THE DETERMINATION OF THE MINER
CHARACTERISTICS OF WIDE PILLARS

BY

JOHN ANTHONY CRUISE

A dissertation presented to the Department of Mining Engineering
of the University of the Witwatersrand for the degree of Master
of Science in Engineering.

February 1969.
DECLARATION

I, JOHN ANTHONY CRUISE, declare that this dissertation is my own work and has not been previously submitted to another University for degree purposes.

J.A. CRUISE, B.Sc. (Eng.) (Rand)

Date: 17-2-1967
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Closeup of Terms</th>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 1 - Failure of Material

1.1 The General Theory of Elasticity. | 1 |
1.2 The Atomic Failure Strength. | 2 |
1.3 The Griffith Crack Theory. | 2 |
1.4 The Modified Griffith Crack Theory. | 3 |
1.5 The Mohr Failure Envelope. | 4 |
1.6 The Theory of Plasticity. | 4 |

Chapter 2 - Failure of Rock Systems Containing Pillars

2.1 Homogeneous Isotropic Model. | 7 |
2.2 Poisson's Ratio Effect. | 8 |
2.3 Mohr Effect. | 8 |

Chapter 3 - Stress Distribution

3.1 Tributary Area Theory. | 10 |
3.2 Stress Distribution in the Pillar. | 10 |
3.3 Stress Distribution around the Pillar. | 11 |
3.4 Photoelastic Stress Analysis. | 12 |

Chapter 4 - Previous Pillar Formulae

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 5 - Derivation of New Pillar Formulae

5.1 The Strength of Pillar Material. | 16 |
5.2 The Failure Strength of a Unit Pillar. | 17 |
5.3 Strength Multiplication Factor - k_1. | 18 |
5.4 The Lateral Stress Increase Factor - k_2. | 19 |
5.5 Analysis of a Row of Unit Pillars.
5.6 Strip Pillar Analysis,
 5.6.1 Finite Element Approach.
 5.6.2 Continuous Rate of Increase Approach.
 5.6.3 The Comparison of the Finite Element and
 the Continuous Rate of Increase Approaches.
5.7 Square Pillar Analysis.
5.8 Circular Pillar Analysis.

Chapter 6 - Laboratory Investigation
6.1 Description of Material for Laboratory Tests.
6.2 Method of Testing Rock Specimens,
 6.2.1 Preparation of Specimens.
 6.2.2 The Testing Procedure to Determine the
 Specimen Failure Strength.
6.3 Influence of Various Factors on the Failure Strength.
 6.3.1 The Isotropy of the Material.
 6.3.2 Griffith's Cracks.
 6.3.3 Vapour Pressure.
 6.3.4 Temperature.
 6.3.5 Rate of Loading.
 6.3.6 The Effect of Interfaces.

Chapter 7 - Results
7.1 Observation of the Mode of Failure.
7.2 Definition of Failure.

Chapter 8 - Discussion of Results
8.1 Laboratory Tests.
8.2 Comparison with Previous Theories.

Chapter 9 - Conclusions
References

Appendices

1. The Determination of k_1 under Elastic Conditions.
2. The Determination of k_2 under Elastic Conditions.
3. Validity of Approximation of Equal Strength of all Unit Pillars in the Same Row in the Square Pillar Analysis.
5. Comparison of the Two Strength Approaches.
6. The Square Pillar Formula as a Continuous Function.
7. Specimen Saturation Times.
8. The Effect of Interfaces on the Failure Load.
9. Strip Pillar Problem.
10. Square Pillar Problem.
11. Circular Pillar Problem.
GLOSSARY OF TERMS

(in order of appearance)

\(\sigma_0 \) strength of material
\(\gamma \) specific surface energy
\(E \) Young's Modulus
\(a \) space between neighbouring atomic particles
\(\sigma_0 \) maximum stress
\(\sigma_a \) applied stress
\(e \) \(\frac{1}{2} \) length of crack
\(r \) radius of curvature at end of crack
\(v \) Poisson's ratio
\(\sigma_1, \sigma_2, \sigma_3 \) Principal stresses
\(\alpha \) angle of shear plane to the horizontal plane
\(\phi \) angle of internal friction
\(\sigma_2 \) average pillar stress
\(S_0 \) vertical field stress
\(\varepsilon \) extraction ratio
\(y \) load distribution
\(P \) total load
\(a \) length of boundary
\(x \) distance from centre
\(u \) strength of pillar
\(v \) width of pillar
\(h \) height of pillar
\(k, a, b \) constants
width to height ratio

failure strength of a unit pillar

uniaxial compressive strength

Strength Multiplication Factor

Lateral Stress Increase Factor

$k_1 k_2$

c

number of unit pillars to centre unit pillar of a wide pillar (inclusive)

strength of the nth pillar

distance into a wide pillar

strength at a point distant n into a wide pillar

average strength of pillar

constant

virgin stress

percentage extraction
Throughout the long history of mining Sub Terra, the mining engineer's main concern has been support. From the earliest times, the leaving of unmined portions of rock, or pillars, as support, has constituted an integral part of most underground mining operations. It therefore seems paradoxical that, although pillars have been used so extensively, there exists today no adequate generalised calculation to determine the amount of load a pillar can support.

Recently there have been many attempts to establish a pillar strength formula, but in the main these tend either to apply only to a specific material under specific conditions, or to depend on so many parameters and variables that they prove inapplicable in practice.

In the vast majority of pillar applications, the size has been determined by past experience and then trial and error for the specific application. This results in a general "rule-of-thumb", which holds until there are an excessive number of failures.

It is the aim of this dissertation to produce a generalised pillar strength formula for wide pillars, i.e., those whose lateral dimensions are the greatest. It should be noted that it is just the strength of the individual solid pillar that is investigated. It is therefore assumed that the surrounding strata is competent, such that it will not fail prior to pillar failure nor does it induce undue high stress concentrations in the pillar due to external phenomena, nor does the pillar partially fail before ultimate failure.
1.1. THE GENERAL THEORY OF ELASTICITY

In the field of rock mechanics most calculations are based on the assumption that rock behaves elastically. Invariably the question arises as to whether this assumption is valid.

Apart from the fact that there exists no other theory which is as complete and computable, it has been found by many authors that the stress/strain curve for rock is linear. Moreover, according to Coates (1), where the rock is visco-elastic and elasto-plastic, it can be considered to behave according to a modification of the elastic theory, having the same stress-equilibrium equations and boundary conditions and differing only in the compatibility equations.

Hence, as the most applicable and the most complete theory available, elasticity is a good first approximation to describe rock behaviour.

An insight into the theory of elasticity can be found in most textbooks dealing with fundamental strength of materials. Two, regarded as the classical textbooks in this field, are written by Timoshenko and Goodier (2) and Muskhelishvili (3).

In this dissertation the theory of elasticity is used extensively to express and relate stress and strain conditions.
1.2. **The Atomic Failure Strength**

In considering the failure strength of materials microscopically, the lower limit of consideration is the strength due to the cohesion of atomic particles. Crowen\(^{(1)}\) gives the strength of material as:

\[
\sigma_0 = \sqrt{\frac{2\gamma E}{\alpha}}
\]

where:
- \(\gamma\) = specific surface energy
- \(E\) = Young's modulus
- \(\alpha\) = space between neighbouring atomic particles

However, the strength of a substantial mass of material is found to be much lower than the atomic strength. This gave rise to the Griffith Crack Theory.

1.3. **The Griffith Crack Theory**

Griffith\(^{(5)}\) assumed that the difference between the atomic tensile strength and the massive tensile strength was due to high stress concentrations around small cracks inherent in massive material.

These high stress concentrations cause the cracks to propagate, finally resulting in the failure of the material along the cracks and their propagations.

Approximating a crack two-dimensionally by an ellipse of large eccentricity, Griffith calculated the maximum stress at the end of the crack, orientated at right angles to the applied tension, from the equation:

\[
\sigma_o = 2\sigma_e \frac{r}{c}
\]

where:
- \(\sigma_o\) = applied tensile stress
- \(2c\) = length of crack
- \(r\) = radius of curvature at the end of the crack
To relate the propagation of cracks to the constants of the material, Griffith considered the energy balance during crack propagation. The types of energy which have to be considered are:

(a). A loss in potential energy due to displacements - P.E.
(b). A gain in strain energy around the crack - E.E.
(c). A gain in surface energy due to formation of new crack areas - S.E.
(d). A gain in kinetic energy due to crack propagation - K.E.
(e). A gain in potential energy due to plastic deformation - P.l.E.

The energy balance is therefore expressed by the equation,

\[P.E. = E.E. + S.E. + K.E. + P.l.E. \]

For the stable crack propagation the surface energy gained in rupturing the molecular bonds along the crack path must be equal to the nett reduction in the strain energy of the system,

\[S.E. = E.E. \]

In three-dimensions a flat oblate ellipsoid was studied by Sack\(^6\) who derived the expression

\[a = \frac{E}{2c(1-v^2)} \]

where

- \(E \) = Young's Modulus
- \(v \) = Poisson's Ratio
- \(2c \) = crack length

In compression the original Griffiths theory does not make allowances for the closure of very flat cracks before they reach a high enough stress to propagate. The frictional forces which come into being when the faces of the crack come into contact exert a marked influence on the crack behaviour.

2.4. **THE MODIFIED GRIFFITH CRACK THEORY**

To study the effect of friction on closed crack surfaces, McClintock and Walsh\(^7\) adapted the Griffith theory by making
the assumption that the initial crack in an unstressed body is uniformly closed over its whole length, i.e. the stress required to close the crack is zero.

For negative stress, i.e. tensile stress, the original Griffith Theory holds, and for positive stress, i.e. compressive stress, the Modified Griffith Theory holds. The transition point of the two theories occurs at zero stress, as indicated in Fig. 1.

1.5. THE MOHR FAILURE ENVELOPE

A 2-dimensional stress system in an elastic body (see Fig. 2a) can be illustrated graphically by a Mohr circle (see Fig. 2b).

As the stress difference increases, the radius of the circle increases. For a fixed minimum stress, a maximum radius is reached at failure. If the semi-circles at failure for different minimum stress values are plotted, they are found to have a common envelope called the Mohr failure envelope, which is also shown in Fig. 2 (b). States of active and passive failure can also be derived from the Mohr diagram as discussed in more detail in section 2.3.

The Griffith and Mohr theories were derived for elastic materials. For plastic materials, useful theories have been proposed by Tresca and von Mises.

1.6. THE THEORY OF PLASTICITY

Under certain stress conditions, rock is known to behave plastically. The complexity of plastic behaviour, the change of phase from elasticity to plasticity, and the wide variation in various materials contribute to the reason why the theory of plasticity
FIGURE 1. MOHR ENVELOPE FOR ORIGINAL AND MODIFIED GRIFFITH’S BRITTLE FRACTURE CRITERIA IN TERMS OF THE UNIAXIAL COMPRESSIVE STRENGTH σ_c FOR $\alpha = 1.0$. (AFTER HOEK (20))
FIGURE 2a. TWO-DIMENSIONAL STRESS SYSTEM ON AN ELASTIC BODY.

FIGURE 2b. MOHR DIAGRAM SHOWING THE RELATIONSHIP BETWEEN THE STRESSES ON A TWO-DIMENSIONAL ELASTIC BODY AT FAILURE, AND THE COMMON FAILURE ENVELOPE FOR FAILURE AT VARIOUS STRESSES.
plasticity has not developed into a rigorous discipline. In spite
of this some attempts have been made to bring plasticity on a par
with elasticity. According to Hoffman and Sacks(8), two theories
have been proposed to explain the failure of material in
plasticity viz., that of Trevelyan - St. Venant and that of von Misses
- Hencky. Both theories use yield surfaces to describe failure.
They differ in that Trevelyan - St. Venant proposes that the
yield surface is hexagonal and von Misses - Hencky that it is
elliptical (see Fig. 3).

The discrepancy is two conditions:-
(a). the maximum-shearing-stress conditions of Trevelyan - St. Venant
assumes six different expressions in various regions of the $\sigma_1\sigma_2$
plane, depending on the relative magnitudes and signs of σ_1 and σ_2.
This gives an hexagon failure surface as shown in Fig. 3.
(b). the strain-energy-of-distortion condition of von Misses
- Hencky is an ellipse with the major and minor axes bisecting the σ_1-
and σ_2- axes and passing through the vertices of the hexagon of
the maximum-shearing-stress condition.

The two conditions predict the same yield strength for equal
biaxial stresses given by $\sigma_1 = \sigma_2 = \frac{1}{\sqrt{2}} \sigma_0$, represented by B and D
and for uniaxial stress, A, C, D, F in Fig. 3.

The maximum deviation of the two theories occurs for pure
shear, $\sigma_1 = -\sigma_2$.
The values are then,
Maximum-shearing-stress $\sigma_1 = -\sigma_2 = \frac{1}{\sqrt{2}} \sigma_0$
Strain-energy-of-distortion $\sigma_1 = -\sigma_2 = \frac{1}{\sqrt{3}} \sigma_0$
FIGURE 3. COMPARISON OF THE TWO YIELD SURFACE FAILURE THEORIES IN PLASTICITY (AFTER HOFFMAN AND SACKS[8])
Briefly the failure criteria can be summarized as:

(a), the general theory of elasticity is still the most extensive, and the most easily applicable theory to date.

(b), the atomic strength, though valid for microscopic order of analyses fails for the macroscopic state.

(c), the modified Griffith Theory can in general be applied to calculate the strength of rock, however, its application is limited as reliable values for surface free energy are not available.

(d), the Tresca-von Mises theories will be useful in later determinations of strength when more is known about the plasticity of rock, but for the purpose of this dissertation the assumption is made that rock behaves elastically.
CHAPTER 2

FAILURE OF ROCK SYSTEMS CONTAINING PILLARS

In order to apply mathematical theory of elasticity to practical mining conditions Salamon considers four types of idealised models viz.:

(a). Homogeneous isotropic model,
(b). Homogeneous transversely isotropic model,
(c). Frictionless laminated model,
(d). Multilaminate model.

To eliminate tedious mathematical calculations it will be assumed in this dissertation that the mining condition can be simulated by the homogeneous isotropic model.

2.1. HOMEOGENOUS ISOllropic MODEL

To apply this model it is assumed that the mechanical properties of all portions of the rock mass is the same, and their magnitude is independent of the direction of loading i.e. the model disregards the possible effect of the banded nature of the rock. It provides a useful approximation in the case of deep-seated hard rock, where the bedding is not pronounced and no preferential direction with regard to its properties exists.

The basis of calculation is on the mirror image concept with only two parameters to define the mechanical properties of the material viz. Young's Modulus E and Poisson's Ratio v. The mirror image concept satisfies the condition of shear stress-free ground surface by superimposing the solution for an element at

\[\infty \]
infinite depth on its mirror image. The surface is freed of normal stress by the addition of another stress function.

2.2. POISSON'S RATIO EFFECT

The stress on a pillar increases with progressive mining due to the weight of the overlying strata, and the increase causes a deformation of the pillar. As the pillar deforms vertically, it expands laterally until it fails by splitting vertically and sliding of the outer layers. This continues until the size of the pillar is so small that it can no longer bear the weight of the overlying strata and it fails violently.

The lateral expansion occurs as a result of the Poisson's Ratio Effect which is unrestricted at mid-height of the pillar and restricted on the hangingwall and the footwall contacts with the pillar. This causes bulging at the mid-height and leads to vertical cracking (see Fig.4).

2.3. MOHR EFFECT

If the pillar is slender enough, an oblique shear plane tends to develop (see Fig. 5a). This is explained by Terzaghi and Peck\(^{(10)}\) in the theory of active and passive shear planes and it can be analysed by the Mohr Rupture Theory.

Briefly, the angle \(\phi \) of the shear plane (see Fig. 5a) to the horizontal plane is:

\[\phi = 45^\circ + \frac{1}{2} \theta \]

where \(\theta \) is the angle of internal friction. \(\phi \) depends on the difference between the applied vertical stress \(\sigma_v \) and the restricting horizontal stress \(\sigma_h \) (see Fig. 5a).
Figure 4. Cross section of a pillar showing the Poisson's ratio effect producing bulging at mid-height and vertical cracking when subjected to vertical stress σ_1.
THE MOHR EFFECT SHOWING THE DEVELOPMENT OF SHEAR PLANES AND THEIR EFFECT ON A WIDE PILLAR.

COMBINATION OF POISSON'S RATIO EFFECT AND MOHR EFFECT.
According to the Mohr theory a number of shear planes are induced, all having the same angle to the horizontal. Some will have the opposite sign (see Fig. 5a).

This causes the "mist" effect commonly seen in coal pillars, due to the loose rock falling away (see Fig. 5b).

In practice what is observed is, firstly a bulging effect and then the rock at mid-height falls away, leaving, not a clean shear plain, but a jagged surface. This could be explained by a combination of Poisson's Ratio Effect and the Mohr Effect (see Fig. 5e).

However, it could be due to the nature of the material.
CHAPTER 3

STRESS DISTRIBUTION

In determining the strength of material the most commonly used method is to study its reaction to an applied stress. Hence, the knowledge of the exact nature of the applied stress is imperative. Two factors of this nature are important viz., the amount of stress and its distribution.

3.1. TRIBUTARY AREA THEORY

To measure the total amount of stress under mining conditions the tributary area theory provides a fairly accurate and easily manipulative estimate. This theory states that the pillar supports the entire weight of rock above the pillar and above the excavation tributary (or adjacent) to it. This can be expressed by the equation

\[q_p = \frac{3o}{1 - R} \]

where
- \(q_p \) = average pillar stress
- \(3o \) = vertical field stress
- \(R \) = extraction ratio

Hence this method gives the maximum average stress that can occur in the pillar.

3.2. STRESS DISTRIBUTION IN THE PILLAR

If there is a non-uniform stress distribution in the pillar, then the maximum stress is not that given by the tributary area theory, but a greater value. As the rock will fail first at the stress of greatest value, it is important to know the configuration of the stress distribution.
Thomason\(^{(2)}\) gives the load distribution on a straight boundary (see Fig. 6a) as

\[P = \frac{P}{\sqrt{a^2 - x^2}} \]

where \(P \) = total load,
\(a \) = length of boundary,
\(x \) = distance from centre.

A similar configuration is given by Salem and Oravetz\(^{(11)}\) for the stress distribution over a pillar (see Fig. 6b). They maintain that this applies both to the homogeneous isotropic model and the transversely isotropic model, the only difference being the choice of the appropriate physical constants in the final results.

An approximation that is used in this approach is, that at any point over the pillar, the vertical stress is proportional to the pillar convergence there. From this it is calculated that the stress convergence at the corners of the pillar is 37.5% higher than the mean stress over the whole pillar.

Costea\(^{(1)}\) gives the more likely stress distribution as having the maximum stress at a distance into the pillar (see Fig. 6c).

In practice the partial fracturing from blasting or release of confinement of the surface rock, produces a zone commonly 2 feet to 6 feet thick that can sustain little stress. The peak stress concentration is thus moved to the edge of the unfractured portion of the pillar.

3.3. **STRESS DISTRIBUTION AROUND THE PILLAR**

Costea\(^{(1)}\) maintains that the stress distribution with the footwall and the hangingwall of the same modulus of deformation
STRESS DISTRIBUTION OVER A STRAIGHT BOUNDARY PRODUCING CONSTANT DEFLECTION (AFTER TIMOSHENKO)\(^{(2)}\).

FIGURE 6a.

STRESS DISTRIBUTION OVER A PILLAR (AFTER SALAMON AND ORAVECZ)\(^{(11)}\).

FIGURE 6b.

STRESS DISTRIBUTION OVER A PILLAR CROSS SECTION (AFTER COATES)\(^{(11)}\).

FIGURE 6c.
is the same in the footwall on contact with the pillar as the pillar. This is to be expected if one accepts the continuity of stress. So considering the ideal elastic situation the stress will be that of the pillar (see Fig. 7a).

At a distance into the footwall the stress distribution is spread over a larger area and thus the stress concentration is diminished (see Fig. 7b), until at a certain distance above or below the pillar it approaches the primitive stress configuration.

N.B. All references to the footwall apply equally to the hangingwall.

Terzaghi and Peck\(^{10}\) give the floor reaction to pressure on a plate as the development of shear planes (see Fig. 7c). This phenomenon is well known in Soil Mechanics.

It was from this concept that Wiggill\(^{12}\) deduced the stress lines around an open excavation (see Fig. 7d).

3.4. PHOTOELASTIC STRESS ANALYSIS

From photoelastic stress studies on pillar configurations Logie\(^{13}\) arrived at the following conclusions:
\(\text{(a)}\) the maximum stress in the pillar occurs at the intersection of the three orthogonal planes viz. the corner of the two sidewalls and the footwall (shown previously by Salamon and Graves\(^{11}\)). This maximum is not affected by the slenderness of the pillar, but by the variation in percentage extraction.
\(\text{(b)}\) the rate of change of the maximum stress with the percentage extraction is, large, obeying approximately linear law.
FIGURES 7a AND 7b. STRESSES IN WALLS ADJACENT TO PILLARS (AFTER COATES)

FIGURE 7c. FLOOR REACTION TO PRESSURE ON A PLATE (AFTER TERZAGHI AND PECK)

FIGURES 7a AND 7b. STRESSES IN WALLS ADJACENT TO PILLARS (AFTER COATES)
Figure 7d. Diagrammatic sketch showing shear zones around a stoping excavation (after Wiggill).
(c). A tensile stress is produced in the footwall of the excavation of the order of the primitive stress.

(d). For percentage extraction less than 55% the rate of change of the maximum stress at mid-height is relatively small. For greater than 55% extraction the rate is high.

He also shows that across the pillar the stress distribution remains uniform at a distance into the pillar greater than half the height (see Fig. f).
FIGURE 8. DISTRIBUTION OF THE PRINCIPAL STRESS TRAJECTORIES AROUND A WIDE PILLAR (AFTER LOGIE [13])
PREVIOUS PILLAR FORMULAE

As that section of the mining industry which has for some time predominately used the pillar as an integral part of its mining method, the coal mines were the first to become interested in the determination experimentally of the strength of pillars. As far back as 1938 experiments were conducted in the Pittsburgh Coal Beds by Greenwald, Kowarch and Hartmann (14) to investigate parameters that might affect the strength. They observed that size had a distinct effect on the strength. From the results of seven tests carried out on in situ square coal pillars, they postulated the form of the equation that relates the size to the strength as being a power function i.e. the strength of a pillar is a function of its width and its height to certain powers. Thus:

\[\sigma = k w^a h^b \]

where \(\sigma \) = strength of pillar
\(w \) = width of pillar
\(h \) = height of pillar
\(k, a, b \) = constants

Until very recently, this was the accepted form of the pillar strength formulas. Later researchers merely differed with respect to the constants.

However, due to the empirical nature of evaluating, the constants vary considerably, due to the particular nature of the coal specifically tested by individual researchers. The researchers also differed in their approach to the determination of the constants.
specimens and extrapolated the results from the formula he obtained
to describe the strength of mine pillars. In 1967, Salomon and
Salmi, et al. (16) approached the problem of pillar strength by a method
different from that of simulating a pillar failing in the laboratory.
They took a large number of pillars in a number of mines and, o.
the basis of classing those which had already failed as being too
small and those which still stood and carried load as being on
the large size, they found the optimum values for the constants
statistically using the power function formula as the basic form.
Also in 1967 Bieniawski (17) conducted a series of tests on in situ
small coal pillars by artificially inducing a load on the pillars
by means of hydraulic jacks, thus simulating pillar failure under
safe conditions. Again he used the power function formula as
the basic template and gave a new evaluation of the constants.

Thus the various postulates can be summarised by the following
table of the constants.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenwald et al</td>
<td>0.50</td>
<td>-0.83</td>
</tr>
<tr>
<td>Steart</td>
<td>0.50</td>
<td>-1.00</td>
</tr>
<tr>
<td>Salomon and Salmi, et al</td>
<td>0.46</td>
<td>-0.86</td>
</tr>
<tr>
<td>Bieniawski</td>
<td>0.16</td>
<td>-0.46</td>
</tr>
</tbody>
</table>

The constant k depends on the nature of the coal and as it can
be seen from the form of the power function formula, it is the
value of the strength of a unit cube of coal.

In a later paper in 1967, Bieniawski (18) first deviated from
the power function formula by proposing a linear relationship
of the form

$$\sigma = a + br$$

where σ = strength of pillar, r = width to height ratio

$$a = 400, b = 220$$

An evaluation of the merits and limitations of these
formulas is given in section 3.1.
5.1. THE STRENGTH OF PILLAR MATERIAL

The strength of pillar material, usually rock, depends on intrinsic parameters and variable external factors, many of which have not yet been identified, let alone analysed.

In attempting an analysis of factors determining the strength of pillar material one must first consider its general nature. The rock may have a structure ranging from separate particles bonded weakly together to a fused glass-like structure, depending on its geological origin and history - whether igneous, sedimentary, or metamorphic; of what elements it is composed; in what array the elements are bonded together and at what stage of metamorphosis. Sandstone is an example of crystals of rock bonded together by a cement weaker than the individual crystals, whereas pure quartzite has been fused so that the importance of individual grains is greatly diminished.

The behaviour of rock under stress may range from purely elastic to plastic or viscous and is of importance in the comparison of different rock types; and even in a single specimen the deformation phase may change noticeably under varying conditions.

The mode of failure of rock may range from a gradual flow to a violent rupture with or without cracking and crumbling. After failure the rock fragments may be recompressed to attain a capacity to once more withstand stress.
The strength of a rock mass is affected by the degree of saturation, chemical alteration, microscopic or macroscopic flaws, internal stress concentrations and rheological deformation. For example, Vaid (19) found that the strength of sandstone decreases markedly with an increase in the percentage saturation; visual chemical alteration occurs at serpentine dykes exposed in underground workings; planes of weakness such as faults, fissures and slips are common occurrences in underground workings; the high stress concentration at peninsula abutments left by longwall mining on the Witwatersrand gold mines may cause violent failures; and the rheological deformation under a constant load too low to induce immediate failure has been observed to lead to failure in salt and potash mines.

5.2 THE FAILURE STRENGTH OF A UNIT PILLAR

In mining it has been observed that the strength of a pillar is influenced by its dimensions, more especially so, its least dimension. If the least dimension is its width, it is a "slender pillar" and its strength analysis would be akin to that of "column theory" used in structural engineering.

If the least dimension is its height it is a "wide pillar". In analysing a wide pillar the concept of a unit pillar is used to serve as the foundation upon which the failure strength theory is built. A unit pillar is a cubic pillar of sidelength equal to the height of a wide pillar. Hence all wide pillars contain at least one unit pillar. By increasing the unit pillar in its lateral dimensions it becomes a wide pillar.

The failure strength of a unit pillar, q_u, is taken to be the maximum load per unit area which the pillar can support before failing.
This failure strength should not be confused with the uniaxial compressive strength, \(\sigma_c \), which is determined by an internationally standardised procedure on a rock specimen of specific size viz. a cylinder of rock of diameter 1.5" and length 3.25". However, the unit strength can be considered to be a function of the uniaxial compressive strength:

\[
\sigma_u = f(\sigma_c)
\]

To date this relationship has not been determined, though a first approximation can be made empirically by conducting a series of tests on specimens of varying size and then extrapolating. It is generally accepted that as the size increases so the strength decreases. However, it is thought that above a certain size, a matter of inches when dealing with metals and feet with coal (Bieniawski\(^\text{[18]}\)), the strength of a cube becomes constant.

Recent results (Grobbelaar\(^\text{[21]}\)) indicate that it is possible to estimate the strength of a unit pillar by using the strength of small specimens and observations of crack frequencies.

5.3. **Strength Multiplication Factor - \(k_p \).**

In nature where one deals with finite bodies, one rarely comes into contact with pure uniaxial stress conditions. Due to the intrinsic nature of materials, being constructed of molecules that are connected to one another by some or other means, one finds, even in the smallest elements, a three-dimensional stress situation. In this three-dimensional stress condition any one of three principal stresses is influenced by the other two. Any change in the magnitude of any one principal stress produces a change in the magnitudes of the other two.
If the unit pillar is considered to be an integral unit with the principal stresses σ_1, σ_2, σ_3 acting on its surfaces (see fig. 9a), the change in σ_1, $\Delta \sigma_1$, is a function of the stresses in σ_2 and σ_3, $\Delta \sigma_2$ and $\Delta \sigma_3$ if there is no deformation in the direction of σ_1.

i.e. $\Delta \sigma_1 = f(\Delta \sigma_2, \Delta \sigma_3)$

If the situation is simplified to that of two principal stresses, the maximum and the minimum, σ_1 and say σ_3 in the case of a unit pillar under vertical load we get the relationship

$\Delta \sigma_1 = f(\Delta \sigma_3)$

Over small increments this relationship can be approximated by a straight line which has the slope k_1 corresponding to the slope of the curve at that point

$\Delta \sigma_1 = k_1 \Delta \sigma_3$ (see Appendix 1).

The effect of this on the unit pillar is that an increase in the lateral stress increases the failure strength. By definition, the failure of a unit pillar, q_u, occurs in the uniaxial stress condition i.e. the lateral stress is zero.

Therefore, if we apply a stress $\Delta \sigma_3$ we get an increase in q_u of $k_1 \Delta \sigma_3$

i.e. when $\sigma_3 = 0$, $\sigma_1 = q_u$

when $\sigma_3 = \Delta \sigma_3$, $\sigma_1 = q_u + \Delta \sigma_1$

$= q_u + k_1 \Delta \sigma_3$

(See fig. 9b and 9c).

5.4. THE LATERAL STRESS INCREASE FACTOR - k_1

Materials, when subjected to a vertical load, show a tendency to deform; in general, by contracting vertically and expanding laterally. The amount of deformation and the ratio between the volumetric deformation vertically to that of horizontally depends on the nature of the material.
THE PRINCIPAL STRESSES ACTING ON A UNIT CUBE

\[\sigma_1 = \sigma_2 \]

\[\sigma_3 = 0 \]

THE TWO-DIMENSIONAL STRESSES FOR A SOLITARY UNIT PILLAR AT FAILURE.

\[\sigma_1 = \sigma_6 + \Delta \sigma \]
\[= \sigma_6 + k_1 \Delta \sigma_6 \]

THE EFFECT ON THE VERTICAL FAILURE STRESS (\(\sigma_7\)) BY APPLYING A HORIZONTAL STRESS (\(\sigma_6 \cdot \Delta \sigma_6\)) ON A TWO-DIMENSIONAL UNIT PILLAR.
For any elastic material these characteristics are generally constants. The values of these properties for a given material can change as the material changes state, from viscous through plastic to elastic for instance, but in general, they can be treated as different constants for each state of material.

If the material is restrained laterally when subjected to a vertical stress, a lateral stress is induced, which is a function of the vertical stress

\[\sigma_3 = f(\sigma_1) \]

Again, the relationship becomes that of a straight line for increments of stress change, giving

\[\Delta \sigma_3 = k_2 \Delta \sigma_1 \]

where \(k_2 \) is the lateral stress increase factor.

\(k_2 \) varies according to the specific material, the stress condition and the state of the material. In general, \(0 < k_2 < 1 \)

For elastic material \(0 < k_2 < \frac{1}{1-\nu} \)

For elastic material under plane strain \(k_2 = \frac{1}{1-\nu} \)

For elastic material under plane stress \(k_2 = \nu \)

where \(\nu \) is Poisson's Ratio

(See Appendix II)

In short the effect of \(k_2 \) on the unit pillar is that, if it is restrained, it exerts a lateral stress which is proportional to the vertical stress (see Fig.10).

9.5 ANALYSIS OF ROW OF UNIT PILLARS

As previously stated a wide pillar consists of at least one unit pillar. Taking the unit pillar as an integral entity, consider the effect of a unit pillar on its neighbouring unit pillar within a wide pillar. Being adjacent to one another they provide a mutual...
FIGURE 10

THE EFFECT ON THE HORIZONTAL STRESS (σ_3) BY APPLYING A VERTICAL STRESS ($\sigma_1 + \Delta \sigma_1$) ON A HORIZONTALLY RESTRAINED TWO-DIMENSIONAL UNIT PILLAR.
mutual restraint if they do not move laterally. This mutual restraint produces a lateral stress when the pillar complex is subjected to a vertical load, thus increasing the unit pillar's capacity to carry the load; in effect, increasing its strength. Moving in from the perimeter of the wide pillar to its centre, the strength increase becomes cumulative and reaches a maximum in the centre of the pillar.

To illustrate this effect consider three unit pillars. If these pillars are not in contact, we should expect each to have a strength per unit area of \(\sigma_u \). Hence, we expect all three to fail simultaneously when the load per unit area becomes \(\sigma_u \). (See Fig. 11a.)

If the three unit pillars are placed in contact in a row (see Fig. 11b), the two outer pillars would have a restraining effect on the centre one in the \(\sigma_2 \) direction but not in the \(\sigma_1 \) direction. Hence, we expect a slight increase in the strength of the centre pillar since it has one less dimension to fail into. However, the strength increase is slight (practically found to be about 10% in the case of sandstone, see Appendix III) as it can still fail in the \(\sigma_2 \) direction.

If the three unit pillars form a cross-section of a strip pillar (see Fig. 11c), the centre pillar is restrained in the \(\sigma_3 \) direction by the two outer pillars and in the \(\sigma_2 \) direction by similar sets of pillars adjacent to it. This restraint on all sides makes a marked increase in its strength (150% in the case of sandstone see Appendix III). This increase in strength is due to the development of lateral stress which is \(k_2 \) times the unit pillar strength and produces a strength multiplication factor of \(k_3 \) times the lateral stress.
FIGURE 11a. THE STRESSES ON THREE INDEPENDENT UNIT PILLARS AT FAILURE.

FIGURE 11b. THE EFFECT ON THE STRESSES ON THE CENTRE UNIT PILLAR WHEN RESTRAINED IN THE σ_3-DIRECTION BY ADJACENT UNIT PILLARS.

FIGURE 11c. THE EFFECT ON THE STRESSES ON THE UNIT PILLAR WHEN RESTRAINED EQUALLY IN THE σ_2-AND σ_3-DIRECTIONS BY ADJACENT UNIT PILLARS.
Hence, the strength for the centre unit pillar increases by \(k_1 k_2 \sigma_u \)
giving the strength as
\[
\sigma_u' + k_1 k_2 \sigma_u = \sigma_u (1 + k_1 k_2)
\]
The average strength of the three of the three pillars now becomes
\[
\frac{\sigma_u' + (\sigma_u + 2k_1 k_2 \sigma_u)}{3} = \sigma_u + \frac{k_1 k_2}{3} \sigma_u
\]
Taking a row of five pillars the value for the centre pillar
becomes
\[
\sigma_5 = \sigma_u + k_1 k_2 (\sigma_u') + k_1 k_2 (k_1 k_2 \sigma_u)
\]
\[
= \sigma_u (1 + k_1 k_2 + (k_1 k_2)^2)
\]
Extending this to a wide pillar of \(2H - 1 \) unit pillars, thus
making the centre pillar the \(N \)th pillar, the strength of the \(N \)th
pillar becomes
\[
\sigma_N = \sigma_u (1 + k_1 k_2 + (k_1 k_2)^2 - \sum_{n=1}^{N-1} (k_1 k_2)^n)
\]
In this analysis we assume \(k_1 k_2 \) to be constant for ease of
calculation and demonstration. In nature this may not be so, as \(k_1 \)
and \(k_2 \) are individually known to vary with stress. However, on
first observations they appear to vary inversely and thus, their
product varies far less than they do, if it does not in fact remain
a constant.

This solution, however, exists only for a wide pillar
containing an exact odd number of unit pillars. Values can be
calculated for these and then interpolated (see Fig.11d); or we
can use a different approach.

This new approach uses the strength value of the unit pillar
as the fundamental statement and the rate of increase in strength
at the \(N \)th pillar as that which occurs over the rest of the wide
pillar.
A wide pillar subdivided into a row of unit pillars.

The number of unit pillars from the end of the row — N.

Figure 11d. The strength increase of a unit pillar with the increase in number of unit pillars from the end of a row of unit pillars for various values of k_1k_2.
At the N^{th} pillar the slope of the strength curve is the difference between the strength of the $(N+1)^{th}$ pillar and the $(N-1)^{th}$ pillar over the area of the two pillars.

$$\text{Slope} = \frac{\Delta \sigma}{\Delta h} = \frac{\Delta \sigma}{\Delta S} = \frac{\sigma_{N+1} - \sigma_{N-1}}{2}$$

$$= \sigma_u \left((k_n k_2) + (k_1 k_n) \right) \frac{N-1}{2}$$

$$= \frac{\sigma_u (c^N + c^{N-1})}{2}$$

where $c = k_1 k_2$

Taking a pillar of width $2n$ (thus having symmetry about the centre line at n) and, bearing in mind that the strength of a unit pillar must be σ_u i.e. when $n = \frac{1}{2}$ (i.e. the width to height ratio = 1), $\Delta \sigma$ must = 0, the increase is given as

$$\Delta \sigma = \sigma_u \int_{\frac{n}{2}}^{n} \frac{c^n + c^{n-1}}{2} \, dn$$

Integrating

$$= \sigma_u \left(\frac{c^n + c^{n-1} - c^{\frac{1}{2}} - c^{-\frac{1}{2}}}{2 \log c} \right)$$

Therefore the strength at a point distant n into the pillar is

$$\sigma_n = \nu_n + \Delta \sigma$$

$$= \sigma_u \left(1 + \frac{c^n + c^{n-1} - c^{\frac{1}{2}} - c^{-\frac{1}{2}}}{2 \log c} \right)$$

where $c = k_1 k_2$

(See Fig. 12).

5.6. **STRIP PILLAR ANALYSIS**

A strip pillar is defined as a pillar which has a length far greater than its width. Ideally the length should be infinite.
The strength increase of a pillar towards its centre.
In determining the average strength of a pillar we can use the equations derived in section 5.5 for either the finite element approach, i.e.,

\[\sigma_{ni} = \sigma_u \sum_{r=0}^{N-1} (k_1k_2) \]

or the continuous rate of increase approach, i.e.,

\[\sigma_n = \sigma_u \left(1 + \frac{c^n + c^{n-1} - c^1 - c^{-1}}{2 \log c} \right) \]

where \(c = k_1k_2 \)

5.6. Finite Element Approach

Take a strip pillar of width to height ratio = 3, i.e., the pillar can be subdivided into 3 unit pillars. The strength of the two outer unit pillars is \(\sigma_u \) and that of the centre unit pillar is \(\sigma_u (1+\frac{k_1k_2}{2}) \). Hence the average stress of the pillar

\[\sigma_{av} = \frac{2 \times \sigma_u + 1 \times \sigma_u (1+k_1k_2)}{3} \]

\[= \frac{3 \sigma_u + \sigma_u k_1k_2}{3} \]

\[= \frac{1}{3} \sigma_u (1+k_1k_2) \]

Similarly with a strip pillar of width to height ratio = 5, we have the two ultimate unit pillars of strength \(\sigma_u \), the two penultimate unit pillars of strength \(\sigma_u (1+k_1k_2) \) and the centre unit pillar of strength \(\sigma_u (1+k_1k_2 + (k_1k_2)^2) \) giving an average strength

\[\sigma_{av} = \frac{2 \sigma_u + 2 \sigma_u (3+k_1k_2) + 1 \sigma_u (1+k_1k_2 + (k_1k_2)^2)}{5} \]

\[= \frac{5 \sigma_u + 3 \sigma_u k_1k_2 + \sigma_u (k_1k_2)^2}{5} \]

\[= \sigma_u (3+\frac{3}{5} k_1k_2 + \frac{(k_1k_2)^2}{5}) \]
Extending this to the general case of a strip pillar of width to height ratio $= R$, where R is an odd integer, the average strength becomes:

$$
q_{av} = q_u \left(\frac{R}{R} - \frac{(R-2)k_1 k_2}{R} + \frac{(R-1)(k_1 k_2)^2}{R} + \cdots + \frac{(R-(R-1))(k_1 k_2)}{R} \right)
$$

$$
= q_u \left(\frac{R-1}{R} \right) \left(k_1 k_2 \right)^r
$$

From this expression values of q_{av} can be plotted for discrete values of R (R can only be an odd integer). If intermediate values are required, the discrete results obtained can be interpolated by fitting a curve through these points. (See Fig 13).

As a close approximation and for ease of calculation (see Appendix IX), this method is ideal for practical use on the mines as it entails nothing more in understanding than a knowledge of high school mathematics.

5.6. 2. Continuous Rate of Increase Approach

This method entails the use of the continuous rate of increase in strength towards the centre of the pillar. To find the average strength, we integrate the expression for increase of strength and divide by the area. Hence the average strength of a strip pillar is obtained by dividing the total strength of one row of unit pillars across the width by the area which is now the area of one row of unit pillars.

However, the equation must satisfy one boundary condition, i.e. the unit pillar must have a strength of q_u. This determines
FIGURE 13

The relationship between the average failure strength and the width to height ratio of wide strip pillars for various k_1k_2 values using the finite element approach.
the limits of integration. The lower limit becomes $R = \frac{1}{4}$ instead of $R = 0$. As the pillar strength distribution is symmetrical about its centre, the upper limit becomes $R = \frac{1}{2}$. To find the total strength, the result of the half pillar is doubled.

As the derived strength curve is actually the increase in strength above the value for a unit pillar, σ_u, the total strength will be represented by the sum of the two areas A and B in figs 11a. Mathematically this total area is given by

$$A + B = \sigma_u R^2 \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{c^{R-1} - c^{-\frac{1}{4}}}{2 \log c} \, dc$$

where $c = k_1 k_2$

Integrating

$$A + B = \sigma_u R^2 \left(\frac{c^{\frac{3}{4}} + c^{-\frac{1}{4}}} {2 \log c} \right) + \frac{\frac{3}{2} (c - c^{\frac{3}{4}}) + 2 (c^{\frac{1}{2}} - c^{-\frac{1}{4}})} {2 \log^2 c}$$

$$= \sigma_u R \left(\frac{c^{\frac{3}{4}} + c^{-\frac{1}{4}}(R-1)} {2 \log c} \right) + \frac{\frac{R^2}{2} (c^{\frac{1}{2}} - c^{-\frac{1}{4}})(c+1)} {c \log^2 c}$$

Dividing by the area (or width to height ratio R as the length is unity) to find the average strength, σ_{av}, the equation becomes

$$\frac{\sigma_{av}}{\sigma_u} = \frac{A+B}{R} = 1 - \left(\frac{c^{\frac{3}{4}} + c^{-\frac{1}{4}}}{2R \log c} \right) + \frac{\frac{R^2}{2} (c^{\frac{1}{2}} - c^{-\frac{1}{4}})(c+1)} {c \log^2 c}$$

i.e.

$$\sigma_{av}/\sigma_u = 1 - \frac{(k_1k_2^{-\frac{1}{4}}) + (k_1^{-\frac{1}{4}}k_2^{-\frac{3}{4}})(R-1) + \left((k_1^{-\frac{1}{4}}k_2^{-\frac{3}{4}})^2 (k_1k_2 + 1) \right)} {2R \log^2 (k_1k_2)}$$

This result is valid for any value of R greater than unity and, being continuous, σ_{av} can be calculated and plotted by computer for any given k_1k_2 (See Fig. 11b and Appendix IV).
Figure 14.6. Failure strength distribution over a wide pillar.
FIGURE 14.2
THE RELATIONSHIP BETWEEN THE AVERAGE FAILURE STRENGTH AND THE WIDTH TO HEIGHT RATIO OF WIDE STRIP PILLARS USING THE CONTINUOUS RATE OF INCREASE APPROACH.

RATIO OF AVERAGE FAILURE STRENGTH TO UNIT FAILURE STRENGTH $\frac{\sigma_{av}}{\sigma}$

![Graph showing the relationship between the width to height ratio and the ratio of average failure strength to unit failure strength.](image-url)
2.6.3. The Comparison of the Finite Element and the Continuous Rate of Increase Approach

In comparing the two approaches (see Appendix V) it is found that, for a value of \(k_1 k_2 = 1 \), the two sets of results appear identical. This is due to the straight line increase of strength when \(k_1 k_2 = 1 \) and thus, the approximation over a finite distance in the finite element method becomes exact i.e., the median coincides with the mean over any element. However, when \(k_1 k_2 \) is not equal to unity, a slight error occurs due to a differential increase in strength. When \(k_1 k_2 \) is greater than unity, the curve of the continuous strength increase is concave up (see Fig 14b) and therefore, the results of the finite element approach are in excess of the results of the continuous approach. If \(k_1 k_2 \) is less than unity the continuous curve is concave down and the results of the finite element approach are below the results of the continuous approach. The further \(k_1 k_2 \) deviates from unity and the greater the value of \(R \), the greater the deviation becomes.

Therefore, the finite element approach can be used if \(k_1 k_2 \) lies close to unity (say 0.5 < \(k_1 k_2 \) < 1.5) and \(R \) is not too large (say \(R < 3.0 \)).

5.7. SQUARE PILLAR ANALYSIS

A square pillar is defined as a pillar which has its length equal to its width.

In the geometry of its shape, the square pillar lends itself ideally to the finite element approach for the calculation of its strength. The ease of division into square elements of unit
size and their summation, eliminates the highly complex mathematics which is entailed in attempting to provide a strength distribution surface by using the continuous rate of increase approach.

Certain approximations in the finite element approach must be made to calculate the strength of square pillars. The approximations induce errors opposite in sign to those inherent in the finite element method. The deviation from reality is therefore less than that in the strip pillar.

The application of the finite element method requires that the wide pillar must be able to be divided up exactly into unit pillars with a single unit pillar in the centre. Therefore the width of the wide pillar must be \(2n - 1 \) unit pillars with the \(n \)th pillar in the centre. The approximation made is that all unit pillars in the outer row have the same strength, viz., that of the unit pillar \(\sigma_u \). All pillars in the penultimate row have the same strength, viz., slightly greater than the previous row, etc., to the \(n \)th row, which happens to be the centre unit pillar. The strengths of all these unit pillars are then summed and the result divided by the area to give the average strength.

Verification of this approximation is given in Appendix I. The error in assuming all unit pillars in a row to be of equal strength is about 10% compared to the 150% increase in strength between \(\sigma_u \). This makes the pillar 10% stronger than it is calculated to be and thus cuts down the variable error incurred in using the finite element approach.
To illustrate the method described above consider a pillar of width to height ratio = 3, i.e. an outer row of unit pillars with the same strength \(\sigma_u \), and a centre unit pillar with increased strength \(\sigma_u + k_1 k_2 \sigma_u \). There are eight unit pillars in the outer row and one in the centre (see Fig. 15a) giving

the average strength

\[
\sigma_{av} = \frac{8\sigma_u + 1x(\sigma_u + k_1 k_2 \sigma_u)}{9} = \frac{9\sigma_u + k_1 k_2 \sigma_u}{9} = \sigma_u (1 + \frac{k_1 k_2}{9})
\]

Now consider a wide pillar of width to height ratio = 5. There are sixteen unit pillars of strength \(\sigma_u \) in the outer row, eight of strength \(\sigma_u (1+k_1 k_2) \) in the second row and the centre unit pillar of strength \(\sigma_u (1+k_1 k_2 + (k_1 k_2)^2) \), (See Fig 15b). Giving

the average strength

\[
\sigma_{av} = \frac{16\sigma_u + 8\sigma_u (1+k_1 k_2) + \sigma_u (1+k_1 k_2 + (k_1 k_2)^2)}{25} = \frac{25\sigma_u + 9\sigma_u k_1 k_2 + \sigma_u (1+k_2)^2}{25} = \sigma_u \frac{1}{(25k_1 k_2 + 1)} (k_1 k_2)^2
\]

Extending this to the general case of a wide pillar of width to height ratio = \(R \) (where \(R \) is an odd integer)

\[
\sigma_{av} = \sigma_u \left(R^2 + (R-2)^2 k_1 k_2 + \frac{R-1}{R} \right) \left(R-(R-1) \right)^2 (k_1 k_2)^{R-1}
\]

\[
= \sigma_u \sum_{r=0}^{R-1} \left(\frac{R-2r}{R} \right)^2 (k_1 k_2)^r
\]
FIGURE 15a. ISOMETRIC VIEW OF A SQUARE WIDE PILLAR OF R-3 SUBDIVIDED INTO UNIT PILLARS WITH ASSUMED LIKE STRENGTHS INDICATED BY LIKE NUMBERS.

FIGURE 15b. ISOMETRIC VIEW OF A SQUARE WIDE PILLAR OF R-5 SUBDIVIDED INTO UNIT PILLARS WITH ASSUMED LIKE STRENGTHS INDICATED BY LIKE NUMBERS.
From this expression values of σ_{av} can be plotted for discrete odd integer values of R and the intermediate values can be obtained by interpolation. (See Fig. 15c).

If one wishes to avoid interpolation and prefers a continuous expression, the discrete summation can be approximated by the function

$$
\sigma_{av} = \sigma_u \left[1 + \frac{2}{R^2} \left(\frac{1}{\log^2 c} - \frac{(R-1)^2}{R} \frac{\log c}{\log^2 c} + \frac{4(R-1)}{\log^2 c} \right) \right]
$$

where $c = k_1 k_2$

(See Appendix VII for the proof)

This expression can be computerised, calculated and plotted for all values of R greater than unity.

5.8. CIRCULAR PILLAR ANALYSIS

A circular pillar is defined as a pillar which has circular horizontal cross-section, i.e., it is an upright cylinder.

As opposed to the square pillar, the circular pillar, by the very essence of its shape, lends itself ideally to the continuous rate of increase approach in determining the average strength of the pillar. The division of a circle into square elements proves problematical. However, if one wishes to calculate the average strength of a pillar simply, the equating of a square pillar to its inscribed circular pillar serves as a good first approximation.

Again, as with the strip pillar, the expression for the continuous rate of increase of strength is used. This expression is integrated to obtain the area below the curve (area B in Fig. 15a).
From this expression values of \(\sigma_{av} \) can be plotted for discrete odd integer values of \(N \) and the intermediate values can be obtained by interpolation. (See Fig 15c).

If one wishes to avoid interpolation and prefers a continuous expression, the discrete summation can be approximated by the function

\[
\sigma_{av} = \sigma_n \left[\frac{1 + \frac{c^2}{N^2} \left(\log_{10} \frac{c}{10} \right)}{2} + \frac{\log_{10} \frac{c}{10}}{\log_{10} \frac{1}{10}} \right]
\]

where \(c = k_1 k_2 \)

(See Appendix VI for the proof)

This expression can be computerised, calculated and plotted for all values of \(N \) greater than unity.

5.6. CIRCULAR PILLAR ANALYSIS

A circular pillar is defined as a pillar which has circular horizontal cross-section, i.e. it is an upright cylinder.

As opposed to the square pillar, the circular pillar, by the very essence of its shape, lends itself ideally to the continuous rate of increase approach in determining the average strength of the pillar. The division of a circle into square elements proves problematical. However, if one wishes to calculate the average strength of a pillar simply, the equating of a square pillar to its inscribed circular pillar serves as a good first approximation.

Again, as with the strip pillar, the expression for the continuous rate of increase of strength is used. This expression is integrated to obtain the area below the curve (area B in Fig 16a).
rotated about the centre-line of the pillar to obtain the solid of revolution below the strength surface, then added to the unity cylinder generated by area A in fig. 16 a and, finally, divided by the cross-sectional area of the pillar to obtain the average strength.

In fig. 16b the strength increase curve \(f(n) \) is shown with \(\sigma_n \) as the ordinate axis and \(n \) as the abscissa. Now let the centre-line of the pillar, i.e. distant radius \(r \) into the pillar, become the new \(r \)-axis, about which the strength curve will be revolved, thus producing the strength surface above a circular pillar of radius \(r \). Due to the change of axis, the \(n \)-axis becomes the \(x \)-axis. As the part of the curve that is to be used, is to the left of the \(x \)-axis, for ease of calculation \(x \)-axis operates in the opposite direction to that of the \(n \)-axis.

Hence
\[
x = r - n
\]
or
\[
n = r - x
\]

The boundary condition that is imposed is that, when the diameter (or width) to height is unity, the strength is that of a unit pillar \(\sigma_u \). Hence the lower limit of integration will be \(x = 0 \), and the upper limit will be \(x = r - \frac{1}{2} \).

Mathematically the above is expressed as:

The change of axis results in the change in strength function
\[
f(n) = f(r-x)
\]

which gives
\[
\frac{\sigma - \sigma_{(r-x)}^{r-x} \frac{2}{c} \log c}{2}
\]
Figure 16.b: Mathematical technique for finding average strength of a circular wide pillar for varying radius.
To find the volume generated by area B in fig. 16a

\[\text{Volume } B = \int_{0}^{x} 2\pi x f(x) \, dx \]

\[= \frac{\pi}{2 \log c} \int_{0}^{x} (x - c) (x - r) \, dx \]

\[= \frac{\pi}{2 \log c} \left[\frac{x^2}{2} - \frac{c x^2}{2} - \frac{r x^2}{2} + \frac{r c x}{2} \right] \]

\[= \frac{\pi}{2 \log c} \left(c + \frac{r}{2} \right) \left(x - c \right) \left(x - r \right) \]

\[= \frac{\pi}{2 \log c} \left(x - c \right) \left(x - r \right) \]

\[= \frac{\pi}{2 \log c} \left(x^2 - (c + r)x + cr \right) \]

\[= \frac{\pi}{2 \log c} \left(x^2 - 2cx + c^2 \right) \]

\[= \frac{\pi}{2 \log c} \left((x - c)^2 \right) \]

\[= \frac{\pi}{2 \log c} \left(x^2 - 2cx + c^2 \right) \]

The volume generated by area A of fig. 16a

\[\text{Volume } A = \pi r^2 \]

Dividing the sum of the volumes by the cross-sectional area gives the average strength of the pillar.

\[\frac{\delta V}{\delta u} = \frac{\text{Vol } A + \text{Vol } B}{\pi r^2} \]

\[= 1 + \frac{\pi r^2 - \frac{r^2}{2 \log c} \left(x - c \right) \left(x - r \right)}{\frac{r^2}{2 \log c} \left(x - c \right) \left(x - r \right)} \]

\[= 1 + \frac{\frac{r^2}{2 \log c} \left(x - c \right) \left(x - r \right)}{\frac{r^2}{2 \log c} \left(x - c \right) \left(x - r \right)} \]

\[= 1 + \frac{\frac{r^2}{2 \log c} \left(x - c \right) \left(x - r \right)}{\frac{r^2}{2 \log c} \left(x - c \right) \left(x - r \right)} \]

where \(c = \frac{1}{2} \)

This result is valid for any value of \(R \) greater than unity (i.e., \(r > \frac{1}{2} \)) and, being continuous \(\frac{\delta V}{\delta u} \) can be calculated and plotted for \(R \), given \(h_c \) and \(k \) (see fig. 16c).
FIGURE 16c. THE RELATIONSHIP BETWEEN THE AVERAGE FAILURE STRENGTH AND THE WIDTH TO HEIGHT RATIO OF WIDE CIRCULAR PILLARS.
CHAPTER 6

LABORATORY INVESTIGATION

6.1 Description of Material for Laboratory Tests

Laboratory experiments were conducted on reddish brown sandstone of the Karrroo System from Warabroo, Northern Territory, to find its size-strength relationship. It is a fine (less than 1mm) and even grained material and behaved homogeneously and isotropically. X-ray and microscopic studies revealed no preferential direction of the crystallographic axes.

The open pore structure facilitated the attaining of a 100% saturation. For testing, this uniform standard, with respect to the moisture content, eliminated it as a variable parameter.

The sandstone was able to be easily machined with a diamond saw and therefore a large number of specimens could be cut in a short time. Due to grain size the dimensional tolerance of the specimens was relatively small. The fine grain size of specimens was comparable to, say, conglomerates in actual mining pillars.

From the graphical stress/strain relationship it was found that the rock had a linear elastic behaviour.

6.2 Method of Testing Rock Specimens

6.2.1 Preparation of Specimens

The sandstone for specimens was supplied in slabs of various thicknesses, viz. 1/4", 1/2", 1", 2", 3". In the series of tests conducted on square blocks with varying width to height ratios, the blocks were cut with 1/8" diameter...
diameter diamond drill diamond saw. The specimen faces which were to be in contact with the pressure platens, were ground on a lapping disc with abrasive powder of the type "A 150 silicon carbide and alumina oxide".

After preparation the blocks were soaked in water to attain a 100% saturation. The soaking times to saturation and the drying times for the different specimen sizes are given in Appendix VII.

To be well on the safe side, all specimens were soaked for at least 1 day. The 2" blocks were soaked for 3 days.

Before testing, the blocks were measured to .001" and tested for parallelity of top and bottom surface.

6.2.2. The Testing Procedure to determine the Specimen Failure Strength

Tests were conducted in a 200 ton Amaler Compression Machine, Type 200 DB 76. The pressure plates were mounted on spherical seats to ensure vertical loading. Two hardened steel platens were used between the machine pressure plates and specimen to avoid damage to the pressure plates. A second set of smaller spherical seats were used for tests on small specimens. The crosshead was lowered on to the specimen, an initial load of 5,000 lbs was applied, and thereafter the load was increased at a steady rate of about 1000 p.s.i. per second.

Two dial gauges were fitted diagonally across the pressure plates, to check on even loading and to measure strain to .0001". The specimens were tested to destruction. Strain readings at definite load values, corresponding to the load at the first audible
Audible crack and the failed load were taken and the mode of failure was noted. For some specimens a continuous graph of load versus strain was recorded.

6.3. **Influence of Various Factors on the Failure Strength**

Hoek\(^{20}\) and Wiid\(^{19}\) describe the influence of the following factors on the failure strength of brittle solids:

6.3.1. **The Isotropy of the Material**

If the strain and the uniaxial compressive strength of specimens are invariant with respect to its bedding planes, then it is macroscopically isotropic. For the sandstone specimens no preferred failure or strain direction was found.

6.3.2. **Griffith Cracks**

The inherent cracks in the rock are expected to be closed even at no load. If they are open it would be expected that the stress/strain curve should be non-linear for low stress values. As the curves for sandstone are linear it implies that only the modified Griffiths theory of failure has to be considered.

6.3.3. **Vapour Pressure**

The internal vapour pressure on the crack surfaces within a rock under stress creates a pressure system which lowers or increases the strength of the material. To eliminate vapour pressure effects the specimens were tested at 100\% saturation.

6.3.4. **Temperature**

Temperature affects the rock strength of rock at very low temperatures in the same sense as it affects steel to cause low temperature brittleness, and at high temperatures when the constituents
approach their melting points. The series of tests were conducted at room temperature, thus eliminating the effects of temperature.

6.3.5. Rate of Loading

The strength of rock properties is time dependent. The strength may vary as much as 20% for loads applied in milliseconds or over years. This loading rate for the present series of tests was constant and therefore the effects of the loading rate are not considered.

6.3.6. The Effect of Interfaces

The effect of using a model made up of slices instead of a solid specimen was investigated by determining the failure strength of specimens made up with interfaces having

1. No filling
2. Plaster of Paris filling
3. Araldite glue filling

It was found that the sliced specimens were very much weaker than the solid ones with or without filling. (See Appendix VIII).

Therefore, tests were made on solid specimens only. The effect of the interfaces between specimens and pressure platters was investigated by comparing results obtained by using metal platters and sandstone platters. The limited number of tests indicated no significant difference. (See Appendix IX).

Therefore, testing was conducted with metal platters only which resisted wear and facilitated a standardised testing procedure.
7.1 OBSERVATION OF THE MODE OF FAILURE

The graphical record of the stress / strain relationship of laboratory size sandstone specimens shown in fig 17(a) is linear from the no-stress condition to the failure condition. The specimens with a large width to height ratio tend to scale around the perimeter prior to failure, leaving a solid core in the centre as shown in fig 17(b). In plan view, diagonal cracks form from the corners towards the centre until they reach the solid core. These cracks could be caused by the outward movement of rock in expanding laterally. Around the core, which tends to be circular in shape, a series of concentric circular cracks or failure planes exists. These failure planes could be the result of the strength increase towards the centre with first the sidewalls sealing off and then a succession of scaling, until the remaining portion of the pillar, the core, can no longer carry the increased load, resulting in sudden failure.

The blocks of low width to height ratio tend to show failure planes, typical of active shear, forming a cone or a section thereof (see fig 17(c)). These appear to be consistent with the conventional mode of coal pillar failure in practice. An interesting aspect of this cone type failure is that on close examination, it is not a straight line fracture but a series of continuous steps (see fig 17(d)). This could be explained either a) by the fact that the grains themselves do not shear, but that shearing takes place along their boundaries, or b) that it is a series of Griffith cracks propagating.
FIGURE 17a. STRESS-STRAIN DIAGRAM OF SANDSTONE

FIGURE 17b. PLAN VIEW OF A SANDSTONE MODEL OF LARGE (>4) WIDTH TO HEIGHT RATIO SHOWING DIAGONAL CRACKS, CONCENTRIC CRACKS AND SOLID CORE PRIOR TO ULTIMATE FAILURE.

FIGURE 17c. SIDE ELEVATION OF A SANDSTONE MODEL OF LOW WIDTH TO HEIGHT RATIO SHOWING THE DEVELOPMENT OF FAILURE PLANES.

FIGURE 17d. SIDE ELEVATION OF A SANDSTONE MODEL AFTER FAILURE SHOWING THE FAILURE PLANE TO CONSIST OF A SERIES OF STEP FRACTURES.
7.2. **DEFINITION OF FAILURE**

Violent failure facilitates the determination of the precise point of failure. It provides a good definition of failure in that a large amount of strain is experienced before the system is able to carry load once more. This point of failure is clearly shown on the stress/strain diagram as that point at which a large increase in strain with regard to stress is initiated.

When failure is non-violent and occurs by deterioration and disintegration of the specimen, the point of failure is less easy to establish. Under these conditions, the point of failure can be defined as that point at which the maximum load can be carried.

Therefore, the general definition of failure is that failure occurs at the stress represented by the point on the stress/strain curve where the slope changes from positive to negative.
CHAPTER 8

DISCUSSION OF RESULTS

8.1 LABORATORY TESTS

A series of tests were conducted in the laboratory on sandstone square pillar models of constant height and varying width, to give a range of width to height ratios (R) for 1.8 ≤ R ≤ 6.7. Models outside this range could not be tested due to the limits of the testing machine. Tests on smaller models could not be sufficiently controlled for accuracy of results due to possible off-centre loading and small load readings. Larger models were beyond the test machine's capacity. To change the test machine to increase the range would mean that the testing method is changed thus providing a whole new set of parameters for which provision must be made. Due to the difficulty in recognising these parameters, doubt is cast on the validity in extending the results in this manner.

The ultimate strengths for the different width to height ratios were calculated. A graph of this relationship was drawn and a computer-calculated polynomial best fit superimposed (see Fig 10a).

From work by Wiid[19] on similar sandstone, values were obtained of \(k_1 \) and \(k_2 \) of 8.5 and 1.5 respectively, giving \(k_1 k_2 \) a value of 1.5. A family of curves for \(k_1, k_2 \) equal to 1.3, 1.5 and 1.7 is compared to the results (see Fig. 18b). It can be seen that this provides a very good fit.
RESULTS OF COMPRESSIVE TESTS ON SANDSTONE SQUARE PILLAR MODELS OF HEIGHT \(\frac{1}{2} \) SHOWING THE POLYNOMIAL CURVE OF BEST FIT.
Figure 18b. Results of compressive tests on sandstone square pillar models of height 1/2", showing theoretical curves for $k_1 k_2 = 1.3, 1.5, 1.7$ superimposed.
What is more important though, is that the trend of the theoretically derived curve, i.e. concave up, corresponds to that of the results. This accelerating increase in strength with constantly increasing width to height ratio is peculiar to this theory and is a feature for which no other theory has provided. The logical extension of this characteristic is that at a not so very great width to height ratio, a large amount of load can be carried - in practice approaching infinity.

The observation during testing of the tendency for the material to fail from the perimeter of the pillar towards the centre at substantial increases of load, verify the concept of the strength increasing towards the centre. This is also observed in mining practise in the scaling effect of pillars.

6.2. COMPARISON WITH PREVIOUS THEORIES

The theories stated in section 4 of this dissertation can be classed into two categories:

(a) the power function formulae.
(b) the linear relationship.

By keeping the height constant, as was done in the laboratory tests, the power function theories proposed by Greenwald et al (24), Stewart (15), Solomon and Munro (16) and Bieniawski (17) can be reduced from

\[\sigma = k R^{n/b} \]

to

\[\sigma = k H^{n/b} \]

\[= k \left(\frac{R}{H} \right)^{n/b} \]

\[= k R^{n/b} \]
It can be seen that when $R = 1$, $R^2 = 1$ and therefore K corresponds to the strength value of the unit pillar, (a_u), i.e. the equation becomes $a = a_u R^2$

The corresponding values of a for the theories can be summarized as follows:

- Greenwald et al: $a = 0.50$
- Steart: $a = 0.50$
- Salemon and Munro: $a = 0.46$
- Bieniawski: $a = 0.16$

The limited range of observations necessitates a small scatter in results to obtain precise formulae. Alternatively, many observations have to be made. In fact only one formulator tested many specimens over a sufficient range of sizes, (Salemon and Munro). The extrapolation of the other formulae contains a serious risk of misleading deductions.

From the above table it can be seen that for each theory there exists a single strength - width to height ratio curve. In the cases of Greenwald, Steart and Bieniawski, this is due to the fact that the formulae were empirically derived from tests on a single coal type. In the case of Salemon and Munro it is due to the fact that the formula was empirically derived from the statistical mean of many varied coal types. No doubt that the value of "a" would change with a change of material. Hence, these formulae only have use in determining the strength of material of the same type from which they were derived.

From the graphical comparison of the theories (see Fig.19a) it is seen that in all but the case of Salemon and Munro, the
EXPERIMENTAL RANGE

EXTRAPOLATION OF EMPIRICAL FORMULAE

FIGURE 19a

COMPARISON OF SOME PREVIOUS PILLAR STRENGTH THEORIES (THE “POWER FUNCTION FORMULAE”) KEEPING THE HEIGHT CONSTANT AND VARYING THE WIDTH TO PRODUCE VARIOUS VALUES OF WIDTH TO HEIGHT RATIO.
formulæ have been derived by tests over a limited region - then extrapolated to apply to practical mining conditions. It is also observed that over such a limited range the results would have to have remarkably small deviation from the strength curve, something which is not readily found in nature, or else have taken a large number of readings, which only one formulator did, to produce a formula so precise; more especially so, when one wishes to extrapolate.

In comparing the power function formulæ with the derived square pillar formula postulated in this dissertation (see Fig.19b) it is seen that, although the curves are valid over a limited region of $k_1 k_2$ values, they differ greatly on extrapolation. The major difference is that while the derived formula is concave up, the power function formulæ are concave down. The reason for this is that the power function formula inherently assumes the strength curve to pass through the origin.

The derived formula makes no attempt to state what happens as the width to height ratio approaches zero, as it is defined only for the ratio above unity. It only indicates that it does not pass through the origin, which bears up well with experimental work.

In addition the experimental results on sandstone (see Fig.18a) show a distinct tendency to obey an accelerating increase in strength with a constant increase in the width to height ratio i.e. a strength curve which is concave up.
RATIO OF PILLAR STRENGTH TO UNIT PILLAR STRENGTH

WIDTH TO HEIGHT RATIO — R

INTERPOLATION OF RESULTS AND THEORETICAL FORMULA
EXTRAPOLATION OF EMPIRICAL FORMULAE

GREENWALD ET AL. AND STEAKETAL. (Gt^2 + Gt - R - 8)
SALAMON AND MUNRO (16) (Gt^2 + Gt - R - 8)
BIENIAWSKI (17) (Gt^2 + Gt - R - 8)

FIGURE 19b. COMPARISON OF THE "POWER FUNCTION FORMULAE" TO THE POSTULATED THEORETICAL RELATIONSHIP.
In a later publication Bieniawski\(^{18}\) proposes a linear relationship between the strength and the width to height ratio. Again comparing it with the derived formula (see Fig 19a) it appears to be valid over a limited region. However, he does not state that the previously accepted power function formula, and from the assumption that the strength curve must pass through the origin. On examining his experimental results more closely though, the start of an upward increase can be seen which fits a concave up curve far better than a straight line.

The limitations of these previous theories can be summed up as follows:

(a). They are empirical and therefore cannot be extrapolated beyond the range over which they were derived (see Fig 19a).

(b). The power function theories are not dimensionally correct.

(c). Greenwood, Storck and Bieniawski's formulae each applies only to a specific material under specific conditions.

(d). Salamon's and Juro's formula applies only to coals tested and due to the wide scatter of necessity contain a wide scatter.

(e). The power function formulae assume the strength curve to pass through the origin, which from experimental results does not appear to be the case.
FIGURE 19c. COMPARISON OF THE "STRAIGHT LINE FORMULAE" TO THE POSTULATED THEORETICAL RELATIONSHIP.
Figure 19c. Comparison of the "straight line formulae" to the postulated theoretical relationship.
Throughout this dissertation the emphasis has been on fundamental truths and first principles, working through generalisations to the specific. In obtaining the specific, the broad view and encompassment of the generalisation is simplified where possible, making certain assumptions to provide a solution that is neither mathematically complex nor false through oversight in over-simplification.

The assumptions are made because, at this stage, their exact nature is not known nor can they be afforded to be ignored completely. The fact that they are acknowledged and their limitations are at present realised, serve to provide following researchers with well-defined problems which should prove to be of great assistance.

In enumerating the assumptions, it is hoped that should any discrepancy between theory and practice occur, a reassessment of the assumptions will provide the necessary change in results.

The major assumptions are:-

(a). The material is homogeneous.

(b). The material is elastic.

(c). The values of k_1 and k_2 can be accurately obtained by preliminary tests on the material.

(d). The material will not change its properties due to its increased strength towards the centre of the pillar thus changing the values of k_1 and k_2.

(e). The strength of a unit pillar can be accurately obtained; either by a preliminary test on the unit pillar or by tests on a smaller specimen and the results confidently extrapolated.
(f). The average strength of the pillar is the true strength of the pillar, i.e. the stress at which the pillar finally fails is the same as the average strength of the pillar.

(g). The pillar remains intact until failure.

In assessing these assumptions with regard to deep level mines - the material is relatively homogeneous in the macroscopic state; previous researchers have found the rock to behave elastically; the product of k_1 and k_2 appears to be determinable and relatively constant; as a first approximation the strength of a unit pillar can be taken to be that of a specimen of testable size; and finally if the the pillar is large enough and rock which scales off at the sides is not removed, thus providing at least a token restraining effect which rapidly increases, then the pillar can be said to remain intact.

Therefore in using the proposed formulae first order results can be obtained for pillar strengths, resulting in a realistic approach in mine design. The pillar strength results need then only be modified slightly for the particular conditions by applying the relevant factors for which the information is gleaned from an accurate appraisal of the individual situation or, perhaps more important at this stage - experience.

The fact that the hypothesis bears up extremely well for laboratory results is no absolute criterion for its verity. What now remains is the ultimate test of the theory - that the proposed pillar strength formulae be used in the mines - with success.
ACKNOWLEDGMENTS

My thanks go to the Department of Mining Engineering at the University of the Witwatersrand for the use of their facilities, to the Chamber of Mines of South Africa for their financial assistance, to Professor R.F. Plewman and Mr. C. Grobbelaar whose constant supervision and advice were invaluable, especially to the latter who went to great lengths to correct the proofs, to various members of the staff who assisted on individual points and finally to Mrs. Hatfield who transformed the script into type.
References

The determination of \(k \) under Elastic Conditions

The strength multiplication factor, \(k \), can be determined for elastic conditions by use of the Mohr Rupture Diagram. The Mohr Rupture diagram in fig. la depicts the relationship between the maximum and minimum principal stresses, \(\sigma_1 \) and \(\sigma_3 \), at failure. This relationship can be plotted in graph form with \(\sigma_1 \) as the abscissa and \(\sigma_3 \) as the ordinate as shown in fig. 11b. At specific values the relationship can be approximated to a straight line giving

\[
\Delta \sigma_1 = k \Delta \sigma_3
\]
FIGURE 1a. MOHR RUPTURE DIAGRAM.

FIGURE 1b. DETERMINATION OF THE STRENGTH MULTIPLICATION FACTOR — k_1
APPENDIX II

The Determination of \(k\), under Elastic Conditions

Under elastic conditions, \(k\) can be expressed in terms of the Poisson's Ratio \(v\). The relationship is derived from the generalised equation of elasticity:

\[

\gamma = \frac{\sigma_y}{E} - \frac{v}{\nu} (\sigma_x + \sigma_z)

\]

for the plane strain condition or the plane stress condition. \(k\) lies between these 2 conditions.

(a). Plane Strain

As the body is restrained laterally \(E_y = 0\); for complete lateral confinement the lateral stress is \(\sigma_y = \sigma_x = \sigma_L\) and the vertical stress, \(\sigma_X = \sigma_v\). Given the generalised equation of elasticity as

\[

0 = \frac{\sigma_y}{E} - \frac{v}{\nu} (\sigma_y + \sigma_L)

\]

\[

\sigma_L = \nu \sigma_v

\]

\[

\sigma_L = \frac{\nu}{1 - \nu} \sigma_v

\]

But

\[

\sigma_L = k_2 \sigma_v

\]

Therefore \(k_2 = \frac{\nu}{1 - \nu}\) for plane strain.

(b). Plane Stress

In the case of plane stress \(\sigma_3 = 0\) and \(\sigma_y = \sigma_L\) can vary between the limits of zero strain and zero stress. In the former case the body is restrained laterally, so \(E_y = 0\); and \(\sigma_x = \sigma_v\).
The generalised equation of elasticity becomes

\[0 = \frac{v}{E} \sigma_2 - \frac{v}{E} \sigma_3. \]

\[\sigma_2 = 2v \sigma_3. \]

But \[\sigma_2 = k_2 \sigma_3. \]

Therefore \(k_2 = v \) for plane stress. If the y direction is also unrestrained \(k_2 = 0 \).
APPENDIX B

Validity of Approximation of Equal Strengths of all Unit Pillars in the same Art in the Square Pillar Analysis

<table>
<thead>
<tr>
<th>Dimension (Unit ratios)</th>
<th>No. of Readings</th>
<th>Load (Kilo lbs)</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 x 1</td>
<td>5</td>
<td></td>
<td></td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.80 - 16.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 1 x 2</td>
<td>5</td>
<td>23.2</td>
<td></td>
<td>31.5 - 35.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.5 - 35.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 1 x 3</td>
<td>5</td>
<td>50.2</td>
<td></td>
<td>47.2 - 52.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.2 - 52.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 2 x 2</td>
<td>5</td>
<td>67.0</td>
<td></td>
<td>66.0 - 68.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66.0 - 68.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 2 x 3</td>
<td>5</td>
<td>103.5</td>
<td></td>
<td>101.6 - 105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>101.6 - 105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

i.e. no restriction = 15.5

\[\text{restriction on 1 side} = 16.8 \]

\[\text{restriction on 2 opposite sides} \leq 17.0 \]

\[\text{restriction on 2 adjacent sides} = 16.8 \]

\[\text{restriction on 3 sides} \geq 16.2 \]

\[\text{Maximum error in approximating is } \frac{18.2 - 15.5}{15.5} = \frac{2.7}{15.5} = \approx 0.17\% \]

However, this is the difference between the corner block and the centre block, on one side of the pillar and the larger the \(\frac{H}{R} \) ratio is the less the error will be.

Compared to the difference between no restriction and restriction on all four sides which is 150%, the error is negligible.
APPENDIX IV

Computer Program for Strip Pillar Calculation using the Continuous Rate of Increase Approach

```plaintext
DIMENSION SIGMA(1000), DATA(4000)
READ (5,1) CREG, CINT, CEND, UNREG, UNINT, UNEND
FORMAT (6F6.2)
1 FORMAT (/100 FORMAT(/51 C=C, DATA(J), J=1,1)
100 FORMAT (/138M10.3)
C=C+GINT
IF (C-CEND-0.01) 5,5,6
5 I=1
GO TO 7
6 STOP
END

Computer Program for Strip Pillar Plotter

DIMENSION SIGMA(1000), DATA(4000)
READ (5,1) CREG, CINT, CEND, UNREG, UNINT, UNEND
FORMAT (6F6.2)
1 CALL PLOTS(DATA(1), 15000)
CALL PLOT(1,0,-11.0,-3)
CALL PLOT(0,0,0.5,-3)
CALL AXIS(0.0,0.0,AVERAGE STRENGTH/UNIT STRENGTH, 30,10.0, 50.0,0.0,2,0.10)
CALL AXIS(0.0,0.0,1,-1.20.6,0.0,-1.0,1.0,10)
I=1
C=C+GINT
7 V=ALOG(C)
CALL PLOT(0.0,0.0,3)
UN=UNEND
4 X=1.+(C**n(R/2.)-C**m0.5)**(n+1.)/(C**n+1.)/(C**m+1.)/(C**m+1.)
V=(C**n0.5+1.)/C**(n+1.)/(C**m+1.)
SIGMA(I)=X-Y
SIGMA(I)+=SIGMA(I)**0.5
V=V-1.0
IF (SIGMA(I)-10.0) 201,201,202
201 CALL PLOT(V, SIGMA(I)**0.5, 2)
```

```
APPENDIX V

Comparison between the finite element approach and the continuous rate of increase approach in the determination of the strength of a wide strip pillar.

The strength of pillars was calculated from two theoretical premises: the summation of the effect of a number of individual elements, and the integration over the area of the pillar. The first is called the finite element (F.E.) approach and the second the continuous rate of increase (C.R.I.) approach.

In the table below, the ratios of the strengths of wide strip pillars to a unit pillar for various values of the width to height ratio ($R$) and of the strength factor $k_1 k_2$ are given.

<table>
<thead>
<tr>
<th>$R$</th>
<th>$k_1 k_2 = 0.5$</th>
<th>$k_1 k_2 = 1.0$</th>
<th>$k_1 k_2 = 1.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>1.17</td>
<td>1.31</td>
<td>1.33</td>
</tr>
<tr>
<td>5</td>
<td>1.35</td>
<td>1.76</td>
<td>1.83</td>
</tr>
<tr>
<td>7</td>
<td>1.43</td>
<td>1.72</td>
<td>2.29</td>
</tr>
<tr>
<td>9</td>
<td>1.52</td>
<td>1.99</td>
<td>2.78</td>
</tr>
<tr>
<td>11</td>
<td>1.55</td>
<td>2.00</td>
<td>3.27</td>
</tr>
</tbody>
</table>

The above data is shown graphically in figure 11.

The percentage difference between the two approaches is zero for $k_1 k_2 = 1.0$ and varies according to the following table for $k_1 k_2 = 0.5$ and 1.5. The percentages given are calculated as

$$\frac{(F.E. - C.R.I.)}{C.R.I.} \times 100$$
<table>
<thead>
<tr>
<th>R</th>
<th>$k_{1/2} = 0.5$</th>
<th>$k_{-1/2} = 1.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>3</td>
<td>-8.6%</td>
<td>7.2%</td>
</tr>
<tr>
<td>5</td>
<td>-13.5%</td>
<td>12.4%</td>
</tr>
<tr>
<td>7</td>
<td>-15.9%</td>
<td>15.0%</td>
</tr>
<tr>
<td>9</td>
<td>-15.0%</td>
<td>16.7%</td>
</tr>
<tr>
<td>11</td>
<td>-17.5%</td>
<td>18.4%</td>
</tr>
</tbody>
</table>
FIGURE II. COMPARISON OF THE FINITE ELEMENT APPROACH TO THE CONTINUOUS RATE OF INCREASE APPROACH.
APPENDIX VI

The square pillar formula as a continuous function

In order to obtain values for \( R \) other than odd integers, the
discrete finite element function

\[
\sum_{r=0}^{R-1} \left(1 - \frac{2r}{N}
ight)^2 c^r
\]

can be approximated by a continuous function. This function
can be programmed to give a value for any value of \( R \), \( c \) being
specified.

Function 1 can be written as

\[
\sum_{r=0}^{R-1} \frac{1}{N^2} (N-2r)^2 c^r
\]

Repeating the summation by an integral and taking limits from
\(-\frac{1}{2}\) to \( \frac{R}{2} \), we get

\[
\frac{1}{2} \int_{-\frac{1}{2}}^{\frac{R}{2}} (N-2x)^2 c^x dx
\]

However, on evaluation, the approximation differs most widely
at \( R = 1 \), and as at \( R = 1 \) the function must equal 1, we rewrite it,
making the necessary change in the limit, as

\[
1 + \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{R}{2}} (N-2x)^2 c^x dx
\]

N.B. When \( R = 1 \), \( f = 0 \) and therefore the function equals unity,

\[
i.e. \frac{a}{b} = 1
\]
Expanding the equation

\[ \frac{2}{a} = 1 + \frac{1}{x} \int_{\frac{R}{2}}^{\frac{2x}{R}} 2x \, dx \]

we get

\[ = 1 + \frac{1}{R} \left( R \int_{\frac{R}{2}}^{\frac{2x}{R}} c \, dx \right) \]

\[ = 1 + \frac{1}{R} \left( R \int_{\frac{R}{2}}^{\frac{2x}{R}} c \, dx - \frac{R}{2} \int_{\frac{R}{2}}^{\frac{2x}{R}} c \, dx + \frac{R}{2} \int_{\frac{R}{2}}^{\frac{2x}{R}} c \, dx \right) \]

integrating

\[ = 1 + \frac{1}{R} \left( \frac{2}{2} c^x \right) \left( \log \frac{c}{R} - \log \frac{c}{2} \right) \]

\[ + \frac{2}{2} \frac{c^x}{\log c} - \frac{x}{\log c} + \frac{3}{2} \frac{c^x}{\log c} \]

evaluating

\[ = 1 + \frac{1}{R} \left( \frac{2}{2} c^x \right) \left( \log \frac{c}{R} - \log \frac{c}{2} \right) \]

\[ + \frac{2}{2} \frac{c^x}{\log c} - \frac{x}{\log c} + \frac{3}{2} \frac{c^x}{\log c} \]

\[ \Rightarrow \frac{2}{a} = 1 + \frac{1}{R} \left( \frac{2}{2} c^x \left( \log \frac{c}{R} - \log \frac{c}{2} \right) \right) - \frac{x}{\log c} + \frac{3}{2} \frac{c^x}{\log c} \]

This equation holds for \( c > 0 \) and \( c \neq 1 \). It approximates function \( f \) for all values of \( R > 1 \).

**Note.** By definition \( c = 0 \) is meaningless, and in nature \( c > 2.5 \) is rare.

For the special case of \( c = 1 \) function \( f \) becomes

\[ \frac{R-1}{R} \]

\[ \int_{0}^{1} \frac{(1-x)^2}{R} \]

Function 2 can be approximated by the integral

\[ 1 + \frac{1}{R} \int_{\frac{R}{2}}^{\frac{2x}{R}} (R-2x)^2 \, dx \]
giving the equation

\[ \frac{g}{g_0} = 1 + \frac{1}{2} \int \frac{R}{x} \left( x^2 - 4R^2 x + 4x^2 \right) dx \]

\[ = 1 + \frac{1}{2} \int \frac{R}{x} \left( x^2 - 2Rx + \frac{4x^3}{3} \right) dx \]

\[ = 1 + \frac{1}{2} \left[ \frac{R^3 - R^2 + \frac{R}{6}}{2} \right] + \frac{1}{2} \left[ \frac{\frac{R}{6}}{2} + \frac{\frac{2}{6}}{2} \right] \]

\[ \therefore \frac{g}{g_0} = 1 + \frac{1}{2} \left[ \frac{R^3 - R^2 + \frac{R}{6}}{2} + \frac{\frac{2}{6}}{2} \right] \]

The general equation \( A \) can be programmed for an IBM 360 computer to give a set of values for \( \frac{g}{g_0} \) for various \( c \) values and \( R \) values. It can also be programmed to plot various \( c \) curves on a width to height ratio - \( \frac{g}{g_0} \) graph.
**APPENDIX VII**

**Specimen Saturation Times**
(for various thicknesses)

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Mass of Specimen (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2&quot;</td>
</tr>
<tr>
<td>0</td>
<td>604.4</td>
</tr>
<tr>
<td>30</td>
<td>622.5</td>
</tr>
<tr>
<td>60</td>
<td>625.5</td>
</tr>
<tr>
<td>180</td>
<td>626.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Mass of Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1&quot;</td>
</tr>
<tr>
<td>0</td>
<td>163.8</td>
</tr>
<tr>
<td>5</td>
<td>178.3</td>
</tr>
<tr>
<td>10</td>
<td>182.0</td>
</tr>
<tr>
<td>15</td>
<td>181.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Mass (grams) ⅛&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>88.8</td>
</tr>
<tr>
<td>1</td>
<td>92.5</td>
</tr>
<tr>
<td>2</td>
<td>92.6</td>
</tr>
</tbody>
</table>

**Drying Times** (for ⅛" thickness)

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Mass (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>81.3</td>
</tr>
<tr>
<td>1</td>
<td>81.2</td>
</tr>
<tr>
<td>2</td>
<td>81.0</td>
</tr>
<tr>
<td>3</td>
<td>81.0</td>
</tr>
<tr>
<td>4</td>
<td>81.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Mass (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>80.9</td>
</tr>
<tr>
<td>7</td>
<td>80.9</td>
</tr>
<tr>
<td>8</td>
<td>80.9</td>
</tr>
<tr>
<td>9</td>
<td>80.9</td>
</tr>
<tr>
<td>10</td>
<td>80.9</td>
</tr>
<tr>
<td>11</td>
<td>77.8</td>
</tr>
</tbody>
</table>
## THE EFFECT OF INTERFACES ON THE FAILURE LOAD

### Table 1: Failure Load for Different Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Specimens tested</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>3</td>
<td>52.7</td>
<td>47.1 - 59.0</td>
</tr>
<tr>
<td>No filling</td>
<td>2</td>
<td>16.9</td>
<td>15.2 - 18.6</td>
</tr>
<tr>
<td>P/P filling</td>
<td>3</td>
<td>22.8</td>
<td>19.8 - 24.4</td>
</tr>
<tr>
<td>Araldite filling</td>
<td>2</td>
<td>20.6</td>
<td>19.7 - 21.3</td>
</tr>
</tbody>
</table>

### Table 2: Load for Different Plates

<table>
<thead>
<tr>
<th>Plate Type</th>
<th>Number of Specimens tested</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone</td>
<td>5</td>
<td>43.3</td>
<td>38.4 - 49.3</td>
</tr>
<tr>
<td>Metal</td>
<td>5</td>
<td>42.4</td>
<td>37.2 - 47.7</td>
</tr>
</tbody>
</table>
Appendix IX

Strip Pillar Problem

What size of pillar is required to support 10,000 feet of rock?

Rock density = 167 lb/cu. ft.

v = 0.15

k_1 = 8.5

Stoping width = 4 ft.

Strength of a 4 ft. cube = 40,000 p.s.i.

Maximum span = 200 ft.

Solution

\( a = k_1 k_2 = 1.5 \)

For \( n = 1 \) \( a_{AV} = \sigma_v = 40,000 \) p.s.i.

\( n = 3 \) \( a_{AV} = \sigma_v (1 + \frac{3}{2}) = 60,000 \) p.s.i.

\( n = 5 \) \( a_{AV} = \sigma_v (1 + \frac{3\sigma_v}{2}) = 90,000 \) p.s.i.

\( n = 7 \) \( a_{AV} = \sigma_v (1 + \frac{3\sigma_v}{7} \frac{3\sigma_v}{7}) = 120,000 \) p.s.i.

\( a = k_1 k_2 = 1.5 \)

/ From
From the equation:

$$\frac{\sigma_{AV}}{\sigma_u} = 1 + \frac{\frac{R}{c} \left( c - c_i \right)}{c R \log c} \left( 1 + \frac{\frac{R}{c} - 1}{c R \log c} \right)$$

for \( c = 1.5 \) or from the graph for \( k_1, k_2 = 1.5 \) in Fig.

For

\[ R = 1 \]  \( \sigma_{AV} = \sigma_u \quad = 50,000 \text{ p.s.i.} \]
\[ R = 2 \]  \( \sigma_{AV} = 1.14 \sigma_u = 46,000 \text{ p.s.i.} \]
\[ R = 3 \]  \( \sigma_{AV} = 1.39 \sigma_u = 56,000 \text{ p.s.i.} \]
\[ R = 4 \]  \( \sigma_{AV} = 1.71 \sigma_u = 68,000 \text{ p.s.i.} \]
\[ R = 5 \]  \( \sigma_{AV} = 2.09 \sigma_u = 84,000 \text{ p.s.i.} \]
\[ R = 6 \]  \( \sigma_{AV} = 2.54 \sigma_u = 102,000 \text{ p.s.i.} \]
\[ R = 7 \]  \( \sigma_{AV} = 3.06 \sigma_u = 122,000 \text{ p.s.i.} \]

(c) Load curve for strip pillar

Virgin stress  \( \sigma_0 \)  \( = \frac{167 \text{ lbs/ft}^3 \times 10,000 \text{ ft}}{1 \text{ b in}^3/\text{ft}^3} \)

\( = 11,600 \text{ p.s.i.} \)

From diagram in Figure 111

Percentage extraction  \( x \)  \( = \frac{200}{200 + \psi} \times 100 \)

Load  \( = \frac{100}{100 - x} \times \sigma_0 \)

For  \( R = 5 \) i.e.  \( \psi = 20 \)

\( x = \frac{200}{200 + 20} \times 100 = 90.9\% \)

Load  \( = \frac{300}{100 - 90.9} \times 11,600 \text{ p.s.i.} \)

\[ R = 6 \text{ load} = 103,000 \text{ p.s.i.} \]
\[ R = 7 \text{ load} = 95,000 \text{ p.s.i.} \]
From the graphs of the strength curve and the load curve shown in figures 111 and 17, it can be seen that the point of intersection is the optimum point for design, i.e., the smallest pillar (thereby giving the greatest extraction ratio) that can support the load of the overlying rock. By choosing a pillar size larger than the optimum, a factor of safety is introduced.

For Finite Element Approach (see fig. 111)

Optimum size is $R = 5.75$ i.e. width = 23 ft. Designing for $R = 7$ i.e. width = 28 ft, $\%$ extraction = 80%.

Safety factor $= \frac{140,000}{55,000} = 1.88$ p.s.i.

For Continuous Rate of Increase Approach (see fig. 17)

Optimum size is $R = 5.2$ i.e. width = 25 ft. Designing for $R = 7$, i.e. width = 28 ft, $\%$ extraction = 80%.

Safety factor $= \frac{122,000}{95,000} = 1.28$ p.s.i.
THE STRENGTH AND LOAD CURVES FOR A WIDE STRIP PILLAR USING THE FINITE ELEMENT APPROACH.
FIGURE IV  THE STRENGTH AND LOAD CURVES FOR A WIDE STRIP PILLAR USING THE CONTINUOUS RATE OF INCREASE APPROACH.
Square Pillar Problem

Problem

What size of pillar is required to support 10,000 feet of rock?

Rock density = 167 lb/cu.ft.

$\rho = 0.15$

$k_1 = 6.5$

Staging width = 3 ft.

Strength of

a 4 ft cube, = 40,000 p.s.i.

Maximum span = 200 ft.

Solution

(a). Strength Curve

$k_2 = 5.5$

$k_2 = \frac{V}{I} = \frac{0.15}{0.55}$

$c = k_1 k_2 = 1.5$

For

$R = 1$ $\sigma_{AV} = \sigma_u = 40,000$ p.s.i.

$R = 3$ $\sigma_{AV} = \sigma_u (1 + \frac{c_1}{2}) = 47,000$ p.s.i.

$R = 5$ $\sigma_{AV} = \sigma_u (1 + \frac{25c}{35} + \frac{c^2}{25}) = 55,000$ p.s.i.

$R = 7$ $\sigma_{AV} = \sigma_u (1 + \frac{25c}{25} + \frac{c^2}{25} + \frac{c_3}{35}) = 63,000$ p.s.i. 

$R = 9$ $\sigma_{AV} = \sigma_u (1 + \frac{42c}{25} + \frac{25c^2}{25} + \frac{c^3}{35}) = 72,000$ p.s.i.

$R = 11$ $\sigma_{AV} = \sigma_u (1 + \frac{32c}{25} + \frac{25c^2}{25} + \frac{c^3}{35}) = 82,000$ p.s.i.

$R = 13$ $\sigma_{AV} = \sigma_u (1 + \frac{32c}{25} + \frac{25c^2}{25} + \frac{c^3}{35}) = 92,000$ p.s.i.

$R = 15$ $\sigma_{AV} = \sigma_u (1 + \frac{32c}{25} + \frac{25c^2}{25} + \frac{c^3}{35}) = 102,000$ p.s.i.
(b) Load Curve for Square Pillar

Virgin stress \( \sigma_0 \) = \( \frac{167 \text{ lbs/ft} \times 10,000 \text{ ft}}{144 \text{ in}^2/\text{ft}^2} \)

\[ \sigma_0 = 11,600 \text{ p.s.i.} \]

From diagram in fig IV

Percentage extraction \( x \) = \( \frac{(140 + h)^2 - h^2}{(140 + h)^2} \times 100 \)

Load \( = \frac{100}{100-x} \times \sigma_0 \)

For \( R = 10 \) i.e. \( h = 40 \) ft,

\[ x = \frac{(140 + 40)^2 - 40^2}{(140 + 40)^2} \times 100 = 95.1\% \]

Load \( = \frac{100}{100-95.1} \times 11,600 = 237,000 \text{ p.s.i.} \)

For \( R = 11 \) load = 203,000 p.s.i.

For \( R = 12 \) load = 178,000 p.s.i.

For \( R = 13 \) load = 155,000 p.s.i.

From the graph of strength curve and load curve shown in fig. V:

Optimum size is \( R = 11.8 \), i.e. width 47 ft. Designing for \( R = 13 \),

i.e. width = 52 ft, % extraction 92.5\%

Safety \( = \frac{214,000}{155,000} = 1.38 \)
140 FT.

VAGRAM OF JQUARIE PILLAR PLAN.

WIDTH TO HEIGHT RATIO — R

FIGURE V THE STRENGTH AND LOAD CURVES FOR A WIDE SQUARE PILLAR.
CIRCULAR PILLAR PROBLEM

PROBLEM

What size of pillar is required to support 10,000 feet of rock?

Rock density = 167 lbs/cu. ft.

\(
u = 0.15\)

\(k_1 = 0.5\)

Shaping width = 4 ft.

Strength of a lift cube = 40,000 p.s.i.

Maximum span = 200 ft.

SOLUTION

(a) Strenght Curve

\(k_1 = 8.5\)

\(k_2 = \frac{v}{1-v} = 0.15\)

\(c = k_1k_2 = 1.5\)

From the equation

\[
\frac{\sigma_{AV}}{\sigma_u} = 1 + \frac{r}{r + \frac{1}{c + c}} - \frac{c + c}{r^2 \log^2 c} - \frac{(r-1)^2}{2 \log c} + \frac{(r-1)}{2 \log c^3 \log^3 c}
\]

\(R = 1\) i.e. \(r = \frac{1}{2}\)

\(\sigma_{AV} = \sigma_u = 40,000\) p.s.i.

\(R = 10\)

\(\sigma_{AV} = 3.10 \sigma_u = 121,000\) p.s.i.

\(R = 12\)

\(\sigma_{AV} = 4.05 \sigma_u = 162,000\) p.s.i.

\(R = 14\)

\(\sigma_{AV} = 5.28 \sigma_u = 221,000\) p.s.i.
(b). Load Curve for Circular Pillar

Virgin stress $\sigma = \frac{167\text{lbs/ft}^3 \times 10,000\text{ ft}}{1\frac{3}{4}\text{ in}^2/\text{ft}^2}$

$= 11,600\ \text{p.s.i.}$

From diagram in fig. VI:

Percentage extraction $x = \frac{(140 + 1.4r)^2 - r^2}{(140 + 1.4r)^2} \times 100$

Load $= \frac{100}{100 - x} \times \sigma_0$

For $R = 12$ i.e. $r = 24$

$x = \frac{(140 + 34)^2 x 24^2}{(140 + 34)^2} = 94.1\%$

Load $= \frac{100}{100 - 94.1} \times 11,600\ \text{p.s.i.} = 197,000$

$R = 13\ \text{Load} = 170,000$

$R = 14\ \text{Load} = 155,000$

From the graph of strength curve and load curve shown in fig. VI:-

Optimum size is $R = 12.7$ i.e. radius $r = 25\ \text{ft}$. Designing for $R = 14$, i.e. radius $= 28\ \text{ft}$, % extraction $= 92.5%$

Safety factor $= \frac{211,000\ \text{p.s.i.}}{151,000\ \text{p.s.i.}} = 1.40$
Diagram of Circular Pillar Plan.

Figure VI. The strength and load curves for a wide circular pillar.