TOWARDS MOLECULAR BIOLOGICAL CHARACTERISATION OF THE GENES FOR STEAROL AND BILE ACID METABOLISM IN NOCAKDOFORM BACTERIA

KATRINA JO DOWING

A DISSERTATION TO THE FACULTY OF SCIENCE, UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOTECHNOLOGY

JOHANNESBURG 1989
The iteroids are a diversified class of oxygenated tetracyclic isoprenoid derivatives characterized by a cyclopentanoperhydrophenanthrene ring system. Two important groups of steroids are the sterols, of which cholesterol is the most important, and bile acids, which are converted from cholesterol.

Commercial biotechnology operations dealing with steroids, centre around the use of microorganisms for transformations of steroid substrates into useful intermediates and final products. One group of bacteria capable of the before mentioned are the nocardiform bacteria. Cloning the genes of these organisms for the interconversion of steroids and bile acids to pharmacologically important intermediates by complementation of the appropriate mutation was the main interest of this work. Mutagenesis using U.V., NTG and EMS as mutagens, and the modified penicillin selection technique, resulted in several mutants, notably KD 1, which had lost its ability to utilize several carbon sources. The identification and determination of the suitability of these carbon sources was performed. Conditions of transformation of this mutant were optimized.

The availability of a suitable vector led to the partial construction of a library of nocardiform chromosomal DNA in E.coli to clone the gene/genes of interest.

ABSTRACT
DECLARATION

I declare that this dissertation is my own, unaided work.

It is being submitted for the degree of Master of Science in Biotechnology
in the University of the Witwatersrand, Johannesburg.

It has not been submitted for any degree or examination in any other
University.

Katrina Jo Downing

28th day of February, 1989
TO MY FAMILY AND RODERICK WESTWOOD
ACKNOWLEDGEMENTS

I would like to thank the following people, without whom this dissertation would not have been possible:

I am indebted to Dr Eric Dabbs, Department of Genetics, University of the Witwatersrand, for his assistance, guidance and supervision of this project.

Professor N. van Schaik, Department of Genetics, University of the Witwatersrand, for allowing the experimental work done in this project to be carried out in the department and for permitting the results obtained to be included in this project.

My family, Roderick Westwood and Sue Blackburn for their valuable assistance, constant support and encouragement.
Table of Contents

1.0 Introduction .. 1

2.1 Materials .. 15

2.1.1 Organisms ... 15

2.1.1.1 Nocardioform Bacteria 15

2.1.1.2 Escherichia coli ... 15

2.1.1.3 Plasmids .. 16

2.1.1.4 Vectors ... 16

2.1.1.5 Phages ... 17

2.1.2 Media .. 18

2.1.2.1 A-N stock .. 18

2.1.2.2 Minimal Media A (MM) (Hopwood et al 1985) 19

2.1.2.3 TY .. 20

2.1.2.4 TY and Agar (TYA) .. 20

2.1.2.5 T2 (Dabbs personal communication) 20

2.1.2.6 TYG .. 21

2.1.2.7 TYMC ... 21

2.1.2.8 TYM ... 21

2.1.2.9 TYC ... 22

2.1.2.10 Luria Broth (LB) .. 22

2.1.2.11 Luria Agar (LA) ... 22

2.1.2.12 Regeneration media 23

2.1.3 Additional Growth Requirements for Nocardioform Bacteria .. 23

2.1.3.1 Glutamate .. 23
2.1.3.2 VITAMIN W1 .. 24

2.1.4 BUFFERS .. 24
2.1.4.1 BUFFERS FOR MUTAGENESIS 24
2.1.4.2 TRIS EDTA BUFFER (TE) (Maniatis et al 1982) 25
2.1.4.3 TRIS EDTA BUFFER PLUS 10% SDS 25
2.1.4.4 TRIS HCl WITH 10% SUCROSE 25
2.1.4.5 DETERGENT SOLUTION FOR DNA PREPARATION .. 25
2.1.4.6 ELECTROPHORESIS BUFFER TRIS BORATE (TBA) .. 26
2.1.4.7 RUNNING BUFFER FOR ELECTROPHORESIS 26
2.1.4.8 GEL LOADING BUFFER (Maniatis et al 1982) 27
2.1.4.9 BUFFERS FOR E. coli PLASMID SCREEN (Maniatis et al) ... 27
2.1.4.10 TRIS CaCl2 .. 28
2.1.4.11 LIGATION BUFFER 28
2.1.4.12 PROTOPLAST (P) BUFFER 29
2.1.4.13 TES (N-tris(hydroxymethyl)methyl-2amino
ethanesulfonic) .. 29

2.1.5 ANTIBIOTICS .. 30
2.1.5.1 STREPTOMYCIN BOEHRINGER M.W. 1457.4 30
2.1.5.2 RIFAMPICIN BOEHRINGER 30
2.1.5.3 AMPICILLIN SODIUM SALT SIGMA 30

2.1.6 AGAROSE GELS .. 31
2.1.7 TOP AGAR ... 31
2.1.8 CARBON SOURCES ... 32

2.1.9 MUTAGENS ... 32
2.1.9.1 N-METHYL-N-NITRO-N-NITROSOGUANIDINE (NTG) ... 32
2.1.9.2 METANESULFONIC ACID ETHYL ESTER (EMS) SIGMA . 33
2.1.9.3 ACRIDINE ORANGE 33
2.1.9.4 ETHIDIUM BROMIDE 33
2.1.9.5 ULTRAVIOLET LIGHT .. 33
2.1.10 ARSENICAL SOLUTIONS .. 34
2.2 METHODS ... 35
2.2.1 CHOICE OF ORGANISMS .. 35
2.2.2 PREPARATION OF HIGH LEVEL RESISTANT STREPTOMYCIN
MUTANTS ... 35
2.2.3 PREPARATION OF HIGH LEVEL RESISTANT RIFAMPICIN
MUTANTS ... 36
2.2.4 CARBON SOURCES .. 36
2.2.4.1 METHODS USED TO SOLUBILIZE CHOLESTEROL 36
2.2.4.2 PREPARATION OF SODIUM BENZOATE AND HYDROXYBENZOATE 38
2.2.4.3 SODIUM TAURCHOLATE .. 38
2.2.5 LIQUID CULTURES ... 38
2.2.6 PREPARATION OF MINIMAL MEDIA PLATES 39
2.2.7 ISOLATION OF PHAGE TO BE USED FOR TYPING 39
2.2.8 MUTAGENESIS ... 42
2.2.8.1 MUTAGENESIS USING NTG AND EMS AS MUTAGENS 42
2.2.8.2 ULTRAVIOLET LIGHT MUTAGENESIS 44
2.2.8.3 MUTAGENESIS USING ACRIDINE ORANGE AS A MUTAGEN 44
2.2.8.4 MUTAGENESIS USING ETHIDUM BROMIDE AS A MUTAGEN 45
2.2.8.5 THE ENRICHMENT PROCEDURE FOR OBTAINING MUTANTS 45
2.2.9 EXTRACTION OF DNA ... 47
2.2.9.1 BULK E. coli PLASMID PREPARATION (Clewell and Helinski, 1969) .. 47
2.2.9.2 BULK NOCARDIOFORM CHROMOSOMAL DNA PREPARATION 49
2.2.9.3 CALCULATING THE DNA CONCENTRATION 50
2.2.9.4 PLASMID DNA ISOLATION OF E. coli (Maniatis et al, 1982) 51
2.2.9.5 NOCARDIOFORM PLASMID DNA ISOLATION 52
2.2.9.6 POURING AGAROSE GELS ... 53
2.2.9.7 LOADING GELS .. 53
2.2.9.8 ELECTROPHORESIS .. 54
2.2.9.9 DIGESTING DNA .. 54
2.2.9.10 PARIAL DIGESTION OF 01 CHROMOSOMAL DNA WITH SAI 3A 55
2.2.9.11 PARIAL DIGESTION OF 01 CHROMOSOMAL DNA WITH Bgl II 56
2.2.9.12 DIGESTION OF THE SHUTTLE VECTOR WITH Bgl II 57
2.2.10 LIGATION OF 01 CHROMOSOMAL DNA AND SHUTTLE VECTOR DNA ... 57
2.2.10.1 PREPARATION OF 01 CHROMOSOMAL DNA FOR LIGATION 57
2.2.10.2 PREPARATION OF THE SHUTTLE VECTOR DNA FOR LIGATION ... 58
2.2.10.3 LIGATIONS ... 59
2.2.11 CALCIUM CHLORIDE TRANSFORMATION (MANIATIS et al
1982) .. 61
2.2.12 POLYETHYLENEGLYCOL TRANSFORMATION 62
 2.2.12.1 OPTIMIZATION OF THE PEG TRANSFORMATION 63
3.0 RESULTS .. 64
3.1 CHOICE OF ORGANISMS ... 64
3.2 PREPARATION OF HIGH LEVEL RESISTANT STREPTOMYCIN
AND RIFAMPICIN MUTANTS ... 66
3.3 CARBON SOURCES .. 66
3.3.1 AGAR AS A CARBON SOURCE 67
3.3.2 CITRATE AS A CARBON SOURCE 68
3.3.3 OPTIMAL CONCENTRATIONS OF TWEEN 80, ETHANOL AND
DMSO TO BE USED AS SOLVENTS 70
3.3.4 UTILIZATION OF SOLVENTS AS SOLE CARBON SOURCES 71
3.3.5 SOLUBILIZING CHOLESTEROL WITH TWEEN 80 73
3.3.6 SOLUBILIZING CHOLESTEROL IN HOT ETHANOL 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.7</td>
<td>SOLUBILIZING CHOLESTEROL IN DMSO</td>
<td>75</td>
</tr>
<tr>
<td>3.3.8</td>
<td>SONICATION OF CHOLESTEROL</td>
<td>76</td>
</tr>
<tr>
<td>3.3.9</td>
<td>3-SITOSTEROL AND STIGMASTEROL AS ALTERNATIVE STEROLS</td>
<td>76</td>
</tr>
<tr>
<td>3.3.10</td>
<td>SODIUM TAUCOHOLATE AS AN ALTERNATIVE STEROID</td>
<td>78</td>
</tr>
<tr>
<td>3.3.11</td>
<td>ALTERNATIVE CARBON SOURCES, SODIUM BENZOATE</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>AND HYDROXYBENZOATE</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>ISOLATION OF PHAGE TO BE USED FOR TYPING</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>MUTAGENESIS</td>
<td>84</td>
</tr>
<tr>
<td>3.5.1</td>
<td>OPTIMUM CONDITIONS FOR NTG MUTAGENESIS</td>
<td>84</td>
</tr>
<tr>
<td>3.6</td>
<td>MUTAGENS</td>
<td>85</td>
</tr>
<tr>
<td>3.6.1</td>
<td>N-METHYL-N'-NITRO-N-NITROSOGUANIDINE (NTG)</td>
<td>87</td>
</tr>
<tr>
<td>3.6.2</td>
<td>ETHYL METHANE SULPHONATE (EMS)</td>
<td>90</td>
</tr>
<tr>
<td>3.6.3</td>
<td>ULTRAVIOLET LIGHT (U.V.)</td>
<td>91</td>
</tr>
<tr>
<td>3.6.4</td>
<td>ACRIDINE ORANGE AND ETHIDIUM BROMIDE</td>
<td>92</td>
</tr>
<tr>
<td>3.7</td>
<td>THE ENRICHMENT PROCEDURE</td>
<td>92</td>
</tr>
<tr>
<td>3.8</td>
<td>MUTANTS OBTAINED</td>
<td>94</td>
</tr>
<tr>
<td>3.8.1</td>
<td>AUXOTROPHS</td>
<td>95</td>
</tr>
<tr>
<td>3.8.2</td>
<td>MUTANTS OBTAINED FROM THE ENRICHMENT PROCEDURE</td>
<td>97</td>
</tr>
<tr>
<td>3.8.3</td>
<td>MUTANTS RESULTING FROM MUTAGENESIS, EXCLUDING THE ENRICHMENT PROCEDURE</td>
<td>98</td>
</tr>
<tr>
<td>3.9</td>
<td>CONSTRUCTION OF AN E.coli LIBRARY CONTAINING 01 DNA</td>
<td>105</td>
</tr>
<tr>
<td>3.10</td>
<td>THE SHUTTLE VECTOR pDA27</td>
<td>107</td>
</tr>
<tr>
<td>3.11</td>
<td>01 CHROMOSOMAL DNA</td>
<td>111</td>
</tr>
<tr>
<td>3.11.1</td>
<td>PARTIAL DIGESTION OF 01 CHROMOSOMAL DNA WITH Sau 3A</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.11.2</td>
<td>PARTIAL DIGESTION OF 01 CHROMOSOMAL DNA WITH Bgl II</td>
<td>114</td>
</tr>
</tbody>
</table>
3.12 CALCIUM CHLORIDE TRANSFORMATION ... 117
3.12.1 OPTIMIZATION OF TRANSFORMATION ... 117
3.12.2 DURATION OF 01 CHROMOSOMAL AND SHUTTLE VECTOR DNA IN LIGATION BUFFER ... 118
3.12.3 OPTIMUM AMOUNTS OF 01 CHROMOSOMAL DNA PER LIGATION ... 119
3.12.4 DETERMINATION OF HETEROGENEITY OF INSERTS OF 01 CHROMOSOMAL DNA IN THE E.coli LIBRARY .. 119
3.13 NOCARDIOFORM TRANSFORMATION .. 124
3.13.1 RESTRICTION MINUS MUTANTS .. 124
3.14 EXTRACTION OF pDA30 FROM KD 1 BACKGROUND ... 125
3.15 OPTIMIZING CONDITIONS FOR NOCARDIOFORM TRANSFORMATIONS 128
3.15.1 ARSENIC CONCENTRATIONS FOR SELECTION OF TRANSFORMANTS 128
3.15.2 GROWTH PHASE. ... 129
3.15.3 LENGTH OF INCUBATION BEFORE ARSENIC CHALLENGE .. 132
3.15.4 LENGTH OF LYSOZYME INCUBATION ... 132
3.15.5 CONCENTRATION OF POLYETHYLENE GLYCOL (PEG) .. 133
3.15.6 THE AMOUNT OF CELLS. .. 133
3.15.7 THE CONCENTRATION OF DNA ... 133
3.16 SUMMARY OF RESULTS. ... 136
4.0 DISCUSSION .. 138
4.1 PHAGE TYPING .. 138
4.1.1 NUTRITION AND GROWTH OF NOCARDIOFORM BACTERIA .. 139
4.2 CARBON SOURCES .. 141
4.2.1 AGAR ... 142
4.2.2 CITRATE ... 142
4.2.3 TWEEN .. 143
4.2.4 ETHANOL 144
4.2.5 DMSO .. 145
4.2.6 SONICATION OF STEROLS 146
4.2.7 SODIUM BENZOATE AND HYDROXYBENZOATE 146

4.3 PRODUCTION OF MUTANTS 146
4.4 ACTION OF MUTAGENS 147
4.5 MICROBIAL TRANSFORMATION OF STEROLS AND BILE ACIDS 148
4.6 OPTIMIZATION OF POLYETHYLENEGLYCOL TRANSFORMATION 150
4.7 CONSTRUCTION OF THE E.coli LIBRARY 151

5.0 CONCLUSION 152

REFERENCES 153
LIST OF ILLUSTRATIONS

Figure 1. The steroid ring system. Smith 1984 .. 1
Figure 2. Structures of some sterols ... 3
Figure 3. Graphical representation of the altered response of
mutants KD 1 and 7 to sodium taurocholate 102
Figure 4. Graphical representation of the optimum concentration of
sodium taurocholate for mutants KD 1 and 7 104
Figure 5. Diagram of the shuttle vector, orientation A constructed
by A. Daffey .. 108
Figure 6. Plasmid screen of transformants resulting from ligation
of nocardioform DNA and the shuttle vector 110
Figure 7. A 0.4% agarose gel illustrating the digestion of 01
chromosomal DNA ... 113
Figure 8. A 0.4% agarose gel illustrating digestion of 01 chromo-
somal DNA ... 116
Figure 9. Plasmid screen of 6 ... 120
Figure 10. Plasmid screen of 6 Bgl II digested transformants showing
heterogeneity in the size of the inserts. (0.4% agarose
gel) .. 122
Figure 11. Plasmid screen of 6 additional Bgl II transformants
showing heterogeneity in the size of inserts. (0.4%
agarose gel) ... 123
Figure 12. Plasmid screen of 3 of the 9 nocardioform transformants
of pDA30 in KD 1. Lane 1 is a control with no plasmid. 127
Figure 13. Graphical representation of the growth phase of KD 1 vs time and the number of transformants vs time.
LIST OF TABLES

TABLE 1 : Preparation of ligation mixtures of O1 chromosomal DNA and pBA 27 DNA.

TABLE 2 : Determination of growth and growth requirements of Rhodococcus species on minimal media.

TABLE 3 : Investigation of the utilization of citrate as sole carbon source by 14887-1 in liquid minimal media.

TABLE 4 : Optimal concentrations of the solvents Tween 80, Ethanol and DMSO for 14887 and 4277.

TABLE 5 : Utilization of Tween 80, ethanol and DMSO by 14887-1 in liquid minimal media at 26°C.

TABLE 6 : Combinations of cholesterol and Tween 86.

TABLE 7 : Utilization of sterols by 14887-1 in liquid minimal media.

TABLE 8 : Utilization of sodium benzoate and hydroxybenzoate as carbon sources for 14887-1.

TABLE 9 : Comparison of the utilization of the carbon sources tested by 14887-1 liquid cultures and plates.

TABLE 10 : Lysis of organisms by phages isolated from soil.

TABLE 11 : Determining the divalent ion requirement of the five phages specific for 14887-1.

TABLE 12 : Optimum conditions for NTG mutagenesis.

TABLE 13 : Comparison of the different mutagens based on the number of auxotrophs produced.

TABLE 14 : Optimum time of exposure of 14887-1 to NTG.

TABLE 15 : Comparison between NTG mutagenesis of an exponentially growing culture and a stationary phase culture of 14887-1.
TABLE 16: Effect of varying concentration of EMS and exposure time on exponentially growing cultures of 14887-1.

TABLE 17: Comparison of NTG mutagenesis + enrichment with NTG mutagenesis alone.

TABLE 18: Requirements of 15 of the 38 auxotrophs.

TABLE 19: Mutants of 14887-1 with reduced ability to utilize sterols, sodium taurocholate and other carbon sources.

TABLE 20: Utilization of sodium taurocholate by nocardioform bacteria.

TABLE 21: Recognition sequences of Bam HI, Bgl I and Bgl II and Sau 3A.

TABLE 22: Duration of DNA in ligation buffer with and without ligase at 14°C.

TABLE 23: Nocardioform transformation of KBI.
1.0 INTRODUCTION

The steroids belong to a class of lipid compounds called terpenoids (and other names such as terpenes, polyisoprenoids or isopentenoids). They are a diversified class believed to be derived from isoprene, C$_5$H$_8$, and are characterized by the cyclopenta-pentaerythritol system of Figure 1.

Figure 1. The steroid ring system. Smith 1984

The sterols, a subgroup of steroids, are a class of crystalline alcohols containing between 27 and 30 carbon atoms. They all possess a 3β-hydroxy group and an endocyclic double bond, usually in the 5,6 position, together
with a side chain which exhibits various degrees of branching and unsaturation. (Templeton 1969).

The sterols are widely distributed in nature and are present in practically all living organisms including bacteria. Cholesterol is the most important and widespread of the sterols. It is the precursor of the bile acids and the sex and adrenocortical hormones. The most abundant plant sterol is stigmasterol, first isolated from the Calabar bean but more plentifully available from soybean oil. Sitosterol is also a sterol. (Templeton 1969). Other sterols include campesterol and ergosterol.

See Figure 2 for structures of some sterols.
Figure 2. Structures of some sterols
Bile acids are C-24 to C-28 carboxylic acids with a steroid nucleus containing hydroxyl substituents and part or all of the side chain of 28-cholestan e. (Whiting 1986). Bile acids contain hydroxyl groups, which are substituted at position C-3, C-7, C-12 of the steroid nucleus. The three major bile acids are cholic acid, chenodeoxycholic acid and deoxycholic acid. Usually bile acids are enzymatically conjugated with either of the amino acids glycine or taurine in human bile. There are thus six major bile acids in man, namely the glycine and taurine conjugates of cholic acid, chenodeoxycholic acid and deoxycholic acid. The bile acid sodium taurocholate was used in the work for this thesis.

Steroids are vital in many ways to life of eukaryotic organisms. The sterols are precursors of other steroids and are essential for membrane stability and cell growth. The bile salts are essential for lipid digestion and absorption. Additionally there are two classes of hormones that are steroidal in nature, namely the sex hormones and the adrenocortical hormones. It is the pharmacological interest in these hormones which prevails in current applications of biotechnology to the steroids. (Smith 1984).

The sex hormones fall into three chemically and physiologically distinct classes. The estrogens and progestogens regulate various functions of the female reproductive system and the androgens are male hormones.

The adrenocortical hormones are produced by the cortex of the adrenal gland. They are vital in the metabolism of water, proteins and carbohydrates. There are seven corticoid hormones of which cortisone has important medicinal applications.
Microbial transformation of specific steroid substrates is the centre of commercial biotechnology operations dealing with steroids and has resulted in major contributions to technology, medicine and science. There are currently two major biotechnological applications dealing with the steroids. These applications involve the use of microorganisms for processing raw materials into useful intermediates for general steroid production and that of specific transformations of steroid intermediates to finished products. (Smith 1984).

The first successful application of biotechnology to the preparation of useful steroids had to do with the synthesis of the adrenocortical hormones and their more powerful and therapeutically selective synthetic analogs. (Charney and Herzog 1967). Cortisone has a powerful antiinflammatory activity which was discovered in 1949. Synthesis of cortisone did not include microorganisms initially. However, Murray, Peterson, Perlman and Fried laid the basis for the application of microbiology to the synthesis of antiinflammatory steroids. (Charney and Herzog 1967).

The world market for finished steroids appears to be increasing both in amount of production and in monetary value. Sales of antiinflammatory steroids in the USA of $120 million in 1959 increased to $215 million by 1968. Markets for other steroids including male and female sex hormones, anabolic agents, anesthetics, antialdosterone agents, anticancer agents and antiandrogenic agents also continue to grow. (Smith 1984). Three general processes are used to produce finished steroid products.

1. Direct isolation from natural sources such as the recovery of conjugated estrogens from horse urine and of cardiotonic steroids from the plants Digitalis.
2. Partial synthesis from steroid raw materials of animal and plant origins. The partial synthesis of steroid hormones and their analogs is the most important process with respect to microbial biotechnology.

3. Total synthesis from non-steroidal materials.

All three of these processes are commercially operated but it is only the second two that use microbial transformations. (Kieselich 1980, Smith 1984)

There is a diversity of enzymic reactions accomplished by microorganisms on steroids.

The most important category of microbiological transformations is oxidation. There are four oxidation reactions of commercial importance, hydroxylation, alcohol oxidation, 1-dehydrogenation and carbon-carbon bond scission.

Microbial hydroxylations at almost every possible position in the steroid nucleus are known including 10β-hydroxylation of 19-norsteroids and 14β-hydroxylation of synthetic 14β-steroids. (Smith 1984). There are three microbial hydroxylations of commercial importance, 11a-, 11β- and 16α-hydroxylations.

Microbial scissions of carbon-carbon bonds are very important, as cleavage of sterol side chains to useful C19 intermediates and of progesterone side chain to testololactone derivatives are commercial processes.

Microbial reductions of ketones are also of commercial interest whereas other reactions such as isomerizations and conjugations are of little commercial importance.
Cholesterol and deoxycholic acid from slaughter house animals were used originally as starting material for biological transformations. For reasons of cost additional raw materials are used. These include Solasodine and Tomatidine derived from *Solanum* species, Sisalogenin from Agave species and Recogenin from sisal plants. The phytosterols dioxigenin from Mexican and other *Dioscorea* plants and stigmasterol from soybeans give useful C14 intermediates from the finished C14, C18, and C21 sterols are manufactured today.

Cholesterol, from wool grease and soybean sitosterol are used for microbial degradations of the sterol side chains yielding useful C13 steroid intermediates. Microbial degradations of sitosterol and of cholesterol yield C19 steroids used for production of other C19 steroid sex hormones and anabolic agents. (Kieslich 1980, Smith 1984).

It has been known since 1913, that numerous microorganisms can utilize sterols such as cholesterol and β-sitosterol as sole source of carbon. However, they have a serious drawback as they do not only degrade the side chain, by the mechanism of β oxidation, but also cleave the steroid skeleton by 9α hydroxylation, which is undesirable and of no commercial value. (Kieslich 1980). In 1965, Sih and workers elucidated the degradation method and described a method for avoiding the undesirable reactions described above. A suitable cholesterol-like substrate such as 19-hydroxy-cholesterol was used as a substrate and the side chain was degraded to a 17 ketosteroid to yield estrone. (Charney and Herzog 1967, Kieslich 1980).

Three different methods have been developed to selectively cleave the side chain of sterols by microorganisms. These processes are based on the
Inhibition of the key enzymes C-21(2)-3β-hydrogenase and 9α-hydroxylase involved in steroid ring degradation.

Methods employed to inhibit one or more of these enzymes are the following:

1. Structural modification of the substrate as described by Sib and coworkers (cited in Charney and Herzog 1967) preventing enzymic attack on the ring system. Some sterols with chemically modified structures are 19-oxidosterols, 19-norsterols and 4α-hydroxycholestenone.

2. Use of chemical enzyme inhibitors.

Numerous processes for the selective side chain cleavage of sterols employing enzyme inhibitors have been developed. Chemicals used as enzyme inhibitors included lipophilic chelating agents such as \textit{aa} Dipiridyl, oxidizable redox dyes, inorganic SH reagents and metal ions.

3. Mutation of the microorganisms

Microorganisms have been produced by mutagenesis that are capable of selectively degrading the sterol side chain. These mutants are chemically blocked from degrading the nucleus and can be used to efficiently produce steroids from sterols without the necessity of modifying the substrate or of adding chemical inhibitors. These mutants have been found to have potential industrial use, efficiently converting sterols to products some of which are useful as intermediates in the manufacture of medically important steroids. Several researchers have reported the degradation of sterols by mutants to industrially important intermediates. Wovcha \textit{et al} 1978, Hill \textit{et al} 1982, Nakamatsu \textit{et al} 1983, and Ferreira \textit{et al} 1984 are just a few of the researchers using this process of selective side chain degradation.
The sterols play a vital role in oral contraceptives of which two are generally available namely the combined pill and the gestagen pill. These products consist of an estrogen and/or a gestagen which is a synthetic substance having biological effects resembling progesterone. Two forms of gestagens are available: those derived from testosterone by replacing the methyl group of the carbon 19 atom with a hydrogen atom (19-nortestosterone) and those derived from 17 -acetoxy progesterone. The 19-nortestosterone in use today are norethisterone, lynestrenol, ethynodiol diacetate and d-norgestrel. Only one 17-acetoxyprogesterone is currently available for contraception and this is medroxy-progesterone acetate. (Llewellyn • Jones 1978)

Cholesterol decomposing microorganisms are distributed in a wide range of genera of actinomycetes, other bacteria, molds and yeasts. Some of the genera include Pseudomonas, Corynebacteria, Actrobacter, Streptomyces, Mycobacterium, Nocardia and Rhodococcus. A number of cholesterol decomposing strains belong to the genera Mycobacteria, Nocardia and Rhodococcus known as the nocardioform bacteria whereas in the other genera, the decomposing strains appear incidentally. (Arima et al 1969).

In previous years the taxonomy of the nocardioform bacteria was extremely poor. In the seventh edition of Bergey's manual, the nocardioform bacteria were classified in the genera Nocardia and Actinomycetes belonging to the family Actinomycetaceae. The genus Nocardia was poorly defined and contained bacteria that had little in common. In the late seventies efforts were directed towards establishing a better classification of the actinomycetes. They have been classified into 10 families and 30 genera, based primarily on morphological, chemical and spore characteristics.