VIBRATION ANALYSIS AND DIAGNOSTIC TECHNIQUES, with reference to the implementation of a vibration condition monitoring programme.

P. P. DUCCI

A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the Degree of Master of Science in Engineering.

JOHANNESBURG 1987
DECLARATION

I hereby certify that this dissertation is my own work and has not been submitted for a Masters degree to any other University.

P.P. Ducci
ABSTRACT

This dissertation deals with vibration analysis and detailed diagnostic techniques used for a vibration condition monitoring programme. Various vibration monitoring and diagnostic techniques were examined so that recommendations for the implementation of a vibration condition monitoring programme in ESCOM could be made.

Various vibration related problems pertinent to turbo-generators, feed water pumps and draught group fans are discussed. These include sub-synchronous oil instability, oil whip, unbalance, misalignment, cracked rotors, induction rotor bar defects, gear defects, rub and fan duct vibration. Relevant vibration diagnostic techniques are examined so that the abovementioned defects can be detected.

The effectivenesses of various statistical and computer predicted methods used to ascertain the condition of roller and ball bearings, and shaft critical speeds respectively were determined.

In order to recommend a method whereby sensible vibration trending can be performed the effect of load variations on the vibration severity was determined for draught group fans and feed water pumps.

Recommendations concerning the requirements of periodic and continuous monitoring equipment, the method of monitoring and the method of trending are made. These recommendations account for all the pertinent failure mechanisms of draught group fans and feed water pumps. Recommendations concerning the future requirements of a vibration condition monitoring programme within ESCOM are made. These recommendations deal specifically with on-line continuous monitoring systems and the formatting of vibration data for diagnostic purposes.
ACKNOWLEDGEMENTS

The author acknowledges assistance received from the following people:

Mr. R.A. Backeberg for his unfailing support and assistance during the course of this study.

Mr. S. Franco for his assistance and guidance with the implementation of the vibration condition monitoring programme.

To all of Escom's Dynamics & Noise members of staff for their assistance especially during the experimental data acquisition.

To Miss M. Candiotes for her assistance in retrieving literature used for this dissertation.

To Mrs M. Kruger for typing the dissertation.

To my parents for their moral and financial support.

To ESCOM for allowing me to publish this dissertation.
CONTENTS

DECLARATION (i)
ABSTRACT (ii)
ACKNOWLEDGEMENTS (iii)
CONTENTS (iv)
LIST OF NOTATION

1. INTRODUCTION

1.1 BACKGROUND

1.2 LITERATURE REVIEW
1.2.1 Vibration Condition Monitoring
1.2.2 Vibration Measurement Standards
1.2.3 Economic Aspects of a Vibration Condition Monitoring Programme

1.3 PURPOSE

2. PRESENT STATUS OF VIBRATION CONDITION MONITORING IN ESCOM

2.1 MAINTENANCE CONCEPTS
2.1.1 Breakdown Maintenance
2.1.2 Preventive Maintenance
2.1.3 Condition Based Maintenance

2.2 ESCOM's PRESENT MAINTENANCE STRATEGY
2.2.1 Vibration Condition Monitoring

2.3 BENEFITS OF A VIBRATION CONDITION MONITORING PROGRAMME - SUMMARY
3. TRANSDUCER SELECTION

3.1 ACCELEROMETERS
 3.1.1 Advantages of Accelerometers
 3.1.2 Disadvantages of Accelerometers

3.2 VELOCITY TRANSDUCERS
 3.2.1 Advantages of Velocity Transducers
 3.2.2 Disadvantages of Velocity Transducers

3.3 DISPLACEMENT TRANSDUCERS OR PROXIMITY PROBES
 3.3.1 Advantages of Proximity Probes
 3.3.2 Disadvantages of Proximity Probes

3.4 SHAFT RIDERS
 3.4.1 Advantages of Shaft Riders
 3.4.2 Disadvantages of Shaft Riders

3.5 DUAL PROBES
 3.5.1 Advantages of Dual Probes
 3.5.2 Disadvantages of Dual Probes

4. MODULE 1
DETECTION OF ROLLING ELEMENT BEARING
DAMAGE BY STATISTICAL VIBRATION ANALYSIS

4.1 INTRODUCTION AND THEORY
 4.1.1 Literature Review of Rolling Element
 Bearing Vibration Health Monitoring

4.2 OBJECT
4.3 APPARATUS
4.4 EXPERIMENTAL PROCEDURE
 4.4.1 Data Acquisition
 4.4.2 Data Processing

4.5 OBSERVATIONS AND RESULTS
4.6 DISCUSSION
4.7 CONCLUSIONS
5. MODULE 2
FAULT DIAGNOSIS OF GEARS USING SPECTRUM ANALYSIS

5.1 INTRODUCTION AND THEORY
5.1.1 Literature Review of Gearbox Vibration Health Monitoring

5.2 OBJECTIVES

5.3 APPARATUS

5.4 EXPERIMENTAL PROCEDURE
5.4.1 Data Acquisition
5.4.2 Data Processing

5.5 OBSERVATIONS AND RESULTS

5.6 DISCUSSION

5.7 CONCLUSIONS

6. MODULE 3
DISCRETE FREQUENCY ANALYSIS

6.1 INTRODUCTION

6.2 VIBRATION DUE TO UNBALANCE

6.3 VIBRATION DUE TO MISALIGNMENT

6.4 VIBRATION DUE TO MECHANICAL LOOSENESS

6.5 ROLLING ELEMENT FREQUENCIES
6.5.1 Illustrative Example

6.6 VANE AND BLADE PASSING FREQUENCIES

6.7 THE DETECTION OF ROTOR DEFECTS IN INDUCTION MOTORS
6.7.1 Introduction
6.7.2 Theory
6.7.2.1 Vibration
6.7.2.2 Current
6.7.2.3 Speed
6.7.3 Reasons for Rotor Bar Breakage

6.8 VIBRATION MONITORING CRITERIA FOR EARLY DETECTION OF TURBINE ROTOR CRACKS
7.5 EXPERIMENTAL TECHNIQUES
7.5.1 Data Acquisition
7.5.2 Data Analysis
7.5.3 Technique used for Computer Prediction
7.5.4 Data for Idealised PA Rotor System
7.5.5 Data for Idealised FD Rotor System

7.6 RESULTS
7.6.1 Experimental Results
7.6.2 Computer Predicted Results
7.6.3 Computer Predicted Mode Shapes for the PA and FD Fan Rotors

7.7 DISCUSSION
7.7.1 Experimental Identification of Critical Speeds
7.7.2 Computer Predicted Shaft Critical Speeds

7.8 CONCLUSIONS

8. MODULE 5
THE EFFECT OF VARIATIONS IN LOAD ON THE VIBRATION SEVERITY FOR DRAUGHT GROUP FANS, ELECTRIC AND STEAM FEEDWATER PUMPS

8.1 INTRODUCTION
8.2 OBJECTIVES
8.3 DESCRIPTION OF EQUIPMENT AND APPARATUS
8.3.1 Equipment used for the Draught Group Fan Tests
8.3.2 Equipment used for the Electric and Steam Feedwater Pump Tests
8.3.3 Details of Fans and Feed Pumps

8.4 EXPERIMENTAL PROCEDURE
8.4.1 Data Acquisition for the Draught Group Fans
8.4.2 Data Analysis for the Draught Group Fans
8.4.3 Data Acquisition for the Electric and Steam Feedwater Pumps
8.4.4 Data Analysis for the Electric and Steam Feedwater Pumps
8.5 RESULTS
8.5.1 Draught Group Fans
8.5.7 Electric and Steam Feedwater Pumps
8.6 DISCUSSION
8.6.1 Operating Conditions of the Draught Group Fans and Feedwater Pumps
8.6.2 Trending of Vibration Data for the Draught Group Fans
8.6.3 Trending of Vibration Data for Boiler Feed Pumps
8.6.4 Failure Mechanisms Pertinent to Large Boiler Feedpumps
8.6.4.1 Unbalance
8.6.4.2 Worn Mechanical Seals
8.6.4.3 Misalignment between Motor and Pump
8.6.4.4 Bearing Pedestal Resonances
8.6.4.5 Worn Impellers and Shafts
8.6.4.6 The Electric Motor and Booster Pump
8.6.4.7 Survey of Feed Pump Outages
8.6.4.8 The Voith Gearbox
8.6.5 Failure Mechanisms Pertinent to Draught Group Fans
8.6.5.1 Impeller and Blade Failures
8.6.5.2 Fan Induced Duct Vibration
8.6.6 Load Contours for PA Fans
8.6.7 Load Contours for the ID Fans
8.6.8 Load Contours for the FD Fans
8.6.9 Load Contours for the Steam Feed Pump
8.6.10 Load Contours for the Electric Feed Pumps
9. MODULE 6

OTHER IMPORTANT ASPECTS OF A VIBRATION CONDITION MONITORING PROGRAMME

9.1 TRAINING FOR VIBRATION CONDITIONS BASED MAINTENANCE

9.1.1 Selection of Personnel
9.1.2 Training

9.2 CONTINUOUS VERSUS PERIODIC MONITORING

9.2.1 Continuous Monitoring
9.2.2 Periodic Monitoring
9.2.3 Trending of Vibration Data
9.2.4 Overall Level Monitoring
 9.2.4.1 Advantages of Overall Level Monitoring
 9.2.4.2 Disadvantages of Overall Level Monitoring
9.2.5 Bandwidth RMS Trending
9.2.6 Setting Alarm and Trip Levels for Discrete Frequencies
9.2.7 Spectrum Cascade Trending
9.2.8 Phase Trending

9.3 MANUAL AND COMPUTERISED LOGGING

9.3.1 Manual Data Logging
9.3.2 Computerised Data Logging

9.4 CONSIDERATIONS CONCERNING THE PURCHASING OF PERIODIC VIBRATION MONITORING EQUIPMENT FOR RECENTLY COMMISSIONED AND FUTURE ESCOM POWER STATIONS

9.4.1 Introduction
9.4.2 Software
9.4.3 Software Requirements
9.4.4 Requirements Concerning the Supplier of the Periodic Vibration Monitoring Equipment

9.4.5 System Requirements for Periodic Vibration Monitoring Equipment

9.5 CONSIDERATIONS CONCERNING THE PURCHASING OF CONTINUOUS ON-LINE VIBRATION MONITORING EQUIPMENT

9.5.1 Strip Chart Recorders
9.5.2 Dedicated Indicators
9.5.3 Computerised Real-Time Systems
9.5.4 Requirements of a Computerised Real-Time System
9.5.5 Requirements for all On-Line Continuous Systems

9.6 STANDARDISED RULES FOR MEASUREMENT ON ROTATING MACHINERY

10. DISCUSSION

10.1 WHY IMPLEMENT A VIBRATION CONDITION MONITORING PROGRAMME?

10.2 WHO WILL BE RESPONSIBLE FOR THE VCM PROGRAMME?

10.2.1 Size of Plant
10.2.2 Criticality of the Machine to the Production or Assemble Line
10.2.3 Number of Machines to be Included into the Programme
10.2.4 Sophistication of the Vibration Monitoring Equipment Purchased
10.2.5 Whether Continuous On-Line Monitoring or Periodic Monitoring has been chosen
10.2.6 Sophistication of the Actual Machinery to be Monitored
10.2.7 Extent to which Diagnostic Analysis is to be Performed

10.3 WHAT MACHINES ARE TO BE MONITORED? 315
10.4 HOW ARE THE MACHINES GOING TO BE MONITORED? 316
10.5 WHERE TO LOCATE THE VIBRATION MONITORING POINTS 317
10.6 TIME INTERVAL BETWEEN MEASUREMENTS 318
10.7 GENERAL DISCUSSION 319

11. CONCLUSIONS AND RECOMMENDATIONS 320
11.1 CONCLUSIONS 320
11.2 RECOMMENDATIONS 326
11.3 FUTURE NEEDS OF ESCOM REGARDING VIBRATION CONDITION MONITORING 329

12. REFERENCES 331

13. APPENDICES 337
LIST OF APPENDICES

2. Derivation of the Computer Simulated Shaft Orbits.

3. Calculation of the Shaft Attitude and Shaft Movement Vector.

4. Interpretation of Bode plots using a simple mathematical model.

5. The Prohl method for calculating critical speeds of flexible rotors.

7. Shaft critical sample calculations for FD rotor.
LIST OF NOTATION

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Velocity</td>
<td>Root Mean Square Velocity</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
</tr>
<tr>
<td>m</td>
<td>mass</td>
</tr>
<tr>
<td>x</td>
<td>acceleration</td>
</tr>
<tr>
<td>c</td>
<td>coefficient of damping</td>
</tr>
<tr>
<td>x</td>
<td>velocity</td>
</tr>
<tr>
<td>k</td>
<td>stiffness</td>
</tr>
<tr>
<td>x</td>
<td>displacement</td>
</tr>
<tr>
<td>Hz</td>
<td>Frequency</td>
</tr>
<tr>
<td>P(x)</td>
<td>Probability density function</td>
</tr>
<tr>
<td>B1</td>
<td>Skewness</td>
</tr>
<tr>
<td>B2</td>
<td>Kurtosis</td>
</tr>
<tr>
<td>R</td>
<td>Gear ratio</td>
</tr>
<tr>
<td>Tg</td>
<td>Number of gear teeth</td>
</tr>
<tr>
<td>Tp</td>
<td>Number of pinion teeth</td>
</tr>
<tr>
<td>Fp</td>
<td>Pinion rotation frequency</td>
</tr>
<tr>
<td>Fg</td>
<td>Gear rotation frequency</td>
</tr>
<tr>
<td>Fm</td>
<td>Mesh frequency</td>
</tr>
<tr>
<td>Fg</td>
<td>Hunting tooth frequency</td>
</tr>
<tr>
<td>Fa</td>
<td>Assembly phase passage frequency</td>
</tr>
<tr>
<td>Vi</td>
<td>Number of vanes on impeller</td>
</tr>
<tr>
<td>D</td>
<td>Pitch diameter</td>
</tr>
<tr>
<td>d</td>
<td>Ball diameter</td>
</tr>
<tr>
<td>n</td>
<td>Number of balls in a bearing</td>
</tr>
<tr>
<td>θ</td>
<td>angle of contact</td>
</tr>
<tr>
<td>Rs</td>
<td>Supply current</td>
</tr>
<tr>
<td>p</td>
<td>Number of poles</td>
</tr>
<tr>
<td>NDE</td>
<td>Non Drive-End</td>
</tr>
<tr>
<td>DE</td>
<td>Drive-End</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration of gravity</td>
</tr>
<tr>
<td>H</td>
<td>Angular Momentum</td>
</tr>
<tr>
<td>θ</td>
<td>Slope</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>E</td>
<td>Young's Modulus</td>
</tr>
<tr>
<td>I</td>
<td>Moment of inertia, moment of area</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 BACKGROUND

Vibration analysis has been used to determine the mechanical condition of machinery for at least forty to fifty years. In the simplest case the plant engineer relied on his sense of touch and sound to determine the mechanical condition of slow and robust machinery.

World War I and II produced the need for increased reliability of weapons. A profusion of gauges and instruments was introduced during production to make it possible to measure accurately. The art of ergonomics started at that time. At the time of the Korean War the array of instruments became so confusing that comparators were introduced as a simplification. Operators no longer needed to measure absolute dimensions. Instead the terms "on-or-off", "high-or-low" were adequate.

Highly complex aero-space systems, guided missiles and early warning systems introduced during the mid 1950's increased the urgent need for high reliability and surveillance means of checking this reliability, while the number of components, assemblies, sub-systems and systems greatly increased. Simplified data comparators were replaced by high-speed electric multiple-point scanning systems capable of making rapid measurements and comparisons automatically. Results were processed and presented in a format which established the "signature" of the healthy machine for purposes of comparison at a later stage of deterioration.
Modern sophisticated monitoring systems have developed from these beginnings. They have their own self-integrity test systems by which their own fault detection or interrogation signals can be injected to verify the "health" of the monitor itself. It is only during the last decade that the full potential of these facilities for monitoring the "health" or "condition" of a machine has been properly appreciated. With the growing complexity of machinery, the increasing operational stresses, the lowering of safety thresholds and the decline in craft skills, these monitoring techniques have become essential.

A distinction between condition monitoring and vibration condition monitoring has to be made. Condition monitoring embraces all forms of parametric monitoring such as pressure, temperature, flowrate, vibration etc. Vibration condition monitoring deals specifically with the monitoring of a machine's vibration characteristics. This report deals specifically with vibration condition monitoring and the various techniques used to diagnose vibration related problems. It is impossible to monitor the mechanical integrity of a machine conclusively by using only vibration condition monitoring. It is generally believed that vibration monitoring is the most informative as far as the mechanical condition of the machine is concerned.

Vibration condition monitoring has developed from a skill into a science. The days of plant attendants with oily rags and grease guns tending their machines are gone. The intimate relationship between man and machine is no longer economically feasible and not even required because machines are expected to run automatically with only occasional attention from maintenance personnel. Modern machines are
getting bigger and are running at higher speeds than ever before. Vibrations from these machines occur at such high frequencies that sophisticated instruments are needed to detect and measure them.

ESCOM used to pursue a policy of constructing power stations consisting of numerous units of small power capacity. Examples are Vaal Power Station, 18 units of 15 MW each and Vierfontein Power Station, 19 units of 17.6 MW each. Nowadays large power stations like Koeberg and Duvha, consisting of 2 units of 965 MW each and 6 units of 600 MW each respectively have emerged. The advantage of the former policy is that if a unit is unexpectedly lost it would not significantly influence the national supply grid. The disadvantage of such a system is that it is uneconomical due to the construction of a large number of small capacity units. On the other hand the latter policy is economical in terms of construction, but if a large 600 MW or 965 MW unit is unexpectedly lost, it will have a significant influence on the national supply grid. The replacement costs for such a unit are substantial especially if gas-turbine plant and pump storage capacity is used to meet the demand for electricity. It is obvious therefore, that the availability of these large units must be high to keep replacement costs to a minimum. One of the best methods to improve availability is to implement a condition monitoring programme.

Power stations like Tutuka will be used as peak load stations. They will only contribute to the national grid during peak demand for electricity. It is therefore vitally important that when a power station like this is requested to contribute to the national grid it can do so without any delays. It's availability during peak demand has to be high, and this can be achieved by a condition based maintenance programme.
Sadler (1) uses the example of British Steel Corporation (BSC) to illustrate the economics of increased availability. The cost of maintenance in one of the B.S.C.'s large integrated steel works in 1979/80 was £90 million and the numbers employed in maintenance, including staff, was 7400. Maintenance accounted for some 15% to 30% of the total conversion cost in a particular process. It has been quoted by Sadler that in general a 4% increase in availability of B.S.C. plants would be worth about £45 000 million per year.

ESCOM's new generation power stations have turbo-alternator sets which are among the largest in the world. For example, Matimba rated at 665 MW, Majuba rated at 657 MW already exist. Kendal rated at 665 MW will be the world's largest indirect dry cooled coal-fired power station once completed. It is of paramount importance that adequate vibration monitoring equipment be installed on these large sets to minimise the possibility of catastrophic failure.

In practice all generating units are constrained by compulsory statutory inspections of the boiler and reactor. Even with this constraint it is possible to minimise the outage time. This can be achieved by correcting faults on machines only as indicated by the vibration characteristics and not by routinely dismantling and checking for faults. This unnecessary "opening up to inspect" often does more harm than good as when ladders are left in boilers, spanners are left in sumps, or parts are incorrectly re-assembled. Often this approach is referred to as disturbance maintenance. The life cycle of a machine, follows the well known bath-tub curve, where the x-axis represents time and the y-axis, the probability of failure. This is illustrated in Figure 1.1. When a machine comes off the production line (Time 0) there
is a high probability that the machine will not survive without some defect or eventually die of old age. Some machines will fail very early in life for reasons such as machined components being outside tolerance and not having been rejected at the inspection stages. The initial curving section completes what may be termed the running-in period.

When a machine is "run-in", there is a long flat region lasting for many months or even years when it can be expected to continue giving satisfactory service. Eventually, components will begin to wear out and the likelihood of failure increases with time. The "wearing-out" period forms the "foot of the bath". The effect of "opening up to inspect" on a machine which does not need attention is to build teeth into the flat area of the bath-tub curve. These teeth will follow the human error portion at the bottom of the running-in-period.

This report discusses various techniques used to acquire and analyse vibration data and the methods used to diagnose vibration related problems. The effectiveness of these techniques are also discussed. The main body of this report, therefore consists of individual modules most with their own introduction, theory, literature survey, discussion etc. The last chapter dealing with the recommendations concerning the implementation of a vibration condition monitoring programme, incorporates all the relevant conclusions and recommendations from all the modules.
1.2 LITERATURE REVIEW

1.2.1 Vibration Condition Monitoring

Vibration condition monitoring allows the better-than-average machine to continue giving its satisfactory performance whilst the maintenance effort is concentrated on the worse-than-average machine which merits extra attention.

Low (2) cites three main advantages of condition monitoring in the Central Electricity Generating Board (CEGB) of the U.K., viz:

1) To keep plant running by indicating to the operator the health of the machine and the action required to maintain this.

2) To indicate areas of deterioration and anticipate necessary maintenance activities.

3) To provide knowledge of fault conditions and enable the machine to be operated, where possible, until the most convenient outage.

Low also states that a rational approach to condition monitoring can only be achieved by identifying the most expensive categories of plant failure and their failure modes.

Corben (3) describes vibration monitoring as a maintenance technique which permits a deterioration in machine health to be detected at an early stage without the machine having to be stripped down or even taken out of service.
Kerfoot, R.E. et al (4) suggests a three-tiered approach to a vibration condition monitoring programme:

LEVEL 1

A complete listing of all possible frequencies at which vibration could exist should be compiled and kept with the machine's characteristics. Such a listing should include information like:

a) running speeds
b) types of bearings
c) number of elements and size
d) gear mesh frequencies
e) speeds of accessory components
f) information about structural resonances or critical frequencies.

LEVEL 2

The spectrum of a signal from a vibration transducer produced by a running machine can be used as the "signature" or "fingerprint" of that particular machine's operational condition. Gradual changes in the machine condition can be seen as changes in the signature.

LEVEL 3: The missing link

The major problem in interpreting data, which is taken at different times on the same machine, is that each of the frequency spectra must somehow be normalised to some typical operating condition so that they may be directly compared. In order to give the best insight into how to correct the
vibrations caused by rotating machinery, the transfer functions relating structural response to known inputs must be determined.

Downham and Woods (5) remark that it is important to obtain some knowledge of the response of a machine to particular dynamic forces. This knowledge can be most conveniently obtained, for bearing housing measurements, from a measurement of bearing house impedances at the monitoring points. This would enable the level of dynamic force to be computed directly from a measurement of vibration level under running conditions and, thus, help considerably in qualifying the relative severity of machine vibrations.

According to Battlebury (6) the first step in reducing the length of maintenance outages is for the maintenance and planning engineers to be fully familiar with the current state of the plant. In practice the plant history system is often inadequate. All too often plant is removed from the system without its current state being known, because the relevant maintenance documentation says that machines must be removed from the system for routine maintenance. To build a plant state data bank requires close dialogue between the plant and planning engineer.

In a report published by Michael Neale and Associates (7), the potential of condition based maintenance for certain industries is discussed. Figure 1.2 is obtained by comparing added value output per establishment with capital invested in plant and machinery per employee. A high value for both these factors indicates a favourable application for condition monitoring. Notice how favourable "Electricity" is on the guide.
GUIDE TO THE SELECTION OF SUITABLE INDUSTRIES IN WHICH CONDITION BASED MAINTENANCE HAS POTENTIAL.

AVERAGE ANNUAL ADDITIONAL OUTPUT PER ESTABLISHMENT £ MILLION

AVERAGE ANNUAL CAPITAL INVESTED IN PLANT AND MACHINERY PER EMPLOYEE £ THOUSAND (JANUARY 1975 VALUE)

CORRESPONDING VALUES FOR:
- Industrial Sectors
- Some individual industries
1.2.2 Vibration Measurement Standards

Operational criteria representing vibration boundary levels for satisfactory or unsatisfactory running conditions are many and varied. Of the more widely quoted criteria, those of Rathbone, Yates, and V.D.I. 2056 are worthy of mention with particular regard to the way in which these and other criteria were obtained.

Interestingly, it was the insurance industry whose business depends upon correctly assessing the mechanical condition of machinery it insures that was among the first to point out the value of vibration analysis. Mr. T.C. Rathbone, Chief Engineer, Turbine and Machinery Division, Fidelity and Casualty Company of New York, in 1939 published an article (8) presenting vibration guidelines against which machinery vibration could be compared to determine its condition. The original Rathbone Chart, as it has become known, is shown in Figure 1.3. The assessment of acceptability was obtained by subjective opinions of several practical engineers and inspectors, followed by vibration level measurements with relatively crude instruments. Rathbone limited his assessments to machinery running at speeds less than 6,000 RPM and considered it reasonable to extrapolate his curves for higher rotational speeds. He was also conscious of the fact that the measurement of bearing levels only, would not necessarily produce valid criteria for all machines. "Variations of 25 percent or more either way can be expected in individual cases. With proper recognition of the various influencing factors described the chart should furnish a reasonable guide for estimating the severity of vibration" (8).
Yates, produced his criterion by numerous tests on marine geared turbine installations, Rathbone (8). The fact that in this case the machinery was installed in relatively flexible steel shells as opposed to the more massive foundations of Rathbone's machines, would account in part for the differences between the two criteria. For example, at 22 Hz "too rough" on the Rathbone curve is classified as only slightly rough on the Yates curve. This illustrated in Figure 1.4.

In the past twenty years there has been a rapid increase in electronics technology with resulting improvements in instrument portability, accuracy and overall capability. This, in turn has led to greatly expanded usage of vibration analysis in industry preventive analysis programmes, and much larger experience factor on which to develop revised machinery vibration guidelines. Such a chart was developed in 1964 by International Research and Development (IRD) (9) and was based on users experience.

This chart "General Machinery Vibration Severity Guide" has been one of the most important contributions to the use of vibration measurements as a monitor of machinery health, covering a wide range of equipment size and type. All foregoing standards refer to bearing pedestal vibration. This chart can be seen in Figure 1.5.

About this time, two troublesome and conflicting realities were emerging and were beginning to cause concern to this discipline. The first of these conflicts was the realisation that velocity alone does not define dynamic force as a function of time. The second was the growing realisation that in many classes of rotating machinery, it is desirable and even necessary to measure motion of the rotating shaft itself. For example, machines with high ratios of case/rotor mass and stiffness.
RATHBONE & YATES VIBRATION SEVERITY CHARTS

RATHBONE

<table>
<thead>
<tr>
<th>REGION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOO ROUGH TO OPERATE</td>
</tr>
<tr>
<td>B</td>
<td>ROUGH CORRECT IMEDIATELY</td>
</tr>
<tr>
<td>C</td>
<td>ROUGH CORRECT</td>
</tr>
<tr>
<td>D</td>
<td>SLIGHTLY ROUGH</td>
</tr>
<tr>
<td>E</td>
<td>FAIR</td>
</tr>
<tr>
<td>F</td>
<td>GOOD</td>
</tr>
<tr>
<td>G</td>
<td>VERY SMOOTH</td>
</tr>
</tbody>
</table>

YATES

<table>
<thead>
<tr>
<th>VELOCITY</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IMMEDIATE INVESTIGATION REQUIRED</td>
</tr>
<tr>
<td>1</td>
<td>UNSATISFACTORY</td>
</tr>
<tr>
<td>0.5</td>
<td>SLIGHTLY ROUGH</td>
</tr>
<tr>
<td>0.2</td>
<td>NORMAL</td>
</tr>
<tr>
<td>0.1</td>
<td>VERY GOOD</td>
</tr>
<tr>
<td>0.05</td>
<td>SPINS LIKE A TOP</td>
</tr>
</tbody>
</table>

Figure 1.4
Dealing with the first of these concerns, the issue was avoided by the then current tolerance charts by simply cutting them off at low frequencies where displacements became intolerably high. There were also problems with machinery operating at much over 6000 RPM where the recommended equivalent displacements were too low to be achieved economically.

Possibly the first and most widely accepted chart to address this situation in part was that of Blake (9) in 1964. This so-called "haystack" chart and variations of it were important in the process of development of standards. This is illustrated in Figure 1.6. Blake’s chart uses an effective vibration obtained by multiplying the measured vibration by a service factor. The service factor is the rating of equipment based upon the type of machine and how critical it is to a plant’s overall production capabilities. Factors such as safety, economy, the importance of a machine’s operation to a plant and its profit, and the degree of risk involved if vibration is ignored are necessary to intelligently apply this guide.

Although described by Blake himself as being based on operating experience and intuition, nevertheless, these charts do reflect the basic rotor dynamics equation. This concept was discussed by Baxter and Bernhard (10) in 1967. Baxter and Bernhard were the first to begin with a description of the basic rotor dynamics equation and then use this to show why displacement is dominant at low frequencies and acceleration is dominant at high frequencies. The basic rotor dynamic equation is:

\[F = m\ddot{x} + c\dot{x} + kx \]
BLAKE'S EFFECTIVE VIBRATION CHART

SERVICE FACTORS

SINGLE STAGE CENTRIFUGAL PUMP, ELECTRIC MOTOR, FAN .. 1
TYPICAL CHEMICAL PROCESSING EQUIPMENT, NONCRITICAL 1
TURBINE, TURBO-GENERATOR, CENTRIFUGAL COMPRESSOR 1,6
CENTRIFUGE STIFF-STAFF, MULTI-STAGE CENTRIFUGAL PUMP 2
MISCELLANEOUS EQUIPMENT, CHARACTERISTICS UNKNOWN 2
CENTRIFUGE, STAFF-SUSPENDED, ON STAFF NEAR BASKET 0,5
CENTRIFUGE, LINK-SUSPENDED, SLUNG ... 0,3

* EFFECTIVE VIBRATION = MEASURED PEAK TO PEAK VIBRATION, INCHES,
 MULTIPLIED BY THE SERVICE FACTOR

FIGURE 1.6
The way in which each of these terms dominate its own region of the frequency domain is shown in Figure 1.7 where the similarity of the haystack chart will be noted. However, all this tells us is the qualitative relative importance of displacement, velocity and acceleration. It does not tell us the speed or frequency at which to change from one to another nor should it be implied that any one phenomenon is sufficient in the region of its dominance. These things are highly dependent on the type of machine, its bearing and support stiffness, and probably most importantly, the type of failure or malfunction against which it is desired to protect.

The V.D.I. 2056 specification (11) is one of the most exhaustive in present use and was compiled from previously published criteria for five separate classes of machines. Group G machines for power generation machinery on heavy rigid foundations were taken from Rathbone's work, although his curves were approximated to straight lines and the maximum rotational speed extended to 12 000 RPM. The directive places no restriction on the type of vibration measured (e.g., displacement, velocity, or acceleration) but suggests that where several harmonic components are present an RMS measurement of the complex signal should be used for comparison with the given criteria.

If typical tolerance curves based on shaft measurement are examined, for example those of A.P.I. 670 (12) dating from 1968, it will be seen that these are constant velocity but are tilted to give lower velocity at low speeds and allow higher velocity at higher speeds, which is also the general pattern for large turbine generators.

As machinery became larger, faster, and more complex with less backup equipment, the need has continued to grow for vibration analysis techniques which can detect incipient defects sooner and