A STUDY TO OPTIMIZE ORE EVALUATION AT WESTERN DEEP LEVELS GOLD MINE, WITWATERSRAND, BY USING GEOSTATISTICS AND GEOLOGICAL SUBDIVISION

Rolf Braun

A thesis submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy in Mining Engineering

Johannesburg 1988
DECLARATION

The work presented in this thesis is my own and has not been submitted for a degree at any other university.

..............................

(Rolf Braun)

September 1988
ABSTRACT

The auriferous Carbon Leader reef on the Western Deep Levels gold mine which is the subject of this study can be subdivided into two types of sedimentological units, each with its characteristic spatial variability.

The potential advantage to be gained from the use of this information as well as the introduction of various geostatistical techniques is examined in relation to the present system of estimation of ore reserves on the mine.

For longwall mining as practised on the mine kriging provides a significant benefit over the present method and the further improvement gained by subdivision is assessed as follows:

- While the conditional unbiasedness of the estimates is not affected by subdivision, the actual error variances of the block estimates are reduced.

- The kriging estimation variance obtained from the geostatistical model only becomes a valid estimate of the actual error distribution, if the Carbon Leader reef is subdivided. This is so because subdivision provides acceptable stationarity of the semivariogram.

Simple kriging is the only method that gives conditionally unbiased estimates, the difference between untransformed and logtransformed kriging is negligible.
ACKNOWLEDGEMENTS

The work described in this thesis forms part of the research programme of the Chamber of Mines of South Africa. The author wishes to thank the Chamber of Mines for their financial support, and gratefully acknowledges the permission of Western Deep Levels gold mine to submit this thesis.

The author is greatly indebted to Professor D.G. Krige for his advice, guidance and constant encouragement over the course of this study.

He also wishes to especially thank the following people:

- Dr. M. Nami and Mr. L. Verrezen (Chamber of Mines) for the many fruitful discussions on sedimentology.

- Mrs. I. Dohm and Mr. H. Elliot (Western Deep Levels gold mine) for familiarizing the author with the problems and limitations encountered in practice.

- Mr. R. Fong (University of the Witwatersrand) for his advice on computer programming problems.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>I</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>III</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>IV</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>VII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XII</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>XIII</td>
</tr>
<tr>
<td>PREFACE</td>
<td>XVI</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Outline</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Geographical and geological setting of the study area</td>
<td>5</td>
</tr>
<tr>
<td>2 PREVIOUS INVESTIGATIONS IN THE RELATION OF GOLD DISTRIBUTION AND SEDIMENTOLOGY IN THE CARBON LEADER REEF</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Description of sedimentology</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Interpretation of sedimentology</td>
<td>11</td>
</tr>
<tr>
<td>3 SEDIMENTOLOGICAL STUDY</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Method</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Practical limitations</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Description of Carbon Leader reef in the study area</td>
<td>18</td>
</tr>
<tr>
<td>3.4 Classification of sedimentary characteristics</td>
<td>23</td>
</tr>
<tr>
<td>3.5 Interpretation of sedimentology</td>
<td>24</td>
</tr>
<tr>
<td>3.6 Facies distribution in study area</td>
<td>29</td>
</tr>
<tr>
<td>3.6.1 Comparison of geological data and sampling data</td>
<td>29</td>
</tr>
<tr>
<td>3.6.2 Facies map</td>
<td>35</td>
</tr>
<tr>
<td>4 GEOSTATISTICAL STUDY</td>
<td>38</td>
</tr>
<tr>
<td>4.1 Present mine valuation technique</td>
<td>38</td>
</tr>
<tr>
<td>4.2 Comparison of different estimation techniques</td>
<td>42</td>
</tr>
<tr>
<td>4.3 Comparison of mine estimates with true data</td>
<td>46</td>
</tr>
</tbody>
</table>
4.4 Assay data
 4.41 Collection 52
 4.42 Analysis 53

4.5 Geostatistical estimation of mine ore blocks without subdivision.
 4.5.1 Regularisation of sample data and analysis of regularized data 64
 4.5.2 Ore reserve estimation 71
 4.5.3 Analysis of simulation 76

4.6 Subdivision of study area 82
 4.6.1 Basic considerations 82
 4.6.2 Geostatistical characteristics of the different subfacies 84
 4.6.3 Individual analysis of mineralisation in top and bottom band for Subfacies 1 113

4.7 Simulation of ore reserve estimation for mine blocks, with and without subdivision 116
 4.7.1 Ore reserve estimation 116
 4.7.2 Analysis of results of \((100m)^2\) oreblock estimation in the individual subareas 118
 4.7.2.1 Influence of subdivision on grade estimates 119
 4.7.2.2 Evaluation of different methods 131
 4.7.2.3 Evaluation of different semi-variogram transformations 135
 4.7.2.4 Preliminary conclusions 139
 4.7.3 Analysis of results of \((100m)^2\) oreblocks for the combined subareas 141

4.8 Comparison of actual and estimated estimation errors 149

5 POSSIBLE IMPROVEMENTS BASED ON THEORETICAL CALCULATIONS 160
 5.1 Ore block size and shape 160
 5.1.1 Theoretical considerations towards the optimization of ore block size and shape 160
 5.1.2 Practical verification 163
5.2 Theoretical considerations towards the optimization of the sampling grid

6 CONCLUSIONS

REFERENCES

APPENDIX 1: METHODS AND TECHNIQUES USED

A1.1 Determination of the minimum number of samples for regularized data blocks and 'true' blocks
A1.2 Semivariogram transformations

APPENDIX 2: SOFTWARE DEVELOPMENT

A2.1 Nimrod
A2.2 Digitize
A2.3 Convert
A2.4 Proplot
A2.5 Datablok
A2.6 Uksim
A2.7 Uktrend

VI
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1a</td>
<td>Location of the Carletonville Goldfield in the Witwatersrand</td>
</tr>
<tr>
<td>1.1b</td>
<td>Mining lease areas of the Carletonville Goldfield</td>
</tr>
<tr>
<td>1.2</td>
<td>Geological north-south section through the Carletonville Goldfield</td>
</tr>
<tr>
<td>3.1</td>
<td>Sedimentological logging sheet used for underground mapping</td>
</tr>
<tr>
<td>3.2</td>
<td>Stratigraphic code for different units</td>
</tr>
<tr>
<td>3.3</td>
<td>Sudden thickening of bottom conglomerate layer and occurrence of shale</td>
</tr>
<tr>
<td>3.4</td>
<td>Idealized sedimentological section through the conglomerate unit</td>
</tr>
<tr>
<td>3.5</td>
<td>Schematic block diagram of depositional model</td>
</tr>
<tr>
<td>3.6</td>
<td>Influence of reef in hangingwall on channel width as recorded during assay sampling</td>
</tr>
<tr>
<td>3.7</td>
<td>Plot of true channel width against the assaying channel width</td>
</tr>
<tr>
<td>4.1</td>
<td>Calculation of accumulation in multiple reef band area</td>
</tr>
<tr>
<td>4.2</td>
<td>Exponential decrease of row average gold values from north to south</td>
</tr>
<tr>
<td>4.3</td>
<td>Regression diagram mine method north-eastern quadrant</td>
</tr>
<tr>
<td>4.4</td>
<td>Regression diagram mine method southern quadrants</td>
</tr>
<tr>
<td>4.5</td>
<td>Regression diagram for true and simulated mine estimates - southern quadrants</td>
</tr>
<tr>
<td>4.6</td>
<td>Logarithmic probability plot of 36 160 assay data</td>
</tr>
<tr>
<td>4.7</td>
<td>Plot of semivariogram ranges in different directions</td>
</tr>
<tr>
<td>4.8</td>
<td>Directional logtransformed semivariograms of shaft area</td>
</tr>
<tr>
<td>4.9</td>
<td>Plot of experimental and theoretical block variances, shaft area</td>
</tr>
<tr>
<td>4.10</td>
<td>Directional Hawkins & Cressie semivariograms shaft area</td>
</tr>
<tr>
<td>4.11a</td>
<td>N-S untransformed experimental semivariogram and models, shaft area</td>
</tr>
<tr>
<td>4.11b</td>
<td>E-W untransformed experimental semivariogram and models, shaft area</td>
</tr>
<tr>
<td>4.12</td>
<td>Logarithmic probability plot of regularized (50m by 50m) data blocks</td>
</tr>
<tr>
<td>4.13a</td>
<td>N-S logtransformed semivariogram regularized data blocks</td>
</tr>
<tr>
<td>4.13b</td>
<td>E-W logtransformed semivariogram regularized data blocks</td>
</tr>
<tr>
<td>4.14a</td>
<td>N-S Hawkins & Cressie semivariogram regularized data blocks</td>
</tr>
<tr>
<td>4.14b</td>
<td>E-W Hawkins & Cressie semivariogram regularized data blocks</td>
</tr>
<tr>
<td>4.15a</td>
<td>N-S untransformed experimental semivariogram and models for data blocks</td>
</tr>
</tbody>
</table>
4.15b N-S untransformed experimental semivariogram and models for data blocks 69
4.16a Standard mining situation at time of ore block estimation, and simulated longwall 71
4.16b Estimation set-up used to simulate the longwall mining condition 72
4.17a, b Plot of slope against observed error variance 79
4.18 Plot of average kriging variance against observed error variance 81
4.19 Logarithmic probability plot, subarea S1.1 90
4.20 Logarithmic probability plot, subarea S1.2 91
4.21 Logarithmic probability plot, subarea S2.1 92
4.22 Logarithmic probability plot, subarea S2.2 93
4.23 Logarithmic probability plot, subarea S2.3 94
4.24a N-S logtransformed semivariogram S1.1 95
4.24b E-W logtransformed semivariogram S1.1 95
4.24c N-S Hawkins & Cressie semivariogram S1.1 96
4.24d E-W Hawkins & Cressie semivariogram S1.1 96
4.25 Theoretical and experimental variance - size of area graph S1.1 97
4.26 Theoretical and experimental variance - size of area graph S1.2 97
4.27a N-S logtransformed semivariogram S1.2 98
4.27b E-W logtransformed semivariogram S1.2 98
4.27c N-S Hawkins & Cressie semivariogram S1.2 99
4.27d E-W Hawkins & Cressie semivariogram S1.2 99
4.28a N-S logtransformed semivariogram S2.1 100
4.28b E-W logtransformed semivariogram S2.1 100
4.28c Omnidirectional logtransformed semivariogram S2.1 101
4.28d Omnidirectional Hawkins & Cressie semivariogram S2.1 101
4.29 Theoretical and experimental variance - size of area graph S2.1 102
4.30a N-S logtransformed semivariogram S2.2 103
4.30b E-W logtransformed semivariogram S2.2 103
4.30c NE-SW logtransformed semivariogram S2.2 104
4.30d NW-SE logtransformed semivariogram S2.2 104
4.30e Omnidirectional logtransformed semivariogram S2.2 105
4.30f Omnidirectional Hawkins & Cressie semivariogram S2.2 105
4.31 Theoretical and experimental variance - size of area graph S2.2 106
4.32a N-S logtransformed semivariogram S2.3 107
4.32b E-W logtransformed semivariogram S2.3 107
4.32c Omnidirectional logtransformed semivariogram S2.3 108
4.32d Omnidirectional Hawkins & Cressie semivariogram S2.3 108
4.33 Theoretical and experimental variance - size of area graph S2.3 109
4.34a Logtransformed semivariogram models 110
4.34b Backtransformed semivariogram models 111
4.34c Hawkins & Cressie semivariogram models 112
4.35a Directional logtransformed semivariograms subfacies 1 reef type 1 115
4.35b Directional logtransformed semivariograms subfacies 1 reef type 2 115
4.36a Plot of mean error of kriging methods vs number of pairs - overall semivariogram
4.36b Plot of mean error of kriging methods vs number of pairs - local semivariograms
4.37a Plot of slope vs actual error variance, S1.1, overall semivariogram
4.37b Plot of slope vs actual error variance, S1.1, local semivariogram
4.38a Plot of slope vs actual error variance, S1.2, overall semivariogram
4.38b Plot of slope vs actual error variance, S1.2, local semivariogram
4.39a Plot of slope vs actual error variance, S2.1, overall semivariogram
4.39b Plot of slope vs actual error variance, S2.1, local semivariogram
4.40a Plot of slope vs actual error variance, S2.2, overall semivariogram
4.40b Plot of slope vs actual error variance, S2.2, local semivariogram
4.41a Regression diagram, mine method (100m*100m) shaft area
4.41b Regression diagram, regressed mine estimates, (100m*100m), shaft area
4.41c Regression diagram, simple lognormal kriging, - without subdivision (100m*100m), shaft area
4.41d Regression diagram, simple lognormal kriging, - with subdivision (100m*100m), shaft area
4.42a Regression diagram, simple kriging - without subdivision, (100m*100m), shaft area
4.42b Regression diagram, simple kriging - with subdivision, (100m*100m), shaft area
4.43a Actual and estimated error distribution, simple lognormal kriging, S1.1
4.43b Actual and estimated error distribution, simple kriging, S1.1
4.44a Actual and estimated error distribution, simple lognormal kriging, S1.2
4.44b Actual and estimated error distribution, simple kriging, S1.2
4.45a Actual and estimated error distribution, simple lognormal kriging, S2.1
4.45b Actual and estimated error distribution, simple kriging, S2.1
4.46a Actual and estimated error distribution, simple lognormal kriging, S2.2
4.46b Actual and estimated error distribution, simple kriging, S2.2
4.47a Plot of actual error vs estimated error, simple lognormal kriging, S1.1
4.47b Plot of actual error vs estimated error, simple kriging, S1.1
4.48a Plot of actual error vs estimated error, simple lognormal kriging, S1.2
4.48b Plot of actual error vs estimated error, simple kriging, S1.2
4.49a Plot of actual error vs estimated error, simple lognormal kriging, S2.1
4.49b Plot of actual error vs estimated error, simple kriging, S2.1
4.50a Plot of actual error vs estimated error, simple lognormal kriging, S2.2
4.50b Plot of actual error vs estimated error, simple kriging, S2.2
5.1 Subdivision of (100m*100m) ore block into sub-blocks
5.2 Estimation setup for kriging of (200m*50m) ore blocks
5.3a Regression diagram (200m*50m) ore blocks, simple lognormal kriging, shaft area
5.3b Regression diagram (200m*50m) ore blocks, simple kriging, shaft area
5.4a Error variance of (200m*50m) ore block, depending on sample grid, simple lognormal kriging, Sl.1
5.4b Error variance of (200m*50m) ore block, depending on sample grid, simple kriging, Sl.1
5.4c Error variance of (200m*50m) ore block, depending on sample grid, simple lognormal kriging, Sl.2
5.4d Error variance of (200m*50m) ore block, depending on sample grid, simple kriging, Sl.2
5.4e Error variance of (200m*50m) ore block, depending on sample grid, simple lognormal kriging, S2.1
5.4f Error variance of (200m*50m) ore block, depending on sample grid, simple kriging, S2.1
5.4g Error variance of (200m*50m) ore block, depending on sample grid, simple lognormal kriging, S2.1
5.4h Error variance of (200m*50m) ore block, depending on sample grid, simple kriging, S2.1
5.5 Number of samples required per (200m*50m) area, depending on sample grid
5.6a Plot of logarithmic estimation variance of (200m*50m) ore block vs distance of nearest sampled face to ore block
5.6b Plot of estimation variance of (200m*50m) ore block vs distance of nearest sampled face to ore block
A1.1 Plot of logarithmic block variance vs number of samples in block, (50m*50m) blocks, shaft area
A1.2 Plot of logarithmic block variance vs number of samples in block, (100m*100m) blocks, shaft area
A1.3 Plot of logarithmic block variance vs number of samples in block, (100m*100m) blocks, Sl.1
A1.4 Plot of logarithmic block variance vs number of samples in block, (100m*100m) blocks, Sl.2
A1.5 Plot of logarithmic block variance vs number of samples in block, (100m*100m) blocks.

A1.6 Plot of logarithmic block variance vs number of samples in block, (100m*100m) blocks.
LIST OF TABLES

3.1 Reef type characteristics 23
3.2 Correlation of channel width as recorded 31
 by geologists and samplers
4.1 Shaft area, regression analysis of 305 80
 (100m*100m) ore blocks
4.2 Basic statistics of five subpopulations 84
4.3 Comparison of semivariograms of subfacies 88
4.4 Weight given to mean in case of simple 125
 kriging
4.5a S1.1, regression analysis of 10 (100m*100m) 126
 ore blocks, overall semivariogram
4.5b S1.1, regression analysis of 10 (100m*100m) 126
 ore blocks, local semivariogram
4.6a S1.2, regression analysis of 34 (100m*100m) 127
 ore blocks, overall semivariogram
4.6b S1.2, regression analysis of 34 (100m*100m) 127
 ore blocks, local semivariogram
4.7a S2.1, regression analysis of 82 (100m*100m) 128
 ore blocks, overall semivariogram
4.7b S2.1, regression analysis of 82 (100m*100m) 128
 ore blocks, local semivariogram
4.8a S2.2, regression analysis of 37 (100m*100m) 129
 ore blocks, overall semivariogram
4.8a S2.2, regression analysis of 37 (100m*100m) 129
 ore blocks, local semivariogram
4.9 S1.2, actual and average estimated error 138
 variance of 33 (100m*100m) ore blocks,
 one outlier removed
4.10 Combined regression analysis of four 142
 subareas, and mine method, for (100m*100m)
 ore blocks
4.11 Binomial statistics of actual errors/ 155
 estimated errors
5.1 Logarithmic estimation variance of 161
 (100m*25m) subblocks
5.2 Regression results of simple linear and 165
 lognormal kriging, (200m*50m) ore blocks

XII
LIST OF SYMBOLS AND ABBREVIATIONS

Z actual gold values
\(\bar{Z} \) mean of actual gold values
Z* estimate of actual gold value Z
n number of data
\(V^2 \) variance
b additive constant beta for three-parameter log-normal model
Y natural logarithm of gold value plus additive constant: \(Y = \ln(Z+b) \)
LV_b^2 logarithmic variance of three-parameter lognormal model.
LV^2 logarithmic variance of corresponding two-parameter lognormal model.
both LV_b^2 and LV^2 have the same \(V^2 \).
Ve^2 error variance or estimation variance.
LV_e^2 logarithmic error or estimation variance
COV covariance
LCOV logarithmic covariance
G semivariance
LG Logarithmic semivariance
CoV coefficient of variation \(= \frac{V^2}{Z^2} \)
r correlation coefficient
semivariogram parameters:
C0 nugget effect
C1 sill of first structure
a1 range of first structure
C2 sill of second structure
a2 range of second structure (1/3 of practical range, if exponential model).
LIST OF SYMBOLS AND ABBREVIATIONS

Z actual gold values
\bar{Z} mean of actual gold values
Z^* estimate of actual gold value Z
n number of data
\nu^2 variance
b additive constant beta for three-parameter lognormal model
Y natural logarithm of gold value plus additive constant: \(Y = \ln(Z+b) \)
LV_b^2 logarithmic variance of three-parameter lognormal model.
LV^2 logarithmic variance of corresponding two-parameter lognormal model.
both LV_b^2 and LV^2 have the same \(\nu^2 \).
Ve^2 error variance or estimation variance.
LV_e^2 logarithmic error or estimation variance
COV covariance
LCOV logarithmic covariance
G semivariance
LG Logarithmic semivariance
CoV coefficient of variation = \(\frac{\nu^2}{\nu} \)
r correlation coefficient
semivariogram parameters:
C0 nugget effect
C1 sill of first structure
a1 range of first structure
C2 sill of second structure
a2 range of second structure (1/3 of practical range, if exponential model).
Kriging methods:

SLK-GM simple lognormal kriging with population mean, either the global mean of the whole shaft area or the subarea mean after subdivision.

SLK-ST simple lognormal kriging with a local mean, calculated as mean of (500m)2 area on the mined side of the ore block.

SLK-LT simple lognormal kriging with a local mean. A linear trend surface is fitted to the samples on the mined side of the ore block, and then extrapolated into the ore block to arrive at an estimate of a local mean.

OLK ordinary lognormal kriging.

SBK-GM simple linear kriging with population mean, either the global mean of the whole shaft area or the subarea mean after subdivision. A backtransformed semivariogram model is used.

SBK-ST simple linear kriging with a local mean, calculated as mean of (500m)2 area on the mined side of the ore block. A backtransformed semivariogram model is used.

SBK-LT simple linear kriging with a local mean. A linear trend surface is fitted to the samples on the mined side of the ore block, and then extrapolated into the ore block to arrive at an estimate of a local mean. A backtransformed semivariogram model is used.

OBK ordinary linear kriging with a backtransformed semivariogram model.

UBK universal kriging (linear trend) with a backtransformed semivariogram model.

SHK-GM simple linear kriging with population mean, either the global mean of the whole shaft area or the subarea mean after subdivision. A Hawkins & Cressie semivariogram is used.

SHK-ST simple linear kriging with a local mean, calculated as mean of (500m)2 area on the mined side of the ore block. A Hawkins & Cressie semivariogram is used.

SHK-LT simple linear kriging with a local mean. A linear trend surface is fitted to the samples on the mined side of the ore block, and then extrapolated into the ore block to arrive at an estimate of a local mean. A Hawkins & Cressie semivariogram is used.
OHK ordinary linear kriging with a Hawkins & Cressie semivariogram.

UHK universal kriging (linear trend) with a Hawkins & Cressie semivariogram.

Geological codes:

GB Green Bar (shale)
PM Rice Pebble Marker (arenite)
HW Hanging Wall (quartzite)
RT Carbon Leader reef - top conglomerate band
RI Carbon Leader reef - internal waste (quartzite)
RS Carbon Leader reef - shale layer
RB Carbon Leader reef - bottom conglomerate band
RF Carbon Leader reef - single conglomerate band
FW Footwall (quartzite)
The Witwatersrand of South Africa contains the largest known gold deposits in the world. These have been mined now for more than a century; and it was these gold reefs that more than 30 years ago initiated the fundamental studies (Krige, 1951) that finally led to the development of the comprehensive theory of geostatistics (Matheron, 1963).

The theoretical basis of geostatistics is well established. In fact by comparing recent publications to the day to day work experienced by the author in a geostatistics department of a mining company, it is felt that the theoretical development at present is well ahead of its practical application.

This study is mainly based on geostatistical principles that have been known for 25 years or more. The investigation originated from a 'real world' problem, and the solution has been attempted by using proven geostatistical methods (e.g. Journel & Huijbregts, 1978).

Because the regionalized variable in question (gold) can be tied to geological features, the study tries to account for this fact.

Throughout the thesis the reader will find that it has been attempted to verify geostatistical assumptions by empirical investigations. It was found that, provided the basic assumptions (e.g. stationarity) are fulfilled, the comparison of theory with practice is acceptable.
1 INTRODUCTION

1.1 General

"Many new theoretical developments have been produced,..., but the basis of everyday's geostatistics, the one used in orebody modeling and mine planning, essentially remained the same. Comparing predictions and reality of course showed discrepancies, which could be reduced most of the time.

These discrepancies were reduced either by taking geology into account in better ways, or by checking more carefully that the basic statistical hypothesis were met. These two approaches, better respect of geology or better respect of statistical hypothesis are in fact equivalent and aim at the same single goal: a better orebody model." (David, 1988).

This quote borrowed from the introduction to M. David's new 'Handbook of Applied Advanced Geostatistical Ore Reserve Estimation' describes very well the main purpose of this study: In testing the implementation of geostatistical ore reserve estimation on an operating mine in the Carbon Leader reef, ensure that the orebody model is as optimal as possible in practice. In trying to do so, the improvements achieved by taking account of the geology are quantified.
The study is based on 'everyday's geostatistics', so most of the techniques used have been proven in practice for many years.

The geology of the area under study is known very well, and geological investigations were not the main aim of the thesis. The final geological input in the estimation procedure can be provided easily on a day to day basis, and does not require a departure from techniques already used in the mine practice. In this sense, not only 'everyday's geostatistics', but also 'everyday's geology' has been used. This combination should ensure the practical application of the results.
1.2 Outline

The ore estimation method currently applied at Western Deep Levels Gold Mine gives poor results in a certain area of the Carbon Leader reef. Recent investigations of this reef horizon indicate that the gold distribution pattern can be related to sedimentological features (Nami, 1983; Buck & Minter, 1985).

The influence geological control has on the effectiveness of geostatistical procedures, is well known, and it is generally accepted that geology is to be taken into account in geostatistical studies (e.g. Krige et. al., 1969; Magri, 1978; Rendu & Readdy, 1982; Rendu, 1984; Benest & Winter, 1984).

Recent investigations of Witwatersrand gold reefs often stress the importance of the sedimentology for the ore evaluation (e.g. Magri, 1978; Verrezen, 1986; Reynolds & Stear, 1987), and suggest improved estimation by subdividing the orebody into sedimentologically homogeneous subareas. To date, however, this improvement has rarely been proved or even quantified in practice, at least not for the Carbon Leader reef. This investigation will do so.
By taking account of sedimentological parameters influencing the gold distribution, this study tests different geostatistical estimation methods to optimize the ore reserve estimation at Western Deep Levels. The longwall mining condition practiced at Western Deep Levels gold mine makes this difficult, as it requires the extrapolation of the sample values; and, like most estimation methods, kriging is basically an interpolation method.

As the data have to remain confidential, a constant factor is applied to all gold values, and only relative coordinates are revealed on the maps.

Because of the large amount of data and the complexity of the calculations involved in the analysis, a computer had to be used. The programs written by the author are described in Appendix 2.
1.3 Geographical and geological setting of the study area

Western Deep Levels Gold Mine is situated about 70 km west of Johannesburg in the Transvaal Province of South Africa. The mining district is known as the Carletonville Goldfield or West Wits Line and was discovered in 1930 (Krahmann, 1936; see Figs. 1.1a & b).

At present mainly two reefs are mined for gold at Western Deep Levels gold mine: the Ventersdorp Contact Reef (VCR) and the Carbon Leader Reef (CL). These are tabular deposits of the Proterozoic Witwatersrand Sedimentary Basin.

There are many ideas and concepts as to the overall genetic origin of the Witwatersrand gold deposits, and these will not be discussed here in detail. The author finds a publication by Pretorius (Pretorius, 1981) very clear and concise for a general overview. The basic concept generally accepted for the origin of the gold bearing Witwatersrand conglomerates is that of sedimentary placer deposits.

The Carbon Leader reef is the objective of this study. It is one of the richest gold reefs mined in the Witwatersrand basin. The reef itself is a tabular conglomerate deposit with a maximum thickness of 3m (Buck...
Figure 1.1a: Location of the Carletonville Goldfield in the Witwatersrand (after M. Lawlor, 1985).

Figure 1.1b: Mining lease areas of the Carletonville Goldfield (modified, after M. Nami, 1983)
Stratigraphically it occurs in the lower part of the Central Rand Group, about 60m above the Jeppestown Shales which top the West Rand Group (Buck & Minter, 1985). Uranium-lead dating suggests a minimum age of the Carbon Leader placer of 2700 million years (Armstrong et al., 1986).

The sediments are dipping south-southwest at an angle of 22 degrees. Figure 1.2 shows a geological section through the goldfield.

This study is conducted in the eastern part of Western Deep Levels in the No. 3 Shaft area (Fig. 1.1b).

The sub-outcrop in the north, and erosion by post Carbon Leader reef erosion channels in the east and west (de Kock, 1964), form the margins of this reef on the sides. Today's available technology will limit mining towards the south, where with work proceeding at depths of 3700m below surface, Western Deep Levels has become the deepest mine in the world.
Figure 1.2: Geological north - south section through the Carletonville Goldfield (after T. Oberthür, 1883).
2 PREVIOUS INVESTIGATIONS IN THE RELATION OF GOLD DISTRIBUTION AND SEDIMENTOLOGY IN THE CARBON LEADER REEF

2.1 Description of Sedimentology

The Carbon Leader Formation is a fining upward cycle (the average grain size in each layer reduces with the layer being higher up in the geological sequence, see Buck & Minter, 1985), starting at the base with the gold-bearing conglomerate band. This averages 0.1m in thickness, and rests on an angular unconformity (Buck & Minter, 1985). A carbon seam consisting of a maximum of 2 cm of columnar carbonaceous matter can be developed at the base of the conglomerate. This carbon seam is possibly the relic of primitive, Precambrian algal growth (Hallbauer, 1975). However, this carbon seam is not consistent in its lateral extent, and is not developed over large areas.

In north-south trending zones, this reef splits into several conglomerate bands, separated by intercalated quartzites. The cumulative thickness of up to 3m in these areas is achieved by downcutting into the underlying Footwall Quartzites (Buck & Minter, 1985).

This reef conglomerate is overlain transitionally by approximately 2m of dark green-gray Hangingwall Quartzites, which in turn are followed by a thin, well
sorted, coarse grained arenite band called Rice Pebble Marker. A laterally very consistent green shale to siltstone named Greenbar forms the top of the sequence.

The gold is found in the conglomerate unit. It occurs as detrital grains or as filaments in the columnar carbon seam and is distributed throughout the conglomerate, either detrital or intergrown with pyrite or gersdorffite. Most gold is concentrated in the basal carbon seam (Nami, 1983).
2.2 Interpretation of Sedimentology

Two sedimentological studies have been published with interpretations of the Carbon Leader, and investigations of the relationship of the gold distribution with sedimentological parameters, as mentioned in the outline (Nami, 1983; Buck & Minter, 1985).

While Buck and Minter (1985) investigated the whole goldfield on a regional scale, Nami did a very detailed study in a small area in the northwest of Blyvooruitzicht Gold Mine.

Buck and Minter (1985) interpreted the conglomerate unit as fluvial lag deposits of two adjacent palaeo-drainage systems eroding an alluvial fan surface. The placer was formed through reworking and concentrating of fan material. The gold distribution pattern they found to be reflected in the cumulative conglomerate thickness, with high gold accumulations coinciding with channels.

Nami (1983) subdivided his study area into two subfacies: a subfacies A, also called Interchannel area, consisting of a single, thin sheet-like conglomerate; and a subfacies B or Channel area, which is characterised by two to three conglomerate bands separated by intercalated quartzites. While he also interpreted
multiple reef bands areas as palaeochannels, he assumes the single conglomerate band to be of sheetflood origin. These areas of thin placer development are interpreted as low energy - non active regions favourable for the existence of the primitive algae mass vegetation which later became the carbon seam. Because the gold most probably was transported in suspension (James, 1984), according to Nami most gold has been trapped by these algal mats. This resulted in a relative high uniform gold concentration in these areas, against a low and erratic gold concentration in the channel areas (Nami, 1983).

In conclusion it can be said that both researchers agree on the origin of the multiple conglomerate bands as channel-laid deposits. For the single conglomerate band the interpretations differ from shallow, probably migrating perennial streams to a sheetflood deposition.

It is generally expected that taking account of this geological information in the estimation process will improve the estimation in the Carbon Leader reef. However, no study has been published so far which actually quantifies this improvement.
3 SEDIMENTOLOGICAL STUDY

3.1 Method

It is the general underground practice to take a sedimentological log of the stope face at 5m intervals along the stope face. This practice is adhered to in order to ensure full compatibility with historical data. Taking logs at distinct locations also has the advantage that the exact position is known in north and east coordinates. Therefore the log positions can be digitized similar to borehole data.

The present practice is essential for the establishment of a computer-based geological data file. Another requirement for this data base is the coding of the information in a machine-readable form. This needs some standardization of the usual geological recording, as information like 'more pyrite in the bottom band than in the top band' has to be expressed as e.g.: pyrite content in bottom band: high, in top band: medium.

A log sheet ensuring this standard was developed at the Chamber of Mines of South Africa (pers. comm. M. Nami), and is shown in Figure 3.1. In addition, the stratigraphy is noted according to the code shown in Figure 3.2.
Figure 3.1: Sedimentological Logging Sheet used for underground mapping (Chamber of Mines).

<table>
<thead>
<tr>
<th>Stratigraphy</th>
<th>Sample</th>
<th>Reef Profile</th>
<th>Width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>1003</td>
<td>RT</td>
<td>12 02 05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>1002</td>
<td>RI</td>
<td>7 01 04 08 13 17 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>1001</td>
<td>RI</td>
<td>8 02 05 - 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>1003</td>
<td>RI</td>
<td>21 01 04 07 13 17 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>1001</td>
<td>RB</td>
<td>36 02 05 - 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FW</td>
<td>1003</td>
<td>FW</td>
<td>12 01 04 07 13 17 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Contact Nature
- 01 Flat erosional
- 02 Transitional
- 03 Undulating erosional

B Lithology
- 04 Conglomerate
- 05 Quartzite
- 06 Shale

C Conglomerate Packing
- 07 Pebble supported (>70% pebble)
- 08 Matrix supported (<70% pebble)
- 09 Single pebble layer

D Sedimentary Structures
- 10 X-bedding trough
- 11 X-bedding planar
- 12 Horizontal bedding
- 13 Structureless (massive)
- 14 Inconsistent horizons

E Mineralization Type of Pyrite
- 15 Mainly detrital
- 16 Mainly mudball
- 17 Mixed pyrite

F Pyrite Content
- 18 Low ()
- 19 Medium ()
- 20 High ()

G Carbon
- 21 Flyspec
- 22 Carbon film or seam

H Pebble Size
- 23 > 8 cm
- 24 4-8 cm
- 25 2-4 cm
- 26 1-2 cm
- 27 0.5-1 cm
- 28 < 0.5 cm
The coded information is stored in the data base.

A computer program (NIMROD, see Appendix 2.1) was developed by the author to allow fast automatic retrieval of the stored geological information.

GB: Green Bar
PM: Rice Pebble Marker
HW: Hangingwall Quartzite

RF: single conglomerate band
RT: top conglomerate band
RI: internal quartzite or conglomerate lens or conglomerate unit
RS: shale or siltstone
RB: bottom conglomerate band
RQ: basal quartzite

FW: Footwall Quartzite

Figure 3.2: Stratigraphic code for different units.

During 72 underground shifts, all accessible stopes in the area under investigation were visited and sedimentological logs were taken at 401 positions.

Historical sedimentological information collected by mine personnel is only available up to about 150m back from the workings, as it was not until two years before this study commenced that the relevance of sedimentology for the gold distribution was appreciated at Western Deep Levels.
So 1167 historical logs were coded and added to the data base.

Two different coordinate systems are used at the mine: north-east coordinates in a horizontal plane as on surface maps, which are used for planning on the mine scale, and a north-east coordinate system in the plane of the reef, in which sampling and geological mapping is done. While in the strike direction of the reef (E-W) a distance remains the same when transferred to horizontal plane coordinates, the same distance in the dip direction (N-S) shortens and has to be multiplied by the cosine of the dip angle.

This shortening is maximal in the dip direction and zero at right angles to the dip direction, but has to be applied for all directions except in the strike direction of the reef plane.

There is no regional coordinate system for the reef plane; therefore, if localities are to be viewed on a mine scale, horizontal plane coordinates have to be used. Therefore the following study is based on the horizontal plane coordinate system. Because of the shallow dip, the distortion is minimal. Working in horizontal coordinates, however, requires dip correc-
tions for ore reserve estimates, as actual ore blocks in the plane of the reef are slightly larger than in the horizontal plane.

3.2 Practical limitations

Where the gold-bearing basal conglomerate unit averages 0.1m in width, as is the case in most areas, the stopping width is the minimum working height, and is approximately 1m.

About one third of the stope width is in the Footwall Quartzite, so that only the conglomerate unit and the lower part of the Hangingwall Quartzite are exposed. Information about the upper part of the Carbon Leader Formation can only be gained from drillholes.

In areas of multiple reef bands, it often happens that one band is left either in the hangingwall or footwall. Besides the loss of gold that is left behind, there is the problem of not having the full conglomerate unit exposed for mapping.
3.3 Description of the Carbon Leader reef in the study-area

Two main types of Carbon Leader reef are found in the area under investigation. The first type consists of a sequence of at least two, but up to four conglomerate layers, separated by quartzites, with a cumulative thickness including the quartzites of up to 1.7m. The second type is a rather thin, generally less than 0.25m thick conglomerate band which often shows reactivation surfaces, and in some areas overlies a carbon seam.

The first type always starts with a sharp, often undulating erosive, bottom contact to the Footwall Quartzite. Then follows a densely packed conglomerate layer of varying thickness, in places overlain by planar or trough crossbedded quartzites. This sequence is repeated up to three times, always starting with a sharp bottom contact. Only the bottom layer is laterally consistent over several adjacent stopes.

At some places, a sudden thickening of the bottom conglomerate band without downcutting into the Footwall Quartzite is observed. Here usually a thin (0.01m to max. 0.1m) shale or argillaceous quartzite is found overlying the intercalated quartzite and partly the conglomerate, as shown in Figure 3.3.
Thin shale layers, either consistent over tens of metres of stope faces, or with a lateral extension of only a few metres, can also overly either a conglomerate band or an internal quartzite.

Figure 3.3: Sudden thickening of bottom conglomerate layer, and occurrence of shale.

This whole sequence is then once again overlain by a laterally consistent conglomerate layer.

The base of the second reef type is also sharp. The reef itself consists of a rather uniform conglomerate layer. The thickness averages 0.1m and ranges in 95% of the measurements from a single pebble layer up to 0.25m of a mainly clast supported conglomerate, which at places shows reactivation surfaces. If a carbon
seam is developed, it usually rests immediately on the basal contact; carbon seams on reactivation surfaces are rarer and inconsistent.

In the transition zone of the two facies the top conglomerate band of the first reef type becomes the conglomerate layer of the second reef type, while the lower cycles of Reef Type 1 cut further down into the Footwall Quartzite (Fig. 3.4). It is therefore more accurate to call only the lower cycles Reef Type 1; while the top conglomerate band, being equivalent to Reef Type 2 should also be named so. Then areas where Reef Type 1 is overlain by Reef Type 2 (Subfacies 1) can be differentiated from areas exposing only Reef Type 2 (Subfacies 2).

This coincides with Nami's sub-facies B and sub-facies A (Nami, 1983).

The downcutting of Reef Type 1 into the Footwall Quartzite is generally very gradual. At the edges of Reef Type 1 zones against the Footwall Quartzite, the top conglomerate layer (Reef Type 2) rests with a sharp contact immediately on top of the Reef Type 1 bottom conglomerate, with an intercalated quartzite separating the two bands further towards the center of the Reef Type 1 area. Where the Reef Type 1 conglomerate does not reach the boundary of the Reef Type
1 zone to the Footwall Quartzite, the intercalated quartzite is found first, and this separates the Reef Type 2 conglomerate from the Footwall Quartzite. Towards the center this intercalated quartzite then overlies the Reef Type 1 conglomerate.

Figure 3.4 shows an idealized section through the two facies.

An analysis of the pebble sizes measured in 131 samples shows that this is no reliable indicator of the different reef types. The average diameter of the 10 largest pebbles per sample is 1.7 cm and does not vary significantly over the study area. This was found by Nami in his investigation as well; he also concluded that the composition of the conglomerate components shows no significant variation (Nami, 1983).
Figure 3.4: Idealized sedimentological section through the Conglomerate Unit. Sections exposing Reef Type 2 only can be separated from sections showing both reef types; thus allowing the subdivision of the Conglomerate Unit into two subfacies in plan view.
3.4 Classification of sedimentary characteristics

In general, the cumulative thickness of the basal conglomerate unit is a sufficient criterion to distinguish between the two reef types. While Subfacies 2 can hardly be misinterpreted, Subfacies 1 can present a problem if only the bottom conglomerate band is exposed and the top band is left in the hangingwall. This can be mistaken for the single conglomerate band type reef. Then the different features of the reef types as described under 3.3 can assist in the interpretation. The following Table lists the immediately recognizable characteristics of the two reef types.

Table 3.1: Reef Type characteristics

<table>
<thead>
<tr>
<th>characteristics</th>
<th>reef type 1</th>
<th>reef type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>conglomerate thickness</td>
<td>up to 1.00m, changes might be abrupt (gravel bars)</td>
<td>less than 0.25m* gradual changes</td>
</tr>
<tr>
<td>erosional contact</td>
<td>flat or undulating</td>
<td>flat</td>
</tr>
<tr>
<td>shale layers</td>
<td>often present</td>
<td>absent</td>
</tr>
<tr>
<td>No. of conglomerate bands</td>
<td>2 to 4 (if whole unit exposed)</td>
<td>1</td>
</tr>
</tbody>
</table>

These characteristics are valuable for underground mapping in areas which are problematic because of conglomerate bands possibly not exposed.

* See explanation, 1st paragraph page 18.
3.5 Interpretation of Sedimentology

The two different reef types were probably formed in different environments.

Reef Type 1 is thought of as being deposited in a fluvial environment.

The vertical succession of several conglomerate bands, each with an erosional base, and intercalated quartzites, are interpreted as fluvial sediments, deposited in several events on top of each other (Reineck & Singh, 1980).

The sudden thickening of a bottom conglomerate layer that occurs in this reef type (as illustrated in Figure 3.3), is interpreted as a gravel bar (Reineck & Singh, 1980, p. 257ff). With decreasing competence of the water flow, these gravel bars are formed first, and direct the water flow in the channel. Continuous further decrease causes the gravel bars to fall dry, and makes the remaining parts of the channel suitable for the deposition of sand. Eventually the water flow will become stagnant, and the clay is deposited between the gravel bars.

Thin intercalated shale layers occurring without gravel bars are thought of as being formed in a similar way.
The deposition of clay is confined to stagnant water. This will collect in low lying areas. These shale layers are therefore characteristic of the Subfacies 1 channels, which eroded below the palaeosurface.

The extension of the oblong areas in which Reef Type 1 occurs, in a north-south direction, also fits into the general pattern of a palaeodrainage system flowing from the hinterland in the north to the Witwatersrand Basin in the south (de Kock, 1964).

Reef Type 2 does not show any of these characteristics. It is a thin, laterally consistent, sheetlike conglomerate band, covering areas in which Reef Type 1 was deposited as well as areas where this is absent. The basal contact is planar. Shale layers are absent. No downdip decrease in pebble size is displayed (Nami, 1983).

All this points towards a uniform depositional process.

The genesis of the Carbon Leader is visualized as follows: due to tectonic uplift in the hinterland, a fluvial fan system started discharging sediment over the plain formed by the Footwall Quartzites. The first event was erosive downcutting in the Footwall Quartzites. These channels were then filled, firstly with conglomerates, and in later stages with sand, and
The deposition of clay is confined to stagnant water. This will collect in low lying areas. These shale layers are therefore characteristic of the Subfacies 1 channels, which eroded below the palaeosurface.

The extension of the oblong areas in which Reef Type 1 occurs, in a north-south direction, also fits into the general pattern of a palaeodrainage system flowing from the hinterland in the north to the Witwatersrand Basin in the south (de Kock, 1964).

Reef Type 2 does not show any of these characteristics. It is a thin, laterally consistent, sheetlike conglomerate band, covering areas in which Reef Type 1 was deposited as well as areas where this is absent. The basal contact is planar. Shale layers are absent. No downdip decrease in pebble size is displayed (Nami, 1983).

All this points towards a uniform depositional process.

The genesis of the Carbon Leader is visualized as follows: due to tectonic uplift in the hinterland, a fluvial fan system started discharging sediment over the plain formed by the Footwall Quartzites. The first event was erosive downcutting in the Footwall Quartzites. These channels were then filled, firstly with conglomerates, and in later stages with sand, and
eventually clay. Several phases of deposition took place, with the main water flow always confined to the channels. Reef Type 1 was formed in this manner.

During the deposition of Reef Type 1, the areas between the channels stayed virtually free of sediment. They formed favourable conditions for the primitive algal growth, that later became the carbon seam. During high flood stages, water and gold particles (that are mainly transported in suspension (James, 1984)), reached these areas, and the gold particles were deposited here because of the changed flow conditions.

This resulted in a consistently high gold content in the areas between the channels, while the channels themselves have only an erratic, and generally low gold content.

This is the situation before the deposition of the Reef Type 2 conglomerate, as described by Nami (Nami, 1983).

New research in other carbon-seam type gold reefs on the Witwatersrand (Verrezen, 1987) make a different genesis for Reef Type 2 more probable than the sheetflood deposition originally assumed by Nami (Nami, 1983). Prolonged discussions with Nami and Verrezen (pers. comm.) led to the interpretation of Reef Type 2 of the Carbon Leader reef as the basal conglomerate of a marine transgression over the fluvial plain, on which
Reef Type 1 was formed. The wide lateral extension and continuity of the Reef Type 2 conglomerate band suggests a marine environment (Clifton, 1973).

The marine transgression was caused by a downlift of the floodplain. Hangingwall Quartzite, and Greenbar shales were deposits of the marine environment, with the Rice Pebble Marker at the base of the Greenbar, possibly being a product of an intermediate uplift period before the deposition of the Greenbar shales.

Uplifting after the Greenbar deposition caused this to fall dry, and later to become covered with sediments deposited in a fluvial environment.

Figure 3.5 shows a schematic block diagram illustrating this sedimentological model. It is very much in agreement with the general model given by Pretorius who describes this reef type as 'transgressive placer' (Pretorius, 1981).

As this model accommodates most of the sedimentological properties of the Carbon Leader, it is chosen as the geological basis of the geostatistical study.
Fig. 3.5: Schematic, vertically strongly exaggerated block diagram of depositional model. Influx of sediment and heavy minerals by fluvial fan system into transgressive inland sea. Local reworking and winnowing in beach zone concentrates pebbles and heavy minerals. Transgression creates sheetlike conglomerate unit covering fluvial channels (Subfacies 1 in plan view) and Footwall Quartzite alike (Subfacies 2). Color scheme according to standard of AAC.
3.6 Facies Distribution in Study Area

3.6.1 Comparison of Geological Data with Sampling Data

In order to draw a map of the subfacies distribution in the No. 3 Shaft area, it is necessary to rely on the channel width as recorded during routine chip sampling. As for most of the mined out area no other information is available (see chap. 3.1). This channel width is ideally the cumulative thickness of the conglomerate unit including the intercalated quartzites, but can be misleading in multiple conglomerate band areas, where for example the top conglomerate band is not exposed. Such a case is illustrated in Figure 3.6.

Figure 3.6: Influence of reef in hangingwall on channel width as recorded during assay sampling.
As can be seen, severe underestimation of the true channel width may occur if the conglomerate unit is not fully exposed.

These channel width data are compared with the true channel width resulting from sedimentological mapping in recently mined areas where both types of data are available.

Both data sets are regularized in $(25\text{m})^2$ blocks. From each sample width 4cm are subtracted, as samplers are advised to include 2cm of hangingwall and footwall into their samples. Only those geological data which cover the whole reef section between footwall and hangingwall are included in the analysis.

In Subfacies 1, 152 blocks of $(25\text{m})^2$ each were found, for which geological and sampling data are available, and 218 of such blocks for Subfacies 2. Table 3.2 shows the result of a correlation analysis of the variable channel width for these two data sets as well as for the combined position for all blocks.

Although the overall correlation coefficient of .77 indicates a reasonable correlation of the data sets, the discrepancy increases if the subfacies are analysed individually. For Subfacies 1, the sample data underestimate the true channel width on average by 28%. This
is to be expected because of the not fully exposed conglomerate unit. For Subfacies 2 the sample data overestimate the true channel width by 29% on average, probably due to the tendency of the samplers to also sample pebbly Hangingwall Quartzite as well as footwall pebble bands.

Table 3.2: Correlation of channel width as recorded by geologists (CWgeol) and samplers (CWsamp).

<table>
<thead>
<tr>
<th></th>
<th>CWgeol</th>
<th>CWsamp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(cm)</td>
<td>(cm²)</td>
</tr>
<tr>
<td>mean</td>
<td>V²</td>
<td>mean</td>
</tr>
<tr>
<td>Subfacies 1</td>
<td>54.5</td>
<td>21.5</td>
</tr>
<tr>
<td>Subfacies 2</td>
<td>11.3</td>
<td>5.8</td>
</tr>
<tr>
<td>Combined</td>
<td>29.0</td>
<td>25.7</td>
</tr>
</tbody>
</table>

r: correlation coefficient
n: number of samples

In Figure 3.7, this is shown graphically. The two data sets are plotted against each other for the combined data set of Table 3.2.

The dashed horizontal line represents the boundary between the two subfacies, and the solid sloping line is the line X=Y. The true channel widths of blocks plotting on this line are exactly estimated through the sample channel width. Points above the line X=Y represent blocks for which the samplers underestimate and points below blocks for which they overestimate the
true channel width. For Subfacies 1 - above the dashed line - most points plot above the line X=Y, thus showing the general underestimation of the true channel width by the samplers in this subfacies.

Below the horizontal line, the majority of the points falls under the line X=Y, showing that the true channel width is on average overestimated for Subfacies 2.

A linear regression analysis of the true channel width on the channel width as recorded during routine sampling gives the regression formula:

$$CW_{geol} = 2.18\text{cm} + 1.08 * CW_{samp}$$

with a standard error of 16.6cm.

In general it is concluded that channel width data are reliable indicators of the subfacies distribution. However, in localized areas it can be misleading. As Figure 3.7 shows, in an extreme case a block with a true channel width of about 8cm was sampled over a width of 64cm! The other extreme is where blocks of 65cm true channel width give a sample channel width of less than 5cm. Therefore not too much weight should be given to isolated patches of what appears to be one subfacies within the general area of the other sub-
facies, as that is well within the accuracy of a sub-facies map based on channel width data as recorded during routine sampling.