EVALUATION OF PROCESSES FOR LANDFILL GAS UTILIZATION

Odelia Pillay

A dissertation submitted to the University of the Witwatersrand, Faculty of Engineering and the Built Environment, in fulfilment of the requirements for the part time degree of Masters of Science in Chemical Engineering.

Johannesburg, 2014
Declaration

I declare that this dissertation is my own unaided work under the supervision of my Supervisor Dr. S Kauchali. It is in submission to the Degree of Masters of Science in Chemical Engineering to the University of the Witwatersrand, Johannesburg. This dissertation has not been submitted before for any degree or examination to any other University.

(Signature of Candidate)

______ day of ______________, ______________
(day) (month) (year)
Abstract

Through many studies and investigations over the years, landfills have evolved into efficiently operated bioreactors to produce methane (CH\textsubscript{4}) which can be used and converted into useful fuels as the concern of global warming increases. The processes outlined within this dissertation are a development of a graphical technique that allows various technologies to be developed with syngas production as an intermediate step and considers mass balance to determine the stoichiometric region for syngas production. Energy balances were used to limit the stoichiometric region to autothermal operation, carbon boundaries identified further restrictions on the stoichiometric region and contours of Higher Heating Values (HHV) identified regions to obtain high calorific value syngas.

A comparison of different processes suggests that despite electricity generation being simpler, the process emits the highest amount of carbon dioxide (CO\textsubscript{2}) emissions (2.50 CO\textsubscript{2}/mol landfill gas (LFG)) with fuel processes (synfuel (CH\textsubscript{2}) and Dimethyl Ether (DME)) yielding lower CO\textsubscript{2} emissions with a high of 1.10 CO\textsubscript{2}/mol LFG. The production of chemicals or syngas through zero CO\textsubscript{2} emission processes, produces zero or very little CO\textsubscript{2} as compared to the other processes and do not require energy intensive steps in order for the process to go to completion.

This dissertation develops a systematic graphical technique that enables the study of possible conversion processes and flow sheets utilising LFG. Furthermore, from this analysis it is shown that there are more possibilities of LFG usage for chemicals and fuel production in addition to traditional electricity generation.
In memory of my loving mother

Karnegie (Kay) Pillay
Acknowledgements

I wish to thank the following persons for their contribution to my work:

- Dr. Shehzaad Kauchali for his continued assistance, guidance, inspiration and insight into gasification and reforming throughout this research as well as interpretation of results and continued support of this work
- WSP Environmental for provision of funds and allocating study leave when necessary
- My Dad, Steven Pillay for his encouragement and support throughout the research period
- My family for their continued support and motivation
4.4 STOICHIOMETRIC REGION OF OPERATION FOR LFG .. 45
4.4.1 Reforming Reactions using the CHO Diagram .. 46
4.5 GRAPHICAL REPRESENTATION OF REACTIONS .. 49
5 ENERGY BALANCE CONSIDERATIONS ... 53
5.1 AUTO-THERMAL OPERATIONS .. 53
5.2 IDEALISED STOICHIOMETRIC REGION (CALORIFIC VALUES) 56
5.3 CARBON BOUNDARY .. 59
6 RESULTS ... 63
6.1 ELECTRICITY GENERATION USING AN INTERNAL COMBUSTION ENGINE 63
6.1.1 Basic Flow diagrams .. 63
6.2 ELECTRICITY GENERATION USING SOFC’S .. 66
6.2.1 Basic Flow Diagrams .. 67
6.2.2 Electricity generation depicted on CHO diagram ... 69
6.3 ELECTRO-CATALYTIC REDUCTION OF CO2 ... 74
6.3.1 Basic Flow Diagram .. 74
6.3.2 Methane generation depicted on the CHO diagram ... 77
6.4 SYN FUEL PRODUCTION .. 81
6.4.1 Basic Flow Diagram .. 81
6.4.2 CH4 generation depicted on the CHO diagram .. 84
6.5 DME PRODUCTION ... 88
6.5.1 Basic Flow Diagram .. 89
6.5.2 DME generation depicted on the CHO diagram ... 91
6.6 CO2 EMISSION FREE PROCESSES ... 95
6.6.1 Basic Flow Diagram .. 96
6.6.2 Chemical Generation depicted on the CHO diagram .. 99
7 CONCLUSIONS .. 103
REFERENCES .. 110
APPENDIX A – REPRESENTATION OF CHO DIAGRAMS .. 118
APPENDIX B – DETERMINATION OF THE THERMALLY BALANCED LINE 122
APPENDIX C – CALCULATING CALORIFIC VALUES ... 128
List of Figures

Figure 1.1: Schematic layout of Landfill gas to Electricity Project (Interwaste Environmental Solutions, 2010) ... 2
Figure 1.2: Emissions Evolution Curve for Coastal Park (Theeboom and Nontangane, 2010)3
Figure 2.1: Landfill gas production over the course of time (Koch, 2001)11
Figure 2.2: Changes in Typical LFG composition after Waste disposal (Berger and Mann, 2001) 13
Figure 2.3: Vertical LFG extraction wells (U.S. EPA LMOP, n.d) ... 16
Figure 2.4: LFG Collection system with horizontal Trenches (U.S. EPA LMOP, n.d)16
Figure 2.5: The area of influence and spacing of vertical gas wells (Swanepoel, 2009)17
Figure 2.6: The area of influence and spacing of horizontal gas wells (Swanepoel, 2009)18
Figure 2.7: LFG Extraction site plan (U.S. EPA LMOP, n.d) ... 19
Figure 2.8: Removal of H₂S for CO₂, methane and electricity production (Malik et al., 1987) 23
Figure 2.9: One third of all landfill sites have a severe siloxane problem (Xebec Adsorption Inc., 2007) ... 25
Figure 2.10: Silica build up on heads and scrapped pistons of Caterpillar and Jenbacher engines (Xebec Adsorption Inc., 2007) ... 25
Figure 2.11: The flow of LFG from extraction to electricity generation (Swanepoel, 2009)26
Figure 2.12: Practical SOFC with three phase boundary to facilitate charge transfer (Kee et al., 2004) ... 30
Figure 2.13: Simplified scheme of a photo-electro-catalytic device for CO₂ reduction to fuels using solar energy (Centi and Perathoner, 2009) ... 32
Figure 2.14: Product yield from Nitrogen-doped nanotubes (Centi and Perathoner, 2009) ...33
Figure 2.15: Process flow diagram of 100 t/day DME synthesis plant (Yotaro et al., 2006)36
Figure 3.1: Flow chart of the Methodology ... 38
Figure 4.1: CHO Diagram .. 43
Figure 4.2: The Star of Gasification .. 45
Figure 4.3: Graphical representation of LFG reactions using Feed 1 50
Figure 4.4: Graphical representation of LFG reactions using Feed 2 51
Figure 4.5: Graphical representation of LFG reactions using Feed 3 52
Figure 5.1: Indicating the TBL - Feed 1 .. 54
Figure 5.2: Indicating the TBL - Feed 2 .. 55
Figure 5.3: Close up Representation of HHV – Feed 1 ... 57
Figure 5.4: Close up Representation of HHV – Feed 2 .. 58
Figure 5.5: Thermally balanced line, carbon boundaries and calorific value contours for Feed 1.60
Figure 5.6: Thermally balanced line, carbon boundaries and calorific value contours for Feed 2.61
Figure 6.1: Electricity generation using an Internal Combustion Engine 64
Figure 6.2: Electricity generation using an Internal Combustion Engine represented on the TBL – Feed 1 ... 65
Figure 6.3: Electricity generation using an Internal Combustion Engine represented on the TBL – Feed 2 ... 66
Figure 6.4: Electricity generations using SOFC’s and dry reforming – Feed 1 67
Figure 6.5: Electricity generations using SOFC’s and Feed 2 .. 69
Figure 6.6: Electricity production using Feed 1 ... 70
Figure 6.7: Electricity production using Feed 2 ... 72
Figure 6.8: Electro-catalytic reduction of CO₂ using H₂O to produce methane 75
Figure 6.9: Electro-catalytic reduction of CO₂ using H₂ to produce methane 76
Figure 6.10: Production of methane using the Sabatier reaction .. 77
Figure 6.11: Methane generation using Feed 1 .. 78
Figure 6.12: Methane generation using Feed 2 .. 80
Figure 6.13: CH₂ production using Feed 1 .. 82
Figure 6.14: CH₂ production using Feed 2 with a H₂O recycle stream ... 83
Figure 6.15: CH₂ production using Feed 2 – no recycle stream.. 84
Figure 6.16: CH₂ production using Feed 1 .. 85
Figure 6.17: CH₂ production using Feed 2 with a H₂O recycle stream ... 87
Figure 6.18: CH₂ production using Feed 2 – CO₂ elimination.. 88
Figure 6.19: DME production using Feed 1 with a CO₂ recycle stream 89
Figure 6.20: DME production using Feed 1 without a CO₂ recycle stream............................... 90
Figure 6.21: DME production using Feed 2 .. 91
Figure 6.22: DME production using Feed 1 with a CO₂ recycle stream 92
Figure 6.23: DME production using Feed 1 without a CO₂ recycle stream............................... 94
Figure 6.24: DME production using Feed 2 .. 95
Figure 6.25: Production of chemicals with zero emissions – Feed 1 ... 96
Figure 6.26: Production of synfuels with zero emissions – Feed 2 ... 98
Figure 6.27: Production of synfuels with zero emissions – Feed 2 (r₂) 99
Figure 6.28: CHO diagram for Feed 1 – representing locus of chemicals............................... 100
Figure 6.29: CHO diagram for Feed 2 – representing locus of syngas 102
Figure A1: CHO Diagram .. 119
Figure A2: Representing mixtures .. 121
Figure C1: Representing Calorific Value Contours on the CHO Diagram for Feed 1 133
Figure C2: Representing Calorific Value Contours on the CHO Diagram for Feed 2 135
List of Tables

Table 1.1: Advantages and Disadvantages of Medium pipeline gas (U.S. EPA LMOP, n.d.)........... 5
Table 1.2: Advantages and Disadvantages of High pipeline gas (U.S. EPA LMOP, n.d)............. 6
Table 2.1: Comparison between Vertical and Horizontal gas wells (Swanepoel, 2009)............. 15
Table 2.2: Comparison of electricity production technologies (U.S. EPA LMOP, n.d)............... 27
Table 2.3: Typical Costs associated with electricity production technologies (U.S. EPA LMOP, n.d).. 28
Table 5.1: Equations representing the Thermally Balanced Line for Feed 2................................. 55
Table 5.2: Endothermic reactions for Feed 3... 56
Table 6.1: Formation of zero emission locus..56
Table 7.1: Summary of Results ..107
Table A1: Molar Masses... 120
Table B1: Enthalpies of Formation... 123
Table B2: Balanced Reactions... 125
Table B3: Enthalpy Ratios .. 125
Table B4: Balanced Reactions – Point A .. 125
Table B5: Balanced Reactions – Point B .. 126
Table B6: Balanced Reactions – Point C .. 126
Table B7: Equations representing the Thermally Balanced Line for Feed 2............................... 127
Table B8: Endothermic reactions for Feed 2.. 127
Table C1: Percentage of Products.. 129
Table C2: HHV for reactions according to Li et al, 2004... 129
Table C3: Calculating α ... 130
Table C4: Calculating β .. 131
Table C5: Calculating α and β for Feed 1 ... 131
Table C6: BE percentages for Calorific Values for Feed 1 ... 132
Table C7: Calculating α and β for Feed 2 ... 134
Table C8: BE percentages for Calorific Values for Feed 2 ... 134
Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C&D</td>
<td>Construction and Demolition</td>
</tr>
<tr>
<td>CH₂</td>
<td>Synfuel</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CHO</td>
<td>Carbon-Hydrogen-Oxygen</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed Natural Gas</td>
</tr>
<tr>
<td>Co</td>
<td>Cobalt</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethyl Ether</td>
</tr>
<tr>
<td>GHG</td>
<td>Green House Gas</td>
</tr>
<tr>
<td>H:H</td>
<td>High hazardous landfill</td>
</tr>
<tr>
<td>H:h</td>
<td>Low hazardous landfill</td>
</tr>
<tr>
<td>HHV</td>
<td>High Heating Value</td>
</tr>
<tr>
<td>H₂</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen sulphide</td>
</tr>
<tr>
<td>HC</td>
<td>Hydrocarbons</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatts</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>LFG</td>
<td>Landfill Gas</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquid Natural Gas</td>
</tr>
<tr>
<td>MFC</td>
<td>Microbial fuel cell</td>
</tr>
<tr>
<td>MJ/m³</td>
<td>Mega Joules per meter cubed</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal solid waste</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>NOx</td>
<td>Nitrogen oxide compounds</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium oxide</td>
</tr>
</tbody>
</table>
1 Introduction and Background

Landfills are one of the largest human caused sources of methane, resulting in increased amounts of greenhouse gases. The use of landfills began by burying municipal refuse directly or after on-site burning and very little attention was given to the hazards associated with the generation of methane and toxic leachates as wastes decomposed. Gases produced by landfills are known as landfill gas (LFG) and is a by-product of the decomposition of waste in anaerobic conditions. These gases contain approximately 50 percent methane (CH$_4$) and 50 percent carbon dioxide (CO$_2$) with traces of other organic and inorganic compounds (Strachan et al., 2005). If these gases are extracted and cleaned in the correct manner, it can be used as renewable energy and thus reduce carbon emissions to the environment (Themeles and Ulloa, 2006).

In this dissertation, it is shown that landfill gas can be utilized as other fuel sources other than electricity. By utilizing the CHO diagram, various systems were analysed to assess the following:

- Environmental impacts associated with each process;
- Energy requirement as in adiabatic, endothermic and exothermic reactions;
- Carbon deposition through carbon boundaries;
- Calorific values; and
- The stoichiometric region which is the most desirable region to operate a process.

A few processes are analysed to determine which would be the most feasible option to convert LFG into useful products. Certain processes may become complex, and their design difficult to analyse. Mass balances and Carbon – Hydrogen – Oxygen (CHO) diagrams are used to limit the overall changes and product distribution as the product distributions are restricted to a confined exothermic region (Kauchali, 2012). Operation outside the desired region would result in energy intensive processes and may not make the process feasible.
1.1 The Sustainability of Landfill Gas

Through many studies and investigations over the years, landfills have evolved into efficiently operated bioreactors to produce CH$_4$ which can be used and converted into useful fuels. Most landfill gas projects involve the production of electricity through combustion of the gas. Current technologies allow for a 25 to 35 % conversion of energy to electricity. The rest of the energy is lost as heat which could be recovered and reused in the system.

In South Africa, it is estimated that up to 6% of the country’s renewable energy target could be met using technologies such as converting LFG into electricity (Interwaste Environmental Solutions, 2010). Interwaste Environmental Solutions is closely associated with projects concerning waste to maximise the benefits of landfill gas utilisation in Gauteng as can be seen in Figure 1.1 below. Some of these projects which include flaring and power generation are already in full operation.

Ener-G Systems in South Africa is currently working on a project on the Marie Louise Landfill site situated in Dobsonville, Roodepoort to the North West of Johannesburg. They intend on converting the gas into electricity. The site is approximately 450m long and 500m wide and is predicted to provide enough gas to generate up to 6 MW of electricity (WSP, 2009). Ener-G Systems propose to install a 2 MW plant to monitor the gas yield from the site in order to determine the gas reserves. Once the reserves have been determined, the size of the energy generating plant will be increased to maximise electricity generation.

Figure 1.1: Schematic layout of Landfill gas to Electricity Project (Interwaste Environmental Solutions, 2010)
Landfill gas results from site surveys from the Coastal Park landfill site in Cape Town was made available and analysed by WSP and was used to predict the date of closure for the landfill. Figure 1.2 depicts the resulting landfill gas that will be generated over the next 112 years at the Coastal Park landfill site (Theeboom and Nontangane, 2010).

![Figure 1.2: Emissions Evolution Curve for Coastal Park (Theeboom and Nontangane, 2010)](image)

CH₄ and CO₂ generation has been occurring since 1994 and should peak in 2024. The best period for LFG utilization would be between 2004 and 2054. That would equate to 50 years of a renewable energy source.

Through the utilisation of LFG energy, environmental and economic benefits to energy users and the community are achieved. According to U.S. EPA LMOP, n.d, landfill gas Projects assist with:

- The reduction of emissions of GHG’s that contribute to climate change;
- Offsets the use of non-renewable resources, such as coal, oil and natural gas;
- Improves local air quality;
- Provides income for Landfills;
- Provides energy cost savings for users of LFG energy; and
Creates jobs and economic benefits for communities and businesses.

If different processes of converting the LFG into useful products are analysed, one can produce a useful source of energy on a large scale by decreasing the carbon emissions considerably. Though the benefits of LFG products are many, there is still a lot of controversy around this matter. These include the effect of moderating oil prices, sustainable energy production, continuous methane production from the wells and lifespan of the landfill to name a few.

1.2 Uses of Landfill Gas

The use of landfill gas as an energy source is a new concept to many, and research on LFG applications is still being investigated (U.S. EPA LMOP, n.d and Swanepoel, 2009). It can be thought of as a renewable resource, unlike petroleum and is produced from waste. Successful applications of LFG are electricity generation and direct use in boilers, kilns and furnaces as suggested in Pilarczyk et al., 1987, Malik et al., 1987, Bove and Lunghi, 2005 and Themelis and Ulloa, 2006. Another alternative use is the production of fuels (U.S. EPA LMOP, n.d and Stearns et al 1984); however this is not widely used and is still under investigation. More complicated processes are required for diesel and fuels; however fuels are required to burn when used in vehicles, hence producing emissions such as SO$_2$, NO$_x$ and CO$_2$. The gas can also be converted into pipeline quality gas (compressed natural gas - CNG) and liquid natural gas (LNG). This process of converting the gas into high quality pipeline gas is highly expensive. The advantages and disadvantages of direct pipeline gas can be seen in Table 1.1 and 1.2 below.
Table 1.1: Advantages and Disadvantages of Medium pipeline gas (U.S. EPA LMOP, n.d)

<table>
<thead>
<tr>
<th>Use</th>
<th>Technology</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Pipeline gas</td>
<td>Boiler, Dryer, Process Heater</td>
<td>Maximum amount of recovered gas flow utilised</td>
<td>Quality of gas needs to be improved or equipment to be retrofitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost effective</td>
<td>All recovered gas must be used or it is lost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited cleaning to remove condensate and particulate matter</td>
<td>Costs increase with length of pipeline, hence consumer of energy must be nearby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas can be blended with other fuels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infrared Heater</td>
<td>Limited cleaning to remove condensate and particulate matter</td>
<td>LFG utilization is limited to seasonal changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relatively inexpensive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Easy installation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small amounts of gas required</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can be coupled with another energy projects</td>
<td></td>
</tr>
<tr>
<td>Greenhouse</td>
<td></td>
<td>Can mix different technologies</td>
<td>LFG utilization is limited to seasonal changes</td>
</tr>
<tr>
<td>Artisan</td>
<td></td>
<td>Small amounts of</td>
<td>Can be expensive,</td>
</tr>
<tr>
<td>Use</td>
<td>Technology</td>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>studio gas</td>
<td></td>
<td>• Can be coupled with a commercial project</td>
<td>hence project economics may be limited without outside funding sources</td>
</tr>
<tr>
<td>Leachate</td>
<td>evaporation</td>
<td>• Good option for landfills where leachate disposal is expensive</td>
<td>• Capital costs are high</td>
</tr>
</tbody>
</table>

The CO₂ separated can either be flared if in small quantities or can be processed into high purity liquid CO₂, used for coal beds and for oil and gas enhancements. The carbon dioxide can also be used for waste water treatment, dry cleaning or for the production of dry ice.

Table 1.2: Advantages and Disadvantages of High pipeline gas (U.S. EPA LMOP, n.d)

<table>
<thead>
<tr>
<th>Use</th>
<th>Technology</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Pipeline</td>
<td>CNG</td>
<td>• Alternative fuels for vehicles at the landfill or refuse hauling trucks</td>
<td>• Potentially expensive gas processing required</td>
</tr>
<tr>
<td>Gas</td>
<td>LNG</td>
<td></td>
<td>• Tight management of well-field operation needed to limit oxygen and nitrogen intrusion into LFG can increase costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Potentially expensive gas processing required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Tight management of well-field operation</td>
</tr>
<tr>
<td>Use</td>
<td>Technology</td>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Supply to general commercial market</td>
<td>needed to limit oxygen and nitrogen intrusion into LFG can increase costs</td>
</tr>
</tbody>
</table>

Different applications require different processes and hence these processes require different energy inputs and give of different energy outputs. Thus, by analysing energy balances around each process shown, one can find the optimum process of converting LFG into useful products.

1.3 **Problem statement and research motivation**

The need for alternative energy sources comes from the depletion of coal reserves, gas and crude oil within the next 150 years. Furthermore, the depletion of the ozone layer and the current environmental issues are forcing people to recycle and re-use wherever possible. The conversion of LFGs into useful products is quickly becoming popular with global warming and today’s need for carbon credits. Companies around the world are looking to “Go Green” by reusing and recycling. It has also been argued that by converting LFG into fuel, the use and production of CO$_2$ is of great advantage in the prevention of climate change than other petroleum fuels. This is because the carbon used and produced during LFG Fuel production is part of a “free carbon cycle” whereas the emissions released from crude oil are part of a “locked carbon cycle” (Robson, 2004). The total greenhouse gases will also be reduced considerably by the combustion of the recovered methane contained in the landfill gas. Thus by implementing the use of landfills and other such alternatives to produce power is a great benefit to the up keeping of the environment (Hongguang, 2006).

Processes for converting LFG and other biomass are required in order to deal with the depletion of fossil fuels. This dissertation focuses on the development of a graphical technique that allows various technologies to be developed with syngas
production as an intermediate step and considers mass balances to determine the stoichiometric region for syngas production. Energy balance limit the stoichiometric region to autothermal operation, whilst carbon boundaries identify further restrictions on the stoichiometric region, and contours of Higher Heating Values (HHV) identify regions to obtain high calorific value syngas.
2 Literature review

2.1 Landfills

Landfills are huge pieces of land that are used for waste disposal and degeneration. The waste is sorted and managed so as to create the decomposition of waste. Through the decomposition of waste, LFG is produced and studies have shown that by extracting these gases, one can produce a source of renewable energy. There are many types of landfills depending on the class of waste. In the landfill classification system, a landfill is classified in terms of waste class, size of operation, and potential for significant leachate generation, all of which influence the risk it poses to the environment (Department of Water Affairs and Forestry, 1998). Waste types are grouped into two categories, General and Hazardous waste; hence landfills have to be grouped accordingly. General waste can be disposed of at any permitted landfill, however it is important to note that should it be disposed of on a hazardous landfill site, the charges for waste disposal are much higher. Hazardous waste is classified into 4 classes for landfill disposal:

- Hazard Rating 1: Extreme Hazard
- Hazard Rating 2: High Hazard
- Hazard Rating 3: Moderate Hazard
- Hazard Rating 4: Low Hazard

Each hazard rating has a different treatment and disposal requirement hence hazardous landfills are divided into two types according to their hazard rating, namely High hazardous landfill (H:H) and low hazardous landfill (H:h). H:H landfills can accept all hazard ratings of waste, while H:h landfills can only accept Hazard Ratings 3 and 4 and general wastes. Only non-hazardous landfill sites can be used for LFG utilization projects.

Before landfill gas energy projects can be rendered viable, initial assessments must be conducted to estimate the LFG recovery potential. This includes determining whether the landfill produces enough methane to support the energy recovery project as this is the main gas source. Below are the criteria for feasible landfill gas energy projects:
- The site should have at least 1 million tons of Municipal solid waste (MSW);
- Must have a depth of 50 feet (15.24 meters) or more;
- Must determine whether the site is open or recently closed; and
- The site should also have at least 25 inches (63.5 cm) of precipitation annually.

Landfills meeting the above criteria generally have enough methane gas to support a LFG energy project (U.S. EPA LMOP, n.d).

2.2 Gas Composition

Landfill gas is a natural by-product of anaerobic decomposition of solid waste. It is produced when biodegradable waste is broken down by micro-organisms (Swanepoel, 2009). The quantity and quality of LFG varies with the landfill's content i.e. the characteristics of the waste and is dependent on many factors such as age of the landfill, weather conditions and design of the landfill to name a few. The total time and phase duration of gas generation varies with these landfill conditions. This can be seen in Figure 2.1 below. It is noted that maximum production is achieved between 10-15 years which also corresponds to the end of a landfill site lifespan. It is thus imperative to be able to have a viable project with sensible production rates between 3-5 years into a landfill site.
Figure 2.1: Landfill gas production over the course of time (Koch, 2001)

LFG is primarily CH\(_4\) and CO\(_2\) with traces of non-methane organic compounds and inorganic compounds. The various phases that LFG production processes undergo depend on factors such as humidity, temperature and atmospheric pressures. Berger and Mann, 2001, suggest four phases of bacterial decomposition of landfill waste and this is shown in Figure 2.2 below. The four phases as described by Berger and Mann, 2001 are:

- Phase I: Aerobic bacteria consume oxygen that is present in the landfill as well as proteins, lipids and complex carbohydrates that are found in the organic waste. Large amounts of nitrogen are found in this phase, whilst oxygen is still present. Carbon dioxide is the by-product of the aerobic decomposition of waste and lasts for days or months, depending on the waste content.
- Phase II: Once all the oxygen has been consumed by the aerobic decomposition of waste, compounds created in Phase I are converted into methanol, ethanol, acetic acid and lactic acid in an anaerobic process. No
methane is produced during this phase. This phase usually lasts a week at most but will return to Phase I if the process is disturbed or oxygen is introduced into the landfill.

Phase III: The acids produced in Phase II are converted through anaerobic decomposition into acetate, an organic acid. The unstable production of methane gas is the main constituent during this phase and is driven by the production of the organic acid i.e. the acid producing bacteria form acids which is the methane producing bacteria’s main energy source. The acid producing bacteria cannot survive in an acidic environment; hence by consuming acetate and carbon dioxide, the methanogenic bacteria help keep a neutral pH throughout the landfill.

Phase IV: This phase begins when LFG is produced at a stable rate, and can last between twenty to fifty years after the cell initially started receiving waste.
Generally the amounts of methane and carbon dioxide produced are approximately 50% each, but this varies with every landfill. It is the methane content within the gas that makes it a viable source of re-usable energy (Last, 2009). Carbon dioxide and methane are greenhouse gases, however, methane is highly flammable in large quantities and is 21 times more potent than carbon dioxide and therefore has a higher impact on global warming (Weyant et al., 1999). Thus LFG poses a serious threat to the environment and needs to be managed accordingly.
2.3 Landfill gas extraction process
Gas extraction from landfills is done using gas wells and these come in two forms namely, vertical and horizontal wells. These are explained in detail below.

2.3.1 Gas Wells
Gas collection begins after a portion of the landfill is closed. This is known as a cell. The gases can be extracted by sinking a number of wells or boreholes into the landfill and collecting the gases through pipes (Last, 2009). It is important to note that every cells contains different types of waste that is at different stages of decomposition (Strachan et al., 2005), hence the flow rate of extracting LFG fluctuates. Gas fluctuation also occurs due to gas wells being installed in newly developed landfill cells. Landfills generally receive waste over a period of 20 to 30 years, which means that waste in an older inactive cell of the landfill could be in the final phase of LFG production, whilst a new active cell may only be starting to produce LFG (Berger and Mann, 2001). To ensure that as much of the extracted LFG can be used, cell development timing is crucial to aid in removing as much LFG as possible.

The type of gas wells that are to be drilled depend on the shape and volume of the cell, however cost implications also play a role (Swanepoel, 2009). The two main types of wells that are currently in use are vertical and horizontal gas wells. Some collection systems use a combination of vertical and horizontal wells. Well-designed systems of either type of wells are effective in collecting LFG.

Swanepoel, 2009, gives a comparison between vertical and horizontal gas wells indicating the typical costs incurred in constructing and operating the wells. This can be seen in Table 2.1 below.
Table 2.1: Comparison between Vertical and Horizontal gas wells

(Swanepoel, 2009)

<table>
<thead>
<tr>
<th></th>
<th>Vertical Wells</th>
<th>Horizontal Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital costs (per hectare)</td>
<td>R 1.0 million</td>
<td>R 0.7 million</td>
</tr>
<tr>
<td>Operational Costs (per hectare annually)</td>
<td>R 2 678</td>
<td>R 3 480</td>
</tr>
<tr>
<td>Active or inactive cell</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>Spacing</td>
<td>Radius of 25m</td>
<td>30m horizontally, 10m vertically</td>
</tr>
</tbody>
</table>

Vertical Wells

Vertical gas wells are installed once an inactive cell is filled up. To install the vertical wells, 0.5m diameter holes are drilled 3 to 50 m deep, depending on the depth of the landfill. They have a sphere of influence with a radius of approximately 25m. This can be seen in Figure 2.3 and 2.5 below.

Horizontal Wells

Horizontal gas wells are placed in a cell that is still receiving waste and is referred to as an active cell. These wells are installed 30m apart horizontally and placed in layers 10m apart vertically as the cell is filled up with waste (Swanepoel, 2009), and is seen in Figure 2.4 and 2.6 below.

Each well head is connected to lateral piping, which transports the gas to the main collection header, regardless of whether the wells are used. This is seen in Figure 2.7 below. The design of the collection system should be done in such a way so as to allow the operator to monitor and adjust the gas flow. The creation of these wells is expensive and existing projects indicate that the individual flow rates of the various wells vary significantly. A preliminary study is crucial to determine the amount of methane generation in the landfill and to investigate whether the project of extracting gas is even viable.
Figure 2.3: Vertical LFG extraction wells (U.S. EPA LMOP, n.d)

Figure 2.4: LFG Collection system with horizontal Trenches (U.S. EPA LMOP, n.d)
Figure 2.5: The area of influence and spacing of vertical gas wells

(Swanepoel, 2009)
Figure 2.6: The area of influence and spacing of horizontal gas wells
(Swanepoel, 2009)
2.3.2 Leachate

One of the main problems associated with landfills is leachate generation. It occurs through water drainage through decomposing waste. The quantity and composition of the leachate vary significantly between landfills and is a factor of geographical location, seasons and rate of decomposition to name a few. Four groups of pollutants are usually found in leachate: dissolved organic matter, inorganic macro-components, heavy metals, and xenobiotic organic compounds (Greenman et al., 2009). Due to the complexity of components found in leachate and the inconsistency in quality and quantity of the wastewater, treatment of the wastewater becomes exceptionally difficult and expensive. U.S. EPA LMOP, n.d suggests that leachate evaporation is a good option when treatment becomes expensive. Evaporators are available in a number of sizes and reduce the volume of the leachate collected by concentrating the wastewater. This allows for a more manageable disposal volume. The downfall to this is that high capital costs are associated with projects like this. Greenman et al., 2009 suggests that by using a microbial fuel cell (MFC), wastewater treatment and electricity production can be
accomplished. This technology is still in the early stages of its development and hence will not be discussed further in this dissertation.

2.4 Gas Cleaning

Once the gas has been extracted and before it can be converted for energy usage, the gas must undergo different cleaning processes. Treatment requirements depend on the end use application. Minimal treatment is required for direct use of the gas in boilers, furnaces or kilns. If the gas is used for electricity purposes, treatment systems include a series of filters to remove contaminants such as siloxanes that could damage engines and turbines and reduce the efficiency (Ajhar et al., 2010). If the gas is converted into pipeline quality gas, more extensive treatment is required such as adsorption and absorption and thus becomes expensive. The type of cleaning mechanisms used thus depends on the end product, changes in air quality and regulations and emission limits that are placed on all processes.

Cleaning of the gas can be divided into primary and secondary treatment processing. Primary cleaning processes usually include de-watering and filtration of the gas to remove moisture and particulates. Newer projects now use gas cooling and compression to remove moisture. Secondary treatment processes depend on the end use of the gas and the contaminants that need to be removed for the end use of the gas. The three main trace contaminants are siloxane, sulphur compounds and halogens (Deed et al., 2004).

2.4.1 Primary Cleaning

Primary treatment processes use simple physical process operations and represent the first stage of reducing the amounts of contaminants in LFG. The main constituents removed are condensate (water) and particulates.
Condensate Knock-out

The presence of condensate in landfill gas can have a negative impact on plant performance such as accumulation of water reduces gas flow space, raises the pressure loss, the two-phase flow is unstable and can cause oscillations which make it difficult to achieve a steady state and controllable operation (Deed et al., 2004). Three components of the gas can be treated, namely, slugs of liquid, gas-liquid foam and uncondensed water vapour. In-line dewatering is commonly used by landfill operators. The final element of de-watering is the condensate knock out pot and is situated as close to the inlet gas booster as possible. The purpose of the knockout drum is to decrease the gas velocity to create a “dropout” of liquid. The liquid is then drained and pumped to discharge. Demisting meshes are used for refinement of water. The meshes are placed in gas pipes entering and leaving a condensate knockout drum. Foam is trapped in these meshes and is prevented from getting carried over. Uncondensed water vapour is removed through gas cooling and compression. Typical temperatures for gas cooling are between 2 to 10 °C, whilst gas compression ranges from 69 to over 690 KPa, depending on the input pressure and distance to energy recovery system requirements (U.S. EPA LMOP, n.d and Deed et al., 2004).

Particulate filtration

Particulates found in landfill gas must be removed during primary cleaning as it may cause damage to systems and equipment on plants downstream. Particulates are removed by passing the gas through wired filter pads or using a cyclone separator. Both systems are prone to blockage due to the fine particulate matter; hence require frequent maintenance to remove solid build up (Deed et al., 2004).

2.4.2 Secondary Cleaning

Processes which include both physical and chemical processes are known as secondary treatment. Secondary treatment processes are sometimes made up of multiple clean up processes and are designed to provide greater gas cleaning than
primary treatment processes alone (U.S. EPA LMOP, n.d and Deed et al., 2004). The cleaning of landfill gas is done prior to combustion; hence it has no effect on bulk emissions of CO and NO\textsubscript{x}. It is only used to reduce destructive gas components that will reduce the engine efficiency or cause unacceptable levels of emissions (Deed et al., 2004). Secondary cleaning processes depend on the constituents that need to be removed for the desired end use. Dry scrubbing and wet scrubbing are mainly used to remove H\textsubscript{2}S from the gas, although wet scrubbing can be used to remove a number of other compounds. Dry scrubbing uses solid chemical treatment for H\textsubscript{2}S, whereas wet scrubbing uses dry or liquid chemicals for cleaning and may be applied in batch contactor towers or injected directly into the gas pipeline. During wet scrubbing, the by-product of the reaction is generally separated and disposed of, the chemical is consumed and the absorbent can be regenerated. Membrane separation techniques, pressure swing processes, liquid absorption/solvent scrubbing processes, water scrubbing processes and cryogenic processes are used to remove impurities like CO\textsubscript{2}, N\textsubscript{2} and other trace components.

H\textsubscript{2}S Removal

Hydrogen sulphide has been known to accumulate in landfills as a result of decomposition of material. The concentration of H\textsubscript{2}S in the LFG depends largely on the material being disposed of in a particular landfill site. Studies have shown that high concentrations of H\textsubscript{2}S were recorded in construction and demolition (C&D) debris landfills. One particular material responsible for high concentrations of H\textsubscript{2}S in LFG was found to be gypsum, which is a good fire barrier and is used in buildings for interior walls (Panza and Belgiorna, 2010). H\textsubscript{2}S has a characteristic rotten egg smell and can be detected by humans in concentrations as low as 0.21 ppb, with concentrations greater than 30 ppm affecting the human nervous and respiratory system as stated in Panza and Belgiorna, 2010. H\textsubscript{2}S concentration in a typical landfill can account for 0.01% of the total landfill gas on a dry volume basis (Malik et al., 1987). Sites containing gypsum is known to produce considerable amount of H\textsubscript{2}S gas ranging from 7ppm
to 100ppm (Panza and Belgiorna, 2010), and in some extreme cases, concentrations as high as 5000 – 12 000 ppm can be detected (Reinhart and Townsend, 2002; Haarstad et al., 2003 and Lee et al., 2006). H₂S has also proven to be corrosive in the presence of moisture. The removal of H₂S along with heavy organic contaminants poses the greatest concern, and is generally removed in two separate stages, depending on the end use of the gas and the concentration of H₂S found in the gas. In the first stage of the process, LFG is passed through a scrubber where the bulk of the H₂S is removed. In the second stage, the scrubbed and dried LFG is passed through a multiple bed adsorption unit where halogenated hydrocarbons, organic sulphurs and most of the heavy hydrocarbon are removed. The adsorption unit can also be fitted with a layer of impregnated carbon for additional H₂S removal. A representative H₂S specification for pipeline quality methane is approximately ¼ grain per 100 SCF (standard cubic feet) (2.63Nm³) (Malik et al., 1987). A basic representative of H₂S removal can be seen in Figure 2.8 below.

Figure 2.8: Removal of H₂S for CO₂, methane and electricity production (Malik et al., 1987)
Siloxane Removal

Siloxanes are found in household and commercial products such as cosmetics, deodorants, food additives and some soap to name a few, and end up in solid waste and wastewater (Xebec Adsorption Inc., 2007 and U.S. EPA LMOP, n.d). According to Xebec Adsorption Inc., 2007, one third of all landfill sites have a severe siloxane problem and this can be seen in Figure 2.9 below. Traces of siloxanes are found in LFG and these are converted into silicon dioxide, the main constituent of sand. The general organic concentration of silicon compounds found in typical landfill sites are in the range of 3 – 24 mg/m3 (Ajhar et al., 2006). The silicon dioxide collects on the inside of internal combustion engines, gas turbines and on boiler tubes and in turn reduces the performance of the equipment. Figure 2.10 shows silica build-up on heads and scrapped pistons of engines. Other undesired effects include poisoning of catalysts that are used in steam reforming (Finocchio et al., 2009) or fuel cells (Haga et al., 2008), as well as the deactivation of catalysts for pre-combustion and post-combustion of gas purification (Urban et al., 2009). This also leads to higher maintenance costs. Commercially available technologies used for siloxane removal are adsorption, absorption and deep chilling. Other technologies that have not yet gained access to commercial biogas purification include bio-trickling filters, catalysts and membranes (Ajhar et al., 2006). Siloxane removal however depends on the energy technology selected as well the composition of the siloxanes in the gas, and this varies with every landfill.
Figure 2.9: One third of all landfill sites have a severe siloxane problem (Xebec Adsorption Inc., 2007)

Figure 2.10: Silica build up on heads and scrapped pistons of Caterpillar and Jenbacher engines (Xebec Adsorption Inc., 2007)
As discussed above, a low, medium or high grade fuel produced from LFG is dependent on the different methods of cleaning. Each grade of fuel has a specific heating value. Low and medium grade fuel produced from LFG has a heating value of approximately 16.8MJ/m3 and is roughly half the heating value of natural gas. High grade fuel that has been processed and treated further has a higher heating value as compared to low and medium grade fuels of approximately 37.3MJ/m3. Due to its high heating value, high grade fuel produced from LFG can be substituted directly for natural gas in pipeline applications. (CRA, n.d).

2.5 Electricity

2.5.1 Electricity generation
One of the most common ways of converting landfill gas into useful energy is the production of electricity. Electricity is produced by burning the gas using internal combustion engines, gas turbines or micro-turbines. Each of these is discussed in Table 2.2. Figure 2.11 represents a basic flow diagram of electricity generation.

![Figure 2.11: The flow of LFG from extraction to electricity generation (Swanepoel, 2009)](image)
As can be seen from Figure 2.11, LFG is extracted from the landfill through wells. The gas then goes into electricity generators where it is converted into electricity. The gas does not need to be cleaned for electricity purposes. Excess gas gets flared, whilst the gas that is converted into electricity gets transmitted onto transmission lines.

Table 2.2: Comparison of electricity production technologies (U.S. EPA LMOP, n.d)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal combustion engine</td>
<td>High efficiency compared to gas and micro turbines</td>
<td>Maintenance costs are relatively high</td>
</tr>
<tr>
<td>Sizing: 800kW to 3 MW per engine</td>
<td>Good size match with the output of gas of many landfills</td>
<td>Relatively high air emissions</td>
</tr>
<tr>
<td></td>
<td>Relatively low costs when compared with gas and micro turbines on a kW installed capacity basis</td>
<td>Economics may be marginal in areas with low electricity costs</td>
</tr>
<tr>
<td></td>
<td>Increased efficiency when waste heat is recovered</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engines can be added or removed to follow gas recovery trends</td>
<td></td>
</tr>
<tr>
<td>Gas turbine</td>
<td>Economies of scale, since the cost per kW of generating capacity drops as the gas turbine size increases and the efficiency improves.</td>
<td>Reduced efficiency when the unit is running at partial load</td>
</tr>
<tr>
<td>Sizing: 1 – 10 MW per gas turbine</td>
<td>Increased efficiency when heat is recovered</td>
<td>High gas compression required</td>
</tr>
<tr>
<td></td>
<td>More resistant to corrosion damage</td>
<td>High parasitic loads</td>
</tr>
<tr>
<td></td>
<td>Low nitrogen oxides emissions</td>
<td>Economics may be marginal in areas with low electricity costs</td>
</tr>
<tr>
<td></td>
<td>Compact</td>
<td></td>
</tr>
</tbody>
</table>
The cost for the above mentioned comparisons can be seen in Table 2.3 below. From this it can be seen that gas turbines are the cheapest way to generate electricity with micro-turbines being the most expensive.

Table 2.3: Typical Costs associated with electricity production technologies (U.S. EPA LMOP, n.d)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Estimated Capital Costs R/kW*</th>
<th>Estimated Annual OandM Costs (R/kW)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal combustion engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(>800kW)</td>
<td>R 13 898.37</td>
<td>R 1 471.29</td>
</tr>
<tr>
<td>Small internal combustion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>engine (<1MW)</td>
<td>R 18 803.07</td>
<td>R 1 716.51</td>
</tr>
<tr>
<td>Gas turbine (>3MW)</td>
<td>R 11 443.74</td>
<td>R 1 062.45</td>
</tr>
<tr>
<td>Micro-turbine (<1MW)</td>
<td>R 44 957.55</td>
<td>R 3 105.62</td>
</tr>
</tbody>
</table>

* Based on 2010 dollars, with 2012 exchange rate

Another alternative to produce electricity is also available, this being fuel cells. Fuel cells generate electricity by means of a chemical reaction. Every fuel cell is made up of two electrodes, namely, the cathode which is the positive electrode and anode, the negative electrode. The chemical reactions which produce...
electricity occur at the electrodes. Fuel cells also contain electrolyte which carry electrically charged particles from one electrode to the next. The type of fuel cell developed, the design of electrodes and the fuel type used depends on the type of electrolyte used. The main electrolyte types are: alkali; molten carbonate; phosphoric acid; proton exchange membranes (PEM) and solid oxide. PEM and solid oxide are solid electrolytes, whilst the rest are liquid. In this dissertation, solid oxide fuel cells (SOFCs) are investigated to determine its yield on electricity production and the emissions produced thereof.

2.5.2 Solid Oxide Fuel Cells
SOFCs use solid metal oxides such as calcium or zirconium as electrolytes. Hydrogen is the basic fuel used in fuel cells, however, with the SOFC, hydrocarbon fuels can be used due to the CO not depositing on the anode (Ye et al., 2010 and Lorente et al., 2012). Furthermore, very little pollutants are emitted as compared with other conventional technologies such as combustion engines and since they create electricity without combustion, they extract more energy from fuels (Minh, 2004).

The basic principal of the fuel cell is that the fuel enters the fuel cell at the anode, where H_2 is stripped of their electrons and become ionized, carrying a positive electrical charge. Oxygen or air enters the fuel cell through the cathode and picks up electrons as they travel through the electrolyte to the anode where it combines with the H_2 ions (Minh, 2004). The electrolyte plays an important role as it must allow the correct amount of ions to pass between the electrodes. If free electrons or other substances travel through the electrolyte, the chemical reaction is interrupted and electricity is not produced. A simple configuration is shown in Figure 2.12 below.
SOFCs operate at high temperatures of about 700°C to 1000 °C and has an efficiency and cell output of approximately 70% and 100kW respectively (Minh, 2004). Due to such high temperatures, a reformer does not need to be used to extract the hydrogen from the fuel, and waste heat can be recycled advancing system efficiency further. A catalyst is used to speed up the reaction rate. Disadvantages to SOFCs are as a result of the high temperatures and limitations to SOFC applications. The sizes of the fuel cells are quite large and although the electrolyte cannot leak due to it being solid, it can crack.

The results of the following sections examined look at syngas as a fuel source. The reactions that will be analyzed are as follows:

\[
2H_2 + O_2 \rightarrow 2H_2O \tag{2.1}
\]

\[
CO + H_2O \rightarrow H_2 + CO_2 \tag{2.2}
\]

Equation 2.1 occurs as a result of the general chemical reaction of the fuel cell where hydrogen reacts with oxygen to produce electricity and a byproduct, water. The CO from the syngas reacts with the produced water according to the water-gas shift reaction (Equation 2.2), and forms further H₂ which can be converted into electricity. The emission from Equation 2.2 is CO₂.
2.6 Electro-Catalytic reduction of CO$_2$

Landfill gases are made up of typically CO$_2$ and CH$_4$. It is said that methane is highly flammable in large quantities and is 21 times more potent than carbon dioxide and therefore has a higher impact on global warming (Weyant et al., 1999). However, methane makes a good fuel source, therefore, if the CO$_2$ from landfills are converted into methane, the methane content from landfills can be doubled, to produce a greater fuel volume. This application is used largely in space based operations, however it can be used to solve the problem of global warming and the sustainable energy shortage simultaneously as discussed in Izumi, 2010 and Brooks et al., 2006. A process using the electro-catalytic reduction of landfill CO$_2$ to methane is investigated in the sections that follow using literature from Lyndon, 2008 and Dey et al., 2004, to see if the processes are economically viable. According to Lyndon, 2008 the reaction occurs at room temperature and includes a polymer solid-electrolyte membrane, onto which are deposited cathode and anode films. CO$_2$ is circulated past the cathode film, which is catalytic for electrolytic reduction of CO$_2$, whilst water is circulated past the platinum anode.

The overall reaction is as follows:

$$CO_2 + 2H_2O \rightarrow CH_4 + 2O_2$$ \hspace{1cm} \text{2.3}

This process seems highly attractive at first glance, however studies have shown that the activation energy required for this reaction is considerably high with $\Delta H = 891 \text{ KJ/mol}$. Furthermore, electrolytic reactions prove to be more expensive than reactions that happen spontaneously or reactions that require a catalyst only.

Equation 2.3 can also occur through the photo-catalytic reduction of CO$_2$. Izumi, 2010, explains the photo-catalytic enhancement of TiO$_2$ using highly dispersed active Ti ion species. Two tests were compared: Ti species anchored on PVG prepared from TiCl$_4$ and the second, highly dispersed TiO$_2$ powder in the photo-catalytic reduction of CO$_2$. The TiO$_2$ powder proved to produce only methane with a formation rate of $0.17 \mu\text{mol.h}^{-1}.\text{gcat}^{-1}$, whilst the Ti-PVG catalyst produced methane, methanol and CO, with the formation rate of methane being 1.6 nmol.h^{-1}.

By using semiconductor photocatalysts such as Pt-promoted perovskite NaNbO$_3$, Izumi, 2010 reported to produce methane at a rate of 4.9 µmol.h$^{-1}$.g$_{cat}^{-1}$. The photo-catalysis reaction mechanism is still not commercialised and hence not well understood, and there is not enough theoretical understanding to explain the product selectivity using TiO$_2$.

The photo-electro-catalytic conversion of CO$_2$ in water is only sustainable when electrons and protons needed for the reaction are supplied using renewable resources such as solar energy and wind energy (Centi and Perathoner, 2009). Furthermore, based on the results obtained to date, it is evident that the development of a more efficient photocatalyst is required for the use of the photo catalytic reduction of CO$_2$ to be a possible solution for global warming. Figure 2.13 shows a representative of a photo-electro-catalytic device for CO$_2$ reduction to fuels using solar energy.

Figure 2.13: Simplified scheme of a photo-electro-catalytic device for CO$_2$ reduction to fuels using solar energy (Centi and Perathoner, 2009)

Centi and Perathoner, 2009, investigated the use of Nitrogen-doped TiO$_2$ nanotubes array for solar conversion of CO$_2$ and water vapour to produce methane and other hydrocarbons. The Nitrogen-doped nanotube sample hardened at a
temperature of 600°C, film thickness about 50µm, and Cu as the co-catalyst (52% of the surface area decorated with Cu particles), yielded the following products shown in Figure 2.14 below.

Figure 2.14: Product yield from Nitrogen-doped nanotubes (Centi and Perathoner, 2009)

Electro-catalytic reduction of CO\textsubscript{2} using H\textsubscript{2} proved theoretically to be a better option than CO\textsubscript{2} with water. The reaction is as follows (Gür et al., 1990):

\[
2 \text{H}_2 + \text{CO}_2 \rightarrow \text{CH}_4 + \text{O}_2 \quad \text{(2.4)}
\]

Equation 2.4 gives only gaseous products, oxygen and methane, which are collected separately. The dissociation of CO\textsubscript{2} accompanied by the transportation of O\textsubscript{2} across a solid electrolyte in the presence of an applied field occurs first. This is followed by a rapid hydrogenation of the surface carbon, which is formed as a result of the reaction of CO\textsubscript{2} with H\textsubscript{2}. This reaction does not produce any graphite as a by-product because the carbon is highly reactive toward H\textsubscript{2}, and the resident time on the metal surface is too short for any nucleation to take place (Gür et al., 1990).

Brooks et al., 2006, investigated the Sabatier reaction which is represented by Equation 2.5 below, where water is produced, instead of oxygen.
This reaction is exothermic ($\Delta H = -167 \text{ kJ/mol}$), and advances at relatively low temperatures of about 400°C in the presence of a catalyst such as ruthenium. The Sabatier process is usually carried out in a packed bed reactor or porous-foam reactor configuration. It can be incorporated into a number of industrial processes using a source of low cost hydrogen.

2.7 Synfuels Production

Synthetic liquid hydrocarbons (Synfuels) have been produced for more than three quarters of a century from non-liquid feedstock. It is currently produced from fossil fuels through coal gasification to form synthesised gas (syngas – H$_2$ and CO) which then undergoes dry reforming (also known as the Fischer-Tropsch Process) to produce synfuels (Olah et al., 2009). Depending on the catalyst used, carbon deposition can occur during dry reforming and may lead to the deactivation of the catalyst surface. Ni catalysts in particular are subject to such carbon deposition at temperatures below 900°C (Kennema, 2014).

The general reactions associated with synfuels are:

- Gasification of carbon in fossil fuels
- Water gas shift reactions
- Reverse water gas shift reactions
- Fischer-Tropsch Reaction

Synfuels are generically (CH$_2$)$_n$, where the value of n distinguishes between the various synfuels. The elementary olefin molecule is represented by CH$_2$ and the various synthetic polymers such as ethylene (C$_2$H$_4$) and propylene (C$_3$H$_6$) are formed from this ((Olah et al., 2009 and Uhrig et al., 2007). By using fossil fuels such as coal, one atom of carbon is produced as CO$_2$ for every atom produced as CH$_2$ in the synfuel (Schultz et al., n.d). Therefore the atoms of CO$_2$ produced, always equal that of the desired product, CH$_2$. Renewable production of synfuels
can help reduce CO$_2$ emissions and address the growing shortage of petroleum. The general concern associated with synfuels is that the capital and operating costs must be competitive with alternative fuels. As a result, Sasol Advanced Synthol (SAS) in South Africa have reduced their consumption of catalysts by 60% and plant maintenance by 85% as compared to their 1980 plants (Uhrig et al., 2007). The synfuel processes analysed below looks at reducing the amount of CO$_2$ produced, or to eliminate it altogether; thereby producing a synthetic fuel which is not made from fossil fuels and has minimal carbon emissions.

2.8 DME production

The production of Dimethyl Ether (DME) will also be considered and investigated to see if it can be used as a fuel source. It can be produced from hydrocarbon sources including natural gas. It is a benign, nontoxic organic compound and when combusted, it produces minimal NO$_x$ and CO, though hydrocarbons (HC) and soot formation is significant. DME in itself is not a greenhouse gas and can act as a clean fuel when burnt in engines optimised for DME and are excellent transportation fuels for internal combustion engines and fuel cells (Olah et al., 2009). If DME is produced in large quantities, and sold at lower costs to LPG, this fuel can contribute positively to solving energy supply problems and environmental problems. Having a cetane number between 55 – 60, DME is substantially higher than conventional fuels whose cetane numbers range between 40 – 55 (Olah et al., 2009). This makes it a more superior fuel to methanol. Due to the fact that it is a liquid at 6 bar (Olah et al., 2009), existing LPG infrastructure can be used. The boiling point of DME is $-24.9°C$, making it a gas under ambient conditions. However, it can be stored in pressurized tanks as a liquid, similarly to liquefied petroleum gas. DME is also a convenient starting material for synthetic hydrocarbons and their diverse products.

A demonstration plant producing 100t/day exists in Asia and is used for testing by JFE. The schematic diagram of it can be seen below in Figure 2.15.
As explained in the JFE Process (Yotaro et al., 2006), the equations for DME production using authothermal dry reforming are as follows:

\[
2 \text{CO} + 4\text{H}_2 \rightarrow 2\text{CH}_3\text{OH} \quad 2.6
\]

\[
2\text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O} \quad 2.7
\]

\[
\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \quad 2.8
\]

\[
3\text{CO} + 3\text{H}_2 \rightarrow \text{CH}_3\text{OCH}_3 + \text{CO}_2 \quad 2.9
\]

Equation 2.9 is the overall reaction producing \(\text{CO}_2\) in proportion to the desired product DME. When natural gas such as \(\text{CO}_2\) and \(\text{CH}_4\) is used as a feedstock, the \(\text{CO}_2\) produced from the overall reaction, Equation 2.9, can be recycled back into the process with the \(\text{CO}_2\) feedstock. The reaction is as follows:

\[
2\text{CH}_4 + \text{O}_2 + \text{CO}_2 \rightarrow 3\text{CO} + 3\text{H}_2 + \text{H}_2\text{O} \quad 2.10
\]

\[
\text{CH}_4 + \text{CO}_2 \rightarrow 2\text{CO} + 2\text{H}_2 \quad 2.11
\]

In order for Equation 2.10 to take place, the natural gas has to undergo steam reforming or authothermal dry reforming as in the JFE Process to produce syngas.
Dry reforming as can be seen by Equation 2.11 can also be used but has not been done to great extents as yet (Olah et al., 2009). Equation 2.6 to 2.9 will then follow Equation 2.10 or 2.11 for DME production.

Due to landfills generally having a composition of carbon dioxide and methane of approximately 50%/50% respectively, methane dry reforming as explained by Olah et al., 2009, would be a good alternative as both the methane and the CO$_2$ will be used as feedstock. This process does not require steam and no hydrogen is lost in the by-product water. The overall reaction is as follows:

\[
3 \text{CH}_4 + 3 \text{CO}_2 \rightarrow 6 \text{CO} + 6\text{H}_2 \quad 2.12
\]

\[
6 \text{CO} + 6 \text{H}_2 \rightarrow 2 \text{CH}_3\text{OCH}_3 + 2 \text{CO}_2 \quad 2.13
\]

\[
3 \text{CH}_4 + \text{CO}_2 \rightarrow 2 \text{CH}_3\text{OCH}_3 \quad 2.14
\]

Equation 2.14 has an enthalpy value of $\Delta H = 59$ kcal/mol or $\Delta H_{298K}^\circ = 247.3$ KJ/mol as described by Jiang et al., 2010, which is significantly more endothermic than steam reforming which has an enthalpy of $\Delta H = 49$ kcal/mol. Dry reforming of methane is typically carried out at temperatures between 800 – 1000 °C. Nickel based catalyst is the most suitable for these types of reactions (Yasyerli et al., 2011); hence for the dry reforming process explained above catalysts such as Ni/MgO, or Ni/MgAl$_2$O$_4$ are used (Olah et al., 2009). Excess CO$_2$ can be recycled back into the process.
3 Methodology and Clean Development Mechanism Projects

3.1 Methodology

Figure 3.1 illustrates the basic process flow diagram of the methodology for establishing the best procedure for converting landfill gas into useful products. The diagram is explained in details below.

A desktop review of various processes consisting of CO₂ and CH₄ as feedstock were examined to identify the best practical method of converting landfill gas into a useful product such as electricity, pipeline gas and even fuel. Four main processes were identified as examples:

i. Electricity generation;
ii. Electro-catalytic reduction of CO₂;
iii. Synfuel production; and
iv. DME production.

Figure 3.1: Flow chart of the Methodology
To establish a feasible region of operation for landfill gas, Bond-Equivalent Carbon-Hydrogen-Oxygen (CHO) diagrams were introduced to determine a stoichiometric region in which landfill gas can be converted into useful products. LFG was then represented as a point within the diagram using bond-equivalent percentages. All possible reactions that could occur within the CHO diagram were represented. Reactions were then eliminated based on the rules that govern the basis reactions which were:

I. The reactions must be able to attain other reactions by positive linear combinations;
II. The reactions should not form the original feed.

Three feed types were chosen and by satisfying these two rules, the basis reactions were identified for each feed type and represented graphically in Figures 4.3, 4.4 and 4.5 below. The stoichiometric region for each feed type was thus established and the TBL which makes the processes autothermal were found. The TBL restricts the stoichiometric region. Carbon boundaries were also introduced which further restricted the stoichiometric region to operate within the carbon boundary.

The three processes identified were then illustrated on the CHO diagram and were analysed with each feed type to establish the region in which to operate. From this, conclusions could be made as to which process would be best suited for conversion of LFG into useful products with the least amount of CO₂ emissions and which feed type would be most applicable for the conversion.

3.2 Clean Development Mechanism Projects

Landfill gas projects are known as Clean Development Mechanism (CDM) projects as one can earn saleable certified emission reduction (CER) credits from these projects. Each certificate is equivalent to one tonne of CO₂, which can be counted toward Kyoto Protocol targets (United Nations Framework Convention on Climate Change, 2012). Before this is done however, and before carbon credits can be sold, the project must be validated against the requirements of the CDM
and then approved by the host country (Environ Holdings, 2012). Once this is done, a letter of approval is sent to the CDM Executive Board. Generation of CERs can only be achieved once the CDM Executive Board accepts the project.

The CDM has been in existence since 2006 and has registered more than 1,650 projects and is expected to produce CER’s amounting to more than 2.9 billion tonnes of CO₂ equivalent in the first commitment period of the Kyoto Protocol, 2008 – 2012 (United Nations Framework Convention on Climate Change, 2012).
4 Theory
In this chapter, a geometric method to analyse industrial system is developed and will enable industries using LFG as a feedstock to operate processes in an optimum region where reactions can occur adiabatically or exothermically, with the aim to produce optimal results such as fewer emissions and producing products with little required energy. The concept of CHO diagrams is introduced, and the desired stoichiometric region for LFG is established with different feed material. Operating condition and parameters which should be used while operating in the stoichiometric region such as temperatures, carbon boundaries and calorific values are demonstrated to achieve optimal process results.

4.1 History of Bond Equivalent diagrams
One of the first CHO diagrams was represented as the Van Krevelen plot. It used atomic ratios of O/C and H/C to determine a carbon boundary isotherm. It demonstrates the usefulness of trajectories and identifies the dominating chemical changes in coal conversion processes (Kauchali, 2012). The Van Krevelen diagram has its disadvantages in that it can only be used for materials containing C:H. Hydrogen, oxygen and water cannot be plotted using the chart.

The Van Krevelen diagram led to the formation of the CHO diagrams which were introduced by Cairns and Tevebaugh, 1964, in order to represent the carbon deposition boundaries on fuel cells for temperatures between 25 – 1227 °C, at atmospheric pressure. These ternary diagrams, better known as CHO diagrams were seen as a useful tool in representing organic chemical processes (Tay et al., 2011). The equilibrium composition for a given CH₄ partial pressure was then determined by Broers and Treijtel, 1965 whilst Gruber and Princeton, no date, also represents compositions of CO, CO₂, H₂, H₂O and CH₄ on a single co-ordinate system in the ternary diagram.

The Bond Equivalent diagram was introduced by Battaerd and Evans (1979) and demonstrates the bonding capability of each element in the system (Kauchali, 2012), and shows important points on the CHO diagram. Through the application
of the CHO diagram, it can be shown that a constrained region can be allocated to a coal gasification process, using stoichiometry. By assessing energy considerations, the coal gasification process can be constrained further to a line or plane (Wei, 1979). This theoretical development thus gives insight into complex reaction schemes before complex reactor design and operations can be considered (Kauchali, 2012). This approach will be used to determine the conversion of landfill gas into useful energy by providing the constrained region where efficient conversion will take place.

4.2 Bond Equivalent Diagrams
Bond Equivalent (BE) diagrams provides a representation of how components, particularly carbon, (C), hydrogen (H₂), oxygen (O₂), methane (CH₄), carbon dioxide (CO₂), carbon monoxide (CO) and water (H₂O) react with each other. Figure 4.1 represents the CHO Diagram and the basic components found on it with two arbitrary points A and B which represent mixtures. Simple reactions can be represented on the diagram such as de-methanation (lines radiating from CH₄), dehydration (lines radiating from H₂O), decarboxylation (lines radiating from CO₂), de-oxidation (lines radiating from O₂) and dehydrogenation (Lines radiating from H₂).
Figure 4.1: CHO Diagram

BE percentages are represented by molar percentages by multiplying the mole fraction of the main constituents C, O₂ and H₂ by their valent electrons 4, 2 and 1 respectively as shown by Battaerd and Evans, 1978. These are shown below:

\[C = \frac{4x_C}{4x_C + x_{H_2} + 2x_{O_2}} \]
\[O = \frac{2x_{O_2}}{4x_C + x_{H_2} + 2x_{O_2}} \]
\[H = \frac{x_{H_2}}{4x_C + x_{H_2} + 2x_{O_2}} \]

In order to plot a chemical compound and determine the reaction, the BE percentages of each component in the compound must be found. For example,
CH₄ is represented by C=4/(4+4) and H=4/(4+4), which then places CH₄ at a point midway between H-C. Similarly, H₂O and CO₂ are found midway between H-O and C-O respectively. Mixtures can also be represented using the same technique, such as point B which contains 69% C, 5% H₂ and 26% O₂ by mass. Refer to Appendix A for a detailed explanation and representation.

It is important to note that for a specific output a direct route does not necessarily have to be followed (e.g. B to A in Figure 4.1); however alternative routes can become thermodynamically difficult and less efficient. The combustion line occurs as a result of C and O₂ reacting to form CO₂ and H₂O. This line represents any combustion reaction occurring within the CHO diagram as any component must react with O₂ to burn and will produce combustion byproducts CO₂ and H₂O. Any path leading toward the combustion line will experience efficiency penalties as energy is required for combustion to occur. BE diagrams show what the aims and drivers of a certain process need to be, however it does not show how to reach a specific aim. The pathway chosen to achieve a certain reaction must be determined by production costs, mining costs and system efficiencies to name a few.

4.3 Representing species on the CHO Diagram
The CHO diagram allows species to be indicated as points on the diagram as shown in Figure 4.2, point B, as well as for reactions to be represented as the intersection of two lines, one line representing the reactants whilst the other represents the products. If an equilateral triangle is drawn for the CHO diagram like the one shown in Figure 4.2 below, a star can be represented by joining the points on the CHO diagram to represent H₂, CH₄, CO, CO₂ and H₂O. C and O₂ are not represented on the star. This star can be used to determine gasification and reforming reactions and is known as the star of gasification (Kauchali, 2012). Although known as the star of gasification, reforming reactions can also be shown on the diagram as the star also symbolizes natural gases. Syngas (CO:H₂ = 1:1 ratio) is represented as point C on Figure 4.2, as it is the intersection of the reactants (C and H₂O) and products (CO and H₂).
4.4 Stoichiometric region of operation for LFG
Many reactions occur in reforming processes and this can become complex to analyze. The change and product distribution for the overall process is constrained by the considerations of stoichiometry. The feasible region of operation for LFG is determined by the analysis of LFG containing 60% CH₄ and 40% CO₂. Hydrogen sulfide, nitrogen and trace components are considered inert within the CHO diagram. By considering different reforming reactions for landfill gas, a theoretical region can be developed for a method of converting LFG into useful energy or products. By taking into account thermal balances between exothermic and endothermic reactions, further limits the results to the Thermally Balanced Line (TBL).
4.4.1 Reforming Reactions using the CHO Diagram

The following are important reforming reactions that occur for landfill gas and will aid in determining the feasible region in which LFG can be converted into useful energy. The CHO diagram restrict the amount of products that can be produced to the components found on the CHO diagram, namely, CO, CO$_2$, H$_2$O, CH$_4$ and H$_2$ (Desrosiers, 1979 and Prins, 2003). In order to show that the product distributions fall on a predicted narrow band, full scale and pilot data based on mass and energy balances only should be compared. These distributions however are obtained before any considerations of thermodynamic equilibrium, reaction kinetics and extent of reaction or reaction design and operation (Kauchali, 2012).

The reactions shown below are reactions that intersect with each other. In the case where reactants do not intersect with products, reactions were omitted. It should be noted that LFG is represented by C$_{2.5}$O$_2$H$_6$ (a mixture of 60% CH$_4$ and 40% CO$_2$).

For the landfill gas system, the following reactions at 650K will thus be considered:

Combustion

\[r_1: C_{2.5}O_2H_6 + 3 \ O_2 \rightarrow 2.5 \ CO_2 + 3 \ H_2O \quad -1200 \ kJ/mol \]

\[r_2: C_{2.5}O_2H_6 + 1.5 \ O_2 \rightarrow 3 \ H_2 + 2.5 \ CO_2 \quad -464.4 \ kJ/mol \]

\[r_3: C_{2.5}O_2H_6 + 0.25 \ O_2 \rightarrow 3 \ H_2 + 2.5 \ CO \quad 244.9 \ kJ/mol \]

\[r_4: C_{2.5}O_2H_6 + 1.75 \ O_2 \rightarrow 2.5 \ CO + 3 \ H_2O \quad -491.4 \ kJ/mol \]

Reforming

These reactions are based on the reactions between LFG and steam, CO$_2$, or H$_2$.

\[r_5: C_{2.5}O_2H_6 + 3 \ H_2O \rightarrow 6 \ H_2 + 2.5 \ CO_2 \quad 271.8 \ kJ/mol \]
\[r_6: C_{2.5}O_2H_6 + 0.5 \, H_2O \rightarrow 3.5 \, H_2 + 2.5 \, CO \quad 367.6 \, \text{kJ/mol} \]
\[r_7: C_{2.5}O_2H_6 + 2 \, H_2O \rightarrow 2.5 \, CH_4 + 2 \, O_2 \quad 800.4 \, \text{kJ/mol} \]
\[r_8: C_{2.5}O_2H_6 + 0.5 \, CO_2 \rightarrow 3 \, H_2 + 3 \, CO \quad 386.7 \, \text{kJ/mol} \]
\[r_9: C_{2.5}O_2H_6 + 3.5 \, CO_2 \rightarrow 3 \, H_2O + 6 \, CO \quad 501.6 \, \text{kJ/mol} \]
\[r_{10}: C_{2.5}O_2H_6 + 2 \, H_2 \rightarrow 2.5 \, CH_4 + O_2 \quad 309.6 \, \text{kJ/mol} \]
\[r_{11}: C_{2.5}O_2H_6 + 4 \, H_2 \rightarrow 2.5 \, CH_4 + 2 \, H_2O \quad -181.2 \, \text{kJ/mol} \]

Gas Combustion

\[r_{12}: H_2 + 0.5 \, O_2 \rightarrow H_2O \quad -245.4 \, \text{kJ/mol} \]
\[r_{13}: CO + 0.5 \, O_2 \rightarrow CO_2 \quad -283.7 \, \text{kJ/mol} \]

Gas Reactions

\[r_{14}: H_2O + CO \leftrightarrow H_2 + CO_2 \quad -38.3 \, \text{kJ/mol} \]
\[r_{15}: CO + 3H_2 \leftrightarrow CH_4 + H_2O \quad -219.5 \, \text{kJ/mol} \]

For the LFG to be used in reforming processes, all of the equations listed above may not be feasible. Furthermore, some reactions are dependent on each other. The analysis of the reforming system requires that the reactions that should be taken into consideration are those reactions that form the basis reactions and must satisfy two rules:

1. They must be able to attain other reactions by positive linear combination, and
2. These reactions should not form combustion through the original feed and carbon.
Three feeds to the process are considered, with landfill gas being the key component in each feed. It is important to note that in this dissertation, landfill gas is considered and represented as $C_{2.5}O_2H_6$ and not as individual components of CH_4 and CO_2 unless otherwise stated.

The three feeds are given below as:

Feed 1:
- $C_{2.5}O_2H_6$
- O_2
- CO_2

Feed 2:
- $C_{2.5}O_2H_6$
- O_2
- H_2O

Feed 3:
- $C_{2.5}O_2H_6$
- O_2
- CO_2
- H_2O

For the rules to be obeyed, from Feed 1, oxygen and carbon dioxide must not be produced; from Feed 2, oxygen and water must not be produced and from Feed 3, oxygen, carbon dioxide and water must not be produced. Furthermore, reactions undergoing methane and carbon generation will not be considered. This reduces the above set of equations to the following basis reactions seen below, depending on the feed to the system.

The main reactions for a system containing Feed 1 are obtained by linear combination of the following basis reactions:

\[
\begin{align*}
 r_3: C_{2.5}O_2H_6 + 0.25 \ O_2 & \rightarrow 3 \ H_2 + 2.5 \ CO & 244.9 \ kJ/mol \\
 r_4: C_{2.5}O_2H_6 + 1.75 \ O_2 & \rightarrow 2.5 \ CO + 3 \ H_2O & -491.4 \ kJ/mol \\
 r_5: C_{2.5}O_2H_6 + 0.5 \ CO_2 & \rightarrow 3 \ H_2 + 3 \ CO & 386.7 \ kJ/mol \\
 r_9: C_{2.5}O_2H_6 + 3.5 \ CO_2 & \rightarrow 3 \ H_2O + 6 \ CO & 501.6 \ kJ/mol
\end{align*}
\]

The linear combinations that make up the basis reactions for Feed 2 are:

\[
\begin{align*}
 r_2: C_{2.5}O_2H_6 + 1.5 \ O_2 & \rightarrow 3 \ H_2 + 2.5 \ CO_2 & -464.4 \ kJ/mol
\end{align*}
\]
Linear basis reactions associated with Feed 3 are:

\[r_3: C_{2.5}O_2H_6 + 0.25 O_2 \rightarrow 3 H_2 + 2.5 CO \quad 244.9 \text{ kJ/mol} \]

\[r_5: C_{2.5}O_2H_6 + 3 H_2O \rightarrow 6 H_2 + 2.5 CO_2 \quad 271.8 \text{ kJ/mol} \]

\[r_6: C_{2.5}O_2H_6 + 0.5 H_2O \rightarrow 3.5 H_2 + 2.5 CO \quad 367.6 \text{ kJ/mol} \]

All three combinations of feed will be analyzed to determine the stoichiometric region for each feed type.

4.5 Graphical Representation of Reactions

The reactions listed above can be represented as points on the CHO diagram. For example, In Figure 4.3 below, point \(r_3 \) represents Equation \(r_3 \).

\[r_3: C_{2.5}O_2H_6 + 0.25 O_2 \rightarrow 3 H_2 + 2.5 CO \quad 244.9 \text{ kJ/mol} \]

The above reactions for each feed type are plotted on the CHO diagrams shown in Figure 4.3, 4.4 and 4.5 below. The solid lines represent reforming reactions and the square dotted lines represent combustion reactions. It is noted that these reactions form the extreme boundary for all possible stoichiometry that convert LFG to useful gases (such as synthetic gas).
Figure 4.3: Graphical representation of LFG reactions using Feed 1

The shaded region represented in Figure 4.3, indicates all possible mass balances achievable for different Feed 1. Operating outside this region, for example operating in Area a or b, either implies using too much O₂ / CO₂ (area a), or using too much LFG (area b), which implies unreacted reactants at the exit of the reactor, therefore the sensible operation is bound by r₃, r₄, r₅ and r₉.

Figure 4.4 represents LFG reactions using Feed 2. The stoichiometric region is shown by the shaded region r₂, r₃, r₅ and r₆.
Any interior point inside the shaded region can be obtained by linear combinations of reactions r_2, r_3, r_5 and r_6 where the final products will be a combination of H_2, CO_2 and CO only. The edges of the shaded region in both Figures 4.3 and 4.4 comprise of reforming processes using O_2 on the lower side (r_9 for Figure 4.3 and r_2 for Figure 4.4), and steam on the top side (r_4 for Figure 4.3 and r_5 for Figure 4.4).

Figure 4.5 shows a graphical representation of LFG reactions using Feed 3.
In the case of Feed 3 the stoichiometric region is represented by a straight line shown by point’s r_3, r_6 and r_8, and therefore a stoichiometric region does not exist. Linear combinations of r_3, r_6 and r_8 can therefore be found along the straight line $r_6 - r_8$.

Figure 4.5: Graphical representation of LFG reactions using Feed 3
5 Energy Balance Considerations

5.1 Auto-thermal Operations

When heat is not added to or lost from the operation, the system is said to be adiabatic (Wei, 1979 and Kauchali, 2012). This is when exothermic reactions are balanced out by the endothermic reactions. Appendix B shows that there are seven reactions (r₃, r₄, r₅, r₆, r₈ and r₉) that make up the systems found within this dissertation and these reactions were categorized as endothermic or exothermic reaction. The enthalpies for the reactions were found for each equation according to detailed calculations shown in Appendix B. By using the enthalpies found, a ratio was calculated for each exothermic reaction with each endothermic reaction (refer to Appendix B). The exothermic reactions for Feed 1 are given by r₄ due to its negative enthalpies, whilst the endothermic reactions are given by r₃, r₈ and r₉ because of their positive enthalpies, therefore reaction r₄ is balanced by reactions r₃, r₈ and r₉. Once the ratios were obtained, the necessary equations were multiplied by the ratio to achieve and end result of zero enthalpy once the endothermic and exothermic reactions were added together (refer to Appendix B for detailed calculations and representations). From this, the TBL for Feed 1 is given by line AB in Figure 5.1, and this is representative of the product temperature equating to the inlet temperature (Wei, 1979). The equations representing the TBL can be characterized by two points on the CHO diagram, namely A and B and is given below.

\[A: \quad C_{2.5}O_{2}H_{6} + 1.73 \, CO_{2} + 0.88 \, O_{2} \rightarrow 4.23 \, CO + 3H_{2}O \quad 0 \, kJ/mol \]

\[B: \quad C_{2.5}O_{2}H_{6} + 0.75 \, O_{2} \rightarrow 2.5 \, CO + H_{2}O + 2H_{2} \quad 0 \, kJ/mol \]

A third point making up the TBL does exist in this case and this is given as point C below. Point C however lies so close to line AB that the deviance from line AB is 0.0021 and is considered to be insignificant. For this reason, the TBL is given as a straight line AB and not as a region ABC.

\[C: \quad C_{2.5}O_{2}H_{6} + 0.28 \, CO_{2} + 0.77 \, O_{2} \rightarrow 2.78 \, CO + 1.32 \, H_{2}O + 1.68H_{2} \quad 0 \, kJ/mol \]
The TBL AB is represented below in Figure 5.1. Point C is represented only to indicate the third point making up the TBL, however will be eliminated through the remainder of this dissertation due to a deviance of 0.0021 which is considered to be negligible.

According to Wei, 1979, reactions occur colder above the TBL and hotter below it and most coal gasification processes occur within the hotter region, below the TBL. This is not the case with the LFG process for Feed 1. Above the TBL, products will emerge hotter as opposed to Wei, 1979 due to the nature of r_4 which is exothermic whilst products will emerge colder below the TBL. Therefore in this case, it would be preferred to operate above the TBL in the hotter region. Operating below the TBL would require external heat sources to drive the endothermic reactions and this could lead to increased costs.

A similar case can be seen for Feed 2 in Figure 5.2. The TBL for Feeds 2 is tabulated below in Table 5.1. The TBL for Feed 2 also has 3 points with the middle point D significantly close to the end points. The deviance from line EF is
0.0020 and therefore it is assumed that point D lies on line EF. Hence the TBL for Feed 2 is given as line EF. A detailed summary on how the TBL was formed can be seen in Appendix B.

Table 5.1: Equations representing the Thermally Balanced Line for Feed 2

<table>
<thead>
<tr>
<th>Feed 2</th>
<th>Equation</th>
<th>Reaction Products</th>
<th>Energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D:</td>
<td>(C_{2.5}O_2H_6 + 0.28H_2O + 0.66O_2 \rightarrow 1.40CO + 1.10CO_2 + 3.28H_2)</td>
<td>0 kJ/mol</td>
<td></td>
</tr>
<tr>
<td>E:</td>
<td>(C_{2.5}O_2H_6 + 1.90H_2O + 0.55O_2 \rightarrow 2.5CO_2 + 4.89H_2)</td>
<td>0 kJ/mol</td>
<td></td>
</tr>
<tr>
<td>F:</td>
<td>(C_{2.5}O_2H_6 + 0.68O_2 \rightarrow 1.64CO + 0.86CO_2 + 3H_2)</td>
<td>0 kJ/mol</td>
<td></td>
</tr>
</tbody>
</table>

The TBL EF is represented below in Figure 5.2. Point D is represented only to indicate the third point making up the TBL for Feed 2, however will be eliminated through the remainder of this dissertation due to a deviance of 0.0020 which is considered to be negligible.

![Figure 5.2: Indicating the TBL - Feed 2](image)
In the case of Feed 2, the results are as Wei, 1979 describes. Products will emerge colder above the TBL and hotter below the TBL as \(r_2 \) is an exothermic reaction. A system with feed 3 will not be considered further in this dissertation as it does not have a TBL and would require additional energy and heat sources to drive the reactions as only endothermic reactions exist for this system.

Feed 3 does not have a thermally balanced line; instead it has 3 individual points which represent the endothermic reactions and can be seen in Figure 4.5 above by \(r_3, r_6 \) and \(r_8 \). No exothermic reactions or TBL exists for this process. The Equations for these points are represented in Table 5.2 below.

<table>
<thead>
<tr>
<th>Table 5.2: Endothermic reactions for Feed 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed 3</td>
</tr>
<tr>
<td>(r_3): (C_{2.5}O_2H_6 + 0.25 O_2 \rightarrow 3 H_2 + 2.5 CO)</td>
</tr>
<tr>
<td>(r_7): (C_{2.5}O_2H_6 + 0.5 H_2O \rightarrow 3.5 H_2 + 2.5 CO)</td>
</tr>
<tr>
<td>(r_{10}): (C_{2.5}O_2H_6 + 0.5 CO_2 \rightarrow 3 H_2 + 3 CO)</td>
</tr>
</tbody>
</table>

5.2 Idealised Stoichiometric Region (Calorific Values)

Calorific value contours were plotted for the idealised stoichiometric region using pure \(O_2 \) as a combustion medium and nitrogen and other components of air was seen as negligible. The contours of the calorific values found below are based on the method of Li et al., 2004. High heating values (HHVs) for each reaction is initially assumed and this is used to calculate the values of \(\alpha \) and \(\beta \) for each reaction using an iterative calculation as can be seen in Appendix C. The Equations are shown below with a detailed description and detailed calculations shown in Appendix C:

\[
HHV_1 = \alpha \times r_4 + (1 - \alpha) \times r_3 \quad 5.1
\]

\[
HHV_2 = \beta \times r_4 + (1 - \beta) \times r_8 \quad 5.2
\]

The contours are plotted for 6–11MJ/m\(^3\) for Feed 1 (Figure 5.3) and 7–12MJ/m\(^3\) for Feed 2 (Figure 5.4).
Figure 5.3: Close up Representation of HHV – Feed 1

Figure 5.3 shows processes within the stoichiometric region operating at 11MJ/m3 will be endothermic reactions as they are found on the cold side. Although the calorific value may be high, the process would require a significant amount of energy to go to completion. Hence it is better to operate between 6 – 10MJ/m3 on the hotter side of the TBL.
Figure 5.4 shows calorific values obtained using Feed 2.

It is evident from Figure 5.4 that operation within the stoichiometric region should be between 7 – 11MJ/m\(^3\) and on the hotter side of the TBL, as anything above this would be an energy intensive process.

These values are useful when choosing a targeted calorific value and determining the reaction stream requirements. The higher the calorific value, the more energy can be drawn from the process, hence it makes sense to operate at higher calorific values rather than lower values. This however should still meet the requirements of the carbon boundary (discussed below) and the TBL. Sometimes, operating at high calorific values may not always be feasible as you may be operating within the carbon boundary, causing carbon deposition. It could also mean operating in endothermic conditions, which will require energy input into the system. It is important to note that it is however acceptable in some cases to operate at, or near the intersection of the TBL and carbon boundary as this is where the high heating
value is the highest. All these factors need to be considered carefully when choosing the ideal region to work within.

5.3 Carbon Boundary
Determining a carbon boundary within a process gives insight to whether or not unreacted carbon will be present in the product stream. These carbon boundaries can be represented on the CHO diagram as isotherms at constant pressure. The isotherms represented in Figures 5.5 and 5.6 were taken from Prins et al., 2003 for 733K and Li et al., 2001 for 900K, 1000K and 1100K.

The effect of temperature and pressure on carbon formation in gasification systems has been studied and it has been found according to Li et al., 2001 that it is not uncommon for carbon to partially gasify. It was also found that solid carbon does not reach equilibrium due to kinetic limitations. Operating within a carbon boundary for a reforming or gasification process indicates that a possibility exists for unreacted carbon to collect in the product stream. Hence, it is highly desirable to operate in a carbon free region as this will result in high carbon conversions. When operating at 733K, it can be seen that the process falls within the carbon boundary. Over time, carbon deposition is bound to occur resulting in a low efficiency process. If higher temperatures such as 1000K and 1100K are used, the process does not fall within the carbon boundary region and the carbon boundaries do not even touch the TBL. To find the most desirable conditions, it is best to choose a temperature to operate at, which is out of the carbon boundary but also touches the TBL. When operating at temperatures such as 900K for Feed 1 which is typical temperatures of operation for gasification or reforming, the stoichiometric region in which it is desirable to operate a reforming system is further reduced, however this touches the TBL. Hence no carbon deposition will occur and one will be able to operate on the TBL. For a 100% carbon conversion in an autothermal reforming process, the feasible region for operation for Feed 1 is defined by GHB (Figure 5.5).
From Figure 5.5 (Feed 1), the idealized stoichiometric region for operation is GHB. The calorific values found in this region are 6 – 10MJ/m3. The optimum conditions to run operations should be at 900K, operating at 9 - 10MJ/m3 as this falls on the TBL and indicates that no carbon will be deposited.

A similarly case was assessed for Feed 2. In this case the carbon boundary at 900K touches the TBL at 11MJ/m3. A carbon boundary at 800K (Li et al, 2001)
was also analyzed. This also touches the TBL, but at a lower calorific value, 10MJ/m3 as opposed to 11MJ/m3.

![Figure 5.6: Thermally balanced line, carbon boundaries and calorific value contours for Feed 2](image)

For Feed 2, the idealized stoichiometric region is shown as KLEM in Figure 5.6. The calorific values found in this region are 7 – 10MJ/m3, however one can operate close to 11MJ/m3.

In this instance, both 900K and 800K would be sufficient; however the 800K would further reduce the stoichiometric region in which a desirable reforming system can operate, hence limiting the calorific value to a maximum of 10MJ/m3.
A maximum temperature that can be achieved must thus be determined in order to assess the location of the carbon boundary. Li et al., 2001 provide a method for determining the carbon boundary using the Gibb’s minimization technique which is not explained in this report, but the position of the boundary has been taken from Li et al., 2001.
6 Results

The sections below investigate different processes of converting landfill gas into useful energy such as electricity, pipeline rich fuel in the form of methane, synfuels and dimethyl ether (DME) production which can be sold as a fuel.

6.1 Electricity generation using an Internal Combustion Engine

Electricity generation using internal combustion engines is a fairly simple process and is used widely around the world. Most landfills which produce electricity use some sort of combustion engine to generate electricity. The benefits of such combustion engines is that the incoming gases do not have to be as clean as in the case of pipeline rich gases and hence cleaning processes and the costs associated with these are eliminated. The downfall of this however, is that with fewer cleaning processes, the wear and tear on the engines increase and have to be maintained and replaced regularly. The efficiencies of the engines are also known to be quite low. Below are the results obtained from the combustion of LFG using a combustion engine.

6.1.1 Basic Flow diagrams

Figure 6.1 illustrates the basic process for combustion of LFG into electricity. Cleaning steps are not shown and it is assumed that the inlet stream to the combustion engine contains CH₄ and CO₂ only in the ratio 60:40 respectively. Furthermore, secondary cleaning of the gas is not required since the gas is burnt for electricity purposes. Contaminants found in the gas may be assumed as negligible.
Figure 6.1: Electricity generation using an Internal Combustion Engine.

From Figure 6.1, LFG and oxygen enter the combustion engine where the LFG gets burnt completely to produce CO$_2$ and H$_2$O. The efficiency of the combustion engine is in the range of 25-35% (LMOP, n.d and Roberts et al, 2014). Assuming all the gas gets burnt, the remaining gases such a CO$_2$ and water vapour leave as waste through stream 3. The CO$_2$ is separated and released into the atmosphere whilst the water is disposed of. This water can also be used as process water in the plant instead of discharging to sewer. Heat energy is generated and passed through an alternator to produce electricity which can be supplied to the grid. Point CE on the CHO diagram in Figure 6.6 and 6.7 below represents the above mass balance.

Mass balances available for combustion are given below as:

$$ r_1: C_{2.5}O_2H_6 + 3 O_2 \rightarrow 2.5 CO_2 + 3 H_2O $$

$$ r_2: C_{2.5}O_2H_6 + 1.5 O_2 \rightarrow 3 H_2 + 2.5 CO_2 $$

$$ r_3: C_{2.5}O_2H_6 + 0.25 O_2 \rightarrow 3 H_2 + 25 CO $$

$$ r_4: C_{2.5}O_2H_6 + 1.75 O_2 \rightarrow 2.5 CO + 3 H_2O $$

For electricity generation, focus will only be on r_1.

The system described in Figure 6.1, is the basic process for combustion. If this process is used within the CHO diagram, it will fall out of the stoichiometric
region and on the combustion line as can be seen in Figure 6.6 and 6.7 below. By using the CHO diagram, the system can be modified according to the feed in order for the process to occur on the TBL.

The system described for Feed 1 is as follows and represented in Figure 6.2 below:

\[
C_{2.5}O_2H_6 + 0.77 O_2 + 0.28 CO_2 \rightarrow 1.68 H_2 + 2.78 CO + 1.32 H_2O \quad 6.1
\]

\[
1.68 H_2 + 2.78 CO + 2.23 O_2 \rightarrow 2.78 CO_2 + 1.68 H_2O \quad 6.2
\]

Figure 6.2: Electricity generation using an Internal Combustion Engine represented on the TBL – Feed 1.

The system is slightly different to the basic process for combustion in the sense that it has a CO$_2$ recycle stream and syngas is combusted rather than LFG. None the less, the CO$_2$ emitted to the atmosphere and the water generated is still the same as that for normal combustion. Equation 6.1 is the same as Equation C found on the TBL AB thus Equation 6.1 lies on the TBL AB.

If a different feed is introduced as in the case of Feed 2, the system will be as follows:
\[C_{2.5}O_2H_6 + 0.66 O_2 \rightarrow 3 H_2 + 1.64 CO + 0.86 CO_2 \] \hspace{1cm} 6.3

\[3 H_2 + 1.64 CO + 2.32 O_2 \rightarrow 1.64 CO_2 + 3 H_2O \] \hspace{1cm} 6.4

Figure 6.3: Electricity generation using an Internal Combustion Engine
represented on the TBL – Feed 2

Figure 6.3 is similar to the basic combustion process as it does not have a recycle stream. The discharge streams of CO\(_2\) and H\(_2\)O have also not changed.

In order to choose the best process, energy balances should be done on each process and on each piece of equipment in order to determine the energy losses from the system and to determine how much energy is actually converted into electricity. Wasted heat from the process can be used to drive the turbines which generate electricity.

The processes described above are depicted on the CHO diagram and can be seen in Figure 6.6 and 6.7 below.

6.2 Electricity generation using SOFC’s

Solid oxide fuel cells (SOFC) are not widely used in industry. Unlike combustion engines, the gas entering the fuel cell has to be very clean so that impurities do not damage the catalyst. Intrinsic cleaning technologies can be used to remove these
impurities. If these impurities are not removed, not only does it damage the catalyst, but also has the potential to interact with and degrade the SOFC anode due to carbon deposition (Ye et al., 2010 and Lorente et al., 2012). This however makes the process more costly. If dry reforming is done prior to the fuel cell, syngas is produced and this then becomes the feed stream to the fuel cell. H$_2$ from the syngas needs O$_2$ to combust. The H$_2$ is burnt to produce electricity and the CO reacts according to the water-gas shift reaction to produce additional H$_2$ for electricity production and CO$_2$, hence the waste from the overall process is CO$_2$ and water. Below are the results obtained from the combustion of LFG using an SOFC.

6.2.1 Basic Flow Diagrams

Figure 6.4 illustrates the process for combustion of LFG into electricity though a fuel cell. Cleaning steps are not shown and it is assumed that the inlet stream to the dry reforming process contains CH$_4$ and CO$_2$ only in the ratio 60:40. Contaminants found in the gas may be assumed as negligible. It is also important to note that the gas should be cleaned thoroughly before it can pass through the fuel cell and hence secondary treatment of the gas is required.

![Figure 6.4: Electricity generations using SOFC’s and dry reforming – Feed 1](image)

From Figure 6.4, it can be seen that stream 1 brings in the cleaned LFG. The gases react in a dry reformer to produce syngas in stream 2. H$_2$ from the syngas needs oxygen to combust; therefore oxygen is fed into the system through stream 3. The
H₂ is burnt to produce electricity in SOFC 1 and the CO reacts according the water-gas shift reaction to produce additional H₂ which can be used for added electricity production through SOFC 2. The water-gas shift reaction occurs in the fuel cell (SOFC 1) simultaneously to the combustion reaction, however in order to access the situation, it is shown separately in this report. Due to the water-gas shift reaction, H₂ will always be in excess as all the H₂ produced during dry reforming according to reaction 6.5 reacts with O₂ to form electricity. The water-gas shift reaction produces additional H₂ than what is required; hence a constant bleed of H₂ would be required if a second SOFC is not used. Instead of removing the additional H₂ from the system, it may be worthwhile to pass the additional H₂ produced by the water gas shift reaction to a second fuel cell (SOFC 2). This eliminates the bleed of excess H₂ and instead produces double the electricity as can be seen in Figure 6.4. The waste materials from the process are CO₂ and water. The reactions for the process are shown below:

\[
(1.5 \text{CH}_4 + \text{CO}_2) + 0.5 \text{CO}_2 \rightarrow 3.0 \text{CO} + 3.0 \text{H}_2 \quad 6.5
\]

\[
3.0 \text{H}_2 + 1.5 \text{O}_2 \rightarrow 3.0 \text{H}_2\text{O} \quad 6.6
\]

\[
3.0 \text{CO} + 3.0 \text{H}_2\text{O} \rightarrow 3.0 \text{CO}_2 + 3.0 \text{H}_2 \quad 6.7
\]

Reaction 6.5 is the dry reforming stage. CO₂ produced from the overall process can be recycled back into the system to make up for lack of CO₂ in the feed stream. Reaction 6.6 is the conversion of H₂ into electricity and water is formed as a by-product. Reaction 6.7 is the water-gas shift reaction which produces CO₂ and H₂ which is required for electricity generation. The above process can be used for Feed 1 and is depicted on the CHO diagram below.

For a feed type such as Feed 2, dry reforming does not need to be used as H₂ is produced on the TBL. The system for such a reaction will be as follows:

\[
C_{2.5}\text{O}_2\text{H}_6 + 0.55\text{O}_2 + 1.9 \text{H}_2\text{O} \rightarrow 4.90 \text{H}_2 + 2.5 \text{CO}_2 \quad 6.8
\]

\[
4.90 \text{H}_2 + 2.45 \text{O}_2 \rightarrow 4.90 \text{H}_2\text{O} \quad 6.9
\]
Figure 6.5: Electricity generations using SOFC’s and Feed 2

From Figure 6.5 it can be seen that more CO$_2$ is produced as compared to the dry reforming process. H$_2$O is recycled back into the process. Although the CO$_2$ emissions may be greater, the process occurs on the TBL, hence the process runs under adiabatic conditions. More on this is explained on the CHO diagrams in Figure 6.6 and 6.7 below.

6.2.2 Electricity generation depicted on CHO diagram

The combustion reactions given by r_1 and reaction 6.6 was plotted on the CHO diagram. The results are shown below in Figure 6.6 for Feed 1 and Figure 6.7 for Feed 2.
Figure 6.6: Electricity production using Feed 1

Figure 6.7 depicts the point that complete combustion occurs and this is shown by Point CE and represents Figure 6.1. The point labeled SOFC is representative of Figure 6.4; however this point takes into consideration the SOFC process only (Equation 6.6) and eliminates the dry reforming (Equation 6.5) and water gas shift reactions (Equation 6.7) which in turn assists with the generation of electricity. If the entire process shown in Figure 6.4 had to be taken into account, the overall balance would be represented by point CE. It is evident that the combustion and
the SOFC reactions fall out of the stoichiometric region defined for optimum operating conditions, however the combustion reaction occurs at a lower position on the CHO diagram as compared to the SOFC reaction when the electricity generation process is singled out from the rest of the process. Although the SOFC reaction occurs at a higher point than general combustion through an internal combustion engine (point CE), and may seem more attractive from an environmental point of view as less CO₂ emissions seem to form, it should be noted that if an overall balance is done on Figure 6.4 (as depicted by the dotted lines), it would be representative of point CE, therefore the process as a whole would still emit the same amount of CO₂ emissions as an internal combustion engine. This proves that if combustion is used to generate electricity, the overall mass balance will always yield the same amount of CO₂ emissions and will always be representative of point CE, despite the reactants or technology used for the intermediate reactions.

When Feed 1 is used for electricity generation as in the mass balance depicted by Figure 6.2, the process occurs on the TBL AB, however any point on the TBL is adiabatic and no energy is required for the process to occur. The calorific value at this point is 7MJ/m³. If water is removed, the system ends up at point H. From there, O₂ is introduced for combustion to take place and the system is then forced to the combustion line to point CE. For this process combustion occurs only on point CE due to the reactants used. Should other reactants be considered, point CE will move, but only along the combustion line. Although with the TBL, the system ends up at the same point as normal combustion, the energy required for the reaction to occur would need to be calculated as well as the energy losses before a sound decision on which process proves to be a superior one can be established.
For combustion to occur according to Feed 2 which is represented by the mass balance in Figure 6.3, the system is found at point F, which lies on the TBL and an adiabatic process. The calorific value at this point is high and is found to be 11MJ/m3. An HHV between 8.5 and 10.5MJ/m3 can be achieved for electricity generation to occur once O$_2$ is introduced into the process for combustion to occur. The technique shown in Figure 6.7 allows options for steam to be added to the process. It can be seen that one can operate at 10MJ/m3, however this is too exothermic. If H$_2$O is introduced, the system can operate on the same contour to
obtain the same HHV of 10MJ/m3, but at a lower exit temperature as this process is less exothermic. For optimal operation, steam (H$_2$O) should be added to force the system to operate at the intersection of the TBL and the carbon boundary. Again, the energy required for electricity generation as well as losses and the amount of energy produced would need to be determined before a conclusion can be made on which process is preferable.

For the process represented by the mass balance in Figure 6.5, the system is found at point E on the TBL. The calorific value at this point is relatively low and is between 8 – 9MJ/m3. If the CO$_2$ is removed and H$_2$ is reacted with O$_2$ for electricity production, the system will be forced to point SOFC.

From Figure 6.6, it shows that less energy is required for SOFC to be carried out, however in Figure 6.7, it shows that more energy is required for SOFC to be carried out as it is above the TBL and this is an endothermic region for Feed 2 (Figure 6.7). Despite the variation between the feeds, it is important to note that by choosing to produce electricity using an SOFC, a more optimal process will be established. SOFC’s are operated at high temperatures between 973.15 K and 1273.15 K. Although the SOFC process does not fall within the stoichiometric region and the carbon boundaries defined, no carbon will deposit on the anodes if the gas is stripped of all impurities (Ye et al., 2010 and Lorente et al., 2012) and therefore hydrocarbons and landfill gas can be transformed into useful energy. Additionally, SOFC’s use H$_2$ for electricity production; hence the efficiency obtained for the entire process is much greater than conventional combustion. SOFC’s have an efficiency of approximately 70 % according to Minh, 2004 as compared to an internal combustion engine of just 25 to 35% as stated in LMOP, n.d and Roberts et al, 2014. Furthermore, if the TBL is used, the process becomes even more desirable as an adiabatic process is introduced.

The conventional route of using combustion engines may use traditional technologies but will give a far lower efficiency. The costs of installation and operation of an SOFC is considerably high as it requires the correct electrolytes and catalysts to drive the reaction to completion and a clean incoming stream of gas, however it offers greater value electricity production by upgrading the
efficiency from 35% to approximately 70%. This is far greater than one can obtain from the same input stream as used by an internal combustion engine. A detailed energy balance around each process would need to be completed to determine the correct amounts of electricity produced as well as any energy losses.

6.3 Electro-Catalytic reduction of CO$_2$

Electro-catalytic reduction of CO$_2$ to produce oxygen and methane is common in space based operations, however not so much so in industrial processes. If this process is viable, it would be an attractive one due to the fact that the reaction occurs at room temperature, CO$_2$ is not emitted into the atmosphere and the products are oxygen and methane which can both be sold on the market. Below are the results obtained from the conversion of CO$_2$ into methane.

6.3.1 Basic Flow Diagram

The figures below illustrate the process for converting LFG into methane using electro-catalytic reduction of CO$_2$ with H$_2$O, H$_2$ and production of methane using the Sabatier Reaction respectively (discussed in detail under Section 2.6). Cleaning steps are not shown and it is assumed that the inlet stream to the process contains CH$_4$ and CO$_2$ only in the ratio 60:40. Contaminants found in the gas may be assumed as negligible. It is also assumed that the CO$_2$ separation is 100% efficient.

The reaction for methane production using electro-catalytic reduction of CO$_2$ with H$_2$O is as follows and represented by Figure 6.8 below:

$$0.40\ CO_2 + 0.80\ H_2O \rightarrow 0.40\ CH_4 + 0.80\ O_2$$

6.10
Figure 6.8: Electro-catalytic reduction of CO₂ using H₂O to produce methane

Figure 6.8 shows LFG entering the process with CH₄ and CO₂ in the ratio 0.60:0.40 respectively. The CO₂ is separated from the feed stream and enters the electro-catalytic reactor where it reacts with H₂O at room temperature to produce CH₄ and O₂. The O₂ is removed in stream 5 and can be used as a by-product to other processes which require combustion. The product methane from the reaction is removed with stream 6. CH₄ from the feed is combined to the CH₄ produced and is removed from the system as the desired product in stream 7. The CH₄ can be compressed to form liquid methane which is easy for storage and transportation. This reaction uses water which is highly accessible as compared to the electro-catalytic reduction of CO₂ with H₂.

The reaction for methane production using electro-catalytic reduction of CO₂ with H₂ is as follows and represented by Figure 6.9 below:

\[0.40 \text{CO}_2 + 0.80 \text{H}_2 \rightarrow 0.40 \text{CH}_4 + 0.40 \text{O}_2 \] \hspace{1cm} 6.11
Figure 6.9: Electro-catalytic reduction of CO₂ using H₂ to produce methane

Figure 6.9 shows LFG entering the process with CH₄ and CO₂ in the ratio 0.60:0.40 respectively. The CO₂ is separated from the feed stream and enters the electro-catalytic reactor where it reacts with H₂ to produce CH₄ and O₂. The O₂ is removed in stream 5 and can be used as a by-product to other processes which require combustion. The product methane from the reaction is removed with stream 6. CH₄ from the feed is combined to the CH₄ produced and is removed from the system as the desired product in stream 7. The CH₄ can be compressed to form liquid methane which is easy for storage and transportation.

The reaction for methane production using Sabatier reaction is as follows and represented by Figure 6.10 below:

\[0.40\; CO₂ + 1.60\; H₂ \rightarrow 0.40\; CH₄ + 0.80\; H₂O\]

6.12
Figure 6.10: Production of methane using the Sabatier reaction

Figure 6.10 shows LFG entering the process with CH\textsubscript{4} and CO\textsubscript{2} in the ratio 0.60:0.40 respectively. The CO\textsubscript{2} is separated from the feed stream and enters the reactor where it reacts with H\textsubscript{2} to produce CH\textsubscript{4} and H\textsubscript{2}O. The H\textsubscript{2}O is removed in stream 5 and can be used as a by-product for other reactions or as process water. The product methane from the reaction is removed with stream 6. CH\textsubscript{4} from the feed is combined to the CH\textsubscript{4} produced and is removed from the system as the desired product in stream 7. The CH\textsubscript{4} can be compressed to form liquid methane which is easy for storage and transportation. The Sabatier reaction requires more H\textsubscript{2} to convert CO\textsubscript{2} into CH\textsubscript{4} as compared to the electro-catalytic reduction of CO\textsubscript{2} with H\textsubscript{2} and H\textsubscript{2}O. It also produces H\textsubscript{2}O as a by-product as compared to O\textsubscript{2} which could serve to be a much valuable by-product than H\textsubscript{2}O.

6.3.2 Methane generation depicted on the CHO diagram

The reactions described above are represented on the CHO diagrams below for Feed 1 and 2 respectively.
Methane generation brings about two completely different set of results for Feed 1 and 2. In both situations, CO$_2$ is separated from the LFG producing CH$_4$ and CO$_2$ in different streams. The CH$_4$ is sent to the product stream and the CO$_2$ reacts according to the different reactions shown in Section 6.3.1 to produce additional CH$_4$ and a by-product. By analysing Feed 1 represented by Figure 6.11, all three reactions occur out of the stoichiometric region. It should be noted that the overall process in Figure 6.8 represented by dotted lines in Figure 6.11 would yield a different point on the CHO diagram; however this process will also occur out of the stoichiometric region and can be seen by point N in Figure 6.11. The same applies for the overall processes represented in Figure 6.9 and 6.10 by dotted lines and are illustrated by points P and Q respectively in Figure 6.11. The purpose of
the stoichiometric region is to create syngas from LFG, or a mixture thereof, for example, the stoichiometric region in Figure 6.11 produces H₂, CO and H₂O. The syngas can then undergo electro-catalysis to form CH₄ and H₂O or O₂, depending on the reaction. In the case of Feed 1, none of the reactions occur within the stoichiometric boundary and hence are not considered favourable as syngas cannot be produced as an intermediate step.

By introducing Feed 2 into the system, the scenario changes to three different sets of results as can be seen in Figure 6.12. The electro-catalytic reduction of CO₂ using H₂O occurs below the TBL in the exothermic region (r₂ exothermic) therefore would require less energy for the reaction to go to completion; however it still remains out of the stoichiometric boundary. The Sabatier reaction occurs above the TBL, in the endothermic region and also does not fall within the stoichiometric region. The Sabatier reaction in this case would not be a good option to pursue as energy would be required to drive the endothermic process to completion and this would incur additional costs. The electro-catalytic reduction of CO₂ using hydrogen falls within the established stoichiometric region and lies on the TBL. This point falls between low calorific values of 8 – 9MJ/m³ and is considered a reasonably good calorific value to operate at. A good process temperature would be 800K as one would be operating out of the carbon boundary leading to no carbon deposition. Furthermore, according to Gür et al., 1990, this reaction does not produce any graphite as a by-product because the carbon is highly reactive toward H₂, and the resident time on the metal surface is too short for any nucleation to take place.

In this instance, for the production of methane, only one option seems viable and that is using Feed 2 and allowing it to react according to the electro-catalytic reduction of CO₂ using H₂. This option allows H₂O to be converted to H₂ and CO₂, and secondary reactants are then converted into CH₄ and O₂ through electro-catalytic reduction of CO₂ using H₂ and this step is energy intensive. Although this option may be feasible it is a very energy intensive process therefore one needs to take the energy balance into account as well as account for increased costs involved for catalysts and electrodes used in the process. The reaction also
uses pure hydrogen and this further increases the cost as hydrogen first needs to be separated from the LFG through methane dry reforming as explained by Olah et al., 2009. Pure H₂ gas could also be purchased although there would be cost implications as H₂ is quite expensive.

Figure 6.12: Methane generation using Feed 2

The process of converting CO₂ into CH₄ may seem attractive from an environmental perspective as all CO₂ is converted into a fuel source with no CO₂ emissions to the environment; however more energy is required for the process to reach completion. One therefore needs to consider all fuels that can be produced using LFG as a feedstock and to see which process would be best suited to produce a fuel with as little CO₂ emissions as possible and still being able to
operate within the stoichiometric region to obtain optimal results with reduced energy intensive processes.

6.4 Synfuel Production

Synfuels, currently produced from syngas still uses fossil fuels as a primary input source. For every atom of carbon used, one atom of CO\textsubscript{2} is produced for every atom of CH\textsubscript{2} produced (Schultz et al., n.d). Therefore the atoms of CO\textsubscript{2} produced, always equal that of the desired product, CH\textsubscript{2}. The synfuel processes analysed below looks at reducing the amount of CO\textsubscript{2} produced, or to eliminate it altogether; thereby producing a synthetic fuel which is not made from fossil fuels and has minimal carbon emissions. Below are the results obtained from the production of synfuel from LFG.

6.4.1 Basic Flow Diagram

Figure 6.13 illustrates the process for converting LFG into synfuel with minimal carbon emissions. Cleaning steps are not shown and it is assumed that the inlet stream contains LFG in the ratio 60:40 of methane and carbon dioxide respectively. Contaminants found in the gas may be assumed as negligible.

In order for the process to occur on the TBL for Feed 1, the equations for the process must be as follows:

\[C_{2.5}O_2H_6 + 0.78 \, O_2 + 0.45 \, CO_2 \rightarrow 1.48 \, H_2 + 2.95 \, CO + 1.52 \, H_2O \] \hspace{1cm} 6.13

\[1.48 \, H_2 + 2.95 \, CO \rightarrow 1.48 \, CH_2 + 1.48 \, CO_2 \] \hspace{1cm} 6.14
From Figure 6.13 it can be seen that CO$_2$ is required for the reaction to occur on the TBL and this CO$_2$ is achieved through recycling waste CO$_2$. This means that fewer emissions are released into the atmosphere as the feed itself requires CO$_2$ to progress into products. Once the syngas is produced, and the water removed in stream 4, the syngas reacts to produce the desired product CH$_2$ and emissions of CO$_2$. It can be seen from Equation 6.14 and from Figure 6.13 in stream 6, that CH$_2$ and CO$_2$ are produced in the same ratio. This confirms the theory illustrated in Schultz et al., n.d. However, by using a recycle stream such as stream 9, the CO$_2$ emissions to the atmosphere are reduced. The H$_2$O and CO$_2$ separation process represented by Figure 6.13 are gas-liquid separation processes, hence it is easier to separate water from syngas and CO$_2$ from the CH$_2$ and it is less costly. This gives a greener and more sustainable process as less energy is required for the entire process to occur as the process occurs on the TBL.

If Feed 2 is used, the process is as follows for it to still occur on the TBL (Figure 6.14):

$$C_{2.5}O_2H_6 + 0.67 O_2 + 0.10 H_2O \rightarrow 3.10 H_2 + 1.55 CO + 0.95 CO_2 \quad 6.15$$

$$3.10 H_2 + 1.55 CO \rightarrow 1.55 CH_2 + 1.55 H_2O \quad 6.16$$
Figure 6.14: CH\(_2\) production using Feed 2 with a H\(_2\)O recycle stream

Figure 6.14 and Equation 6.15 show that water is required in the feed if Feed 2 is used instead of CO\(_2\) as in the case with Feed 1. The water produced along with the product CH\(_2\) from Equation 6.16 is recycled to the feed stream. Syngas (H\(_2\)::CO) is produced in the ratio 2:1 along with 0.95 kmols/day of CO\(_2\). The CO\(_2\) produced is separated and emitted to the atmosphere. In this case, the CO\(_2\) separation process is a gas-gas separation; therefore it is more difficult to separate the CO\(_2\) from the syngas stream and requires more energy which makes this process expensive as compared to the process in Figure 6.13. Once the CO\(_2\) is removed, the syngas reacts to completion to form the desired product CH\(_2\) and H\(_2\)O in the same proportion. It is important to note that even though the CO\(_2\) in this case is not recycled and is more difficult to separate from the gas stream, the amount produced and emitted to the atmosphere is in smaller proportions to the desired product CH\(_2\) as compared to the process shown in Figure 6.13. The water that’s not recycled can be reused within the plant as process water.

Another scenario exists for Feed 2 where the system does not operate on the TBL. The process is as follows and is depicted in Figure 6.15 below:

\[
0.60 \text{CH}_4 + 0.30 \text{O}_2 \rightarrow 1.20 \text{H}_2 + 0.60 \text{CO} \] \hspace{1cm} 6.17

\[
1.20 \text{H}_2 + 0.60 \text{CO} \rightarrow 0.60 \text{CH}_2 + 0.60 \text{H}_2\text{O} \] \hspace{1cm} 6.18
The scenario shown in Figure 6.15 does not occur on the TBL. LFG that enters the system is stripped off its CO$_2$ and this is removed as emissions. The remaining CH$_4$ combusts to produce syngas (H$_2$:CO) in the ratio 2:1. This then reacts completely to form the desired product CH$_2$ and H$_2$O in the same ratios. The H$_2$O removed from the system can be used as process water in the plant. Although CO$_2$ is not recycled, the amount of CO$_2$ emitted to the atmosphere is much lower than the desired product. This is an idealised case and the CO$_2$ is reduced further as compared to Figure 6.14 although it is a more energy intensive process.

The processes described above all aim to reduce the levels of CO$_2$ discharged to the environment. The process found in Figure 6.14 and 6.15 move away from what is said in theory according to Schultz et al., n.d., stating that CO$_2$ produced is in the same ratios as that of CH$_2$. The process depicted in Figure 6.9 however is in line with theory as the same ratios of CO$_2$ and CH$_2$ are produced. The process is converted to a slightly greener process by recycling CO$_2$ back to the feed, thereby reducing carbon emissions. Each process explained above is depicted on the CHO diagrams below and explained in more detail.

6.4.2 CH$_2$ generation depicted on the CHO diagram

The production of CH$_2$ was plotted on the CHO diagram. The results for Feed 1 and Feed 2 are shown in Figure 6.16 to 6.17 respectively.
From Figure 6.16, LFG (C\textsubscript{2.5}O\textsubscript{2}H\textsubscript{6}) is mixed with additional CO\textsubscript{2} which brings the mixture of gases to point r\textsubscript{8}. This then reacts with O\textsubscript{2} to produce H\textsubscript{2}, CO and H\textsubscript{2}O in the proportions as can be seen from the mass balance in Figure 6.13. The reason CO\textsubscript{2} is introduced into the reaction is to allow the system to operate on the TBL as can be seen by point K. The reaction occurs at a calorific value of approximately 9.5MJ/m3 which is relatively high in this case. The reaction also takes place at 900K hence no deposition of carbon takes place. As a result of operating on the TBL, some water is formed with the CO and H\textsubscript{2}. When the water is removed, the system is moved away from the TBL from point K to L producing a 0.5 ratio of H\textsubscript{2}: CO (syngas). At the point L, the system is reacted according to
the Fischer Tropsch reaction to produce a synfuel. CO₂ is also formed during this process; however some of it can be recycled back into the process thereby emitting fewer emissions to the atmosphere. This example highlights the conversion of LFG to syngas for downstream processes.

From Figure 6.17 it can be seen that LFG reacts with O₂ and H₂O to form a mixture of syngas in the ratio 2:1 and CO₂. The formation of syngas and CO₂ is represented by point F. This reaction also occurs at 900K but at a higher calorific value (11MJ/m³) than Figure 6.13. The CO₂ cannot be recycled and is forced to be removed, moving the system away from the TBL to point M where only syngas exists.

Figure 6.18 shows a system where landfill gas is separated into its main components CH₄ and CO₂. The process does not occur on the TBL. The CO₂ is removed completely and discharged to the atmosphere as it cannot be recycled. The remaining CH₄ is then combusted using O₂ to produce syngas and H₂O in the ratio 2:1 respectively at point N. No emissions are produced during this reaction. The syngas reacts completely to form equal quantities of CH₂ and H₂O.
Figure 6.17: CH₂ production using Feed 2 with a H₂O recycle stream
6.5 DME production

DME produced from syngas is seen as a more superior fuel to methanol due to its high cetane number ranging between 55-60. It produces very few emissions as compared to other fuel processes and is easily stored (liquid at 6 Bar). Below are the results obtained from the production of DME from LFG using different processes.
6.5.1 Basic Flow Diagram

Figure 6.19 illustrates the process for converting LFG into DME using Feed 1 as a feed source. Cleaning steps are not shown and it is assumed that the inlet stream contains LFG in the ratio 60:40 of methane and carbon dioxide respectively. Contaminants found in the gas may be assumed as negligible.

In order for the process to occur on the TBL for Feed 1, the equations for the process must be as follows:

\[
C_{2.5}O_2H_6 + 0.88 O_2 + 1.73 CO_2 \rightarrow 4.23 CO + 3 H_2O \quad 6.19
\]

\[
2.12 CO + 2.12 H_2O \rightarrow 2.12 H_2 + 2.12 CO_2 \quad 6.20
\]

\[
2.12 CO + 2.12 H_2 \rightarrow 0.71 C_2H_6O + 0.71 CO_2 \quad 6.21
\]

![Figure 6.19: DME production using Feed 1 with a CO\(_2\) recycle stream](image)

According to Figure 6.19, CO\(_2\) is required in the feed for reaction 6.19 to go to completion in Reactor 1 (R1); hence it is introduced to the feed stream by means of a recycle stream, stream 9. Half of the CO produced reacts according to the water gas shift reaction, reaction 6.20, to produce stoichiometric proportions of H\(_2\) and CO\(_2\) which is seen in stream 3. Excess water that does not react can be removed and reused as process water or can be discarded. The remaining CO then reacts with the H\(_2\) produced to yield the desired product C\(_2\)H\(_6\)O (DME) and undesired CO\(_2\). A build-up of CO\(_2\) is expected as it is produced in equations 6.20 and 6.21 in Reactors 2 (R2) and 3 (R3) respectively. CO\(_2\) that is required in the feed can be recycled and the rest will be discarded as CO\(_2\) emissions. Although
this process yields high amounts of CO$_2$, it is still considerably less that the CO$_2$ emissions produced during combustion of LFG.

Another scenario exists for Feed 1 where a recycle stream is not used and the following reactions apply. The system is represented by Figure 6.20 below:

$$C_{2.5}O_2H_6 + 0.75 O_2 \rightarrow 2 H_2 + 2.5 CO + H_2O \quad \text{(6.22)}$$

$$0.25 CO + 0.25 H_2O \rightarrow 0.25 H_2 + 0.25 CO_2 \quad \text{(6.23)}$$

$$2.25 H_2 + 2.25 CO \rightarrow 0.75 C_2H_6O + 0.75 CO_2 \quad \text{(6.24)}$$

Figure 6.20: DME production using Feed 1 without a CO$_2$ recycle stream

The system represented in Figure 6.20 is a simple process as it has no recycle stream and does not require CO$_2$ in the feed to get it to the TBL. Instead, the reaction itself (Equation 6.22) occurs on the TBL producing syngas and H$_2$O. In order for DME to be produced according to Equation 6.24, H$_2$ and CO must be in stoichiometric proportion with each other and this is not the case with Equation 6.22. Therefore, 0.25 kmols/day of CO are allowed to react with H$_2$O to produce 0.25 kmols/day of H$_2$ (Equation 6.23). This reaction also produces CO$_2$ in the same ratio as can be seen in Figure 6.20. The H$_2$ and CO are now in stoichiometric proportion and hence react according to Equation 6.24 to produce DME and additional CO$_2$. The CO$_2$ is removed from the system as an inert stream, stream 7.
When Feed 2 is used, a recycle stream of water is required to get the system on the TBL. The equations for the system represented by Figure 6.21 can be seen below:

\[
C_{2.5}O_2H_6 + 0.67 O_2 + 0.10 H_2O \rightarrow 3.10 H_2 + 1.55 CO + 0.95 CO_2 \\
1.55 CO + 3.10H_2 \rightarrow 0.78 C_2H_6O + 0.78 H_2O
\]

Figure 6.21: DME production using Feed 2

Reaction 6.25 which occurs on the TBL produces syngas in the ratio 2:1 and inert CO\(_2\). The CO\(_2\) can be removed immediately from the system (stream 3) as it is not required anywhere else in the process. The syngas then reacts completely to produce DME and H\(_2\)O. The product DME can be removed and stored for use, whilst some of the water is recycled to the feed stream and the remainder removed from the system.

6.5.2 DME generation depicted on the CHO diagram

DME production was plotted on the CHO diagram. The results are shown in Figure 6.22 and 6.23 below.
Figure 6.22: DME production using Feed 1 with a CO$_2$ recycle stream

The process shown in Figure 6.19 is depicted on the CHO diagram above (Figure 6.22). LFG is reacted with additional CO$_2$ and this gas burns in O$_2$ producing CO and H$_2$O. As the reaction goes to completion, it moves off the TBL and towards the exothermic region represented by point D. This reaction occurs at a low calorific value between 6 – 7MJ/m3 and at a temperature lower than 900K hence no carbon deposition occurs. On the same point, some of the CO and H$_2$O react according to the water-gas shift reaction to form H$_2$ and CO$_2$. The H$_2$ produced
reacts with unreacted CO on the endothermic region \((r_8)\) to produce DME and
\(\text{CO}_2\). The final reaction occurs at temperatures 1 100K and at calorific values
greater than 11MJ/m\(^3\).

In Figure 6.23 below, the process depicted in Figure 6.20 is shown. The initial
reaction occurs on the TBL, between calorific values 10 and 11MJ/m\(^3\). One can
choose to operate the system at 900K, however slight carbon deposition may
occur. An alternative may be to run the system at 1 000K. A bit of CO is allowed
to react according to the water-gas shift reaction. This reaction occurs in the
exothermic region (point D) and thus does not require energy input into the
system. The syngas produced then reacts to form the desired product (DME) and
\(\text{CO}_2\). This reaction occurs out of the stoichiometric region and in the endothermic
region. This means this would be an energy intensive process and fairly high
temperatures about 1 100K would need to be used to operate the system. The
overall processes shown in Figure 6.22 and 6.23 operate between the endothermic
and exothermic region at both high and low calorific values.

The system shown in Figure 6.24 operates on the TBL on point F. LFG is mixed
with \(\text{H}_2\text{O}\) and burned with \(\text{O}_2\). This produces syngas and \(\text{CO}_2\). Here, the system is
operated at 1000K so that carbon deposition does not occur and has a calorific
value 11MJ/m\(^3\). If \(\text{CO}_2\) is removed the system is forced out of the stoichiometric
region to point G. Point G is in the endothermic region, hence energy would be
required to drive the process to completion to form DME and \(\text{H}_2\text{O}\).

Between these three processes, one would have to make a decision based on the
following:

- The amount of energy inputted into the system;
- The operating temperatures and whether there is a chance of carbon
deposition;
- Calorific values;
- Operating within the stoichiometric region; and
- Amount of carbon formed as compared to the desired product.
All three options vary slightly, however from the mass balances it can be seen that despite the process chosen, CO$_2$ will always be emitted to the atmosphere.

Figure 6.23: DME production using Feed 1 without a CO$_2$ recycle stream
Figure 6.24: DME production using Feed 2

6.6 CO₂ Emission Free Processes

From the scenarios shown above, it can be seen that it is very difficult to eliminate CO₂ altogether from a process. Furthermore, if fuel is produced with CO₂ being minimized through production, one still needs to take into account emissions emitted once the fuel is used by consumers. In industry, certain chemicals are produced using CO₂ as a feedstock. These chemicals are not used as fuels, but merely used for cleaning purposes such as solvents, and other laboratory uses such as intermediates in chemical synthesis. If LFG is used with the objective of minimizing CO₂ whilst producing useful chemicals, it will give rise to a cleaner, more environmentally friendly chemical process.
6.6.1 Basic Flow Diagram

For Feed 1, two points on the TBL were used to develop a locus of which chemicals could be produced without producing CO\textsubscript{2}. In order to produce the chemicals, CO\textsubscript{2} had to be introduced into the system. The points on the TBL used were as follows (as seen in Section 5.1 above):

\[
A: \quad C_{2.5}O_2H_6 + 1.73 \, CO_2 + 0.88 \, O_2 \rightarrow 4.23 \, CO + 3H_2O \quad 0 \, kJ/mol
\]

\[
B: \quad C_{2.5}O_2H_6 + 0.75 \, O_2 \rightarrow 2.5 \, CO + H_2O + 2H_2 \quad 0 \, kJ/mol
\]

By combining the two equations and using Solver to resolve a value for the ratio \(\alpha \) (similar to the calculation of calorific values – See Appendix C), a new equation was formed which represents one of the processes of producing one of the chemicals. If \(\alpha \) is chosen to be 0.1, the equation will be as follows:

\[
C_{2.5}O_2H_6 + 0.17 \, CO_2 + 0.76 \, O_2 \rightarrow 2.67 \, CO + 1.20 \, H_2O + 1.80 \, H_2 \quad 6.27
\]

If H\textsubscript{2}O is removed from the system, CO and H\textsubscript{2} can react to form the desired chemical without any production of CO\textsubscript{2} emissions. In this case the desired chemical is CH\textsubscript{1.44}O\textsubscript{0.93}. The process is represented in Figure 6.25 below.

![Flow Diagram](image)

Figure 6.25: Production of chemicals with zero emissions – Feed 1

The process described in Figure 6.25 depicts a clean process, free of CO\textsubscript{2} emissions. The CO\textsubscript{2} produced is used as a feedstock together with LFG, hence
reducing the CO\textsubscript{2} emitted to the atmosphere from the landfill, as approximately 60% of landfill gas accounts for methane and 40% accounts for carbon dioxide.

A similar process was done for \(\alpha = 0.5; 0.7 \) and 0.9 in order to obtain a range of different chemicals represented by the locus. The results can be seen in Table 6.1 below.

Table 6.1: Formation of zero emission locus

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>Equation</th>
<th>Chemical Product</th>
<th>Eq No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>(C_{2.3}O_2H_6 + 0.87 \text{ CO}_2 + 0.82 \text{ O}_2 \rightarrow 3.37 \text{ CO} + 2.00 \text{ H}_2\text{O} + 1.00 \text{ H}_2)</td>
<td>(\text{CH}_0.80\text{O}_0.65)</td>
<td>UU</td>
</tr>
<tr>
<td>0.7</td>
<td>(C_{2.5}O_2H_6 + 1.21 \text{ CO}_2 + 0.84 \text{ O}_2 \rightarrow 3.71 \text{ CO} + 2.40 \text{ H}_2\text{O} + 0.60 \text{ H}_2)</td>
<td>(\text{CH}_0.48\text{O}_0.52)</td>
<td>VV</td>
</tr>
<tr>
<td>0.9</td>
<td>(C_{2.3}O_2H_6 + 1.56 \text{ CO}_2 + 0.87 \text{ O}_2 \rightarrow 4.06 \text{ CO} + 2.80 \text{ H}_2\text{O} + 0.20 \text{ H}_2)</td>
<td>(\text{CH}_0.16O_0.38)</td>
<td>WW</td>
</tr>
</tbody>
</table>

The BE’s were calculated for each product (refer to Appendix A for an illustration on calculating BE’s). Once the BE’s were calculated, it was plotted on the CHO diagram to represent a locus which is represented by line XY in Figure 6.28 below. This locus represents a range of chemicals which will use up, rather than produce CO\textsubscript{2} during production.

In the case of Feed 2, the TBL represented by line EF produces CO\textsubscript{2} as compared to using CO\textsubscript{2} as a reactant as seen with Feed 1. By using the water-gas shift reaction, the CO\textsubscript{2} can be removed from the system to produce a locus of syngas. Equations E and F represent the TBL for Feed 2 (see Section 5.1 above). The equations are as follows:

\[
E: \quad C_{2.5}O_2H_6 + 1.90 \text{ H}_2\text{O} + 0.55 \text{ O}_2 \rightarrow 2.5 \text{ CO}_2 + 4.90 \text{ H}_2 \quad 0 \text{ kJ/mol}
\]

\[
F: \quad C_{2.5}O_2H_6 + 0.68 \text{ O}_2 \rightarrow 1.64 \text{ CO} + 0.86 \text{ CO}_2 + 3 \text{ H}_2 \quad 0 \text{ kJ/mol}
\]

Line EF is taken as a straight line as the deviance between the points E and F is relatively small (approximately 0.0020), therefore by using point E, a process can be developed to produce a locus of syngas with zero CO\textsubscript{2} emissions. The process can be seen in Figure 6.26 below.
Figure 6.26: Production of synfuels with zero emissions – Feed 2

From Figure 6.26 it can be seen that LFG reacts with H\(_2\)O and O\(_2\) to produce CO\(_2\) and H\(_2\). To eliminate the CO\(_2\), the water-gas shift reaction is used and is represented by Equation 6.28 below. This reaction produces CO and H\(_2\)O.

\[
2.50 \text{CO}_2 + 2.50 \text{H}_2 \rightarrow 2.50 \text{CO} + 2.50 \text{H}_2\text{O} \quad \text{(6.28)}
\]

Syngas is the main product formed if the H\(_2\)O is removed from the process. If point F on the TBL line is used, the same amount of syngas is formed as line EF is a straight line.

In order to form a locus on which syngas can be produced, equation \(r_2\) was used as this marks the end point of the hot side of the stoichiometric region. Equation \(r_2\) is given as follows (Section 4.4.1):

\[
r_2: \text{C}_2\text{.5O}_2\text{H}_6 + 1.5 \text{O}_2 \rightarrow 3 \text{H}_2 + 2.5 \text{CO}_2 \quad - 464.4 \text{ kJ/mol}
\]

When using reaction \(r_2\) to form syngas from Feed 2, the mass balance is as shown in Figure 6.27 below.
Figure 6.27: Production of synfuels with zero emissions – Feed 2 (r_2)

The mass balance shown in Figure 6.27 is similar to the one shown in Figure 6.26, except it gives a different ratio of CO:H$_2$. This enables one to operate a process along the locus ST (Figure 6.29) to produce ratios of CO:H$_2$ from 2.50:2.39 to 2.50:0.50 for the TBL (line EF) and r_2 respectively.

6.6.2 Chemical Generation depicted on the CHO diagram

Figure 6.28 represents the locus of chemicals that can be found with zero CO$_2$ emissions. The chemicals at this stage are unknown and therefore tests will need to be conducted to establish the chemicals produced.
From Figure 6.28 it can be seen that LFG can be reacted with O\textsubscript{2} until it reaches the TBL at point B. At this point, syngas (H\textsubscript{2} and CO) and water is produced. If water is removed at point B, it will force the reaction towards point Y. Line XY, as described above represents all chemicals which use up CO\textsubscript{2} during their production, hence producing zero carbon emissions during the process. Anywhere on line XY, chemicals of this nature can be produced, depending on how much water is removed from the system. The more water removed from the system, the closer to Y the chemicals will exist whilst the less water removed from the system, the chemicals will emerge closer to X.
Chemicals produced to the left of the locus as in the case of chemicals 1, 2, 3 and 4, are said to export CO\(_2\) during its production phase. These chemicals come in the form of ethyl acetate, methyl acetate, acetic acid and acetic anhydride respectively. Moving towards the locus from chemicals 1, 2, 3 and 4 will bring the process closer to the locus and closer to the point of zero emissions. Chemicals produced to the right of the locus import CO\(_2\) during its formation, hence cleaner production. Due to this reason, chemicals to the right of the locus will require additional CO\(_2\) than what LFG can supply depending on how close to the locus the chemical produced exists. A process such as this, producing chemicals which import CO\(_2\), can be constructed near a plant which creates large amounts of CO\(_2\) emissions as in the case of the petroleum and electricity generation industries, as it could use the emissions from these outside processes as a feedstock, thereby reducing overall emissions for both parties involved.

The same applies for Feed 2. As can be seen in Figure 6.25, the locus is represented by line ST. The TBL shown as line EF is taken as a straight line as the deviance between the points D and F is relatively small (approximately 0.002). As can be seen from Equation E above, the reaction which occurs at point E produces CO\(_2\) and H\(_2\). If the CO\(_2\) is reacted according to the water-gas shift reaction shown by Equation 6.28, CO and H\(_2\)O are formed. When H\(_2\)O is removed from the system (arrow moving from E to S), it forces the system to point S. At point S, all CO\(_2\) produced from Equation E is used up, therefore leading to zero CO\(_2\) emissions. Due to line EF being a straight line, the same concept would apply to point F, and the system would be forced to point S. When Equation r\(_2\) is considered, H\(_2\) and CO\(_2\) are again produced, but this time at point r\(_2\). The CO\(_2\) and H\(_2\) are once again reacted according to the water-gas shift reaction to produce CO and H\(_2\)O. By removing H\(_2\)O from the system (arrow moving from r\(_2\) to T), the system is forced to point T. At point T, all CO\(_2\) produced from Equation r\(_2\) is used up, therefore leading to zero CO\(_2\) emissions. Line ST is representative of a locus of syngas. Anywhere on this line, syngas of different ratios of H\(_2\):CO can be produced with zero CO\(_2\) emissions. The shaded region EFL is the stoichiometric region and is the optimal region of operation as any reaction occurring in that region would be exothermic (represented by point H) and would require less
energy for the process to occur. Reactions to the left of the TBL will be endothermic reactions as this is the cold side (point C) and therefore would require an energy intensive process for the reactions to occur. Furthermore, any process occurring within the stoichiometric region can be forced to the locus ST and therefore would be able to produce syngas with zero emissions if H₂O is removed.

Figure 6.29: CHO diagram for Feed 2 – representing locus of syngas

The processes described above thus gives a region of operation which is exothermic, hence requiring less energy for the process to go to completion, no carbon deposition expected as the process can operate close the carbon boundary and a locus is established allowing an array of chemicals and syngas of different ratios to be produced, thus allowing for flexibility in operating conditions.
7 Conclusions

The processes outlined within this dissertation are a development of a graphical technique that allows various technologies to be developed with syngas production as an intermediate step. The graphical technique considers:

- A mass balance to determine the stoichiometric region for syngas production;
- The energy balance limits the stoichiometric region to a line which corresponds to autothermal operation;
- Carbon boundaries and corresponding temperatures are considered in order to identify further restrictions on the stoichiometric region; and
- Contours of HHV enable a systematic approach to identify regions to obtain high calorific value syngas.

Electricity generation, methane production for natural gas, synfuels, DME and CO\textsubscript{2} emission free processes were evaluated on the CHO diagram in order to assess the most desirable region for operation to take place as well as to consider the environmental impacts associated with each process. The conclusion for each scenario is given below.

Electricity

Electricity generation would be the easiest process to follow as the technology already exists for such a process and many projects are currently in place around the world which converts LFG into electricity. This process however only has a 35% conversion of energy into electricity if conventional technologies such as internal combustion engines are used and produces large amounts of CO\textsubscript{2} emissions. Electricity production is highly exothermic; hence no energy is required to drive the reaction to completion. The system can occur on the TBL where it is adiabatic by using Feed 1, however CO\textsubscript{2} is required in the feed stream and this is introduced by means of a recycle stream as seen in Figure 6.2. By using Feed 2 as seen in Figure 6.3, the initial reaction also occurs on the TBL. The calorific values for Feed 1 and 2 are 7 and 11MJ/m3 respectively. Electricity can also be produced using an SOFC. The amount of CO\textsubscript{2} produced when dry
reforming is used is less than half the amount produced using an internal combustion engine. This SOFC process on its own occurs out of the stoichiometric region and is highly exothermic. By using Feed 2, the SOFC process begins on the TBL at point E which is adiabatic. At this point the calorific value is between 8 – 9MJ/m3. Although this process yields the same amount of CO$_2$ as electricity generation through an internal combustion engine, the SOFC has an efficiency of approximately 70% as compared to an internal combustion engine. The SOFC process does not fall within the stoichiometric region and the carbon boundaries defined, however no carbon will deposit on the anodes if the gas is stripped from all impurities (Ye et al., 2010 and Lorente et al., 2012) and therefore hydrocarbons and landfill gas can be transformed into useful energy. It is important to note that the overall process for electricity production through an SOFC will still remain at the combustion point represented by point CE and therefore all electricity processes would yield the same amount of CO$_2$ emissions despite the technology used.

Electro-catalytic reduction of CO$_2$

Methane rich gas can be produced from CO$_2$ by reacting it with either H$_2$ or H$_2$O. Three processes were considered in this dissertation, namely the electro-catalytic reduction of CO$_2$ with H$_2$O (Figure 6.8), electro-catalytic reduction of CO$_2$ with H$_2$ (Figure 6.9) and the Sabatier reaction (Figure 6.10). All three processes aim to convert excess CO$_2$ into methane; therefore there are no CO$_2$ emissions. The Sabatier reaction may be expensive as a large amount of H$_2$ is required in the feed.

By using Feed 1, all three reactions occur out of the stoichiometric region in the exothermic region. These reactions may be carried out at low temperatures; however none of the reactions occur within the stoichiometric boundary and hence are not considered favourable.

By introducing Feed 2, the electro-catalytic reduction of CO$_2$ with H$_2$ occurs on the TBL. This process is adiabatic and has a calorific value between 8 – 9MJ/m3.
By operating at 800K, no deposition of carbon would form. Although this option may be feasible, one needs to account for increased costs involved for catalysts and electrodes used in the process. The reaction also uses pure hydrogen and this further increases the cost as hydrogen first needs to be separated from the LFG through methane dry reforming as explained by Olah et al., 2009. Pure H₂ gas could also be purchased although there would be cost implications as H₂ is quite expensive.

Production of Synfuels

The production of synfuels was analysed using different processes. By using Feed 1 (Figure 6.13), the process is operated on the TBL and 41% of CO₂ is emitted to the atmosphere as compared to 59% of the desired product. The calorific value for this process is approximately 9.5MJ/m³ and in order for no carbon deposition to occur, the system must operate at 900K.

Two scenarios are seen when Feed 2 is introduced (Figure 6.14 and 6.15). The system represented in Figure 6.14 occurs on the TBL with a calorific value of 11MJ/m³ and the CO₂ emitted to the atmosphere is 24% compared to 39% of synfuel produced. The second scenario (Figure 6.15) does not occur on the TBL and is highly energy intensive. The CO₂ emitted is 25% as compared to 38% of synfuel.

Each scenario depicted indicates that an amount of energy will need to be inputted for the reaction to go to completion. The amount of energy required is unknown for now. Figure 6.18 however will be the most energy intensive process as the entire process does not occur on the TBL. Although both Figures 6.16 and 6.17 occur on the TBL at 900K, Figure 6.16 has a lower calorific value as compared to Figure 6.17; hence the conversion to useful fuels would not be as high as the scenario depicted in Figure 6.17. A case study would have to be done in order to analyse the amount of energy required for both processes to reach completion.
One would need to assess the benefits of greener production versus the costs of energy intensive processes.

Production of DME

The production of DME using Feed 1 and 2 was also analysed. Two processes exist for Feed 1 and are represented by Figure 6.19 and 6.20. Both reactions occur on the TBL, however the process represented in Figure 6.19 emits 41% CO\(_2\) compared to 26% of the DME and the process seen in Figure 6.20 emits 40% CO\(_2\) compared to 30% DME. Figure 6.19 has a calorific value between 6 – 7MJ/m\(^3\) and Figure 6.20 between 10 and 11MJ/m\(^3\).

A third scenario exists with Feed 2 which also occurs on the TBL and has a calorific value of 11MJ/m\(^3\). The CO\(_2\) emitted to the atmosphere is 39% as compared to 32% of the desired product.

Although DME is seen as an excellent fuel source due to its high cetane value and can be easily stored and transported, the processes represented for DME production above produce more emissions than the desired product and this is not seen as an attractive process from an environmental point of view. One would also have to consider the amount of energy inputted into the system, operating temperatures, whether there is a chance of carbon deposition, operating within the stoichiometric region and cost implications.

CO\(_2\) Emission Free Processes

CO\(_2\) emission free processes introduces’ a concept where CO\(_2\) produced through operations can be fed into a system as feedstock to produce useful chemicals and syngas, emitting zero or minimal CO\(_2\) emissions. This concept enables a locus to be formed allowing a range of chemicals and syngas to be produced using different operating conditions.
When producing chemicals using Feed 1, chemicals to the left of the locus, in the case of chemicals 1, 2, 3 and 4, are said to export CO$_2$ during its production phase. Moving towards the locus will bring the process closer to the locus to form cleaner chemicals and closer to the point of zero emissions. Chemicals produced to the right of the locus import CO$_2$ during its formation, hence cleaner production. Due to this reason, chemicals to the right of the locus will require additional CO$_2$ than what LFG can supply depending on how close to the locus the chemical formed exists. Processes such as these can be constructed close to plants emitting high volumes of CO$_2$, thereby reducing overall emissions for both parties involved.

By using Feed 2, a range of syngas can be produced instead of chemicals. If the process occurs on the TBL, CO$_2$ is produced, however by using the water-gas shift reaction CO$_2$ is converted into CO and the excess H$_2$ forms syngas with the CO. Reaction r_2 is also used to create a locus ST on which a range of syngas can be produced. By using r_2, a stoichiometric region of operation is established which is exothermic and operation within this area allows for optimal process results.

The results for each process mentioned above is summarised in Table 7.1.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>CO$_2$/mol LFG</th>
<th>CH$_4$/mol LFG</th>
<th>CH$_2$/mol LFG</th>
<th>DME/mol LFG</th>
<th>Chemicals/mol LFG</th>
<th>Syngas/mol LFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion</td>
<td>2.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electrocatalytic reduction of CO$_2$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Feed 2 Using H$_2$</td>
<td>0</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Synfuel</td>
<td>1.03</td>
<td>1.48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 This refers to Feed 2 only as results obtained with Feed 1 occurred out of the stoichiometric region and is therefore seen as unfavourable.
<table>
<thead>
<tr>
<th>Scenarios</th>
<th>CO₂/ mol LFG</th>
<th>CH₄/ mol LFG</th>
<th>CH₂/ mol LFG</th>
<th>DME/ mol LFG</th>
<th>Chemicals / mol LFG</th>
<th>Syngas/ mol LFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed 2 - H₂O recycle</td>
<td>0.95</td>
<td>-</td>
<td>1.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Feed 2 - no recycle</td>
<td>0.40</td>
<td>-</td>
<td>0.60</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed 1 - CO₂ recycle</td>
<td>1.10</td>
<td>-</td>
<td>-</td>
<td>0.71</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Feed 1 - no recycle</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
<td>0.75</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Feed 2</td>
<td>0.95</td>
<td>-</td>
<td>-</td>
<td>0.78</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO₂ Emission Free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α: 0.1 – 0.9 = 2.76 – 4.06</td>
<td></td>
</tr>
<tr>
<td>Processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO:H₂ = 2.50:2.39-2.50:0.50</td>
<td></td>
</tr>
</tbody>
</table>

The amount of CO₂/ mol LFG shown in Table 7.1 is the amount that is emitted to the atmosphere and does not account for the overall generation of CO₂ within the system or the amount that is recycled. A comparison suggests that despite electricity generation being simpler, the process emits the highest amount of CO₂ and only 20 – 35 % or 70% of the initial LFG goes to useful electricity depending on the technology used (internal combustion engine versus SOFC respectively). The rest is lost as heat. The fuels producing processes (CH₂ and DME) utilise most of the LFG to form products and lower CO₂ emissions are achieved,
although extra processing is required and is not considered within this dissertation. The production of chemicals or syngas through zero CO₂ emission processes, produces zero or very little CO₂ as compared to the other processes and do not require energy intensive steps in order for the process to go to completion.

In order to choose the best process, energy balances would need to be done on each process and on each piece of equipment in order to determine the energy losses from the system and to determine how much energy is actually converted into useful sources of energy. Wasted heat from the process can be used to drive the turbines which generate electricity. Decisions should also be made on costs and long term benefits.

This work develops a systematic graphical technique that enables the study of possible conversion processes and flow sheets utilising LFG, although the effect of equilibrium has not been considered on the comparisons obtained. Furthermore, from this analysis it is shown that there are more possibilities of LFG usage for chemicals and fuel production in addition to traditional electricity generation.
REFERENCES

111

Appendix A – Representation of CHO Diagrams

Bond Equivalent (BE) percentages are represented by molar percentages by multiplying the mole fraction of the main constituents C, O₂ and H₂ by their valent electrons 4, 2 and 1 respectively as shown by Li et al., 2001 and, Prins, 2003. The following equations are used to represent C, O₂ and H₂ as BE percentages:

\[
C = \frac{4x_C}{4x_C + x_{H_2} + 2x_{O_2}} \quad \text{A1}
\]

\[
O = \frac{2x_{O_2}}{4x_C + x_{H_2} + 2x_{O_2}} \quad \text{A2}
\]

\[
H = \frac{x_{H_2}}{4x_C + x_{H_2} + 2x_{O_2}} \quad \text{A3}
\]

In the case of elemental C, O₂ and H₂, the BE percentages are as follows:

\[
C = \frac{4x_C}{4x_C + x_{H_2} + 2x_{O_2}} = \frac{4 \times 1}{4 \times 1 + (1 \times 0) + (2 \times 0)} = \frac{4}{4} = 1
\]

\[
O = \frac{2x_{O_2}}{4x_C + x_{H_2} + 2x_{O_2}} = \frac{2 \times 1}{4 \times 0 + (1 \times 0) + (2 \times 1)} = \frac{2}{2} = 1
\]

\[
H = \frac{x_{H_2}}{4x_C + x_{H_2} + 2x_{O_2}} = \frac{1 \times 1}{4 \times 0 + (1 \times 1) + (2 \times 0)} = \frac{1}{1} = 1
\]
The three elements are all found to be 1, hence the points C, O₂ and H₂ are found at the corners of the CHO diagram as seen below.

![Figure A1: CHO Diagram](image)

In order to plot a chemical compound and determine the reaction, the BE percentages of each component in the compound must be found. For example, CH₄ is represented by:

\[
C = \frac{4x_C}{4x_C + x_{H_2} + 2x_{O_2}} = \frac{4 \times 1}{(4 \times 1) + (1 \times 4) + (2 \times 0)} = \frac{4}{(4+4)} = \frac{1}{2} \text{; and}
\]

\[
H = \frac{x_{H_2}}{4x_C + x_{H_2} + 2x_{O_2}} = \frac{1 \times 4}{(4 \times 1) + (1 \times 4) + (2 \times 0)} = \frac{4}{(4+4)} = \frac{1}{2}.
\]
which then places CH$_4$ at a point midway between H-C. Similarly, H$_2$O and CO$_2$ are found midway between H-O and C-O.

Mixtures can also be represented using the same technique, such as point B which contains 69% C, 5% H$_2$ and 26% O$_2$ by mass. In order to plot this mixture on the CHO diagram, the mass percentages must be converted to mole percent. The information given below was used to calculate the mole percentages of each component. Table A1 shows molar masses for components C, H and O.

\[\text{Moles} = \frac{\text{Mass}}{\text{Molar Mass}} \]

Table A1: Molar Masses

<table>
<thead>
<tr>
<th>Component</th>
<th>Molar Mass (g/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>16</td>
</tr>
</tbody>
</table>

Using the information above, the molar fractions were calculated as follows:

\[Mole_C = \frac{0.69}{12} = 0.06 \]
\[Mole_O = \frac{0.26}{16} = 0.02 \]
\[Mole_H = \frac{0.05}{1} = 0.05 \]

Therefore the chemical formula of the mixture can be represented as C$_{0.06}$O$_{0.02}$H$_{0.05}$. From this formula, the BE percentages can be calculated and plotted to represent Point B as can be seen in Figure A2 below.

\[C = \frac{4x_C}{4x_C + x_{H_2} + 2x_{O_2}} = \frac{4 \times 0.06}{(4 \times 0.06) + (1 \times 0.05) + (2 \times 0.02)} = \frac{0.24}{0.33} = 0.73 \]
\[O = \frac{2x_{O_2}}{4x_C + x_{H_2} + 2x_{O_2}} = \frac{2 \times 0.02}{(4 \times 0.06) + (1 \times 0.05) + (2 \times 0.02)} = \frac{0.04}{0.33} = 0.12 \]

\[H = \frac{x_{H_2}}{4x_C + x_{H_2} + 2x_{O_2}} = \frac{1 \times 0.05}{(4 \times 0.06) + (1 \times 0.05) + (2 \times 0.02)} = \frac{0.05}{0.33} = 0.15 \]

Figure A2: Representing mixtures
Appendix B – Determination of the Thermally Balanced Line

The Thermally Balanced Line (TBL) is representative of the product temperature equating to the inlet temperature (Wei, 1979) of a given process, and this occurs when exothermic reactions are balanced out by endothermic reactions. When this happens, heat is not lost or added to the system; hence the system operates under adiabatic conditions.

In order to determine the TBL, the exothermic reactions found within the system will need to be balanced by the endothermic reactions. There are seven reactions that make up the systems found within the report and can be found below:

\[r_2: C_{2.5}O_2H_6 + 1.5 O_2 \rightarrow 3 H_2 + 2.5 CO_2 \] \hspace{1cm} \text{B1}

\[r_3: C_{2.5}O_2H_6 + 0.25 O_2 \rightarrow 3 H_2 + 2.5 CO \] \hspace{1cm} \text{B2}

\[r_4: C_{2.5}O_2H_6 + 1.75 O_2 \rightarrow 2.5 CO + 3 H_2O \] \hspace{1cm} \text{B3}

\[r_5: C_{2.5}O_2H_6 + 3 H_2O \rightarrow 6 H_2 + 2.5 CO_2 \] \hspace{1cm} \text{B4}

\[r_6: C_{2.5}O_2H_6 + 0.5 H_2O \rightarrow 3.5 H_2 + 2.5 CO \] \hspace{1cm} \text{B5}

\[r_7: C_{2.5}O_2H_6 + 0.5 CO_2 \rightarrow 3 H_2 + 3 CO \] \hspace{1cm} \text{B6}

\[r_8: C_{2.5}O_2H_6 + 3.5 CO_2 \rightarrow 3 H_2O + 6 CO \] \hspace{1cm} \text{B7}

The reactions above need to be categorized as endothermic or exothermic reaction. In order to establish this, higher heating values (HHV) at 650 K of the equations that follow were used to determine the enthalpies of the reactions given above (B1 – B7).

\[r_8: C + \frac{1}{2} O_2 \rightarrow CO \] \hspace{1cm} \text{(-110.4 kJ/mol)} \hspace{1cm} \text{B8}
Using the above equations (B8 – B13), the enthalpy of formation of CO, CO₂, H₂O and CH₄ at 650 K can be determined as the enthalpy of formation of elements are equal to zero. Hence the following enthalpies can be found in Table B1.

Table B1: Enthalpies of Formation

<table>
<thead>
<tr>
<th>Components</th>
<th>Enthalpy of Formation (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>O₂</td>
<td>0</td>
</tr>
<tr>
<td>H₂</td>
<td>0</td>
</tr>
<tr>
<td>CO</td>
<td>-110.4</td>
</tr>
<tr>
<td>CO₂</td>
<td>-394.1</td>
</tr>
<tr>
<td>H₂O</td>
<td>-245.4</td>
</tr>
<tr>
<td>CH₄</td>
<td>-84.5</td>
</tr>
</tbody>
</table>

It is important to note that no HHV exists for LFG hence the enthalpy for LFG was calculated using CH₄ and CO₂ in the ratio 60:40 and can be seen below.

\[
\Delta H_{C_{2.6}O_{2.6}H_6} = 0.6 \Delta H_{\text{CH}_4} + 0.4 \Delta H_{\text{CO}_2}
\]

\[
= (0.6 \times (-84.5)) + (0.4 \times (-394.1))
\]
Furthermore, the balanced equation for a 60:40 ratio of CH\(_4\) to CO\(_2\) is:

\[
2.5 \times (0.6CH_4 + 0.4CO_2) = C_{2.5}O_2H_6
\]

\[
\therefore 1.5CH_4 + CO_2 = C_{2.5}O_2H_6
\]

Once all enthalpies of formations are determined, the enthalpy for each reaction was calculated as follows:

\[
r_2: C_{2.5}O_2H_6 + 1.5 O_2 \rightarrow 3 H_2 + 2.5 CO_2
\]

\[
\Delta H_{r_2} = (3\Delta H_{H_2} + 2.5\Delta H_{CO_2}) - (\Delta H_{C_{2.5}O_2H_6} + 1.5\Delta H_{O_2})
\]

\[
\Delta H_{r_2} = (3\Delta H_{H_2} + 2.5\Delta H_{CO_2}) - (1.5\Delta H_{CH_4} + \Delta H_{CO_2} + 1.5\Delta H_{O_2})
\]

\[
= (0 + (2.5(-394.1))) - ((1.5(-84.5)) + (-394.1) + 0)
\]

\[
= -464.4 \text{ kJ/mol}
\]

Similarly, the other equations were found to be:

\[
r_3: \quad 244.9 \text{ kJ/mol}
\]

\[
r_4: \quad -491.4 \text{ kJ/mol}
\]

\[
r_5: \quad 271.8 \text{ kJ/mol}
\]

\[
r_6: \quad 367.6 \text{ kJ/mol}
\]

\[
r_8: \quad 386.7 \text{ kJ/mol}
\]

\[
r_9: \quad 501.6 \text{ kJ/mol}
\]
Using these enthalpies, a table was drawn up for all the reactions used for Feed 1. The components are shown at the top of the table and the stoichiometric values are shown within the table.

Table B2: Balanced Reactions

<table>
<thead>
<tr>
<th></th>
<th>C$_{2.5}$O$_2$H$_6$</th>
<th>O$_2$</th>
<th>H$_2$</th>
<th>CO</th>
<th>H$_2$O</th>
<th>CO$_2$</th>
<th>ΔH (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_3</td>
<td>1</td>
<td>0.25</td>
<td>3</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>244.9</td>
</tr>
<tr>
<td>r_4</td>
<td>1</td>
<td>1.75</td>
<td>-</td>
<td>2.5</td>
<td>3</td>
<td>-</td>
<td>-491.4</td>
</tr>
<tr>
<td>r_8</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>0.5</td>
<td>386.7</td>
</tr>
<tr>
<td>r_9</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>3.5</td>
<td>501.6</td>
</tr>
</tbody>
</table>

Using the ΔH from Table B2 the enthalpy ratios were determined for each exothermic reaction with each endothermic reaction. For Feed 1, only r_4 was found to be an exothermic reaction, whilst r_3, r_8 and r_9 were found to be endothermic reactions. The enthalpy ratios can be found in Table B3 below.

Table B3: Enthalpy Ratios

<table>
<thead>
<tr>
<th>Enthalpy Ratios</th>
<th>0.79</th>
<th>0.98</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exothermic Reactions</td>
<td>r_4</td>
<td>r_4</td>
<td>r_4</td>
</tr>
<tr>
<td>Endothermic Reactions</td>
<td>r_8</td>
<td>r_9</td>
<td>r_3</td>
</tr>
</tbody>
</table>

Once the ratios were obtained, the necessary equations were multiplied by the ratio to achieve an end result of zero enthalpy once the equations are added. This can be seen in the table that follows.

Table B4: Balanced Reactions – Point A on the TBL

<table>
<thead>
<tr>
<th></th>
<th>C$_{2.5}$O$_2$H$_6$</th>
<th>O$_2$</th>
<th>H$_2$</th>
<th>CO</th>
<th>H$_2$O</th>
<th>CO$_2$</th>
<th>ΔH (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_4</td>
<td>1</td>
<td>1.8</td>
<td>-</td>
<td>2.5</td>
<td>3</td>
<td>-</td>
<td>-491.35</td>
</tr>
<tr>
<td>r_9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5.9</td>
<td>2.9</td>
<td>3.4</td>
<td>491.35</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1.8</td>
<td>0</td>
<td>8.4</td>
<td>5.9</td>
<td>3.4</td>
<td>0</td>
</tr>
</tbody>
</table>
When divided by 2, equation A reads:

\[A: \quad C_{2.5}O_2H_6 + 1.73 CO_2 + 0.88 O_2 \rightarrow 4.23 CO + 3H_2O \]

This makes up one point on the TBL.

A similar process was carried out for the second and third points on the TBL. This is tabulated below.

Table B5: Balanced Reactions – Point B on the TBL

<table>
<thead>
<tr>
<th>(C_{2.5}O_2H_6)</th>
<th>(O_2)</th>
<th>(H_2)</th>
<th>(CO)</th>
<th>(H_2O)</th>
<th>(CO_2)</th>
<th>(\Delta H) (KJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r3</td>
<td>1</td>
<td>0.3</td>
<td>3</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>r4</td>
<td>0.5</td>
<td>0.9</td>
<td>0</td>
<td>1.2</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1.5</td>
<td>1.1</td>
<td>3</td>
<td>3.7</td>
<td>1.5</td>
<td>0</td>
</tr>
</tbody>
</table>

When divided by 1.5, equation B reads:

\[B: \quad C_{2.5}O_2H_6 + 0.75 O_2 \rightarrow 2.5 CO + H_2O + 2H_2 \]

This makes up the second point on the TBL.

The third point is calculated as shown in Table B6.

Table B6: Balanced Reactions – Point C

<table>
<thead>
<tr>
<th>(C_{2.5}O_2H_6)</th>
<th>(O_2)</th>
<th>(H_2)</th>
<th>(CO)</th>
<th>(H_2O)</th>
<th>(CO_2)</th>
<th>(\Delta H) (KJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r8</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>r4</td>
<td>0.8</td>
<td>1.4</td>
<td>0</td>
<td>2</td>
<td>2.4</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1.8</td>
<td>1.4</td>
<td>3</td>
<td>5</td>
<td>2.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

When divided by 1.8, equation C reads:

\[C: \quad C_{2.5}O_2H_6 + 0.28 CO_2 + 0.77 O_2 \rightarrow 2.78 CO + 1.32 H_2O + 1.68H_2 \]
Point C however lies so close to line AB that the deviance from line AB is 0.0021 and is considered to be insignificant. For this reason, the TBL is given as line AB and not as a region ABC.

A similar case was done for Feed 2. The TBL for Feeds 2 is tabulated below in Table B7. The TBL for Feed 2 also has 3 points with the middle point D significantly close to the end points. The deviance from line EF is 0.0020 and therefore it is assumed that point D lies on line EF. Hence the TBL for Feed 2 is given as line EF.

Table B7: Equations representing the Thermally Balanced Line for Feed 2

<table>
<thead>
<tr>
<th>Feed 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D:</td>
</tr>
<tr>
<td>E:</td>
</tr>
<tr>
<td>F:</td>
</tr>
</tbody>
</table>

Feed 3 does not have a thermally balanced line; instead it has 3 individual points which represent the endothermic reactions by \(r_3 \), \(r_6 \) and \(r_8 \). No exothermic reactions or TBL exists for this process. The Equations for these points are represented in B8 below.

Table B8: Endothermic reactions for Feed 3

<table>
<thead>
<tr>
<th>Feed 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_3):</td>
</tr>
<tr>
<td>(r_6):</td>
</tr>
<tr>
<td>(r_8):</td>
</tr>
</tbody>
</table>
Appendix C – Calculating Calorific Values

Calorific value contours are useful when choosing a targeted calorific value and determining the reaction stream requirements. The higher the calorific value, the more energy can be drawn from the process, hence it makes sense to operate at higher calorific values rather than lower value.

The contours of the calorific values found in the report are based on the method of Li et al., 2004. High heating values (HHV’s) for each reaction was initially assumed and this was used to calculate the values of α and β for each reaction. The main Equations used are shown below:

\[
HHV_1 = \alpha \times r_x + (1 - \alpha) \times r_y \quad \text{C1}
\]

\[
HHV_2 = \beta \times r_x + (1 - \beta) \times r_z \quad \text{C2}
\]

\[
\therefore \alpha = \frac{(HHV_1 - r_y)}{(r_x - r_y)} \quad \text{C3}
\]

Similarly \[\therefore \beta = \frac{(HHV_2 - r_z)}{(r_x - r_z)} \quad \text{C4} \]

The seven reactions shown below make up the systems found within the report:

\[r_2: C_{2.5}O_2H_6 + 1.5 O_2 \rightarrow 3 H_2 + 2.5 CO_2 \quad \text{C5} \]

\[r_3: C_{2.5}O_2H_6 + 0.25 O_2 \rightarrow 3 H_2 + 25 CO \quad \text{C6} \]

\[r_4: C_{2.5}O_2H_6 + 1.75 O_2 \rightarrow 2.5 CO + 3 H_2O \quad \text{C7} \]

\[r_5: C_{2.5}O_2H_6 + 3 H_2O \rightarrow 6 H_2 + 25 CO_2 \quad \text{C8} \]

\[r_6: C_{2.5}O_2H_6 + 0.5 H_2O \rightarrow 3.5 H_2 + 25 CO \quad \text{C9} \]

\[r_8: C_{2.5}O_2H_6 + 0.5 CO_2 \rightarrow 3 H_2 + 3 CO \quad \text{C10} \]
Percentages of the products found in each reaction was then determined using the coefficients of the products and this is shown below in Table C1.

Table C1: Percentage of Products

<table>
<thead>
<tr>
<th>Products</th>
<th>Total</th>
<th>H₂</th>
<th>CO₂</th>
<th>CO</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>r₂ 3 H₂ + 2.5 CO₂</td>
<td>5.5</td>
<td>54.5</td>
<td>45.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r₃ 3 H₂ + 2.5 CO</td>
<td>5.5</td>
<td>54.5</td>
<td>45.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r₄ 2.5 CO + 3 H₂O</td>
<td>5.5</td>
<td></td>
<td>45.5</td>
<td>54.5</td>
<td></td>
</tr>
<tr>
<td>r₅ 6 H₂ + 2.5 CO₂</td>
<td>8.5</td>
<td>70.6</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r₆ 3.5 H₂ + 2.5 CO</td>
<td>6</td>
<td>58.3</td>
<td></td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td>r₇ 3 H₂ + 3 CO</td>
<td>6</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>r₈ 3 H₂O + 6 CO</td>
<td>9</td>
<td>66.7</td>
<td></td>
<td>33.3</td>
<td></td>
</tr>
</tbody>
</table>

According to Li et al., 2004, the equation for HHV at standard temperature and pressure (101.3 kPa and 273K) is given as:

$$HHV = \left(12.75 \ [H_2] + 12.63 \ [CO] + 39.82 \ [CH_4] + 63.43 \ [C_2H_4] \ldots \right)/100;$$

where each component represents the product formed from the reaction. The species contents are given in mol%, and their heats of combustion in MJ/m³. Using Equation C12 and the percentages obtained in Table C1, the HHV for each reaction (r₂ to r₉) was then found for each Feed group and this is tabulated below.

Table C2: HHV in MJ/m³ for product gases according to Li et al., 2004

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Feed 1</th>
<th>Feed 2</th>
<th>Feed 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r₂</td>
<td>-</td>
<td>6.95</td>
<td>-</td>
</tr>
<tr>
<td>r₃</td>
<td>12.70</td>
<td>12.70</td>
<td>12.70</td>
</tr>
</tbody>
</table>
The HHV values found in Table C2 represents, as its name suggests, the highest heating value obtained for that given reaction. Hence for \(r_2 \), Feed 2, the highest calorific value obtained is 7MJ/m\(^3\).

Once this is done, the equations were tabulated as was done in Appendix B, and the Solver Function in Excel was used to solve for \(\alpha \) by setting the HHV value to a set number. This is represented by the highlighted figures. A portion of the calculation can be seen below.

Table C3: Calculating \(\alpha \)

<table>
<thead>
<tr>
<th>Reactants</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{2.5}O_2H_6), (O_2), (CO_2)</td>
<td>(H_2), (CO), (H_2O), (HHV) (MJ/m(^3))</td>
</tr>
<tr>
<td>(r_3)</td>
<td>1</td>
</tr>
<tr>
<td>(r_4)</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha=0.38)</td>
<td>1</td>
</tr>
</tbody>
</table>

Once Solver found a value for \(\alpha \), the row containing \(r_f \) was calculated using Equation C1. Similarly \(\beta \) was found using \(r_4 \) and \(r_9 \). The results are tabulated below.
Table C4: Calculating β

<table>
<thead>
<tr>
<th>Reactants</th>
<th>Products</th>
<th>C₂H₅O₂H₆</th>
<th>O₂</th>
<th>CO₂</th>
<th>H₂</th>
<th>CO</th>
<th>H₂O</th>
<th>HHV (MJ/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r₄</td>
<td></td>
<td>1</td>
<td>1.75</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>3</td>
<td>5.74</td>
</tr>
<tr>
<td>r₉</td>
<td></td>
<td>1</td>
<td>3.50</td>
<td></td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>8.42</td>
</tr>
<tr>
<td>β=0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r₈</td>
<td></td>
<td>1</td>
<td>3.50</td>
<td></td>
<td>-</td>
<td>6</td>
<td>3</td>
<td>8.42</td>
</tr>
</tbody>
</table>

When r₉ is used to calculate β, the HHV cannot go above 8.42MJ/m³ as this is at the edge of equations r₄ and r₉ (see Table C2, maximum limit for r₉ is 8.42MJ/m³). Therefore r₈ was used to complete the remainder of the calculations and find the outstanding calorific values. Table C5 tabulates the calorific values found for each α and β value.

Table C5: Calculating α and β for Feed 1

<table>
<thead>
<tr>
<th>Reactants</th>
<th>Products</th>
<th>C₂H₅O₂H₆</th>
<th>O₂</th>
<th>CO₂</th>
<th>H₂</th>
<th>CO</th>
<th>H₂O</th>
<th>HHV (MJ/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₁</td>
<td>r₃-r₄</td>
<td>1</td>
<td>1.26</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>β₁</td>
<td>r₄-r₉</td>
<td>1</td>
<td>0.27</td>
<td>2.95</td>
<td>0</td>
<td>5.45</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>α₂</td>
<td>r₃-r₄</td>
<td>1</td>
<td>1.48</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>2.46</td>
<td>7</td>
</tr>
<tr>
<td>β₂</td>
<td>r₄-r₉</td>
<td>1</td>
<td>0.93</td>
<td>1.64</td>
<td>0</td>
<td>4.14</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>α₃</td>
<td>r₃-r₄</td>
<td>1</td>
<td>1.69</td>
<td>-</td>
<td>-</td>
<td>0.11</td>
<td>2.5</td>
<td>2.89</td>
</tr>
<tr>
<td>β₃</td>
<td>r₄-r₉</td>
<td>1</td>
<td>1.58</td>
<td>0.34</td>
<td>0</td>
<td>2.84</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>α₄</td>
<td>r₃-r₄</td>
<td>1</td>
<td>1.17</td>
<td>-</td>
<td>-</td>
<td>1.16</td>
<td>2.5</td>
<td>1.84</td>
</tr>
<tr>
<td>β₄</td>
<td>r₄-r₉</td>
<td>1</td>
<td>0.00</td>
<td>3.50</td>
<td>0</td>
<td>6.00</td>
<td>3</td>
<td>8.42</td>
</tr>
<tr>
<td>α₅</td>
<td>r₃-r₄</td>
<td>1</td>
<td>1.05</td>
<td>0</td>
<td>-</td>
<td>1.41</td>
<td>2.5</td>
<td>1.59</td>
</tr>
<tr>
<td>β₅</td>
<td>r₈-r₉</td>
<td>1</td>
<td>0.00</td>
<td>3.09</td>
<td>0</td>
<td>0.41</td>
<td>5.59</td>
<td>2.59</td>
</tr>
<tr>
<td>α₆</td>
<td>r₃-r₄</td>
<td>1</td>
<td>0.83</td>
<td>0</td>
<td>-</td>
<td>1.84</td>
<td>2.5</td>
<td>1.16</td>
</tr>
<tr>
<td>β₆</td>
<td>r₈-r₉</td>
<td>1</td>
<td>0.00</td>
<td>2.39</td>
<td>-</td>
<td>1.11</td>
<td>4.90</td>
<td>1.89</td>
</tr>
<tr>
<td>α₇</td>
<td>r₃-r₄</td>
<td>1</td>
<td>0.62</td>
<td>0</td>
<td>-</td>
<td>2.27</td>
<td>2.5</td>
<td>0.73</td>
</tr>
</tbody>
</table>
From Table C5, BE percentages were found for C, O and H and this was plotted to achieve the calorific values for Feed 1. The BE percentages are shown below in Table C6.

Table C6: BE percentages for Calorific Values for Feed 1

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>C</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>0.24</td>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>β1</td>
<td>0.13</td>
<td>0.49</td>
<td>0.38</td>
</tr>
<tr>
<td>a2</td>
<td>0.23</td>
<td>0.39</td>
<td>0.38</td>
</tr>
<tr>
<td>β2</td>
<td>0.16</td>
<td>0.45</td>
<td>0.39</td>
</tr>
<tr>
<td>a3</td>
<td>0.22</td>
<td>0.37</td>
<td>0.40</td>
</tr>
<tr>
<td>β3</td>
<td>0.21</td>
<td>0.39</td>
<td>0.40</td>
</tr>
<tr>
<td>a5</td>
<td>0.25</td>
<td>0.41</td>
<td>0.34</td>
</tr>
<tr>
<td>β5</td>
<td>0.13</td>
<td>0.50</td>
<td>0.37</td>
</tr>
<tr>
<td>a6</td>
<td>0.26</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>β6</td>
<td>0.15</td>
<td>0.50</td>
<td>0.35</td>
</tr>
<tr>
<td>a7</td>
<td>0.27</td>
<td>0.45</td>
<td>0.29</td>
</tr>
<tr>
<td>β7</td>
<td>0.18</td>
<td>0.50</td>
<td>0.32</td>
</tr>
</tbody>
</table>

The BE percentages tabulated in Table C6 was then used to plot the calorific value contours for Feed 1 on the CHO diagram which is represented by Figure C1 below.
Figure C1: Representing Calorific Value Contours on the CHO Diagram for Feed 1.

A similar procedure was used to determine calorific value contours for Feed 2. Values representing α and β are found in Table C7.
Table C7: Calculating α and β for Feed 2

<table>
<thead>
<tr>
<th></th>
<th>C$_{2.5}$O$_2$H$_6$</th>
<th>O$_2$</th>
<th>H$_2$O</th>
<th>Products</th>
<th>H$_2$</th>
<th>CO</th>
<th>CO$_2$</th>
<th>HHV (MJ/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1</td>
<td>r$_3$-r$_2$</td>
<td>1</td>
<td>1.49</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2.48</td>
<td>7</td>
</tr>
<tr>
<td>β1</td>
<td>r$_2$-r$_5$</td>
<td>1</td>
<td>1.47</td>
<td>0.07</td>
<td>3.07</td>
<td>0</td>
<td>2.50</td>
<td>7</td>
</tr>
<tr>
<td>α2</td>
<td>r$_3$-r$_2$</td>
<td>1</td>
<td>1.27</td>
<td>0</td>
<td>3</td>
<td>0.46</td>
<td>2.04</td>
<td>8</td>
</tr>
<tr>
<td>β2</td>
<td>r$_2$-r$_5$</td>
<td>1</td>
<td>0.73</td>
<td>1.53</td>
<td>4.53</td>
<td>0</td>
<td>2.50</td>
<td>8</td>
</tr>
<tr>
<td>α3</td>
<td>r$_3$-r$_2$</td>
<td>1</td>
<td>1.05</td>
<td>0</td>
<td>3</td>
<td>0.89</td>
<td>1.61</td>
<td>9</td>
</tr>
<tr>
<td>β3</td>
<td>r$_2$-r$_5$</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>2.50</td>
<td>9</td>
</tr>
<tr>
<td>α4</td>
<td>r$_3$-r$_2$</td>
<td>1</td>
<td>0.84</td>
<td>0</td>
<td>3</td>
<td>1.33</td>
<td>1.17</td>
<td>10</td>
</tr>
<tr>
<td>β4</td>
<td>r$_5$-r$_6$</td>
<td>1</td>
<td>0</td>
<td>2.32</td>
<td>5.32</td>
<td>0.68</td>
<td>1.82</td>
<td>10</td>
</tr>
<tr>
<td>α5</td>
<td>r$_3$-r$_2$</td>
<td>1</td>
<td>0.62</td>
<td>0</td>
<td>3</td>
<td>1.76</td>
<td>0.74</td>
<td>11</td>
</tr>
<tr>
<td>β5</td>
<td>r$_5$-r$_6$</td>
<td>1</td>
<td>0</td>
<td>1.65</td>
<td>4.65</td>
<td>1.35</td>
<td>1.15</td>
<td>11</td>
</tr>
<tr>
<td>α6</td>
<td>r$_3$-r$_2$</td>
<td>1</td>
<td>0.40</td>
<td>0</td>
<td>3</td>
<td>2.20</td>
<td>0.30</td>
<td>12</td>
</tr>
<tr>
<td>β6</td>
<td>r$_5$-r$_6$</td>
<td>1</td>
<td>0</td>
<td>0.97</td>
<td>3.97</td>
<td>2.03</td>
<td>0.47</td>
<td>12</td>
</tr>
</tbody>
</table>

From Table C7, BE percentages were found for C, O and H and this was plotted to achieve the calorific values for Feed 2. The BE percentages are shown below in Table C8.

Table C8: BE percentages for Calorific Values for Feed 2

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>C</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1</td>
<td>0.23</td>
<td>0.39</td>
<td>0.38</td>
</tr>
<tr>
<td>β1</td>
<td>0.23</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>α2</td>
<td>0.24</td>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>β2</td>
<td>0.31</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>α3</td>
<td>0.25</td>
<td>0.41</td>
<td>0.34</td>
</tr>
<tr>
<td>β3</td>
<td>0.38</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>α4</td>
<td>0.26</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>β4</td>
<td>0.36</td>
<td>0.34</td>
<td>0.30</td>
</tr>
</tbody>
</table>
The BE percentages tabulated in Table C8 was then used to plot the calorific value contours for Feed 2 on the CHO diagram which is represented by Figure C2 below.

Figure C2: Representing Calorific Value Contours on the CHO Diagram for Feed 2.