A STUDY OF TEMPERATURE CONTROL IN THE HUMAN BODY BY
EXPERIMENT AND COMPUTER SIMULATION

Arthur Reginal Atkins

A Thesis submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg
for the Degree of Doctor of Philosophy

Johannesburg, 1975
The dynamic temperature response of the human body is studied by analysing the thermoregulatory mechanism. By subjecting man to a large number of step disturbances and comparing his transient response with that of a mathematical model it is possible to identify the control characteristics quantitatively over a wide range of environments. The analysis shows that both proportional and rate control actions occur, the reaction to an increase in heat stress is different to that of a decrease in heat stress. Control is initiated by thermo-sensors of identical characteristics in the core, hypothalamus, muscle and skin. Thermo-sensors in the muscle provide a rapid change in sweat control action when man starts working. Control is based upon the non-linear characteristics of the thermo-sensors and not upon a set point.

Thermoregulation Simulation Biological models

Heat physiology
ACKNOWLEDGEMENTS

I am indebted to:

Professor C.H. Wyndham
Dr. L. Lees
Chamber of Mines of South Africa

My colleagues at the Human Sciences Laboratory

My colleagues at the Physical Sciences Laboratory

Mr. F. Lancaster
Dr. D. Mitchell
My family

my supervisors, for their encouragement, support and guidance.
in whose Human Sciences and Physical Sciences Laboratory this work was carried out as an official project, for permission to use the information and to write this thesis.

for their willing support, especially Professor N.B. Strydom, Messrs. A.J. van Rensburg, J. Stuart, J.C. van der Merwe, D. Kabe and Mrs. A. Margo.

for their encouragement and support, especially Messrs. P.J. Blignaut, A. Nonlist, Mrs. M.M. Steenkamp and the library staff.

for his help with the editing of this thesis.

for his inspiration and help.

for their never-ending patience and encouragement.
ACKNOWLEDGEMENTS

I am indebted to:

Professor C.H. Wyndham

Dr. L. Lees

Chamber of Mines of South Africa

my supervisors, for their encouragement, support and guidance.

in whose Human Sciences and Physical Sciences Laboratory this work was carried out as an official project, for permission to use the information and to write this thesis.

My colleagues at the Human Sciences Laboratory

for their willing support, especially Professor N.P. Strydom, Messrs. A.J. van Rensburg, J. Stuart, J.C. van der Merwe, D. Rabe and Mrs. A. Margo.

My colleagues at the Physical Sciences Laboratory.

for their encouragement and support, especially Messrs. P.J. Blignaut, A. Nuinlist, Mrs. M.M. Steenkamp and the library staff.

Mr. F. Lancaster

for his help with the editing of this thesis.

Dr. D. Mitchell

for his inspiration and help.

My family

for their never-ending patience and encouragement.
CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>INTRODUCTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>HEAT TRANSFER AND TEMPERATURE CONTROL OF THE HUMAN BODY: A REVIEW</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Metabolism and body temperature</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Heat transfer</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Heat transfer within the body</td>
<td>13</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Heat transfer between the body and its environment</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Thermal stress and the control of body temperature</td>
<td>17</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Thermo-sensors and neuro-transmitters</td>
<td>18</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Control of sweating</td>
<td>20</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Control of blood flow</td>
<td>27</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Control of heat production</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Mathematical and physical models of thermoregulation</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>Conclusions</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>AN INITIAL EXAMINATION OF THE THERMOREGULATORY MECHANISM OF THE BODY</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Nomenclature</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>The thermoregulatory mechanism and methods of identifying its behaviour</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>The controller</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>The controlled system</td>
<td>60</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Thermal properties and metabolic heat input</td>
<td>67</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Heat transfer by conduction</td>
<td>71</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Heat transfer by vascular heat convection</td>
<td>72</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Heat exchange with the environment</td>
<td>80</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Respiratory heat loss</td>
<td>80</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Radiation heat exchange</td>
<td>82</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Convection heat exchange</td>
<td>83</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Evaporative heat loss</td>
<td>84</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 4
AN EXAMINATION OF THE THERMAL RESPONSE OF MAN
IN A CALORIMETRIC WIND TUNNEL
4.1 Introduction 86
4.2 The experiments 87
4.3 Experimental procedure 90
4.4 Processing the experimental data 95
4.5 Experimental results 97
4.6 The temperature response of a resting man in
a warm environment 100

CHAPTER 5
AN EXAMINATION OF THE THERMAL RESPONSE OF
A RESTING MAN EXPOSED TO A HEAT STRESS
5.1 Nomenclature 128
5.2 Introduction 129
5.3 The closed loop transient equation of the
thermoregulatory mechanism 130
5.4 Identifying the coefficients of the closed loop equations 131
5.4.1 Proportional control initiated from the core
temperature 132
5.4.2 Proportional control initiated from the core and skin temperatures 133
5.4.3 Proportional and rate control 134
5.5 Summary 135

CHAPTER 6
AN EXAMINATION OF THE THERMAL RESPONSE OF
A RESTING MAN DURING COOLING
6.1 Nomenclature 179
6.2 Introduction 180
6.3 Control of body temperature during cooling
after exposure to heat 181
6.4 Control of body temperature in a cold
environment 182
6.5 Summary 183

CHAPTER 7
SIMULATING THE THERMAL CHARACTERISTICS OF
A MAN WITH A MULTI-ZONE MODEL
7.1 Nomenclature 228
7.2 Introduction ... 229
7.3 The multi-zone model 230
7.4 Examination of the response of a resting man 236
7.5 Examination of the response of a working man 244
7.6 Discussion ... 262
7.7 Summary .. 264

CHAPTER 8 CONCLUSIONS .. 266

APPENDIX 1 The calorimetric wind tunnel and its instruments 276
A1.1 The wind tunnel .. 276
A1.2 The thermal environment 277
A1.3 Measurement of heat exchange 279
A1.3.1 Measurement of convective heat exchange 279
A1.3.2 Measurement of radiative heat exchange 280
A1.3.3 Measurement of evaporation 286
A1.3.4 Signal integrators for radiation, convection and evaporation .. 290
A1.4 Measurement of body temperature 293
A1.4.1 Mean skin temperature 293
A1.4.2 Rectal temperature 298
A1.4.3 Oesophageal temperature 299
A1.5 Measurement of metabolic rate 299
A1.6 Measurement of heart rate 302
A1.7 Measurement of work rate 304
A1.7.1 Positive work 309
A1.7.2 Negative work 310
A1.8 Recording of physiological data 310

APPENDIX 2 The experimental results 315

APPENDIX 3 The finite difference method of solving heat flow in a cylinder 329

APPENDIX 4 Derivation of the transient characteristic equation of the simple model 331

APPENDIX 5 A simple analysis of vascular heat exchange in the periphery 345
APPENDIX 6 Simulating the simple thermal model with a
digital computer 347
APPENDIX 7 The digital computer program for simulating
the multi-zone model 349

LIST OF REFERENCES ... 356

INSERT Application of the "Hopscotch" algorithm for
solving the heat flow equation for the
body (Reprint)
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A sectional schematic representation of the skin</td>
</tr>
<tr>
<td>2.2</td>
<td>The temperature characteristics of cold and warm neuro-sensors taken from a single nerve fibre of a cat</td>
</tr>
<tr>
<td>2.3</td>
<td>A neuro-model illustrating the reaction between warm, cold and non-thermal transmitted sensor paths</td>
</tr>
<tr>
<td>2.4</td>
<td>The cold and warm neuro-sensor characteristics are combined to form a single control curve</td>
</tr>
<tr>
<td>2.5</td>
<td>The sweat rate versus temperature characteristics given by Wyndham and Atkins, (1966)</td>
</tr>
<tr>
<td>2.6</td>
<td>The electrical network model suggested by MacDonald and Wyndham (1950)</td>
</tr>
<tr>
<td>2.7</td>
<td>The physical model simulated with an analogue computer</td>
</tr>
<tr>
<td>2.8</td>
<td>A comparison between climatic chamber experimental results and the analogue computer records for exposure to various temperatures</td>
</tr>
<tr>
<td>2.9</td>
<td>A block diagram of the suggested short-term thermoregulation system in man</td>
</tr>
<tr>
<td>3.1</td>
<td>The thermoregulatory mechanism</td>
</tr>
<tr>
<td>3.2</td>
<td>The important components of the controller</td>
</tr>
<tr>
<td>3.3</td>
<td>A simple model of the neuro-integrating centre of the controller</td>
</tr>
<tr>
<td>3.4</td>
<td>The temperature characteristics of the hypothalamic component of metabolic heat control</td>
</tr>
<tr>
<td>3.5A</td>
<td>A controller using a reference signal to determine the magnitude of the control variable</td>
</tr>
<tr>
<td>3.5B</td>
<td>A controller using the interaction of two opposing feedback signals to determine the magnitude of the control variable</td>
</tr>
<tr>
<td>3.6</td>
<td>A schematic illustration of a cylindrical model of the body: the controlled system</td>
</tr>
<tr>
<td>3.7</td>
<td>The relation between work rate and metabolism of a man pedalling in a climatic chamber</td>
</tr>
<tr>
<td>3.8</td>
<td>A schematic illustration of the components of heat transfer at a section n and the method of vascular convection</td>
</tr>
</tbody>
</table>
3.9 A schematic illustration to show how the peripheral blood is assumed to flow in the skin ... 76
3.10 Respiration heat loss plotted as a function of wet-bulb temperature for two levels of respiration rate 81
4.1 The climatic chamber with a subject in position on the bicycle ergometer ... 88
4.2 The instrument console for physiological measurements .. 89
4.3 A flow diagram of the computer program for processing data obtained from experiments in the climatic chamber ... 99
4.4 Transient skin and rectal temperatures for a change in air temperature from 28°C to 40.5°C 115
4.5 Transient skin and rectal temperatures for a change in air temperature from 26°C to 24°C 116
4.6 A typical graph of experimental results for Series 3 experiments .. 117
4.7 A summary of rectal and skin temperatures from Series 2 and Series 3 experiments ... 118
4.8 A summary of the evaporative measurements taken from Series 3 experiments ... 119
4.9 Experimental results for a change in temperature from 28°C to 46°C .. 120
4.10 A typical recording of evaporative heat loss obtained in the Series 4 experiments. A resting subject was exposed to a step change in air temperatures from 28°C to 46°C at time t=0. 121
4.11 Experimental records of T_p and T_s for a change in air temperature from 28°C to 32.5°C, $V = 0.077 m/s$.
4.12 Experimental records of T_p and T_s for a change in air temperature from 35°C to 0.5°C.
4.13 Transient records of T_p and T_s as the body cools from a hot environment to a neutral environment.
4.14 A recording of evaporation from a portion of the arm of a subject when cooled by transferring him from one room at 41°C to another at 28°C.
4.15 The steady state experimental results showing the relation between rectal temperature and air temperature, and skin temperature and air temperature.
4.16 Experimental mean skin temperature and rectal temperature, and evaporative heat loss transients for a step change in air temperature from 28°C to 35°C, 40.5°C and 49°C.
5.1 Mean transient rectal and skin temperatures of man exposed to a step change in air temperature from 28°C to 49°C, 40.5°C, 35°C and 32.5°C; $V = 0.077 m/s$.
5.2 The simple second order model with its equivalent electrical network diagram.
5.3 A signal flow diagram of the thermoregulatory system and the closed loop equations.
5.4 The influence of sweat control gain on settling time.
5.5 Transient characteristics of the model for a unit step change in air temperature. The records show five values of A_e; $A_b = 0$.
5.6 Transient characteristics of the model for a unit step change in air temperature. The records show five values of blood flow control gain. The sweat control gain has a constant value of 100 W°C.
5.7 The influence of sweat control gain, A_e, on T_c.
5.8 The steady state relation between physiological conductance and rectal temperature.
5.9 The steady state relation between the calculated value of evaporative heat loss and rectal temperature.
5.10 A computer plot of the model's response to a step change in air temperature from 28°C to 35°C, 40.5°C and 49°C; $V = 0.67$ m/s. Control is initiated from the core temperature alone.
5.11 The locus of the roots of the closed loop equation 5-59 are plotted for values of A_{es} varying from 0 to 100.
5.12 A computer plot of the model's response to a step change in air temperature from 28°C to 35°C, 40.5°C and 49°C; $V = 0.67$ m/s. Control is initiated from the core and the skin temperature.
5.13 The evaporative and peripheral blood flow control characteristics.
5.14 A computer plot of the model's response to a step change in air temperature from 28°C to 52.5°C. The four records represent four sets of values of A_b and A_{bs} which satisfy equation 5-69. The runs are used to determine the value of A_b and A_{bs}.
5.15 A computer plot of the response of the model to step changes in air temperature from 28°C to 32,5°C, 40.5°C and 49°C. Control is initiated from the skin temperatures, the latter having an additive and a multiplication term.
5.16 A computer plot of the model's response to a step change in air temperature from 28°C to 46°C. The two records show the difference between the response of the model with and without a sweating rate control action.
5.17 A computer plot of the model's response to a step change in air temperature from 28°C to 40.5°C. The peripheral blood flow control action is initiated by a signal which is proportional to the core temperature and the rate of change of skin temperature.

6.1 The mean rectal and skin temperature response of a man when he changes from an environment with $T_a = 41°C$ to $T_a = 28°C$.

6.2 A computer plot of the model's response to a step change in air temperature from 40.5°C to 28°C. The records demonstrate three types of sweat control.

6.3 A computer plot of the model's response to a step change in air temperature from 40.5°C to 28°C. The records demonstrate three types of peripheral blood flow control.

6.4 A computer plot of the model's response to a step change in air temperature from 40.5°C to 28°C. The records represent three values of rate control sensitivity.

6.5 A computer plot of the model's response to a step change in air temperature from 49°C, 40.5°C and 35°C to 28°C, the air velocity is 0.67 m/s.

6.6 A computer plot of the model's response to a step change in air temperature from 40.5°C to 28°C. The two records represent two values of air velocity, 0.67 m/s and 3.11 m/s.

6.7 The mean experimental results of rectal temperature, mean body temperature, skin temperature, metabolic input and total heat loss for a step change in air temperature from 28°C to 24°C and 12.8°C.
6.8 Transient experimental results showing the correlation between physiological conductance and mean body temperature and between physiological conductance and skin temperature.

6.9 The response of the model to a change in air temperature from 28°C to 24°C. The three records represent three types of peripheral blood flow control: (1) \(K_b = F(T_c, T_s) \), (2) \(K_b = F(T_c, T_s, dT_s/dt) \) and (3) \(K_b = F(T_c, T_s, dT_s/dt) \) for \(K_b > K_{b_{\text{min}}} \).

6.10 Transient experimental results showing the correlation between change in metabolism and change in mean body temperature and between change in metabolism and skin temperature.

6.11 The characteristics of the two control action components which are used to calculate the value of metabolism, \(H_m \), in equation 6-7.

6.12 A comparison between transient measured values of metabolism \(H_m \) and those calculated from equation 6-7.

6.13 The response of the model to a change in air temperature from 28°C to 24°C. The three runs represent three types of metabolic control: (1) no control, (2) \(H_m = F(T_c, T_s) \) and (3) \(H_m = F(T_b, T_s) \).

6.14 The response of the model to a change in air temperature from 28°C to 24°C. The three runs represent three values of air velocity: 0.67 m/s, 1.86 m/s and 3.11 m/s.

6.15 The response of the model to a change in air temperature from 28°C to 12.8°C. The three runs represent three values of air velocity: 0.67 m/s, 1.86 m/s and 3.11 m/s.

7.1 A block diagram of the five-zone model.

7.2 The thermo-sensor control characteristics used for sweating.
7.3 A diagram of the neuro-control paths used in the model.

7.4 A computer plot of the response of the model to step changes in air temperature from 28°C to 32.5°C, 35°C, 40.5°C and 49°C, the air velocity is 0.67 m/s. Control is initiated from the arterial blood temperature, \(T_a \), and the skin temperature \(T_s \).

7.5 A computer plot of the response of the model to step changes in air temperature from 28°C to 32.5°C, 35°C, 40.5°C and 49°C, the air velocity is 0.67 m/s. Control is initiated from the core temperature, \(T_c \), and skin temperature, \(T_s \).

7.6 A computer plot of the temperature response of each zone of the model to a step change in air temperature from 28°C to 40.5°C. Refer to Figure 3.10 for the position of each zone.

7.7 A computer plot of the response of the model to a step change in air temperature and varying air velocity.

7.8 A computer simulation of the model to demonstrate how the temperature response of a working man is influenced by three types of sweat control. 1) \(H_e = F(T_{ar}, T_c, T_s) \); 2) \(H_e = F(T_{ar}, T_c, T_m, T_s) \), the muscle temperature component produces the desired steady state temperatures; 3) \(H_e = F(T_{ar}, T_c, T_m, T_s) \) the muscle temperature component is larger so as to produce a faster evaporative control.

7.9 A computer simulation of the model to demonstrate how four values of peripheral blood flow influence the skin temperature when man starts working. 1) No change; 2) Change equals the change in cardiac output; 3) and 4) Increased values of peripheral blood flow.

7.10 A computer simulation of the model to demonstrate how the initial rate of change of peripheral blood flow influences the temperature response of the body when man starts working.
7.11 The response of the final model when simulating a man working at a rate of 45 W from time \(t = 0 \), in an environment with the air temperature equal to 35°C.

7.12 The response of the model when simulating a man working at a rate of 113 W from time \(t = 0 \), in an environment with the air temperature equal to 35°C.

7.13 A computer plot of the response of the model when simulating a man exposed to a change in environment from \(T_a = 28°C \) to \(T_a = 40,5°C \). Work commences after a period of 60 minutes.

7.14 The response of the model when simulating a man working at a rate of 113 W from time \(t = 0 \), in an environment with the air temperature equal to 35°C and the wet bulb temperature equal to 24,5°C.

8.1 The relation between metabolism and air temperature and evaporative heat loss and air temperature.

8.2 The relation between the steady state value of physiological conductance and air temperature.

8.3 The predicted steady state values of rectal and skin temperature in a wide range of air temperature.

A1 The principle of measurement of convective heat exchange.

A2 A typical convective heat exchange recording illustrating the increase in heat exchange due to the presence of a man in the climatic chamber.

A3 A sectional plan and other details of the radiometer to demonstrate the principle of measurement of radiative heat exchange.

A4 A typical radiometer recording showing the increase in radiation when a subject enters the climatic chamber.

A5 The principle of measurement of evaporative heat exchange.

A6 Schematic diagram of an integrator.
A7 The roving skin temperature probe in position on the arm .. 294
A8 The fifteen sites used for skin temperature measurement ... 297
A9 A circuit diagram of the rectal thermometer ... 300
A10 The principle of the heart rate counter ... 303
A11 The climatic chamber ergometer .. 307
A12 The principle of the ergometer control in the measurement of positive and negative work ... 308
A13 Climatic chamber instrument console .. 312
A14 Experimental results of rectal and skin temperature for a change in air temperature from 28°C to 49°C ... 316
A15 Experimental results of rectal and skin temperature for a change in air temperature from 28°C to 49°C ... 317
A16 Experimental results of rectal and skin temperature for a change in air temperature from 28°C to 35°C ... 318
A17 Experimental results of rectal and skin temperature for a change in air temperature from 28°C to 24°C ... 319
A18 Experimental results of rectal and skin temperature for a change in air temperature from 28°C to 37.5°C ... 320
A19 Experimental records of metabolic heat input, H_m, and total heat loss, $H_{\text{rc}} + H_h$, for a change in air temperature from 28°C to 24°C ... 321
A20 Experimental records of metabolic heat input, H_m, and total heat loss, $H_{\text{rc}} + H_h$, for a change in air temperature from 28°C to 12.8°C ... 322
A21 Experimental results for a change in air temperature from 28°C to 37.5°C ... 323
A22 Experimental results for a change in air temperature from 28°C to 43°C ... 324
A23 Experimental results for a change in air temperature from 28°C to 49°C ... 325
A24 Experimental results for a change in air temperature from 28°C to 37.5°C and from 28°C to 46°C ... 326
A25 Experimental results for a change in air temperature from 28°C to 43°C ... 327
A26	Experimental results of skin and rectal temperature for a change in air temperature from 49°C and 41°C to 28°C	328
A27	The heat flow components of the simple model	331
A28	A signal flow chart of the two-zone model	333
A29	A signal flow diagram of the dynamic procedure of the program	355
TABLES

2.1 Comparison of body temperature during rest and work in an ambient temperature of 30°C 12

3.1 The thermal properties of the model ... 69

4.1 The physiological variables which were measured 87

4.2 Experimental conditions for Series 1 experiments 106

4.3 Experimental conditions for Series 2 experiments 107

4.4 Experimental conditions for Series 3 experiments 108

4.5 Experimental conditions for Series 4 experiments 109

4.6 Experimental conditions for Series 5 experiments 110

4.7 Series 1 experimental data ... 111

4.8 A sample of steady state data taken from Series 3 experiments 112

4.9 Steady state experimental results taken from the Series 4 experiments in the climatic chamber 113

4.10 A summary of all the experimental steady state results for the four temperatures 20°, 35°, 40.5° and 49°C 114

5.1 A summary of a few measurements taken from the first series of experiments .. 140

5.2 A summary of the mean steady state skin and rectal temperatures, obtained from Figure 4.15 which are used to compute the control gains A_b and A_e and the physiological conductance K_b 151

5.3 A comparison between the mean experimental steady state results and the model steady state measurements .. 155

5.4 Sets of values of A_b and A_{bs} which satisfy equation 5-69 166

6.1 Computed values of change in rectal temperature, change in skin temperature and change in mean body temperature for the duration of exposure in the cold environments 204
6.2 Values of temperature, physiological conductance and the 'weighting factors', a and b which determine the mean body temperature, are listed with time. 207

6.3 Calculated final values of physiological conductance for each environment in the climatic chamber. 209

7.1 A comparison between the mean steady state values of rectal and skin temperatures for resting and working man. 246

7.2 A comparison between the steady state rectal and skin temperatures of the model and man after work in three environments. 256

A1 Environmental conditions of the climatic chamber 278

A2 The three stages of the model program 351
A STUDY OF TEMPERATURE CONTROL IN THE HUMAN BODY BY EXPERIMENT AND COMPUTER SIMULATION

A. R. ATKINS

I hereby state that:

a) unless reference is made in the text of other persons, this is my own work;

b) none of this work or any part of it has been submitted in the past or is being or is to be submitted for a degree in any other university;

c) ideas for this work were obtained at informal discussions and lectures at the university and at the Human Sciences Laboratory of the Chamber of Mines of South Africa, the source of any other information is referred to in the text.

A. R. ATKINS

ARA/M3
29th September, 1975.
CHAPTER 1

INTRODUCTION
The study of the thermal response of man to thermal stress has been of interest to physiologists, ventilation engineers, industrialists, miners and space scientists for many years. With a knowledge of the thermal behaviour of man it is possible to design the most suitable ventilation system for a particular environment or to predict the maximum amount of work a man may perform in a given environment.

Unlike physical systems, this study is hampered by inter- and intra-individual variability, the degree of acclimatization, the day to day variability of the body, the complex shape of the body and the difficulty of making detailed accurate measurements. Nevertheless, heat physiologists have acquired a great deal of knowledge on the thermal behaviour of man and are capable of predicting his steady state of response to almost any environment. Little is known, however, of the transient response of man when he is subjected to a change in environment because the precise function of the thermoregulatory mechanism of man during thermal transients is unknown. One of the reasons is the lack of, and the difficulty of obtaining accurate experimental results.

There are few laboratories which are equipped with a climatic chamber capable of direct calorimetric studies on men who are in a natural upright position and are able to work.

Heat physiologists have followed other disciplines by using models to describe their problem. The first simple, yet very valuable, electrical model of thermal control was suggested by MacDonald and Wyndham (1950).
This original idea has sparked off a host of ideas. Models are invaluable in the study of any complex system. The purpose of this first model was described as "an aid to the systematic analysis of the complex physiological data and could not be mistaken for a mere electrical analogy."

This thesis describes a study of the dynamic thermal behaviour of man. In place of the usual examination of steady state data, the transient behaviour of man to changes in environment is analysed for the purpose of evaluating the thermal control characteristics. Under a severe heat stress or during exposure to cold, man seldom is in a state of thermal equilibrium and it is therefore important to understand his dynamic behaviour.

Seven questions were selected as the objectives, namely:

1) What is the precise function of each control action, and how effective is it in controlling body temperature when the body is subjected to a thermal stress?

2) Is it possible to identify a quantitative relation between the control actions and body temperature?

3) Do both proportional and rate control actions take place?

4) Is it necessary to have thermo-receptors distributed throughout the body or are those which have been located in the core and in the skin sufficient for control purposes?

5) Is the very rapid increase in sweating, recorded after a man starts working, initiated by a non-thermal control action or can it be initiated by a rapid change in body temperature?
6) How accurately and in what environmental conditions can the body temperature be predicted?

7) Under what conditions does the body attain a steady state and how long does this take after a thermal disturbance?

This thesis commences with a review of the subject of thermoregulation in man.

Chapter 3 describes the two major components of the thermoregulatory mechanism, namely, the controller and the controlled system. Each component is examined and then the information required for this study is defined.

Chapter 4 describes the experiments for studying the thermal responses of man in the climatic chamber. A summary of the experimental results are included in this chapter. A detailed description of the climatic chamber, the experimental equipment and the results are given in the Appendix.

The experimental tests on men in the climatic chamber show rather simple smooth temperature response curves and therefore suggest that a very simple behaviour model of the controlled system may be used to analyse and identify the control characteristics of a resting man. Chapter 5 examines the thermoregulatory mechanism of a man exposed to a heat stress and Chapter 6 examines the response of a man exposed to a cold stress by analysing the response of a simple model.

In case there is any doubt that the control characteristics derived from the simple model are not applicable to a 'distributed body', Chapter 7 shows that a more complex model, with the same control characteristics as those derived from the simple model, behaves in a similar manner to the experiments in the
climatic chamber. The detailed model is used to examine the control characteristics of a working man and to complete the study of the objectives.

The study of the objectives is reviewed in Chapter 2.

All the experiments described in this study were performed in the Chamber of Mines Research Laboratories calorimetric wind tunnel. The author of this thesis represented the research team which was responsible for the development of the climatic chamber, as an electronics engineer. His tasks were

a) to provide the necessary electronic instrumentation for the measurement of the physiological data, and
b) to study the thermoregulatory control of man and to design a simulator which could predict man's responses in as wide a variety of environments as possible.

Unless reference is made to other workers, the analysis which follows is due entirely to the author.
CHAPTER 2

HEAT TRANSFER AND TEMPERATURE CONTROL OF THE HUMAN BODY:

A REVIEW

2.1 Introduction
2.2 Metabolism and body temperature
2.3 Heat transfer
 2.3.1 Heat transfer within the body
 2.3.2 Heat transfer between the body and its environment
2.4 Thermal stress and the control of body temperature
 2.4.1 Thermo-sensors and neuro-transmitters
 2.4.2 Control of sweating
 2.4.3 Control of blood flow
 2.4.4 Control of heat production
2.5 Mathematical and physical models of thermoregulation
2.6 Conclusions
Introduction

The biological importance of the regulation of temperature for survival has been known for centuries. In 1797 James Currie wrote: "If a definition of life were required, it might be most clearly established on that capacity by which the animal preserves its proper heat under the various degrees of temperature in which it lives." It was Claude Bernard (1879) who first formally stated these requirements. Early work was done on the thermal response of man to various environments by Bazett (1933, 1938, 1949), Burton (1934), Du Bois (1937), Gagge (1949), Hardy (1938, 1949), Herrington (1949), Robinson (1949) and Winslow et al. (1949). The words 'temperature control' appear in the literature as early as 1933. A book by Newburg (1949) contains early reviews of many of the important topics related to heat physiology, namely heat transfer, body temperature, thermal comfort, blood circulation and thermal sensation. It was, however, only after Wiener's classic book entitled 'Cybernetics', published in 1948, that interest in the feedback control processes in living systems was aroused.

The subject soon became divided. One group of investigators followed the path on the neuronal level, concerning themselves with locating and testing the function of neurons and synapses, while the other group was more concerned with the overall biophysical aspects of thermo-regulation. Ventilation engineers avoid this subject and confine their interest to comfort and stress indices.

This chapter reviews the literature relevant to the subject of heat transfer in, and temperature control of the body. An attempt is made to clarify the present state of knowledge of biothermal temperature regulation. The review commences with the source of heat in the body which causes an elevation of temperature. The temperature zones, which are of interest in this study, are described. The heat produced in the body must be transferred from sites of generation to the
The energy requirements of the body are met through metabolism, the combustion of foodstuffs with oxygen. The whole life process is, in fact, a form of slow combustion which supports the production of heat and work. There are definite quantitative relationships between the intake of food and oxygen with the production of work and the liberation of heat, as was first realised by Lavoisier and Place (1783).

The minimum metabolism required to preserve life of a resting man in a comfortable thermal environment is known as basal metabolism. A typical value is 100 watts. Approximately 70 per cent of this heat is thought to originate from part of the viscera, the weight which comprises less than 8 per cent of the total body weight (M. Nielsen, 1971). Less than 20 per cent of the basal metabolism is contributed by the muscle and skin. The metabolic rate of heat production includes that due to physical activity and the metabolism of digested food.

The mechanical efficiency of physical activity is low and varies from zero to 20 per cent, depending upon the activity (Williams, 1966). A moderate rate of work will increase the metabolism from 100 watts to approximately 250 watts. Man is capable of performing useful work at the rate of 350 watts for short periods, and at this rate his rate of metabolic heat production can be as much as 1200 watts (Wyndham et al., 1959).

The metabolism of a resting subject is constant over a wide range of temperatures. It has been noted that there is
a slight increase at very high ambient temperatures (Winslow and Herrington, 1949). A substantial increase in metabolism is caused by shivering during exposure to cold (Barton, et al. 1955).

It is man's metabolism which elevates his body temperature to some level above average ambient temperature. The temperature varies considerably from one part of the body to another. The temperature of the skin and of the extremities of the limbs vary with the environment, whereas the temperatures of the deeper structures in the trunk and head, particularly the vital organs such as the brain, kidney and liver are fairly stable. Muscle will have a temperature between those of the deeper structure of the trunk and the skin. The temperature of large muscles reaches the highest level after heavy work (Saltin et al., 1966, 1968, 1970; Aikas et al., 1961).

In the field of temperature regulation the body is often divided into two major temperature zones; the core representing the greater portion of thermal mass of the body, and the skin. The boundary between these two zones is in the region of the dermis where there is a very large temperature gradient. The core is represented by a single temperature, which should be the mean temperature of that zone, and the skin is represented by the mean surface temperature.

The author (Atkins, 1960) suggested that the body should be divided into at least four concentric temperature zones if one is examining a working man, the zones are

a) the core representing the skeleton, viscera and deep fatty tissue,

b) the muscle,

c) the skin, and

d) the circulatory system which includes the thermal mass of the blood in the heart and lungs (Atkins, 1962).

With these four zones it is then possible to identify
muscle temperature with a zone other than the core. The temperature of the circulatory system is represented by the arterial blood temperature, that is the temperature of the larger arteries and the temperature of the blood in the heart and lungs. The arterial blood temperature is often associated with core or deep body temperature. This is not always correct for reasons explained later in Section 2.3.

The term 'mean body temperature' is often referred to in texts. True mean body temperature may be defined as the mean of all the temperature components of the body weighted according to their thermal masses. In a two zone analogy the core represents the majority of the thermal mass and therefore the mean body temperature will be almost identical to the mean core temperature. Mean body temperature is sometimes expressed as a function of rectal and skin temperature, (Snellen, 1966; Stolwijk et al., 1966; Colin et al., 1971).

Because of thermal gradients within the core of the body, it is difficult to find a convenient site for measurement of a representative core temperature. The two most accessible places are the rectum and the mouth. The latter is severely influenced by rapid respiration (Strydom et al., 1956). The rectal temperature has been used traditionally for experimental measurements of deep body or core temperature. It is slightly higher than most other temperatures which have been measured in the body of a resting subject (Minard and Copman, 1963), and is therefore a better indication of the temperature at the centre of the core rather than the average core temperature. However, if the temperature gradient across the core is not large, rectal temperature is a reasonable indication of core temperature. Because the rectum is surrounded by a large thermal mass, the rectal temperature, like the mean core temperature, has considerable thermal inertia.

The oesophageal temperature, measured just above the level of the diaphragm, is regarded as being closely representative of the arterial temperature (Nielsen and Nielsen, 1962; Snellen, 1969; Cooper and Kenyon, 1957). A very useful comparison between oral, rectal and arterial temperature has been
given by Cranston (1966) and Eichna et al., (1951). Minad and Copman (1963) have reviewed the literature and provide a table which lists the internal temperature gradients in resting human subjects related to rectal temperature. Temperatures vary by ± 0.4 °C to -0.45 °C. The mean deviation is -0.2 °C.

A few physiologists favour tympanic temperature measured in the ear cavity as an indication of arterial temperature (Benzinger, 1960, 1963). One of the reasons for this choice is the fact that it responds rapidly to forced internal heat loads. Nadel and Hovarth (1970) have shown that tympanic temperature is influenced by the temperature of the skin, and Greenleaf and Castle (1972) have stated clearly that tympanic temperature is not suitable as a measure of core temperature.

Muscle temperatures have been measured during exercise with very fine thermocouple wires (Saltin et al., 1968; Buchthal, 1944). This method causes considerable discomfort and is therefore not undertaken in the experiments in the climatic chamber at the Human Sciences Laboratory.

The skin is the interface at which there is an exchange of energy between body and environment and its temperature is therefore of considerable importance. Radiation thermography has shown that the temperature varies by several degrees at different sites on the body surface (Whipple, 1964). The temperature of the skin is governed by the adjacent peripheral blood distribution, the velocity and temperature of the blood and by the mode of exchange of heat with the environment (Mitchell, 1972; Murlin, 1939; Stoll, 1960). There is a large and varying gradient in the temperature of the tissue beneath the skin. This aspect is discussed in detail in the following section.

The main problems in measuring skin temperature are not to disturb the adjacent peripheral blood flow or to shield the skin from radiative and evaporative heat losses. The techniques
and difficulties of measuring skin surface temperature are well described by Mitchell (1966, 1972). The subject was pioneered by Hardy and Stoll who developed both radiometer and direct thermocouple probes (Stoll and Hardy, 1949; Stoll and Hardy, 1950; Hardy, 1953; Stoll, 1954).

A mean value of skin temperature is required in calculations of the total heat loss from the body. The sites at which the representative temperature is measured, the minimum number of sites required and their corresponding weighting factors have been investigated in detail (Hardy et al., 1955; Teichner, 1958; Ramanathan, 1964; Mitchell, 1972). The fifteen point technique used in the Human Sciences Laboratory is described in Chapter 3.

In Table 2.1 are presented typical steady state body temperatures which have been measured in men during periods of rest and work in a comfortable environment.

TABLE 2.1

Comparison of body temperatures during rest and work in an ambient temperature of 30 °C.

<table>
<thead>
<tr>
<th></th>
<th>Rest</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean skin</td>
<td>33 °C</td>
<td>34 °C</td>
</tr>
<tr>
<td>Subcutaneous tissue</td>
<td>33.6 °C</td>
<td>35 °C</td>
</tr>
<tr>
<td>Muscle</td>
<td>35 °C</td>
<td>38 °C</td>
</tr>
<tr>
<td>Arterial</td>
<td>36.8 °C</td>
<td>37.6 °C</td>
</tr>
<tr>
<td>Rectal</td>
<td>37 °C</td>
<td>37.4 °C</td>
</tr>
</tbody>
</table>
2.3 Heat transfer

A stable mean body temperature is attained when heat production balances heat loss. The metabolic heat must be transferred from sites of generation to the skin before it can be lost to the atmosphere. If all the metabolic heat input is not lost to the environment homeostasis does not occur and the body temperature will increase.

2.3.1 Heat transfer within the body

Direct heat conduction through tissue accounts for about 20 per cent of the basal metabolic heat and a negligible proportion during exercise (Atkins, 1969). Most of the metabolic heat is transferred by vascular convection in blood flowing to the skin surface.

Arterial blood entering a capillary bed in the region of high temperature caused by metabolic heat production, has a temperature lower than that of the tissue. Because of good thermal contact with the tissue, the blood accumulates heat and it is assumed that the venous blood leaving the tissue has a temperature close to that of the tissue (Atkins, 1962; Stelwijk, 1966). Venous blood from different areas is mixed in the heart and lungs. Since part of the venous blood returning from the periphery is cooler than that of the regions of high metabolism, the mean venous temperature has a value between the temperature of the metabolic region and the periphery (Atkins, 1962). The blood is mixed thoroughly in the heart and lungs. The temperature of the blood leaving this zone, that is, the arterial temperature, is therefore almost equal to the mean venous temperature at steady state. The difference between the arterial temperature and the mean venous temperature during homeostasis is due to the loss of a small quantity of heat through respiration in the lungs (Mitchell, 1972). The arterial blood entering a metabolically
inactive peripheral capillary bed will have a temperature higher than that of the tissue and heat will therefore be transferred from blood to the tissue.

The net result is a transfer of heat from regions of active metabolism in the core and muscle to the blood in which the heat is carried, via the heart and lungs, to the peripheral capillary beds.

The arterial temperature is clearly lower than the temperature of metabolically active areas of the core of a resting man otherwise there would be no vascular convection. When the body is undergoing heavy physical activity the muscle temperature is higher than the rectal temperature and the arterial blood temperature can exceed the rectal temperature but it will be lower than the muscle temperature. The arterial temperature is therefore dependent upon both the distribution of blood in the body and the temperature of the body components. The thermal inertia of the circulatory system is much smaller than the core or muscle and the arterial temperature will therefore have a much faster time response than the core temperature.

Unless the circulatory system is treated as a separate thermal zone, as suggested by the author, care should be taken when associating arterial blood temperature with core temperature, particularly during a transient state.

There is uncertainty concerning countercurrent heat exchange between arteries and veins in regions where these vascular channels are in fairly close proximity. Hazett et al. (1948) examined the arms and legs of a man and suggested that countercurrent heat exchange might take place. Mitchell and Myers (1968) analysed the possibility of countercurrent heat exchange between adjacent larger arteries and veins and concluded that this is negligible. Keller and Seiler (1971) suggested that countercurrent heat exchange might be effective.
in local regions near the surface where smaller arteries and veins which distribute blood for local perfusion, pass close together.

The peripheral capillary beds where the arterial blood 'disposes of' the heat are an important region and worthy of closer examination. The capillary beds are close to the skin surface and do, in fact, invaginate into the epidermis. Because of the complex nature of the skin and adjacent tissue there is little detailed information regarding the distribution of heat and the thermal gradient in this area, particularly for different parts of the body.

Stoll (1960) has stated that the skin may vary in thickness from 0.5 mm to 5 mm and suggested that heat transfer should be treated differently according to which of the two layers of the skin heat is transferred, namely,

a) the inner section containing small peripheral blood vessels, and
b) the outer bloodless tissue through which heat is transferred by conduction only.

The inner section of the skin contains many arterioles, venules and capillaries. (Refer to Figure 2.1) The capillaries lie deep towards the skin forming a link between the arteriolar plexus and the superficial venous plexi (Kenshalo and Nafe, 1958). The flow of blood through the capillaries is determined by the state of the pre-capillary sphincter, which is either open or closed. There are also arterio-venous anastomoses, which are direct shunts with contractile walls between arterioles and venules (Greenfield, 1963).

Bazett (1949) has made a detailed study of the temperature gradient near the surface of the skin of the forearm. He measured the temperature profile to a depth of 6 mm at 0.25 mm intervals. Depending on air temperature, the difference
between the temperature at the surface and at thin depth varied from one to two degrees centigrade. A distinct peak was noticed at a depth of 0.8 mm followed by a trough at 1.5 mm. The peak is attributed to the presence of an arteriolar network or plexus. Bazett gives a very good illustration (see Figure 2.1) which shows the possible reason for this peak.

![Diagram of skin layers and temperature gradient](image)

FIGURE 2.1

A sectional schematic representation of the skin. The temperature gradient is shown below the schematic diagram.
B. Nielsen (1969) has also examined the temperature gradient beneath the skin with the object of determining at what depth "an operational average deep-skin temperature should be measured." This temperature might represent the temperature of the nerve endings of the peripheral thermal receptors. Temperatures were measured at 1 mm intervals to a depth of 6 mm.

Because fewer measuring intervals were used than those of Bazett, the thermal gradient is not as clearly defined as that given by Bazett. A slightly negative gradient, in a direction towards the centre of the body was measured when the body was at rest, whereas a positive gradient of 2.5 °C per mm was measured at high work rates. Nielsen did not detect the peak and trough in the skin temperature gradient noted by Bazett, partly because fewer measuring intervals were used and partly because the ambient temperature was higher.

The most important aspect of Nielsen's data is that the temperature gradient between the surface and a depth of 3.5 mm was 5 °C for a working subject. Assuming a typical skin temperature of 33 °C, the tissue temperature would be 38 °C. Clearly, the peripheral capillary bed must, therefore, lie within a few millimetres of the skin surface and range from 0.5 to 4 mm in depth.

2.3.2 Heat transfer between the body and its environment

Heat transfer between man and his environment occurs mainly by radiation, convection and the evaporation of sweat. The mechanism of heat exchange obeys rigorous physical laws and is essentially the same as that for inanimate bodies (Mitchell, 1972). Respiratory heat loss is significant only in cases of high ventilation rates in a dry atmosphere.
There are difficulties in applying the laws of heat loss on account of the very irregular shape of the body. Direct calorimetry has made it possible to verify these laws experimentally and to produce reliable expressions for the three modes of heat exchange. Early work may be credited to Gagge et al. (1937); Hardy (1949); Machle and Hatch (1947); Kerslake and Waddell (1958); Woodcock (1965); and the Fort Knox Laboratories (1946). At two modern calorimetric wind tunnels (Colin and Houdas, 1967; Colin et al., 1971 and Mitchell et al., 1969) the subject has been studied in great detail. The most recent and perhaps the most accurate work on this subject has been done at the Chamber of Mines Laboratories (Mitchell, 1972). Mitchell was able to measure radiative, convective and evaporative heat loss directly. The theoretical analysis of heat exchange from the body is described in Chapter 3.

2.4 Thermal stress and the control of body temperature

If any passive body is subjected to a change in ambient temperature, the temperature within the body will change by an equal amount, given sufficient time. This is not so with the human body which is equipped with an active thermoregulatory mechanism which is capable of maintaining a near-constant core temperature and which thus minimises the thermal strain. The main sources of thermal stress are environmental temperatures and the increase in metabolism due to physical work. The body can make four corrective actions of which three are involuntary:

1. The rate of sweat secretion on the skin surface is adjustable.

2. The distribution and rate of blood flow in the periphery and splanchnic bed are adjustable.

3. The rate of heat production within the body is adjustable.
4. The body may take on or remove protective clothing and seek a more suitable environment.

Hardy (1971) has shown that involuntary or physical regulation will protect man in an environment temperature ranging from 0 °C to 50 °C whereas behavioural regulation can protect a man in temperatures ranging from -200 °C to +300 °C.

The reason why temperature regulation is necessary has not been determined. Most physiologists agree that it is probably the temperatures of the organs and of the brain which require this stable temperature for survival. Bligh (1966), in an excellent review, states: "The control of heat production and heat loss so that the deep-body temperature remains more or less constant is a property of most mammals - the great mass of evidence accumulated over more than a century gives general support to this interpretation."

It has been shown, however, that the organs of some animals can be subjected to a much wider temperature variation without noticeable harm (Mitchell, 1972). Snellen (1972) has suggested that it is not the body temperature but body heat content which is controlled. In this thesis it will be assumed that it is the core temperature, in particular the temperature of the viscera, which requires control.

If one has to control the temperature of an insulated waterbath, it is natural to do so by means of a thermostat in the waterbath. The thermostat has a reference or setpoint temperature and should the temperature of the bath fall below this setpoint, some corrective action is taken to restore the bath temperature to its required value. This basic concept
of control has led physiologists to try to locate the source of temperature sensors and also the setpoint.

2.4.1 Thermo-sensors and neuro-transmitters

The reflex response of the skin to changes in temperature was first noted by Francois-Frank. Pickering (1932) provided the first conclusive evidence that a thermoregulatory action results from a change in either the skin or core temperatures. Bazett (1949) stated that there is little doubt that the hypothalamus is the temperature-sensitive region in the core.

The relative importance of either the skin and core temperature in initiating control was a popular research topic for many years. Burton and Eiholm (1955), Randall et al. (1963) and van Beaumont and Bullard (1967) considered the skin temperature to be important while Benzinger (1963) attributed all control to the core temperature. Wyndham et al. (1965) have shown clearly, the relative importance of both skin and core temperatures.

Hensel (1973) has recently written a comprehensive review of the neural processes in thermoregulation. He states that there is little direct evidence of the location of central temperature receptors in man. On the basis of the results of experiments with animals, the hypothalamus and spinal cord are regarded as the area with the highest concentration of thermo-receptors. It has been suggested, though there is no proof, that thermo-receptors might be situated in the large veins of the legs and in the muscle of man (Gisolfi and Robinson, 1970; Saltin and Gagge, 1971 and Saltin et al. 1971).

The introduction of the single-unit recording techniques for the study of thermo-sensitive neurons by Birzis and Hemingway (1957) opened a new door to the study of thermo-
regulation. Micro-electrode techniques enable single cell activity to be observed and provide a valuable method of locating thermo-sensitive neurons. The experiments have confirmed the presence of highly thermo-sensitive cells in the spinal cord, the preoptic and posterior areas of the hypothalamus, the abdomen, veins and the skin of animals (Hensel, 1973).

The early work of Nakayama et al. (1961, 1963) located neurons in the hypothalamus which were sensitive to heat only. Later work by Hardy et al. (1964), Eisenman and Jackson (1967), Cabanac (1968) and Hensel and Wurster (1969) revealed certain neurons sensitive to cold and others sensitive to heat. It is now an accepted fact that there are two types of thermo-sensors, namely 'warm sensors' and 'cold sensors'. It is interesting to note that, so far, only a few cold and no warm receptors have been identified by electrophysiological methods in the skin of human subjects (Hensel, 1973).

The average static frequency-temperature characteristics of warm and cold nerve fibre populations, taken from the nasal area of a cat, are given by Hensel and Kenshalo (1969). These curves are illustrated in Figure 2.2. They compare favourably with rat scrotal (Iggo, 1969) and cat spinal cord (Simon and Iriki, 1971) thermosensitive units.

Hensel and Huopaniemi (1969) noted another important characteristic of neuron activity in the nasal region of a cat. They found the impulse frequency of the nerve fibres to be very dependent on the rate of change of temperature. The peak impulse frequency is about three to five times the static frequency following a step change in temperature. The settling time is approximately twenty seconds. The dynamic sensitivity is bi-directional: warm receptors are excited by a rise in temperature and inhibited by a fall in temperature. Cold receptors respond the opposite way.