)+HRF(NH)/24.0
FLOW(J)=FLOW(J)+DOUT(IT)*0.0864
DAY(J)=DAY(J)+1
GTO 806
IF(JY,JQL(1Y-1900))GOTO 806
IF(DOUT(IT)-THRES)GOTO 806

805 WRITE(6,807)IT,MON,MY,HRF(NH),NH=1,24)

807 FORMAT(213,15.2,F4.5,0)

806 DU 808 NH=1,LAG1
FINT(NH)=FINT(24+NH)
TSURF(NH)=TSURF(24+NH)

808 RSURF(NH)=RSURF(24+NH)

48 CONTINUE
IF(MY,Eq.LY1))GOTO 49

113 WRITE(6,114)MY,MON,(DOUT(KK):KK=1,NOFT)

114 FORMAT(I5,I5,F6.0,F8.0/8X,11F6.0,F8X,11F6.0)

115 FORMAT(213,15.2,F4.5,0)

49 CONTINUE

A1=A1*100.
WRITE(6,616)G2,AREA

61 FORMAT(10X,'Swartsized Runoff at Gauge ',Z4.3,' Catchment Are
+A=1,F7.1,'Sq.KM',/10X,35('4'),2X,27('4'))

WRITE(6,626)POW,F4.1,SL=F5.0,MN ST=F5.0,MM FT=3,
+F0.3,MM/DAY AI=F4.1,T LAG=F1.1,HR S DIV=F4.2/)

WRITE(6,636)ZMINN=F5.2,M/HOUR ZMAXN=F5.2,M/HOUR

62 FORMAT(2X,F4.1,' MM GL=F4.1,' DAYS TL=F4.1,' HR S

WRITE(6,657)R,SU,TL,DIV,THRES,DF,TSURF,THRES,DIV

517 FORMAT(1X,'F4.2,4.1,' TL=F4.1,' HOURS DF=F4.3,
+M THRES=F4.3,1,' CUMEC/1000 DIVG=F4.3,1 MM/H/)

DO 74 M=3,MM=12
ME=M+11
MY=LY1+1-ME/12
XYC=0,0
DO 53 J=1,ME
K=J+M1
XUBS(K)=F09R(J-12)
PERC(K)=PERC(K)+FIN(K)
XYC=XYC+F08S(K)
FLOW(J-12)=FLOW(J)
53 FVC=XYC+FIN(K)

54 WRITE(6,556)MY,(FIN(K),NN=1,12)>FVC

55 FORMAT(15X,F2.1,F15.1)

WRITE(6,599)XUBS(N),NN=1,12,MY

491 FORMAT(2X,1NS,*,2X,F2.1,F15.1)

74 CONTINUE

N=N+1
CALL AFIT(F0RS,FLOW,NN=1)
DO 83 NHI=2,25
 RINT=KCI+4INT1
 SINT2=SINT1+RINT+4INT(NHI+LAG)
 RINT=KEC0.5(SINT1+SINT2)
 SINT2=SINT1+RINT+4INT(NHI+LAG)
 4INT(NHI+LAG)=RINT
837 SINT1=SINT2
 DO 802 NHI=1,24
 HRF(NHI)=(GKF(NHI)+4INT(NHI)+1)+RSURF(NHI)*CUMEC
502 DOUT(J)=DOUT(J)+HRF(NHI)/24.
 FLOW(J)=FLOW(J)+DOUT(J)*0.864
504 IF(NY,ED,LYI)GOTO 806
 DAYF(J)=12DOUT(J)/1000.0
 GOTO 806
505 WRITE(C0,807)IT,MON,NH,(HRF(NHI),NH=1,24)
807 FORMAT(213,5,24F5,5)
806 DO 808 NHI=1,LAG1
 4INT(NHI)=4INT(26+NHI)
 TSURF(NHI)=TSURF(26+NHI)
580 RSURF(NHI)=RSURF(24+NHI)
808 CONTINUE
 IF(NY,FO,LYI)GOTO 49
511 FORMAT(1,20X,SYNTHESIZED RUNOFF AT GAUGE 'ZAZ', CATCHMENT ARE
 AREA)
 WRITE(6,62)PWN,ST,FT,AL/0IV
62 FORMAT(2,10X,12X,'POWER',12X,'SL',12X,'MM',12X,'ST',2X,'F5.0',12X,'MM',12X,'FT='1,
 'F0.5',12X,'MM/DAY',12X,'AIF',12X,'F5.0',12X,'LAG',12X,'12X,'HRF',12X,'DIV=',12X,'F4.2',12X)
 WRITE(6,70)ZMINN,MAXN,PW,GT,L,TL
70 FORMAT(1,20X,,'MINN=',2X,F5.2,12X,'MM/HOUR',12X,'MAXN=',2X,F5.2,12X,'MM/HOUR',12X,'PLAN=',12X,'F5.0,12X,'MM/DAY',12X,'AT=',12X,'F4.4,12X,'DAYS',12X,'TL=',12X,'F4.1Z,'HOURS',12X,'DIV=',12X,'F4.2,12X,'MM/H4,12X)
 WRITE(6,517)S,U,T,L1,DG,F,THRES,STVL
517 FORMAT(1,20X,3,12F5.1,12X,'SU=',12X,'F4.1',12X,'T3=',12X,'F4.1',12X,'THRES=',12X,'F4.1',12X,'CUMEC/1000',12X,'DIV=',12X,'F5.3',12X,'MM/H4,12X)
 DO 74 NHI=1,3
504 NL=11
 MY=LYI+1+HE/12
 FYC=0.0
 XYC=0.0
 DO 83 J=N,N+7
505 K=J+1
 XUBS(K)=XUBS(J-12)
 FIN(K)=FLOW(J)
507 PERC(K)=PERC(K)+FIN(K)
 XYC=XYC+XUBS(K)
 FLOW(J-12)=FLOW(J)
508 FTC=FTC+FIN(K)
509 WRITE(6,53)NL,(FIN(N),N=1,12),FTC
53 FORMAT(1,20X,'FIN=',12X,N=1,12),FTC
 WRITE(6,491)XYNC(N),N=1,12,XYC
491 FORMAT(2X,'XYNC=',12X,'F4.1',12X,'XYC=',12X,'F1U.1')
 CONTINUE
54 CALL AFIT(FORS,FLOW,NN,1)
LNP=LY?+1
CALL BFIT(DAYF, NM, 1, LY)
STOP
END
LIST PROGRAM(PITE).
INPUT = CR4.
INPUT = CR0.
INPUT = CR2.
INPUT = CR3.
OUTPUT = LPO.
COMPRESSION INTEGER AND LOGICAL.
COMPACT DATA.
END.

MASTER PITE.

******** PITMAN HOURLY MODEL WITH ONE YEAR WARM-UP PERIOD WHICH
******** IS NOT INCLUDED IN CALC OF RUNOFF STATISTICS.

******** MODIFIED INTO A CONTINUOUS CATCHMENT MODEL & IMPROVED
******** IN VARIOUS WAYS BY A. GORGENS, H.R.U., RHODES UNIVERSITY
******** 1981-1982

+++++ RE-INFILTRATION INCLUDED ++++

DIMENSION PE(31),FLOW(100),PERC(12),FIN(12),A(31),
*DAY(25),XI(3),D(12),G(24),Q(24),C(12),GRN(31),
*DIMENSION OUT(32),DC(1A),HP(14),HT(16),DTE(24),HRP(31,24),
*RGCP(12),HA(24),TSUR(50),PSDF(3U),FIN(24),
READ(9,1) G1,G2,AREA,PW,SL,ST,FT,ART,MNN,MAX,PI,TL,LAG,G
*LP,SU,DIV,GOBS,
READ(9,2UP) TLI,THERS,GF,DIVG.

READ CATCHMENT INFORMATION.

GT/G2 = GAUGE IDENTIFICATION.
AREA = CATCHMENT AREA - SQ.KM.
PWX = POWER OF SOIL MOISTURE - PERCOLATION CURVE.
SL = SOIL MOISTURE STORAGE BELOW WHICH NO PERCOLATION OCCURS -
SI = MAXIMUM SOIL MOISTURE CAPACITY - MM.
FT = PERCOLATION AT SOIL MOISTURE = ST - MM/DAY.
AI = IMPERVIOUS AREA AS PROPORTION OF TOTAL.
ZMNN = NOMINAL MINIMUM INFILTRATION RATE (AT ST) - MM/HOUR.
ZMAX = NOMINAL MAXIMUM INFILTRATION RATE (AT ST) - MM/HOUR.
PI = INTERCEPTION STORAGE - MM.
TL = ROUTING FOR SURFACE RUNOFF - HOURS.
LAG = LAG OF RUNOFF - HOURS.
GL = 1/RECESSION CONSTANT OF GROUNDWATER DEPLETION FOR GWS = ST.
RT = DAYS.
SU = COEFFICIENT OF EVAPORATION - SOIL MOISTURE RELATIONSHIP.
DIV = MAX EXPECTED INTERFLOW RATE.
DVF = CONTROL DIVISION OF INTERFLOW AND SURFACE FLOW (> DIV FOR
*HIGH INTERFLOW PRODUCTION) - MM/H.
DIVG = MAXIMUM GROUNDWATER RECHARGE RATE WHEN ST IS EXCEEDED.
*CONTROLS DIVISION OF EXCESS BETWEEN INTERFLOW AND
GROUNDWATER - MM/H.
QUIS = OBSERVED GROUNDWATER DISCHARGE ON DAY PRIOR TO START OF SI
*AVAITON - THOUSANDS OF CUMEC.
TLI = ROUTING K FOR INTERFLOW (AT ST) - HOURS.
*THERS = DAILY AVERAGE FLOW ABOVE WHICH HOURLY OUTPUTS ARE
DUF = OBSERVED AVERAGE QUICKFLOW RATE DURING LAST 1 HOURS PRIOR TO START OF SIMULATION = MM

RZ=2MIN/2MAXN
1 FORMAT(2A3,F6.0,2F3.0,F5.0,2F5.0,2F4.0,0,F4.1,F5.0,1,F3.0,1,F4.0,0, *2F3.1,1,F5.0,2)
209 FORMAT(2F4.1,2F5.3)

READ EVAPORATION PAN MONTHLY COEFFICIENTS

READ(V86)(ER(I),I=1,12)
66 FORMAT(12F5.2)

SUS=0,
PIS=0,
DQ=477 K=1,12
471 PERC(K)=0.
CF1=1./(TL+.5)
CF2=.5*CF1
LAG1=LAG+1
GW1./(24.*GL)
DIFF=DG/2.0

CUMEC=FACTOR TO CHANGE MM TO THOUSANDS OF CUMEC

CUMEC=(1-A1)*AREA*10OU.13.5 RI=(2,*TL1-1.0)/(2.0*TL1+1.0)
REC1=1.0-K1
THD=0,
DT1,U/24.0

SET TRIANGULAR DISTRIBUTION OF EVAPS OVER 0700U TO 1900U HOURS

XK=0,U
LX=767 L=1,24
IF(L.LT,8,OR,L.GT,19) GOTO 768
LX=0
IF(LX.GT,T6) LX=12-LX
XPE=LX/36.0
DIE(L)=0.3*(XK*XPE)
XK=XPE
GOTO 767
768 CONTINUE
767 CONTINUE
11 M=U
596 TFLOW=M,
SINT=M
WHITE(6,7744)
7744 FORMAT(/8X,'PITMAN'S HOURLY MODEL PITR '/*(RE-INFEILATION INCLUDED)///)

SET INITIAL CONDITIONS

S1=SL*(ST-SL)*{OBS/(FT*CUMEC)}**(1./Pow)
IF((S1-ST) ST*ST
GW=((OBS*SQRST(ST))/(GW*CUMEC))**.6666667
A=FT/((ST-SL)**Pow
IF(S1-SL)*14,14/15
14 DT=0,
GOTO 7U
15 G1=AN(SIT-SL)*Pow
WRITE(6,112) AVERAGE HOURLY AND/OR DAILY FLOWS FOR GAUGE 1,
* 2, IN THOUSANDS OF CUMEC'S, /10X, T4('**')/11/

READ FIRST AND LAST YEARS OF SIMULATION PERIOD

READ(9,5) LY1,LY2
5 FORMAT(215)
 NY=LY2-LY1+1
 NM=12*NY
 N=1
 NB=NM-11
 READ(9,695)(FOBS(J),J=NB,NE)
695 FORMAT(12X,12F6.1)

CONTINUE

START OF LOOP COMPUTING MONTHLY RUNOFFS

DO 49 J=1,NM
 MY=LY1*(J-1)/12
 IF(M-1<1)13,13/12
 M=M-1
49 CONTINUE

FILL IN ZERO RAIN HOURS

DO 701 NO=1,31
 DO 701 NH=1,24
 HRP(HD,NH)=0.0
701 CONTINUE

READ DAILY A PAN DATA - MM

20 FORMAT(11F6.2)
READ(5,20)JY,MN,(DRN(ND),ND=1,31)
21 FORMAT(11F6.2)
DO 81 ND=1,31
 IF(ND<1)82,81/1B
 NUFT=ND-1
 OFT=NUFT
 GOTO 85
81 CONTINUE
 NUFT=31
 OFT=31.

EXCLUDE WARMUP YEAR FROM STATISTICS

83 IF(JY,EQ.LY1-190U) GOTO 703
 TN=M+OFT

K READ HOURLY RAIN DATA FOR THIS MONTH

703 READ(7,700)IDENT,JY,MN,ND,NUM,(REC(P(I)),I=1,12)
700 FORMAT(12X,7X,313,12X,12F5.1)
 IF(IDENT.EQ.99)GOTO 27
 DO 702 I=1,12
 NM=(NUM-1)*12+1
702 HCRP(ND,NM)=REC(P(I))
GOTO 703
C
C START OF LOOP COMPUTING DAILY RUNOFFS
C
27 DO 48 IT=1,NOFT
PE(IT)=PE(IT)*ER(MON)
SZ=ST/PE(IT)*0.5
B(IT)=PE(IT)/(ST-SZ)
C(IT)=PE(IT)*SZ/(ST-SZ)
DO 711 NH=1,24
711 HP(NH)=HP(IT+NH)
C
C START OF LOOP COMPUTING HOURLY RUNOFFS
C
507 DO 509 K=1,NOFT
SURF=U,0
C
C INTERCEPTION
C
501 PIS=PIS+HP(K)-DFT)*DTE(K)
DPI=PE(IT)*MT.
IF(PIS<515,510,516)
515 DPI=PE(IT)*DTE(K)*PIS
PIS=0,
516 IF(PIS=PIS+510,510,511)
510 'HP(K)=U,
GOTO 512
511 HP(K)=(PIS=PI)
PIS=PI
C
C SURFACE RUNOFF
C
ZMAX=(ZMAXA4,)/(ZAVE**(2.5)**ZMAX)
ZMIN=HZ*ZMAX
ZAVE=U,5*(2MIN+ZMAX)
IF(HP(K)-ZMIN<0,200,200,206
206 I'=HP(K)-ZAVE>202,203,203
202 SURF2=U,5*(PZ-MIN)**5/3/3*(ZMAX-ZMIN)**2
GOTO 220
203 IF(P2-ZAVE>222,223,223
222 SURF2=U,5*(P2-ZAVE)**3/3/3*(ZMAX-ZMIN)**2
GOTO 220
223 IF(P2-ZAVE>224,225,225
224 SURF2=U,5*(P2-ZAVE)**3/3/(3,0*(ZMAX-ZMIN)**2,0)
GOTO 220
C
C REINFILTRATION, DEPRESSION STORAGE & INTERFLOW
C
512 ADDS1=U,0
LCOUNT=0
SURFZ=SUS
228 HP2=U,5*(SURFZ+SUSZ)
SURFZ=U,0
LCOUNT=LCOUNT+1
IF(HP2-ZMIN<0,001,220,220,226
226 IF(HP2-ZAVE)>222,223,223
222 SURF2=U,5*(HP2-ZAVE)**3/3/(3,0*(ZMAX-ZMIN)**2,0)
GOTO 220
223 IF(HP2-ZAVE)>224,225,225
224 SURF2=U,5*(ZMAX-HP2)**3/3/(3,0*(ZMAX-ZMIN)**2,0)
GOTO 220
225 SURF2=HP2-ZAVE
220 DEPINF=HP2-SURF2
SUS=SUS2*SURF~PE(1T)*DT(K)+DPI-DEPINF
DSU=PE(1T)*DTE(K)+DPI
IF(SUS-SU)120,120,121
121 ADDS=SUS-SU
SUS=SU
GOTO 122
120 IF(SUS.GE.0,0)GOTO 122
DSU=PE(1T)+DTE(K)+DPI+SUS
SUS=0,0
122 IF(LCOUNT.EQ.0)GOTO 218
DIVA=DIV/(ADDS+DIV)
FINT(K+LAG1)=DIVA*ADDS
ADDS=(1,0-DIVA)*ADDS
SURF(K+LAG1)=ADDS+Q1NP
C
C COMPUTE SOIL MOISTURE / EVAPORATION AND PERCOLATION
C
123 IF(SIS-0.0)123,123,33
125 IF(DTE(K),EQ.0,0)GOTO 33
ET0=(((IT)+R1)*1-ST-((DSU+DPI)*S1/ST1)*DTE(K)
+F(E1,1,GT,0,0)GOTO 36
33 ET0=0,
126 IF(Q1)34,34,35
SLOPE=0,
GOTO 39
35 SLOPE=A+POW*(S1-SL)**(pow-1.)
60 TO 39
36 IF(Q1)37,37,38
SLOPE=B(1IT)
GOTO 51
38 SLOPE=C(1T)*A+POW*(S1-SL)**(pow-1.)
39 QM=(Q1-5*HP(K)*SLOPE)/(1.0+5*DT*SLOPE)
EN=E1/(1.0+0.5*DT*SLOPE)
53=51+HP(K)-QM+DT-M*DETE(K)+DEPINF
IF(S2-S7)41,41,40
40 EX=S2-ST
T1=EX/(EX+ST-SL)
 TEST1- T1
QM5=5*(Q1+FT)T2+FT+T1
IF(DTE(K),EQ.0,0)GOTO 241
EN=5*(E1+PE(T1)-(DPI+DSU)/DTE(K))T2+PE(T1)-(DPI+DSU)/DTE(K)+T1
241 SPILL=S1-ST+HP(K)-(QM)*DT-EM+DTE(K)+DEPINF
Q1=FT
S2=ST
C
C DIVIDE SPILLAGE AND ADJUST INTERFLOW
C
DIVB=(DIVG)/(SPILL+(DIVG))
ADOG=DIVB*SPILL
FINT(K+LAG1)=FINT(K+LAG1)+(SPILL-ADOG)
FILT=UM*DF+ADOG
GOTO 41
41 IF(SZ-SL)42,42,43
42 QZ=0,
IF(SZ,LT,0,0)SZ=0,0
GOTO 44
43 QZ=Q+3(SZ-SL)**POW
44 FILT=U,5+DT*(M1+Q2)
Q1=Q2
S1=S2

COMPUTE GROUNDWATER STORAGE AND DISCHARGE

GWF(K)=GWS*1.5/SQRT(ST)
GWS=GWS+FILT-GWF(K)

CONTINUE

LAG AND ROUTE OF SURFACE RUNOFF AND INTERFLOW

IF((JY,NE,1,OR,IT,NE,1))GOTO 803
DO 804 NH=1,LAG1
TSURF(NH)=DGF
RSURF(NH)=DGF
803 DO 804 NH=2,LAG
SUSF(NH+LAG)=RSURF(NH+LAG-1)+CF1*(TSURF(NH+LAG-1)-RSURF(NH+LAG-1))
+CF2(TSURF(NH+LAG)-TSURF(NH+LAG-1))
804 IF(RSURF(NH+LAG),LT,1E-06)RSURF(NH+LAG)=0,0
DOUT(IT)=0,0
DO 837 NH=2,LAG
HRF(NH)=GWF(NH)+INT(NH+1)+RSURF(NH+1)*CEME
802 DO IT=1,LAG
HRF(IT)=HRF(IT)+HRF(NH+LAG)/24.0
FLOW(J)=FLOW(J)+DOUT(IT)*0.06
1F(JY,NE,1,OR,IT,NE,1))GOTO 806
DAYF(J-1,2,IT)=DOUT(IT)/1000.0
GOTO 806
805 WRITE(6,807)IT,MON,MY,(HRF(NH),NH=1,24)
807 FORMAT(2I3,F13.1,F12.1,F25.1,F5.1,F5.1)
808 WRITE(6,808)NH,LAG1
1F(NH+LAG2,LAG1)
TSURF(NH)=TSURF(24*NH)
808 WRITE(6,808)NH,LAG1
1F(NH+LAG2,LAG1)
TSURF(NH)=TSURF(24*NH)
48 CONTINUE

CONTINUE

IF(MY,NE,1,OR,LY1)GOTO 49
113 WRITE(6,113)MY,MON,(DOUT(KK),KK=1,NOFT)
111 FORMAT(2I3,F13.1,F12.1,F25.1,F5.1,F5.1)
FLOW=FLOW+FLOW(J)
49 CONTINUE

CONTINUE

MY=1,100
WRITE(6,61)61,62,AREA
61 FORMAT(6I10)/SYNTHETIZED RUNOFF AT GAUGE '2A3', CATCHMENT ARE
A=1.87,F1,1.87,SO.KM '1/1UX,35(CM2,2Z?(*),*)/*
WRITE(6,62)POW,SL,ST,FT,AT,LAG+DIV
62 FORMAT(1P0M=1,F4.1,1 SL=1,F5.1,1 MM ST=1,F5.1,1 MM FT=1,F6.3,1 HM/DA
Y AT=1,F4.1,1 % LAG=1,F1,1 HRS DIV=1,F4.2,1)
WRITE(6,78)2MNM,2MAXN,2L,GL,FT
78 FORMAT(1P0M=1,F4.1,1 MM GL=1,F4.1,1 MM ST=1,F5.2,1 MM/HR ZMAXN=1,F4.1,1 MM/HR
ST=1,F4.1,1 MM MM=1,F4.1,1 DAVS T=1,F4.1,1 HRS DIV=1,F4.2,1)
WRITE(6,57)R,SU,TLY,DGF,THRS,DIVG
517 FORMAT(1P0M=1,R=1,F4.2,1 SU=1,F4.1,1 TLY=1,F4.1,1 DAVS DGF=1,F4.3,1 MM/H
R=1,F4.1,1 DIVG=1,F4.3,1 MM/H)
DO 74 NH=1,MM,12
C SUBROUTINE AFIT BY P.J.T.ROBERTS**EXTENDED AND MODIFIED
C X IS THE ARRAY OF OBSERVED MONTHLY DISCHARGE
C Y IS THE ARRAY OF SIMULATED MONTHLY DISCHARGE
C NMON IS THE LENGTH OF RECORD IN MONTHS
C M1 IS THE FIRST MONTH OF RECORD (I.E. 1 FOR CALENDAR
C YEARS AND 10 FOR HYDROLOGICAL YEARS)
C SUBROUTINE AFIT(X,Y,NMON,M1)
DIMENSION X(100),Y(100),RESX(200),RESY(200)
DIMENSION DIFRES(200),FDCX(60),FDCY(60),FLEV(60)
DIMENSION AUTOX(200),AUTOY(200),JH(12),SMONX(12),SMON(12)
INTEGER TEMP1,TEMP2,TEMP3,TEMP4
T=FLOAT(NMON/12)
MMON=FLOOR(T)
TOTX=0
TOTY=0
M1=M1-1
NP0S=0
NMON=NMON
NPP=0
C *****
C SIGN TEST
C *****

BDU 1U I=1,NMON
SIGY(I)=X(I)
IF (SIG.NE.0.0) GOTO 13
NMON=0
NPP=0
GOTO 12
13 IF (SIG.LT.0.0) GOTO 11
IF (NPP.EQ.0) NPOS=NPOS+1
NPP=NPP+1
M1=M1+1
NMON=0
SUBFILE: PITE LC=8200 LENGTH: 83 M=AG

LIST
PROGAM(PITE)
INPUT 5=CH0
INPUT 7=CH1
INPUT 8=CH2
INPUT 9=CH3
OUTPUT 6=LPO
CUMMPRESS INTEGER AND LOGICAL
COMPACT DATA
TRACE U
FND
M ASTER PITE
C****** FITM AN DAILY MODEL W IT H ONE YEAR WARM-UP P ERIOD W HICH
C****** IS NOT INCLUDED IN CALCS OF RUNOFF STATISTICS
C MODIFIED BY A.GORGENSEN, R. RHODES UNIV. 1961-1982
C + + + Channel EVAPORATION INCLUDED + + +
DIMENSION P(100),PE(51),FLOW(100),PERC(12),FIN(12),B(151),
*SLDOS(100),DR(31),GDW(100),ER(12),C(31)
DIMENSION DING(32),INT(60),OUG(52),DOUT(32),DOUTT(32),OUT(32),
*DAYS(72,37),HP(34),CARRY(8),FOB(100),XOB(100)
READ(561) G1,G2,AREA,POW,SL,ST,FT/AI,ZMINN,ZMAXN,PI,TL,LAG,G
*L,DIV,QOBS
C
C READ CATCHMENT INFORMATION
C G1,G2 = GAUGE IDENTIFICATION
C AREA = CATCHMENT AREA - SQ.KM
C POW = POWER OF SOIL MOISTURE - PERCOLATION CURVE
C SL = SOIL MOISTURE STORAGE BELOW WHICH NO PERCOLATION OCCURS -
C ST = MAXIMUM SOIL MOISTURE CAPACITY -MM
C FT = PERCOLATION AT SOIL MOISTURE = ST -MM/DAY
C AI = IMPERVIOUS AREA AS PROPORTION OF TOTAL
C ZMINN = NOMINAL MINIMUM INFILTRATION RATE (AT S=ST) -MM/HOUR
C ZMAXN = NOMINAL MAXIMUM INFILTRATION RATE (AT S=ST) -MM/HOUR
C PI = INTERCEPTION STORAGE -MM
C TL = ROUTING K FOR SURFACE RUNOFF - DAYS
C LAG = LAG OF RUNOFF - DAYS
C GL = 1/RECESSION CONSTANT OF GROUNDWATER DEPLETION FOR GWS = ST
C C = DAYS
C R = COEFFICIENT OF EVAPORATION - SOIL MOISTURE RELATIONSHIP
C DVR = PROPORTION OF 'SPILL' INTO GROUNDWATER STORAGE
C QOBS = OBSERVED GROUNDWATER DISCHARGE ON DAY PRIOR TO START OF SI
C MULATION - CUMECs
C TNTH = TOTAL TRIBUTARY LENGTH - KM
C CHAN = AVERAGE WIDTH OF FLOW AT BANKFULL DISCHARGE - M
C QANK = ESTIMATED BANKFULL DISCHARGE LEVEL (MEAN DAILY)
C CUMEC
C R=ZMINN/ZMAXN
*F3.0,F5,2)
READ(561)TRIH,CHAN,QANK
7772 FORMAT(5F5.3)
C
C SUMMER STORM DURATION = AA + BB * DAILY RAINFALL(MM) - HOURS
C WINTER STORM DURATION = CC + DD * DAILY RAINFALL(MM) - HOURS
READ(6*2)AA,BW,CC,DD
2 FORMAT(4F4,2)

READ EVAPORATION PAN MONTHLY COEFFICIENTS
READ(6*86)(ER(I),I=1,12)
86 FORMAT(12F5,2)
SUR=D,U
GROUN,D,0
AREAC=TRIB*CHAN/(AREA*1000.0)
WBANK=MBANK*24.0*360.0
PIS=U,
CF1=1./(TL+.5)
CF2=5.*CF1
LAG1=LAG+1
GW=1./SL
CUMEC=AREA*1000./86.4

UNDERFLOW BOUNDARY TO PREVENT ERROR MESSAGE
DURING ROUTING: ZNOK=7 CUMEC/DAY/10000 = 8.64 M**3
ZONK=8.64/(AREA*1000)
11 M=U
tflow=U.
S1=(ST-SL)*((QOBS/(FT*CUMEC))**(1./POW)
FL(1.67,ST,ST) S1=ST
GWS=((QOBS*SQRT(ST))/((GW*CUMEC))**.666666
A=FT/(ST-SL)**POW
T=(ST-SL)**14,14,15
14 QT=0.
GOTO U
15 QT=K**POW
70 WRITE(6,112) T1,G2
112 FORMAT(11) AVERAGE DAILY FLOWS FOR GAUGE '2A3' IN THOUSAN
* Dths OF CUMEC'S,,/10**(1.1)**/)

READ FIRST AND LAST YEARS OF SIMULATION PERIOD
READ(6*5)LY1,LY2
5 FORMAT(2I5)
NY=LY2-LY1+1
NM=LY1+1
NYN=NY-1

READ MONTHLY RECORDED FLOWS
DO 896 M=1,NYN
NE=12*M
NB=NE-11
READ(7*895)(FOBS(J),J=NB,NE)
895 FORMAT(2X,12F6,1)
896 CONTINUE

START OF LOOP COMPUTING MONTHLY RUNOFFS
DO 49 J=1,NM
M=M+1
11: IF(M<4) GOTO 11
12 M=M-1

13 FLOW(J)=0.,
GWF(J)=0.,
SCLOS(J)=0.0
C READ DAILY RAINFALL AND A PAN DATA - MM
C READ(5/20) JY,MON,(DR(ND),ND=1/31)
20 FORMAT(21X,(11F6.2))
READ(>20) (PE(ND),ND=1/31)
21 FORMAT(6X,(11F6.2))
DO 81 ND=1,31
IF(DR(ND)>82,81,81)
82 NUTF=ND-1
OFT=NOT1
GOTO 27
81 CONTINUE
NUTF=51
OFT=31,
C START OF LOOP COMPUTING DAILY RUNOFFS
C 27 DO 48 IT=1,NOF1
PE(IT)=PE(IT)*ER(MON)
4 S2=PE(IT)/(ST+PE(IT)**0.5)
B(IT)=PE(IT)/(ST-S2)
C(IT)=PE(IT)/S2/(ST-S2)
FILT=0,
TSURF=0,
DINT(IT+LAG1)=0,
DING(IT+1)=0,
IF(DR(IT))488,498,499
488 NHRS=0,
DURS=U,
GOTO 507
C DISAGREATION OF DAILY RAINFALL INTO HOURLY FALLS
C 498 NHRS=AA+BB*DR(IT)+0.5
IF(MON.GT.3.AND.MON.LT.11)NHRS=CC+DD*DR(IT)+0.5
DURS=NHRS
IF(NHRS-23)503,503,506
503 NHRS=CC
DURS=23,
GOTO 506
506 IF(NHRS-2)504,505,506
504 HP(1)=DR(IT)
GOTO 507
505 HP(1)=U,2*DR(IT)
HP(2)=U,8*DR(IT)
GOTO 507
506 SP1=U,
DO 506 K=1,NHRS
SUMT=*
SP2=DR(IT)*SUMT+2/(SUMT+2+(DURS-SUMT)**2)
HP(K)=SP2-SP1
508 SP1=SP2
507 NHRS=NHRS+1
HP(NHRS)=U,
C START OF LOOP COMPUTING HOURLY RUNOFFS
DU SU) K=1,NHRS
IF(K=NHRS)513,514,514
514 DT=(24.*DURS)/24.
GO TO 501
513 OT=1./24.
C
INTERCEPTION
C
501 PIS=PIS+P(K)-PE(1T)*DT
DP1=PE(1T)*DT
IF(PIS)515,516,516
515 DP1=PE(1T)*DT+PIS
PIS=PIS
516 IF(PIS-P1)510,510,511
510 HP(K)=U.
GOTO 512
511 HP(K)>(PIS-P1)
PIS=P1
C
SURFACE RUNOFF
C
TSURF=TSURF+HP(K)*AI
ZMAX=(ZMAX+4.)/(2.*TSURF)
ZMIN=Z2-ZMAX
ZAVE=(ZMIN+ZMAX)
RMNZ=.OUT1*201,201,206
201 S.
C
206 IF(A<AV E)202,203,203
202 SURF=2.*(HP(K)-ZMIN)**3/(3.**(ZMAX-ZMIN)**2)
GOTO 200
203 IF(HP(K)-ZMAX)204,205,205
204 SURF=HP(K)-ZAVE2.*(ZMAX-HP(K))*ZAVE/(3.**(ZMAX-ZMIN)**2)
GOTO 200
205 SURF=HP(K)-ZAVE
200 HP(K)=HP(K)-SURF
TSURF=TSURF+SURF
C
COMPUTE SOIL MOISTURE / EVAPORATION AND PERCOLATION
C
512 E1=C0+0UT)*S1-DP1*S1/ST
IF(E1)33,33,36
33 E7=0,
IF(01)4,4,45
34 SLOPE=0,
GOTO 5
35 SLOPE=A*POW*(S1-SL)**(POW-1.)
6V TO 39
36 IF(01)37,37,36
37 SLOPE=B(IT)
GOTO 5
38 SLOPE=B(IT)*A*POW*(S1-SL)**(POW-1.)
39 ST=E1*ST
OM=(E1+.5*HP(K)*SLOPE)/(1.+.5*DT+SLOPE)
Sd=S1+HP(K)-OM*DT
IF(S2-ST)41,41,40
40 EX=S2-ST
T1=EX/(EX+ST-S1)
T2=1.-T1
DS=(.5*(01+FT)*T2+FT+7)
EM=.5*(L1+PE(1T)-DP1)*T2+(PE(1T)-DP1)+T1
\[\text{ST'UU} = \text{ST} + \text{HP(K)} - \text{EM} \times \text{DT} \]
\[\text{FLJT} = \text{FILTQM} \times \text{T} + \text{SPILL} \times \text{DIV} \]
\[\text{tsurf} = \text{tsohf} \times \text{spfl} \times (1 - \text{div}) \]

\[\begin{align*}
\text{IF} (\text{S2} > \text{SL}) & : \text{IF} (\text{S2, UT, 0.0}) \quad \text{S2} = 0.0 \\
\text{GOTO} & : 44 \\
\text{G} & = \text{A} \times (\text{S2} - \text{SL}) \times \text{POw} \\
\text{FILT} & = \text{FILT} + 0.5 \times (\text{G1} + \text{G2}) \\
\text{G1} & = 0.2 \\
\text{S2} & = 2 \\
\text{CONTINUE} \\
\end{align*} \]

C

COMPUTE GROUNDWATER STORAGE AND DISCHARGE

\[\begin{align*}
\text{DINT} (\text{IT} + \text{LAG1}) & = \text{DINT} (\text{IT} + \text{LAG1}) + \text{TSURF} \\
\text{GFT} & = \text{GW} \times \text{GWS} \times 1.5 / \text{Sqrt} (\text{ST}) \\
\text{SLOPE} & = 1.5 \times \text{GW} \times \text{Sqrt} (\text{GWS} / \text{ST}) \\
\text{SWS} & = (\text{GFT} \times 1.5 * \text{FILT} + \text{SLOPE}) / (1 + 0.5 * \text{SLOPE}) \\
\text{GWS} & = \text{GW} \times \text{GWS} \times \text{FILT} - \text{DINT} \times (\text{IT} \times \text{D}) \\
\end{align*} \]

CONTINUE

C

ROUTING OF SURFACE RUNOFF AND LAG OF ALL RUNOFF

\[\begin{align*}
\text{IF} (\text{J} - \text{I} = 0, 107, 108) \\
\text{DU} \text{ OUTT} (\text{KL}) & = 1, \text{LAG1} \\
\text{DOUTT} (\text{KL}) & = 0. \\
\text{DO} & : 600 \text{ K} = 1, \text{LAG} \\
\text{DOU} & : 600 \text{ K} = 1, \text{LAG1} \\
\text{DOU} & : 600 \text{ K} = 1, \text{LAG} \\
\text{DINT} (\text{KL}) & = \text{CARRY} (\text{KL}) \\
\text{NCALC} & = \text{HAT} + 1 \\
\text{DU} & : 111 \text{ INOUT} = \text{NCALC} \\
\text{IF} (\text{DI NT} (\text{INOUT}) \times \text{LT, 2.0} = \text{H} 0) \\
\text{IF} (\text{DOUTT} (\text{INOUT} - 1, \text{LT}, \text{2.0}) \times \text{DOUTT} (\text{INOUT} - 1) = 0.0) \\
\text{DOUTT} (\text{INOUT}) & = \text{DINT} (\text{INOUT}) \\
\text{DOUTT} (\text{INOUT}) & = \text{DOUTT} (\text{INOUT} - 1) + (\text{DINT} (\text{INOUT} - 1) - \text{DOUTT} (\text{INOUT} - 1)) + \text{C} 2 \\
\text{FLOW} (\text{J}) & = \text{FLOW} (\text{J}) + \text{DOUTT} (\text{INOUT}) \\
\text{GWF} (\text{J}) & = \text{GWF} (\text{J}) + \text{DOUTT} (\text{INOUT}) \\
\text{BOUTT} (\text{INOUT}) & = (\text{DOUTT} (\text{INOUT}) + \text{BOUTT} (\text{INOUT})) \\
\text{RAT} & = \text{DOUTT} (\text{INOUT}) / \text{Q Bank} \\
\text{CLOS} & = 1.0 \times \text{RAR} \times \text{AREA} \times \text{FE} (\text{INOUT} - 1) \\
\text{RESF} & = \text{DOUTT} (\text{INOUT}) - \text{CLOS} \\
\text{IF} (\text{RESF} \times \text{LT, 0.0}) \times \text{RESF} = 0.0 \\
\text{SCLOS} (\text{J}) & = \text{SCLOS} (\text{J}) + (\text{DOUTT} (\text{INOUT}) - \text{RESF}) \\
\text{DOUTT} (\text{INOUT}) & = \text{RESF} \times \text{CUMEC} \\
\text{IF} (\text{J} \times \text{Q}, \text{LT} = 1.0) \times \text{GOTO} \text{ 110} \\
\text{DAYF} (\text{J} - 12, \text{INOUT} - 1) & = \text{DOUTT} (\text{INOUT}) / \text{UUU, 0} \\
\end{align*} \]
110 CONTINUE
NR=NCALC
START=INT(NR)
IF(LAG)0,60+605
605 DU 02 KX=1,LAG
602 CARRY(KL)=INT(NR+KL)
604 START=INT(NR)
MY=LY*(J-1)/12
IF(JY,Eq.LY=19003GOTO 49
MS=M
IF(MS=12)115,113,114
114 MS=MS+12
MY=MY+1
113 WRITE(6,111) MY,MS,(DOUT(KK),KK=2,NCALC)
111 FORMAT(13,11F6.0,/,8X,11F6.0,/,8X,11F6.0)
TFLOW=TFLOW+FLOW(J)+GWF(J)
SUR=SUR+FLOW(J)
49 CONTINUE
SUR=1D0,SUP/TFLOW)
GROUP=100.0,SUP
AL=AL*100,
WRITE(6,61)G1,62,AREA
61 FORMAT(/8X,*SYNTHESIZED RUNOFF AT GAUGE 1,2A3/, 'CATCHMENT ARE
*AL,FT,10,KM
*IUK,35(14),2X,27(14),/
WRITE(6,62)POP,SL,ST,FT,AL,LAW,DIV
62 FORMAT(*POW1=3F4.1,*,SL=3F5.1,*,MM
ST=3F6.2,*,MM
FT=3F4.4,*,MM
DAY AT=3F4.1,*,/!
LAG=3F7.7,10AYS DIV=3F4.2,/
WRITE(6,78)2MINN(2MAXN=2PL,GT,TP
78 FORMAT(*2MINN=3F5.2,*,MM/HOUR
2MAXN=3F5.2,*,MM/HOUR
PI=3F4.1,,MM
GL=3F4.2,*,DAYS
TL=3F4.2,*,DAYS
*
R=3F3.2,1/
QMAX=QMAX-1000.0,AREA=(24.0*3600.0)
WRITE(6,7733)TRI,CHAN,GBANK
7733 FORMAT(*/8X,'TRIB=1,F6.1,*,KM
CHAN=1,F6.1,*,M
GBANK='1,
F6.2,,CUMEC/1,)
WRITE(6,517)AR,AB
517 FORMAT('DAILY FLOW OF RAIN(HOURS) =3F6.3,*,3F6.3,
*1 DAILY FLOW(HOURS)
*1
WRITE(6,467)CG,CD
467 FORMAT('WINTER DURATION OF RAIN(HOURS) =3F6.3,*,3F6.3,
*1 DAILY FLOW(HOURS)
*1
WRITE(6,520)TFLOW,SUR,GROUP
520 FORMAT(*/8X,'TOTAL SIMULATED RUNOFF(MM)=3F10.3
*1/TX,'QUICKFLOW PART OF TOTAL RUNOFF(X)=3F5.1/1X,'0',/
*1 FLOW PART OF TOTAL RUNOFF(X)=3F5.1/1X,'0',/
DU 74 M=12,NN=12
M=K+1
MY=LY,-57+ME/12
FYC=U,
YCY=U,U
 DU 53 J=MY,ME
FLOW(J)=FLOW(J)+AREA
GWF(J)=GWF(J)+AREA
SCLOS(2)=SCLOS(J)+AREA
K=K+1
XUBS(K)=XUBS(J-12)
FIN(K)=FLOW(J)+GWF(J)-SCLOS(J)
73 PERC(K)=PERC(K)+FIN(K)
FCY=KCY+KUBE(K)
FLOW(J)=FIN(K)
53 FCY=FCY+FIN(K)
SUBROUTINE AFIT (X,Y,NMON,H1)

DIMENSION X(100),LRUN(200),Y(100),RESX(200),REXY(200)
DIMENSION DIFFRES(200),FOCX(60),FOCY(60),FLEV(60)
DIMENSION AUTOX(200),AUTOT(200),JM(12),SMONX(12),SMONY(12)
INTEGER TEMP1,TEMP2,TEMP3,TEMP4

YEAR=FLOAT(NMON/12)
TUTX=0.0
TOTY=0.0
Y=0
NNUM=0
NRUN=0
NPPOS=0
NNN=U
NPP=0

DO 10 I=1,NMON
 SIG=Y(I)-X(I)
 IF (SIG,_LT,0) GOTO 13
 NMON=0
 NPP=0
 GOTO 12
13 IF (SIG,LE,0) GOTO 11
 IF (NPP,EQ,0) NPPOS=NPPOS+1
 NPP=NPP+1
 NNUM=NNUM+1
 N=NP+1
 GOTO 12
11 NPP=0
 IF (NNUM,EQ,0) NRUN=NRUN+1
 NNUM=NNUM+1
 N=N+1
7 TUTX=TUTX+X(I)
10 TOTY=TOTY*Y(I)
 PIOT=((TOTY-TOTX)/TOTX)*100
 VM=TOTX/TH
 RPM=((Y(I)-X(I))/XMM)*100
 XMM=TUTX/YEAR
LIST
PROGRAM(DALT)
INPUT 5=CR0
INPUT 7=CR1
INPUT 3=CR2
INPUT 4=CR3
OUTPUT 6=LP0
TRACE U
END
MATER DALT
THESE PROGRAMS GENERATE DAILY RUNOFF IN THOUSANDS OF CUMEC
FROM DAILY RAINFALL (MM) AND DAILY A-CLASS PAN EVAPORATION (MM),
THE BASIC STRUCTURE OF THE MODEL HAS BEEN DRAWN FROM THE
DALTON WATER MODEL DESCRIBED BY DISKIN, BURAS AND ZAMIR (1973)
DEVELOPED BY P. ROBERTS, H. R. U. RHODES U., 1974-78
MODIFIED BY A. MORGENSEN, H. R. U., RHODES U., 1982
ONE WARM-UP YEAR ALLOWED, EXCLUDED IN STATS, CALCS.
DIMENSION RAIN(31), EVAP(31), FLO(31), TRANS(20), LAST(12)
DIMENSION DAYF(72-31), XBAR(12), FIN(12), PEAD(12), DL(31), PL(31),
*OBFL(84), GFL(31), FSIM(84), EVHD(12)
DATA LAST/31,28,11,30,31,30,31,30,31,30,31,30/31
C READING IN CATCHMENT NAME OR RUN IDENTIFICATION - 32 CHARACTERS
1 FORMAT (4A8)
C READING IN CATCHMENT AREA (SQ.KM.), FIRST AND LAST YEARS
C OF INPUT DATA USED FOR SIMULATION AND ALL FLAG SETTINGS
C READ (5,2) AREA, YFIRST, YLAST, ALL, MIAP
2 FORMAT (10,2,5F)
C READING IN INITIAL LEVEL AND ALL PARAMETERS
C ALL VALUES IN MILLIMETERS
C SSL INITIAL LEVEL OF STORAGE
C SSM MAXIMUM CAPACITY OF STORAGE
C SSL STORAGE LEVEL AT WHICH BASE FLOW TUNING
C POWER POWER OF BASE FLOW FUNCTION
C BCUR POWER OF NON-LINEAR STORAGE DEPTH FUNCTION
C AMAX MAXIMUM VALUE OF STORAGE DEPTH FACTOR
C PERC MAXIMUM FRACTION OF SUJ. MOISTURE TO DEEP PERCOLATION
C NB: FLAG SETTINGS FOR THE DALT RANGE OF MODELS:
C DALT1 - LINE1 ILM=2 SSB=SMM
C DALT2 - LINE1 ILM=2 SSB=SMM
C DALT3 - LINE2 ILM=2 SSB=SMM
C DALT4 - LINE2 ILM=1 SSB=SMM
C READ (5,3) SSL, SSM, SSB, POWER, BCUR, AMAX, PERC
3 FORMAT (7F6.2)
C READ IN THE REQUIRED LAG TIME IN DAYS
C READ IN THE REQUIRED LAG TIME IN DAYS
C READ IN THE REQUIRED LAG TIME IN DAYS
C READ (5,4) LGAS

SUBFILE DALT LC=B200 LENGTH: 81 W#4
4 FORMAT (15)
C READ IN 12 AVERAGE MONTHLY VALUES OF PAN EVAP(MM)
C JAN-DEC, ONLY IF MVAP=1
C IF(MVAP.EQ.2) GOTO 799
READ(5/766)(EVMO(NX),NX=1,12)
766 FORMAT(12F6.1)
799 IF (UAO.EQ.D) GOTO 9
C READ IN LAG NUMBER OF DAYS OF TRANSLATED FLOW (1000 CUBIC METERS)
C FROM PREVIOUS MONTH-- ONLY IF LAG IS REQUIRED
C ***
C READ (5,5) (TRANS(I),I=1,LAG)
5 FORMAT (8F10.3)
C READ IN PAN TO FREE WATER SURFACE EVAPORATION CONSTANTS
C ***
C READ (5/6) (PEAPJ(K),K=1,12)
6 FORMAT (12F5.3)
782 FORMAT(1X,'NM0N=IYR2-IYR1*12',/,'NM0N=NM0N12',/)
C READ IN OBSERVED MONTHLY RUNOFF TOTALS
C KMON=NMON-12
READ(4,782)(OBFL(K),K=1,KMON)
782 FORMAT(2X,12F6.2)
C ICON=U
RIOT=U
AMEX=U,0
AMEN=U,0
COF=U,0
TTEST=U,0
RECO=U,0
BASE=U,0
SDEV=U,0
NUD=U
TUF=U,0
TOTMN=U,0
PSL=SSL
RA=SSB/SSX
WRITE(6/1112)H1,H2,H3,H4
1112 FORMAT(1X,'SIMULATED RUNOFF AT ',4A8,'//',
1F7.3,DAILY FLOWS IN THOUSANDTHS OF CUMEC;',//
1F15.3,MONTHLY FLOWS IN 10**3 M**3);//
WRITE (6,7) SSL,SSM,SSB,POWER,AMAX,PERC,LAG
7 FORMAT (11T,1X,21PARAMETER VALUES USED,//6X,5HSSL,6X,3HSSM,
6X,3H SSB,4X,5HPOMER,5X,4HRCUR,5X,4HAMAX,5X,4HPERC,6X,3HLAG,//
7T(1X,FB,2),4X,15)
WRITE(6/111) AREA,NMON,LIM,ILIM,MVAP
111 FORMAT(1X,3PARAMETER AND PROGRAM CONTROL FLAGS SET AS;',//
5X,4HARE,5X,4HMON,4X,4HLINE,5X,4HILIM,5X,4HMVAP);//7X,
*FS,2,4(1X,4A2)//D0 46 JK=1,31
46 DFL(JK)=0,0
C START OF THE MONTHLY LOOP
C KB=0,0
C READ IN ONE MONTH RAINFALL AND EVAPORATION DATA AS FOLLOWS
C RAINFALL RECORD PRECEDES EVAP RECORD FOR EACH MONTH
C
10 FORMAT((2I3,11F6.2))
NEND=LAST(NM)
IF ((NYR+4*(NYR/4)).EQ.0).AND.((NM.EQ.2)) NEND=NEND+1
IF (MVP.EQ.2) GOTO 790
00 781 IZ=1, NEND
EVAP(IZ)=EVMO(NM)/FLOAT(NEND)
790 READ(710)(NYR,NM,(RAIN(ND),ND=1/31)
11 FORMAT((6x/(11F6,2)))
C START OF THE DAY LOOP
C
DO 50 IDA=1,NEND
EP=EVAP(IDA)*PEADJ(NM)
SPE=SPE+EP
PH=RAIN(IDA)
SPR=SPR*PR
THE OPERATION OF THE STORAGE
C
RAT=SSL/SSM
PRE=PRE*x0.5*RAT**0.5-RAT
EP=EP-PRE
PLE=SSL+PR
IF (PLE.LE.0) GOTO 200
SET=SET+EP
PLE=PLE-EP
GOTO 210
200 SET=SET+PLE
PLE=0,0
210 OVF=PLE-SSM
DL(IDA)=PLE
IF (OVF.GT.0,0) GOTO 220
SSL=PLE
FLOW(IDA)=0,0
OVF=0,0
GOTO 210
220 FLOW(IDA)=OVF*AREA
SROS=SROS*OVF
FSUM=FSUM+OVF
SSL=SSM
C THE NON-LINEAR STORAGE FUNCTION
C
230 IF(LIM,EQ.,1)RANG=SSM
IF(LIM,EQ.,2)RANG=SSM
RAT=SSL/RANG
IF(RAT,GTL.1.0)RAT=1.0
CR=RAIN(IDA)-EP
FAT=AMAX-((AMAX-1.0)*(RAT**BCUR))
IF(LINE,EQ.,1)FAT=1.0
PSL=PSL+(CR+FAT)
IF(PSL,GT,SSL)PSL=SSL
IF(PSL,LT,SSL)PSL=SSL
RAT=PSL/SSL
PLC(IDA)=PSL
IF(RAT,GT,BRA)GOTO 240
BF=0.0
GOTO 250

C
THE DEEP PERCOLATION FUNCTION

C 240
HEAD=PSL-SSL
PATH=SSL-SSI
PLOSS=HEAD*PATH/PERC
SSL=SSL-PLOSS
SSI=SSL-OS*FAT
RAT=PSL/SSI
TPER=TPER+PLOSS

C
THE BASE FLOW FUNCTION

C
XBR=BRA-BRA
BF=(PSL-SSB)*XBR**POWER)
IF(BF,GT,SSL)BF=SSL
SGW=SGWF+BF
SSL=SSL-BF
IF(SSL,LT,0.0)SSL=0.0
PSL=PSL-BF*FAT
FLOW(IDA)=FLOW(IDA)+(BF*AREA)
FSH=FS+BF

250 IF(LAG,GT,0.0)GOTO 50

C
END OF DAY LOOP AND START OF TIME DELAY SECTION

C
10 DO 92 KK=1,LAG
RFLO(KK)=TRANS(KK)
CONTINUE
92 DO 93 J=1,NEND
K=J+LAG
IF(K,GT,NEND)GO TO 94
RFLO(K)=FLOW(J)/(24.0**3.6)
93 CON TINUE
94 I=I+1
TRANS(I)=FLOW(J)
95 CONTINUE
DO 95 NJ=1,NEND
TFLO=TFLO+RFLO(NJ)
RFLO(NJ)=RFLO(NJ)-1NDU.
IF(NYR,EQ.,1)RY=1-1900DO TO 95
DAYFL=12/NJ=RFLO(NJ)/1000.0
Data Component Summary - All Values in Millimeters

Format (1X,5DH)**

1. **TOTAL RAINFALL = \(F_{8.2} \) / \(x \)**
2. **SURFACE FLOW = \(F_{8.2} \) / \(x \)**
3. **DEEP PERCOLATION = \(F_{8.2} \)**

END OF MONTH LOOP

IF (TOTMM.LE.0.0) GOTO 919

WRITE (6,520) TOTMM, SUR, GROU

Format (///1X,30D1,///1X,'TOTAL SIMULATED RUNOFF(MM)=',F10.3,

\(x \)

FLOW PART OF TOTAL RUNOFF(\(x \)) = \(F_{5.1} / x \)

DELAYED, **FLOW PART OF TOTAL RUNOFF(\(x \)) = \(F_{5.1} / x \)**

DO 74 M=1,NMON,12

ME=+11

MT=IYR-1+ME/12

FCO=D, XYC=D, U

DO 53 J=1,ME

K=J-MT

XPOS(K)=XPOS(J-12)

FIN(K)=FSIM(J)

XYC=XYC*FIN(K)

SSIM(J-12)=FIN(K)

DO 55 FCY=FCY*FIN(K)

WRITE (6,55) MY, (FIN(N), N=1/12)/FCY

WRITE (6,55) (XPOS(N), N=1/12), XYC

CONTINUE

NMON=NMON-12

CALL AFFIT(OFL,FSIM,NMON,1)

LY=IYR+1

CALL BFLI(DAYF,NMON,1,LY9)

STOP

END

SUBROUTINE AFFIT BY P. J. ROBERTS*

EXTENDED AND MODIFIED BY A. M. GORGENS, DURING 1980-1981*

X IS THE ARRAY OF OBSERVED MONTHLY DISCHARGE

Y IS THE ARRAY OF SIMULATED MONTHLY DISCHARGE

NMON IS THE LENGTH OF RECORD IN MONTHS

LY IS THE FIRST MONTH OF RECORD (I.E., 1 FOR CALENDAR YEARS AND 10 FOR HYDROLOGICAL YEARS)
SUBFILE: PITH LC=B3DU LENGTH: 54 HRAG

LIST

PROGRAM (BILL)
INPUT |S=CRZ
OUTPUT 6=LPO
INPUT |S=CRZ
INPUT |S=CRZ
COMPRESS INTEGER AND LOGICAL
TRACE U ENDM

MASTER BILL

THIS PROGRAM GENERATES MONTHLY RUNOFFS FROM DAILY AND/OR MONTHLY RAINFALL AND MONTHLY A-PAN EVAPORATION DATA

DIMENSION (CUO), (PERCUO), (FLOWCUO), (PERCU), (FINCU), (B10CU),
(CT1CU), (SR1CU), (WFSUO), (FSIMCUO), (GSSU), (ERSCU)

INPUT A-PAN COEF FOR LOWER GTISH

DATA ER=0,76,0.77,0.75,0.74,0.74,0.74,0.72,0.69,0.71,0.74,

READ GAUGE(61-62) CATCHMENT AREA (AREA=KM**2)

AND NO. OF COMPUTATIONAL STAGES PER MONTH

NIT=0 FOR DAILY RAINFALL INPUT=4 FOR MONTHLY RAINFALL INPUT

READ(61) 61,62,AREA,NIT

1 FORMAT(2A3,F7.1,13)

**

READ CATCHMENT PARAMETERS

POWER = STORAGE RUNOFF CURVE

SL=STORAGE BELOW WHICH NO RUNOFF OCCURS (MM)

ST=MAXIMUM STORAGE CAPACITY (MM)

FT=RUNOFF RATE AT MAXIMUM STORAGE CAPACITY (MM/MONTH)

GW=MAXIMUM GROUND WATER RUNOFF RATE (MM/MONTH)

AL=PROPORTION OF IMPERVIOUS CATCHMENT

ZMIN=MINIMUM ABSORPTION RATE (MM/MONTH)

ZMAX=MAXIMUM ABSORPTION RATE (MM/MONTH)

PI=INTERCEPTION CAPACITY (MM/DAY)

TL=TIME LAG OF RUNOFF (MONTHS)

GL=TIME LAG OF GROUND WATER (MONTHS)

RE=EVAPORATION STORAGE COEFFICIENT

**

READ(S1U7) PON, SL, ST, FT, GW, AL, ZMIN, ZMAX, PI, TL, GL/YR

107 FORMAT(F4.1,2F5.0,2F5.1,1F5.3,4F6.0,F4.1,3F5.2,2)

**

CALCULATE COEFFICIENTS (X,Y) TO YIELD MONTHLY INTERCEPTION

**

X=1.5, U6=P=1.14
Y=0.0099, P=0.75, 0.11

N0FNT=NIT

IF (NIT)<20.60.59

DIJ, /FLOAT(NIT)

**

READ FIRST AND LAST YEARS OF SIMULATION PERIOD

**
READ(S,5) LY1,LY2
5 FORMAT(2I5)
NY=LY2-LY1+1
NM=12*NY

C READ MONTHLY CATCHMENT RAINFALLS,PAN EVAPS AND OBSERVED FLOWS
C
DO 6 N=1, NY
NEND=1+ N
NBEG=NEND-11
READ(5,7) IYC,(P(J),J=NBEG,NEND)
READ(6,7) IYC,(PE(J),J=NBEG,NEND)
7 FORMAT(I2,12F6.2)
6 CONTINUE
NYN=NY-1
DO 707 N=1, NYN
NE=1+ N
NB=NE-11
READ(7/708) IYC,(FOBS(J),J=NB,NE)
708 FORMAT(I2,12F6.1)
707 CONTINUE

C COMPUTE COEFFICIENTS RELATING EVAPORATION TO STORAGE
C
MON=0
DO 10 J=1, NM
MON=MON+1
IF(MON,GT,12)MON=1
PE(J)*PE(J)=ER(MON)
SZ=P*ST/PE(J)**0.50
B(J)=PE(J)/(ST-SZ)
10 CONTINUE

C initialise storage and compute initial catchment runoff
C
THLOW=T,
S1=.2U*ST
Am=FT/(ST-SL)**POW
IF(S1-SL)14,14,15
14 Q1=0,
FU1=0,
FL1=0,
GOTO 7U
15 Q1=AY*(S1-SL)**POW
 IF(G1=GW)B3,R2,82
 B3 F61=G1 n
 F11=0,
 GOTO 7U
R2 F61=Q1=GW
 F11=Q1=GW
 GOTO 7U
C START OF LOOP CALCULATING MONTHLY RUNOFFS
C
DO 49 J=1, NM
49 FLOW(J)=AI*P(J)
GWFC(J)=Q,
C IF(P(J)>60,GN,Y1
90 DE=0,
GOTO 9E
Y1 DE=K*(1.-EXP(Y*P(J)))
Computation of Rainfall Data

Objective:
- Read daily rainfall data (mm)
- Compare daily rainfall totals with the catchment mean and adjust accordingly
- Compute coefficients (w/EN) for synthesizing mass curve of rainfall
- Compute incremental rainfalls from synthetic mass curve

Variables and Constants:
- `EN`: Rainfall coefficient
- `W`: Weight factor
- `P`: Monthly rainfall
- `Wq`: Water quantity
- `Wz`: Water zone
- `M`: Mass curve
- `S`: Catchment
- `D`: Daily
- `J`: Monthly
- `T`: Total
- `T**: Total
- `U`: Unit
- `V`: Volume
- `W`: Water
- `X`: Extra
- `Y`: Yield
- `Z`: Zone
- `Z**: Total

Program Logic:
1. **Input Rainfall Data**
 - Read daily rainfall data (mm)

2. **Adjust Daily Rainfall Totals**
 - Compare monthly rainfall totals at daily gauge with that of catchment mean and adjust accordingly

3. **Synthesize Mass Curve**
 - Compute coefficients (w/EN) for synthesizing mass curve of rainfall

4. **Compute Incremental Rainfalls**
 - Compute incremental rainfalls from synthetic mass curve

Key Equations:
- `EN = ...` (details of equation)
- `W = ...` (details of equation)
- `P = ...` (details of equation)
- `Wq = ...` (details of equation)
- `Wz = ...` (details of equation)
- `M = ...` (details of equation)
- `S = ...` (details of equation)
- `D = ...` (details of equation)
- `J = ...` (details of equation)
- `T = ...` (details of equation)
- `T** = ...` (details of equation)
- `U = ...` (details of equation)
- `V = ...` (details of equation)
- `W = ...` (details of equation)
- `X = ...` (details of equation)
- `Y = ...` (details of equation)
- `Z = ...` (details of equation)
- `Z** = ...` (details of equation)

Instructions:
- **DO** 22 ND=1,31
- **IF** (DR(NO)) 22,22,21
- **SOR** = SDR+DR*ND
- **CONTINUE**

- **DO** 31 IT = 1,NOFT
- **SUMT** = SUMT+DT
- **SP2** = P*SUMT**EN/(SUMT**EN+(1.-SUMT)**EN)
- **DR** (IT) = SP2-SP1

Output:
- Output adjusted rainfall totals
- Output synthetic mass curve
- Output incremental rainfalls
AVG = 5*(DZMIN + DZMAX)

START OF LOOP CALCULATING RUNOFF FOR EACH TIME STEP

DO 48 IT = 1, NRT
 SURF = 0,
 IF (P(J) .GT. 000, 100, 101)
 100 DPI = 0,
 IF (P(J) .GT. 000, 100, 101)
 101 DPI = DPI + DR(IT) / P(J)
 102 DR(IT) = (1. - A1) * (DR(IT) - DPI)
 IF (DR(IT) .GT. 84, 85, 85)
 84 DR(IT) = 0.

 COMPUTE SURFACE RUNOFF

 85 IF (DR(IT) .GT. 001, 100, 101)
 101 DPI = DPI + DR(IT) / P(J)
 102 DR(IT) = (1. - A1) * (DR(IT) - DPI)
 IF (DR(IT) .GT. 84, 85, 85)
 84 DR(IT) = 0.

 COMPUTE SURFACE RUNOFF AT END OF TIME INTERVAL

 IF (E1) 33, 33, 36
 33 IF (R(J)) 34, 34, 35
 34 SLOPE = 0.
 35 SLOPE = AY * POW * (S1 - SL) ** (POW - 1.)
 36 IF (Q1) 37, 37, 38
 37 SLOPE = B(J)
 38 SLOPE = B(J) + AY * POW * (S1 - SL) ** (POW - 1.)
 39 EM = (Q1 + 5 * DR(IT) - SLOPE) / (1. + 3 * DT * SLOPE)
 40 ST = ST + DR(IT) - EM
 41 IF (ST .GT. 1000, 100, 101)
 101 DPI = DPI + DR(IT) / P(J)
 102 DR(IT) = (1. - A1) * (DR(IT) - DPI)
 IF (DR(IT) .GT. 84, 85, 85)
 84 DR(IT) = 0.

 COMPUTE SURFACE RUNOFF DUE TO EXCEEDENCE OF SOIL MOISTURE CAPACITY

 EX = S2 - ST
 T1 = E1/(E1 + ST)
 T2 = 1. - T1
 B = M * EM / (1. + EM) * T2 * FT
 E = B * (1. + R(J) - DF) * T2 * PE(J) - DF
 SPILL = 1. - ST + DR(IT) - DT * (EM + EH)
 SPILL = SPILL + DT * (EM + GH)
 IF (Q1) 37, 37, 38
 37 SLOPE = B(J)
 38 SLOPE = B(J) + AY * POW * (S1 - SL) ** (POW - 1.)
 39 EM = (Q1 + 5 * DR(IT) - SLOPE) / (1. + 3 * DT * SLOPE)
 40 ST = ST + DR(IT) - EM
 41 IF (ST .GT. 1000, 100, 101)
 101 DPI = DPI + DR(IT) / P(J)
 102 DR(IT) = (1. - A1) * (DR(IT) - DPI)
 IF (DR(IT) .GT. 84, 85, 85)
 84 DR(IT) = 0.

 COMPUTE RUNOFF RELATED TO SOIL MOISTURE CONTENT

 IF (ST .GT. 1000, 100, 101)
 101 DPI = DPI + DR(IT) / P(J)
 102 DR(IT) = (1. - A1) * (DR(IT) - DPI)
 IF (DR(IT) .GT. 84, 85, 85)
 84 DR(IT) = 0.
42 Q2=0,
FG2=0,
F12=0,
GOTO 44
43 Q2=AY*(S2-SL)**P0V
IF(Q2-GM)16,94,94
16 FU2=sti2
H2=0,
GOTO 44
94 FG 2=G U
F12=02-GW
44 OFLOW=,5*DT*(FI1+FI2)
GFLOW=,5*C>T*(FG1 + FG2)
E1=C (JH 8(j)*S 2-0E *S 2/S 7
IF (£1)45/46/46
46 01=81+61
GWF(j)=GWF(J)+GFLOW
48 FLOW(J)=fLOW(J)+DFLOW+SURF
49 TFLOti=TFLOw*FLOw(J)*GWF(J)
A1=A1+100,
WRITE M EAOIN G S
WRITE(6,61)G1/G2,AREA
61 FORMAT(1H1,11X/28HSYNTHESIZED RUNOFF AT GAUGE /2A4,'CATCHMENT' /
1'AREA='/F?,0/'SQ,KM > /12X,33(1H$),2X,5?7(1H$),2X,15(1H$))/
WRITE(6,62)POW/SL/ST,FT,6/AI
62 FORMAT(7H PO W,=,F4.1,6H SL=,F7.2,8HMM ST=,F7.2,8HMM FT=,F7.
12X 15H MM/MONTH GW=,F6.2,15H MM/MONTH A1=,F4.1,1H$)
WRITE(6,70)ZMIN,2MIN,2MAX,14HMM/MONTH PI=,
70 FORMAT(2H Z »I/N=/F 7.2,14HMM/MONTH PL=/F7.2,14HMM/MONTH PI=,
1F2,2/VH MM 6L4,5.3,13H MONTHS TL=,F5.3,14H MONTHS NIT=,I3,6
2H/MONTH//)
WRITE(6,103) R
103 FORMAT(1X,'R=',/F4.2)
WRITE(6,103)
63 FORMAT(114H YEAR JAN FEB MAR APR MAY JU
1N JUL AUG SEP OCT NOV DEC TOTAL/)
SUBROUTINE AFIT

By: P. J. T. Roberts

Extended and Modified

By: A. H. M. Gurevich, during 1980–1981

X is the array of observed monthly discharge

Y is the array of simulated monthly discharge

NM is the length of record in months

M is the first month of record (i.e., 1 for calendar years and 10 for hydrological years)

C

C SUBROUTINE AFIT by P.J.T.ROBERTS

SUBROUTINE AFIT(X,Y,NM0N,M)

DIMENSION

X (100), **RUN** (10), **Y** (10), **RESX** (100), **RESY** (100)

DIMENSION

DIFRES (100), **FDCX** (10), **FDCY** (10), **FLEV** (10)

INTEGER

TENP1, **TENP2**, **TENP3**, **TENP4**

TN = **FLOAT**(NM0N)

YEAR = **FLOAT**(MM0N/12)
SUBFILE:DALM LENGTH: 57

LIST

PROGRAM(DALM)
INPUT 3=CR1
INPUT 4=CR2
INPUT 5=CRD
OUTPUT 6=LP0
COMPRESSION INTEGER AND LOGICAL
COMPACT DATA
THROUGH
END

MASTER

MONTHLY MODEL DALT: DEVELOPED BY D. HIGGINS, M. U. RHODES, 1982/
FROM DAILY MODEL DALT (DEVELOPED BY P. ROBERTS, PRE-1970)
THIS VERSION MODIFIED BY A. GORGES, M. U. RHODES, 1982/
AND USES ONE WARM-UP YEAR (EXCLUDED IN THE STATS.CALS.)

THIS PROGRAM GENERATES MONTHLY RUNOFF FROM MONTHLY RAINFALL (MM)
AND MONTHLY PAN EVAPORATION (MM).

DIMENSION RAIN(600), FSIM(600), ORFL(600), PFC(100)
DIMENSION EVMO(100), PEAND(12), RRR(31), ANK(30), ANY(30)
READ IN CATCHMENT NAME OR RUN IDENTIFICATION

READ(5,161,62)

1 FORMAT(2A5)

READ IN CATCHMENT AREA(SQ.KM)
NUMBER OF MODEL ITERATIONS REQUIRED PER MONTH
STARTING YEAR (IE 1920) AND MONTH (IE 1 FOR CALENDER YEARS AND 10 FOR HYDROLOGICAL YEARS) & END YEAR OF SIMULATION AND IFORS = 1 FOR NO FOREST COVER ON CATCHMENT
= 2 FOR CONSTANT FOREST COVER ON CATCHMENT
= 3 TO ACCOMMODATE CHANGING FOREST COVER
AND LINE AND ILIM TO CONTROL THE NON-LINEAR STORE

READ(5,2) AREACT,NHYR1, NYR2, NM1, IFORS, LINE, ILIM

2 FORMAT (F7.2,7I5)

READ IN HYDRL PARAMETER VALUES AND INITIALIZE VARIABLES
SSL INITIAL LEVEL OF SOIL MOISTURE STORAGE (MM)
SM MAXIMUM CAPACITY OF SOIL MOISTURE STORAGE (MM)
SSG STORAGE LEVEL AT WHICH BASE FLOW BEGINS
PCUR POWER OF BASE FLOW FUNCTION
PMAX POWER OF NON-LINEAR STORAGE DEPTH FUNCTION
MAX MAXIMUM VALUE OF STORAGE DEPTH FACTOR
Perc MAXIMUM FRACTION OF SOIL MOISTURE TO DEEP PRC
AFOR AFFORESTATION PARAMETER (SET TO 1.0 FOR NO FOREST COVER)

READ(5,3) SSL, SSM, SSR, PDCUR, PMAX, Perc, AFOR

1 FORMAT (F6.2)

N=M=(NYR2-NYR1+1)*12
KMON=NMON-12

IF IFORS=1 NO FORSTY CARD REQUIRED
IF IFORS=2 READ IN PERCENTAGE FOREST COVER IN FORMAT 1F8.2
IF IFORS=3 READ IN PERCENTAGE FOREST COVER FOR EACH YEAR OF RECORD
IN FORMAT 10F8.2

IF IFORS,EQ.1) GO TO 420
IFY=NMON/12
IF (IFORS,EO.2) IFY=1
READ (5,410) (PFC(KR),KR=1,IFY)
410 FORMAT (10F8.2)

READ IN MONTHLY VALUES OF AVERAGE PAN EVAPORATION (MM) JAN-DEC

420 READ (4,4) (EVMO(NX),NX=1,NMON)
4 FORMAT (2X,12F6.1)

READ IN 12 PAN TO FREE WATER SURFACE EVAPORATION CONSTANTS JAN-DEC

444 FORMAT(12F5.1)

INITIALIZE OBSERVED RUNOFF ARRAY

DU TO JK=1,NMON
10 OBSFL(UK)=0.0

READ IN MONTHLY RAINFALL DATA (MM) FOLLOWED BY OBSERVED MONTHLY RUNOFF DATA (10**3 CUBIC METRES).

READ (5,15) (RAIN(I),I=1,NMON)
15 FORMAT (1X/12F6.2)

WRITE (6,200) G1,G2
200 FORMAT (1H1,2HSIMULATION RUN FOR ,2A3,//)
WRITE (6,210) AREAA,SSL,SSM,BCUR,AMAX,PERC
210 FORMAT (1H0,51HLISTING OF VALUES GIVEN FOR PERCENTAGE FOREST COVER,,/1X,2A3,/)
START OF THE MONTHLY LOOP

DO 10 U=M+1,N=M+1
 NM=NM+1
 IF (NM.GT.IZ) NM=1
 P=PE+(EVMOD(H)+PEADJ(NM))/FLOA(INH))
 PPP=P
 IF (PAIN(H).NE.0,) GO TO 40
 W=W+1.375*(PAIN(H)*1.6)**.8
 W=W/RAIN(H)
 FN=1.281((1.0+W)**1.49)
 IF (EN,GT,120,) EN=120.
 SP1=O.
 SFAR=U.
 CUNIT=U.
START OF ITERATION LOOP

DO 50 J=1,NIT
 IF (RAIN(M).NE.0.) GO TO 60
 RRR(J)=0.0
 C CALCULATE RAINFALL FOR PRESENT INTERVAL
 SFAR=SFAR+(1.0/FLOAT(N1T))
 SP2=RAIN(M)*(SFAR**EN/(SFAR**EN+(1.0-SFAR)**EN))
 C THE INTERCEPTION FUNCTION OPERATES ON A FINITE LINEAR STORAGE
 FPPM=1.5+U.085*PCH
 SSCP=EPXM=SP
 IF (SIN>P.LT.U,) SINP=U.
 IF (RRR(J).LT.SINP) GO TO 440
 SSCP=SCF+RRR(J)
 RRR(J)=0.
 GO TO 450
 440 RRR(J)=RRR(J)-SINP
 SSCP=EPXM
 C ADJUST SUIT CAPACITY AND POTENTIAL EVAPOTRANS FOR FOREST COVER
 450 IF (EN,GT,120,) EN=120.
 P=PP\+F2F
 C ADJUST SUIT CAPACITY AND POTENTIAL EVAPOTRANS FOR FOREST COVER
 C AND IN RAINFALL AND TAKE AWAY EVAP FROM STORE AND INTERCEPTION
4500 RAT=SSL/SSM
 IF (RAT.GT.1.0) RAT=1.0
 PRE=2.0*RAT**0.5-RAT
 IF (SCEP.GE.PE) GOTO 500
 TAE=TAE+SCEP
 EDEM=(PE+SCEP)+PRE
 SCEP=SI,0
 GOTO 510
500 SCEP=SCEP-PE
 TAE=TAE-PE
 EDEM=U,0
510 PLE=SSL+RRR(J)
 IF (PLE.LE.EDEM) GOTO 520
 TAE=TAE-EDEM
 PLE=PLE-EDEM
 GOTO 530
520 TAE=TAE+PLE
 PLE=0.U
530 OVF=PLE-SSM
 IF (OVF.GT.0.0) GOTO 540
 SSL=PLE
 OVF=0.0
 GOTO 550
540 TSURF=TSURF+OVF
 SSL=SSM
550 IF (ILIM.EQ.1) RANG=SSB
 IF (ILIM.EQ.2) RANG=SSM
 RAT=SSL/RANG
 IF (RAT.GT.1.0) RAT=1.0
 CR=RRR(J)-EDEM
 FAT=AMAX-(AMAX-1.0)*(RAT**BCUR))
 IF (LINE.EQ.1) FAT=1.0
 PSL=PSL+(CR*FAT)
 IF (PSL.GT.TSSM) PSL=SSM
 IF (PSL.LT.TSSL) PSL=SSL
 RAT=PSL/SSM
 IF (RAT.GT.BRA) GOTO 240
 BF=0.U
 GOTO 250
240 HEAD=PSL-SSB
 POTH=SSM-SSR
 PLS=HEAD-((HEAD/POTH)+PRC)
 SSL=SSL+PLOS
 PSL=PSL+PLOS+FAT
 RAT=SSL/SSM
 TDR=TDR+PLOS
 XRR=RAT-BRA
 BF=(PSL-SSB)*(XRR**POWER)
 IF (BF.GT.TSSL) BF=SSL
 THFL=TBFL+BF
 SSL=SSL-BF
 IF (SSL.LT.0.) SSL=0.U
 PSL=PSL-BF+FAT
250 TSUM=TSUM+OVF+BF
50 TSTOP=Y+OVR+BF
C --------------------------
C END OF ITERATION LOOP
C --------------------------
FSIM(M)=THIT*ARFA
YET=YET+FSIM(M)
KET=KET+THFL(M)
IF (IfM, NEQ 12) GO TO 100
ANX (ICON) = XE
ANY (ICON) = YET
XET = O,
ICON = ICON +1
IF (IFURS, EQ, 1) PCH = Q, O, D
IF (IFURS, EQ, 2) PCH = PFC(1)
IF (IFURS, EQ, 3) PCH = PFC(ICON)
END
100 CONTINUE
C END OF MONTH LOOP
C __
C
ASL = TSF/FLOAT(NM0N*11)
WRITE (6, 220)
220 FORMAT (1HO, 4SHRUNOFF VALUES GIVEN IN THOUSANDS OF CUBIC METRES,
1///1HU/110X,5HTOTAL///)
NBEQ = 1
NEND = 12
NYR = NYYR +1
LMON = LMON + 1/2
GO TO 250
J = 1
LMON
NYR = NYYR + 1
IF (J, EQ, 13) GO TO 280
WRITE (6, 260) NYR, (FSIM(KZ), KZ = NBEG, NEND), ANY(J)
260 FORMAT (1HO, 15H SIM /12F8.2 / F10.3)
WRITE (6, 270) (ORFL(KZ-12), KZ = NRES, NEND), ANY(J = 1)
270 FORMAT (5X/5H ORF /12F8.2 / F10.5 /)
280 NBEG = NBEQ + 12
255 NEND = NEND + 1
GO TO 250
LMON = NMON
FSIM(L-12) = FSIM(L)
2550 CONTINUE
C __
C
WRITE (6, 290)
290 FORMAT (1HO, 5SHDATA COMPONENT SUMMARY - ALL VALUES IN MILLIMETRES,
1///1HT0TAL RAINFALL = /F8.2,///1X,23H POTENTIAL EVAPOTRAN
1 = /F8.2,///1X,23H ACTUAL EVAPOTRANS = /F8.2,///1X,
23HSURFACE FLOW = /F8.2,///1X,23H BASE FLOW = /F8.2,///1X,
33HTOTAL FLOW = /F8.2,///1X,23H TOTAL DRAINAGE FROM SOIL = /,
4 F8.2,///1X,23H FINAL VALUE OF SSL = /F8.2,///1X,
5 F8.2,///1X,23H FINAL VALUE OF GSL = /F8.2,///1X
WHITE (6, 310) ASL, TMS
310 FORMAT (1HO, 23H AVERAGE VALUE OF SSL = /F8.2,///1X,
1 X,23H MAXIMUM VALUE OF SSL = /F8.2,///1X,
CALL AFNT (OBFL, FSIM, KMON, NM1)
STOP
END
C SUBROUTINE AFIT BY P. J. T. RONERTS***EXTENDED AND MODIFIED
C X IS THE ARRAY OF OBSERVED MONTHLY DISCHARGE
C Y IS THE ARRAY OF SIMULATED MONTHLY DISCHARGE
C NM0N IS THE LENGTH OF RECORD IN MONTHS
C N1 IS THE FIRST MONTH OF RECORD (I.E. 1 FOR CALENDER
C YEARS AND 10 FOR HYDROLOGICAL YEARS)
C SUBROUTINE AFIT (X, Y, NMON, N1)
DIMENSION X(1100), (1100), Y(1100), RESX(200), RESY(200)
X IS THE ARRAY OF OBSERVED MONTHLY DISCHARGE
Y IS THE ARRAY OF SIMULATED MONTHLY DISCHARGE
NMON IS THE LENGTH OF RECORD IN MONTHS
M1 IS THE FIRST MONTH OF RECORD (I.E. 1 FOR CALENDAR YEARS AND 10 FOR HYDROLOGICAL YEARS)

SUBROUTINE AFIT(X,Y,NMON,M1)
DIMENSION X(100),ALRNU(200),Y(100),RESX(200),RESY(200)
DIMENSION OJRES(200),FDCX(60),FDCY(60),FLEV(60)
DIMENSION AUTOX(200),AUTY(200),JM(12),SMOX(12),SMONY(12)
INTEGER TEMP1,TEMP2,TEMP3,TEMP4
TN=FLOAT(NMON)
YEAR=FLOAT(NMON/12)
TOTX=0,0
TOTY=0,0
NMON=0
NPP=0

SIGN TEST
DO 10 I=1,NMON
SIG=Y(I)-X(I)
IF (SIG,GE,0,0) GOTO 15
NPP=NPP+1
N1=N1+1
N2=N2+1
N3=N3+1
N4=N4+1
N5=N5+1
N6=N6+1
N7=N7+1
N8=N8+1
N9=N9+1
10 TOTX=TOTX+X(I)
11 TOTY=TOTY+Y(I)
12 TOTX=TOTX+X(I)
13 TOTY=TOTY+Y(I)
14 TOT=1(TOTY+1TOTX)/TOTX*100
XMM=TOTX/TN
YMM=TOTY/TN
PM=(YMM-XMM)/XMM*100
KM=TOTX/YEAR
YM=TOTY/YEAR
PMAX=(LYMAR-XMAR)*XMAR*100
SUMXY=U,0
SAXD=U,0
SYSD=U,0
SDIF=U,0
SXDEV=U,0
TIMX=U
TIMY=U
MTXY=1
MDTV=1
LGEV=U
LGEV=U
IXFLD=U
ITYFL=U
SIFAM=U,0
SYDEV=U,0
TMX=U,0
TRY=U,0
TRX=U,0
TRY=U,0
STT=U,0
I=0
DIF2=1,0
K=0
TA=0,0
MC=0
AD2=U,0
DO 15 J=1,12
SMONX(J)=X(J)
SMONY(J)=Y(J)
SUMXY=SUMXY+X(J)*Y(J)
SAXD=SAXD+X(J)*X(J)
SYSD=SYSD+Y(J)*Y(J)
SDIF=SDIF+ABS(DIFRES(J))
SXDEV=SXDEV+XDEV
SYDEV=SYDEV+YDEV
THX=THX+XDEV
THY=THY+YDEV
RESX(J)=THX
RESY(J)=THY
TTY=TTY+RESY(J)
TTY=TTY+RESY(J)

C START OF MAIN LOOP
C======================================
DO 20 J=1,MMON
MM=MM+1
IF (MM,GT,12) MM=1
SMONX(MM)=SMONX(MM)+X(J)
SMONY(MM)=SMONY(MM)+Y(J)
SUMXY=SUMXY+X(J)*Y(J)
SAXD=SAXD+X(J)*X(J)
SYSD=SYSD+Y(J)*Y(J)
SDIF=SDIF+ABS(DIFRES(J))
SXDEV=SXDEV+XDEV
SYDEV=SYDEV+YDEV
THX=THX+XDEV
THY=THY+YDEV
RESX(J)=THX
RESY(J)=THY
TTY=TTY+RESY(J)
TTY=TTY+RESY(J)

C CALCULATE NO. OF RUNS AND LENGTH OF EACH RUN
C
II=II+1
DIF1=X(J)-Y(J)
IF(J.EQ.1)GOTO 201
IF(DIF1.EQ.0.000)GOTO 202
IF(CIF.EQ.0.000)GOTO 201
CIF=DIF1*DIF2
IF(J.NE.JMON)GOTO 202
IF(J.GT.0.000)GOTO 201
201 K=K+1
LUN(K)=31
II=0
202 DIF2=DIF1
IF (J,GT,1) GOTO 30
FMAX=X(J)
FMAX=Y(J)
XMIN=RESX(J)
YMIN=RESY(J)
YMAX=RESX(J)
YMAX=RESY(J)
30 IF (RESX(J),GT,XMAX) XMAX=RESX(J)
IF (X(J),GT,FMAX) FMAX=X(J)
IF (Y(J),GT,FMAY) FMAY=Y(J)
IF (RESY(J),GT,YMAX) YMAX=RESY(J)
IF (RESX(J),LT,XMIN) XMIN=RESX(J)
IF (RESY(J),LT,YMIN) YMIN=RESY(J)
C SET UP DEFICIENT FLOW PERIOD(<MONTHLY MEAN)CALCS
C IF(J.NE.JMON)GOTO 225
IF(X(J),GE.XMM OR X(J+1),GE.XMM)GOTO 220
GOTO 228
225 IF(X(J),GE.XMM)GOTO 227
IF(TEM1,EQ,1)GOTO 227
228 MDTX=MDTX+1
TEM1=U
TEMP2=U
IF(MDTX,GT,LGEX)LGEX=MDTX
IF(J,NE.JMON)GOTO 223
GOTO 227
220 TEM1=1
IF(J,NE.1)GOTO 222
IF(TEM1,NE.1,AND.TEMP2,NE.0)GOTO 223
222 MDTX=1
TEMP2=1
GOTO 227
223 IMEX=1+IMEX
IXFLO=IXFLO+MDTX
TEMP2=1
227 IF(J.NE.JMON)GOTO 235
IF(Y(J),GE,YMM OR Y(J+1),GE,YMM)GOTO 230
GOTO 238
235 IF(Y(J),GE,YMM)GOTO 220
IF(TEM3,EQ,1)GOTO 230
238 MDTY=MDTY+1
TEM3=0
IF(MDTY,GT,LGYE)LGYE=MDTY
IF(J,NE.JMON)GOTO 235
GOTO 220
230 TEM3=1
IF(J,NE.1)GOTO 232
IF(TEM3,LE.1,AND.TEMP4,LE.0)GOTO 233
232
\text{MDY} = 1 \\
\text{TEMP} = 1 \\
\text{GOTO} 2 U \\
233
\text{JMM} = \text{IMM} + 1 \\
\text{YFLO} = \text{YFL0} + \text{MDY} \\
\text{TEMP} = 1 \\
20
\text{CONTINUE} \\
\text{XDFIC} = \text{FLOAT}(\text{IXFLO})/\text{FLOAT}(\text{IMX}) \\
\text{YDFIC} = \text{FLOAT}(\text{YFLO})/\text{FLOAT}(\text{IMY}) \\
\text{ERRDFI} = 100 \times (\text{YDFIC} - 1)/\text{XDFIC} \\
\text{ERLGE} = 700 \times (\text{FLOAT}(\text{LGEX}) - \text{FLOAT}(\text{LGEX})) \\
C = \text{END OF MAIN LOOP} \\
C = \text{PREPARE CALC OF SPECIAL COEFF. OF EFFICIENCY USING EACH MONTH'S MEAN} \\
C = \text{PREPARE CALC OF COEF. OF PERSISTENCE} \\
\text{DO} 150 \text{JJ} = 1, 12 \\
\text{SMONX(JJ)} = \text{SMONX(JJ)}/\text{YEAR} \\
150
\text{SMONY(JJ)} = \text{SMONY(JJ)}/\text{YEAR} \\
C = \text{PREPARE CALC OF SPECIAL COEFF. OF EFFICIENCY USING EACH MONTH'S MEAN} \\
C = \text{PREPARE CALC OF COEF. OF PERSISTENCE} \\
\text{DO} 203 \text{LL} = 1, \text{KC} \\
\text{TS} = 0.0 \\
\text{TY} = 0.0 \\
\text{DO} 204 \text{NN} = 1, \text{LRUN(\text{LL})} \\
\text{MC} = \text{MC} + 1 \\
\text{IF} (\text{LL}, \text{EQ}, 1, \text{AN0}, \text{NN, EQ}, 1) \text{GOTO} 704 \\
\text{IF} (\text{LRUN(\text{LL}), NE}, 1) \text{GOTO} 209 \\
208
\text{IF} (\text{LL}, \text{EQ}, 0, \text{KC}) \text{GOTO} 207 \\
\text{DELTAR} = 0.5 * (\text{DIFFER} - \text{DIFFER}) \\
\text{ADT} = 0.5 * (\text{DIFFER} - \text{DIFFER}) * \text{DELTAR} \\
\text{GOTO} 206 \\
209
\text{IF} (\text{NN}, \text{EQ}, 1) \text{GOTO} 709 \\
\text{TU} = \text{T0X(\text{MC})} \\
\text{TS} = \text{TSY(\text{MC})} \\
\text{GOTO} 205 \\
709
\text{IF} (\text{NN}, \text{EQ}, \text{LRUN(\text{LL}) - 1}) \text{GOTO} 205 \\
\text{IF} (\text{NN}, \text{EQ}, \text{LRUN(\text{LL})}) \text{GOTO} 206 \\
\text{TU} = \text{T0X(\text{MC})} \\
\text{TS} = \text{TSY(\text{MC})} \\
\text{GOTO} 204 \\
205
\text{IF} (\text{LL}, \text{EQ}, 1) \text{GOTO} 207 \\
\text{TU} = \text{T0X(\text{MC})} \\
\text{TS} = \text{TSY(\text{MC})} \\
\text{DELTAR} = 0.5 * (\text{DIFFER} - \text{DIFFER}) * \text{DELTAR} \\
\text{ADT} = 0.5 * (\text{DIFFER} - \text{DIFFER}) * \text{DELTAR} \\
\text{GOTO} 204
IF (JL.EQ.KC) GOTO 207
TO=TO+U.*5U*X(MC)
TS=TS+U.*5U*Y(MC)
GAMMA=1.0-DELTA
GOTO 204

TO=TO+X(MC)
TS=TS+Y(MC)
CONTINUE
TA=TA+((TO-TS+A01+A02)*(TO-TS+A01+A02))
A02=0.5*ABS(DIFRES(MC))*GAMMA
CONTINUE

PREPARE CALC OF DURING-WATSON *n*
DURB=U,0
DV 211 JL=2.*NM0
TEMP=DIFRES(JL)-DIFRES(JL-1)
DURB=DURB+TEMP*TEMP
CONTINUE

CALCULATE STATISTICS
RAE=U,0+DIF/(TN*XMM)
DURB=DURB/SDF
PERSIS=TA/SDF
RELPEU=U,0+SQRT(TT4/FLOAT(KC))/(XMM*XMM)
RMMX=XMAX-XMIN
RMMY=YMAX-YMIN
AX=TTX/TT
AY=TTY/TT
PTT=((TRY-TRX)/TRX)*100.0
CTOP=SUMXY-(TOTX-TTOT)/TN
BOTS=SXXS-(TOTX-TTOT)/TN
OTY=SYS-(TDTX-TOTY)/TN
CURC=CTOP/SORT(TOTX*BOTY)
REGC=CTOP/ORTX
RON=(YMM-REGC*XMM)
IF (CRC, LEQ, 1.0) GOTO 22
ST=(CORC*SORT(NMON-2))/SORT(J-1-CORC*CORC)

SKE=C TOP+REGC
SRES=SXXS-PRON*TOTY-REGC*SUMXY
SEES=SQRT(SRES/FLOAT(NMON-2))
CUE=CUHC+CORC
CHFC=(SXXS-SDIF)/SXXS
SPECFF=(SPEC-SDIF)/SPEC
VARX=(XMM/TTN)-(XMM*XMM)
VARY=(YMM/TTN)-(YMM*XMM)
PVAR=(VARX*VARX)/VARX*100.0
ERRA=((VARX-VARX)/VARX)*100.0

CALCULATE MAX EQUAL CONSTANT ERROR

CYY=SQRT(SDF/FLOAT(NMON))/XMM
CCVF=SQRT(SXXS/FLOAT(NMON-1))/YMM
CEVE=CEVE+CEVE+FLOAT(NMON-1)/FLOAT(NMON)
CEVE=CEVE+1.0)*0.25
EMECE=U,0+CCY/CEVE

CALC INDEX OF SEASONAL VARIABILITY
YSMAL = U, U
YSMAL = U, U
XSMAL = U, U
PXM = XM*100, U/XMAR
PYM = YMM*100, U/YMAR
TYM = U, U
TXM = U, U
DO 40 U = 1, 12
XRES = SMNX(L) - PXMM
YRES = SMNY(L) - PYMM
TXM = TXM * XRES
TYM = TYM * YRES
IF (TXM, GT, XSMAL) XSMAL = TXM
IF (TYM, GT, YSMAL) YSMAL = TYM
CONTINUE
XIS = XBIG - XSMAL
YIS = YBIG - YSMAL
EIS = (YIS - XIS)/XIS
TRESX = 0.0
TRESX(K) = F(RFSX(K) - ARX)*((RESX(K) - ARX))
40 TCRS = TCRS + ((RESX(K) - RESY(K)))*((RFSX(K) - RFSY(K)))
RMCC = (TRESX - TCRS)/TSESX
FTEP = FAX/30.0
UP = STEP
DO 70 IFC = 1, 31
UP = UP + STEP
FLEV(IFC) = UP
NCY = 0
DO 80 JF = 1, NMON
IF (Y(JF), GE, UP) NCY = NCY + 1
80 IF (X(JF), GE, UP) NCY = NCY + 1
WRITE(6,55) NCX, NCY
50 FORMAT(1 H, 43 H COMPARISON OF SIMULATED AND OBSERVED RUNOFF, /,
1 ' 1X, 43 (H-), /)
WHITE(6, 51)
51 FORMAT(5 X, 'OBSERVED ', 9 X, ' SIMULATED ', 9 X, ' PERCENT ', /,
2 35 X, ' (H-), /)
WRITE(6,52) TOTX, TOTY, TOTX, YMAR, PMAR
52 FORMAT(1 H, 'TOTAL RUNOFF ', 3 X, '1 F15.3', /,
1 '1 H, '18 H, ' ANNUAL RUNOFF ', 3 X, '1 F15.3', /)
WHITE(6, 53) SMX, YMM, PVAR, VARY, PVAR
53 FORMAT(1 H, 'AVERAGE MONTHLY RUNOFF ', 27 X, '1 F15.3', /,
1 '1 H, '23 X, ' VARIANCE OF MONTHLY VALUES ', 23 X, '1 F15.3', /)
WHITE(6, 54) RRMX, RRCY, ERR, ARX, ARY, PTT
54 FORMAT(1 H, 'RANGE OF RESIDUAL MASS CURVE ', 21 X, '1 F15.3', /,
1 '1 H, '21 X, ' MEAN OF RESIDUAL MASS CURVE ', 21 X, '1 F15.3', /)
WRITE(6,401) XIS, YIS, EL5
401 FORMAT(1 H, 'INDEX OF SEASONAL VARIABILITY ', 20 X, '1 F15.3', /)
WRITE(6,404) XDEF, YDEF, ERO, LGEX, LGFY, ERLE
404 FORMAT(1 H, 'MEAN DEFICIENT FLOW PERIOD (MONTHS) ', 15 X, '1 F15.3', /,
1 '3 X, ' MAXIMUM DEFICIENT FLOW PERIOD (MONTHS) ', 12 X, '1 F15.3', /)
WRITE(6,155)
CALCULATE SIGN TEST

FEXP = FLOAT((2*N1*N2)/(N1+N2)) + 1
RUNS = FLOAT(2*N1*N2*(2*N1*N2-N1-N2))
RUNSD = RUNS/2.0
N = RUNSD/FLOAT((N1+N2)*(N1+N2)*(N1+N2-1))

TET = FLOAT(NRUN+NPOS) - FEXP
ZTET = TET*F10.3
WRITE(6,DU) NRUN, NP0S, FEXP, ZTET

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.

CUMULATIVE SUM OF SQUARES, 24X, F10.3, /, 1 THEO.
155 FORMAT(1H0,4HSEASONAL DISTRIBUTION OF RUNOFF (EXPRESSED AS PERCEN-
T OF P.A.R.),/1X,64(1H+)/)//
WRITE(*,156) (JM(KN),KN=1,12), (SNORX(KN),KN=1,12), (SMONY(KN),KN=1-
1,12)
156 FORMAT(1HU,5X,5HMONTH,1X,12I7/*,1HU,7X,9HOBSEERVED,1X,12F7,2//)
1X
WRITE(0,55)
55 FORMAT(1H1,3BHSTATISTICAL MEASURES OF CORRESPONDENCE,/*,1X,
 1 3B(H-),/1X,3BSIMULATED RUNOFF IS DEPENDENT VARIABLE,///)
WRITE(0,56) CORC,SIT,REGC,BCON
56 FORMAT(1H1,2HCORRELATION COEFFICIENT,26X,F10,3,///
 1 1HU,TSTUDENTS T VALUE,53Y,F10,3,///,1HU,2HREGRESSION COEFFIC-
ient,17X,F10,3,///,1HU,36HBASE CONSTANT OF REGRESSION EQUATION,
 1 1X,F10,3,///)
WRITE(0,57) SREG,SRES,STOT,SEfcS,EHECE,RAEH
57 FORMAT(1H0,2SHREGRESSION SUM OF SQUARES,24X,F10,3,///,1HU,
 1 2SHRESIDUAL SUM OF SQUARES,26X,F10,3,///,1HU,2HSTANDARD ERROR OF ESTIMATE,23X,F10,3,///,
 1 1X,36HMAXIMUM EQUIVALENT CONSTANT ERROR(1),13X,F10,3,///,
 1 1X,2HRELATIVE ABSOLUTE ERROR(X),13X,F10,3,///)
WRITE(0,58) COEFF,EFF,MECC,SECC,PERS,RELpER,DURB
58 FORMAT(1H0,43HLISTING O F THE OBSERVED RESIDUAL MASS CURVE,
 /,1X,43(1H-),//)
WRITE(6,9U) NHUN,NPOS/ENFXP,NZ,N1,ZET
90 FORMAT(1HU,9HSIGN TEST,/*,1X,9(I-),/1X,13HNEGATIVE RUNS,1
 1 15///,1X,13HPOSITIVE RUNS,15///,1X,13EXPECTED RUNS,F5.1,///,
 1 1X,15HNEGATIVE RESID.,15///,1X,15POSITIVE RESID.,15///,
 1 1X,2HSTANDARD NORMAL VARIATE Z,F5.5,///)
WRITE(0,59) E,MECC,SECC,PERS,RELpER,DURB
59 FORMAT(1H1,3HLISTING O F THE SIMULATED RESIDUAL MASS CURVE,
 /,1X,43(1H-),///)
WRITE(6,6U) (RESX(L),L=1,NMON)
60 FORMAT(1HU,10F10,3)
WRITE(6,61)
61 FORMAT(1H1,3HLISTING O F THE FLOW DURATION CURVES,1X,35(1H-),
 /,1X,44(1H-),///)
WRITE(6,66) (RESY(L),L=1,NMON)
66 FORMAT(1HU,10F10,3)
WRITE(6,69)
69 FORMAT(1H1,3HLISTING O F THE OBSERVED RESIDUAL MASS CURVE,
 /,1X,44(1H-),///)
WRITE(6,60) (RESY(L),L=1,NMON)
WRITE(6,91)
91 FORMAT(1H1,3HLISTING O F THE SIMULATED RESIDUAL MASS CURVE,
 /,1X,44(1H-),///)
WRITE(6,66) (RESX(L),L=1,NMON)
WRITE(6,94)
94 FORMAT(1H1,3HLISTING O F THE FLOW DURATION CURVES,1X,35(1H-),
 /,1X,35(1H-),///)
WRITE(6,60) (RESY(L),L=1,NMON)
WRITE(6,97)
97 CONTINUE
C SUBROUTINE FIT FOR THE CALCULATION OF GOODNESS-OF-FIT STATISTICS FOR USE
C WITH DAILY OUTPUT RAINFALL-RUNOFF MODELS. THE OBSERVED DAILY FLOW RECORD
C IS READ IN BY THE SUBROUTINE AND THE MODEL PROGRAM STEERING LINES
C MUST MAKE PROVISION FOR THIS !!!
C X=OBSERVED DAILY FLOWS IN X(MONTH/DAY) FORMAT
C Y=MODEL DAILY OUTPUT
C M=MONTHS OF FITTED RECORD, M=NO. OF
C N=FIRST MONTH 1,6,1 FOR JAN & 10 FOR OCT, N=FIRST YEAR OF FIT
C DEVELOPED BY A. RONGESEN AT N.R.U., RHOADES UNIVERSITY, 1972

C SUBROUTINE FIT(Y=MHON=N,LY1)
DIMENSION X(72,31),Y(72,31),SMNXL(12),SMDNX(12),DO(54),NTX(54),
ANP(72),NTY(54),IDAY(12),SMNXL(12),SMDNX(12),BIG(72),YBIG(72)
DIMENSION XLOW(600),YLOW(600)
DATA IDAY/31,28,31,30,31,30,31,31,30,31,30,31/
INTEGER TEMP1,TEMP2,TEMP3,TEMP4
WRITE(6,100)

100 FORMAT(////10X,70(*:*)/20X,STATISTICS CALCULATED FOR MEAN',
* DAILY FLOWS'/10X,FU('*')/////)
DU 5 MM=1,12
SMNXL(NM)=0,0
SMDNX(NM)=0,0
SMNXL(NM)=U,0
SMDNX(NM)=0,0
5 Q=0,0
MDFX=1
MDFY=1
IMX=U
IMY=U
IFX=U
IFY=U
LDFX=U
LDFY=U
CUMX=U
CUMY=U,0
QDB=U,0

WHILE(6,120) FMAX,FYMAX

120 FORMAT(/1HO,3DN0BSERVEN MAXIMUM MONTHLY VALUE/1F10.5/1HO,
13H SIMULATED MAXIMUM MONTHLY VALUE/F1U.5)
LAGS=NMONN/4
DU 165 LET>LAGS
CSUMX=U,0
SUMY=U,0
NCO=NMONN-L
TN=FLOAT(NCO)
DU 160 KN=1,NCO
CSUMX=CSUMX*(X(KN)-XM)(X(KN+L)-XM)
CSUMY=CSUMY+(Y(KN)-YM)(Y(KN+L)-YM)
AUTOX(L)=(CSUMX/TN)/(SXDFV/TN)
AUTOY(L)=(CSUMY/TN)/(SYDFV/TN)
WRITE(6,180)

180 FORMAT(1H0,COMPARISON OF DEPENDENCE STRUCTURE (AUTO-SERIAL COR
100 RATION))//1X,6D0(1H-)//1HO,6X,6HLAG IN 15X/15H CORRELOGRAM FOR,
2 15X,15H CORRELOGRAM FOR, 5X,5MONTHS, 15X/15H OBSERVED RUNOFF, 14X,
3 14H SIMULATED RUNOFF, 5X,6(1H-), 15X/15H, 14X/16(1H-), //
DU 190 XX=1,LAGS
WRITE(6,195) XX,AUTOX(KX),AUTOY(KX)
190 CONTINUE
RETURN
END
FIRST MAIN LOOP - SET UP VARIABLES FOR USE IN SECOND MAIN LOOP

MM=MM+1
DU 1 J=1,NMON
IF(MM,MT,12)MM=1

READ UNSEEN DAILY FLOW RECORD

READ(J3)LY,(X(J/I),I=1,31)
FORMAT(15,3X,(11F5.3))
KDAY=IDAY(MM)
TL=4*(LY/4)
IF(I,LY,LYL,AND,MM,EQ,2)KDAY=KDAY+1
DU 1 K=1,KDAY
NDT0T=NDT0T+1
SMONX(MM)=SMONX(MM)+X(J,K)
SMONY(MM)=SMONY(MM)+Y(J,K)

IF(X(J,K),NE,0,0)GOTO 5555
5555 XL=ALUG(X(J,K))+0.001
GOTO 5556
5556 IF(Y(J,K),NE,0,0)GOTO 5557
5557 YL=ALUG(Y(J,K))+0.001
GOTO 5558
5558
SMONXL(MM) = SMONXL(MM) * XL
SMONYL(MM) = SMONYL(MM) * YL
IF(X(J,K) > XMAX) XMAX = X(J,K)
CONTINUE
TD = FLOAT(NDTOT)
DO 4 J = 1, 12
AVEX = AVEX + SMONXL(I)
AVEX = AVEX / TD
AVEXL = AVEXL / TD
AVEL = AVEL / TD
MM = MM - 1
IF(XMAX GT 10.0) NFD = 36
IF(XMAX GT 10.0) NFD = 45
DO 8 I = 1, 9
DO (I) = FLOAT(I) / 100.0
DO 9 N = 1, NFD
NFX(N) = 0
NFTY(N) = 0
IF(N, LE, 0) GOTO 9
DC(N) = 10.0 * NDC(N-9)
CONTINUE
C START OF SECOND MAIN LOOP
KLO = 0
LXLY = LYK
DO 17 J = 1, NM0N
MM = MM + 1
IF(MM, GT, 12) LY = LY + 1
IF(MM, GT, 12) MM = 1
KDAY = DAY(KM)
LY = 4 * (LY / 4)
IF(LY, EQ, 0) GOTO 9
KDAY = 12 * DAY(KM)
KDAY = KDAY + 1
DO 7 K = 1, KDAY
XDF = XC(J,K) - AVEX
YDF = YC(J,K) - AVFY
RES = XC(J,K) - Y(J,K)
XVAR = XVAR + XDF * XDF
YVAR = YVAR + YDF * YDF
SRES = SRES + RES * RES
SSRES = SSRES + RES * RES
IF(X(J,K), NF, 0, 0) GOTO 7777
XL = ALU5(XC(J,K) + N, 0, 0)
GOTO 7776
7777 XL = ALU6(XC(J,K))
7776 IF(Y(J,K), NF, 0, 0) GOTO 7778
YL = ALU6(YC(J,K) + N, 0, 0)
GOTO 7779
7778 YL = ALU6(YC(J,K))
7779 XDIFL = XL - AVEXL
YDFL = YL - AVELY
XVARL = XVARL + XDIFL * XDIFL
YVARL = YVARL + YDFL * YDFL
VAR1=VAR1+VAR1*VAR2
RESL=XL-YL
SSRES=SSRES+RESL*RESL
DO 10 K=1,NF
10 IF(Y(J,K),GE,DC(KK))NTX(KK)=NTX(KK)+1
IF(X(J,K),GE,DC(KK))NTY(KK)=NTY(KK)+1
CONTINUE
XRES=X(J,K)-SMONX(0)
SSXRES=SSXRFS*XRES
XURES=XL-SMOUNX(0)
SSXRES=SSXRFS*XRES

SET UP ARRAYS FOR MONTHLY PEAK FLOWS AND FOR NON-ZERO LOW-FLOW DAYS
IF(X(J,K),.LT.XBIG(J))XBIG(J)=X(J,K)
IF(Y(J,K),GT,YBIG(J))YBIG(J)=Y(J,K)
IF(X(J,K),GE,2.0*AVEX,GOTO 48
IF(X(J,K),GE,2.0*AVEY,GOTO 48

48 IF(J,JE,NMON,AND,K,EQ,KDAY)GOTO 45
IF(J,JE,KDAY)GOTO 40
IF(X(J,K),GE,2.0*AVEX,OR,X(J,K),GE,2.0*AVEY)GOTO 41
GOTO 42
40 IF(X(J,K),GE,2.0*AVEX,OR,X(J,K),GE,2.0*AVEY)GOTO 41
GOTO 42
45 IF(TMP1,JE,1)GOTO 47
MNDX=MNDX+1
TEMP1=0
TEMP2=U
IF(MNDX,GT,LGEX)LGEX=MNDX
IF(J,JE,NMON,AND,K,EQ,KDAY)GOTO 43
GOTO 47
41 TEMP1=1
IF(J,JE,1,AND,K,EQ,1)GOTO 44
IF(TMP1,JE,1,AND,TEMP2,JE,0)GOTO 43
MNDX=1
TEMP2=1
GOTO 47
44 IXX=IXX+1
IXFLO=IXFLO*MNDX
TEMP2=1
47 IF(J,JE,NMON,AND,K,EQ,KDAY)GOTO 55
IF(J,JE,KDAY)GOTO 50
IF(Y(J,K),GE,2.0*AVEY,OR,Y(J,K),GE,2.0*AVEY)GOTO 51
GOTO 52
50 IF(Y(J,K),GE,2.0*AVEY,OR,Y(J,K),GE,2.0*AVEY)GOTO 51
GOTO 52
55 IF(Y(J,K),GE,2.0*AVEY,OR,Y(J,K),GE,2.0*AVEY)GOTO 7
IF(TMP3,JE,0,1)GOTO 7
TEMP3=U
TEMP4=U
IF (MDTY .GT. LGEY) LGEY = MDTY
IF (J .EQ. NMON .AND. K .EQ. KDAY) GOTO 53
GOTO 7
51 TEMP3 = 1
IF (J .EQ. 1 .AND. K .EQ. 1) GOTO 54
IF (TEMP3 .EQ. 1 .AND. TEMP4 .EQ. 0) GOTO 53
MDTY = 1
TEMP4 = 1
GOTO 7
53 IMY = IMY + 1
IF (J .EQ. 1) GOTO 16
IF (J .EQ. 1 .AND. TEMP4 .EQ. 1) GOTO 53
TEMP = X(J, 1) - Y(J, 1) - X(J-1, KDAY) + Y(J-1, KDAY)
DUR = DURB + TEMP * TEMP
DO 17 K = 2, KDAY
TEMP = X(J, K) - Y(J, K) - X(J, K-1) + Y(J, K-1)
DUR = DURB + TEMP * TEMP
17 CONTINUE
C SET UP MAXIMUM DAILY FLOWS / MONTH
C DO 12 L = 1, NMON
IF (XBIG(L) .LE. 2.0 * AVEX) GOTO 12
KAV(L) = L
XBIG(L) = XBIG(L)
YBIG(L) = YBIG(L)
XBTOT = XBTOT + XBIG(KA)
YBTOT = YBTOT + YBIG(KA)
12 CONTINUE
TK = FLOAT(KA)
XBTOT = XBTOT / TK
YBTOT = YBTOT / TK
DO 13 J = 1, KA
XBDIF = XBIG(J) - XBTOT
YBDIF = YBIG(J) - YBTOT
BRES = XBIG(J) - YBIG(J)
XVAR = XVAR + XBDIF * XBDIF
YVAR = YVAR + YBDIF * YBDIF
SRES = SRES + BRES * BRES
SRES = SRES + ABS(BRES)
SRES = SRES + ABS(BRES)
13 CONTINUE
C SET UP LOW FLOW CALC
C CUMX = CUMX / FLOAT(KLO)
C CUMY = CUMY / FLOAT(KLO)
DO 70 L = 1, KLO
X = XLOW(L) - CUMX
U = YLOW(L) - CUMY
QUDF = XLOW(L) - YLOW(L)
QJDA = QJDA + QUD * QUDF
XJ = XJ + XO * X
YJ = YJ + YO * Y
QJ = QJ + ABS(QUD)
70 CONTINUE
C CALCULATE STATS ON ALL DAILY FLOWS
XVAR = XVAR / (TD - 1.0)
YVAR = YVAR / (TD - 1.0)
XVARL = XVAR / (TD - 1.0)
YVARL = YVAR / (TD - 1.0)
ERAVEL = 100.0 * (YVAR - ERVAR) / ERVAR
ERVARL = 100.0 * (YVARL - ERVARL) / ERVARL
CEM = 1.0 - SSRES / SSXRES
CEML = 1.0 - SSRESL / SSXRESL
RAE = 100.0 * (AVEX - XVAR) / XVAR
B6 = SQRT (XVAR)
B8 = (B6 / AVEX) * (B6 / AVEX)
BRAE = 100.0 * (YBAR - YVAR) / YVAR
BRAE = 100.0 * (YBARL - YVARL) / YVARL
WRITE (6, 16)
WRITE (6, 19)
WRITE (6, 20)
WRITE (6, 21)
WRITE (6, 22)
WRITE (6, 23)
WRITE (6, 24)
WRITE (6, 25)
IF (NTX(I), EQ, 0) GOTO 25
ERFDC=100,0*(FLOAT(NTY(I))-FLOAT(NTX(I)))/FLOAT(NTX(I))
ZNTX=100,0*FLOAT(NTX(I))/TD
ZNTY=100,0*FLOAT(NTY(I))/TD
WRITE(6,23)NC(I),ZNTX-ZNTY*ERFDC
23 FORMAT(8X,4F11.2)
25 CONTINUE
WRITE(6,32)
32 FORMAT(/5X,'LISTING OF MONTHLY PEAK FLOWS(CUMEC) > 2.0*MEAN'/
 *5X,'MONTH NO. ',7X,'OBS. PEAK',5X,'SIM. PEAK',5X,
 *% ERROR')
DO 30 I=1,KA
BIGER=100,0*(YBIG(I)-XBIG(I))/XBIG(I)
WRITE(6,31)NPK(I),XBIG(I),YBIG(I),BIGER
31 FORMAT(5X,I10,3F14.2)
30 CONTINUE
C C
C CALCULATE STATS ON LOW FLOW PERIODS
C DCE=1.0-QDV/XQV
XQV=XQV/FLOAT(KLO-1)
YQV=YQV/FLOAT(KLO-1)
ERQV=100,0*(YQV-XQV)/XQV
XQMC=100,0*QMC/FLOAT(KLO)
XQFLO=FLOA7(KIFLO)/FLOAT(IMX)
YQIFLY=FLOA7(YIFL0)/FLOAT(IMY)
FRQF=100,0*(YQIFL0-XQF)/XQF
ERQF=100,0*(QNEW*ERQV)/FLOA7(LGEQ-LQEX)
WRITE(6,60)
60 FORMAT(5X,'LOW FLOW PERIOD (<2.0*DAILY MEAN) STATISTICS'*/
 *#/5X,4L1(' '))
WRITE(6,61)QCE,NMAE
61 FORMAT(5X,'MEAN NON-ZERO DAILY LOW FLOW : OBS. =',F8.4,1
 * SIM. =',F8.4,' % ERROR =',F6.2,'/5X,'VARIANCE NON-ZERO DAILY'*,
 * LOW FLOW : OBS. =',F8.4,1 SIM. =',F8.4,' % ERROR =',F6.2'/111)
WRITE(6,62)DCE,NMAE
62 FORMAT(5X,'COEF. OF EFFICIENCY OF NON-ZERO LOW FLOWS =',F7.3,1
 * #/5X,'RELATIVE MEAN ABS. ERROR '''
SUBFILE: OPA rt L=8100 LENGTH: 46 MRAG

LIST
PROGRAM (OLAR)
INPUT = CKS
OUTPUT = LDP
COMPUTER INTEGER AND LOGICAL
TRACE U
END
MASTER DIAL
== DIAL OPTIMIZE ==
THIS PROGRAM GENERATES MONTHLY RUNOFF FROM MONTHLY RAINFALL (MM)
AND MONTHLY PAN EVAPORATION (MM).
 LOGICAL I(S
COMMON NAME (UO), FS1(UO), OFL(UO), PFC(UO),
* READ (12) REN (S), AX (S), ANY (S),
* MON, NK1, NK2, LST, 111, ISTAT, SSL, SS, SSB, POWER,
* dCUR, AMAX, PFLC(S), SL, SSS, EVW (UO),
* X (12), X (12), 12 (13), RM, MPT, LMT, LMT, IEC, MPT,
* DFS, RES, VAR, N=32, MTP, ARE
DIMENSION S=UO(12)
C READ M1T AND NPAR
C READ (3, 41) NPAR, NPRA
FORMAT (12)
C READ IN CATCHMENT NAME OR RUN IDENTIFICATION = 32 COLUMNS
C READ (5, 1) G1, G2, AREA, M1T
1 FORMATT 234, 7.1, 13
C NUMBER OF MODEL ITERATIONS REQUIRED PER MONTH
C STARTING YEAR (1 = 1, 10) AND MONTH (1 = 1 FOR CALENDAR YEARS AND
C TO FOR HYDROLOGICAL YEARS) OF SIMULATION AND
C IF 1 FOR FOREST COVER ON CATCHMENT
C IF 2 FOR CONSTANT FOREST COVER ON CATCHMENT
C IF 3 TO ACCOMMODATE CHANGING FOREST COVER
C AMOUNT AND LINM TO CONTROL THE NON-LINEAR STORE
C READ (6, 2) MPR, MPR, -1, IFOPS, LIM, LIM
2 FORMAT (12)
C READ IN MODEL PARAMETER VALUES AND INITIALIZE VARIABLES
C SSL INITIAL LEVEL OF SOIL MOISTURE STORAGE (MM)
C SSB MAXIMUM CAPACITY OF SOIL MOISTURE STORAGE (MM)
C SSB STORAGE LEVEL AT WHICH BASE FLOW APPLIES
C POWER CURVE OF NON-LINEAR STORAGE DEPTH FUNCTION
C AMAX MAXIMUM VALUE OF STORAGE DEPTH FACTOR
C PERC MAXIMUM FRACTION OF SOIL MOISTURE TO DEEP PERC
C SSL INITIAL VALUE OF CWORKER STORAGE LEVEL (MM)
C AIFOR AIPHYSITATION PARAMETER (0.5 TO 1.0 FOR NO FOREST COVER)
C READ (5, 3) SSS, SSS, SSS, FILE, CUR, AMAX, PERC, AIFOR
3 FORMATT 0, 12, 2
INITIAL VALUES OF PARAMETERS

420 Y(1)=SSN
X(1)=SSD
X(2)=POWER
X(4)=FRC
MUPT=U
IST=U
OMAR=U
VAR=U,D
MMON=MMON+M+1
MMON=MMON+1

READ IN MONTHLY VALUES OF AVERAGE PAN EVAPORATION (MM) JAN-DEC

READ (5,16) (FMON(AX),AX=1/MMON)

READ IN 12-WEEK WATER SURFACE EVAPORATION CONSTANTS JAN-DEC

READ (5,1719) (READK(K),K=1,12)

INITIALIZE OBSERVED RUNOFF DATA

DU TO YRSMON

10 DO=FL(JP)=FP(JP)

READ IN MONTHLY RAINFALL DATA (MM) FOLLOWED BY OBSERVED MONTHLY RUNOFF DATA (THOUSANDS OF CUBIC METRES)

READ (5,15) (MANN(1),AX=1/MMON)

15 FORMAT (2X,12F6.2)

READ (5,15) (UMFL(K),K=1,MMON)

DU TO 778

778 SUBS(J)=SUBS(J)+UMFL(J)

DU TO 576

576 SUBS(J)=SUBS(J)+UMFL(J)

OMARUM=FLAT(AX)

866 **K=U**

DU TO 746

746 **K=K+1**

IF((KLT,16))=1

VAR=VAR+FL(1)-UMAR
SUBROUTINE OUTPUT
COMMOM RAIN(RUJ), FST4(TL(1,1), ROY, JY(10)),
* READ (12) RAIN (T), FST1(TLU), FST4(TLU),
* MONTLY,PLOW, SUMMARIO, SUPPOTINE,
* STAR,SUBROTINE
C
COMMON RAIN(10), FST4(11,1), ROY(10), PFC(10),
* READ (12) RAIN (T), FST1(TLU), FST4(TLU),
* MONTLY, PLOW, SUMMARIO, SUPPOTINE,
* STAR, SUBROTINE
C
DIMENSION FIN(12), KNN(12)
F5 = 1.0 FOR J = 1, N, M = 1, 11
D = 1.0 FOR J = 1, N, M = 1, 11
K = 1 FOR J = 1, N, M = 1, 11
X = 1 FOR J = 1, N, M = 1, 11
WRITE (*, *)
RETURN
END
LOGICAL ICS
COMMON RAIN(100),FS1(100),ABF1(100),PFC(100),
* PEAB(12),BPR(11),ANAS(11),ANY(10),
* N1ON,LYR1,LY1,FYRS,LINF,ST1,STAT,SSL,SSM,SSB,POR,
* SLU,ANAP,PEPC,SSL,AFOR,EFOR(100),
* X(12)A(12),Z(12),F(12),NPAR,LOPT,LOPT,ST1,ICS,NOPT,
* F,F1,RESO,VAR0,OMAR,HIT,AREA
ICS=.TRUE.
C**
C TEST FOR ZERO STARTING VALUES
C**
DO 250 I=1,NPAR
IF (X1(I),GE,0.0D0) GOTO 211
IF (X1(I)) 211,212,212
211 X(I)=0.0D0
GOTO 210
212 X(I)=U0.0D0
210 Z(I,J)=U,J
220 CONTINUE
A(1,J)=U,J
250 CONTINUE
C**
C GET THE FIRST VALUE OF F TO PUT IN F1
C**
F=0.0
CALL CALCFX
F1=F
C**
C THE ENDLESS ITERATION MEANS HERE
C**
300 DO 210 LOOP=1,NPAR
AA=0.0#F1#LOPT
B=0.00000
CALL AUG(LA)
CALL CALLFX
IF (F1,BT,F) GOTO 310
CALL AUG(-F1#F1#F1)
F=0
CALL CALLFX
IF (F1,BT,F) GOTO 310
CALL AUG(LA)
TOP=F1
OUT=2.0*(F1+F1*2.0+F1)
GOTO 320
310 IF (F1,GE,F1) AA=-1.0#AA
C**
C DO SUCCESS LOOP
C**
210 F=F1
F1=F
B=AA
AA=1.0#AA
CALL AUG(LA)
CALL CALLFX
IF (F1,BT,F) GOTO 310
C **
C FAILURE ROUTINE STARTS HERE
C **
CALL AUG(-AA)
AA=AA/1.5
Z(1,LUPT)=AA
BUT=3.048e-5 U=F1+2.0 F
TOP=2.25 F2=1.25 F1-F
C **
C END OF SUCCESS ROUTINE
C **
320 IF(BUT,LL,7.0000000000) GOTO 400
B=AA*TOP/611
CALL AUG(B)
CALL LACFX
IF(F,67,71) GOTO 340
C **
C ELSE ACCEPT PREDICTED POINT
C **
Z(1,LUPT)=AA+0
F=F+0
GOTO 400
340 CALL AUG(-B)
400 IF(X,EQ,0,0,INCRY) M=AA/11.0
DU 410 J=1,MPAR
AL(J,LUPT)=LUX(J,LUPT)
410 CONTINUE
500 CONTINUE
C **
C WRITE A SET OF VARIABLES AND TEST THE TERMINATING CRITERION
C **
C THE UNIVARIATEIZATION LOOP BEGINS HERE
C **
DU 510 J=1,MPAR
LUPT=MPAR-J+1
DU 520 J=1,MPAR
505 K(J,LUPT)=A(J,LUPT)+A(J,LUPT+1)
510 CONTINUE
DU 600 J=1,MPAR
IF(J,J,L,1) GOTO 520
J=J+1
DU 530 I=0 T=1/1
AA=U,UU
DU 540 I=1,MPAR
520 AA=AA*AA(J,LUPT)
DU 525 K=1,MPAR
525 A(J,LUPT)=A(J,LUPT)-AAA(J,LUPT)
530 CONTINUE
540 AA=0,0,0
DU 550 K=1,MPAR
550 IF(LAMS(1,J),JS,0,0,0,0,0,0,0) AA=AA+A(J,LUPT)**2
IF(AA,A,J,0,0,0,0,0,0) AA=0,0,0,0,0,0,0,0,0
AA=1,0,U,U,U,U,U,U,U
DU 560 K=1,MPAR
A(J,J)=AA+A(J,J)
560 CONTINUE
600 CONTINUE
1710 GOTO 510
C **********CALCFX CALLS THE MODEL VALUES AND COMPUTES THE OPTIMISING FUNCTION**********

C SUBROUTINE CALCFX

C COMMON HAIN(10U), SSM(100U), DFSL(10U), PF C(70U),

C * FEND(12), RRF(1), ANX(50), AND(50),

C * NHON, NMAH, IFORS, LINES, LIM, ISTAT, SSL, SS M, SS B, POWER,

C * SCUR, ANX, PERC, SSLA100, EVAD(100),

C * X(12), A(17, 4), Z(3, 4), NHAM, RPNT, LOPT, LOP7, LCS, NUMT,

C * F, F1, SRED, VARO, NMAH, NIT, AREA

C IF(X(l), GT, 70, UL, IN, X(l), LT, 100, N) GOTO 15U

C IF(X(5), GT, 100, UL, IN, X(5), LT, 1U, N) GOTO 150

C IF(X(2), GT, 10, 0, UL, X(2), LT, N, U) GOTO 15U

C IF(X(4), GT, 1, 0, OR, X(4), LT, U) GOTO 15U

C BEGIN

C SET UP NEW PARAMETER VALUES

C SSM = X(1)

C SS = X(2)

C POWER = X(2)

C PERC = X(4)

C 998 TPR=U

C TPE=U

C TAE=U

C TSURF=U

C TF =U

C TIN=U

C YET=U

C ICON=U

C IM=U

C NAM=U

C NL=U

C STS=U

C SCA=U

C ATER=U

C PSL=S BL

C BIAS=S B/841

C VARS=U

C SMAP=U

C SRES=U

C 233 IF (IFORS.EQ.1) PCH=0, U

C IF (IFORS.GT.1) PCH=PFC(1)

C SSSSSS

C START OF THE MONTHLY LOOP

C DU = 100 M = M + 1

C IF (NH, GT, 12) M = 1

C PC = (EVAM(U) * HAND(M.N))/ FLAT(NHT)

C PPP=U

C IF (RMA(N), X, N, U) GA IN AO

C W = 2, HI + .556 - (1 - HAI(N) + 1.8)*X(N)

C W = X/RA I N (U)
B82

\[n = 1.66 / (1.0 - n) + 1.47 \]
\[(E_0 < T < 1.20) \quad E = 120, \]
\[S_{PR}, \]
\[S_{FA}, \]

40 TIMEU,

C START OF ITERATION LOOP

60 50 J = J + 1

IF \((RRA = 1, W, > 0, \) \) GO TO 60

RRR(J) = E

GO TO 70

C CALCULATE RAINFALL FOR PRESENT INTERVAL

60 \(SFAR = SFR + (1.0 / (T - T)) \)

\(S'2 = RRA + SFR \times (SFR + T) \times (1.0 - SFR)^2 \times E \)

\(RRR(J) = S'2 - \) SP

GO TO 40

C THE INTERCEPTION FUNCTION OPERATES ON A FINITE LINEAR STORAGE

C

GOTO 1544

EPR = 1.5U, N3 * S

SINPE' = SINPE + S

IF \((SINPE' < RRA, > 0, \) \) SINPE = 0, \n
IF \((RRA(J) > (SINPE') > 0, \) \) GO TO 44

SCEP = SCEP * RRR(J)

GO TO 450

440 RRR(J) = RRA(J) - S

C ADJUST SOIL CAPACITY AND POTENTIAL EVAPOTRANS FOR FOREST COVER

C

GOTO 1344

RAT = SSL / S

IF \((RAT > T, U) \) RAT = T, U

PRE = RAT * S + KAT * KAT

IF \((SCEP <= PRE) \) GOTO 531

TA = TAE - SCEP

E = (1 - SCEP) * TAE

SCEP = U

GOTO 50

SCEP = SCEP - PE

TA = TAE - PL

GO TO 510

PLE = PLE + 1

IF \((PLE > 1) \) GOTO 520

TA = TAE - PL

PLE = PLE + 1

GOTO 510

520 TAE = TAE + TEE
883

PLT=U, U
530 OVF=PL=SSM
IF (OVF. GT. U) GOTO 340
SSL=PL
OVF=U, U
GOTO 550
540 TSURF = TSURF + OVF
SSL=SSM
550 IF (ILIP.EQ.1) RANG=SSM
IF (ILIM.EQ.2) RANG=SSM
RAT=SSL/RANG
IF (RAT.GT.1, U) RAT=1, U
PSL=PSL+(FAT*SSL)
IF (PSL.GT.SSL) PSL=SSL
IF (PSL.LT.SSL) PSL=SSL
RAT=PSL/SSL
IF (RAT.GT.1, U) GOTO 540
BF=U, U
GOTO 550
240 HEAD=PSL-SSL
POTH=SSL-SSL
PLOS=HEAD+(HEAD/POTH)*PPLC
SSL=SSL-PLUS
PSL=PSL-PLOS
RAT=PSL/SSL
TDX=TDX+PLOS
XBAR=RAT+WR
BFL=(PSL-SSL)*(XBAR*POWF)
IF (BFL.GT.SSL) BF=SSL
THFL=THFL+UF
SSL=SSL-UF
IF (SSL.LT.1, U) SSL=SSL
PSL=PSL+BFAT
250 TSUM=TSUM+OVF+B1
50 TMAT=TMAT+OVF+B1
C
END U: ITERATION LOOP
C
FSIM(K)=TMAT+ARG
YET=YL+FSIM(K)
ICONT=ICONT+1
IF (IFORS.EQ.1) PCH=U, U
IF (IFORS.EQ.2) PCH=PCH(1)
IF (IFORS.EQ.3) PCH=PCH(104)
LAMP
100 CONTINUE
C
END U: PORT[array]
C
SMF=YSFL+IFAT(WMN)
DM=MM
CMES=CMES+CMES
VARS=VARS+FSIM(K)+IFORN
CLES=CMES+CMES
CSES+CMES+CMES
VAR=VARS+FSIM(K)+IFORN
CMES=CMES+CMES
922 CONTINUE
VARS=VAR(TAIRM/TLAT(NM+1))
CMES=CIU(NA(SMUL-30))/30
CHEK2=I6U,0*(VARS-VARU)/VARO
FS=SREC/SRESO
F(SWIT(F)
FREAL=F
FMF=1.0-SREC/SRESO
IF(ABS(CHEK1).LT.5.0)goto 1114
FMF=1.0*(CHEK1-5.0)/10.0
1114 IF(ABS(CHEK2).LT.10.0)goto 1115
FMF=1.0*(CHEK2-10.0)/10.0
1115 WRITE(0,1112)I,X(I),I=1,1,NPAR
1112 FORMAT(1X,7(I4,F8.3))
WRITE(0,1113)F,FREAL,FMF,CHEK1,CHEK2
1113 FORMAT(11X,3F12.6/1F10.3)
150 F=F**Z,0
RETURN
END
C***
C AUGMENTING VARIABLES
C***
SUBROUTINE AUG(H)
REAL H
COMMON RAIN(100),FSIM(100),MFL(100),PFC(100)
* READ(12),RANK(100),ANX(50),ANY(50)
* HON,NYK,LM,LF,LINE,LSTAT,SSL,SM,SSB,POWER
* CUR,ANXL,PEMC,SLA,APW,EVAL(100)
* X(12,2,1,2),Z(S,1,1),NPAR,LOPT,OPT,IST,ICS,TOUT
* F1,F6,SREL0,VARO,VARN,HT,FPS
* IST=IST1+1
* IS=1,0,F+F1
WRITE(0,3)FS
WRITE(0,1114)I,X(I),I=1,1,NPAR
1114 FORMAT(1X,7(I4,F8.3))
5 FORMAT(1X,7(I4,F10.3))
IF(IST.GT.NOPT)OPT=.FALSE.
IF(NUT,1CS)IST=0
RETURN
END
FINISH
Author Gorgens Andre Hermann Matheus
Name of thesis Conceptual modelling of the rainfall-runoff process in semi-arid catchments in South Africa. 1983

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.