A POLAROGRAPHIC AND POTENTIOMETRIC STUDY
OF METAL–LIGAND EQUILIBRIA:
INSTRUMENTATION AND INVESTIGATIONS OF
SYSTEMS WITH NON–REVERSIBLE ELECTRODE
REACTIONS

Tumaini Samwel Peter Mkwizu

A dissertation submitted to the Faculty of Science, University of the
Witwatersrand, in fulfillment of the requirements for the degree of Master of
Science

Johannesburg, 2006
DECLARATION

I declare that this dissertation is my own work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

(Signature of candidate)

___________ day of__________________ 2006.
OUTPUTS FROM THIS WORK

Conference Papers:

Publications:

ABSTRACT

New possibilities in collection of polarographic and potentiometric experimental data in studies of metal–ligand systems by automated instrumental methods, and subsequent treatment of the polarographic data, whereby the degree of reversibility of the electrode processes varies, have been investigated in this work. An automated instrumental set–up was developed for applications in studies of metal–ligand solution equilibria by potentiometry and sampled Direct Current Polarography (DCP). The new set–up was designed based on virtual instrumentation principles whereby several commercially–available hardware units as well as custom–built electronic components, were interfaced to a personal computer that was equipped with appropriate hardware and control programs. The instrumental set–up was tested and validated by studying the protonation equilibria of the ligand glycine by Glass Electrode Potentiometry (GEP) as well as the complexation of the ligand glycine with Cd$^{2+}$ by GEP and DCP. The new set–up provides increased versatility, accuracy and convenience in obtaining large numbers of experimental points in solution equilibria studies by DCP and GEP as opposed to the use of tedious and time–consuming manual methods. Nonlinear curve–fitting procedures, based on closed–form models that were derived here from suitable theoretical equations identified from literature, have been investigated in this work for applications in analysis of DC curves recorded on metal–ligand systems with variation in electrochemical reversibility. The applicability and limitations of the curve–fitting procedures developed have been tested in analysis of the DCP data collected on several metal–ligand systems involving Cd$^{2+}$, Pb$^{2+}$, Zn$^{2+}$ and the ligands glycine and sarcosine, whereby the DCP studies of these systems exhibited reversible, quasi–reversible or irreversible electrochemical processes. Information on applicability and limitations of the proposed methods investigated in this work was derived by comparison of the results obtained from DCP, using the proposed methods, with either reported literature data and/or results obtained in this work by the independent analytical technique of GEP, which was deployed wherever it was found to be applicable to study the metal–ligand systems considered.
ACKNOWLEDGEMENTS

First and foremost, I wish to express my most sincere gratitude to my research mentor Prof. Ignacy Cukrowski. I found great pleasure in working with and learning from him. I thank him for his patience, academic guidance, as well as moral and financial support which he provided me throughout the duration of the research project. My sincere appreciation also goes to Mr. Basil Chassoulas of the Wits School of Chemistry for his tremendous assistance in the electronic aspects related to the development of instrumentation in this project. Thank you, to all my colleagues at the Electrochemistry Research Laboratories (at Wits University and currently at the Department of Chemistry, University of Pretoria). Their contributions in many ways toward the success of this project are highly appreciated. I also wish to thank the University of the Witwatersrand for financial support through a Postgraduate Merit Award programme. My deep gratitude also goes to the staff of the School of Chemistry at Wits University for technical and administrative assistance they provided me during my studentship in the School. Finally, my deepest gratitude goes to my parents for their moral and financial support, offered to me wholeheartedly, during my tenure as a postgraduate student in the Republic of South Africa.
TABLE OF CONTENTS

DECLARATION ... ii
OUTPUTS FROM THIS WORK .. iii
ABSTRACT ... iv
ACKNOWLEDGEMENTS ... v
LIST OF FIGURES ... x
LIST OF TABLES ... xxii
LIST OF ABBREVIATIONS .. xxvi

CHAPTER 1 INTRODUCTION

1.1 METAL–LIGAND EQUILIBRIA: GENERAL BACKGROUND 1
1.2 GENERAL CONCEPTS IN EQUILIBRIUM ANALYSIS 3
1.3 EXPERIMENTAL TECHNIQUES FOR METAL–LIGAND EQUILIBRIA STUDIES .. 7
 1.3.1 General Survey .. 7
1.4 POTENTIOMETRY ... 9
 1.4.1 Basic Principles of Potentiometry.. 9
 1.4.2 Potentiometry and the Study of Metal–Ligand Equilibria 11
 1.4.3 Computer–Assisted Experiments for Potentiometry.......................... 12
1.5 POLAROGRAPHY .. 15
 1.5.1 Basic Principles of Polarography... 15
 1.5.2 Polarography and the Study of Metal–Ligand Equilibria 20
 1.5.3 Reversibility of Electrode Reactions ... 25
 1.5.4 Computer–Assisted Experiments for Polarography....................... 29
1.6 AIMS AND SCOPE OF PROJECT ... 32
1.7 SUMMARY OF CHAPTERS ... 34
1.8 REFERENCES .. 36

CHAPTER 2 MATERIALS AND GENERAL EXPERIMENTAL PROCEDURES

2.1 REAGENTS .. 41
2.2 PREPARATION AND STANDARDISATION OF SOLUTIONS 42
CHAPTER 3 THEORY AND TREATMENT OF DATA

3.1 INTRODUCTION .. 56

3.2 GLASS ELECTRODE POTENTIOMETRY: THEORY,
MODELLING AND REFINEMENT OF PROTONATION AND
STABILITY CONSTANTS.. 56

3.3 SAMPLED DIRECT CURRENT POLAROGRAPHY: THEORY,
MODELLING AND REFINEMENT OF
STABILITY CONSTANTS.. 61

3.3.1 Optimisation of a Metal–Ligand Model and Refinement
of Stability Constants.. 61

3.3.2 General Concepts in Modelling of Polarographic Data..................... 64

3.3.2.1 Variation in Half–wave Potential as
a Function of pH.. 64

3.3.2.2 Variation in Half–wave Potential versus
Free Ligand Concentration.. 67

3.3.2.3 Variation in Limiting Diffusion Current as
a Function of pH.. 68

3.4 VIRTUAL POTENTIOMETRY ... 68

3.5 ANALYSIS OF DIRECT CURRENT POLAROGRAMS
RECORDED ON METAL–LIGAND SYSTEMS ... 70

3.5.1 Electrochemical Reversibility: General Concepts 70

3.5.2 Evaluation of Electrochemical Reversibility..................................... 75
3.5.2.1 Logarithmic Analysis ... 75
3.5.2.2 Curve–fitting Method .. 80
3.5.3 Determination of Reversible Half-wave Potential and
Limiting Diffusion Current .. 83
3.5.3.1 Reversible or Nearly Reversible Systems 83
3.5.3.2 Non–reversible Systems ... 84
3.5.4 Concluding Remarks .. 91
3.6 REFERENCES .. 92

CHAPTER 4 DEVELOPMENT OF AUTOMATED
INSTRUMENTATION

4.1 INTRODUCTION .. 95
4.1.1 General Concepts on Virtual Instrumentation 96
4.2 DESCRIPTION OF THE HARDWARE ... 98
4.2.1 Data Collection and Processing Interface 101
4.2.2 Electronic Control Box ... 102
4.2.3 Digital pH Meter .. 103
4.2.4 Digital Burette .. 103
4.2.5 Magnetic Stirrer ... 104
4.2.6 Potentiostat and Current–Measuring System 105
4.2.7 Voltammetric Stand ... 110
4.3 DESCRIPTION OF THE SOFTWARE .. 113
4.3.1 Potentiometry .. 113
4.3.2 Sampled Direct Current Polarography 119
4.3.3 Sampled Direct Current Polarography with Potentiometry 123
4.4 VALIDATION AND PERFORMANCE OF INSTRUMENTATION 133
4.4.1 Glass Electrode Potentiometry: Automated Titrations 133
4.4.1.1 Protonation Equilibria for Glycine .. 133
4.4.1.2 A Potentiometric Study of a Cadmium(II)–Glycine–OH system 137
4.4.2 Sampled Direct Current Polarography with Potentiometry: Automated Titrations .. 142
4.4.2.2 A Polarographic Study of a Cadmium(II)–Glycine–OH System 142
CHAPTER 5 METAL–LIGAND SYSTEMS INVOLVING
POLAROGRAPHIC REVERSIBLE AND
NON–REVERSIBLE ELECTRODE REACTIONS

5.1 INTRODUCTION .. 153
5.2 RESULTS AND DISCUSSION ... 159
 5.2.1 Case Study 1: A Cadmium(II)–Sarcosine–OH System 159
 5.2.1.1 A GEP Study of a Cd(II)–Sarcosine–OH
 System .. 160
 5.2.1.2 Polarographic Investigations of a Cd(II)–Sarcosine–OH
 System .. 166
 5.2.2 Case Study 2: A Lead(II)–Glycine–OH System............................... 186
 5.2.3 Case Study 3: A Lead(II)–Sarcosine–OH System............................. 200
 5.2.4 Case Study 4: A Zinc(II)–Glycine–OH System............................... 209
 5.2.4.1 A GEP Study of a Zn(II)–Glycine–OH System.................. 210
 5.2.4.2 Polarographic Investigations of a Zn(II)–Glycine–OH
 System .. 215
 5.2.5 The Effect of Addition of a Methyl Group to a Ligand..................... 227
5.3 CONCLUSIONS .. 231
 5.3.1 Applicability and Limitations of Curve–Fitting Models for
 Analysis of DC Polarograms .. 231
 5.3.2 Recommended Procedures in Analysis of DC Polarograms
 Recorded On Metal–Ligand Systems 234
5.4 REFERENCES... 237

CHAPTER 6 GENERAL CONCLUSIONS ... 239

APPENDICES .. 245
LIST OF FIGURES

Figure 1.1: An overall scheme for equilibrium model determination 6

Figure 1.2: Sampled DC polarography. (a) Stepwise potential waveform.
(b) Current–time curves observed in response to the potential
steps and current sampling scheme .. 19

Figure 1.3: A typical sigmoidal–shaped sampled DC polarogram. 19

Figure 1.4: A flowchart depicting experimental tasks typically performed
in a polarographic study of a metal–ligand system at fixed L_T:
M_T and variable pH. ... 31

Figure 2.1: An example of a calibration curve obtained prior to performing
a glass electrode potentiometric experiment for a metal–ligand
system ... 46

Figure 2.2: A photograph showing electrodes and probes used in studies of
metal–ligand systems at fixed L_T: M_T and variable pH 50

Figure 2.3: A photograph of the instrumental set–up in a typical automated
experiment for a metal – ligand system at fixed L_T:M_T ratio and
variable pH by sampled direct current polarography with glass
electrode potentiometry as the leading technique 51

Figure 3.1: A typical relationship of variation in half–wave potential for
Cd^{2+}, in the presence of the protic ligand glycine, as a function
of pH ... 65

Figure 3.2: An example of a typical relationship of variation in half–wave
potential as a function of Log [L] .. 67
Figure 3.3: Schematic comparison of DC polarograms corresponding to reversible, quasi-reversible, and irreversible reduction processes

Figure 3.4: A sampled direct current polarogram for the reversible reduction of Pb$^{2+}$ at 25 °C in 0.5 M NaNO$_3$

Figure 3.5: A logarithmic analysis corresponding to the DC polarogram for the reversible reduction of Pb$^{2+}$ at 25 °C in 0.5 M NaNO$_3$ shown in Figure 3.4

Figure 3.6: A sampled direct current polarogram for a quasi-reversible reduction of Cd$^{2+}$ at 25 °C in 0.5 M NaNO$_3$ in the presence of the ligand sarcosine

Figure 3.7: A logarithmic analysis of the DC polarogram in Figure 3.6

Figure 3.8: An example of the analysis of a quasi-reversible DC polarogram for the reduction of Cd$^{2+}$ at 25 °C in 0.5 M NaNO$_3$, in the presence of the ligand sarcosine, using the Cukrowski’s curve-fitting method

Figure 3.9: Logarithmic analysis of a quasi-reversible DC polarographic wave using the Matsuda–Ayabe method

Figure 4.1: A block diagram showing interfacing and connectivity of the various hardware components of the instrumental set-up for potentiometric and polarographic measurements

Figure 4.2: A simplified circuit diagram showing connectivity and interfacing of the electronic components used in the instrumentation for automated DC polarographic and potentiometric measurements
Figure 4.3: A basic potentiostatic three–electrode system with measurement of cell current via a current–to–voltage converter........106

Figure 4.4: The integration amplifier circuitry used for amplification of the current response signals measured by the CV–27 voltammograph...107

Figure 4.5: A schematic diagram showing the inert gas connections and operating principle of the valve block and multi–mode electrode of the 663 VA stand...111

Figure 4.6: A flow chart of the Configure Dosimat & pH meter VI (the virtual instrument used to configure the pH meter and the digital burette (765 Dosimat) used in automated potentiometric–polarographic experiments)...114

Figure 4.7: The front panel of the Autotitrator VI, the software module developed for automated potentiometric titrations with constant volume additions ...115

Figure 4.8: Flow chart of the Autotitrator VI, the virtual instrument for automated potentiometric titrations with constant volume additions ...116

Figure 4.9: A flowchart of the subroutine (or SubVI) Sampling 713/780 pH Meter used to programmatically establish an equilibrium potential reading, at a particular titration stage, during an automated potentiometric titration..118

Figure 4.10: The front panel (user–interface) of the DC (One Polarogram) VI used for single Sampled Direct Current Polarographic scans........121

Figure 4.11: A flowchart of the DC (One Polarogram) VI used to generate single scans of Sampled DC polarography...122
Figure 4.12: The front panel of the AUTOTITRATOR-DC1 VI, a software module used for automated titrations with acquisition of sampled DC polarograms and potentiometric data.............................124

Figure 4.13: An example of a titration curve (pH versus volume of titrant) obtained from a study of Cd(II)–Glycine–OH system at fixed $L_T: M_T$ ratio and variable pH.................................125

Figure 4.14: A flowchart showing programmatic execution of the Autotitrator-DC1 VI ..126

Figure 4.15: Examples of recorded Sampled DC polarograms using the Autotitrator-DC2 VI used in an automated potentiometric–polarographic experiment of Pb(II)–Glycine–OH system at a fixed $L_T:M_T$ ratio and variable pH..129

Figure 4.16: The front panel of the AUTOTITRATOR-DC-DYNAMIC2 VI130

Figure 4.17: A flowchart showing the programmatic execution of the VI Autotitrator-DC-Dynamic2 ...131

Figure 4.18: The chemical structure of a fully–protonated glycine molecule133

Figure 4.19: A titration curve obtained from the titration of a glycine solution with 0.05 M NaOH ..135

Figure 4.20: Experimental (o) and theoretical (solid line) protonation curves of the ligand glycine obtained from refinement of the GEP data collected using the automated instrumental set–up for potentiometric titrations developed in this project137
Figure 4.21: Experimental (o) and theoretical (solid line) potentiometric complex formation curves obtained for the metal–ligand models containing ML, ML₂, ML₃, ML(OH), and ML₂(OH) with the optimized stability constants for these complexes obtained from the study of Cd(II)–Glycine–OH system by GEP at various Lₜ : Mₜ ratios ... 140

Figure 4.22: A species distribution diagram for the Cd(II)–Glycine–OH system at Lₜ : Mₜ = 1 : 1, [Mₜ] = 7.771 × 10⁻³ M generated using the model containing M(HL), ML, ML₂, ML₃, ML(OH) and ML₂(OH) .. 141

Figure 4.23: A species distribution diagram for the Cd(II)–Glycine–OH system at Lₜ : Mₜ = 3 : 1, [Mₜ] = 4.679 × 10⁻³ M generated using stability constants from the model containing M(HL), ML, ML₂, ML₃, ML(OH), ML₂(OH) .. 142

Figure 4.24: Examples of sampled DC curves recorded during a study of Cd(II)–Glycine–OH (Lₜ : Mₜ = 200 : 1 (fixed) and variable pH; [Mₜ] = 1.016 × 10⁻⁴ M). An illustration of the curve–fitting operations is also shown .. 144

Figure 4.25: An example of interpretation of the observed shift in half–wave potential plotted against pH for the Cd(II)–Glycine–OH system studied by sampled DCP at experimental conditions as indicated for Figure 4.24 ... 145

Figure 4.26: An example of interpretation of the observed shift in half–wave potential plotted against Log [L] for the Cd(II)–Glycine–OH system studied by DCP at fixed Lₜ : Mₜ ratio and variable pH at experimental conditions as indicated for Figure 4.24 .. 146

Figure 4.27: Experimental (circles) and calculated (solid line) complex formation curves obtained for the Cd(II)–Glycine–OH system studied at a fixed Lₜ : Mₜ ratio of 700; [Mₜ] = 8.456 × 10⁻⁵ M 146
Figure 4.28: Species distribution as a function of pH for the Cd(II)–Glycine–OH system at $L_T : M_T = 200$; $[M_T] = 1.016 \times 10^{-4}$ M

Figure 4.29: Species distribution as a function of pH for the Cd(II)–Glycine–OH system at $L_T : M_T = 600$; $[M_T] = 8.051 \times 10^{-5}$ M

Figure 5.1: Chemical structures of the fully--protonated forms of the ligands Glycine, Sarcosine, Iminodiacetic acid (IDA) and N–methyliminodiacetic acid (MIDA)

Figure 5.2: A plot of variation in Log β_{ML} values plotted as a function of the metal ion radius for the metal ions Ni(II), Zn(II), Cu(II), Cd(II), and Pb(II) with the ligands iminodiacetic acid (IDA) and N–methyliminodiacetic acid (MIDA) at ionic strength of 0.5 M and 25 °C

Figure 5.3: A plot of variation in Log β_{ML} values plotted as a function of the metal ion radius for the metal ions Ni(II), Zn(II), Cu(II), Cd(II), and Pb(II) with the ligands Glycine and Sarcosine (N–methylglycine) at ionic strength of 0.5 M

Figure 5.4: Experimental (circles) and calculated (solid line) potentiometric complex formation curves for Cd(II)–Sarcosine–OH system at $L_T : M_T = 2$, initial $[M_T] = 4.797 \times 10^{-3}$ M and $L_T : M_T = 7$, initial $[M_T] = 2.041 \times 10^{-3}$ M at 25 °C and ionic strength 0.5 M in NaNO$_3$

Figure 5.5: Species distribution as a function of pH for the Cd(II)–Sarcosine–OH system at $L_T : M_T = 2$; $[M_T] = 4.797 \times 10^{-3}$ M

Figure 5.6: Species distribution as a function of pH for the Cd(II)–Sarcosine–OH system at $L_T : M_T = 7$; $[M_T] = 2.041 \times 10^{-3}$ M
Figure 5.7: Variation in the reversibility index parameter δ as a function of pH obtained from curve–fitting operations performed on the DC polarograms collected on a polarographic study of Cd(II)–Sarcosine–OH system at $L_T : M_T = 98$, ionic strength = 0.5 M, 25 °C, $[M_T] = 2.035 \times 10^{-4}$ M.................................167

Figure 5.8: Examples of analyses of DC polarograms by nonlinear curve–fitting operations to estimate I_4 and $E_{1/2}^{r}$...169

Figure 5.9: Comparison of the observed $E_{1/2}$ values (uncorrected for departure from electrochemical reversibility) and reversible half–wave potentials ($E_{1/2}^{r}$) obtained using different nonlinear curve–fitting models...171

Figure 5.10: Variation in limiting diffusion current for Cd(II)–Sarcosine–OH system studied by sampled DC polarography at $L_T : M_T$ ratio 98, at $L_T : M_T = 98$, ionic strength = 0.5 M, 25 °C, initial $[M_T] = 2.035 \times 10^{-4}$ M...173

Figure 5.11: Prediction of major metal containing species from analysis of variation in half–wave potentials as a function of pH..................174

Figure 5.12: Prediction of major metal containing species from analysis of variation in half–wave potentials as a function of free ligand concentration (expressed as Log [L])...176

Figure 5.13: Experimental and calculated complex formation curves obtained using reversible half–wave potentials for the Cd(II)–Sarcosine–OH system studied by sampled DC polarography at $L_T : M_T = 98$, ionic strength = 0.5 M, 25 °C, initial $[M_T] = 2.035 \times 10^{-4}$ M. For comparison, the ECFC from observed half–wave potentials uncorrected for departure from electrochemical reversibility is also shown.................................178
Figure 5.14: Species distribution as a function of pH for the Cd(II)–Sarcosine–OH system at $L_T:M_T = 98; [M_T] = 2.035 \times 10^{-4}$ M181

Figure 5.15: Species distribution as a function of pH for the Cd(II)–Sarcosine–OH system at $L_T:M_T = 7; [M_T] = 2.041 \times 10^{-3}$ M (GEP conditions) ...182

Figure 5.16: Virtual half–wave potential as a function of Log [M] computed with the use of the refined stability constants from the optimised model containing ML, ML$_2$, ML$_3$ for the Cd(II)–Sarcosine–OH system studied by sampled DC polarography at $L_T:M_T = 98$, ionic strength = 0.5 M, 25 °C , initial [M$_T$] = 2.035×10^{-4} M ...184

Figure 5.17: Comparison of the observed $E_{1/2}$ obtained using the Cukrowski curve–fitting method and $E'_{1/2}$ obtained using the Ružić-based curve-fitting. The variation in the reversibility index parameter δ as a function of pH (obtained from the Cukrowski curve–fitting method) is also shown. DC polarograms collected on a polarographic study of Pb(II)–Glycine–OH system at $L_T:M_T$ ratio 800, ionic strength = 0.5 M, initial [M$_T$] = 8×10^{-5} M188

Figure 5.18: Variation in current as a function of pH for Pb(II)–Glycine–OH system studied by sampled DC polarography at L_T: M_T ratio 800, initial [M$_T$] = 8×10^{-5} M, ionic strength = 0.5 M and 25 °C ..189

Figure 5.19: Prediction of major metal containing species from analysis of variation in virtual half–wave potentials as a function of pH for Pb(II)–Glycine–OH system studied by sampled DC polarography at L_T: M_T ratio 800, initial [M$_T$] = 8×10^{-5} M, 25 °C and ionic strength = 0.5 M ...191
Figure 5.20: Prediction of major metal containing species from analysis of variation in virtual half–wave potentials as a function of Log [L] for Pb(II)–Glycine–OH system studied by sampled DC polarography at L_T: M_T ratio 800, initial [M_T] = 8 × 10^{-5} M, ionic strength = 0.5 M and 25 °C ...192

Figure 5.21: Experimental and calculated complex formation curves for the Pb(II)–Glycine–OH system studied by sampled DC polarography at fixed L_T: M_T ratios, ionic strength of 0.5 M and 25 °C ..193

Figure 5.22: Species distribution as a function of pH for the Pb(II)–Glycine–OH system at L_T : M_T = 800; [M_T] = 8 × 10^{-5} M..195

Figure 5.23: Species distribution as a function of pH for the Pb(II)–Glycine–OH system at L_T : M_T = 800; [M_T] = 8 × 10^{-5} M..196

Figure 5.24: Species distribution as a function of pH for the Pb(II)–Glycine–OH system generated for L_T : M_T = 800 and [M_T] = 8 × 10^{-5} M (conditions employed in this work) using the stability constants from literature [3] for the model with M(HL), M(HL)_2, M(HL)_3, ML, and ML_2 together with all known stability constants for Pb_x(OH)_y complexes ...197

Figure 5.25: Virtual half–wave potential as a function of Log [M] computed with the use of the refined stability constants from the optimised model containing M(HL), ML, ML_2, ML_3 for the Pb(II)–Glycine–OH studied by sampled DC polarography at L_T : M_T = 600, ionic strength = 0.5 M, 25 °C , initial [M_T] = 8.062 × 10^{-5} M...198

Figure 5.26: Examples of analyses of DC polarograms from a sampled DC polarographic study of Pb(II)–Sarcosine–OH system at L_T : M_T = 400, μ = 0.5 M, 25 °C , [M_T] = 7.990 × 10^{-5} M.................................202
Figure 5.27: Variation in reversible and observed half–wave potentials (uncorrected for departure from electrochemical reversibility) as a function of pH for the Pb(II)–Sarcosine–OH system at $L_T : M_T = 400$, $[M_T] = 7.990 \times 10^{-5}$ M, 25°C , $\mu = 0.5$ M.........................203

Figure 5.28: Variation in limiting diffusion current I_d as a function of pH for the Pb(II)–Sarcosine–OH system studied by sampled DC polarography at $L_T : M_T = 400$, $[M_T] = 7.990 \times 10^{-5}$ M, 25°C , $\mu = 0.5$ M ...204

Figure 5.29: Variation in virtual half–wave potential as a function of pH for the Pb(II)–Sarcosine–OH system ..205

Figure 5.30: Variation in virtual half–wave potential as a function of free ligand concentration (expressed as Log[L]) for the Pb(II)–Sarcosine–OH system ..206

Figure 5.31: Species distribution as a function of pH for the Pb(II)– Sarcosine–OH system generated for $L_T : M_T = 400$ and $[M_T] = 8 \times 10^{-5}$ M (conditions employed in this work) using the stability constants for the model containing $M(HL)$, ML, ML_2, ML_3, and $ML_2(OH)_2$, together with all known stability constants for Pb$_x$(OH)$_y$ complexes ..208

Figure 5.32: Experimental (circles) and theoretical (solid line) potentiometric complex formation curves obtained for the study of Zn(II)–Glycine–OH system by GEP at $L_T : M_T$ ratio 6, $[M_T] = 1.096 \times 10^{-3}$ M, 25°C , and $\mu = 0.5$ M..........................213

Figure 5.33: Species distribution as a function of pH for the Zn(II)–Glycine–OH system at $L_T : M_T$ ratio 1 : 1, $[M_T] = 9.838 \times 10^{-3}$ M214

Figure 5.34: Species distribution as a function of pH for the Zn(II)–Glycine–OH system at $L_T : M_T$ ratio 6 : 1, $[M_T] = 1.096 \times 10^{-3}$ M214
Figure 5.35: Typical polarograms of Zn(II) at various pH values recorded in a sampled DC polarographic study of Zn(II)–Glycine–OH system...216

Figure 5.36: A species distribution diagram for the Zn(II)–Glycine–OH system generated for the experimental conditions employed in the DC polarographic study of the system (L_T : M_T = 240 : 1, [M_T] = 1.07 × 10⁻⁴ M) ...217

Figure 5.37: An example of analysis of a quasi–reversible DC polarogram from a DCP study of a Zn(II)–Glycine–OH system below pH 6 at L_T : M_T = 240, 25 °C , μ = 0.5 M, initial [M_T] = 1.07 × 10⁻⁴ M219

Figure 5.38: An example of analysis of DC polarograms by nonlinear curve–fitting using the curve–fitting method based on the Ružič equation (Equation 3.49) for polarograms collected above pH 9 from a DCP study of a Zn(II)–Glycine–OH system. L_T : M_T = 240, initial [M_T] = 1.07 × 10⁻⁴ M..220

Figure 5.39: A logarithmic analysis performed on the DC polarogram shown in Figure 5.38. The linearity and the slope confirmed full irreversible nature of the polarogram ...221

Figure 5.40: An example of analysis of two overlapping DC waves from the polarographic study of a Zn(II)–Glycine–OH system and their resolution by curve–fitting. L_T : M_T = 240, initial [M_T] = 1.07 × 10⁻⁴ M, curve recorded at pH 7.091 ...223

Figure 5.41: Polarographic complex formation curves for the Zn(II)–Glycine–OH system at L_T : M_T = 240, initial [M_T] = 1.04 × 10⁻⁴ M, 25 °C and μ = 0.5 M...225

Figure 5.42: Experimental (circles) and calculated (solid line) polarographic complex formation curves for the Zn(II)–Glycine–OH system from refinement of data in the pH range 5 to 7.5226
Figure 5.43: Variation in Log β_{ML} values as a function of the metal ion radius for the metal ions Ni(II), Zn(II), Cu(II), Cd(II), and Pb(II) with the ligands Glycine and Sarcosine (N-methylglycine) at ionic strength of 0.5 M and 25 °C. Third order polynomial functions were found to be sufficient to generate the trend-lines shown. ...229
LIST OF TABLES

Table 1.1: A list of experimental methods available for investigations of metal–ligand equilibria ... 8

Table 4.1: Some specifications for the burette cylinders (exchange units) used with a 765 Dosimat (digital burette) .. 104

Table 4.2: A summary of the main features of the virtual instruments used for automated titrations with combined Sampled DCP and Potentiometric measurements on a sample solution 132

Table 4.3: (A) Dissociation constant for water (fixed in the refinement operations). (B) Summary of protonation constants for the ligand glycine obtained from refinement operations of GEP data collected using the automated potentiometric instrumental set–up developed in this project at 25 °C and ionic strength of 0.5 M in NaNO₃. (C) Summary of results from refinement operations that included refinement of initial acid concentrations .. 136

Table 4.4: (A) Protonation constants for the ligand glycine (L⁻), dissociation constant for water and overall stability constants for Cd(II) complexes with OH⁻ included in the Cd(II)–L–OH model and used in the refinement procedures for GEP data. (B) Overall stability constants for Cd(II) with glycine from the literature and found in this work by GEP at 25 °C and ionic strength μ = 0.5 M (NaNO₃) .. 139
Table 4.5: (A) Protonation constants for the ligand glycine (L−),
dissociation constant for water and overall stability constants
for Cd(II) complexes with OH− included in the Cd(II)–L–OH
model and used in the refinement procedures for Sampled DC
polarographic data. (B) Overall stability constants for Cd(II)
with glycine from the literature and found in this work by
Sampled DC polarography at 25 °C and ionic strength of 0.5 M
in NaNO\textsubscript{3} ..148

Table 5.1: Summary of curve–fitting methods used in analysis of DC
polarograms recorded on metal–ligand systems in order to
estimate reversible half–wave potentials and limiting diffusion
currents ...155

Table 5.2: (A) Protonation constants for the ligand Sarcosine (L−),
dissociation constant for water and overall stability constants
for Cd(II) complexes with OH− included in the Cd(II)–L–OH
model and used as fixed values in the refinement procedures of
GEP data. (B) Overall stability constants for Cd(II) with
sarcosine found in this work by GEP (at 25 °C and ionic
strength \(\mu = 0.5\) M in NaNO\textsubscript{3}) and those reported elsewhere165

Table 5.3: (A) Overall stability constants for Cd(II)–Sarcosine–OH
system found in this work by Sampled DC polarography using
half–wave potential values from various curve–fitting models
used in analysis of the DC polarograms. \(L_T : M_T = 98\); initial
\([M_T] = 2.035 \times 10^{-4}\) M, at 25 °C and ionic strength of 0.5 M in
NaNO\textsubscript{3}. (B) Overall stability constants for Cd(II)–Sarcosine–
OH system found by GEP in this work and elsewhere......................180

Table 5.4: Overall stability constants for Cd(II) with sarcosine found in
this work by virtual potentiometry (VP) (generated from
sampled DCP, \(L_T : M_T\) ratio 98) and combined refinement
operation of the VP and GEP data (\(L_T : M_T\) ratios 2 and 7)185
Table 5.5: (A) Protonation constants for the ligand Glycine (L⁻),
dissociation constant for water and overall stability constants for Pb(II) complexes with OH⁻ included in the Pb(II)–L–OH model and used in the refinement procedures of sampled DCP data. (B) Overall stability constants for Pb(II) with glycine found in this work by sampled DC polarography (at 25 °C and ionic strength µ = 0.5 M in NaNO₃) and those reported elsewhere ..194

Table 5.6: Some overall stability constants for Pb(II) with glycine found in this work by virtual potentiometry (VP) (generated from sampled DCP, Lₜ : Mₜ ratio 600) ...199

Table 5.7: (A) Protonation constants for the ligand Sarcosine (L⁻),
dissociation constant for water and overall stability constants for Pb(II) complexes with OH⁻ included in the Pb(II)–L–OH model and used in the refinement procedures of sampled DCP data. (B) Overall stability constants for Pb(II)–Sarcosine–OH system found in this work by Sampled DC Polarography at Lₜ : Mₜ = 400; initial [Mₜ] = 7.990 × 10⁻⁵ M, at 25 °C and µ = 0.5 M in NaNO₃...207

Table 5.8: (A) Protonation constants for the ligand Glycine (L⁻),
dissociation constant for water and overall stability constants for Zn(II) complexes with OH⁻ included in the Zn(II)–L–OH model and used as fixed values in the refinement procedures of GEP data. (B) Overall stability constants for Zn(II) with glycine found in this work by GEP (at 25 °C and ionic strength, µ = 0.5 M in NaNO₃) and those reported elsewhere..............................212

Table 5.9: Overall stability constants for Zn(II)–Glycine–OH system found in this work by DCP, GEP and Virtual Potentiometry (VP) and those reported elsewhere. DCP data collected for Lₜ : Mₜ = 240; initial [Mₜ] = 1.04 × 10⁻⁴ M, at 25 °C and ionic strength of 0.5 M in NaNO₃..228
Table 5.10 Stability constants (as Log β_{ML}) for complexes between glycine derivatives and some divalent metal ions. Stability constants are from [3] except for Cd(II)–Glycine, Cd(II)–Sarcosine, Pb(II)–Glycine and Pb(II)–Sarcosine [this work]. All values are at 25 °C and ionic strength = 0.5 M. ...230
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog–to–Digital Converter</td>
</tr>
<tr>
<td>AE</td>
<td>Auxiliary Electrode (Also referred to as counter electrode)</td>
</tr>
<tr>
<td>AI</td>
<td>Analog Input</td>
</tr>
<tr>
<td>AO</td>
<td>Analog Output</td>
</tr>
<tr>
<td>CCFC</td>
<td>Calculated Complex Formation Curve</td>
</tr>
<tr>
<td>CGE</td>
<td>Combination glass electrode</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital–to–Analog Converter</td>
</tr>
<tr>
<td>DAQ card</td>
<td>Data Acquisition card</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCP</td>
<td>Direct Current Polarography (Sampled Direct Current Polarography)</td>
</tr>
<tr>
<td>DME</td>
<td>Dropping Mercury Electrode</td>
</tr>
<tr>
<td>DO</td>
<td>Digital Output</td>
</tr>
<tr>
<td>E<sub>1/2</sub></td>
<td>Reversible half-wave potential of a DC polarogram</td>
</tr>
<tr>
<td>E°</td>
<td>Standard Potential</td>
</tr>
<tr>
<td>E<sub>1/2</sub></td>
<td>Half-wave potential as observed from a DC polarogram</td>
</tr>
<tr>
<td>E<sub>k</sub></td>
<td>Glass electrode constant from calibration</td>
</tr>
<tr>
<td>E<sub>appl</sub></td>
<td>Stepwise applied potential</td>
</tr>
<tr>
<td>ECFC</td>
<td>Experimental Complex Formation Curve</td>
</tr>
<tr>
<td>E<sub>1/2 (virt)</sub></td>
<td>Virtual half–wave potential</td>
</tr>
<tr>
<td>emf</td>
<td>Electromotive force; potential</td>
</tr>
<tr>
<td>ESTA</td>
<td>Equilibrium Simulation for Titration Analysis; A suite of computer programs for analysis of potentiometric data.</td>
</tr>
<tr>
<td>Exp.</td>
<td>Experiment</td>
</tr>
<tr>
<td>F</td>
<td>Faraday Constant; 96485 C mol<sup>-1</sup></td>
</tr>
<tr>
<td>F.W.</td>
<td>Formula Weight of a compound</td>
</tr>
<tr>
<td>GEP</td>
<td>Glass Electrode Potentiometry</td>
</tr>
<tr>
<td>H</td>
<td>Proton; hydrogen ion; H<sup>+</sup></td>
</tr>
<tr>
<td>[i]</td>
<td>Molar concentration of species i</td>
</tr>
<tr>
<td>I–E</td>
<td>Refers to a plot of current (I) as a function of potential (E)</td>
</tr>
<tr>
<td>I<sub>b</sub></td>
<td>Background current corresponding to an electrochemical process at the dropping mercury electrode as obtained from a polarogram</td>
</tr>
<tr>
<td>I<sub>d</sub></td>
<td>Limiting diffusion current corresponding to an electrochemical process at the dropping mercury electrode as obtained from a polarogram</td>
</tr>
<tr>
<td>I<sub>obs</sub></td>
<td>Observed total current corresponding to an electrochemical process at the dropping mercury electrode as obtained from a polarogram</td>
</tr>
<tr>
<td>I<sub>red</sub></td>
<td>Reduction current corresponding to an electrochemical process at the dropping mercury electrode as obtained from a polarogram</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>KHP</td>
<td>Potassium Hydrogen Pthalate</td>
</tr>
<tr>
<td>K<sub>w</sub></td>
<td>Dissociation Constant for water; K<sub>w</sub> = [H<sup>+</sup>][OH<sup>−</sup>]</td>
</tr>
<tr>
<td>L</td>
<td>Ligand (charge omitted for clarity)</td>
</tr>
</tbody>
</table>
L
\text{\textsubscript{T}} \quad \text{Total ligand concentration in moles per Liter; } [L\text{\textsubscript{T}}]

L
\text{\textsubscript{T}} : M
\text{\textsubscript{T}} \quad \text{Total ligand to total metal ion concentration ratio, i.e., } [L\text{\textsubscript{T}}] / [M\text{\textsubscript{T}}]

M \quad \text{As a symbol for metal ion (charge omitted for clarity) or as a unit for molar concentration, that is, number of moles of solute per 1 Liter of solution}

MBE \quad \text{Mass Balance Equation}

MME \quad \text{Multi–Mode Electrode}

M_T \quad \text{Total metal ion concentration in moles per Liter; } [M_T]

mV \quad \text{milliVolt } = \text{ } \frac{1}{1000} \text{ Volts}

n \quad \text{Number of electrons involved in an electrochemical reaction}

NBAR \quad \text{The average number of protons per ligand in the absence of metal ion}

pA \quad \text{–Log[L]; negative logarithm of the free deprotonated ligand concentration}

PC \quad \text{Personal Computer}

pH \quad \text{–Log } [H^+] ; \text{ Calculated pH using the calibration method involving strong acid/strong base titration at fixed ionic strength and temperature.}

PTFE \quad \text{Polytetrafluoroethylene}

QBAR \quad \text{Deprotonation function; the average number of protons released as a result of complexation per metal ion}

R \quad \text{Universal gas constant; } 8.314 \text{ J mol}^{-1} \text{ K}^{-1}

RE \quad \text{Reference Electrode}

Refs. \quad \text{References}

s \quad \text{Response slope for glass electrode}

T \quad \text{Temperature (in Kelvin)}

T–Probe \quad \text{Temperature Probe}

VI \quad \text{Virtual Instrument}

VP \quad \text{Virtual Potentiometry}

WE \quad \text{Working Electrode}

ZBAR(H) \quad \text{Potentiometric Complex Formation function; the average number of protons bound per ligand}

ZBAR(M) \quad \text{Potentiometric Complex Formation function; the average number of ligand molecules bound per metal ion}

\alpha \quad \text{Cathodic transfer coefficient}

\beta \quad \text{Overall Stability Constant}

\delta \quad \text{Electrochemical reversibility index or steepness coefficient parameter from analysis of direct current polarograms by a nonlinear curve–fitting procedure}

\mu \quad \text{Ionic strength}

3D–CFC \quad \text{Three Dimensional Complex Formation Curves; A computer program for analysis of polarographic data for refinement of stability constants}