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This thesis follows a direction of research that deals with the theoretical founda-

tions of stochastic differential equations on manifolds and a geometric analysis of the

fundamental equations in nonlinear filtering theory. We examine the importance of

modern differential geometry in developing an invariant theory of stochastic processes

on manifolds, which allow us to extend current filtering techniques to an important

class of manifolds. Furthermore, these tools provide us with greater insight to the

infinite-dimensional nonlinear filtering problem. In particular, we apply our geometric

analysis to the so called unnormalized conditional density approach expounded by M.

Zakai. We exploit the geometric setting to study the geometric and algebraic prop-

erties of the Zakai equation, which is a linear stochastic partial differential equation.

In particular, we investigate the use of Lie algebras and group invariance techniques

for dimension analysis and for the reduction of the Zakai equation. Finally, we utilize

simulation to demonstrate the superiority of the Zakai equation over the extended

Kalman filter for a passive radar tracking problem.
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Stochastic Differential Equations with

Application to Manifolds and Nonlinear Filtering

Chapter 1

INTRODUCTION TO IMPORTANT THEMES

The objective of this chapter is to provide an introduction to the themes concerned

with the study of stochastic differential equations on manifolds. In mathematics,

this area of specialization is called stochastic differential geometry. We also focus on

the important application of this theory and differential geometry in general, to the

problem of nonlinear filtering. This is a subject that has gained considerable interest

and is sometimes referred to as geometric filtering theory. The synergy between these

fields of study is understood through the introduction to deterministic and stochastic

dynamical systems and by illustrating their relation to filtering theory.

1.1 A Classical Approach

1.1.1 Deterministic Dynamical Systems

In mathematical systems theory, the plant of a deterministic dynamical system may

be defined by a map Fd, which has an input space U as its domain and an output

space Y as its range, that is Fd : U → Y , refer to Fig. 1.1.

Fd- -
u ∈ F y ∈ Y

Figure 1.1: Deterministic Dynamical Systems

Traditionally, these systems have been modelled by differential equations in Euclidean
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spaces. However, a significant advancement was made when the great mathematician

Sophus Lie created a revolutionary discipline in mathematics called Lie Group Theory.

The motivation behind Lie’s work was to find a structured approached for the advance

treatment of differential equations. Lie groups have an algebraic structure and are

also subsets of space, which implies that they have a geometry. Some of these have

properties similar to Euclidean space, making it possible to do analysis on them.

1.1.2 Stochastic Dynamical Systems

We now introduce the idea of a stochastic dynamical system, Fig. 1.2; compare with

Davis et al [15] page 4.

Fs- -
?u ∈ U y ∈ Y

r ∈ R

Figure 1.2: Stochastic Dynamical Systems

In this case, the plant may be described by the map Fs : U×R → Y , where R denotes

an uncertainty space. The map Fs is assumed to be nonanticipative, this means that

∀r ∈ R the output y ∈ Y is independent of the input u ∈ U . With regard to the

uncertainty variable, we restrict ourselves to the case where there is only a dependence

on a stochastic phenomena, hence, R may be identified with the outcome space of

a general random variable. From a modelling and simulation perspective, especially

in filtering theory, it is convenient to represent stochastic dynamical systems using

differential equations perturbed with white noise terms. This allows one to preserve

the important notion of the state of the system, thus maintaining some parallelism

with deterministic dynamical systems. Markov theory, Maybeck [52], fits perfectly in

this framework. The rigorous mathematical treatment of such processes requires Ito

stochastic calculus.
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1.1.3 Filtering Theory

Consider the stochastic dynamical system described above. In addition to the obser-

vation y, which can be measured, there is another output z, which takes on values in

the space Z and that represents the signal to be estimated, refer to Fig. 1.3.

F- -
-

?u ∈ U z ∈ Z

y ∈ Y

r ∈ R

K -̂z

Figure 1.3: Nonlinear Filtering

Our plant can now be modelled by the map F : U×R → Y×Z. The central theme in

filtering theory is to construct a nonanticipating map K : Y → Z such that ẑ = Ky

is a least squares estimate of z, Davis et al [15] page 9. In principal, the observations

y are used to update a state estimate x̂. The random vector is then determined as a

function of the estimated state.

1.2 A Contemporary Approach

1.2.1 Deterministic Dynamical Systems

In differential geometry, one considers abstract spaces called manifolds, which resem-

ble Euclidean space locally but have a very general global structure. An important

feature of manifolds is that they are equipped with a measure of distances. Recent

advances in differential geometry include an elegant geometric interpretation of Lie

groups and their associated algebras. These play a central role in fibre bundle theory,

which represents the state of art of differential geometry. A contemporary approach

to dynamical systems involves the geometric interpretation of the evolution of differ-

ential equations on manifolds and the study of corresponding groups. The geometric

approach allows one to describe both quantitative and qualitative global properties

of state trajectories for such systems. Thus group theory and differential geometry
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provide a natural framework for the study of deterministic dynamical systems, Arnold

[3].

1.2.2 Stochastic Dynamical Systems

Stochastic differential geometry deals with the systematic extension of stochastic cal-

culus to differentiable manifolds. The earliest work that formally dealt with the study

of diffusion processes on a manifold was initiated by Ito [28] who identified certain

peculiarities concerning their construction. Ito findings revealed that one cannot

construct a global process by piecing together solutions of local equations without

further formal assumptions. Furthermore, Ito differential equations do not behave

as ordinary differential equations and therefore cannot be treated as a vector fields.

This is because under coordinate transformations, stochastic equation differentials

are transformed under Ito’s formula, which are different from the conventional rules

of differential calculus, however, stochastic differential equations in the Stratonovich

form do not have this problem. A general consensus shared by probabilists and

mathematicians is that a successful formulation of the Ito and Stratonovich calculi

on manifolds must incorporate the concepts associated with the geometry of fibre bun-

dles, Belopolskaya et al [5] and Hsu [25]. Furthermore, advance topics in Lie groups

and Lie algebras have proven to be indispensable tools to classify the dimension of

stochastic differential equations and to understand their symmetry and reduction

to simpler equations. The application of these techniques to nonlinear filtering has

profound implications.

1.2.3 Filtering Theory

The geometric theory of filtering starts with the so called Zakai equation. We now

embark on a short exposition based on Davis et al [15], page 10, which will illustrate

the rich interplay between the various disciplines described earlier. Consider the

following stochastic dynamical system:

Page 5 of 157



Stochastic Differential Equations with

Application to Manifolds and Nonlinear Filtering

dxt = f(xt)dt+ g(xt)dwt, xt0 = x0 (1.1)

dyt = h(xt)dt+ dvt, yt0 = 0 (1.2)

zt = k(xt) (1.3)

where

1. xt ∈ R
n represents the state of the system

2. yt ∈ R
p represents the observations of the system and

3. zt ∈ R
q represents a function of the state which we wish to estimate

4. (wt, vt) represents the n-dimensional state and the p-dimensional measurement

noise respectively; we assume that they are mutually independent Wiener pro-

cesses and they are independent of x0

5. f(xt) ∈ R
n represents the dynamic coupling vector

6. g(xt) ∈ R
n×n represents the process noise coupling matrix

7. h(xt) ∈ R
p represents the measurement coupling vector

We assume that f , g and h are continuous functions.

From probability theory, it is well known that the conditional expectation ẑt = E[zt |
yτ , t0 ≤ τ ≤ t] is the best estimate for zt in a least squares sense, that is E[‖zt− ẑt‖2]

is minimized. If we assume that the stochastic processes associated with Equ.(1.1)

possesses the Markov property then, the conditional distribution πt = P (xt | yτ , t0 ≤
τ ≤ t) can be used to estimate the state of the system. It can be shown that there

exists an equation
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dπt = A1(πt)dt+B1(πt)dyt (1.4)

which can be solved for πt to determine the estimate

ẑt =

∫

X

k(x)πtdx (1.5)

with πt0 being the initial distribution of x0.

In the chapters that follow, we show that the normalized conditional distribution πt

is related to another distribution pt in the following manner

πt =
pt∫

X
ptdx

(1.6)

We appropriately call pt the normalized conditional distribution of πt.

It turns out that pt is a solution of a bilinear stochastic partial differential equation

dpt = A2ptdt+ hptdyt (1.7)

which we call the Zakai equation in honour of Dr. Moshe Zakai for his pioneering

contribution to nonlinear filtering theory and the application and theory of stochastic

processes, Zakai [69]. Duncan [16] and Mortensen [57] have also been independently

credited for their work on Equ.(1.7), which is sometimes called the Duncan-Mortensen-

Zakai equation. The greatest advantage that the Zakai equation, Equ.(1.7), has in

filtering theory is that it is considerably easier to work with than the update equation

for πt, Equ.(1.4). The estimate ẑt can then be determined by the following equation:

ẑt =

∫
X
k(x)ptdx∫
X
ptdx

(1.8)

Some of the more recent developments in stochastic filtering include:

1. the discovery of finite dimensional nonlinear filters

2. the introduction of Lie algebraic and differential geometric methods
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3. group representation methods

4. the rigorous formulation of the theory of partial stochastic differential equations

and

5. the development of robust or pathwise solutions of the filtering problem

The first two fields of study are related and together with the third constitute the

bulk of contemporary research. To briefly illustrate their importance, consider the

following discussion.

Recall from an earlier definition that the filter can be associated with a non-anticipative

function that maps the observations yt to estimate ẑt. The update equations for πt

and pt are realizations of this map. However, the difficulty associated with these maps

is that they are in general infinite dimensional. More precisely, they map R
n to R,

that is an infinite dimensional object. Brockett utilized geometric tools to study the

bilinear structure of the Zakai equation to determine conditions for the existence of

finite dimensional filters, which admits a finite dimensional realization; this implies

the existence of a differential map and an output equation

ṁt = v(m, ẏ) (1.9)

ẑ = w(m) (1.10)

on a finite dimensional manifold M. These maps can be associated with the same

input/output map for πt and pt. Therefore, the concept of dimension provides a

deeper understanding of the underlying geometry of the filter. In the case of pt the

resulting filter will have the following form:

ṁt = α(m) + β(m)ẏ (1.11)

ẑ = γ(m) (1.12)
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where α(m) and β(m) are vector fields on the manifold M. The above system of

equations, Equ.(1.11) and Equ.(1.12), is similar to the Kalman-Bucy filter. The main

tool in this analysis is the Lie algebra of the operators associated with the Zakai

equation, which has a very deep geometric structure.

From our discussion, it is clearly apparent that a geometric theory for stochastic

dynamical systems and filtering theory has an important place in mathematical anal-

ysis.

1.3 Outline of Thesis

The invariant theory of stochastic equations on manifolds is not a precursor to the ge-

ometric theory of nonlinear filtering. However, it is important to develop a coalescent

theory concerning their construction on manifolds before we attempt to understand

their geometric and algebraic properties. Our application to nonlinear filtering the-

ory is motivated by the fact that it is a subject of immense sophistication that can

benefit from new developments in infinite-dimensional analysis. Furthermore, the

practical importance of filtering theory in a multitude of diverse disciplines cannot

be overemphasized.

Chapters 2-5 constitute part II of this thesis, which deals with the theoretical foun-

dations of modern differential geometry, stochastic calculus and nonlinear filtering

theory.

In chapter 2 we provide a contemporary introduction to the geometry of fibre bundles,

which forms the foundation for much of the pertinent conceptual framework of our

research. In particular, we examine the importance of Lie groups and their associated

algebras in constructing connections on principal fibre bundles. The connection allows

us to define horizontal lifts, parallel transport and covariant differentiation of tangent

vectors, which constitute the basic machinery for doing calculus on a manifold. The

chapter concludes with an introduction to the frame bundle as a principal fibre bundle
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and some concepts in Riemannian differential geometry, which allow us to describe

stochastic processes on manifolds. Another advantage gained from the fibre bundle

approach is that the associated Lie group theory will enable us to introduce tools

that are essential for the advance treatment of the nonlinear filtering problem.

Chapter 3 focuses on the calculus of semimartingales, which feature prominently in

nonlinear filtering theory and stochastic differential geometry. We introduce both

Ito and Stratonovich stochastic equations and Ito’s lemma for semimartingales. The

chapter concludes with a summary of Markov and diffusion processes.

Chapter 4 specializes on the fundamental equations of the nonlinear filtering problem.

We examine both the innovations approach as well as the unnormalized conditional

density approach to illustrate the distinct advantages the latter technique has over

the former.

In chapter 5, we introduce the Kalman-Bucy filter as a special case of nonlinear filter-

ing problem. This is done primarily to make geometric nonlinear filtering accessible

to practitioners of Kalman filtering theory so that a deeper appreciation can be gained

for the techniques described in this thesis.

Part III of this thesis comprises of chapters 6-7, which highlights the synergy between

the various disciplines introduced in part I.

In chapter 6 we take a detailed look at semimartingales on an arbitrary manifold.

Using the connection on a frame bundle, we explain how such processes can be asso-

ciated with a semimartingale in Euclidean space. The chapter concludes with some

applications to nonlinear filtering.

In chapter 7 we describe a geometric analysis of the Zakai equation. In particular, we

will show that the Lie algebra of operators associated with the Zakai equation and

its invariance under an appropriate group of transformations exhibits the structure
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of the filtering problem. We investigate symmetries that simplify the resolution of

the Zakai equation via group invariant solutions.

In chapters 8 and 9 of part IV, we examine numerical techniques to solve the Zakai

equation and consider an application.

In chapter 8 we introduce numerical algorithms to solve the Zakai equation. The first

algorithm is based on a combination of semigroup techniques and gauge transforma-

tions. The second algorithm relies entirely on the method of finite differences, which

have been successfully applied to partial differential equations. We also introduce

the discrete extended Kalman filter, which provides a useful benchmark for studies

undertaken in nonlinear filtering.

In chapter 9 we use simulation to demonstrate the superiority of the Zakai equation

against the extended Kalman filter for a nonlinear passive radar tracking problem.

Lastly, we bring our thesis to conclusion in chapter 10 of part V.
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Chapter 2

THE GEOMETRY OF FIBRE BUNDLES

In this chapter we provide an introduction to the necessary differential geometry

and Lie group theory that is required to understand the geometry of fibre bundles.

We place great emphasis on fibre bundle theory to give a complete description of

the connection and its relation to horizontal lifts, parallel transport and covariant

differentiation. As we will discover in later chapters, these concepts form the basic

tools of stochastic differential geometry. For further details, Nakahara [58], Isham [27],

Gockeler et al [20] and Lee [48] provide an excellent introduction to the subject.

2.1 Modern Differential Geometry

Differential geometry is essentially a generalization of the mathematics of curves and

surfaces to arbitrary objects, which we call manifolds.

2.1.1 Manifolds and Submanifolds

Definition 2.1.1 (pages 81 & 171-172 Nakahara [58]). We say that M is an

m-dimensional differentiable manifold if:

1. M is a topological space. This means that there exists a topology on M
which is defined by the set

T = {Ui ⊂ M | where Ui are open sets ∀i ∈ I} (2.1)

T satisfies the following requirements:
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(a) ∅,M ∈ T

(b) ∪j∈JUj ∈ T , where J ⊆ I

(c) ∩k∈KUj ∈ T , where K ⊆ I

2. M is equipped with an atlas A = {(Uα, φα) | α ∈ I}, which is a family of pairs

(U, φ) called charts. The family {Uα | α ∈ I} of open sets of A covers M in

the following sense:

M = ∪α∈IUα

The functions φα : Uα → R
m of A are called co-ordinate functions. They

belong to a class of continuous and injective functions that map from one space

to another, we call these functions homeomorphisms. Furthermore, given Uα

and Uβ such that Uα ∩ Uβ 6= ∅, the map

φβ ◦ φ−1
α |φα(Uα∩Uβ): φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is in infinitely differentiable, that is φβ ◦ φ−1
α ∈ C∞ ∀α, β ∈ I

Given the homeomorphism f : M → N , we say that M is diffeomorphic to N if

f and its bijection f−1 are C∞ functions.

Example 2.1.1 (page 173 Nakahara [58]). The most trivial example of a manifold

is the Euclidean space R
n, which has a single chart that covers the whole space and

the co-ordinate function φ can be the identity map.

Example 2.1.2 (page 174 Nakahara [58]). We consider a special case of a 1-

dimensional manifold M given by the unit circle S1 = {(x1, x2) ∈ R
2 | (x1)2+(x2)2 =

1}. We need to define two charts; let us define the first chart as

φ−1
1 : (0, 2π) → S1, θ 7→ φ−1

1 (θ) := (cos θ, sin θ) (2.2)

whose image is Im(φ−1
1 ) = S1 − {1, 0}. Similarly, define the second chart as
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φ−1
2 : (−π, π) → S1, θ 7→ φ−1

2 (θ) := (cos θ, sin θ) (2.3)

whose image is Im(φ−1
2 ) = S1 − {−1, 0}. The functions φ−1

1 and φ−1
2 are invertible

and all maps φ1, φ2, φ
−1
1 and φ−1

2 are continuous. This implies that φ1 and φ2 are

homeomorphisms. Furthermore, the compositions φ1 ◦ φ−1
2 and φ2 ◦ φ−1

1 are smooth.

In our thesis we will encounter smooth subsets of a manifold that are endowed with

the structure of a manifold that has additional properties; we call these submanifolds.

Definition 2.1.2 (page 64 Isham [27]). Let M be an m-dimensional manifold with

atlas A. Consider the subset M̃ ⊂ M which is equipped with the subset topology of

M. The set M̃ is said to be an n-dimensional submanifold of M if ∀p ∈ M̃
∃(Up, φp) ∈ A such that

1. p ∈ Up ⊂ M

2. φp : Up → R
m satisfies

φp(Up ∩ M̃) = φp(Up) ∩ R
n where 0 < n ≤ m (2.4)

The above definition can be explained as follows. The submanifold M̃ of M comprises

of a set of points of M which have the following property: in an open neigbouhood

Up about some point p ∈ M there exists a coordinate system of M where the points

of M̃ in Up are characterized by x1 = . . . = xm−n = 0.

2.1.2 Lie Group Theory

Lie group theory began with the study of the symmetries of systems of ordinary

differential equations. The reason why Lie groups are so important is because they

are equipped with a natural differentiable structure, hence, the tangent space at any

point on the Lie group is a well defined geometric object. What is remarkable is

that the tangent space at the identity element of the group has a well defined Lie
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algebraic structure. It turns out that many properties of the group are reflected on

its Lie algebra. The geometric interpretation of Lie group theory is central to the

study of fibre bundles and the theory of connections.

Definition 2.1.3 (page 116 Gockeler et al [20]). A Lie group is a smooth

manifold G that is also a group, with the following properties:

1. group multiplication M : G ×G → G, which is defined as (g, h) 7→M(g, h) := gh

is continuous

2. group inversion I : G → G, where g 7→ I(g) := g−1is continuous.

Example 2.1.3 (page 207 Nakahara [58]). Let S1 be the unit circle in the complex

plane

S1 = {eiθ | θ ∈ R (mod 2π) } (2.5)

The group operations defined by eiθeiφ = ei(θ+φ) and (eiθ)−1 = e−iθ are differentiable.

Thus S1 is a Lie group.

Lie Group Actions and Representations

In fibre bundle theory, the focus of our attention is not the abstract structure of Lie

groups but on the action of a Lie group on a manifold and how it affects it.

Let M be a manifold and G a group. The representation ρ of G on M is a Lie

group homomorphism , that is it preserves the algebraic structure on G

ρ : G ≃−→Diff(M), g 7→ ρg (2.6)

where Diff(M) = {f ∈ C∞(M) | f : M → M} denotes the set of all diffeomor-

phisms on M. We now in a position to describe two fundamental group actions on a

manifold.
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Given a topological group G and a manifold M. A left action of G on M is a

differentiable map

L : G ×M → M, (g,m) 7→ L(g,m) := ρgm (2.7)

The map ρg : M → M, m 7→ ρgm := gm is a diffeomorphism of M ∀g ∈ G where

1. ρe = idM

2. the homomorphism property is satisfied: ρg ◦ ρh = ρgh ∀g, h ∈ G

Note that ρg is an isomorphism because it is homomorphic and bijective.

Given a topological group G and a manifold M. A right action of G on M is a

differentiable map

R : M×G → M, (m, g) 7→ R(m, g) := δgm (2.8)

The map δg : M → M, m 7→ δgm := mg is a diffeomorphism of M ∀g ∈ G where

1. δe = idM

2. the antihomomorphism property is satisfied: δg ◦ δh = δgh ∀g, h ∈ G

Given a left action g 7→ ρg we can define, page 178 Isham [27], a right action as

δg := ρg−1 = (ρg)
−1 (2.9)

Note that we define ρg−1m = mg.

In this section we introduce a map whose image gives rise to an equivalence relation

on a differentiable manifold. This leads to a very powerful geometric interpretation,

which we will use to introduce principal fibre bundles.
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Given a representation ρ of G on M, for any x ∈ M define the map

bitx : G → M, g 7→ bitx(g) := ρgx (2.10)

with bitxe = x.

We define the orbit of x by the image of bitx

Ox = bitx(G) = {ρgx ∈ M | g ∈ G} ⊂ M (2.11)

The orbit of x consists of all points in M that can be reached from x by group

transformation. x, y ∈ M are in the same orbit with respect to G ⇐⇒ ∃g ∈ G
such that y = ρg−1x. Therefore, Ox defines an equivalence relation on x. Thus, the

manifold M can be decomposed into a disjoint union of orbits

M = ∪x∈MOx (2.12)

The set of all orbits defines a quotient space, that is, an orbit space

M/G = {Ox | x ∈ M} (2.13)

The quotient map π̄ : M → M/G is continuous and is defined by x 7→ π̄(x) := Ox.

The notion of the orbit together with some of the special properties of G form the

basis of principal fibre bundles. We now introduce two important subgroups of G
that allow us to understand the properties of representations more completely.

The isotropy group or stability group is a subgroup of G

I(x) = {g ∈ G | ρgx = x} ⊂ G (2.14)

that identifies all the elements of G that fix x ∈ M.

The kernel of a G-action is the subgroup of G defined by
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K = ∩x∈MI(x) ⊂ G (2.15)

The kernel represents that component of the group that is not involved in the group

action, it is a normal subgroup of G.

A representation is said to be:

1. transitive if there is only one group orbit Ox, in this case, M is said to be

homogeneous under the given action

2. effective or faithful if K = {e}, this implies that the homomorphism g 7→ ρg is

injective

3. free if the only element of G that fixes x ∈ M is the identity element e ∈ G,

that is I(x) = {e}. This implies that Ox ≃ G, note that if the representation is

free, it also implies that the action is effective

We now restrict our attention to the important case of the action of Lie groups on

itself.

1. The simplest example of such representations arise with the left action and right

action on a Lie group G × G → G. Let (g, h) ∈ G × G, the above mentioned

actions give rise to the following respective maps (g, h) 7→ L(g, h) := Lgh and

(g, h) 7→ R(g, h) := Rgh.

We define the left translation and right translation of g ∈ G, denoted by

Lg and Rg respectively, by the following maps, Lg : G → G and Rg : G → G,

where h 7→ Lg(h) = gh and h 7→ Rg(h) = hg respectively. Lg and Rg are

diffeomorphisms with inverses given by (Lg)
−1 = Lg−1 and (Rg)

−1 = Rg−1 .

These translations are very important because they endow the Lie group with a

well defined differentiable structure given a single chart at the identity element
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g ∈ G, page 3 Schmid [62]. The notion of left translation is important to give a

more technical description of Lie algebras.

2. The left and right translation allows a Lie group to act on itself through inner

automorphisms Adg = Lg ◦Rg−1 : G → G where (h) 7→ Adg(h) := ghg−1.

2.1.3 Fibre Bundle Theory

Theoretical Background

Definition 2.1.4 (page 133 Gockeler et al [20]). A differentiable fibre bundle

(B,M,F , π), Fig. 2.1, is defined by:

1. a differentiable manifold B called the bundle space

2. a differentiable manifold M called the base space

3. a differentiable manifold F called the standard fibre

4. a diffeomorphism Ψ : B → F

5. a Lie group G or structure group which is represented effectively on F . Also,

∀g ∈ G we have the diffeomorphic representation ρg : F → F

6. a smooth map π : B → M called the projection which satisfies the following

properties:

(a) π is surjective and differentiable

(b) ∀x ∈ M, Bx = π−1(x) is an embedded submanifold of B which is diffeomor-

phic to F , Bx is the fibre over x and represents the orbits of the G-action

(c) π defines a local product structure on B, this means that there exists an open

covering {Uα} of M where ∀x ∈ M ∃Uα ⊂ M such that the restriction
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ψα |π−1(Uα): π
−1(Uα) → Uα ×F (2.16)

is diffeomorphic. The diffeomorphism ψα respects the composition π1 ◦ψα =

π where π1 : Uα ×F → Uα is the projection onto the first factor.

F F B M G

Ui ×F

Ψi|π(Ui)

π

ψi|π−1(Ui)

ρg

Ψji

π2 π1

gji|Ui∩Uj

σ

Figure 2.1: Fibre Bundles

The dimensions of the manifolds involved in the above definition satisfies the following

rule

dimB = dimM + dimF (2.17)

A bundle that is isomorphic to the product bundle M×F is called a trivial bundle .

Since π defines a local structure on B, we define the local trivialization as follows:

ψα |π−1(Uα): π
−1(Uα) → Uα ×F , p 7→ ψα(p) := (π(p),Ψα(p)) (2.18)

The map Ψα is also a diffeomorphism, which arises from the restriction Ψα = Ψ |π−1(Uα).

Ψα can further be restricted to the fibre Bx = π−1(x) over x ∈ Uα giving rise to the

map Ψα,x = Ψα |π−1(x).

(B,M,F , π) may be identified with an n-dimensional topological bundle over M
having bundle atlas

B = {(π−1(Uα), ψα) | α ∈ I} (2.19)
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where Uα forms a covering for M

M = ∪α∈IUα (2.20)

and ∀α 6= β ∃gβα : Uα ∩ Uβ → G such that

ψβ ◦ψ−1
α |(Uα∩Uβ)×F : (Uα∩Uβ)×F → (Uα∩Uβ)×F , (x, v) 7→ (x, (gβα(x))(v)) (2.21)

The elements

{gβα | gβα : Uα ∩ Uβ → G, α, β ∈ I} (2.22)

are called transition functions, where ρ(gβα(x)) = Ψβ,α. These functions are

required to be smooth and they satisfy the following conditions:

1. the cocyclic condition gβα(x)gαγ(x) = gβγ(x) and

2. gβα(x) = ((gαβ)(x))−1

The transition functions indicate how the spaces Uα×F and Uβ×F are glued together.

For x ∈ Uα ∩ Uβ the map Ψβ,α = Ψβ,x ◦ Ψα,x
−1 corresponds to an element gβα(x) of

the structure group G via the representation ρ.

Sections

A section of a fibre bundle is a map

σ : M → B, π ◦ σ = idM (2.23)

Vector Bundles and Principal Fibre Bundles

A very important example of a fibre bundle is a vector bundle , which we denote by

(E,M, π). In this case, the fibres are vector spaces, the structure group is a subgroup
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of GL(F) and the diffeomorphisms Ψα,x are vector space isomorphisms. The set of

all smooth sections Γ∞(M, E) = {σ ∈ C∞ | σ : M → E} on E has a vector space

structure. Vector bundles are very important in the study of differential geometry

because they are generalizations of the following bundles:

1. tangent bundle (TM,M, π), where TM = ∪p∈MTpM.

We call the smooth section X : M → TM a vector field , the set of all vec-

tor fields is denoted by X(M) = Γ∞(M, TM). The vector field X ∈ X(M)

maps p ∈ M to a tangent vector Xp : C∞(M) → R such that f 7→
Xp(p) := (Xf)(p) where Xf ∈ C∞(M). The fibre π−1(p) = TpM is called

the tangent space of M at p and is defined as the set of all tangent vectors

Xp at p ∈ M

TpM = {Xp | Xp : C∞(M) → R; p ∈ M} (2.24)

TpM has the structure of a real vector space.

2. cotangent bundle (T ∗M,M, π), where T ∗M = ∪p∈MT ∗
pM.

The smooth section ω : M → T ∗M a covector field , the set of all such fields

is denoted by X∗(M) = Γ∞(M, T ∗M). We call T ∗
pM the cotangent space

at p and define it to be the dual space of TpM, that is T ∗
pM = (TpM)∗. The

elements of T ∗
pM are called covectors at p ∈ M and are denoted by ωp.

3. tensor bundle (T r
s (M),M, π), where T r

s (M) = ∪p∈MT r
s (TpM).

T r
s (TpM) is a tensor space over a tangent space TpM that we define by

T r
s (TpM) = T r(TpM) ⊗ Ts(TpM) = T ∗

pM⊗ . . .⊗ T ∗
pM︸ ︷︷ ︸

r copies

⊗TpM⊗ . . .⊗ TpM︸ ︷︷ ︸
s copies

(2.25)
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A tensor field of type (r, s) on a manifold M is a C∞ section of a tensor

bundle T r
s (M). We denote by T r

s (M) = Γ∞(M, T r
s (M)) the set of all C∞

sections on M.

4. bundle of exterior k-forms (Λk(M),M, π), where Λk(M) = ∪p∈MΛk(TpM)

We denote by Λk(TpM) the vector space of all alternating covariant (0, k)-tensors

on TpM. An element of Λk(TpM) is called a k-form. The set of all continuous

sections of exterior k-forms on M are denoted by Ωk(M) = Γ∞(M,Λk(M)).

Remark 2.1.1. 1. Let φ : M → N be a map between two manifolds. At p ∈ M
we define the push forward of φ by the map φ∗ : TpM → Tφ(p)

N , Fig. 2.2. The

map φ∗ is also called the differential of φ at p ∈ M and is sometimes denoted

by Tpφ. The pull back is defined by the map φ∗ : T ∗
φ(p)N → T ∗

pM, Fig. 2.2.

M N

TpM Tφ(p)cN

T ∗
pM T ∗

φ(p)N

φ

X φ∗X=φ∗◦X◦φ−1

Tpφ=φ∗

φ∗

Figure 2.2: Push Forwards and Pull Backs

2. This section is based on the well known Tensor Characterization Lemma ,

page 265 Lee [48]. It will allow us to reconcile the abstract notion of tensor fields

with operators encountered in classical Riemannian geometry. The multilinear

map τ : X∗(M)r × X(M)s → C∞(M) is induced by a smooth tensor field of

degree (r, s) if and only if it is multilinear over C∞(M). Likewise, the multilinear

map τ ′ : X∗(M)r × X(M)s → X(M) is induced by the tensor field of degree
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(r+ 1, s) if and only if it is multilinear over C∞(M). In both cases, the induced

maps τ and τ ′ can be associated with the respective tensor fields.

(P,M, π) is a G-bundle if P is a right action G-space and if there is a bundle isomor-

phism (P,M, π)
∼=−→(P,P/G, π̄), where π̄ represents the projection map and P/G is

the orbit space, page 220-221 Isham [27]. The fibre of the G-bundle are the orbits

of the G-action on P. If G acts freely on P, then (P,M, π) is called a principal

G-bundle and G is called the structure group of the bundle. The freedom of the G-

action implies that all the orbits of the group action are homomorphic to the group,

that is Ox
≃−→G ∀x ∈ P.

Associated Bundles

In general, for a Lie group G and a principal G-bundle (P,M, π) we consider a

manifold E with a left G-action L : G × E → E and associate to this a fibre bundle

(PE ,M, πE) with fibre E . To do this, we define the total space PE as the orbit space

PE = (P × E)/G = P ×G E (2.26)

given that the G-action on P × E is defined by

(p, x) · g = (pg, g−1x) (2.27)

where p ∈ P, x ∈ E and g ∈ G. PE is therefore a quotient space for the equivalence

relation ∼, where (p, x) ∼ (q, y) if and only if ∃g ∈ G such that q = pg and y = gx.

The projection map πE : PE → M is induced by the composition P×E proj−→ P π−→ M.

The significance of associated bundles lies in the following important fact. Given a

principal fibre bundle (P,M, π) with structure group G, there exists a vector bundle

(E ,M, π) associated with (P,M, π) by the natural action of GL(n; R) on R
n. We

will briefly explain how this arises.
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Let ρ : G → GL(n; R), g 7→ ρg, be a representation of G on R
n. On the product

manifold P × R
n we define the right action of G by G × (P × R

n) → P × R
n, where

(g, (p, ξ)) 7→ (Rgp, ρg−1ξ). Let E = P ×G R
n be the quotient space under this action

and let pξ ∈ E represent the equivalence class of (p, ξ) ∈ P × R
n. The projection

(p, ξ) ∈ P × R
n 7→ π(p) ∈ M induces the projection πE : E → M.

Hence, we have shown that one can always associate a vector bundle (E ,M, π) to the

principal bundle (P,M, π). We will exploit this result to show that a connection on

a principal fibre bundle (P,M, π) may be used to define a covariant derivative on an

associated vector bundle (E ,M, π).

Lie Algebras

It turns out that all C∞ vector fields on a neighbourhood U of a manifold M form

a Lie algebra, page 47 Schutz [63]. However, it is of greater interest to restrict our

attention to a smaller subset of these vector fields that are related to the invariance

properties of the manifold and its associated invariance groups, which are usually Lie

groups. The study of the action of Lie groups on manifolds allows us to make this

identification possible.

A very important feature of a Lie group is the existence of an associated Lie algebra,

which is intimately related to the tangent space TeG at the identity element of the Lie

group. The left and right translations of the Lie group allow us to study the tangent

space structure of the group manifold.

Let M be a smooth manifold. For two vector fields X,Y ∈ X(M) we define the Lie

bracket [X,Y ]p of X and Y at p ∈ M by

[X,Y ]p(f) = Xp(Y (f)) − Yp(X(f)) (2.28)

where f ∈ C∞(M).
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The following definition allows us to identify the tangent space at the identity element

of a Lie group with its Lie algebra. The following lemma is required before we proceed

with the definition.

Lemma 2.1.1. Let φ : M → N be a smooth bijective map between two manifolds.

If X,Y ∈ X(M) are two vector fields on M, then:

1. Tφ(X) ∈ X(N )

2. the map Tφ : X(M)
≃−→X(N ) is a Lie algebra homomorphism in the sense

that [Tφ(X), Tφ(Y )] = Tφ([X,Y ]).

Definition 2.1.5 (pages 3-4 Schmid [62]). Consider the space X(G) of all vector

fields on G, which is infinite dimensional with Lie bracket [X,Y ] = XY −Y X ∀X,Y ∈
X(G). A vector field X ∈ X(G) is called left invariant if and only if

ThLg(X(h)) = X(gh) ∀g ∈ G (2.29)

G G

TG TG

Lg

X X

TLg

Figure 2.3: Left Invariant Maps

That is, X it is invariant under all left translations. ThLg is a linear mapping which

implies that a linear combination of invariant vector fields is invariant. If X,Y ∈
X(G) are left invariant then

ThLg[X(h), Y (h)] = [ThLgX(h), ThLgY (h)] = [X(gh), Y (gh)] (2.30)

that is, [X(gh), Y (gh)] is also left invariant. Hence, the space of left invariant vector

fields XL(G) is a Lie subalgebra of X(G). The Lie algebra g of a Lie group G is

defined as g = XL(G).
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Let ξ ∈ TeG, then Xξ(g) = TeLg(ξ) ∈ TgG defines a left invariant vector field and

Xξ(e) = ξ. This defines an isomorphism TeG
∼=−→XL(G), by Lem. 2.1.1. Define the

Lie bracket for any ξ, η ∈ TeG by

[ξ, η] = [Xξ, Xη](e) (2.31)

This bracket satisfies conditions for a Lie algebra, that is, the Lie bracket [·, ·] is:

1. bilinear: [αξ1 + βξ2] = α[ξ1, ξ2] + β[ξ1, ξ2] ∀α, β ∈ R

2. skew symmetric: [ξ, η] = −[η, ξ]

3. Jacobi identity: [[ξ, η], ζ] + [[η, ζ], ξ] + [[ζ, ξ], η] = 0

We can therefore identify g ∼= TeG as a Lie algebra. Therefore, the Lie algebra g of a

Lie group G is defined as the space of left invariant vector fields XL(G) on G that is

isomorphic to the tangent space TeG at the identity element e, g = XL(G)
∼=−→TeG.

The following result is a consequence of the above definition. Consider any point

g on the group manifold G, the tangent space at this point TgG can be canonically

identified with the Lie algebra g of G. To elaborate, consider the differential map of

the left translation Lg : G → G at the tangent space of G at e to the tangent space of

G at g

TeLg : TeG → TgG, X(e) 7→ TeLgX(e) := X(g) (2.32)

If dim(G) = d and X1(e), . . . , Xd(e) is a basis for TeG, the corresponding vector fields

X1, . . . , Xd are also a basis for g, Gockeler et al [20]. It follows that TeLg : g → TgG.

This result has far reaching implications in the following sense. Given a smooth

manifold M and the map φ : G → M, one has Tgφ : TgG → Tφ(g)M.

With the identification TeLg : g → TgG, we get the following composition of maps,

Fig. 2.4,
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Tgφ ◦ TeLg : g → Tφ(g)M (2.33)

which will play an important role in defining the connection on a principal fibre

bundle.

G G M

g TgG Tφ(g)M

Lg φ

TeLg Tgφ

Tgφ◦TeLg

Figure 2.4: Composition map from g to Tφ(g)M

We will now define the exponential map of a Lie group, which maybe used to construct

a connection on a principal fibre bundle.

Definition 2.1.6 (page 3 Schmid [62]). The exponential map is defined as

follows:

exp : TeG ∼= g → G, ξ 7→ exp(ξ) := φξ(t) |t=1 (2.34)

where φξ : R → G is a one-parameter subgroup of G which describes the flow φξ(t)

of the left invariant vector field associated with ξ ∈ TeG through e ∈ G, that is,

φξ(t) |t=0= e and φ̇ξ(t) = Xξ(φ(t)) ∈ XL(G).

Finally, we need to examine how a Lie group acts on itself.

Definition 2.1.7. We define the adjoint representation of a Lie group G by

Ad : G → GL(g), g 7→ Ad(g) := Adg = Lg ◦Rg−1 (2.35)

where Adg : G → G. The differential map TAd : g → gl(g), which we denote by

ad, is called the adjoint representation of a Lie algebra possesses the following

properties:
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1. ad(X)Y = [X,Y ]

2. Ad(expX) = exp(adX)

Connections on Principal Bundles

P × G P

G G P M

TeG TeG TpP Tπ(p)M

g VpP TpP HpP

X(P)

R̃

π2 R̃g

Lg bitp π

TeLg Tebitp=bitp∗
Tpπ=π∗

∼= TpR̃g=R̃g∗ hp

∼=

λp

ωp

Tebitp◦TeLg=π−1
ver◦σp

exp

πver πhor

λ

Figure 2.5: Connections on Principal Fibre Bundles

The following discussion on connections is based on pages 5-6 Kunzinger et al [41].

Consider a principal fibre bundle (P,M, π), refer to Fig. 2.5.

Definition 2.1.8. A tangent vector Xp ∈ TpP is called vertical if Tpπ(Xp) = 0, we

denote them by Xver
p . The set of all vertical tangent vectors at p ∈ P is denoted by

the set VpP which is defined as follows:

VpP = {Xver
p ∈ TpP | Tpπ(Xver

p ) = π∗X
ver
p = 0} = Ker(Tpπ) (2.36)

These vectors are tangent to the fibre Px = π−1(x), which is a submanifold of P.

Hence, the vertical space VpP at p ∈ P is the tangent space TpPx to the fibre Px at p.
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We now show that this space is isomorphic to the Lie algebra of the structure group

G, that is VpP
∼=−→g.

Consider the embedding whose image yields an orbit in P

bitp : G → P, g 7→ bitp(g) (2.37)

The structure group G of (P,M, π) has a well defined free action on P, namely

R̃ : P × G → P where (p, g) 7→ R̃(p, g) = R̃g(p) := pg, allows us to make the

identification bitp(g) = R̃g(p) = pg. The associated differential of bitp induces an

injective map

bitp∗ = Tebitp : TeG → TpP (2.38)

and the quotient space by the image of Tebitp is mapped isomorphically onto Tπ(p)M
by π∗ = Tpπ of π. From the previous section, Equ.(2.33), we identified a map Tebitp ◦
TeLg that maps left invariant vector fields of g to tangent vectors of TpP. This natural

identification leads to the idea that it is possible to construct a map that maps from

g to VpP .

Let A ∈ g, then φA(t) = exp (tA) is a 1-parameter subgroup of G generated by TeLgA.

Then by the right action

R̃exp(tA)p = p exp(tA) (2.39)

a curve through p is defined in P. Since the group action moves points along a fibre,

we have

π(p) = π(R̃exp(tA)p) = x (2.40)

Hence, this curve lies in Gx. Now define a vector A∗ ∈ TpP by

A∗f(p) =
d

dt
f(p exp(tA)) |t=0 (2.41)
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where f : P → R is an arbitrary function. The vector A∗ is tangent to the fibre,

therefore A∗ ∈ VpP is a vertical vector field. A∗ is called the fundamental vector

field generated by A. There is a vector space isomorphism λ : g
∼=−→X(P) that maps

the vector field A ∈ g to the fundamental vector field A∗ ∈ X(P), A 7→ λ(A) := A∗.

The above map is a Lie algebra homomorphism since λ([A,B]) = [λ(A), λ(B)].

Note that λp can be identified with Tebitp(X(e)). We now prove that this map gives

rise vectors that are tangent to the fibres of P. Since ∀g ∈ G

π ◦ bitp(g) = π(pg) = π(R̃gp) = π(p) ∈ M (2.42)

we conclude that π ◦ bitp is constant on G, consequently,

Tpπ ◦ λp = Tpπ ◦ Tebitp (2.43)

= Te(π ◦ bitp) (2.44)

= 0 (2.45)

We see that the Lie algebra homomorphism has the important property of identifying

left-invariant vector fields on G, which are Lie algebra elements with fundamental

vector fields on P. The restriction λp : g
∼=−→VpP is a linear isomorphism. The right

action of G on P also induces a corresponding right action on the fundamental vector

fields which satisfies the condition

R̃g∗(λ(A)) = λ(Ad(g−1)A) (2.46)

where Ad denotes the adjoint representation Ad : G → L(g, g) of G on g.

Definition 2.1.9 (page 6 Kunzinger et al [41]). A connection form ω ∈
Ω1(P, g) is a smooth 1-form on P with values in the Lie algebra g which satisfies

the following conditions

1. ωp ◦ Tebitp = idg
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2. ∀Xver
p ∈ VpP, ωp(X

ver
p ) = λ−1

p (Xver
p )

3. ∀Xver
p ∈ TR̃gpP, ωR̃gp(X

ver
p ) = Ad(g−1)ωp(R̃

−1
g∗ X

ver
p )

Definition 2.1.10 (page 6 Kunzinger et al [41]). Given a connection 1-form ω

we call a tangent vector Xp ∈ TpP horizontal if it is annihilated by ω, we denote

such tangent vectors by Xhor
p . The set of all horizontal tangent vectors at p ∈ P is

denoted by HpP and is defined by

HpP = {Xhor
p ∈ TpP | ωp(X

hor
p ) = 0} = Ker(ωp) (2.47)

Kunzinger et al [41] claims that since ωp ◦ λp = id, the null space of ωp : TpP → g is

an m-dimensional vector space transverse to the fibre. This leads to a natural and

unique decomposition of the vector Xp into vertical and horizontal components such

that Xp = Xver
p + Xhor

p , where Xver
p ∈ VpP and Xhor

p ∈ HpP. Consequently, it is

possible to define projection maps πver : TpP → VpP and πhor : TpP → HpP that

map vectors on TpP to their respective vertical and horizontal components on VpP
and HpP. The condition Equ.(2.46) and (i) above ensures that condition (ii) holds

for vertical vectors. Condition (ii) leads to the requirement that R̃g∗ takes horizontal

vectors to horizontal vectors. This leads to an alternate definition for connections.

Definition 2.1.11 (page 6 Kunzinger et al [41]). A connection on a principal

bundle (P,M, π) is a family of subspaces HpP ⊂ TpP called horizontal tangent spaces,

such that:

1. HpP is complementary to VpP in TpP, that is, TpP ≃ VpP ⊕HpP

2. HpP depends smoothly on P, that is, HpP is locally spanned by smooth vector

fields on P

3. TpR̃g(HpP) = HR̃gpP = HpgP ∀g ∈ G
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The following definition is equivalent to the above. It gives rise to the notion of the

horizontal lift of the connection, which plays a central role in stochastic differential

geometry.

Definition 2.1.12 (page 8 Morrison [56]). A horizontal lift of the connection is a

smooth choice ∀p ∈ P of a linear map hp : Tπ(p)M → TpP so that:

Tpπ ◦ hp = idTπ(p)M (2.48)

hpg = TpR̃g(hp) (2.49)

Horizontal Lifts of Curves and Parallel Translation

Given a connection form ω in (P,M, π) we show that it is possible to lift a curve γ

on the base manifold M to a horizontal curve γ̄ on the bundle P.

Definition 2.1.13 (page 381 Nakahara [58]). Let (P,M, π) be a G bundle and let

γ : [0, 1] → M be a curve on M. A curve γ̄ : [0, 1] → P is said to be the horizontal

lift of a curve γ if:

1. π ◦ γ̄ = γ and

2. the tangent vector to γ̄(t) always belongs to Hγ̄(t)P or equivalently, ω( ˙̄γ(t)) = 0

Before we define parallel transport, we need to establish the uniqueness of horizontal

lifts.

Theorem 2.1.1 (page 381 Nakahara [58]). Let γ : [0, 1] → M be a curve in M
and let u0 ∈ Pγ(0) = π−1(γ(0)), then ∃γ̄(t) in P such that γ̄(0) = u0.

Let γ : [0, 1] → M be a curve. Consider the point u0 ∈ Pγ(0) = π−1(γ(0)). Then,

there exists a unique horizontal lift γ̄(t) of γ(t) through u0 and hence a unique point

u1 = γ̄(1) ∈ Pγ(1) = π−1(γ(1)). The point u1 is called the parallel transport of u0

along the curve γ. This defines the map Γ(γ̄) : Pγ(0) = π−1(γ(0)) → Pγ(1) = π−1(γ(1))

such that u0 7→ u1.
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Covariant Derivatives

Previously, we have shown that associated with every principal fibre bundle (P,M, π)

is a vector bundle (E ,M, π). We will now demonstrate how a principal fibre bundle

(P,M, π) together with its connection may be used to define a covariant derivative

on an associated vector bundle (E ,M, π). In this section, we follow Kunzinger et al

[41] pages 14-15 closely.

Consider the points x0 and x1 that lie in the neigbourhood U of M. Let Φ : π−1(U) →
U × G and Ψ : π−1

E (U) → U × R
n be the local trivializations on U . Now consider a

curve γ : [0, 1] → M that connects x0, x1 ∈ U in the following manner: γ(0) = x0

and γ(1) = x1. Let γ̄ denote the horizontal lift of γ to P. Then we may use γ to

define the parallel transport

Γ(γ̄) : π−1
E (x0)

∼=−→π−1
E (x1), V0 7→ Γ(γ̄)(V0) = V1 (2.50)

by requiring that ξ1 = ρ(g1g
−1
0 )ξ0 such that Ψ(Vi) = (xi, ξi) and Φ(γ̄(i)) = (xi, gi) for

i = 0, 1. Note that V1 is only dependent on the connection on P and the curve γ. We

use this concept to define the covariant derivative of a vector field V (x) ∈ Γ∞(M, E)

in the direction of the tangent to the curve at the point γ(0) as

∇γ̇(0)V (γ(0)) = lim
h→0

1

h
[Γ(γ̄)(V (γ(h))) − V (γ(0))] (2.51)

∇γ̇(0)V (γ(0)) only depends on the direction of the tangent X = γ̇(0) and not the

curve γ. So we use the above definition to define the quantity ∇XV at γ(0). By

applying this definition, we may define the covariant of the field V ∈ Γ∞(M, E) with

respect to the vector field X ∈ X(M) by the map

∇ : X(M) × Γ∞(M, E) → Γ∞(M, E), (X,V ) 7→ ∇(X,V ) := ∇XV (2.52)

The covariant derivative defined this way satisfies the following properties:

1. ∇XV is R-linear in V
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2. ∇XV is C∞(M)-linear in X

3. ∇X(λV ) = λ∇XV +X(λ) · V , ∀λ ∈ C∞(M)

Geometry of the Frame Bundles

Let M be an n-dimensional manifold and let p ∈ M. Let TxM denote the tangent

space at x ∈ M. The R-linear isomorphism is called a frame at x

u : R
n ∼=−→TxM, e 7→ ue (2.53)

The frame has the property of mapping the unit vectors e ∈ R
n to tangent vectors

ue ∈ TxM, which form a basis for TxM. We define the collection of all frames at

x ∈ M by the set

F(M)x = {u | u : R
n

∼=−→TxM where x ∈ M} (2.54)

We define the action of the general linear group GL(n; R) on F(M)x by u 7→ ug,

where ug is interpreted as a composition

R
n g−→ R

n u−→ TxM (2.55)

The frame bundle , which is defined by the union of all frames

F(M) = ∪x∈MF(M)x (2.56)

is a (n+ n2)-dimension manifold. The projection map for this bundle

π : F(M) → M (2.57)

identifies the point x ∈ M associated with the tangent space TxM of a particular

frame U : R
n → TxM. GL(n; R) can be taken as the standard fibre for this bundle

because each linear frame determines an element of GL(n; R) and each element of
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GL(n; R) determines a linear frame. Therefore, the frame bundle F(M) of an n-

dimensional manifold M is a principal bundle with structure group GL(n; R), page

37 Hsu [25], with the tangent bundle TM being an associated bundle of F(M) over

M

TM = F(M) ×GL(n;R) R
n, (u, e) 7→ ue (2.58)

The connection ∇ on F(M) gives rise to the following decomposition of TuF(M)

TuF(M) = VuF(M) ⊕HuF(M) (2.59)

where VuF(M) and HuF(M) denote the vertical and horizontal spaces of TuF(M).

Let e ∈ R
n, the vector field He on F(M) defined at u ∈ F(M) by

He(u) = (ue)hor (2.60)

is the horizontal lift of ue ∈ TπuM. If ei are the coordinate unit vectors of R
n, where

i = 1, . . . , n, then Hi = Hei
are the fundamental horizontal vector fields of

F(M) that span HuF(M) at each u ∈ F(M). The action of GL(n; R) preserves the

fundamental horizontal fields

TuRgHe(u) = Hge(gu), u ∈ F(M) (2.61)

where TuRg : TuF(M) → TugF(M).

Example 2.1.4 (pages 41-42 Schutz [63]). Consider the 1-dimensional manifold

M = S1. Without having to work through all the detail, it can be shown that the frame

bundle F(M) for S1 has the same structure as the tangent bundle TM = TS1, which

is isomorphic to S1 × R
1. The structure group for F(M) is G = R − {0}, which is

a group under multiplication. The bundle F(M) has a fibre F that comprises of the

set of all bases for TS1. Since F(M) is a principal fibre bundle, the frame bundle

for S1 has fibres homeomorphic to its structure group G. This implies that F may be

identified with R − {0}.
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Gauge Transformation

Heuristically, a gauge can be thought of as a degree of freedom within a mathematical

theory that has no physical observable effect. A gauge transformation acts on this

degree of freedom. Sometimes, gauge transformations are used to simplify a complex

system without modifying any of its physical observable properties. We will exploit

this concept to obtain a simplified solution to the Zakai equation. In this section we

describe the essence of gauge theory in context to fibre bundles, page 459 Mitter et al

[53] and page 32 Svetlichny [66].

Consider a principal G-bundle over M (P,M, π). A gauge-transformation is a

bundle isomorphism

φ : P ∼=−→P, p 7→ φ(p) (2.62)

that commutes with the right action. The free right action of G on P implies that

there exist a map

γ : P → G, p 7→ γ(p) (2.63)

such that

φ(p) = p · γ(p) (2.64)

To commute with the right action, it is necessary and sufficient that

(p · g) · γ(p · g) = (p · γ(p)) · g (2.65)

which implies that

γ(p · g) = g−1γ(p)g (2.66)

The gauge-group of P, which we denote by G(P), is the set of all gauge-transformations
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G(P) = {γ : P → G | γ(p · g) = g−1γ(p)g} (2.67)

Given that M is a manifold and G is a Lie group, G(P) is an infinite-dimensional Lie

group.

We can study the Lie algebra of the gauge group G(P) by considering the one-

parameter family γt(p) of gauge-transformations defined by

γt(p) := exptθ(p) (2.68)

where θ(p) ∈ g. Then ∀t, Equ.(2.66) is equivalent to

θ(p · g) = Adg−1θ(p) (2.69)

The maps θ : P → g constitute the Lie algebra of G(P) and are called infinitesimal

gauge-transformations .

2.2 Riemannian Differential Geometry

2.2.1 Riemannian Metric

Let M be a smooth manifold. A Riemannian metric g = (gij) on M is a smooth

(0, 2) tensor field g : X(M) × X(M) → C∞(M) such that ∀p ∈ M the restriction

gp = g |TpM⊗TpM: TpM⊗ TpM → R has the following properties, page 281 Ikeda et

al [26]:

1. g is symmetric, that is, gp(X,Y ) = gp(Y,X)

2. g is positive definite, that is, gp(X,X) ≥ 0 ∀p and v ∈ R
d, v 6= 0

3. g defines an inner product on each tangent space TpM by

〈ω, Y 〉 = g(Xω, Y )

where ω ∈ T ∗
pM, Xω ∈ TpM and 〈·, ·〉 : T ∗

pM× TpM → R
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We adopt the following notation when basis tangent vectors are considered

gij = g(∂i, ∂j), where ∂i = ∂
∂xi

and ∂j = ∂
∂xj

(2.70)

The pair (M, g) is called a Riemannian manifold . Geometric properties of (M, g)

which depend on the metric g are called intrinsic (or metric) properties.

Consider the n-dimensional manifold M = R
n. The Euclidean metric of R

n is given

by δ = diag(1, . . . , 1). Then (M, g)=(Rn, δ) is a Riemannian manifold.

The Induced Metric

Let M be an m-dimensional submanifold of an n-dimensional Riemmanian manifold

N with metric gN . Consider the map f : M → N which induces the submanifold

structure of M. The pullback f ∗ induces the metric gM = f ∗gN on M, which has

components

gMij(x) = gMkl(f(x))
∂fk

∂xi

∂f l

∂xj
(2.71)

The induced metric plays a very import role in the calculus of manifolds, especially

when we regard such manifolds as submanifolds that are embedded in higher dimen-

sional Euclidean spaces. This enables us to take the metric properties of curves and

surfaces in R
n and study them in an intrinsic manner on the respective submanifolds.

Example 2.2.1. Consider the 1-dimensional manifold M = S1. We may regard S1

as a submanifold of the Riemmanian manifold (R2, δ). The embedding function is

given by

f : S1 → R
2, (r, θ) 7→ f(r, θ) := (r cos θ, r sin θ) (2.72)

Then the induced metric on S1 is given by
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gijdx
i ⊗ dxj = δkl

∂fk

∂xi

∂f l

∂xj

= dr ⊗ dr + r2dθ ⊗ dθ (2.73)

2.2.2 The Connection

Let (E ,M, π) be a smooth vector bundle over M. Let

∇ : X(M) × T 0
1 (M) → T 0

1 (M), (X,Y ) 7→ ∇(X,Y ) := ∇XY (2.74)

be the connection on (E ,M, π).

The operator ∇X is called covariant differentiation with respect to X. The compo-

nents of the connection ∇ are defined in terms of the set of functions {Γi
jk(x)} such

that in local coordinates

∇∂i
∂j = Γk

ij(x)
∂

∂xk

, ∂i =
∂

∂xi

(2.75)

We say that the connection is symmetric if Γk
ij = Γk

ji. In local coordinates we may

express the covariant derivative of Y with respect to X as, page 278 Ikeda et al [26],

∇XY =

[
X i(x)

∂

∂xi

Y k(x) + Γk
ij(x)X

i(x)Y i(x)

]
∂

∂xk

(2.76)

where

X = X i(x) ∂
∂xi

and Y = Y i(x) ∂
∂xi

(2.77)

Consider a smooth curve c : I = [t0, t1] → M. Let X(t) ∈ Tc(t)M ∀t ∈ I. We say

that X(t) is parallel along c, with respect to ∇, if

d

dt
X i(t) + Γi

kj(c(t))X
j(t)

d

dt
c(t) = 0, ∀t ∈ I (2.78)

For t0, t1 ∈ I, where t0 ≤ t1, X(t1) is uniquely determined from X(t0) by parallel

displacement along c(t).
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2.2.3 The Levi-Civita Connection

Consider the tangent bundle (TM,M, π), if g is a Riemannian metric on M, we

define the torsion T : X(M) × X(M) → X(M) of ∇ by

T (X,Y ) = ∇XY −∇YX − [X,Y ] (2.79)

where [·, ·] is the Lie bracket on X(M).

Definition 2.2.1. There is a unique connection ∇ on (TM,M, π) called the Levi-

Civita connection which is compatible with g in the following sense:

∇Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ), ∀X,Y, Z ∈ X(M) (2.80)

and which is torsion free T (X,Y ) = 0 ∀X,Y ∈ X(M).

The Levi-Civita connection ∇ is an intrinsic object since, by definition, it is deter-

mined by the metric g.

This is in essence the fundamental theorem of Riemannian geometry. On (TM,M, π),

the connection ∇ can be thought of as a rule for differentiating a vector field Y ∈
X(M) in the direction of another X ∈ X(M). If g is a Riemannian metric on M,

the Levi-Civita connection is the only way of doing this in a metric and torsion-free

manner. The corresponding Christoffel symbols for the Levi-Civita connection are

given by, page 282 Ikeda et al [26]:

Γk
ij =

1

2

[
∂

∂xi

gmj +
∂

∂xj

gim − ∂

∂xm

gij

]
gkm (2.81)

Example 2.2.2 (page 248 262 Nakahara [58]). The induced metric on M = S1

is given by Equ.(2.73). The non vanishing components of the Levi-Civita connection

coefficients are:
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Γθ
rθ = 1/r (2.82)

Γθ
θr = 1/r (2.83)

Γr
θθ = −r (2.84)

Orthonormal Frame Bundle

Consider a Riemannian manifold M and metric g. We now restrict ourselves to

a smaller set of frames called orthonormal frames . Let O(M) denote the or-

thonormal frame bundle . In keeping with the general theory of frame bundles,

the element u ∈ O(M) is a Euclidean isometry u : R
n → TxM which we call the

frame at x ∈ M. In this case, the action group is the orthogonal group O(n), which

is a subset of the general linear group GL(n; R). Therefore, O(M) is a principal

fibre bundle with structure group O(n). The Riemannian connection on M splits the

tangent spaces TuO(M) into vertical VuO(M) and horizontal HuO(M) subspaces,

where

HuO(M) =

{
X = ai

(
∂

∂xi

)

x

− Γi
kl(x)e

l
ja

k

(
∂

∂ei
j

)
| (ai) ∈ R

d

}
(2.85)

which is independent of the choice of local coordinates (xi, ei
j), page 279 Ikeda et al

[26]. Given the vector field X ∈ X(M), there exists a unique Xhor ∈ X(O(M)) such

that Xhor
u ∈ HuO(M) if the horizontal lift of π(Xhor

u ) = Xπu ∀u ∈ O(M). In local

coordinates we have, page 280 Ikeda et al [26],

Xhor = X i(x)
∂

∂xi

− Γq
ij(x)X

i(x)ej
p

∂

∂eq
p

(2.86)

where X = X i(x) ∂
∂xi

. Similarly, given a smooth curve c(t) on M, we can lift c(t) to

c̃(t) on O(M) if

1. dc̃
dt

(t) is horizontal and

2. π(c̃(t)) = c(t)
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The curve c̃(t) is given by c̃(t) = (c(t), e(t)) where the frames e are parallel transported

along c(t) - the basis of stochastic differential geometry if founded on this fundamental

notion. In local coordinates (xi, ei
j), the fundamental horizontal vector fields

Hj ∈ X(O(M)) may be expressed as, page 280 Ikeda et al [26],

Hj = ei
j

∂

∂xi
− Γq

kle
k
j e

l
p

∂

∂eq
p
, j = 1, . . . , n (2.87)
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Chapter 3

CALCULUS OF SEMIMARTINGALES

The mathematical tools that describe the time evolution of physical systems is dif-

ferential equations. However, in most circumstances such models have to be refined

by incorporating random behaviour to model environmental and/or measurement ef-

fects. The associated tools for such models are stochastic processes. Most stochastic

processes can be expressed as the sum of a mean motion and a fluctuation from the

mean. In this chapter we will introduce the necessary theory to understand the prop-

erties of semimartingales, which play an important role in the stochastic differential

geometry and filtering theory. A basic understanding of measure theory and proba-

bility theory is assumed, however, important definitions and results will be stated to

improve the readability of the thesis and to set the notation for other chapters that

follow. For further details Brzezniak et al [7], Oksendal [59], Karatzas [33] and Kunita

[40] should be consulted.

3.1 Concepts in Probability

3.1.1 Introduction

Probability Spaces and Random Variables

Consider a nonempty set Ω 6= ∅. The set of all subsets of Ω is called the powerset

of Ω, which we denote by 2Ω. We call a nonempty set F ⊆ 2Ω a class. F is called a

sigma-algebra , denoted by σ-algebra , if:

1. Ω ∈ F and

2. is closed under the operations of:

Page 45 of 157



Stochastic Differential Equations with

Application to Manifolds and Nonlinear Filtering

(a) countable unions: Ai ∈ F =⇒ ∪∞
i=1Ai ∈ F , where i = 1, 2, . . . and

(b) complements: A,B ∈ F =⇒ B \ A ∈ F .

The pair (Ω,F) is called a measurable space . The elements of Ω are called samples

and those of F are called events. A map P : F → [0, 1] is called a probability

measure on (Ω,F) if:

1. P (∅) = 0

2. P (Ω) = 1

3. if Ai, Aj ∈ F are disjoint Ai ∩ Aj = ∅ for i 6= j, then P (∪∞
i=1Ai) =

∑∞
i=1 P (Ai)

where i, j = 1, 2, . . . and i 6= j

The triplet (Ω,F , P ) is called a probability space . We assume that (Ω,F , P ) is

complete in the sense that B ⊆ A ∈ F with P (A) = 0, then B ∈ F with P (B) = 0.

A finite collection of events {A1, . . . , An} is called independent if P (∩k
l=1Ail) =

∏k
l=1 P (Ail) holds for any subset {Ai1 , . . . , Aik} of {A1, . . . , An}.

We assume the existence of a probability space (Ω,F , P ). Let Σ be some separable

complete metric space. Given a family of open sets U = {U | U ⊂ Σ} there is a

smallest σ-algebra FU containing U

FU = ∩{F | F is a σ-algebra of Ω, U ∈ F } (3.1)

FU is called the σ-algebra generated by U , which is denoted by σ(U). Let Σ = R
n

and let U denote a collection of rectangular sets of the form U = (a, b] = {x ∈ R
n |

ai < xi ≤ bi, i = 1, . . . , n}, where a, b ∈ R
n, then

B(Rn) = FU (3.2)
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is called the Borel σ-algebra on R
n, which is the smallest σ-algebra containing

rectangular sets of the form U = (a, b] on R
n. The sets of B(Rn) are called Borel sets

and are denoted by B.

Let (Ωi,F i), i = 1, . . . , n be a finite sequence of measurable spaces. Define the

product σ-algebra F = F1 ⊗ . . . ⊗ Fn on Ω = Ω1 × . . . × Ωn as the σ-algebra

generated by products of measurable sets:

F = σ({A | A = A1 × . . .× An where Ai ∈ F i, i = 1, . . . , n}) (3.3)

It can be shown that B(R) ⊗ . . .⊗ B(R) = B(Rn).

A random variable on Ω is a mapping X : Ω → Σ. If X−1(B(Σ)) = {ω ∈ Ω |
X(ω) ∈ B(Σ)} ∈ F , then the random variable X is said to be F/B(Σ)-measurable

or just F-measurable . This is equivalent to

X−1(B) = {ω ∈ Ω | X(ω) ∈ B} ∈ F , ∀B ∈ B(Σ) (3.4)

Sometimes, we denoted X−1(B) by {X ∈ B}. If x ∈ Σ then,

X−1(x) = {ω ∈ Ω | X(ω) ≤ x} (3.5)

may be represented by {X ≤ x}. The smallest σ-algebra such that X is measurable

on (Ω,F) is denoted by σ(X), where

σ(X) = F(X) = {X−1(B) ∈ F | B ∈ B(Σ)} ⊆ F (3.6)

Every random variable X : Ω → Σ gives rise to a probability measure PX defined on

the σ-algebra of Borel sets B ∈ B(Σ). PX is defined in terms of the composition

PX(B) = P ◦X−1(B) = P ({ω ∈ Ω | X(ω) ∈ B}) = P ({X ∈ B}). (3.7)

PX is called the distribution of X. The function FX : Σ → [0, 1] defined by
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FX(x) = PX(x) = P ({ω ∈ Ω | X(ω) ≤ x}) = P ({X ≤ x}) (3.8)

is called the distribution function of X, which is non-decreasing and right contin-

uous. If there is a Borel function fX : Σ → Σ such that

PX(B) = P ◦X−1(B) =
∫

B
fX(x)dx, ∀x ∈ Σ (3.9)

then X is said to be a random variable with absolutely continuous distribution and

fX(x) =
d

dx
FX(x) (3.10)

is called the density function of X. A random variable X : Ω → Σ

∫

Ω

|X(ω)|pdP (ω) <∞ (3.11)

is said to be integrable for p = 1 and p-th integrable for p > 0. We use the notation

L1(Ω,F , P ) and Lp(Ω,F , P ) to denote the class of all integrable and p-th integrable

random variables, respectively, on (Ω,F , P ). Another important class is the class of

all square integrable random variables L2(Ω,F , P ) (p = 2) on (Ω,F , P ). The class

Lp(Ω,F , P ) forms a Banach space with the norm

‖X‖p =

(∫

Ω

|X(ω)|pdP (ω)

)1/p

(3.12)

Let X ∈ L1(Ω,F , P ), the expectation of X is defined as

E(X) =

∫

Ω

X(ω)dP (ω) =

∫

Σ

xdPX(x) =

∫

Σ

xfX(x)dx (3.13)

If the two random variables X,Y ∈ L1(Ω,F , P ) are independent , then

E(XY ) = E(X) · E(Y ) (3.14)
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Conditional Expectation

Given a probability space (Ω,F , P ), consider a sub-σ-algebra H ⊆ F and a random

variable X ∈ L2(Ω,F , P ). The integral of X over the set H ∈ H will be a measure

on H

PX(H) =

∫

H

XdP (3.15)

This measure has the property that if P (H) = 0, then PX(H) = 0. From the Radon-

Nikodyn Theorem there exists a unique random variable X̄ such that X̄ ∈ L1(Ω,F , P )

and

1. X̄ ∈ L1(Ω,H, P ) is H-measurable

2.
∫

H
X̄dP =

∫
H
XdP ∀H ∈ H

We denote X̄ by E[X | H] and call it the conditional expectation of X with respect

to H.

The conditional probability of the event H given the σ-algebra H is defined by

P (A | H) = E[χA | H] where χA is the characteristic function of the set A

χA(ω) =





1, ω ∈ A

0, ω /∈ A

3.1.2 Stochastic Processes

In this section we will introduce three basic stochastic processes, which are central

to the topics discusses in this thesis. These are Brownian motion, martingales and

Markov processes.

A stochastic process {ξt}, t ∈ T (or simply {ξt} where t ∈ T is assumed), is a

parameterized collection of random variables defined on (Ω,F , P ) with values in Σ,

that is ξt : Ω → Σ ∀t ∈ T . Unless explicitly stated we will assume that the interval
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T = [0,∞). A stochastic process may also be defined by the mapping ξ : T ×Ω → Σ,

(t, ω) 7→ ξ(t, ω) which can be thought of as the state of the state space Σ. The process

{ξt} is said to be measurable if ξ(·, ·) is B(T ) ⊗ F/B(Σ)-measurable. The map ξt

is used to denote the random variable ξ(t, ·). The function ξ(·, ω) is called the

sample function of ξ. If

{ω ∈ Ω | ω 7→ ξt(ω) = ξ(t, ω) ≤ x} ∈ F (3.16)

for each x ∈ Σ then the random variable ξt is said to be Ft-measurable.

Filtrations

Given a measurable space (Ω,F) consider a monotone family of sub-σ-fields Ft ⊆ F ,

t ∈ T :

Ft1 ⊆ Ft2 , ∀t1, t2 ∈ T s.t. t1 ≤ t2 (3.17)

The family {Ft}, t ∈ T (or simply {Ft} where t ∈ T is assumed) is also a σ-algebra and

is called a filtration ; it contains all the information generated by a stochastic pro-

cess {ξt} on the interval T . An event A is Ft-measurable, denoted by A ∈ Ft, if it is

possible to decide whether A has occurred based on the observation of the trajectory

{ξt}. Given a filtration {Ft} on a probability space (Ω,F , P ), define

Ft+ = ∩s>tFs, Ft− = σ(∪s<tFs), where s, t ∈ T (3.18)

We say that a process {Ft} is right (left) continuous if Ft = Ft+ (Ft = Ft−) ∀t ∈ T .

We say that the filtration satisfies the usual condition if it is right continuous and

F0 contains all the null events.

The stochastic process {ξt} is adapted to the filtration {Ft} if ∀t ∈ T = [0, T ], where

0 < T <∞ is the final time, the random variable ξt is a Ft/B(Σ)-measurable function

- adaptedness means that the σ-algebra generated by the measurable random vector
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ξt up to time T is contained in the filtration, that is σ(ξt) ⊆ {Ft}. We sometimes say

that {ξt} is nonanticipative when it is {Ft}-adapted.

Given a stochastic process {ξt}, t ∈ T = [0, T ], the simplest choice of filtration

is that generated by the process itself, that is F ξ
T = σ({ξt}) which is the smallest

σ-algebra with respect to ξt that is measurable ∀t ∈ T .

Brownian Motion

Let (Ω,F , P ) be a filtered probability space. Consider an {ξt}-adapted R
n-valued

process wt = (w1
t , . . . , w

d
t ) with mean µ(t) = E[wt] and covariance V (s, t) = E[(ws −

µ(s))(wt−µ(t))t]. The process wt is called Brownian motion if it has independent

increments, that is, given t0 = s, tn = T and tk < tk+1, where 0 ≤ k ≤ n − 1,

the increments wtk+1
−wtk are independent random variables. The covariance V (s, t)

satisfies the following:

1. V (s, t) = V (r, r) where r = min(s, t)

2. V (t) = V (t, t) increases with t.

A Brownian motion is called standard if µ(t) = 0 and V (t, t) = tIn×n.

Martingales

A martingale M (submartingale/supermartingale) with respect to a filtration

{Ft} is a stochastic process M = {Mt}, t ∈ T , (or simply M = {Mt} where t ∈ T is

assumed) which is adapted to {Ft} such that:

1. the random variables Mt are integrable, i.e. Mt ∈ L1(Ω,F , P ) ∀t ∈ T

2. E[Mt|Fr] = Mr (≥ / ≤) P − a.s ∀r < t

We sometimes use the notation M = {Mt,Ft} to refer to a martingale (submartin-

gale/supermatingale).
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One of the most important examples of martingales is a Brownian motion.

Stopping times play an important role in the theory of submartingales. Let T =

[0,∞) or [0, T ]. A random variable τ : Ω → T is called a stopping time if the set

of all ω ∈ Ω that satisfies the inequality τ(ω) ≤ t for any t ∈ T belongs to Ft, that

is {ω | τ(ω) ≤ t ∈ T } ∈ Ft. If σ, τ are stopping times of the same filtration, then

σ∧τ = min{σ, τ} is a minimum stopping time if {σ∧τ ≤ t} = {σ ≤ t}∪{τ ≤ t} ∈ Ft.

Consider a general stochastic process {ξt} where t ∈ T , a stopped process is defined

as ξτ = {ξτ
t }, where ξτ

t = ξt∧τ is a random variable ω 7→ ξt∧τ(ω)(ω). For a given

stopping time, set Fτ = {A ∈ F | A ∩ {τ(ω) ≤ t} ∈ Ft, ∀t ∈ T , ω ∈ Ω}. Fτ is a sub

σ-algebra of F .

Markov Processes

This this section we provide an elementary definition that identifies a Markov pro-

cesses as a stochastic process. A stochastic process {ξt}, with t ∈ T is a Markov

process if for any 0 ≤ s ≤ t ≤ T and any Borel set B of the state space Σ we have

P (ξt ∈ B | Fs) = P (ξt ∈ B | ξs) (3.19)

which implies that the probability given Fs is exactly the same as the probability

given the information available at time s.

We will take a more detailed look at Markov processes and look at their relation to

diffusion processes in the sections that follow.

3.2 Continuous Semimartingales and Stochastic Integrals

3.2.1 Introduction

The purpose of this section is to introduce stochastic integrals based on continuous

semimartingales, which is used to establish Ito’s formula. We will also introduce

localmartingales and semimartingales which are generalizations of martingales and
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submartingales, Kunita [40] provides an excellent overview of the calculus of semi-

martingales.

Localmartingales

Let (Ω,F , P ) be a complete probability space equipped with the filtration {Ft} of

sub σ-fields of F with time interval T = [0, T ]. A continuous valued {Ft}-adapted

process M = {Mt,Ft} is called a localmartingale if there exists and increasing

sequence of stopping times {τn} such that P (τn < T ) → 0 as n → ∞ and each

stopped process M τn = {M τn

t } is a martingale. A continuous local-submartingale

and a continuous local-supermartingale are defined in a similar manner.

Let Lc be the linear space of all real valued continuous stochastic processes. We

introduce the norm ‖ · ‖ by ‖M‖ = E[supt |Mt|2]
1
2 and denote by L2

c the set of

all elements in Lc with finite norms. Let M2
c be the set of all continuous square

integrable martingales M with M0 = 0. From Doob’s inequality, the norm ‖M‖ is

finite for any M ∈ M2
c . Hence, M2

c is a subset of L2
c . We denote by Mloc

c the set of

all continuous localmartingales M such that M0 = 0, which is subset of Lc. We now

state the Doob-Meyer decomposition theorem, which plays an important role in

stochastic analysis.

Theorem 3.2.1 (Doob-Meyer Decomposition - page 14 Hsu [24]). Let t ∈ T ,

consider a probability space (Ω,F , P ), we assume that the filtration {Ft} satisfies the

usual conditions. Let {ξt} be a Ft-submartingale with continuous sample paths. Then

there exists a unique continuous local Ft-martingale M = {Mt,Ft} and a continuous

F-adapted nondecreasing process {At} with A0 = 0 such that

ξt = Mt + At, t ∈ R+ (3.20)

Semimartingales

Next we define semimartingales and other related stochastic processes. Let M =

{Mt,Ft} be a continuous {Ft}-adapted process. It is called an increasing process if
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for almost all ω, Mt(ω) is an increasing function of t such that M0(ω) = 0. It is called

a process of bounded variation if it is written as the difference of two increasing pro-

cesses. It is called a semimartingale if it is written as the sum of a localmartingale

and a process of bounded variation.

Proposition 3.2.1 (page 16 Hsu [24]). A semimartingale can be uniquely decom-

posed as a sum of a continuous local martingale and a continuous process of bounded

variation.

3.2.2 Quadratic Variational Processes

In this section we study the quadratic variation of continuous stochastic processes,

which is a measure of path oscillation for processes that have infinite variation.

Quadratic Variations of Continuous Semimartingales

Let {ξt}, t ∈ T = [0, T ], be a continuous stochastic process. Let △ = {0 = t0 < . . . <

tl = T} denote the partition of the interval [0, T ]. Let |△| = maxk(tk+1 − tk) where

0 ≤ k ≤ l− 1. The quadratic variation along a partition △ for ξ is defined by

〈ξ〉△t =
l−1∑

k=0

(ξt∧tk+1
− ξt∧tk)

2 (3.21)

Let △1, . . . ,△n be a sequence of partitions such that |△n| → 0. If ∀t the limit

lim
|△n|→0

〈ξ〉△n

t = 〈ξ〉t, ∀t ∈ T (3.22)

exists in probability and is independent of the choice of sequences △1, . . . ,△n a.s.,

it is called the quadratic variation of ξ and is denoted by 〈ξ〉t. The quadratic

variation process is defined by 〈ξ〉 = {〈ξ〉t}.
Let {ηt}, t ∈ T = [0, T ], be a continuous stochastic process. Then the joint

quadratic variation of ξ and η associated with the partition △ = {0 = t0 <

. . . < tl = T} is defined by
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〈ξ, η〉△t =
l−1∑

k=0

(ξt∧tk+1
− ξt∧tk)(ηt∧tk+1

− ηt∧tk) (3.23)

By definition 〈ξ, ξ〉△t = 〈ξ〉△t . The joint quadratic variation may also be defined in

terms of the polarization identity

〈ξ, η〉t =
〈ξ + η〉t − 〈ξ − η〉t

4
(3.24)

Consider the semimartingales ξi = Mi + Ai, where i = 1, 2, then 〈ξi〉t = 〈Mi〉t and

〈ξ1, ξ2〉t = 〈M1,M2〉t. It can be shown that 〈Mi〉t can be defined as the unique

continuous increasing process such that M2
i − 〈Mi〉t is a continuous local martingale.

3.2.3 Stochastic Integrals and Ito’s Formula

Ito’s Integrals and Stratonovich Integrals

Let T = [0, T ], consider a continuous localmartingale M = {Mt,Ft} and let ft be a

continuous {Ft}-adapted process. We will embark on defining the stochastic integral

of ft with respect to the differential dMt, we will restrict our attention to continuous

localmartingales and continuous semimartingales.

Consider the partion △ = {0 = t0 < . . . < tl = T} of the interval [0, T ]. Define

L△
t =

l−1∑

k=0

ft∧tk(Mt∧tk+1
−Mt∧tk) (3.25)

Lemma 3.2.1 (page 56 Kunita [40]). Let L△
t is a continuous localmartingale. Its

quadratic variation is given by

〈L△〉t =

∫ t

0

|f△
s |2d〈M〉s (3.26)

where 〈M〉t is the quadratic variation of Mt and f△
t is the simple process defined from

setting f△
t = ftk if tk ≤ t < tk+1.
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Now let {△n} be a sequence of partitions of [0, T ] such that |△n| → 0. Then, it can

be shown that the sequence {L△n} is a Cauchy sequence in Mloc
c , this allows us apply

various convergence results that leads to the limit

lim
n→∞

{L△n} = Lt (3.27)

We call this limit, Equ.(3.27), the Ito integral of ft by dMt, which we formally

define as

Lt :=

∫ t

0

fsdMs (3.28)

Let ξ be a continuous semimartingale decomposed to a continuous localmartingale

M and a continuous process of bounded variation A. Let |A|t be the total variation

of As 0 ≤ s ≤ t. It is a continuous increasing process. For an arbitrary element f of

L2(〈M〉) ∩ L1(|A|) we define the Ito integral by dξt

∫ t

0

fsdξs =

∫ t

0

fsdMs +

∫ t

0

fsdAs (3.29)

It is a continuous martingale. Its joint quadratic variation with a continuous semi-

martingale ηt satisfies

〈
∫
fdξ, η〉t =

∫ t

0

fs〈ξ, η〉s =

∫ t

0

fsd〈M,N〉s (3.30)

where Nt is the localmartingale part of η.

We will define another stochastic integral by the differential ◦dξt:

∫ t

0

fs ◦ dξs = lim
|△|→0

l−1∑

k=0

1

2
(ft∧tk+1

+ ft∧tk)(ξt∧tk+1
− ξt∧tk) (3.31)

The above limit exists in the same sense of the convergence in probability, it is called

the Stratonovich integral of fs by ◦dξs.
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∫ t

0

fs ◦ dξs =

∫ t

0

fsdξs +
1

2
〈f, ξ〉t (3.32)

Ito’s Formula

Theorem 3.2.2 (page 64 Kunita [40]). Let ξt = (ξ1
t , . . . , ξ

n
t ) be a continuous semi-

martingale. If φ(x1, . . . , xn) ∈ C2, then φ(ξt) is a continuous semimartingale and

satisfies the following formula:

φ(ξt) − φ(ξ0) =
n∑

i=1

∫ t

0

φxi(ξs)dξ
i
s +

1

2

n∑

i,j=1

∫ t

0

φxixj(ξs)d〈ξi, ξj〉s (3.33)

Furthermore, if φ ∈ C3, then we have

φ(ξt) − φ(ξ0) =
n∑

i=1

∫ t

0

φxi(ξs) ◦ dξi
s (3.34)

3.3 Markov and Diffusion Processes

The purpose of this section is to study the properties of Markov processes, which fea-

ture prominently in filtering theory. In particular, we present Kolmogorov’s equation

for the evolution of the unconditional distribution of a stochastic process, which can

be regarded as a precursor to the conditional distribution of the stochastic process

given the observations. We follow the concise exposition by Davis et al [15], pages

57-62.

A stochastic process {ξt}, t ∈ T = [0, T ], is a Markov Process if for any 0 ≤ s ≤
t ≤ T and any Borel set B ∈ B(Σ)

P (ξt ∈ B | Fs) = P (ξt ∈ B | ξs) (3.35)

The transition probability function for a Markov process {ξt} is defined as

P (s, x, t, B) := P (ξt ∈ B | ξs = x) (3.36)
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which satisfies the Chapman-Kolmogorov equation

P (s, x, t, B) =

∫

Σ

P (u, y, t, B)P (s, x, u, dy) (3.37)

for any 0 ≤ s ≤ u ≤ t ≤ T . One of the important properties that Markov pro-

cesses have is that all finite dimensional distributions are determined by its initial

distribution and transition probability function. A Markov process {ξt} is said to be

homogeneous if the transition probability function is invariant with respect to a

time shift in the following sense

P (s+ u, x, t+ u,B) = P (s, x, t, B) (3.38)

∀ 0 ≤ s ≤ t ≤ T and 0 ≤ s + u ≤ t + u ≤ T . Consider a bounded measurable

real-valued function f on Σ, that is f ∈ B(Σ), define

Ttf(x) = Ex[f(ξt)] :=

∫

Σ

f(y)P (0, x, t, dy) (3.39)

for a homogeneous Markov process {ξt}. Using the Chapman-Kolmogorov equation

we can show that Tt is a semigroup of operators acting on B(s), that is Tt+sf(x) =

Tt(Tsf)(x) for t, s ≥ 0. The process {ξt} or the operator Tt has a generator , which

we denote by L, that acts on a domain D(L) ⊂ B(Σ) and is defined by

Lφ = lim
t→0

1

t
(Ttφ− φ) (3.40)

where, the limit is uniform in x ∈ Σ and D(L) comprises of all the functions that

give rise to a finite limit. It can be shown that the time derivative of the semigroup

operator Tt is related to the generator L in the following manner

d

dt
Ttφ = LTtφ (3.41)

This equation is the abstract version of the so called backward equation for the

process. By representing this equation in integral form and using the definition of Tt,

one arrives at the Dynkin formula
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Ex[φ(ξt) − φ(x)] = Ex

∫ t

0

Lφ(ξs)ds (3.42)

From this we conclude that the process Mφ
t defined for φ ∈ D(L)

Mφ
t = φ(ξt) − φ(x) −

∫ t

0

Lφ(ξs)ds (3.43)

is a martingale; this property can be used as a definition for L. The operator L
is known as the extended generator of {ξt} because Mφ

t can be a martingale for

certain φ /∈ D(L). In context to filtering theory, there exists an another interesting

semigroup of operators associated with {ξt}, which propagates the initial distribution

of the process with respect to time. More precisely, let M(Σ) be a set of probability

measures on Σ and denote the inner product of φ ∈ B(Σ) and µ ∈M(Σ) by

〈φ, µ〉 =

∫

Σ

φ(x)µ(dx) (3.44)

Suppose ξ0 has distribution π ∈M(Σ), the distribution for ξt is given by

P [ξt ∈ A] = E[IA(ξt)] = 〈TtIA, π〉 (3.45)

We denote the distribution P [ξt ∈ A] by Utπ(A). This shows that Ut is adjoint to Tt

since

〈φ, Utπ〉 = 〈Ttφ, π〉 = E[φ(xt)] (3.46)

for φ ∈ B(Σ), π ∈ M(Σ). Thus the generator of Ut is L∗, the adjoint of L and

πt := Utπ satisfies

d
dt
πt = L∗πt where π0 = π (3.47)

This is the forward equation for {ξt} since it gives the evolution of the distribution

πt of ξt. The objective of filtering theory is to obtain a similar description of the

conditional distribution of ξt given {ηs | s ≤ t}.
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Theorem 3.3.1 (page 60 Davis et al [15]). The solution of

ξt = ξ0 +

∫ t

0

f(ξs)ds+

∫ t

0

g(ξs)dβs (3.48)

where ξt ∈ R
n and βt ∈ R

m is a vector of independent Brownian motion, is a homo-

geneous Markov process with infinitesimal generator

L =
n∑

i=1

f i(x)
∂

∂xi
+

1

2

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
(3.49)

where A(x) = [aij(x)] = g(x)gT (x) and f i and xi denote the ith components of f and

x respectively. In this case Ito’s rule Equ.(3.33) can be written as:

φ(ξt) − φ(ξ0) =
n∑

i=1

∫ t

0

φxi(ξs)dξ
i
s +

1

2

n∑

i,j=1

∫ t

0

φxixj(ξs)a
ij(ξs)ds

⇒ φ(ξt) − φ(ξ0) =

∫ t

0

Lφ(ξs)ds+

∫ t

0

∇φT (ξs)g(xs)dβs (3.50)

emphasizing that Mφ
t is a martingale, where ∇ in Equ.(3.50) denotes the gradient

with respect to x.

The following theorem deals with the Kolmogorov forward equation.

Theorem 3.3.2 (page 60 Davis et al [15]). Assume that the stochastic process

{ξt} that satisfies Equ.(3.48) has a transition density p(s, x, t, y)

P (s, x, t, B) =

∫

B

p(s, x, t, y)dy (3.51)

which is continuous and bounded in s, t and x for t − s > δ > 0 p(s, x, t, y). We

assume that the partial derivatives

∂f
∂xi ,

∂A
∂xi ,

∂2A
∂xi∂xj ,

∂p
∂t
, ∂p

∂y
, ∂p

∂y2

exist. Then for 0 < s < t, p satisfies the Kolmogorov forward equation
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∂p

∂t
(s, x, t, y) = −

n∑

i=1

∂

∂yi
(f i(y)p(s, x, t, y))

+
1

2

n∑

i,j=1

∂2

∂yi∂yj
(aij(y)p(s, x, t, y)) (3.52)

= L∗p(s, x, t, y) (3.53)

where L∗ is the formal adjoint of L. Also, the initial condition is

lim
t→s

p(s, x, t, y) = δ(y − x) (3.54)

The formal adjoint of the Kolmogorov forward equation gives rise to the Kolmogorov

backward equation

∂

∂s
p(s, x, t, y) + Lp(s, x, t, y) = 0 (3.55)

The backward and forward equations play an important role in stochastic optimal

control and filtering theory, respectively. Consider the following stochastic differential

equation, page 201 Maybeck [52]:

dξt = f(ξt, t)dt+ g(ξt, t)dwt (3.56)

where wt is Brownian motion with diffusion Q(t) ∀t ∈ T , the transition probability

density p(s, x, t, y) for ξt satisfies the forward equation. Given that ξt is Markov, the

update equations for the mean and covariance for ξt can be determined as follows:

µ̇ξ(t) = E[f(ξt, t)] (3.57)

Ṗξ(t) = [E[f(ξt, t)ξ
T
t ] − E[f(ξt, t)]µ

T
ξ (t)] +

[E[ξtf
t(ξt, t)] − µξ(t)E[fT (ξt, t)]] +

E[g(ξt, t)Q(t)gT (ξt, t)] (3.58)

In the special case of linear stochastic differential equations f(ξt, t) = F (t)ξt, g(ξt, t) =

G(t) the update equations for the mean and covariance for ξt simplify to
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µ̇ξ(t) = F (t)µξ(t) (3.59)

Ṗξ(t) = F (t)Pξ(t) + Pξ(t)F
T (t) +G(t)Q(t)GT (t) (3.60)

which appears to be a subset of the Kalman-Bucy filter, Cha. 5.
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Chapter 4

NONLINEAR FILTERING

The general filtering problem concerns estimating some aspect of an unobservable

stochastic process {xt} given the observations of a related process {yt}. The problem

of interest is to calculate the conditional distribution of {xt} given {ys | 0 ≤ s ≤ t}.
In the context of linear filtering theory, this problem has been solved in what is now

known as the Kalman-Bucy filter, Kalman [32] and Kalman et al [31]. The nonlinear

filtering problem is, in general, infinite-dimensional and therefore more difficult to

solve. However, considerable progress was made in the early sixties in as far as

describing the evolution of the conditional distribution is concerned by Bucy [8],

Kushner [38], Shiryaev [64], Stratonovich [65] and Wonham [68]. In 1968, Kailath

[30] utilized the so called innovations approach for the linear filtering. To extend

this approach to the nonlinear problem, Frost [18] advocated that filtering theory be

formulated on martingale theory. The first authoritative treatment based on this idea

was provided by Fujisaki et al [19]. Despite these developments, the nonlinear filtering

problem was purely of academic interest because of the complicated nature of the

conditional distribution. In 1969 Zakai [69] made a significant break through. Using

the so called reference probability method, Wong [67], Zakai obtained a substantially

simpler set of equations that made the problem less intractable and more attractive

for numerical implementation.

The mainstream approach to nonlinear filtering theory follows two schools based on:

1. the Kushner-Stratonovich or Fujisaki-Kallianpur-Kunita equation, - Fujisaki et

al [19] and
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2. the Zakai equation, - Zakai [69].

4.1 Introduction

The following hypotheses, page 57 Davis et al [15], are made in all nonlinear estimation

processes:

H1] {yt} is a real valued process

H2] {vt} is at standard Brownian motion process

H3] E[
∫ T

0
z2

sds] <∞

H4] {zt} is independent of {vt}

The general problem statement is given as follows:

Problem Statement 4.1.1 (page 817 Marcus [51] and page 55 Davis et al

[15]). The state process {xt} is a stochastic process that cannot be observed directly.

The information concerning {xt} is contained in the observation process {yt}

yt =

∫ t

0

zsds+ vt (4.1)

where {zt} is a process related to {xt} by

zt = h(xt) (4.2)

and {vt} is a Brownian motion process. The end goal is determine the least squares

estimates of functions of xt given past observations {ys | 0 ≤ s ≤ t}, that is the

computation of the conditional expectation of the form E[φ(xt) | ys, 0 ≤ s ≤ t]. For

practical purposes, due to the nature of the observation process, which is typically

based on discrete-time measurements of a physical process, it is highly desirable for

this computation to occur in a recursive manner in terms of the statistic π = {πt}
which can be updated using new observations when they become available:
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πt+τ = α(t, τ, πt, {ys | 0 ≤ s ≤ t+ τ}) (4.3)

Then, πt may be used to compute estimates in a memoryless manner

E[φ(xt) | ys, 0 ≤ s ≤ t] = β(t, yt, πt) (4.4)

One can regard πt as a representation of the conditional distribution of {xt}
given {ys | 0 ≤ s ≤ t}. There are conditions under which πt can be computed with

a finite set of stochastic differential equations driven by {yt}. The significance of

recursiveness is that it leads to a real-time implementation of the filter described by

Equ.(4.3) and Equ.(4.4). More specifically:

1. α and β can be thought of as representing that aspect of the filter that does not

depend on data, it can be hardware or software related

2. πt represents the state of the filter, which has a memory requirement

3. {ys | t ≤ s ≤ t+ τ} or dyt can be thought of as the new information to the filter

that is encoded in the measurement process, which becomes available at certain

time increments

To progress with the problem through the application of certain results from stochas-

tic calculus, we make the following assumptions:

1. {xt} is a semimartingale

2. {xt} is a Markov process or a vector diffusion process of the form Equ.(3.48)

We will see in later chapters that the structure of the recursive nonlinear filtering

problem leads to the natural application of geometric techniques involving Lie alge-

bras.
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4.2 The Innovations Approach to Nonlinear Filtering

In this section we assume that our nonlinear filtering problems are well posed and

satisfy the hypotheses H1-H4 outlined in the previous section. In particular, we

examine the stochastic differential equations that describe the evolution of conditional

statistics and of the conditional density, which is similar to the Kolmogorov forward

equation for Markov processes. We follow the innovations approach of Fujisaki et al

[19].

Assume that observations yt have the form Equ.(4.1) and that the hypotheses H1 to

H4 are valid. Define Yt = σ{ys | 0 ≤ s ≤ t}. Now for any arbitrary process ηt we use

the notation

η̂t = E[ηt | yt] (4.5)

Now we define the innovations process by the residual

νt = yt −
∫ t

0

ẑsds (4.6)

The increment νt+h − νt represents new information of the process {zt} that is deter-

mined from the observations on the interval [t, t+ h], such that the residual νt+h − νt

is independent of Yt. The following properties of the innovation are important.

Lemma 4.2.1 (page 63 Davis et al [15]). The process {νt,Yt} is a standard Brow-

nian motion process. Furthermore, Ys and σ{νu − νt | 0 ≤ s ≤ t < u ≤ T} are

independent.

It is important to note that the above lemma provides a precise result concerning the

structure of the innovations process without any restriction on the distribution of zt.

Before we proceed to the next lemma, which is related to Kailath’s innovations con-

jecture, consider the following discussion. By definition νt is Yt-measurable and σ{νs |
0 ≤ s ≤ t} ⊂ Yt. The innovations conjecture asserts that Yt ⊂ σ{νs | 0 ≤ s ≤ t},
which implies that two σ-algebras are equal; this means that the observations and
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the innovations contain the same information. This important fact was unknown

at the time that Fujisaki et al [19] was published, however, it was later shown by

Allinger et al [1] that the conjecture is true when H1-H4 are respected. It is well

known in stochastic analysis that all martingales of Brownian motion are stochastic

integrals. The innovations conjecture asserts that any Yt-martingale can be written

as a stochastic integral with respect to the innovations process {νt}. The importance

of the contribution made by Fujisaki et al [19] was to show that this representation

holds whether or not the innovations conjecture is valid.

Lemma 4.2.2 (Fujisaki et al [19]). Every square integrable martingale {mt,Yt} with

respect to observation σ-algebras Yt is sample continuous and has the representation

mt = E[m0] +

∫ t

0

ηsdνs (4.7)

where
∫ T

0
E[η2

s ]ds <∞ and {ηt} is jointly measurable and adapted to Yt.

The lemma proves that mt can be written as a stochastic integral with respect to the

innovations process. However, it should be noted that {ηt} is adapted to Yt and not

necessarily to Fν
t

To obtain a general filtering equation, consider a real-valued Ft-semimartingale ξt

ξt = ξ0 +

∫ t

0

αsds+ nt (4.8)

where {nt,Ft} is a martingale and derive an equation satisfied by ξ̂t, which has the

form of Equ.(4.5).

Theorem 4.2.1 (page 64 Davis et al [15]). Assume the {ξt} and {yt} are given

by Equ.(4.8) and Equ.(4.1) respectively and that 〈n,w〉t = 0 . Then {ξ̂t} satisfies the

stochastic differential equation

ξ̂t = ξ̂0 +

∫ t

0

α̂sds+

∫ t

0

[ξ̂szs − ξ̂sẑs]dνs (4.9)

Equ.(4.9) is not recursive, however, it can be used to obtain further results for filtering

of Markov processes, in particular the following theorem.
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Theorem 4.2.2 (page 66 Davis et al [15]). Assume that:

1. {xt} is a homogeneous Markov process with infinitesimal generator L

2. that {yt} is given by Equ.(4.1) with zt = h(xt) and

3. that {xt} and {vt} are independent.

Then for any φ ∈ D(L), 〈πt, φ〉 = πt(φ) = E[φ(xt) | Yt] satisfies

πt(φ) = π0(φ) +

∫ t

0

πs(Lφ)ds+

∫ t

0

[πs(hφ) − πs(h)πs(φ)]dνs (4.10)

Equ.(4.10) can be regarded as a recursive infinite-dimensional stochastic differential

equation for the conditional measure πt of xt given Yt because {πt(φ) | φ ∈ D(L)}
determines a measured valued stochastic process πt. Furthermore, πt(φ) is the con-

ditional statistic computed from πt in a memoryless fashion. In general it is not

possible to derive a finite dimensional recursive filter even for the conditional mean

x̂t. However, there are special cases where finite dimensional filters are known to

exist.

Assume that {xt} is a diffusion process of the form given by Equ.(3.48) with infinites-

imal generator L Equ.(3.49) and that the conditional distribution of xt given Yt has

a density p̃(t, x). Using the differentiability hypotheses, Liptser et al [49], one can

perform an integration by parts on

πt(φ) = π0(φ) +

∫ t

0

πs(Lφ)ds+

∫ t

0

[πs(hφ) − πs(h)πs(φ)]dνs (4.11)

to obtain a stochastic partial differential equation

dp̃(t, x) = L∗p̃(t, x)dt+ p̃(t, x)[h(x) − πt(h)]dνt (4.12)

where
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πt(h) =

∫
h(x)p̃(t, x)dx (4.13)

This is a recursive equation for the computation of p̃(t, x). However, it is infinite

dimensional and has the complication of the integral in Equ.(4.13). The equation for

dp̃(t, x), Equ.(4.12), is the analog of the Kolmogorov forward equation; Equ.(4.12)

reduces to Equ.(3.55) as the observation noise approaches ∞. The conditional mean

cannot in general be computed with a finite dimensional recursive filter as seen by

letting φ(x) = x in Equ.(4.12). Hence, πt(f), πt(hx) and πt(h) are necessary for the

computation of x̂t

x̂t = x̂0 +

∫ t

0

πs(f)ds+

∫ t

0

[πs(hx) − πs(h)x̂s]dνs (4.14)

One case in which this is possible is in the Kalman-Bucy Filter .

4.3 The Unnormalized Equations

The conditional measure πt satisfies Equ.(4.12), however, is often more convenient

to work with a less complicated equation, which is obtained by considering an un-

normalized version of πt. These equations were originally derived by Zakai [69] and

Wong [67]. We will adhere to the derivation by Davis et al [15], page 69, because

it is more concise and is based on Equ.(4.12) and Ito’s rule. We make the following

assumptions:

1. {xt} is a homogeneous Markov process with infinitesimal generator L,

2. {yt} is given by Equ.(4.1),

3. zt = h(xt) and

4. {xt} and {vt} are independent.
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To derive the unnormalized equations, consider the first step to define a measure P0

on the measurable space (Ω,F) by

P0(A) =

∫

A

dP0

dP
P (dω) (4.15)

∀A ∈ F where

dP0

dP
= exp

(
−

∫ T

0

h(xs)dys +
1

2

∫ T

0

h2(xs)ds

)
(4.16)

is the Radon-Nikodyn derivative of P0 with respect to P . Under this new measure,

Marcus [51], {yt} is a standard Brownian motion, {xt} and {yt} are independent and

the distributions for {xt} remain invariant.

Lemma 4.3.1 (page 9 Wong [67]). P0 has the following properties

1. P0 is a probability measure with P0(Ω) = 1

2. under P0 {yt} is a standard Brownian motion

3. under P0 {xt} and {yt} are independent

4. {xt} has the same distribution under P0 as under P

5. P is absolutely continuous with respect to P0 with Radon-Nikodyn derivative

dP

dP0

=

(
dP0

dP

)−1

(4.17)

= exp

(∫ T

0

h(xs)dys −
1

2

∫ T

0

h2(xs)ds

)
(4.18)

Hence, conditional statistics of xt given Yt in terms of the original measure P can be

calculated in terms of conditional statistics under the measure P0 by a Bayes formula,

page 818 Marcus [51]:
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〈πt, φ〉 = πt(φ) := E[φ(xt) | Yt] =
E0[φ(xt)Λt | Yt]

E0[Λt | Yt]
:=

σt(φ)

σt(1)
(4.19)

where E0 is the expectation with respect to P0 and

Λt := exp

(∫ T

0

h(xs)dys −
1

2

∫ T

0

h2(xs)ds

)
(4.20)

is a martingale with respect to Ft and P0 so that

Λt = E0

[
dP

dP0

| Ft

]
(4.21)

We now require a recursive equation for the measure σt. Since σt(φ) = σt(1)πt(φ) we

have the equation for πt(φ), an equation for σt(φ) is derived by finding a stochastic

differential equation for σt(1) = E0[Λt Yt] and applying Ito’s rule.

Lemma 4.3.2 (page 70 Davis et al [15]). E0[Λt | Yt] is given by the formula

Λ̂t = E0[Λt | Yt] = exp

(∫ T

0

πs(h)dys −
1

2

∫ T

0

π2
s(h)ds

)
(4.22)

Theorem 4.3.1 (page 72 Davis et al [15]). For any φ ∈ D(L), σ(φ) satisfies

σt(φ) = σ0(φ) +

∫ t

0

σs(Lφ)ds+

∫ t

0

σs(hφ)dys (4.23)

The Stratonovich version of Equ.(4.23) is

σt(φ) = σ0(φ) +

∫ t

0

σs(L̃φ)ds+

∫ t

0

σs(hφ) ◦ dys (4.24)

where

L̃φ(x) = Lφ(x) − 1

2
h2(x)φ(x) (4.25)

Since {σt(φ), φ ∈ D(L)} determines a measure-valued stochastic process, σt(φ) can

be regarded as a recursive infinite dimensional linear stochastic differential equation

for the unnormalized conditional measure σt of xt given Yt.
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If we assume that xt is a diffusion process and that the unnormalized conditional

measure has a sufficiently smooth density p(t, x), that is:

σt(φ) =

∫
φ(x)p(t, x)dx (4.26)

then under appropriate hypotheses one can obtain from Equ.(4.23) stochastic partial

differential equations for p(t, x), Kunita [39]. In particular, we assume that xt is a

diffusion of the form given by Equ.(3.48) with generator L. Then

dp(t, x) = L∗p(t, x)dt+ p(t, x)h(x)dyt (4.27)

dp(t, x) =

[
L∗ − 1

2
h2(x)

]
p(t, x)dt+ p(t, x)h(x) ◦ dyt (4.28)

where L∗ is the formal adjoint of L. The above equation is a bilinear stochastic

partial differential equation, which we call the Zakai equation. Note that

πt(φ) =

∫ ∞

−∞
φ(x)p(t, x)dx∫ ∞

−∞
p(t, x)dx

(4.29)

is used to determine the estimated state of the system.
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Chapter 5

THE KALMAN-BUCY FILTER IN RELATION TO THE

NONLINEAR FILTERING PROBLEM

In this chapter we explore the relationship between the nonlinear filtering theory and

the Kalman-Bucy filter.

5.1 The Kalman-Bucy Filter

Consider the operator, page 20-21 Crisan [10],

A(t)ϕ(x) =
d∑

i=1

Fi(t)
∂ϕ(x)

∂xi
+

d∑

i,j=1

Qij(t)
∂2ϕ(x)

∂xi∂xj
(5.1)

Let T = [0, T ], we assume that Fi, Qij ∈ C(T ) and that Qij ≥ 0. Consider the case

where xt

xt = x0 +

∫ t

0

F (s)xsds+

∫ t

0

Q(s)dB1
s (5.2)

is the solution of the martingale problem, with infinitesimal operator A. Consider an

observation process yt given by

yt = x0 +

∫ t

0

H(s)xsds+

∫ t

0

R(s)dB2
s (5.3)

where {B1
t ,Ft} and {B2

t ,Ft}, t ∈ T , are standard independent Brownian motions.

We assume that the initial data π0 is given by

π0(ψ) =

∫
ψ(x0 + P

1
2
0 ξ)

exp− 1
2
|ξ|2

(2n)
n
2

dξ (5.4)
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where x0, P0 are given. P0 is symmetric and nonnegative. Therefore, π0 is Gaussian

with mean x0 and covariance matrix P0.

Bensoussan [6] proves that the solution of the Zakai and Kushner equations exist and

are unique and proves the following theorem

Theorem 5.1.1 (page 101 Bensoussan [6]). The unnormalized conditional density

of the signal given the observation is Gaussian with mean x̂t and covariance matrix

Pt is given by

pt(ϕ) =

[∫
ϕ(x̂t + P

1
2

t ξ)

]
st

exp− 1
2
|ξ|2

(2n)
1
2

dξ (5.5)

where Pt is the solution of the Riccati equation

Ṗ + PHTR−1HP −Q− FP − PF T = 0 (5.6)

P (t) = P0 (5.7)

and x̂t is the Kalman filter solution of

dx̂t = Fx̂tdt+ PHTR−1[dyt −Hx̂tdt] (5.8)

x̂(0) = x0 (5.9)

The process st is given by

st = exp[
∫ t

0 (x̂T HT )R−1− 1
2

∫ t

0 ((x̂T HT )R−1(x̂H))ds] (5.10)
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Chapter 6

STOCHASTIC CALCULUS ON MANIFOLDS

The most successful formulation of Brownian motion on a manifold is the Eells-

Elworthy-Malliavin construction, which is founded on the idea that parallel transport

and horizontal lifts can be applied to manifold-valued semimartingales. We have seen

that when a manifold is equipped with a connection that it is possible to lift a curve

to a horizontal curve on the frame bundle O(M). If c : I → M is such a curve,

choose the frame u(0) over c(0) and let u(t) be the parallel transport of u(0) along

c[0, t], which is achieved by solving an ordinary differential equation in local charts.

The lift {u(t) | t ∈ I} defines a unique smooth curve q(t) = u(t)−1 · c(t) in the

Euclidean space of the same dimension. The curve q is called an anti-development of

c. Therefore, there is a one-to-one correspondence between a set of smooth curves on

a manifold, starting at some fixed point, and their anti-developments in Euclidean

space up to the action by the general linear group. This construction can be extended

to semimartingales on a manifold that is equipped with a connection by solving an

appropriate horizontal stochastic differential equation on the frame bundle.

6.1 Calculus on Manifolds

Before we proceed, we need to formally define a semimartingale Σ = {Σt}, t ≥ 0, on

an m-dimensional manifold M. We assume that all processes are defined on a fixed

probability space (Ω,F , P ) and are {Ft}-adapted.

Definition 6.1.1 (page 19 Hsu [25]). A semimartingale Σ = {Σt}, t ≥ 0 on

M is an M-valued {Ft}-adapted process such that {f(Σt)}, t ≥ 0, is a real-valued

semimartingale for all smooth real-valued functions f on M.
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From Stratonovich calculus in Euclidean spaces, we know that the Ito Formula gives

rise to the following equation, compare with Equ.(3.34):

dφ(Σ) = φx(Σ) ◦ dΣ (6.1)

where φ ∈ C3. For simplicity, we follow Kendall’s notation, Kendall [34] & Kendall

[35], and rewrite the above as

dSφ(Σ) = φx(Σ)dSΣ (6.2)

This shows that dSΣ behaves as an ordinary differential. Thus, if Σ is an M-valued

semimartingale, then its Stratonovich differential can be formally associated with

a tangent vector. Let φ : M → N be a map between two manifolds. Then the

tangent map of φ is Tφ : TM → TN . It can then be shown, Kendall [34], that the

semimartingale φ(Σ) satisfies the following equation:

dSφ(Σ) = Tφ(Σ)dSΣ (6.3)

Equ.(6.3) is invariant of the choice of coordinate system chosen. Consider the following

sets, which define the tangent spaces associated with the semimartingales Σ and φ(Σ),

respectively,

TΣM = {TxM | x ∈ Σ} (6.4)

Tφ(Σ)N = {TxN | x ∈ φ(Σ)} (6.5)

The Stratonovich differentials dSΣ and dSφ(Σ) can then be associated with the sets

TΣM and Tφ(Σ)M, respectively.

6.2 Semimartingales on Manifolds - Stochastic Development and Par-

allel Transport

Stochastic development and parallel transport is essentially a technique that relies

on geometric tools to flatten out a semimartingale Σ on an m-dimensional manifold
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M by associating it with a system of Stratonovich stochastic differential equations

driven by a real-valued semimartingale Λ = {Λt}, t ≥ 0 that resides in a reference

Euclidean space V = R
m of the same dimension as M.

We start by considering the linear isometry, which relates the differential dSΛ ∈ V to

the differential dSΣ ∈ TΣM

Ξ : V → TΣM (6.6)

In order to define the Stratonovich stochastic differential equation from this map

ΞdSΛ = dSΣ (6.7)

we require that Ξ itself be a manifold-valued semimartingale Ξ = {Ξt}, t ≥ 0 in

the orthonormal frame bundle O(M). For this definition to be correct, we require

a rule for the evolution of Ξ in terms of Σ or Λ. We therefore require a rule for

lifting dSΣ ∈ TΣM to the frame bundle to drive Ξ. This follows naturally since

the orthonormal frame bundle π : O(M) → M is a principal fibre bundle that is

equipped with a connection, refer to Sec. 2.2.3.

Given that Ξ ∈ O(M), we require the projection map of the orthonormal frame

bundle to map Ξ to Σ on M

π : O(M) → M,Ξ 7→ π(Ξ) := Σ (6.8)

Associated with π is the differential

Tπ : TΞO(M) → TΣM, dSΞ 7→ Tπ(dSΞ) := dSΣ (6.9)

Now, from fibre bundle theory we have the horizontal lift of the connection on O(M),

Def. 2.1.12, which for each u ∈ O(M), where u : V → TxM and x ∈ M, connects

TπuM to TuO(M)
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hu : TπuM → TuO(M), (6.10)

If h varies smoothly with u then

dSΞ = hΞdSΣ (6.11)

is a stochastic differential equation with smooth coefficients, which has a solution

that exists up to a possibly finite explosion time. We summarize the process using

the commutative diagram in Fig. 6.1

O(M) M

TΞO(M) TΣM V

π

Tπ Ξ

hu

Figure 6.1: Stochastic Development and Parallel Transport

We call Λ and Ξ the stochastic development and stochastic parallel transport

of Σ, respectively.

We need to ensure that the connection respects the following requirements, Kendall

[34]:

1. the relation π(Ξ) = Σ must be maintained otherwise the differential ΞdSΛ will

not be relevant for Σ; upon differentiation both sides we have the following

requirement

(Tπ)(hudSΣ) = dSΣ (6.12)

this leads to the requirement
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Tπ(hu) = idTπuM, ∀u ∈ O(M) (6.13)

which is exactly the condition that is respected in Equ.(2.48) of Def. 2.1.12

2. the equivariance condition; though Ξ depends on its initial Ξ0 = u, a change in

the initial condition should only have the effect of subjecting the solution Ξ to

a fixed isometrical transformation of V , which is a consequence of Equ.(2.49) of

Def. 2.1.12

There is another restriction that we impose on the connection: it should have zero

torsion. As we have seen earlier, there is one and only one such orthonormal connec-

tion for each Riemannian manifold, the Levi-Civita connection, refer to Def. 2.2.1.

This brings us to the following important theorem:

Theorem 6.2.1 (Equations for Stochastic Development and Parallel Trans-

port - page 11 Kendall [35]). To each manifold-valued semimartingale Σ in an m-

dimensional Riemannian manifold M we can associate a stochastic anti-development

Λ in R
m and a stochastic parallel transport ζ in the orthonormal frame bundle O(M)

such that

dSΣ = ΣdSΛ (6.14)

dSΞ = hΞdSΣ (6.15)

Furthermore, Λ, Ξ are unique when the initial frame Ξ0 is prescribed (and depending

equivariantly on this choice); and on the other hand Σ can be defined by prescribing

the initial condition Ξ0 and hence Σ0 and the driving flat semimartingale Λ.

Intuitively, the stochastic development Λ can be associated with the trajectory gen-

erated on V when V is rolled without slipping on M with the constraint that the

point of contact on M is along the semimartingale Σ on M. Also, the parallel trans-

port Ξ can be associated with an inertial reference frame that is attached to the
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semimartingale Σ which encodes the orientation of V as it rolls. The importance

of the connection in this construction justifies the detailed analysis of principal fibre

bundles, refer to Sec. 2.1.3.

The stochastic differential equations may be used to categorize semimartingales Σ

on M in terms of their stochastic development Λ on V . There are two process

that are particularly important. When Λ is curve on V the process Σ on M is

said to be a Γ-geodesics . If Λ is Brownian motion on V then we say that Σ is

a Γ-Brownian motion on M. These processes are prefixed with the symbol Γ

to emphasize the importance of the connection (Γ is a symbol that conventionally

represents the coordinate representation of a connection).

6.3 Local Description of Γ-Geodesics and Γ-Brownian Motion on M

In this section, we refer to Ikeda et al [26] to illustrate how stochastic development

and parallel transport may be used to provide a local description of Γ-geodesics and

Γ-brownian motion on M.

Let M be an n-dimensional Riemannian manifold equipped with an affine connection

∇ = {Γk
ij} compatible with the Riemannian metric g. Using the connection ∇, the

manifold M can be rolled along a curve γ(t) in R
n to generate a curve c(t) on M. The

infinitesimal motion of c(t) at x ∈ M is that of γ(t) in TxM ∼= V . By choosing an

orthonormal frame, the infinitesimal motion of the frame is given by the connection.

Let γ : I = [0,∞) → V be a smooth curve. Let u = (x, e) ∈ O(M). Define the curve

c̃(t) = (c(t), e(t)) in O(M)

dc
dt

(t) = dγα

dt
(t)eα(t), c(0) = x

∇ċ(t)e(t) = 0, e(0) = e
(6.16)

In local coordinates we have
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dci

dt
(t) = ei

α(t)dγα

dt
(t)eα(t), ci(0) = xi

del
α

dt
(t) = −Γi

ml(c(t))e
l
α(t)dcm

dt
(t), ei

α(0) = ei
α

(6.17)

where i, α = 1, . . . , n. The coefficients of the Levi-Civita connection Γi
ml in Equ.(6.17)

have been define in Equ.(2.81). Equ.(6.16) may be written more compactly as follows:

dc̃

dt
(t) = Hα(c̃(t))

dγα

dt
(t), c̃(0) = u (6.18)

where Hα’s in Equ.(6.18) are the fundamental horizontal vector fields defined in

Equ.(2.87).

The curve c(t) = π(c̃(t)) in M is a Γ-geodesic on M which depends on the initial

frame e at x ∈ M. Let us denote the curve c(t) by c(t, u, γ), where u = (x, e). It can

be shown that, Ikeda et al [26] page 283,

c(t, ua, γ) = c(t, u, aγ), t ∈ [0,∞), a ∈ O(n) (6.19)

where the curve (aγ)(t) = aγ(t).

The above discussion easily generalizes to Γ-Brownian motion as follows. Let w(t) =

(wα(t)) be a canonical realization of n-dimensional Brownian motion. Let u(t) =

(u(t, u, w)) be a solution of the stochastic differential equation

du(t) = Hα(u(t)) ◦ dwα(t), u(0) = u (6.20)

In local coordinates, Equ.(6.20) is equivalent to, Ikeda et al [26] page 284,

dΣi(t) = Ξi
α(t) ◦ dwα(t)

dΞi
α(t) = −Γi

mk(Σ(t))Ξk
α(t) ◦ dΣm(t)

(6.21)

where i, α = 1, . . . , n. The solution u(t) = (Σi(t),Ξi
α(t)) lies on O(M) if u(0) ∈

O(M). The stochastic curve Σ(t) on M is defined by Σ(t) = π(u(t)).
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6.4 Nonlinear Filtering on Manifolds

An important application of the above theory concerns nonlinear estimation on man-

ifolds.

The first example we consider deals with the nonlinear filtering on the unit circle

S1, which has important applications in engineering, for example FM demodulation,

frequency stability and single degree of freedom gyroscope analysis. The problem was

originally investigated by Lo et al [50], who proved that linear filtering techniques can

be applied together with some nonlinear transformations. The first geometric analysis

of the problem was initiated by James [29] who showed that differential geometry is

a natural mathematical setting for solving the nonlinear estimation problem because

S1 has the properties of a manifold and Lie group, Fig. 6.2

Nonlinear
Preprocessing

Kalman-Bucy
Filter

Nonlinear
Postprocessing

- - - -

- - -

-

S1 R R S1

dZ(t) dz(t) x̂ X̂

Figure 6.2: Nonlinear Filtering on Manifolds

However, the problem of generating Brownian motion on S1 using tools from stochas-

tic differential geometry was not completely addressed. The theory covered in this

chapter together with the examples discussed in preceding chapters addresses this

problem.

Other applications include more sophisticated filtering techniques like the geometri-

cally intrinsic nonlinear recursive filter due to Darling [13], [11] & [12].
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Chapter 7

GEOMETRIC NONLINEAR FILTERING THEORY

This chapter is largely based on a collection of papers by Mitter et al [55] and Lara

[44], [43], [46], [45] & [47]. It is aimed at emphasizing the role of geometric tools in

the analysis of the Zakai equation, which is concerned with the classification of the

dimension and the reduction of the Zakai equation through symmetry.

7.1 Introduction

Consider the partially observed stochastic process given by Equ.(1.1) and Equ.(1.2).

The unnormalized conditional law σt satisfies

dσt(φ) = [M0φ]σt(φ)dt+

p∑

i=1

[Miφ]σt(φ) ◦ dyi
t, σ0 = µ0 (7.1)

for some φ ∈ D(Rn), which is just the Stratonovich differential equation of Equ.(4.24)

extended for a p-dimensional observation process. The operators M0,M1, . . . ,Mp are

defined as follows:

M0φ = Lφ+Hφ (7.2)

Miφ = hiφ, i = 1, . . . , p (7.3)

where
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Lφ =
1

2

m∑

k=1

L2
gk
φ+ Lfφ

=
1

2

m∑

i,j=1

σij(xt)
∂2

∂xi∂xj
φ+

m∑

i=1

f i(x)
∂

∂xi
φ (7.4)

Hφ = −1

2
h2φ (7.5)

The σij(x) is just the ij-th element of the matrix σ(xt) = g(xt)g(xt)
T . In the above,

we make use of the Lie derivative notation, where for any vector field X =
∑n

i=1X
i ∂
∂xi

and a smooth function φ

LXφ(ξ) =
n∑

i=1

X i ∂φ

∂xi
(7.6)

By convention, L0
Xφ = φ and Lk

Xφ = LX(Lk−1
X ) ∀k ≥ 1. If the unnormalized con-

ditional density p(x, t) of the measure σt is smooth, then it satisfies the following

stochastic partial differential equation:

dp(x, t) = M∗
0p(x, t)dt+

p∑

i=1

M∗
i p(x, t) ◦ dyi

t (7.7)

which is a generalization of Equ.(4.28) given a p-dimensional observation process.

In the sections that follow, we apply geometric tools to classify the dimension of

the estimation algebra for the nonlinear filtering problem. We also introduce some

background to the infinitesimal symmetries of a parabolic operator and show how

these techniques may be applied to reduce the Zakai equation to a stochastic partial

differential equation on a lower dimensional space.

7.2 Estimation Algebra

We are now ready to introduce the Lie estimation algebra associated with the Zakai

equation. Let us first emphasize the importance this concept has in filtering theory.
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In the linear Gaussian filtering problem, the solution of the Zakai equation evolves

in the domain of unnormalized Gaussian measures. The corresponding finite number

of parameters satisfy a stochastic differential equation on a finite dimensional mani-

fold, which is driven by the observations of the physical. The extension of this idea

to nonlinear filtering problems has inspired the notion of finite dimensional filters.

The Lie estimation algebra associated the Zakai equation, which we denote by LA,

plays an important role in identifying whether finite dimensional filters may exist for

nonlinear filtering problems.

Let us consider a simplification in the generalized Zakai equation Equ.(7.7) for the

1-dimensional state and observation equation given by Equ.(1.1) and Equ.(1.2) re-

spectively.

dp(x, t) = M∗
0p(x, t)dt+M∗

1p(x, t) ◦ dyt (7.8)

We then have

Proposition 7.2.1 (page 206 Mitter [54]). LA = {M∗
0 ,M

∗
1} is finite dimensional

only in the case where the nonlinear state and measurement coupling functions f and

h respectively, in Equ.(1.1) and Equ.(1.2), have the following form:

1. h = ax+ β

2. fx + f 2 = ax2 + bx+ c, this is called the Riccati equation

where the Lie algebra operators are computed on C∞(R).

When we seek the diffusion process xt to be globally defined on R
1, we require the

coefficients of the Riccati equation in Pro. 7.2.1 to have the following properties:

1. a ≥ 0 and

2. (a, b, c) 6= 0
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If the Lie algebra LA = {M∗
0 ,M

∗
1} is finite dimensional, then it should be possible to

construct a filter by integrating the Lie algebra. However, if the Lie algebra is infinite

dimensional we cannot represent the solution of the Zakai equation by means of a

finite dimensional sufficient statistic which is represented by the stochastic differential

equation

dαt = a(αt)dt+ b(αt)dyt (7.9)

Assume that we are interested in determining the unnormalized conditional statistics

φ̂t =

∫

R

φ(x)p(t, x)dx (7.10)

φ̂t may be represented by a function of the solution to Equ.(7.9)

φ̂t = c(αt) (7.11)

Brockett proved, page 210 Mitter [54], that this occurs when there exists a homo-

morphism between the Lie algebra of operators LA{M∗
0 ,M

∗
1} and the Lie algebra of

vector fields LA{a− 1
2
bxb, b}.

7.3 Symmetry and Reduction

We will now introduce the theory that provides conditions and methods under which

the general Zakai equation Equ.(7.7) with a solution on R
n can be reduced to a

stochastic partial differential equation with a solution on a lower dimensional space

R
m, where m < n. We first introduce the group invariant techniques for the deter-

ministic case and then extend it to the stochastic case.

7.3.1 Infinitesimal Symmetries of a Parabolic Operator

Consider a second-order time-varying linear partial differential operator on R
n of the

form

Page 87 of 157



Stochastic Differential Equations with

Application to Manifolds and Nonlinear Filtering

A =
n∑

i,j=1

aij(x)∂2
xixj

+
n∑

i=1

bi(t, x)∂xi
+ c(t, x) (7.12)

where:

1. the functions aij(·), bi(·), c(·, ·) ∈ C∞(Rn)

2. (aij(x))i,j=1,...,n is positive definite ∀x ∈ R
n, making A elliptic

Then the associated parabolic equation given A is

∂tu− Au = 0 (7.13)

The set of all infinitesimal symmetries of this form is denoted by the set G∂t−A. If u

satisfies Equ.(7.13), then the symmetry group of ∂t−A allows one to determine other

solutions by taking the graph of u onto the graphs of solutions of Equ.(7.13), page

1444 Lara [42].

It turns out that the set of admissible perturbations of the operator A forms a Lie

algebra of operators of order less or equal to one, we call this the perturbation algebra

PA, which is isomorphic to the Lie algebra of infinitesimal generators of the symmetry

group of the parabolic operator ∂t − A. Lara [42] proves that this symmetry group

is finite dimensional by relating it to the Lie group of homothetic transformations

on a Riemannian manifold. Lara [42] introduces geometric tools to prove this result,

furthermore, these tools are used to characterize PA.

The application of this theory to nonlinear filtering can be motivated if we consider

the Zakai equation for a partially observed stochastic process as a perturbation of a

deterministic parabolic differential equation.

Time-Dependent Case

Proposition 7.3.1 (page 128 Lara [44]). G∂t−A is a Lie algebra that can be written

as a direct sum
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G∂t−A = [G∂t−A ∩ U(R × R
n × R)] ⊕ G∞

∂t−A (7.14)

where:

1. U(R × R
n × R) is a subalgebra of X(R × R

n × R) of vector fields ζ of the form

ζ = ζ0(t)∂t +
n∑

i=1

ζ i(t, x)∂xi
+ ζn+1(t, x)y∂y (7.15)

2. G∞
∂t−A reflects the linearity of Equ.(7.13) and consists of vector fields of the form

ζ = u(t, x)∂y with u a solution of Equ.(7.13).

The first part [G∂t−A ∩U(R×R
n ×R)] of the Lie algebra G∞

∂t−A can be characterized

as follows.

Definition 7.3.1 (page 128 Lara [44]). Let Aquad =
∑n

i,j=1 a
ij(x)∂2

xixj
be the second

order part of A that is time independent. Let FA = RAquad ⊕ X(Rn) ⊕ C∞(Rn)

denote the space of smooth linear operators P of order less that or equal to two on

R
n of the form Pϕ = αAquadϕ + Xϕ + mϕ for ϕ ∈ C∞(Rn), where (α,X,m) ∈

R × X(Rn) × C∞(Rn). For any ζ ∈ U(R × R
n × R) of the form given by Equ.(7.15)

and t ∈ R, let ζ̂t and ∂tζ̂t ∈ FA be given by

ζ̂t = −ζ0(t)Aquad −
n∑

i=1

ζ i(t, x)∂xi
+ ζn+1(t, x) (7.16)

∂tζ̂t = −∂tζ
0(t)Aquad −

n∑

i=1

∂tζ
i(t, x)∂xi

+ ∂tζ
n+1(t, x) (7.17)

This gives a characterization of G∂t−A in terms of differential operators on R
n.

Theorem 7.3.1 (page 128 Lara [44]). If ζ ∈ U(R × R
n × R), then the following

equivalence is satisfied:

ζ ∈ G∂t−A ⇐⇒ ∀t ∈ R, ∂tζ̂t = [A, ζ̂t] (7.18)
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Time-Independent Case

When the functions bi and c in Equ.(7.12) do not depend on time, we have the

following refinement:

Theorem 7.3.2 (page 128 Lara [44]). There exists a finite-dimensional Lie algebra

PA called the perturbation algebra of the elliptic operator A, consisting of linear

partial differential operators of order less that or equal to one on R
n such that ∀ζ ∈

U(Rn), ζ ∈ G∂t−A ⇐⇒

∂tζ̂t = [A, ζ̂t], ∀ (7.19)

⇐⇒

ζ̂t = exp (tadA)(ζ̂0) =
∞∑

k=0

tk

k!
adk

A(ζ̂0), ∀t ∈ R (7.20)

where ζ̂0 ∈ RA⊕ PA.

The above result implies that the characterization of infinitesimal symmetries of

Equ.(7.13) relies upon the characterization of the Lie algebra PA.

A Geometric Characterization of the Perturbation Algebra

Definition 7.3.2 (page 129 Lara [44]). Let X,Y and Z be vector fields, α be a

1-form and ϕ a smooth function.

1. D is the Levi-Civita connection associated with the metric g. LZ is the Lie

derivative and AZ the derivative AZ = LZ −DZ.

2. AZ induces a (1, 1)-tensor field AZ by AZX = −DXZ whose adjoint A∗
Z is

defined by g(A∗
ZX,Y ) = g(X,AZY )

3. Z♭ is the one form defined by < Z♭, X >= g(Z,X) (♮ is the inverse operation of

♭).
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4. ∇gϕ is the vector field (dϕ)♮, that is g(∇gϕ,X) = Xϕ = LXϕ

5. the divergence of Z is the function divgZ = −trace(AZ) and the Laplacian

△gϕ = divg(∇gϕ)

Definition 7.3.3 (page 129 Lara [44]). T ∈ X(Rn) is said to be a homothetic

infinitesimal transformation of (Rn, g) if there exists λ ∈ R such that LTg = λg. We

denote by Hg the space of all homothetic infinitesimal transformations of (Rn, g) and

define the linear form ηg on H by ηg(T ) = λ if LTg = λg. Fg = Kerηg is the space of

infinitesimal isometries of (Rn, g).

We have now characterized PA.

Theorem 7.3.3 (page 129 Lara [44]). The smooth differential operator X +m ∈
X(Rn)⊕C∞(Rn) belongs to PA ⇐⇒ ∃(Xi)i∈N, a sequence, in Hg(M) that satisfies

one of the equivalent inductions:

X0 = X

X1 = KAX0 + ∇g(m− g(X0, B))

Xi+2 = KAXi+1 + 1
2
∇g(LXi

HA + ηg(Xi)HA)

(7.21)

Here the skew-symmetric (1, 1) tensor field KA and the function HA are given by

KA = AU − A∗
U , HA = divgU + g(U,U) − 2c (7.22)

Moreover, we have

adk+1
A (X +m) = ηg(Xk)A+Xk+1 +mk+1 (7.23)

where the sequence of functions mk satisfy the induction

mk+1 = (
1

2
∇g + U)mk − (LXk

+ ηg(Xk))c, m0 = m (7.24)
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7.3.2 Computation of Infinitesimal Symmetries

We are now in a position to extend the deterministic invariance group techniques to

the stochastic case. This will allow us to identify solutions of the Zakai equation that

have a certain degree of symmetry, that is, invariant under some group action. Such

solutions enable us to reduce the Zakai to a stochastic partial differential equation of

lower dimension.

The assumptions that we make are:

A1] The coefficients of the linear partial differential operators M0,M1, . . . ,Mp

are smooth functions.

A2] M0 is elliptic M0 = 1
2

∑n
i,j=1 a

ij(x)∂2
xixj

+ . . ., then the symmetric matrix

(aij(x))i,j=1,...,n is positive definite ∀x ∈ R
n.

Shifting from the symmetries of a stochastic PDE to symmetries of a

family of PDE’s

Let (y(t))t≥0 = (y1(t), . . . , yp(t))t≥0 be a smooth trajectory in R
p. Consider a deter-

ministic partial differential equation

∂u

∂t
= M∗

0u+

p∑

k=1

yk(t)M∗
ku (7.25)

The primary objective now is to seek invariant solutions of Equ.(7.25) and to charac-

terize them and examine their relation to the Zakai equation. Basically, this involves

finding particular solutions of Equ.(7.25), this can be done by studying its invariances

under group actions. We can adapt to the filtering case using the computations dis-

cussed by Lara [44]. Once a symmetry is identified, one can associate special solutions

having these symmetries which satisfy simpler or reduced equations.
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A Necessary and Sufficient Condition for Existence

We find that due to the parabolic nature of the Zakai equation there exists geometric

conditions for the existence of infinitesimal symmetries, which prove the existence of

a reduced equation.

Theorem 7.3.4 (page 124 Lara [44]). Let ζ̂0 be the linear partial differential op-

erator of order less than or equal to two, given by

ζ̂0 = −ζ0(0)M∗
0 −

n∑

i=1

ζ i(0, x)∂xi
+ ζn+1(0, x) (7.26)

and let ζ̂∗0 be the dual operator. Then, ζ ∈ U(R×R
n×R) is an infinitesimal symmetry

of the partial differential equation ∀(y(t))t≥0 ⇐⇒

ζ̂∗0 ∈ RM0 ⊕ PM0 and ∀i = 1, . . . , p adMi
adk

M0
(ζ̂∗0 ) = 0, ∀k ∈ N

(7.27)

Geometry of the Operator M0 and the Existence of Infinitesimal Sym-

metries

The objective of this section is to show how the existence of nontrivial infinitesimal

symmetries are related to the geometric properties of the parabolic operator M0.

Lemma 7.3.1 (page 125 Lara [44]). There exists a Riemannian metric g on R
n

such that if ∇g is the Laplace-Beltrami operator on the Riemannian space Vn =

(Rn, g), then M0 can be written in the following form

M0 =
1

2
∇g + U + c (7.28)

where U is a smooth vector field on R
n and c is a smooth function.

Proposition 7.3.2 (page 125 Lara [44]). Let Mi = hi, where i = 1, . . . , p be

nonconstant functions. Also let ζ ∈ U(R × R
n × R) be such that ζ̂∗0 ∈ PM0 and let
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(Xk)k∈N in Hg(M) be the associated sequence given by Equ.(7.21). Two cases are

possible:

1. ∀k ∈ N such that Xk /∈ Ig(M) ηg(Xk) 6= 0. Then ζ is an infinitesimal symmetry

of Equ.(7.25) ∀(y(t))t≥0 ⇐⇒

LXi
hi = 0, ∀i = 1, . . . , p (7.29)

2. ∃k ∈ N such that Xk /∈ Ig(M)(ηg(Xk) 6= 0). Then ζ is not an infinitesimal

symmetry of Equ.(7.25) ∀(y(t))t≥0

Pro. 7.3.2 proves that the existence of infinitesimal symmetries is related to the

geometry of the infinitesimal generator of the signal process.

Page 94 of 157



Part IV

Numerical Solution of the Zakai

Equation with Applications

95



Stochastic Differential Equations with

Application to Manifolds and Nonlinear Filtering

Chapter 8

NUMERICAL TECHNIQUES

We have explored the importance of geometric tools in the analysis and reduction

of nonlinear filtering problems. However, to take advantage of these in a practical

situation involves solving the Zakai Equation, which is a complex problem because it

is infinite dimensional.

8.1 Solution of the Nonlinear Filtering Problem

As stated previously in chapter 4, the nonlinear filter concerns computing the condi-

tional law πt of the state xt given past observations Yt

πt(φ) = E[φ(xt) | Yt] (8.1)

for a bounded continuous function φ : S → R
n and a positive finite measure µ on S

〈µ, φ〉 =

∫

S

φ(x)dµ(x) (8.2)

The conditional law is a solution of the Kushner-Stratonovich equation, which is a

nonlinear stochastic partial differential equation. We have shown that the conditional

law can be obtained from an unnormalized positive measure σt

µt(φ) =
σt(φ)

σt(1)
(8.3)

where σt represents the solution of the Zakai equation, which is a linear stochastic par-

tial differential equation. The Zakai equation was an important development because

it is more amenable to analysis than the Kushner-Stratonovich equation. However,

both the Kushner-Stratonovich and Zakai equation are classed as infinite dimensional
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stochastic differential equations. This implies that their solution through numerical

techniques are not computable because the full solution requires updating an infinite

dimensional vector. Therefore the solution of the nonlinear filtering problem must be

approximated. This raises two important problems:

1. the form of the finite-dimensional measure µ we need to employ, and

2. an algorithm for updating the finite dimensional description as the observations

become available

8.1.1 Approximation of the Finite-Dimensional Probability Measure

Generally, there are four techniques that may be used to give a reasonable finite

approximation of the probability measure µ:

1. finite sampling

2. exponential family

3. truncated expansion

4. finite grid

We will discuss the last technique because it is more relevant to our problem, details

regarding the other techniques can be obtained from Darling [14].

Finite Grid

This approach emanates from numerical techniques used to solve partial differential

equations. This method sets up a grid space which assigns the probability µ[s] to

each grid element s. If the grid has k elements for each dimension d, then kd values

have to be pre-allocated. The computational effort may be simplified by neglecting

those grid elements for which µ[s] < δ, for some δ, and boosting other values so that

they still sum to 1.
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8.1.2 Algorithms for the Approximate Solution of the Nonlinear Fil-

tering Problem

Darling [14] cites a multitude of algorithms that have been investigated in recent

years:

1. classical Monte Carlo particle method

2. integration of measured-valued stochastic differential equation

3. space discretization of Markov chains

4. genetic resampling particle method

5. Wiener chaos expansion

6. minimum variance branching method

7. projection on finite-dimensional manifolds of densities

8. the extended Kalman filter

From the above, the extended Kalman filter is without question the most widely

applied algorithm in the scientific and engineering community, Grewal et al [21]. For

this reason, we discuss the algorithm in detail and use it to benchmark two algorithms

that we investigated, namely:

1. solution by gauge transformation and semigroup techniques and

2. finite difference approximation
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Gauge Transformation and Semigroup Techniques

In this section we describe a numerical technique for determining the unnormalized

conditional density from the Zakai equation. Consider the matrix formulation of the

Zakai equation given in the Ito form

dp(x, t) = L∗p(x, t)dt+ hT (x)p(x, t)dyt (8.4)

p(x, t) = p0(x) (8.5)

L∗p(x, t) =
n∑

i,j=1

∂2

∂xi∂xj
[σij(x)p(x, t)] −

n∑

i=1

∂

∂xi
[fi(x)p(x, t)] (8.6)

σ(x) =
1

2
g(x)gT (x) (8.7)

where (x, t) = Ω = R
n × [0, T ] and L∗ is just the formal adjoint of the diffusion

operator L. The entity σij(x) is the (i, j) element of the matrix σ(x). We assume

that the initial value for the unnormalized conditional density is p0(x). To ensure the

Zakai equations is solvable, we make the following assumptions:

A1] L∗ is uniformly elliptic in the sense that for some λ > 0

zTσ(x)x ≥ λzT z (8.8)

A2] the functions f(x), σ(x) and h(x) together with ∂
∂xi
fi(x) , ∂

∂xi
σij(x) , ∂

∂xj
σij(x)

, ∂
∂xi
hk(x) , ∂2

∂xi∂xj
hk(x) and ∂2

∂xi∂xj
σij(x) for i, j = 1, . . . , n and k = 1, . . . , p

are uniformly bounded and Lipschitz continuous.

We employ a Gauge transformation to simplify the analysis and to prove the neces-

sary convergence results. Once the unnormalized conditional density is transformed,

it is approximated and transformed back to the original and thus yielding an approx-

imation to the unnormalized conditional density.

We proceed by factoring L∗ p(x, t), Equ.(8.6), into the following form:
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L∗p(x, t) = A∗p(x, t) + C(x) (8.9)

where A∗ is an operator that contains all the derivatives with respect to p(x, t) and

C(x) is a term that has a multiplicative relationship to p(x, t). Using Equ.(8.9) we

can express Equ.(8.4) in the following form:

dp(x, t) = A∗p(x, t)dt+ C(x)p(x, t)dt+ hT (x)p(x, t)dyt (8.10)

Equ.(8.10) makes numerical implementation easier. Defining

φ(x, yt, t) = hT (x)dyt +

[
C(x) − 1

2
‖h(x)‖2

]
t (8.11)

we use a Gauge transformation, Baras et al [4],

r(x, t) = exp−φ(x,yt,t) p(x, t) (8.12)

which gives

p(x, t) = expφ(x,yt,t) r(x, t) (8.13)

This solution of the unnormalized conditional density must satisfy the Zakai equation,

substituting p(x, t), Equ.(8.13), in Equ.(8.10), we obtain

dr(x, t) = exp−φ(x,yt,t)
(
A∗

[
expφ(x,yt,t) r(x, t)

])
dt (8.14)

which is a classical parabolic partial differential equation. Using semigroup theory,

Baras et al [4], we are able to show that the solution to dr(x, t), Equ.(8.14), is given

by

r(x, t) = exp−φ(x,yt,t) expA∗t expφ(x,yt,t) p0(x) (8.15)

Thus, the unnormalized conditional density has a solution given by

p(x, t) = expA∗t exphT (x)dyt−
1
2
‖h(x)‖2t+C(x)t p0(x) (8.16)
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Standard numerical techniques can be applied with respect to temporal and spa-

tial discretization to obtain a solution for p(x, t), for multidimensional problems the

algorithms developed by Rodriguez [61] are recommended.

For our purpose consider a 1-dimensional Zakai equation

dp(x, t) = L∗p(x, t)dt+ h(x)p(x, t)dyt (8.17)

where

L∗p(x, t) = ā(x)
∂2p(x, t)

∂x2
+ b̄(x)

∂p(x, t)

∂x
+ C(x)p(x, t)

=

(
ā(x)

∂2

∂x2
+ b̄(x)

∂

∂x

)
p(x, t) + C(x)p(x, t)

= A∗p(x, t) + C(x)p(x, t) (8.18)

The solution for the Zakai equation is

p(x, t) = expA∗t ϕ(x, t) (8.19)

where

ϕ(x, t) = exph(x)dyt−
1
2
h2(x)t+C(x)t p0(x) (8.20)

The unnormalized density may be approximated by the Taylor series approximation

for the exponential expA∗t

p(x, t) ≈ [1 + A∗t]ϕ(x, t)

= ϕ(x, t) +

(
ā(x)

∂2ϕ(x, t)

∂x2
+ b̄(x)

∂ϕ(x, t)

∂x

)
t (8.21)

We can now introduce the finite difference technique, Ames [2], to approximate the

spatial derivatives of a general function θ at (x, t)

Page 101 of 157



Stochastic Differential Equations with

Application to Manifolds and Nonlinear Filtering

∂θ(x, t)

∂t
≈ θ(x, t+ △t) − θ(x, t)

△t (8.22)

∂θ(x, t)

∂x
≈ θ(x+ △x, t) − θ(x−△x, t)

2△x (8.23)

∂2θ(x, t)

∂x2
≈ θ(x+ △x, t) − 2θ(x, t) + θ(x−△x, t)

△x2 (8.24)

where (△x,△t) represent the spatial and temporal perturbations about (x, t). Substi-

tuting Equ.(8.23) and Equ.(8.24) into Equ.(8.21) we obtain the approximate solution

for p(x, t)

u(x, t) = ϕ(x, t) +

(
ā(x)

ϕ(x+ △x, t) − 2ϕ(x, t) + ϕ(x−△x, t)
△x2

)
t+

(
b̄(x)

ϕ(x+ △x, t) − ϕ(x−△x, t)
2△x

)
t (8.25)

The above equation involves points separated by △x in space and △t in time, which

can be associated with a uniform mesh with spatial and temporal discretization. If

the spatial component has a range L, then it can be divided into N equally spaced

discretized intervals of length △x = L/N . Each point in the spatial range can be

determined by

xi = i△x, 0 ≤ i ≤ N (8.26)

Similarly, points in the temporal range are given by

tj = j△t, 0 ≤ j ≤M (8.27)

The exact solution of the unnormalized density p(x, t) at (xi, tj) can be approximated

by u(xi, tj). We introduce the following notation

u(xi, tj) = u(i,j) (8.28)

ϕ(xi, tj) = ϕ(i,j) (8.29)
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The discretized version of ϕ(x, t) can be expressed as follows:

ϕ(xi, tj) = exph(xi)△yj−
1
2
h2(xi)△t+C(xi)△t u(xi, tj−1) (8.30)

The recursive update equation for u(i,j+1) is given by

u(i,j+1) = c̄1ϕ(i+1,j) + c̄0ϕ(i,j) + c̄−1ϕ(i−1,j) (8.31)

where:

r = △t
△x2

c̄1 = āir + b̄ir
2
△x

c̄0 = 1 − 2āir

c̄−1 = āir − b̄ir
2
△x

(8.32)

Finite Difference Approximation

Kloeden [36], page 10, suggests that numerical methods for parabolic stochastic par-

tial differential equations can be constructed by applying a scheme with constant

time step to the n-dimensional Ito stochastic differential equation by finite difference

approximations for the spatial derivatives.

To illustrate this technique, consider a 1-dimensional stochastic partial differential

equation, which can be rewritten in the following form

∂p(x, t)

∂t
= ã(x, t)

∂2p(x, t)

∂x2
+ b̃(x, t)

∂p(x, t)

∂x
+ c̃(x, t)p(x, t) + d̃(x, t) (8.33)

The coefficient c̃(x, t) is usually a function of a white noise processes, which is asso-

ciated with the Brownian motion of the stochastic partial differential equation. Now

we can apply Equ.(8.22), Equ.(8.23) and Equ.(8.24) to approximate the temporal and

spatial derivatives in Equ.(8.33). The solution of the stochastic differential equation

at any point (x, t) can be approximated by
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u(x, t+ △t) − u(x, t)

△t =

(
ã(x, t)

u(x+ △x, t) − 2u(x, t) + u(x−△x, t)
△x2

)
u(t, x) +

(
b̃(x, t)

u(x+ △x, t) − u(x−△x, t)
2△x

)
u(t, x) +

c̃(x, t)u(t, x) + d̃(x, t) (8.34)

Equ.(8.34) may be written as follows

u(i,j+1) − u(i,j)

△t =

ã(i,j)

(
u(i+1,j) − 2u(i,j) + u(i−1,j)

△x2

)
+

b̃(i,j)

(
u(i+1,j) − u(i−1,j)

2△x

)
+ c̃(i,j)u(i,j) + d̃(i,j) (8.35)

Solving for u(i,j+1) in Equ.(8.35) yields:

u(i,j+1) = c̃1u(i+1,j) + c̃0u(i,j) + c̃−1u(i−1,j) + d̃(i,j)△t (8.36)

where:

r = △t
△x2

c̃1 = ã(i,j)r +
b̃(i,j)r

2
△x

c̃0 = 1 − 2ã(i,j)r + c̃(i,j)r△x2

c̃−1 = ã(i,j)r − b̃(i,j)r

2
△x

(8.37)

The system of equations described in Equ.(8.32) and Equ.(8.37) contain a dimen-

sionless quantity r, which we call the stability parameter . When applying these

techniques, the following stability criterion must be respected to ensure numerical

stability, page 487 Haberman [23],

r =
△t
△x2 ≤ 1

4
(8.38)
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In cases where one wishes to optimize on simulation time, the Crank-Nicholson

scheme, page 496 Haberman [23], is recommended; it ensures numerical stability ∀r.

The Extended Kalman Filter

In chapter 4, we derived the Kalman-Bucy filter as a special case of the nonlinear

filtering problem. However, there are many problems in science and engineering where

nonlinearities occur in the dynamic and measurement models. In this section we focus

on a special class of problems that have linear dynamic and nonlinear observation

models; the nonlinear tracking problem that we will encounter in next chapter falls

into this class.

dynamics : xt = x0 +

∫ t

0

Fxsds+

∫ t

0

Gu(s)ds+

∫ t

0

√
QdB1

s (8.39)

measurements : yt = y0 +

∫ t

0

h(xs, s)xsds+

∫ t

0

√
RdB2

s (8.40)

In filtering theory it is sometimes more convenient to rewrite the above system of

equations as differential equations containing white noise terms

dynamics : ẋt = Fxt +Gu(t) + wt (8.41)

measurements : zt = h(xt, t) + vt (8.42)

where:

1. xt ∈ R
n represents the state of the stochastic dynamical system

2. zt = dyt

dt
∈ R

l represents the measurement vector

3. u(t) ∈ R
r represents a deterministic input vector

4. F ∈ R
n×n represents the time-timevariantdynamic coupling matrix

5. G ∈ R
n×r represents the time-invariant input coupling matrix
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6. h(xt, t) ∈ R
l represents the nonlinear measurement drift function

7. wt =
√
QdB1

s

dt
∈ R

r represents the process noise process which is wt ∼ N (0, Q)

8. vt =
√
RdB2

s

dt
∈ R

l represents the measurement noise process which is vt ∼
N (0, R)

We assume that wt and vt are independent white noise processes. The function

h(xt, t) is assumed to be nonlinear. The extended Kalman filter for this particular

problem is similar to the Kalman-Bucy filter. However, the measurement residual

in the state update equation is calculated using the observation and the nonlinear

function h(xt, t) using current state estimate

˙̂xt = Fx̂t + PHTR−1[zt − h(x̂t, t)] (8.43)

The linear version of h(xt, t)

H(t) ≈ ∂h(xt, t)

∂xt

|xt=x̂t
(8.44)

is used to propagate the covariance and the state estimates. The equations for the Ex-

tended Kalman filter in continuous-time can be easily discretized for implementation

on a digital computer, Grewal et al [21].

The state transition matrix Φ(t) and its discrete counterpart is defined by the follow-

ing set of equations

Φ(t) = expFt ≈ I + Ft (8.45)

Φk = Φ(△t) (8.46)

The pertinent equations are summarized below, compare with Grewal et al [21] and

Zarchan et al [70]:
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1. Nonlinear dynamic model:

xk = Φk−1xk−1 + wk−1, wk ∼ N (0, Qk) (8.47)

where

Qk =

∫ △t

0

Φ(τ)QΦT (τ)dτ (8.48)

2. Nonlinear measurement model:

zk = hk(xk) + vk, vk ∼ N (0, Rk) (8.49)

3. Nonlinear implementation equations:

(a) predicted state:

x̂−k = Φk−1x̂
+
k−1 +Gk−1uk−1 (8.50)

where

Gk =

∫ △t

0

Φ(τ)Gdτ (8.51)

(b) computing predicted measurement :

ẑk = hk(x̂
−
k ) (8.52)

4. Linear approximation equations:

Hk ≈ ∂hk

∂x
|x=x̂−

k−1
(8.53)
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(a) conditioning the predicted estimate on the measurement :

x̂+
k = x̂−k +Kk(zk − ẑk) (8.54)

where

ẑk = hk(x̂
−
k ) (8.55)

(b) computing the priori covariance matrix :

P−
k = Φk−1P

+
k−1Φ

T
k−1 +Qk−1 (8.56)

(c) computing the Kalman gain:

Kk = P−
k H

T
k [HkP

−
k H

T
k +Rk]

−1 (8.57)

(d) computing the posteriori covariance matrix :

P+
k = [I −KkHk]P

−
k (8.58)

The overall architecture of a typical software implementation of a Kalman filter is

shown in Fig. 8.1, which clearly depicts the relevant process and measurement models

and the estimator.
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Figure 8.1: Discrete Kalman Filter
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Chapter 9

NONLINEAR TRACKING PROBLEM

In this chapter, we focus on the application of the techniques described in this thesis

to solving problems in science and engineering. We have chosen the classical passive

radar tracking problem, which is a common benchmark problem in the literature:

Rao et al [60], Kouritzin [37] and Challa et al [9]. A complete geometric analysis of the

problem has been carried out by Lara [44], however, there are:

1. no numerical studies have been conducted with regard to solving the Zakai equa-

tion and

2. furthermore, there are no performance related studies with standard nonlinear

filter schemes like the extended Kalman filter

9.1 Problem Statement

The tracking problem comprises of a radar and an aircraft. We assume that the

aircraft is travelling toward the radar at a velocity V (t). The objective of the tracking

problem is to determine the coordinates of the aircraft based on the measurements

taken by the radar, which tend to be noisy due to sensor imperfections. To simplify

the problem, we assume that the aircraft is confined to a two dimensional plane.

Furthermore, we assume that the velocity of the aircraft is constant, that is V (t) = V .

If we assume perfect measurements, then the coordinates of the aircraft may be

determined as the solution of the following system of differential equations
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Figure 9.1: The Nonlinear Radar Tracking Problem

ẋ = −V (9.1)

ẏ = 0 (9.2)

To apply filtering theory to this problem, we need to consider the state of the aircraft

xa = (x, y) as the solution to following system of differential equations

dxt = −V dt+
√
ǫdwt (9.3)

dyt =
√
ǫdvt (9.4)

where ǫ is associated with the intensity of the noise process of the state. The obser-

vation process is modelled as

dzt = h(xa)dt+ dwt (9.5)

We assume that ut, vt and wt are independent Brownian motions.

9.2 The Zakai Equation

The Stratonovich and Ito versions of the Zakai equation for the conditional density

pt of the state given the observations {z(s) | s ≤ t} are given below
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Stratonovich : dpt =

(
ǫ

2

∂2

∂x2
+
ǫ

2

∂2

∂y2
+ V

∂

∂x
− 1

2
h2

)
ptdt+ hpt ◦ dzt (9.6)

Ito : dpt =

(
ǫ

2

∂2

∂x2
+
ǫ

2

∂2

∂y2
+ V

∂

∂x

)
ptdt+ hptdzt (9.7)

This is a two-dimensional stochastic partial differential equation. It turns out the

Zakai equation is infinite dimensional.

9.3 Estimation Algebra

The nonlinear filtering problem for this application is clearly infinite dimensional since

the measurement coupling function in Equ.(9.5) is clearly not linear with respect to

the state, refer to Pro. 7.2.1.

9.4 Computation of Infinitesimal Symmetries

In this section, we will explore the existence of infinitesimal symmetries associated

with the Zakai equation Equ.(9.6). If we can demonstrate the existence of such

symmetries, then the Zakai equation can be simplified. We follow Lara [44], page 126,

closely.

From Equ.(9.6) we can identify the operators M0 Equ.(7.2) and M1 Equ.(7.3) as fol-

lows:

M0 = L +H (9.8)

M1 = h (9.9)

where L Equ.(7.4) and H Equ.(7.5) are given by:

L =
ǫ

2

∂2

∂x2
+
ǫ

2

∂2

∂y2
+ V

∂

∂x
(9.10)

H =
1

2
h2 (9.11)
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Let gR2 , ∇R2 and ∆R2 represent the metric, gradient and Laplacian, respectively,

on R
2. Expressing the operator M0 in terms of these metrics yields the following

equation:

M0 =
ǫ

2
∆R2 − V

∂

∂x
− 1

2
h2 (9.12)

The metric is therefore just

g =
1

ǫ
gR2 (9.13)

From Equ.(7.28) we identify the following components of Equ.(9.12)

U = −V ∂

∂x
(9.14)

c = −1

2
h2 (9.15)

Since

U = ∇R2(−V x) =
1

ǫ
∇g(−V x) (9.16)

we can show by The. 7.3.3 that

KM0 = 0 (9.17)

Also, with reference to The. 7.3.3, since

divgU = 0 (9.18)

and

g(U,U) =
1

ǫ
V 2 (9.19)

we can show that

HM0 = divgU +
1

2
g(U,U) − 2c (9.20)
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is a function of r only if h is a function of r. Lara [43], page 1595, proves that

ζ = − ∂

∂θ
− V r

ǫ
sin θu

∂

∂u
(9.21)

is an infinitesimal symmetry. Then, by The. 7.3.4 we consider

ζ̂∗0 = X +m = − ∂

∂θ
− V r

ǫ
sin θ (9.22)

where:

1. X = − ∂
∂θ

is an isometry of the Riemannian manifold M = R
2 with metric g

since it is an isometry of M = R
2 with metric gR2

2. m = −V r
ǫ

sin θ is such that X1 = 0 in induction by The. 7.3.3:

X0 = X (9.23)

X1 = ∇g(2m− g(X,U)) (9.24)

Xi+2 =
1

2
∇g(LXi

HM0 + ηg(Xi)HM0) (9.25)

Since

LX0HM0 = −∂HM0

∂θ
= 0 (9.26)

we have X2 = 0, then by induction Xi = 0 ∀i ≥ 3, therefore, ζ̂∗0 ∈ PM0 . Note that

X0 = − ∂
∂θ

and Xi = 0 ∀i ≥ 1. Hence, Equ.(7.29) is satisfied because h depends on r

LX0h =
∂h(r)

∂θ
= 0 (9.27)

9.5 Reduction of the Zakai Equation

For the purpose of simplifying the Zakai equation let us define the drift term in the

observation as follows:
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h(xa) = −V ∂(H ◦ θ)
∂x

(xa) (9.28)

where

θ(xa) = tan−1

(
yt

xt

)
(9.29)

Lara [44] claims that there is no smooth functionH for which h is linear. Thus Kalman

filtering techniques do not apply. However, the Zakai equation may be simplified by

shaping the observations with

H(θ) = ln tan(θ/2) (9.30)

Substituting Equ.(9.30) into Equ.(9.28) we obtain a simplified expression for the drift

term

h(xa) = −V ∂

∂x
[ln(tan(θ/2))]

= V
sin(θ)

r

∂

∂θ
[ln(tan(θ/2))]

= V
sin(θ)

r

1

tan(θ/2)

∂

∂θ
[tan(θ/2)]

= V
sin(θ)

2r

cos(θ/2)

sin(θ/2)

1

cos2(θ/2)

=
V

r
(9.31)

where r =
√
x2 + y2. When the drift function can be expressed in this form,

Equ.(9.31), it is possible to reduce the Zakai equation to a one dimensional stochastic

partial differential equation. However, the resulting Zakai equation remains infinite

dimensional.

Proposition 9.5.1 (page 122 Lara [44]). When h depends only on r, there exists

a particular solution of the Zakai equation of the form

pt(x, y) = exp(V x
ǫ ) qt

(√
x2 + y2

)
= exp(V r

ǫ
cos θ) qt(r) (9.32)
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where the function qt satisfies the following stochastic partial differential equation

Stratonovich : dqt =

(
ǫ

2

∂2qt
∂r2

+
ǫ

2r

∂2qt
∂r

+
V 2

2ǫ
qt −

h2

2
qt

)
dt+ hqt ◦ dzt(9.33)

Ito : dqt =

(
ǫ

2

∂2qt
∂r2

+
ǫ

2r

∂2qt
∂r

+
V 2

2ǫ
qt

)
dt+ hqtdzt (9.34)

The invariant solution only exists when the initial condition of the state xa has the

same invariance property

p0(r, θ) = exp(V r
ǫ

cos θ) q0(r) (9.35)

This fact is explained by showing the existence of infinitesimal symmetries. It is

important to note that while Pro. 9.5.1 asserts that there exists a simplified solution

it is by no means suitable for numerical implementation because the exponential

function is dependent on geometric range, which can be very large. However, instead

of pursuing this topic further, it perhaps more important to illustrate the distinct

advantages the Zakai equation has over conventional nonlinear filtering schemes. We

do this by simplifying the tracking problem further.

9.6 Approximation to the Nonlinear Filtering Problem

Without loss of generality, we assume that the altitude or y component of the aircrafts

position is known at initialization y0 and remains constant for all time, hence, y = y0.

This assumption reduces the Zakai equation from a 2-dimensional to a 1-dimensional

stochastic partial differential equation

dpt =

(
ǫ

2

∂2

∂x2
+ V

∂

∂x

)
ptdt+ hptdzt (9.36)

where

h =
V√

x2 + y2
0

(9.37)
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We emphasize that the simplification that arises from our assumption is purely for

numerical simplicity.

9.6.1 Discretization of the Zakai Equation

The coefficients associated with Equ.(8.32) are

ā(x) = ǫ
2

b̄(x) = V

c̄(x) = 0

(9.38)

Source Code Listing

Refer to Appendix A and B.

9.6.2 Finite Difference Approximation of the Zakai Equation

The following identification can be made with Equ.(8.37)

ã(x, t) = ǫ
2

b̃(x, t) = V

c̃(x, t) = hdzt

dt

d̃(x, t) = 0

(9.39)

Source Code Listing

Refer to Appendix A and C.

9.6.3 Solution by Extended Kalman Filtering

Consider the nonlinear tracking problem written out in differential equation form

ẋt = −V + wt (9.40)

zt = h(xa) + vt (9.41)
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In this section we proceed with identifying the parameters for the discrete extended

Kalman filter.

Description Continuous-Time Discrete-Time

state xt xk

measurement zt = dyt

dt
zk

input u(t) = −V uk

dynamic coupling F = 0

input coupling G = 1 Gk = △t

measurement drift h(xt, t) = tan−1(y0
xt

) hk

linearized drift H(xt, t) = −(y0
r2

) Hk

state transition matrix Φ(t) = 0 Φk = 1

process noise wt ∼ N (0, Q) wk ∼ N (0, Qk)

process noise covariance Q = ǫ Qk = Q△t

measurement noise vt ∼ N (0, R) vk ∼ N (0, Rk)

measurement noise covariance R Rk = σ2
θ

Table 9.1: Extended Kalman Filter for the Nonlinear Tracking Problem

Source Code Listing

Refer to Appendix D.

9.7 Simulation Results
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9.7.1 Discussion

In the case of the extended Kalman filter, the simulation was setup with a large

covariance matrix P−
0 to reflect the uncertainty associated with the initial state x−0 .

By determining these two parameters, we fix the initial gaussian density of the filter.

Ordinarily, one would have to determine the equivalent initial unnormalized condi-

tional density from the initial gaussian density to solve the Zakai equation. However,

as Elliot et al [17] have proven, page 944 The. 5.1, the two densities differ from each

other only by a constant. Since we are essentially interested in determining the state

estimate from Equ.(4.29), we may use the same density as an initial condition for

determining the solution of the Zakai equation.

From Fig. 9.2 we observe that the gaussian density evolves in a very erratic manner

compared with the densities determined from the semigroup and finite difference

techniques, Fig. 9.3 and Fig. 9.4 respectively. Also note that for the unnormalized

conditional density, the two independent numerical techniques provide near identical

solutions, Fig. 9.3 and Fig. 9.4 respectively.

On close examination we observe that the state estimate as determined from the

solution of the Zakai equation is by far more accurate, subplot 2 & 3 of Fig. 9.5,

than the solution of the extended Kalman filter, subplot 1. This phenomena may

be explained as follows. In the case of the extended Kalman filter the Kalman gain

tends to be very large when the uncertainty associated with the state is large. This

has the effect of amplifying the measurement residual in the state update equation

x+
k , Equ.(8.54). Consequently, this manifests as a very noisy estimate of the state.

Note that the semigroup method, subplot 2 of Fig. 9.5, tends to be more accurate

than the finite difference method. The observed deviation between the two methods

is probably due to the numerical problems that arise as the range tends to zero.

Our simulation studies demonstrate the accuracy of the Zakai equation over the

extended Kalman filter. There are a many areas in science and engineering that can

Page 121 of 157



Stochastic Differential Equations with

Application to Manifolds and Nonlinear Filtering

benefit from these new techniques. However, one problem of concern is to develop

algorithms that can run in real-time on embedded microprocessors. This continues

to be a field of active research and some interesting developments have been made in

this regard, Guo [22].
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Chapter 10

CONCLUSION

In conclusion, it is perhaps worthwhile to reflect on the contribution of this thesis.

As any specialist of stochastic analysis, differential geometry and nonlinear filtering

theory would acknowledge, there have been a number of independent developments in

these fields in recent years. Much of our research reflects these developments, in fact,

there is no new theoretical research presented in this thesis. However, the unification

of these ideas as well as their application is regarded as our greatest contribution.

We have shown how state of the art geometric tools maybe used to analyze the Zakai

equation and how they may be applied to study the existence of symmetries, which

provides greater insight to the latent physical and geometric properties of a system.

Furthermore, the existence of these symmetries provide us with a deeper understand-

ing of group invariant solutions, which maybe used to simplify the Zakai equation;

this will undoubtedly have wide spread application once numerical techniques for

solving stochastic partial differential equations have reached greater maturity. Also,

using simulation we have demonstrated the optimality of the Zakai equation over

the extended Kalman filter for the passive radar tracking problem - to the best of

our knowledge, such benchmark studies have not been done before for the tracking

problem using the numerical techniques discussed in this thesis. This supports the

call for continual research and justifies the application of new tools founded on dif-

ferential geometry. Lastly, we would like to add that this research has presented us

with an opportunity to appreciate the applicability of abstract geometric theories to

physical systems. We sincerely hope that this presentation has conveyed our insights

and enthusiasm for the subject.
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APPENDIX A: INITIALIZATION FILE

% Configuration Control Preamble---------------------------------------------%

% File Name : ZakaiNumIni.m %

% Purpose : m-file for the initialization of numerical algorithms %

% for the solution of the Zakai equation by finite %

% difference and semi group methods for the nonlinear %

% target tracking problem. %

% Program Language : Matlab m-file %

% Version : 1.0 %

% Programmers : R. Rugunanan %

% Date Written : 04 February 2005 %

% Updates : Reasons Date By %

%----------------------------------------------------------------------------%

close all;

clear all;

load IniData;

DenXVec = DenData(:,1);

DenVec = DenData(:,2);

% Use a fixed random state

randn(’state’,777);

% PDE

k = 1; % PDE constant

s_test = 0.25;

epsilon = 400;

V = 100;

X0 = 10100; % Initial x-comp to target position [m]

y0 = 500;
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% Spatial range

Xf = 25000;

Xi = -5000;

L = Xf-Xi;

dx = 50; % Increment in x

N = L/dx; % Total number of intervals in x

X = [Xi:dx:Xf]; % X interval

P = max(size(X)); % P = N+1

% Time range

dt = 1/100; % Increment in t_l

s = k*dt/dx^2; % Stability parameter

Ti = 0;

Tf = 100;

M = (Tf-Ti)/dt; % Total number of intervals in t_l

T = [Ti:dt:Tf]; % t_l interval

Q = max(size(T)); % Q = M+1

A = zeros([P,Q]);

U = zeros([P,Q]);

% set initial condition and bundary cinditions

% u_j_m ... j = 1,...,k-1 and m = 0

for Ik=1:P % scan space

A(Ik,1) = interp1(DenXVec, DenVec, X(Ik),’linear’);

end

U=A;

%Dynamic model

I = 1; % Identity matrix

sigpro = sqrt(epsilon/dt);

sigob = 0.025; % Standard deviation on observation
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% Discrete model

X_ln = X0;

w_ln = 0;

% Sample control input

U_ln = -V;

% Setup process noise matrix

Q_l = epsilon*dt;

% State transition matrix

Phi_ln = I;

% Set up control matrix

G_ln = dt;
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APPENDIX B: GAUGE TRANSFORMATION AND

SEMIGROUP APPROACH APPLIED TO THE ZAKAI

EQUATION

% Configuration Control Preamble---------------------------------------------%

% File Name : ZakaiNumSG.m %

% Purpose : m-file to implement the numerical solution of the %

% Zakai equation based on semi group methods %

% for the nonlinear target tracking problem. %

% Program Language : Matlab m-file %

% Version : 1.0 %

% Programmers : R. Rugunanan %

% Date Written : 04 February 2005 %

% Updates : Reasons Date By %

%----------------------------------------------------------------------------%

% Call initialization file

ZakaiNumInit;

% Solve PDE

% u_j_m ... j = 1,...,k-1 and m = 1,...,M

for Il=1:Q-1 % scan time

% Generate noises

w_l = sqrt(Q_l)*randn; %sigpro*randn;

v_ln = sigob*randn;

% Discrete dynamics systems model

X_l = Phi_ln*X_ln + G_ln*U_ln + w_ln;
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for Ik=1:P-2 % scan space

U_kn1_l = A(Ik, Il);

U_k_l = A(Ik+1, Il);

U_kp1_l = A(Ik+2, Il);

t_l = Il*dt;

x_kn1 = X(Ik);

x_k = X(Ik+1);

x_kp1 = X(Ik+2);

% Generate measurement

range_l = sqrt(X_l^2+y0^2);

u_l = V/range_l + v_ln;

h_kn1 = V/sqrt(x_kn1^2+y0^2);

h_k = V/sqrt(x_k^2+y0^2);

h_kp1 = V/sqrt(x_kp1^2+y0^2);

a = epsilon/2;

b = V;

c = 0;

d = 0;

cp1 = a*s + b*s*dx/2;

c0 = 1 - 2*a*s;

cn1 = a*s - b*s*dx/2;

P_kn1_l = exp(h_kn1*u_l*dt - 0.5*h_kn1^2*dt)*U_kn1_l;

P_k_l = exp(h_k *u_l*dt - 0.5*h_k^2 *dt)*U_k_l;

P_kp1_l = exp(h_kp1*u_l*dt - 0.5*h_kp1^2*dt)*U_kp1_l;
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U_k_lp1 = cp1*P_kp1_l + c0*P_k_l + cn1*P_kn1_l;

A(Ik+1,Il+1) = U_k_lp1;

end

X_ln=X_l;

w_ln=w_l;

intn = approx_int(dx,X.*A(:,Il)’);

intd = approx_int(dx,A(:,Il)’);

estimate = intn(end)/intd(end);

DataZSG(Il,:) = [t_l x_k estimate X_l u_l];

if((mod(t_l,2)<dt/2)==1)

t_l

figure(1);hold on;grid on;plot3(t_l*ones(size(X)),X,A(:,Il));view(75,70);

figure(2);hold on;grid on;plot3(t_l*ones(size(X)),X,A(:,Il));view(75,70);

%figure(2);hold on;grid on;plot(t_l,estimate,’r.’);

end

end

save ZakaiNumSGSim DataZSG

hgsave(1,’ZakaiDensity’);

figure(2);

FileName = [’C:\TEX\MSc\Thesis\ZakaiDenSG’];

string = [’print -depsc ’ FileName];

eval(string);
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APPENDIX C: FINITE DIFFERENCE APPROACH

APPLIED TO THE ZAKAI EQUATION

% Configuration Control Preamble---------------------------------------------%

% File Name : ZakaiNumFD.m %

% Purpose : m-file to implement the numerical solution of the %

% Zakai equation based on finite difference methods %

% for the nonlinear target tracking problem. %

% Program Language : Matlab m-file %

% Version : 1.0 %

% Programmers : R. Rugunanan %

% Date Written : 04 February 2005 %

% Updates : Reasons Date By %

%----------------------------------------------------------------------------%

% Call initialization file

ZakaiNumInit;

% Solve PDE

% u_j_m ... j = 1,...,k-1 and m = 1,...,M

for Il=2:Q % scan time

% Generate noises

w_l = sqrt(Q_l)*randn; %sigpro*randn;

v_ln = sigob*randn;

% Discrete dynamics systems model

X_l = Phi_ln*X_ln + G_ln*U_ln + w_ln;
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for Ik=1:P-2 % scan space

U_kn1_ln1 = A(Ik, Il-1);

U_k_ln1 = A(Ik+1,Il-1);

U_kp1_ln1 = A(Ik+2,Il-1);

t_l = Il*dt;

x_k = X(Ik);

% Generate measurement

range_l = sqrt(X_l^2+y0^2);

u_l = V/range_l + v_ln;

h = V/sqrt(x_k^2+y0^2);

a = epsilon/2;

b = V;

c = h*u_l;

d = 0;

cp1 = a*s + b*s*dx/2;

c0 = 1 - 2*a*s + c*s*dx^2;

cn1 = a*s - b*s*dx/2;

U_k_lp1 = cp1*U_kp1_ln1 + c0*U_k_ln1 + cn1*U_kn1_ln1 + d*dt;

A(Ik+1,Il) = U_k_lp1;

end

X_ln=X_l;

w_ln=w_l;
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intn = approx_int(dx,X.*A(:,Il)’);

intd = approx_int(dx,A(:,Il)’);

estimate = intn(end)/intd(end);

DataZFD(Il-1,:) = [t_l x_k estimate X_l u_l];

if((mod(t_l,2)<dt/2)==1)

t_l

figure(1);hold on;grid on;plot3(t_l*ones(size(X)),X,A(:,Il));view(75,70);

figure(2);hold on;grid on;plot3(t_l*ones(size(X)),X,A(:,Il));view(75,70);

%figure(2);hold on;grid on;plot(t_l,estimate,’r.’);

end

end

save ZakaiNumFDSim DataZFD

hgsave(1,’ZakaiDensity’);

figure(2);

FileName = [’C:\TEX\MSc\Thesis\ZakaiDenFD’];

string = [’print -depsc ’ FileName];

eval(string);

Page 134 of 157



Stochastic Differential Equations with

Application to Manifolds and Nonlinear Filtering

APPENDIX D: SOLUTION BY EXTENDED KALMAN

FILTER

% Configuration Control Preamble---------------------------------------------%

% File Name : EKFTarSim1DNL.m %

% Purpose : m-file to implement an EKF for the target tracking %

% problem. %

% Program Language : Matlab m-file %

% Version : 1.0 %

% Programmers : R. Rugunanan %

% Date Written : 04 February 2005 %

% Updates : Reasons Date By %

%----------------------------------------------------------------------------%

% Close all figures and clear workspace

close all

clear all

% Use a fixed random state

randn(’state’,777);

ShapeObservations = 1; % 1 -> Use observation shaping for nonlinear drift

% 0 -> Use bearing model for nonlinear drift

% Constants

r2d=180/pi; % Convert radians to degrees

d2r=1/r2d; % Convert degrees to radians

% Time interval

% Continuous time

Ti = 0; % Initial time [s]

Tf = 100; % Final time [s]

dt = 0.01; % Time delt for continuous states [s]

T = [Ti:dt:Tf]; % Time interval [s]
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M = (Tf-Ti)/dt; % Number of samples [s]

N = M+1; %

% Sample time

Ts = 0.1; % Time step of EKF [s]

%Target model

V = 100; % Target velocity magnitude [m/s]

%True model

%Initial postion

X0 = 10100; % Initial x-comp to target position [m]

y0 = 500; % Initial y-comp to target position [m]

%Estimates

X_err = 500; % Initial position error for covariance [m]

%Initial postion

hX0 = X0; % Assume initial state estimate is known exactly

%Dynamic model

I = 1; % Identity matrix

epsilon = 400; % Process noise coupling matrix []

sigpro = sqrt(epsilon/dt); % Spectral intensity on process noise []

sigob = 0.025; % Standard deviation on observation [rad]

% Counters for simulation

nk = 0

SamCount = 0;

j = 1;

for i=1:N
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% Initialization

if(i==1)

% True model

X = X0;

U = -V;

F = 0;

G = 1;

% Discrete model

X_kn = X0;

w_kn = 0;

% Estimate

hX_kn_p = hX0;

% Setup process noise matrix

Q_k = epsilon*Ts;

Q_kn = Q_k;

% Setup measurement noise

R_k = sigob^2;

% Setup covariance matrix

P_kn_p = X_err^2;

% State transition matrix

Phi_kn = I;

% Set up control matrix

G_kn = Ts;

% Sample control input

U_kn = U;
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% Save initial density to boot Zakai Solution

GaussDenData0=PlotGaussDen(0,hX_kn_p,P_kn_p);

end

% Continuous-part of simulation

% Evolution of Time

t = T(i);

% Determine outputs based on available state info

% Ideal observations

the = atan2(y0,X);

range = sqrt(X^2+y0^2);

if(t<Ts)

range0 = range;

the0 = the;

end

Z1 = V/range;

Z2 = the;

if(ShapeObservations)

Z = Z1;

else

Z = Z2;

end

% Discrete component of simulation

if(SamCount==Ts/dt | i==1)
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% Generate noises

w_k = sqrt(Q_k)*randn; %sigpro*randn;

v_kn = sigob*randn;

% Discrete dynamics systems model

X_k = Phi_kn*X_kn + G_kn*U_kn + w_kn;

X_kn = X_k;

w_kn = w_k;

% Generate measurement

the_k = atan2(y0,X_k);

range_k = sqrt(X_k^2+y0^2);

Z1_k = V/range_k + v_kn;

Z2_k = the_k + v_kn;

%Kalaman Filter equations

% P_k_n = Phi_kn*P_kn_p*Phi_kn’+Q_kn;

% K_k = P_k_n*H_k’*inv(H_k*P_k_n*H_k’+R_k);

% P_k_p = (I-K_k*H_k)*P_k_n;

% Projected state

hX_k_n = Phi_kn*hX_kn_p + G_kn*U_kn;

% Measurement matrix

hthe_k_n = atan2(y0,hX_k_n);

hrange_k_n = sqrt(hX_k_n^2+y0^2);

Page 139 of 157



Stochastic Differential Equations with

Application to Manifolds and Nonlinear Filtering

H1_k = [-V*hX_k_n/(hrange_k_n^3)];

H2_k = [-y0/hrange_k_n^2];

hZ1_k = [V/hrange_k_n];

hZ2_k = [hthe_k_n];

if(ShapeObservations)

Z_k = Z1_k;

H_k = H1_k;

hZ_k = hZ1_k;

else

Z_k = Z2_k;

H_k = H2_k;

hZ_k = hZ2_k;

end

% Residual

Zr = Z_k-hZ_k;

% Program for numerical stability

% 1] compute P_k_n using P_kn_p, Phi_kn and Q_kn

H_k_T = H_k’;

Phi_kn_T = Phi_kn’;

Phi_kn_mult_P_kn_p = Phi_kn*P_kn_p;

Phi_kn_mult_P_kn_p_mult_Phi_kn_T = Phi_kn_mult_P_kn_p*Phi_kn_T;

P_k_n = Phi_kn_mult_P_kn_p_mult_Phi_kn_T+Q_kn;

% 2] Compute K_k using P_k_n, H_k and R_k

H_k_mult_P_k_n = H_k*P_k_n;

H_k_mult_P_k_n_mult_H_k_T = H_k_mult_P_k_n*H_k_T;

H_k_mult_P_k_n_mult_H_k_T_plus_R_k = H_k_mult_P_k_n_mult_H_k_T+R_k;

inv_H_k_mult_P_k_n_mult_H_k_T_plus_R_k = inv(H_k_mult_P_k_n_mult_H_k_T_plus_R_k);
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P_k_n_mult_H_k_T = P_k_n*H_k_T;

K_k =

P_k_n_mult_H_k_T*inv_H_k_mult_P_k_n_mult_H_k_T_plus_R_k;

% 3] Compute P_k_p using K_k, P_k_n

K_k_mult_H_k = K_k*H_k;

I_min_K_k_mult_H_k = I-K_k_mult_H_k;

P_k_p = I_min_K_k_mult_H_k*P_k_n;

% 4] Compute hX_k_p using K-k and Z_k data

hX_k_p = hX_k_n + K_k*Zr;

% Model delays for next cycle

P_kn_p = P_k_p;

hX_kn_p = hX_k_p;

% Post processing data

% Determine Gaussian density

if(mod(t,1)==0)

GaussDenData = PlotGaussDen(t,hX_k_p,P_kn_p);

end

%Output for post processing

X_err = X - hX_k_p;

SP(1) = sqrt(P_k_p(1,1));

TVec(j,:) = t;

XVec(j,:) = X’;
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XkVec(j,:) = X_k’;

XerrVec(j,:) = X_err’;

hXkpVec(j,:) = hX_k_p’;

ZVec(j,:) = Z’;

ZkVec(j,:) = Z_k’;

Z1Vec(j,:) = Z1’;

Z2Vec(j,:) = Z2’;

Z1kVec(j,:) = Z1_k’;

Z2kVec(j,:) = Z2_k’;

KkVec(j,:) = K_k’;

ZrVec(j,:) = Zr’;

SPVec(j,:) = SP;

SamCount = 0;

j=j+1;

end

% State space model

Xd = F*X + G*U;

% Euler integration

X = X + Xd*dt;

SamCount=SamCount+1;

end
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% Saving data

DenData = [GaussDenData0(:,2),GaussDenData0(:,3)];

save IniData DenData range0 the0 TVec ZkVec XkVec

save EKFSim XVec TVec hXkpVec

% Plotting data

figure

plot(TVec,XerrVec(:,1),TVec,SPVec(:,1),TVec,-SPVec(:,1)),grid on; hold on; zoom on;

ylabel(’Error in Estimate of x-component [m]’)

xlabel(’Time [s]’)

figure

plot(TVec,KkVec(:,1)),grid on; hold on; zoom on;

ylabel(’Kalman Gain []’)

xlabel(’Time [s]’)

figure

plot(TVec,ZrVec(:,1)),grid on; hold on; zoom on;

ylabel(’Measurement Residual []’)

xlabel(’Time [s]’)

figure

plot(TVec,XVec, ’r’, TVec, XkVec, ’b’, TVec, hXkpVec, ’g’);grid on; hold on; zoom on;

legend(’True’,’Discrete’,’Estimated’);

ylabel(’Downrange [m]’)

xlabel(’Time [s]’)

figure

plot(TVec,XVec-XkVec,’b’,TVec,XerrVec(:,1),’r’);grid on; hold on; zoom on;

ylabel(’Noise on Position [m]’)

xlabel(’Time [s]’)

figure
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subplot(2,1,1);plot(TVec,Z1Vec(:,1),’b’,TVec,Z2Vec(:,1),’r’),grid on; hold on; zoom on;

legend(’shaping function’,’true bearing’);

ylabel(’Measurements [rad]’)

subplot(2,1,2);plot(TVec,Z1kVec(:,1),’b’,TVec,Z2kVec(:,1),’r’),grid on; hold on; zoom on;

legend(’shaping function’,’true bearing’);

ylabel(’Measurements [rad]’)

xlabel(’Time [s]’)

FigureList = sort(get(0,’children’));

for(i=1:max(size(FigureList)))

CurrentFigure = FigureList(i);

figure(CurrentFigure);

FileName = [’C:\TEX\MSc\Thesis\EKF_’ num2str(CurrentFigure)];

string = [’print -depsc ’ FileName];

eval(string);

end
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APPENDIX E: SOFTWARE USED IN THIS THESIS

The purpose of this appendix is to provide an short overview of the software that

used in preparing this thesis.

LATEX2E: The wordprocessor that was selected was LATEX2e because of its simplicity and

ease of use when dealing with relatively complicated mathematical formulas. We

highly recommend the thesis template based on the University of Washington

thesis class by Jim Fox; LATEX2e version 1995 from the latex209 thesis.sty style

(1990-1).

PSTRICKS: All commutative diagrams were completed using PsTricks.

MATLAB: All the software programs and simulation results were developed in MatLab

(Version 6.1.0.450 (R12.1)), which is a trademark of Mathworks.

LATEX2e and PsTricks are freeware products available for download on

the internet.
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