MINERAL RESOURCE MANAGEMENT PRINCIPLES THAT NEED TO BE INCORPORATED IN ANGLOGOLD ASHANTI LTD

EAST AND WEST AFRICA REGION

by

WYNAND BENDER

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

University of Witwatersrand

2005

Approved by __
Chairperson of Supervisory Committee

Program Authorized to Offer Degree _______________________________________

Date __
DECLARATION

I declare that this research report is my own work. It is being submitted for the Degree of Master in Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination to any other University.

(Signature of candidate)

_____________day of__________________________(year)___________
Abstract

MINERAL RESOURCE MANAGEMENT PRINCIPLES THAT NEED TO BE INCORPORATED IN ANGLOGOLD ASHANTI LTD EAST AND WEST AFRICA REGION

by Wynand Bender

Chairperson of the Supervisory Committee: A.S. Macfarlane

Department of Faculty of Engineering and the Built Environment

With the acquisition by AngloGold Ashanti Ltd of open pit mines in East and West Africa with possible addition of Greenfield and Brownfield operations, the emphasis of this research document was to improve the current open pit mines in this region. By identifying Mineral Resource Management (MRM) as a way to improve and manage operating practices, additional value and the accompanied risks have been identified. It was also realised that the current traditional, predominantly financial indicators are becoming increasingly inadequate, thus looking at alternative operating principles. Subsequent to this, proposals have been made to acquire the necessary production and cost change by integrating structure, strategy, systems, style, skills, staff and the defined goals as proposed in this document. Using a “process-based” approach integrating (best) operating practices, concepts such as: living out the company’s strategic values; a learning organisation; better informed decision-making; people management; self-directed teams; continuous improvement; asset and capital management; integrated information systems; and an improved internal and external customer relationship be obtained.
CONTENTS

DECLARATION 2
ABSTRACT 3
CONTENTS 4
LIST OF FIGURES 6
LIST OF TABLES 7

1. INTRODUCTION 8
 1.1. Background 9
 1.1.1. Sadiola Hill Gold Mine 11
 1.1.2. Yatela Gold Mine 12
 1.1.3. Morila Gold Mine 13
 1.1.4. Geita Gold Mine 14
 1.1.5. Navachab Gold Mine 16
 1.2. Values and Behaviour 17
 1.3. Definitions 28

2. OBJECTIVES 31

3. FRAMEWORK 37

4. OPERATIONAL STRATEGIES OF MINERAL RESOURCE MANAGEMENT PRINCIPLES 40
 4.1. Understand the resource 40
 4.2. Optimal exploitation of the mineral resource 42
 4.3. Plant design and operation in terms of maximum resource utilization by predicting the future plant performance 46
 4.4. Full utilization of existing systems and key principles 48

5. BEST OPERATING PRINCIPLES & MEASURING CRITERIAS OVER THE VALUE CHAIN 54
5.1. Exploration 55
5.2. Production geology 56
5.3. Geodata 58
5.4. Geotechnical engineering 59
5.5. Grade control 61
5.6. Survey 64
5.7. Mine Planning 66
5.8. Plant 77
5.9. Mining Operations 79
5.9.1. Selective Mining 79
5.9.2. Double Handling 84
5.9.3. Reconciliation 84
5.9.4. Information Technology Management 84
5.9.5. Performance Measurement 90
5.9.6. Quality Management Process 90
5.9.7. Benchmarking 91
5.9.8. Technology 94
5.9.9. Risk Management 98

6. MANAGEMENT ACCEPTANCE 100

7. IMPLEMENTATION: THE WAY FORWARD 101
7.1. The culture required for success 103
7.2. The strategy that must be followed 112
7.3. The structure required for value engineering 115

8. CONCLUSION 119

APPENDIX A 129

REFERENCES 139
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Geographical map of AngloGold Ashanti Ltd operations</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>A cost tree example</td>
<td>34</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Characterisation of resource / reserve levels</td>
<td>58</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Minimum & Maximum Stripping Curves</td>
<td>74</td>
</tr>
<tr>
<td>5.9.1.1</td>
<td>Error of estimation in selective mining</td>
<td>81</td>
</tr>
<tr>
<td>7.1</td>
<td>Re-engineering Process</td>
<td>102</td>
</tr>
<tr>
<td>7.2</td>
<td>System engineering Process</td>
<td>103</td>
</tr>
<tr>
<td>7.1.1</td>
<td>The Competence Process</td>
<td>104</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Processes that enhance MRM</td>
<td>110</td>
</tr>
</tbody>
</table>
Lists of Tables

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.6.1 EWA mines summary contribution to AngloGold Ashanti Ltd</td>
<td>17</td>
</tr>
<tr>
<td>1.2.1 Current SWOT Analysis</td>
<td>24</td>
</tr>
<tr>
<td>1.2.2 Current KRI of EWAR</td>
<td>24</td>
</tr>
<tr>
<td>3.1 Levers to perform well</td>
<td>38</td>
</tr>
<tr>
<td>4.1.1 Operational Strategy – Resourcing</td>
<td>42</td>
</tr>
<tr>
<td>4.2.1 Operational Strategy – Optimal exploitation of the mineral</td>
<td>46</td>
</tr>
<tr>
<td>resource</td>
<td></td>
</tr>
<tr>
<td>4.3.1 Operational Strategy – Plant Design</td>
<td>48</td>
</tr>
<tr>
<td>4.4.1 Operational Strategy – Information Utilization</td>
<td>50</td>
</tr>
<tr>
<td>4.4.2 Operational Strategy – Balance short- and long term objectives</td>
<td>51</td>
</tr>
<tr>
<td>4.4.3 Operational Strategy – Performance Management</td>
<td>53</td>
</tr>
<tr>
<td>5.9.7.1 Ground rules for Operating Effectiveness</td>
<td>94</td>
</tr>
<tr>
<td>5.9.1 Variables impact on Quality</td>
<td>82</td>
</tr>
<tr>
<td>5.9.8.1 Example of a Technological Balance Sheet or Value Matrix</td>
<td>97</td>
</tr>
<tr>
<td>7.2.1 Calculated capacity</td>
<td>114</td>
</tr>
<tr>
<td>8.1 Fundamental analysis</td>
<td>120</td>
</tr>
<tr>
<td>8.2 Program of possible projects</td>
<td>126</td>
</tr>
</tbody>
</table>
1. **INTRODUCTION**

The concept of MRM has been around for quite some time, but with varying degrees of success. In short, it can be defined as a business principle applied to all levels in the management chain. In its broadest sense, it is the translation of an ore body from a resource to an asset and then managing it as an asset. It then has a certain fiscal value, governed by legal structures, and undergoes depreciation. The value depends on the integration of very tangible technical and management skills with a business plan of objectives. If the business process is inadequately understood, it leads to:

- Inadequate competency development;
- Value chain integration problems;
- Non-compliance to protocols and standards in everyday practices;
- Persistent focus on the short term, destroying future value for the shareholder in the long term;
- Decreasing business knowledge in mechanistic processes and systems; and
- Underlying vision or theme that underpins development of successful assets development.

Mineral Resource Management exists out of various functions/elements that need to be addressed for complete and thorough understanding of the whole process. MRM is used to optimize the integration of all system components in such a way that the whole is greater than the sum of the individual components in reaching a common goal. Customer Relationship Management and Project Management Principles enhance this process to obtain an integrated resource planning and management approach in the extraction of the mineral reserves over different time horizons to benefit all customers over the value chain.
Mineral Resource Management is also a unique business concept developed to increase throughput and productivity by focusing on process alignment. It stratifies information systems, quality control, services, best practices, and also integrates tactics/strategic planning and management implementation.

This integration will release the desired growth as defined in the company goals over the mine operations in various degrees of effectiveness, but also quantifying and considering all risks along the value chain. Furthermore, the knowledge of the business process among personnel improves. Work is now goal orientated, resulting in increased efficiencies and productivity.

It must be realised that principles of MRM are in actual fact not rocket science. Alistair MacFarlane of the University of Witwatersrand has completed a vast quantity of work regarding this management form. This report expands on his work. The implementation process is more an institutionalizing of a different thinking process where change management is essential.

1.1 Background

AngloGold Ashanti Ltd corporate office is based in Johannesburg, South Africa, and is a global gold producer with 19 operations in eight countries, on four continents, and has extensive and focused exploration activities in 11 countries. AngloGold Ashanti Ltd (hereinafter referred to as “AngloGold”) Shares are listed and traded on the JSE Securities Exchange South Africa, the Australian Stock Exchange in the form of "CHESS" depositary interests, the London Stock Exchange and Euronext Paris, and are quoted on Euronext Brussels in the form of International Depositary Receipts. AngloGold ADSs are listed and traded on the New York Stock Exchange.
AngloGold’s East and West African operations comprise five operations located in three African countries other than South Africa. They are: Morila, Sadiola Hill and Yatela within Mali in West Africa, Navachab Mine in Namibia on the south-western coast of Africa, and the Geita Mine in Tanzania.

Sadiola and Yatela Gold Mines are situated in western Mali respectively 80km and 60km south of the regional capital, Kayes, 20km apart from each other. Morila Gold Mine is in the southern part of Mali, 280km south east of the capital, Bamako. Geita Gold Mine is situated in north-eastern Tanzania, 60km south west of the regional capital, Mwanza, and in Namibia, 170km west-north-west of the capital Windhoek, is Navachab. See Figure 1.2 for a geographical map of AngloGold operations within East and West Africa Region.

Figure 1.2: Geographical map of AngloGold operations
Herewith a brief description of each mine:

1.1.1 Sadiola Hill Gold Mine

The Sadiola deposit occurs within an inlier of greenschist facies metamorphosed Birimian rocks known as the Kenieba Window. The inlier is intersected by a series of north-south trending faults, the most prominent of which the Senegalo-Malian Shear (SMS) passes through Sadiola’s lease area. The mineralisation occurs in the immediate vicinity of a parallel structure to the SMS.

The specific rocks which host the mineralization are argillaceous carbonates and greywackes which have been intensely weathered to a maximum depth of 200 meters. The Sadiola Hill deposit generally consists of two zones, an upper oxidized cap and an underlying sulphide zone.

Construction commenced at the Sadiola open-pit operations in 1994 and full production was achieved by June 1997, with 380 000 ounces of low cost gold being produced in the first year. The project cost was US$280 million. From 1996 until 2002, shallow, saprolite oxide ore from the Sadiola Hill pit was the primary ore source. Since 2002, the deeper saprolitic sulphide ore has been mined and in future, will progressively replace the depleting oxide reserves. The other joint venture partners are Toronto-listed IAMGOLD, the Malian government and the International Finance Corporation (IFC).

Mining takes place at the Sadiola Main, Blue Dam (FE-3) and Tabakoto (FE-4) pits, making use of a South African mining contractor, Moolman Brothers. Mining activities end in the first quarter of 2008 if the deep sulphides prove not to
be feasible. In the middle of 2004, an alliance partnership has been implemented as a method to decrease mining costs.

The plant is currently processing material at a rate of 5.3 Mtpa, in comparison to its design capacity of 4.0 Mtpa. The improvement in throughput has been achieved by streamlining processes, improving efficiencies and minor equipment changes.

1.1.2 Yatela Gold Mine

As part of the consolidation of Anglo American Corporation’s gold mining interests, AngloGold acquired a 50 percent interest in Sadiola Exploration Limited, which company held the prospecting rights in the Sadiola region. Together with the Joint Partner, IAMGOLD, exploration was undertaken and a feasibility study conducted at the Yatela deposit site. The success of the feasibility study led to the formation of a company, Société d’Exploitation des Mines d’Or de Yatela S.A. In February 2000, AngloGold approved the capital expenditure of US$76 million for the mine’s development along with two other joint-venture partners while AngloGold manages the operation.

Yatela mineralization occurs as a karst-related keel-shaped body in Birimian metacarbonates. The keel is centered on a fault which is the feeder for the original mesothermal mineralization, with an associated weak, mineralized diorite intrusion. The original mesothermal mineralisation has formed a residual layer along the flanks and in the bottom of the keel, which was subsequently filled up with Proterozoic sandstones. The ore dips almost vertically on the western limb and more gently towards the west on the eastern limb, with tight closure to the south.
The first gold was produced on May 9, 2001. The mine reached its design production capacity in the second part of 2001 and has subsequently surpassed expectations. In 2003, approval was granted to proceed with the development and mining of the Alamoutala deposit. Mining of the Alamoutala pit started in July 2003, 10 days ahead of schedule.

Yatela is benefiting from synergies and economies of scale obtained through utilisation of some of Sadiola’s infrastructure. Processing is based on a 2.5 million tonne per year heap leach operation, at an 85% recovery rate, including a 3.0 million tonne per year heap leach pad and a carbon-in-solution circuit treatment facility. The loaded carbon is trucked to Sadiola, where treatment, on a toll basis, takes place.

Alamoutala will be mined out at the end of 2004 while Yatela will close down in 2006.

1.1.3 Morila Gold Mine

On July 3, 2000, AngloGold acquired a 40 percent interest in the Morila project in Mali, from Randgold Resources Limited. Under the joint venture agreement, AngloGold is the operator of the mine. AngloGold paid a purchase price of $132 million for its stake in the Morila Joint Venture, with US$72 million funded through AngloGold’s own resources and the balance of US$60 million funded through debt, with a project finance provision of $36 million at acquisition. Randgold retains a 40% interest in the venture with the Malian government holding the remaining 20%.
Morila is a Birimian mesothermal sediment-hosted deposit. The mineralization model is still being developed, but indications are that mineralization is related to a compressive tectonic event. Original mineralization relationships are largely obscured by an intrusive event.

The process plant is a conventional CIL process with an up-front gravity section to extract the free gold. The plant has a rated throughput of 250,000 tonnes per month, which equates to 3.0 million tonnes per annum.

Attributable production at Morila is expected to decrease by 28 percent to 228,000 ounces for 2004, due to a 47 percent decline in recovered grade. Total cash costs should increase by 64 percent to US$177 per ounce due to the lower grade, increased mining contractor costs and the end of the exoneration period on import duties and taxes. At its peak, the Morila pit will have a surface area of approximately 666,000 m², a length of 1,190 m, a width of 820 m and a depth of approximately 196 m. Mining will end 2008.

1.1.4 Geita Gold Mine

On December 15, 2000, AngloGold acquired a 50 percent interest in the Geita project in Tanzania from Ashanti Goldfields Company Limited. Under the joint venture agreement, the Geita Joint Venture is governed by a committee (the “Joint Venture Committee”) which has equal representation from both partners. In the first quarter of 2004, AngloGold and Ashanti Goldfields Company merged, thereby reducing the management complexity.

A purchase price of US$205 million was paid for the Geita Joint Venture, with $35 million funded through AngloGold’s own resources and the balance of $170 million funded through debt, with a project finance provision of $67 million.
at acquisition. A French construction company, DTP Terrassement, has taken over mining operations over from AMS in 2002 after AMS has breached the contract.

Geita is an Archaean mesothermal mainly BIF-hosted deposit. Mineralization is located where auriferous fluids, which moved along shears, often on BIF-diorite contacts, reacted with the BIF. Some lower-grade mineralization can occur in the diorite as well (usually in association with BIF-hosted mineralization), and approximately 20 percent of the gold is hosted in the diorite.

The main pits being mined are Nyankanga, Lone Cone and Kukuluma pits, while satellite pits as far as 20km from the plant are being mined, using conventional open pit mining. The majority of mineralisation at Nyankanga is hosted in hard, competent basement rocks requiring drilling and blasting. This is overlain by soft, oxidised material. The mine has developed an environmental management system which earned them ISO 14001 certification.

The Geita plant uses conventional CIL technology, and has a design capacity of 4.0 Mtpa. There is the potential to expand to 7 Mtpa with little incremental capital.

During 2004, attributable production is expected to increase by 4 percent to 345,000 ounces. Total cash costs should increase by 9 percent to $199 per ounce, due to anticipated increases in mining contractor rates and plant maintenance requirements. Capital expenditure of $10 million, attributable to AngloGold, is planned in 2004.
1.1.5 Navachab Gold Mine

After having obtained an additional 30 percent interest in Navachab in 1999, AngloGold now holds a 100 percent interest in the Navachab open-pit gold mine near Karibib in Namibia, which has been in production since 1989.

The Navachab deposit is hosted by Damaran greenschist-amphibolite facies, calc-silicates, marbles and volcanoclastics. The rocks have been intruded by granites, pegmatites and quartz porphyry dykes, and have also been deformed into a series of alternating dome and basin structures. The mineralized zone forms a sheet-like body which plunges at an angle of approximately 25 degrees to the north-west. The mineralization is predominantly hosted in a sheeted vein set (60 percent) and a replacement skarn body (40 percent). The gold is very fine-grained and associated with pyrrhotite, pyrite, chalcopyrite, scheelite and sphalerite. Approximately 80 percent of the gold is free milling.

Navachab’s processing plants include mills, carbon-in-pulp (CIP) and electro winning facilities and have a production capacity of 110,000 tpm.

A decision to proceed with a pushback towards the east to extend the life of mine by eight years to 2013 was taken by the AngloGold Board in July 2002 and this project is ongoing. Due to rising contractor costs, a decision was taken in 2003 to terminate the mining contract and proceed with owner mining. Capital expenditure of $17 million has been approved for this project and implementation will be during the first six months of 2004.
Summarised below in Table 5.1 is AngloGold Ashanti Ltd’s shared ownership at Sadiola Hill, Yatela and Morila Gold Mines while at Navachab and Geita AngloGold own 100%.

<table>
<thead>
<tr>
<th>OWNERSHIP</th>
<th>SADIOLA</th>
<th>YATELA</th>
<th>MORILA</th>
<th>NAVACHAB</th>
<th>GEITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AngloGold Ashanti Ltd</td>
<td>38%</td>
<td>40%</td>
<td>40%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Iamgold</td>
<td>38%</td>
<td>40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State of Mali</td>
<td>18%</td>
<td>20%</td>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFC</td>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randgold</td>
<td></td>
<td>40%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1.6.1: EWAR mines summary contribution to AngloGold

Greater emphasis will be made in unlocking the regions’ values as defined in the beginning of this document. Using Mineral Resource Management Principles as a guideline, the region’s mineral assets are optimally extracted with the minimum amount of risk, increase in profit, cutting cost and increase in discounted cash flow.

1.2 Values and behaviour

Successful implementation of Mineral Resource Management (MRM) requires simple integration with the current functional silo’s assessing business opportunities, costs, technology needs, risks and impact on work teams, infrastructure and social environment. The proposed managerial methodology must furthermore be aligned with the vision of the company in order to enhance the required strategy. Simple actions can act as a vehicle, even if it means having a temporary duplication, creating a collaborated solution by evaluating possible options and identifying a preferred solution which will define the process, and
technical and operational requirements where appropriate (streamlining the process). It must be ensured that the preferred strategy will meet the defined needs.

AngloGold’s current business strategy vision and values can therefore be summarised below in order to integrate it with simple actions.

MISSION

What we are here to do…

Our business is gold. We consistently seek to create value for everyone with a stake in our company, by finding and mining gold and by developing the market for our product.

VALUES

How we expect to get where we want to go…

- AngloGold consistently strives to generate competitive shareholder returns. We do this by replacing profitable gold reserves and by continuously improving the performance of our key resources – our people, our assets and our products. We conduct ourselves with honesty and integrity.

- We provide our employees with opportunity to develop their skills while sharing risks and rewards in workplaces that promote innovation, teamwork and freedom with accountability. We embrace cultural diversity.

- Every manager and employee takes responsibility for health and safety; and together strive to create workplaces which are free of occupational injury and illness.

- We strive to form partnership with host communities, sharing their environments, traditions and values. We want the communities to be better off for AngloGold’s having been there. We are committed to working in an environmentally responsible way.
These values will guide the execution of East and West Africa Region Strategy that will enhance the AngloGold vision and mission. Africa Region’s Goals are to the extent, but not properly defined. They are:

- Drive down cost and risk curve
- Organic growth
- Brown fields
- Green fields Sites
- Mergers and Acquisitions
- Gold Value Chain

The East and West Africa region is focusing on:

- Optimising current reserve exploitation; and
- Concentrating on exploration activities to produce new profitable ounces in or adjacent to existing operations.

Although optimization of reserve exploitation is one of the focus areas within the region, are there no clear tacticals identified. Like SA Underground Region that intensively make use of Mineral Resource Management principles, needs Africa Open Pit Region also find the means to acquire the required organic growth. Niches of expertises and technology areas exist but are scattered over the region. This needs to be communicated and integrated across the region to release the maximum value within the business unit’s value chains.

EWAR key strategic issues are listed below:

Operational Excellence:

- Achieve budgeted earnings for the year;
- Counter the effects of strengthening exchange rate (Mali and Namibia) and increased fuel prices
- Medium to long term focus:
 - Optimise operation plans to maximise Net Present Value (NPV)
 - Ensure validity of geological models
 - Improve mineral resource management
 - Focus on projects identified for improving Return On Investment Capital (ROIC) through Shareholders Value Analysis (SVA)
 - Extend the SVA process to Geita and Navachab
 - Build in flexibility through stripped reserve and stockpiles
 - Improve effectiveness of budget process
 - Improving unit costs on all operations.

Organic Growth:
- Defining annual objectives and measurements for major projects
- Ensure there are no slippages on projects
- Limiting capital cost expenditure

Greenfields Exploration:
- Do a political, security and economical risk analysis for all the countries within Africa that we would want to do business in.
- Identify prospective gold targets for future business
- Persevere with the Democratic Republic of the Congo (DRC) initiatives
- Focus on Mali South exploration with objective to include in the 2004 Business Plan.
Brownfields Exploration:

- Focus on pit expansion exploration
- Focus on satellite orebody exploration
- Consider the economics of deep targets, i.e. open pitable versus underground criteria

For the short to medium term, the following was determined as the key focus areas:

i. Procurement and Logistics
 - Speed up the procurement process and optimal supply lines and routes to the operations

ii. Information Exchange
 - Excessiveness of information requirements
 - Separation of data and information needs and provision

iii. Legal
 - Contract design and management (with special focus on mining contracts)
 - Scope of management fees

iv. Manpower
- Comprehensive manpower planning for managerial staff at the operations to be in place;
- Localisation plans per operation with target dates to be formalised;
- Needs basis training and development plans for operational staff to be implemented;
- Capacity building programs for local employees and local shareholders;
- The formulation of competency based localization plans.

v. Role Clarity/Team Dynamics

- Nothing stated.

vi. IR Development in Mali

- Continue the development of internal relationships and networking capacity that will ensure good labor relations per country at each of the operations.
- National collective agreements
- Application of appropriate remuneration strategies for all operations.

vii. Information Systems

- WAN development in Mali
- Video conferencing
- Communication systems
- Common data platforms
viii. Sustainable Development

- Creation of a sustainable all inclusive structure and vehicle for the management of community development projects.

- The development of a sustainable and holistic health strategy that includes an occupational health program, malaria management program and AIDS management program.

Strategic planning is the essence of attempting to secure the operating environment of a business as well as giving substance to goal-directed functioning. In pursuit of these business goals, East and West Africa Region Business Units need to operate according to plan without harming employees. Therefore critical risk behaviours at each level in the organisation need to be defined. Furthermore, environmental impacts also need to be regularly assessed.

Using SWOT analysis, the current strengths, weaknesses, opportunities and threats of EWAR could be determined:

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ World class ore bodies</td>
<td>♦ Medical assistance</td>
</tr>
<tr>
<td>♦ Good operating margins and cash</td>
<td>♦ US$ revenues</td>
</tr>
<tr>
<td>♦ Good operating relationships</td>
<td>♦ Exploration</td>
</tr>
<tr>
<td>♦ Sound operations</td>
<td>♦ Organic growth</td>
</tr>
<tr>
<td>♦ Ability to work in Africa</td>
<td>♦ Strategic sourcing</td>
</tr>
<tr>
<td>♦ Africa based company</td>
<td>♦ Heap leach experience</td>
</tr>
<tr>
<td>♦ Medical assistance</td>
<td>♦ Communication</td>
</tr>
<tr>
<td>♦ US$ revenues</td>
<td>♦ Safety performance</td>
</tr>
<tr>
<td>♦ Exploration</td>
<td>♦ Manpower management</td>
</tr>
<tr>
<td>♦ Organic growth</td>
<td>♦ Strategic sourcing</td>
</tr>
<tr>
<td>♦ Strategic sourcing</td>
<td></td>
</tr>
</tbody>
</table>
Opportunities

- IT
- Immature continent
- Operations efficiency
- Management localisation
- Grid power
- M&A
- Improvement mining contractors
- Owner mining
- Exploration

- Organic growth
- Strategic sourcing
- Short life of mines
- Diminishing local expenditure

Threats

- Forced Localisation
- Labour relations
- Cyanide / environmental regulations
- Gold price
- Community expectations
- Social society expectations
- Logistics
- Infrastructure (supply)

- Country risk
- Lack local skills
- Malaria
- Aids
- Tax changes
- Concentration in Mali
- Short life of mines
- Diminishing local expenditure
- Escalating unit costs

Table 1.2.1: Current SWOT Analysis

The already defined Key Resource Indicators (KRI) for EWAR is:

<table>
<thead>
<tr>
<th>Costs</th>
<th>$129/oz</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold Production</td>
<td>Level maintained through to 2004</td>
<td></td>
</tr>
<tr>
<td>Organic Growth</td>
<td>Raise NPV – 10% of $493 million through improved resource modules</td>
<td></td>
</tr>
<tr>
<td>Geita Plant Expansion</td>
<td>$10 million to achieve 7 million tons / annum</td>
<td></td>
</tr>
<tr>
<td>Navachab</td>
<td>Extend life to 2015</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2.2: Current KRI of EWAR
And the current Key Resource Area’s (KRA) are:

Trust:
- Communicate openly
- Good reputation
- Constructive feedback
- Relied upon to perform your task
- Receptive to feedback

Professionalism & Ethics
- Confidentiality (Not withhold info)
- Competence
- Continuously set and maintain high standards
- Mentoring + coaching
- Timeous feedback
- Dependability
- Positive image
- Good leadership

Honesty and Integrity
- Give facts
- Provide objective information and opinion
- Truthful
- Transparency
- Fulfil promises
Reliability and dependability

- Fulfil commitments
- Meet deadlines
- Responsive
- Focus on issues
- Availability vs. Accessibility
- Accuracy
- Support
- Pursue agreed goals

A clear description of how well AngloGold wants to fulfil its role (as expressed in the vision), and how we are going to realise the vision (mission) has been clarified. From this mission, values, SWOT analysis, KRI’s and KRA’s are the “where to go”, but it needs to be further enhanced. Specific Business Processes such as Mineral Resource Management, can therefore enhance the required goals and quantifiably state the what, how, who and when. This will also set a clear business direction.

Using MRM principles will implement further planning and controlling tools over the operational requirements. “Planning is critical for business governance, protection against vulnerabilities and for the exploitation or capitalisation of positive aspects related to the business” (Author unknown).

The development of the MRM principles are divided into two sections namely the Strategic Intent Document and the Action Management Document. The Strategic Intent for Mineral Resource Management can further be broken down into the
business goals, see Page 40, while the action management documentation applying activity driven standards according to the business, strategic and operational environments are shown in Page 54.

Activity driven standards are determined by physical conditions and can be used as production performance standards. These standards measure and evaluate planning, production, personnel and cost performance, creating a management and control environment. To achieve process focus, must the activity driven standards of the long term and production information be aligned.

The market structure in the particular commodity of interest, as well as the up or down phase of the commodity, will dictate the standards strategy for the supply of the commodity to market. Gold is typically in a competitive market. Competitive markets follow traditional economic principles where the balance between supply and demand dictates the price. This type of structure provides incentives for the producer to produce and supply a commodity as long as the price received covers the average variable cost. The net effect is that over capacity will result in exit of the high cost producers, and high prices will provide incentive for new capacity to be established, in either case, until demand and supply have reached equilibrium.

Factors that need to be considered either to enter or stay in the market are summarized as follows:

- The high technical cost of closure and reopening;
- The possibility of deferring some cost items to the future;
- Legislative issues regarding taxes, subsidies, labour, and other socio-political issues;
- Reduced profit incentives for governmental producer who may target employment of foreign exchange receipts;
- Downward trend in real prices and unavoidable escalating in costs such as wages, relate to increase in cut-off grades and decreasing payable reserves. Higher price conditions result in the future decrease margin where the supply is high but the demand is low;

- Depletion of quality deposits over time resulting in lower grades and higher risks that require ingenuity and sound management skills;

- Global competition steadily reduces costs, transparency and rapid reaction time by making use of integrated systems and the latest technology.

The purpose of this document is therefore to design and establish principles and Key Performance Indicator’s over the whole value chain that will govern an effective and efficient mineral resource management process. It must determine the value determinants and describe how these can be optimized in order to bridge the gap between corporate and operational objectives.

1.3 Definitions

Mineral Resource Management: The definition of Mineral Resource Management is to integrate key mining functions from the resource to the market to create a seamless transaction to **maximise value** and **reduce risk, now and in the future.**

Resource knowledge areas: Different skills used within Mineral Resource Management to manage and control

Stakeholders: Stakeholders can be identified according to availability and effective use of resources; political affiliations; public support; quality of strategy/organisation; dedication of members; and planning horizons / tasks complexity.
Project Management: It is the combination of cross-functional human and nonhuman resources, overlays of multiple lines of authority, pulled together in a "temporary" organisation to achieve a specific purpose for a finite period of time. A well-executed program management is a leading factor in project successes. The primary focus is on results.

Risk Management: Risk is the processes concerned with identifying, analysing and responding to uncertainty (throughout the project life-cycle). It includes maximising the results of positive events and minimising the consequences of adverse events. Risk, uncertainty and opportunity are closely related.

Transitional Management: Transitional management is the art and science of managing the conversion period from one organisational design to another. Transitional management necessitates an understanding of the new goals, objectives, roles, expectations, and fears that people consider.

Customer Relationship Management (CRM): Involves interaction between the customer and the rest of the project team. When the customer is external, it is also managing interaction between the customer and the performing organisation. The results of good CR are that both parties are enthusiastic about the relationship.

Total Quality Management: The nature of quality control procedures adopted must be highlighted, including whether acceptable levels of accuracy and precision have been established over the whole value chain.

Benchmarking: Benchmarking is a disciplined process that begins with a thorough search to identify best-practice organisations; continues with careful study of one’s own practices and performances; progresses through systematic site visits and interviews; and concludes with an analysis of results, development of recommendations and implementations.

Creativity: the ability to take existing objects and combine them in different ways for new purposes.
Innovation: The capability of continuously creating new methodologies and implementing it successfully. It is a belief system of competitiveness / efficiency and an ability to leverage technology, systems and people in different ways to achieve results.

Business Process: An organized group of activities that work together to create a result of value to the customer.

System: A management approach that attempts to integrate and unify scientific information across many fields of knowledge towards achieving some common goal or objective. It can also be defined as the science of designing complex systems in their totality to ensure that the component subsystems making up the system are designed, fitted together, checked and operated in the most efficient way.

Re-engineering: Radical redesign of business processes of dramatic improvements.

Best Practices: It is those practices that have been shown to produce superior results; selected by a systematic process; and judged as exemplary, good, or successfully demonstrated.

Mine line ore: This is the expected Run-of-Mine ore on which the stripping strategy is based.

Mine line stripping ratio: This is the ratio between the waste rock, which should be removed according to the strategy to expose the ore, and mine line ore.

Mine line ore losses: Mine line ore that is lost due to dilution with waste material and deposited with waste material on waste dumps.

Mining losses: This refers to any ore that is lost (measured against the ore based on the final geological information). This is a measure for resource utilization.

Mining Recovery: That tonnages and grade on a block by block basis are expected to be realized in practice given at a certain cut-off grade and selectivity
in mining. This may be based on a classification of in-situ block grade estimates after making some allowance for dilution and ore loss, or on estimates of recovered fractions of the blocks that will be mined above a chosen cut-off grade.

Minability: The estimate of tonnage and grade that will be recovered or is achievable through mining on a local block by block basis, but which is also contained within economic ultimate pit limits.

Technology: Technology is all about knowledge (Know-why), People (Know-how), and Tools (Algorithms, Procedures, Rules and Processes).

2. OBJECTIVES

Value, integrity, and the minimum amount of risk are fundamental measurements to ensure that value is realized and optimised. Of significant importance, is to determine the linkage between the short and longer term, and that the value is manifested through the development of life of mine plans in order to maintain value, despite depletion. To integrate practices and/or principles, each core- and sub processes must be thoroughly understood. Resource Knowledge Area’s (KPA’s), Resource Knowledge Indicator’s (KPI’s) and customer needs must also be identified to obtain the best integrated performance.

By defining a framework for the rollout plan, the right mining practices and mineral resource estimate procedures can be implemented. It is all done to understand:

1) The impact of geological parameters and mining methods, and ore handling (contamination and fines control) on the beneficiation process to improve beneficiation and pro-active control in the mining environment;

2) To increase the product value by improving the in-situ information;
3) By improving recovery versus optimum quality, by determining critical ore morphology parameters to be managed during beneficiation.

4) By improving reconciliation between planned product and product quality and actual results through a holistic mineral resource accounting system.

Within the Framework, the required targets can be summarized into measurable and non-measurable and represents the company’s economic viability and should be properly integrated with the correct mining procedures.

The quantifiable / measurable targets are therefore:

- Maximize revenue through the improvement of efficiency across the total production and supporting processes value chain. Implementation experiences showed an increase in revenue of between 2% to 20% and a decrease in unit cost of 5% to 15% per annum. Life of Mine can also be extended with 5% to 10%.

- Improve management and control, ensuring high utilisation of the ore body by integrating the mine planning and operational environments.

- Improved plant yield vs. grade optimisation.

- Utilization of low-grade ore, classified as discard.

- Extraction through improved control of grades and contamination.

- Enables better informed & defensible plans, budgets & schedules.

- Cutting out loss making activities and operations.

- Identify areas of risk and uncertainty that may limit or prevent achieving the objectives.

- Establish criteria for project prioritising and selection within MRM for achieving the strategy of the mine.
• Convey corporate Net Cash Flow objectives for the budget year to the operation.

• Establishing of clear audit trails and reconciliation.

• Continuous integration of value chain activities.

• Creating flexibility in the operation.

• Generate contractual procurement documents performance deliverables.

• Optimal understanding and utilization of ore reserves

• Improved ore utilization through:
 - Scheduling improvement based on material compatibility.
 - Choice and optimisation of mining horizon.

The targets are all about value and should be based on the cumulative cost up to the final function in the value chain, and not just only on the mining operations. Furthermore is it more appropriate to focus on actual costs of production rather than one of the parameters contributing to cost of production, thus breaking down the process cost into the different elements that make up that cost. See Figure 2.1 for an example of such a cost tree.

The minimum value of operation for the mine must be incorporated, but an assessment of accompanied risk must be done along with this return on investment. Communication is essential in this process. One of the non-measurable goals indicates the importance of communication between the role players that will improve culture awareness towards resource management.
Therefore, non-measurable targets involved proper and effective management of the hard actions. It included managing the culture and climate of the organisation to create and orientate positive behaviour. It required careful management through sensitive leadership.
The objectives therefore are:

- Define and clarify objectives, strategy, policy and goals of the company.
- Necessitate and understand the new goals, objectives, roles, expectations, and fears of the people within the MRM-process.
- Determine objectives of the proposed mineral model for:
 - Target key technical activities;
 - Requirements of production feasibility studies.
- Making trade-offs between competing objectives and alternatives, in order to meet the stakeholder/client requirements.
- Decide on a resource accounting methodology model.
- Balance of short- and long-term objectives.
- Choose task and procedures on their ability to:
 - Have value for money;
 - To be flexible;
 - To be maintainable;
 - Must be of good quality.
- Achieve organisational (especially the technical functions) integration.
- Identifying conflicting goals and objectives.
- Establish a creative environment.
- Improve communication between role players.
- Establish a sound and fast decision making organisation.
- Apply innovative designs, technologies and methodologies to achieve improved performance.
- Align geology (in-situ reserves), mining (planning, scheduling and production), plant (product delivery and range) and market (specifications and volume).
• Formalize corporate experience and improve general communications.
• Improve understanding between disciplines and team spirit.
• Develop the ability of staff to assess risk in everyday tasks.
• Encourage participation at all levels in the organization.
• Identifying and seizing market opportunities as they arise.
• Training and sensitising of MRM principles are planned and scheduled on a continuous basis for the whole organisation.
• Short- and long-term objectives are integrated to ensure balance is achieved now and in the future.
• Performance appraisals and personal contracts support the MRM principles.
• Knowledge sharing across functional boundaries is evident.
• Involvement and commitment from the highest level is evident (buy-in obtained)

Note that the more one moves to soft benchmarking factors, the greater the value that is created. Greater emphasis is therefore given to implement and develop best operating practices.

By quantifying these required targets, the production process definitions and business analysis will be addressed. This will provide valuable information regarding the current alignment of the business strategy, processes, technology and people. Proper benchmarking must constantly be carried out to ensure correct MRM Best Practices are sought after.
The result of the proposed desired outcome is as follows:

- Driving re-engineering programs to make operations low cost and align competencies
- Develop business approach that drives superior value creation for all shareholders and shapes a superior value proposition for employees
- Strategic focus on key businesses

3. FRAMEWORK

Leading organisations established that there are 5 “must-do’s” that enable them to perform exceptionally well, namely:

1) Mission and aspirations – Define and relentlessly communicate a compelling mission & stretch aspirations;

2) Targets and goals – Translate aspirations into measurable, very aggressive targets and goals for the company;

3) Organisational approach - Define appropriate organisational units and break corporate goals down into measurable, aggressive performance targets for each unit;

4) Performance feedback – Establish processes to measure and publicly communicate performance;

5) Consequence management – Communicate and visibly execute consequences for over- / under-performance.
To be able to perform these “must-do’s”, there are 3 motivational levers and 3 coordination control levers that must be executed. These levers are:

<table>
<thead>
<tr>
<th>Motivation Levers</th>
<th>Co-ordination and control levers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentives</td>
<td>People-incentive processes</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Financial control and planning</td>
</tr>
<tr>
<td>Values & Beliefs</td>
<td>Operational control and planning</td>
</tr>
</tbody>
</table>

Table 3.1: Levers to perform well

Incentives are necessary to create value through suboptimal activities, but coordination of these measurable targets over the value chain of the MRM process need to be understood to leverage the desired output. This is about attracting, retaining and enhancing the commitment of the staff. In the Third World countries where AngloGold operates, staff must be made aware that the incentive scheme will lead to a respective production increase. But staff must also be made aware that incentives encourage value destruction than long term value creation. Focus is often driven for short term due to economic and business pressure, destroying future value for the shareholder.

The process control levers as defined above must be linked to individual performance and quality of leadership. The quality of leadership is directly related to the performance of an organization. 30% of variance in revenue and profit can be explained by differences in organisational culture / climate while 70% of variance can be explained by differences in leadership style. Apart from top level commitment and management employee trust, a special management style is required. The conventional management functions of Plan, Organize,
Lead and Control have to be replaced by management that develop, inspire, coach and teach.

A critical component of a business environment is the issue of competency and skill level. Competency-alignment is therefore needed to align the strategic organisational goals and objectives of the company, with the skills of the employees within the organisation. It involves the systematic study, analysis, and assessment of job functions, tasks, and skills required by an organisation, ensuring the best job fit for everyone. Skill gaps can be identified and if any remedy deficiencies exist, employee training, skill enhancement, redeployment, outplacement, or outsourcing can be used to decrease this gap.

An important outcome of competency alignment is the identification of current employees into new jobs or teams. True growth and vitality come from sensing new opportunities in the marketplace; building new competencies within the organisation; and leveraging the skills, talents, and adaptiveness of employees to achieve organisational aims.

In Appendix A is a quick lookup table with summarization of all the skills mentioned for the different kinds of managerial actions. The knowledge or skills competencies are for Strategic Competency, Business Acumen, Cross Boundary Management, Interpretation Competency, Team Work, Confidence building, General Managerial Competencies, Drive for Results and Continual Learning and Development.
4. OPERATIONAL STRATEGIES OF MINERAL RESOURCE MANAGEMENT PRINCIPLES

Initial investigations into the Mineral Resource Management environment revealed that the key success factor to any Mineral Resource Management solution is the ability to realise collaborated solutions that incorporate functional specialisation in an integrated decision making process. To achieve this, it requires integration across the value chain from exploration to marketing, as well as seamless information availability of all key management information to all relevant decision makers.

Mineral Resource Management is therefore an integrated approach to resource planning and management along the value chain. The value chain is a linked arrangement of interdependent business processes or value activities that is designed to generate linkage between business processes to optimize the total value process.

The new paradigm is to have a Resource Manager that is specifically tasked to ensure the optimization of the total value chain and that the production performance measurement is in place to support this. The Resource Manager should endeavour to ensure that the utilization of a particular mineral resource is economically optimized over the total value chain defining a Mineral Resource Management Strategy as indicated in Tables 4.1.1; 4.2.1; 4.3.1; 4.4.1; 4.4.2 & 4.4.3 and discussed below:

4.1. Understand the resource

- Geographically and geologically;
- In terms of extractive metallurgy;
• Lithologically according to:
 o ore types;
 o rock type characteristics according to colour and texture;
 o defining discontinuities; and
 o Mineralogy: The mine must be scheduled to the compatibility of the lithological units with regard to the beneficiation process involved as well as, but not only, according to grade.

A compatibility matrix must be created as defined by the different rock type lithological units with the highest value indicating perfect compatibility with the beneficiation plant.

A compatibility matrix can therefore be used to:
 - Indicate to the scheduler in what order it should blend the different lithological units; and
 - The weighed average grade and recovery forecast to cater for the level of compatibility. The ideal would be to develop some relationship between the compatibility matrix and the fundamental mineralogical and physical properties of the different lithological units.

• Understand the physical metallurgical characteristics of the resource;

• Investigating ore blending - This is to collect and market sufficient information through exploration, mapping, analysing and physical testing to determine the ore characteristics, volume, grade, structure, lump/fine ratio, hardness, decrepitation, yield and beneficiation in order to satisfy mining exploitation and the processing plant.
<table>
<thead>
<tr>
<th>BUSINESS GOAL UNITS</th>
<th>OPERATIONAL STRATEGY</th>
<th>FOCUS AREA</th>
<th>TARGETS OR OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Understand the resource: Collect and market sufficient information through exploration, mapping, analysing and physical testing to determine the ore characteristics, volume, grade, structure, lump/fine ratio, hardness, decrepitation, yield and beneficiation in order to satisfy client needs and to create additional markets</td>
<td>Understand the resource geographical and geological</td>
<td>Updated and verified geological models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Understand the resource in terms of extractive metallurgy</td>
<td>Updating of LOM statement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Understand the physical metallurgical characteristics of the resource</td>
<td>Beneficiation curves for each rock type & blends of rock types</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Investigate ore blend</td>
<td>Predicted yield</td>
</tr>
<tr>
<td></td>
<td>Stakeholder needs</td>
<td></td>
<td>Known rock hardness and degradation of rock types</td>
</tr>
</tbody>
</table>

Table 4.1.1: Operational Strategy - Resourcing

4.2. **Optimal exploitation of the mineral resource**

By looking at the different functional mining departments, the mineral resource can be optimally exploited by:

- Effective exploration - Executing an exploration strategy or programme to optimize the mineral resource, and develop and follow a formal exploration strategy as defined in the strategic document. The geological and grade models must be continuously updated so that the most value to the mine planning can be added. This is normally stated annually by consultants in the resource statements and audits;

- The collection and processing of geological information – Geotechnically, a system must be developed to assess the risk of slope failure versus the financial benefit that will add the most value. Dewatering must be done in accordance with the LT mine plan;
- Mine design and scheduling;
 o Optimum pit design techniques must be evaluated to allow for maximum utilisation of the ore grade and mineral resource. By taking macro and micro economic conditions of the day into consideration, each unit of material in the blocked mine layout should be constantly evaluated. This is also called selective mining. By doing this, a material will ultimately be considered as ore or waste on a daily basis. Sets of interactive long term mine layouts for different long-term macro economic conditions should therefore be created.
 o Condition based and activity based costing should be a central part of the economic modulation of the economic viability of each part of ore, and not using average costs as traditionally done. The costs allocated to a material unit should be conditions and material based, and not averaged.
 o Constant testing on a mineralogical base, needs to be done in the plant. This is a valuable tool in helping to focus on the continuous improvement (CI) initiatives in the value chain and especially the interaction between the plant and the mine.
 o Risk matrix should also be used to indicate the risk profile of a specific mine plan. Many a mine plan, short- and long term, had different scenarios compared to each other without having a feel towards the risk profile of each mine plan. Mostly the mine plan with the highest NPV value is chosen, without making an informed risk profile of each scenario in consideration. The risk factors to be taken into consideration are:
 - Information risk;
 a. Accuracy level of information used;
 b. Geostatistic expertise;
 c. Applicability of models.
- Physical risk;
 a. Geotechnical conditions;
 b. Mining methods used;
 c. Beneficiation methods used;
 d. Mine layout risk;
 e. Geohydrological conditions;
 f. Plant design

- Production risk;
 a. Production rate;
 b. Equipment availability;
 c. Equipment utilization;
 d. Infrastructure;
 e. Material properties e.g. moisture content, fineness etc.

- Quality and recovery risk;
 a. Risk of contamination;
 b. Degree of homogeneity of the ore;
 c. Degree of control;
 d. Measuring capability with regard to time and total value chain tracing of the material.

- Resource exploitation - A pit development strategy (resource exploitation strategy) must be defined by determining sensitivities from:
 o Ore quality strategy;
 o Stripping strategy;
 o Selective mining strategy;
 o Waste rock dumping strategy;
 o Pit dewatering strategy;
Surface structures;

Adjoining properties; and

Mining Equipment strategy (Asset Management Policy). Mining methods must be developed along with the equipment strategy for maximum utilisation of ore reserves, utilizing the best available technology and the lowest ore losses through the total value chain. Asset Risk Management must be also be done on a continuous basis.

• Grade control - Development of an efficient grade control system ensuring that the short term mining plans are followed within approved norms and the ore product grade values are produced within acceptable limits.

• Plant’s physical capability – For the mine production scheduling, the influences on the mineralogical and physical properties of the plant on major components and sections must be taken into consideration. Typically short- and long term planning that leads to mine layout design and scheduling, would only indicate ROM and feed grade predictions. The plant performance predictions and what effect it has on the gold production, must be added in the short and long term mine planning schedule. A mine plan schedule will therefore be created over the total mineral resource value chain.

See Table 4.2.1 for summary on the optimal exploitation of the mineral resource operational strategies.
<table>
<thead>
<tr>
<th>BUSINESS GOAL UNITS</th>
<th>OPERATIONAL STRATEGY</th>
<th>FOCUS AREA</th>
<th>TARGETS OR OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The optimal exploitation of the mineral resource: The optimal exploitation of the mineral resource by effective exploration, the collection and processing of geological information, mine design and scheduling, risk management, grade control, mining methods and the utilisation of the best available technology to continuously satisfy the plant demand in terms of ore quality and volume.</td>
<td>Exploration</td>
<td>Optimize the mineral resource by executing the exploration strategy / programme</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Develop and follow the formal exploration strategy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geomodelling</td>
<td>Continuously update geological and grade models that add most value to mine planning exercises</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geotechnical support</td>
<td>Develop system to assess the risk of slope failure versus the financial benefit that will add the most value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dewater pit in accordance with LT mine plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decrease stripping ratio</td>
</tr>
<tr>
<td></td>
<td>Pit Design</td>
<td>Evaluate methods for optimum pit design techniques by allowing for ore grade and the maximum utilisation of the mineral resource</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resource Exploitation</td>
<td>Pit Development Strategy/Resource Exploitation Strategy. Determine sensitivities for the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Ore quality strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Stripping strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Selective mining strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Waste rock dumping strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Pit dewatering strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Surface structures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Adjoining properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Mining equipment strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mining Operations</td>
<td>Develop mining methods and equipment strategy for the maximum utilisation of the ore reserve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade Control</td>
<td>Develop an efficient grade control system ensuring that the short term plan is followed within approved norms and the ore product grade values are produced within acceptable limits</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2.1: Operational Strategy - Optimal exploitation of the mineral resource

4.3. **Plant design and operation in terms of maximum resource utilisation by predicting the future plant performance:**

- Basic mineralogical characteristics of the ore types such as:
 - Liberation factor (grain size and intergrowth);
• Maximum recovery potential – the value of this parameter taking the AU value in other minerals;

• Detrimental mineral influences – rock that has a negative influence on the grade and recovery of ore;

• Maximum mineral recovery – derived from the liberation factor taken as a linear relationship. The total orebody should be described mineralogically and physically as required for the required mining and beneficiation processes. The exploration description of an orebody should therefore take the proposed beneficiation and mining process into consideration.

• Optimum beneficiation - Developing and installing equipment according to the requirements set by the different deleterious effects of other minerals in the ore types as well as the ore type’s characteristics, and to achieve the plant operating requirements to the desired set standards.

• Optimum product blending - Stack ore on product blending beds according to the correct batch size and blend ore types homogeneously on designated beds according to the physical properties of the host rock.
<table>
<thead>
<tr>
<th>BUSINESS GOAL UNITS</th>
<th>OPERATIONAL STRATEGY</th>
<th>FOCUS AREA</th>
<th>TARGETS OR OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Plant design: Plant design and operation in terms of maximum resource utilization</td>
<td>SUFFICIENT LIBERATION: Crush different ore types to the correct size</td>
<td>Specific processes for specific ore types</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMUM BENEFICIATION: 1. Develop and install beneficiation equipment according to the requirements set by the different ore types 2. Operate plant according to set standards</td>
<td>Crush to the correct size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMUM PRODUCT BLENDING: 1. Stack ore on product blending beds according to the correct batch size 2. Blend ore types homogeneously on designated beds</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3.1: Operational strategy – Plant design

4.4. Full utilisation of existing systems and key principles

- Performance Management Systems - Skills gaps need to be determined in relation to job requirements. Diverse candidates must be identified, evaluated and contracted for fast tracking programs. Formal measurement or appraisal to sustain the performance of people, needs to be done to identify opportunities and continuous training needs. Remuneration anomalies need to be identified and rectified.

- Information Systems - Divisional practices and standards need to be evaluated and comply with best operating practices. It must integrate practices, standards and technical functions with the Information Management Enterprise System (IMES), and with each other.

- Communication - Communicate regional goals for staff involvement and commitment, whilst displaying a unified participative management approach.
• Establishment of monthly staff forum to incorporate all divisions;

• Identification of appropriate methods of communication, and implement it.

• Balance Short- and Long-term financial objectives. Corporate and Business Unit (BU) strategies need to be aligned while practising normal good management philosophies.

See Tables 4.4.1, 4.4.2 & 4.4.3 below.
<table>
<thead>
<tr>
<th>BUSINESS GOAL UNITS</th>
<th>OPERATIONAL STRATEGY</th>
<th>FOCUS AREA</th>
<th>TARGETS OR OUTPUTS</th>
<th>Measuring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Information utilisation</td>
<td>Integration</td>
<td>Information systems practices and standards need to be evaluated and integrated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seamless integration through whole value chain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interfaced with current IM Enterprise System</td>
<td></td>
</tr>
<tr>
<td>Auditable</td>
<td></td>
<td></td>
<td>Auditable documentation of team decisions</td>
<td></td>
</tr>
<tr>
<td>Measuring / Reporting</td>
<td></td>
<td></td>
<td>Definition of critical MRM indicators</td>
<td></td>
</tr>
<tr>
<td>Reconciliation System</td>
<td></td>
<td></td>
<td>One reconciliation system that is accepted by all parties</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
<td>Communication of regional goals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Improve staff involvement and commitment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Establishment of a monthly staff forum</td>
<td>Dynamic information system through integrated homogenized IM system that is shared by all decision makers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Real time communication and information sharing</td>
<td>Real time models</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resource and reserve forecast</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ore gains / losses trends</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plant yields</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relevant market trends</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deviation in stripping ratio</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constraint performances</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4.1: Operational Strategy – Information utilization
<table>
<thead>
<tr>
<th>BUSINESS GOAL UNITS</th>
<th>OPERATIONAL STRATEGY</th>
<th>FOCUS AREA</th>
<th>TARGETS OR OUTPUTS</th>
<th>Measuring Criteria</th>
</tr>
</thead>
</table>
| 5 | *Balance short- and long term financial objectives*
This is a linkage between strategic and operational planning, manifested by the translation of company goals into operational mining plans, which will realize the desired growth. | Alignment of Corporate & BU strategies | Maximize LOM vs. Maximize value
Capital investment requirements
Growth Strategy vs. Containment strategy
Market development and Logistic impacts
Clear vision | **Incorporating MRM Principles**
Proactive approach to create flexibility
Utilization / creating opportunities
Reduced risk |
| | **Supporting of long- and short term financial targets** | Scenario planning | Stripping ratio's
Plant yield predictions
Reserve definition
Short term tactics against medium to long term impacts | |
| | **Dynamic multiple sourcing** | Asset Management
Blending resources | Adherence to
Increase low grade utilization
Multi-disciplinary team daily management | |
| | **Maintaining MRM targets** | Quantity
Quality
Costs
Ore utilisation
Improved yield
Plant efficiency
Protocols & standards | Defined |
<table>
<thead>
<tr>
<th>Financial Models</th>
<th>Due diligence</th>
<th></th>
<th>Implemented</th>
<th>Agreed</th>
<th>Comply to international norms</th>
<th>Internal audits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linking of operational activities to bottom-line models</td>
<td>Scheduling simulation expressed to financial models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial standards and assumptions all signed-off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk Management</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage long term and short term risks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production capabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ore availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assumptions made</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unforeseen disasters or political risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asset Management</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Maintenance planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control & management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology Strategy</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Maintenance & TPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficient Mining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficient Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown & Turnaround</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine Work Measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Tactics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capital</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4.2: Operational Strategy – Balance short- and long term objectives
<table>
<thead>
<tr>
<th>BUSINESS GOAL UNITS</th>
<th>OPERATIONAL STRATEGY</th>
<th>FOCUS AREA</th>
<th>TARGETS OR OUTPUTS</th>
<th>Measuring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Performance Management</td>
<td>Skills definition</td>
<td>Skill gaps need to be determined in relationship to job requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement</td>
<td>Formal measurements as defined by the Business Units which ensures team driven goal attainment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performance Contracts</td>
<td>Performance contract includes MRM objectives and are shared across team members</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Involvement and commitment</td>
<td>Proactively managed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shared through the total value chain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Training and sensitizing is carried out</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Objectives clearly defined and communicated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication forum</td>
<td>Exist and been used</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organizational attitude</td>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Team performance</td>
<td>Common goals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benchmarking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reward & Recognition System</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4.3: Operational Strategy – Performance Management
5. BEST OPERATING PRINCIPLES & MEASURING CRITERIAS OVER THE VALUE CHAIN

The methodology required to implement non-measurable MRM philosophies are over two levels, namely: the Integration/Collaboration level; and the Commitment and Creativity level. Tools for both these levels exist, as seen in paragraph 7.1: The culture required for success.

The integration/collaboration focuses on the linkage between strategic and operational planning, while ensuring integration of the individual functions with the company goals to realize operational mining plans, and the desired growth. Seamless information flow is required to ensure optimal decision making. The Toolkit level or Commitment and Creativity level, provides for the interactive “What-if” analyses that are measured against actual performances and activity driven norms and benchmarks.

Characteristics of MRM principles that therefore need to be considered are:

- Physical and mineralogical characteristics of the resource;
- Limitations and properties of the involved value adding processes;
- Market considerations;
- The economic environment predicted;
- Social and political requirements; and
- Environmental obligations.

In order to ascertain MRM perspective, it is necessary to look at best practice principles and Key Performance Measurement Criterias over the functional business processes as defined below.
5.1. Exploration

The task of the mining geologist is to analyze and interpret the geological structures and to find the key to the grade distribution within these. In this process, the experience of the geologist is often as important as the actual data available, inasmuch as it is supplemented by information that may be outside the data bank in terms of regional geology and general trends.

Best exploration practice principles can be defined as:

- Exploration strategy must be aligned with the LOM strategy;
- Comply with the SAMREC Code;
- One single database locking the following information:
 - Geological observations;
 - Geophysical survey results;
 - Geochemical survey results;
 - Bulk samples – size & method of treatment;
 - Metallurgical test results;
 - Groundwater;
 - Geotechnical & rock characteristics
 - Potential deleterious or contaminating substances.
- Seamless integration of data;
- Monitoring of sampling & analytical standards of exploration have been carried out;
- Extension of the LOM and measurement thereof;
- Increase reliability of resources and monitored against set targets;
- Compilation of a long term risk plan;
• Singular contract management of all drilling per Business Unit.

• Quality assurance of drilling; logging; sampling; and database management procedures have been done twice yearly.

Resource modelling must be done according to ore zones and grade variations in the geological file, but the latest paradigm is to model the orebody according to the different lithological characteristics in the targeted mineral resource. To address this paradigm, the various ore, waste and orebody characteristics are needed.

5.2. Production geology

Best operating production geology principles are:

• Increase in reliability of short and medium term reserves measurement and tracking thereof;

• Identification of geological structures;

• Seamless integration of data transfer between the long term and short term models;

• Integration of a real time production geology (short term) and grade control plan;

• Maintaining good communication with regard to grade control and short term planning;

• Monitoring of sampling & analytical standards of production holes have been carried out;

• Identifying selective mining opportunities;

• Mineralogy of the material must be related to processing and environmental requirements;
• Taking responsibility of plant effectiveness;

• Using performance appraisal indicators that supports MRM initiatives;

• Shift in focus from mine lines to in-situ ore body and ore gains;

• Medium to short term risk plans are carried out to indicate high-risk areas. Conditional simulation must be performed as well as in the medium mine planning side;

• Production geology must ensure optimal reserve utilisation by:
 - Pit inspections in liaison with Grade Control. Pit inspections play an important part in the daily operations in the pit. This comprises daily inspections of all blasted blocks to ensure optimum use of ore. The success of pit inspection centres on the ability to maximise geological gains, but more importantly, by minimising mining losses.
 - Carried out of pit mapping;
 - Agreement on load & dump instructions;
 - Pro-active indication of selective mining areas;
 - Allocation of areas of responsibilities between production geologists; and
 - Carrying out of reconciliation & risk management.

Actions are aimed at ensuring that value is added through growth in resources and reserves by the improvement in operational performance; optimisation of extraction and mining mix; essential mining- and geological recovery; less equipment needed to handle these tonnages; exploitation of opportunities such as enhancement of value and quality assurance; low grade ore utilization; and transparent resource reporting.
5.3. Geodata

Mineral resource evaluation forms a major component of any mineral resource interpretation and is normally performed by the Geology data capturing department. An activity primarily associated with resource evaluation is the interpolation of data and the estimation of resource tonnes and grade. By means of a tonnage / grade curve, the grade and tonnage distribution can be summarized within the mineral resource according to the measured, indicated and inferred reserve classifications. See Figure 5.3.1 for the characterisation of resource / reserves levels.

![Figure 5.3.1: Characterisation of resource / reserve levels](image)

An understanding of the grade- and tonnage distribution of the total resource is fundamental in the first step of composing a proper mine plan.

Along with statistical and geostatistical analysis, and the unique feature of the orebody, interpolation of the grade within the geological model can be done. The
level of grade estimate depends on the mathematical modelling procedure which includes choices between 2D and 3D interpretation; sectional techniques versus block modelling; the weighting applied and top grade cut applied (Snowden, 1996). Decisions made here directly affect the resource tonnages and grade.

5.4. Geotechnical engineering

Near surface exploration for the purpose of assessing soil and rock conditions are essential considerations in the design and construction of mine pits and waste dumps.

Soil has the characteristic that it simply fails. Such failures could lead to large settlements, and redistributing loads to other benches. The properties and behaviour of soil depend on a number of factors such as: grain size distribution, water content, mineral constituents, stress history and confining pressures.

In order to obtain sufficient soil properties, soil evaluation is needed that closely models field criteria. This enables sufficient extrapolation to the field conditions. Prior investigation of previous work in the vicinity and / or of geological maps can often provide an insight into anticipated problems at a particular location. Below is a more complete list of the usual criteria involved in site investigation for a mining operation:

- Vertical and horizontal variations in the strata at the site and the engineering properties of the soil or rock encountered;
- Ground water conditions and the influences of changes in these on the engineering properties of soil or rock encountered;
- Degree of stability of slopes on the site;
- Corrosion potential of soils and ground water;
• Possible signs of distress in existing structures on and around the site and where such indications were evident, an assessment of their cause and cures;

• Method of construction;

• Determination of soil behaviour when subjected to vibratory loading (etc. blasting);

• The possibility of soil liquefaction during seismic activity;

• Preliminary recommendations on the most appropriate foundation type or configuration for a particular structure;

Outcome or KPI’s are:

• Analyse and design the optimal pit slope and communicate to all parties;

• Ownership of the implementation and maintenance of slope monitoring network;

• Development of a slope monitoring strategy. Deviation needs to be communicated;

• Develop a Risk management strategy and focus on optimisation. Formal communication must exist to advise exploration geology on needs, and pit production on critical cleanup areas. Optimization benefits with regard to slope design impact on the optimal ore utilization and / or recovery, must be communicated;

• Implement and monitor dewatering strategy that is aligned with long-term & medium-term mine plans. This must be based on the Geohydrological simulation model. Timing on the dewatering has an impact on the availability of the required ore qualities;

• Residue deposit design (Waste dumps & tailings dams) to be approved to ensure no ore sterilisation;
• Pit wall control (pre split, buffer drilling and pit wall scaling) management as included in mine planning. Using of specialized (approved) software packages can give design parameters to mine planning taking timing into account.

• Contributions to long-term & short-term risk plans.

• Input to production blasting fragmentation strategy;

• Management of an integrated database.

Maintaining a consistent assessment of confidence would require that the confidence of the slope design should match that of the mineral resource estimation between the different confidence levels. It is therefore proposed that for open pit designs, the confidence levels for slope designs should be categorised using the same fundamental approach as that adopted for resource / reserve definitions.

5.5. Grade control

In most of EWAR mines, grade control is essential to determine ore blending and mining practices. Advanced technological systems and teamwork helps to provide new solutions and insights into the varied grade problems, and also helps to re-define the mineable ore reserves. Due to structural complexity of the geology, ore content varies considerably throughout the orebody. This variability is an important factor in the prediction of ore grades in the geological model, and therefore also in mine planning, production scheduling, and grade control.

Grade control sections normally utilize information from a number of resources to control ore blending. Any weak link in this communication channel could therefore contribute to an ore loss. By conforming to ISO 9002 quality standards,
it prescribes the quality management systems needed to estimate qualities and
tonnages for planned mining blocks. This ISO standard can be a valuable tool to
reconcile information available for mine-planning scheduling and costing. Up-to-
date information can lead to better risk analysis and decision making production
control.

Composition of grade control is statistically normally done by inverse distances.
Shortcomings of this method include:

1) The process of composition implies that quality prediction of the ore
takes place across geological boundaries whilst geological homogeneous
domains are prerequisite for grade prediction;

2) No clear confidence level can be stated for the predicted values.

Ordinary kriging overcomes these shortcomings by constructing a variogram
model and anisotropy factors for each homogeneous area for every relevant
element in each domain. This provides input parameters for the kriging process.
Kriging therefore provides more accurate average values over several composite
blocks than inverse-distance. In AngloGold Ashanti EWAR mines where most
deposits are mined selectively, the optimal method of evaluation of individual
blocks can be obtained by kriging. However, even if kriging is used, an error will
remain in the estimation of the blasting blocks. Consequently, the tonnage mined
and the corresponding average grade will differ from the tonnages and grades that
would be mined if we knew the exact true grade distribution, but by increasing
blasthole sampling to a point where the relative kriging error is reduced to 0.2, the
estimated ore tonnage will be closer to the optimum.

The aim therefore remains one of continuous improvement in the ability to collect
and analyze data quickly, to present the data in some friendly visual format, and
then to use it in the decision making process. Principles and Key Performance Indicators for Grade Control can thus be defined as:

- Grade Control must be an integral part of the Mineral Resource Management process. They must agree on the execution plan with the short term scheduling and production geology and agree on the definition of ROM with production geology in blasted blocks;

- Grade Control information must integrate seamlessly through the value chain, especially between real time production geology;

- Coordination with selective mining;

- Applying an approved stockpile building strategy that includes communication with the plant feed logistics;

- Pro-active grade control at the mining face;

- Relevant training to ensure evident Geological/Metallurgical background in the management of the grade control;

- Effective monitoring of plant performance by Grade Control;

- Intensive co-operation with production personnel in daily forums to ensure thru target alignment between geology/production/plant;

- Using of a simulation model for ore blending is reconciled regularly with the floor stocks. Recalibration of beneficiation factors (algorithms) must be done.

Reviewing existing information and applying scrubbing and re-evaluation techniques can improve the accuracy of the geological information.
5.6. **Survey**

Principles and Key Performance Indicator’s of the Survey Function are as follows:

- Seamlessly survey information transfer through the total value chain;
- Real time floor stock and stockpile monitoring;
- Managing of only one reconciliation system for the MRM value chain - Reconciliation is an essential tool for any mine to improve the estimating procedures and to measure the variances between the planned and actual production. Regular reconciliation is necessary to evaluate the validity and accuracy of the geological model and mine planning by comparing the actual production i.e. volume, tonnages and grade achieved in a specific area or time with the planned production.

In most mines the product or metal is separately accounted for in two primary operations, namely mining and processing. The mine will determine the metal content in the ore mined by the various estimates and measurements of volume, tonnages and grades. The processing plant, in turn, will determine the amount of metal received, the amount discharged to tailings and the discard dump as well as the amount recovered by measurement and analysis.

It must be realised that ore losses occur and by using modern database information systems, reconciliation between long- or medium term plans and actual tonnages and grades can be estimated, but due to system insufficiencies and communication problems between the various mining support services, ore losses cannot be quantified.

Using different operating systems and databases in the mentioned departments, communication and information flow lacks and limits a mass balance audit trail from the daily mining and plant production. In order to keep track of what has been mined and planned for, it is necessary to record the various parameters of the material from its in situ position in the blasting block, onto the different stockpiles, through the
crusher in the various stages of the beneficiation process, timely and accurately, to make changes in a constant process. Furthermore, this mass balance sheet must be integrated with the mine’s reserve and resource statement for annual update and reconciliation.

Mine line (expected ROM ore) calculations must be done from the geological models by interpolating the mine out volumes determined by the surveyors. This is the basis of the forecasted tonnages and the mined out tonnages must by reconciled with these tonnages. As mentioned, the stockpile movement must be considered as well as the geological- and mining losses or gains.

Every tonnage is also expressed in percentages for easy fault or variance determination. Furthermore, the monthly, year-to-date and forecasted stripping ratios are very important for an open pit mine and these calculations can be determined from these flow sheets.

Part of the compliance and reporting rule for metal accounting is to prepare a checklist over the various stages of reporting in Resource Management. This must be compiled for complete ore flow management and cash flow analysis.

Survey is also responsible for:

- The co-ordination of Geographical Information System (GIS);
- Utilization of GPS Technology to improve accuracy and reduce time;
- For the demarcation of selective mining zones.
- Simulation model of blast induced rock movement and to predict mining zones after blasting.
5.7. Mine planning

Mine planning must be done to support the strategic direction of the company and must be communicated to all parties, especially to defining, managing and communicating the risk that goes along with the outcome of the plans. Furthermore, the function of the mine planning department is to constantly review the operational methods adopted and to adopt those methods and technologies which will see a further reduction in the cost of production.

Mine planning is concerned with physical exposure of ore in any given time at a specific grade and tonnages.

- Quality control & validation of geological models by means of an audit process;
- Carrying out of geo-statistical evaluation of ore bodies in homogeneous geological areas.
- Creating of chemical quality models based on established geological parameters. Biases need to be checked against real trends.
- Validation and re-calibration of chemical quality models, by means of correct geo-statistical models;
- Seamless integration of the models for Production Geology and Planning;
- Applying custodianship for management to ensure integrity of the database;
- Apply SAMREC standards in the preparation of the resource statement.

By identifying the inventory, spatial location of reserves and dumps, and quantifying operating and mining strategy, the following objectives as in a suggested ranking order should be obtained:
● Creation of an acceptable return for shareholders corresponding to the market sector and corporate philosophy;
● Creation of an acceptable operating cost to final product relative to world producers;
● Flexible requirements within plan e.g. upside potential to increase product volume by 15% within 6 months sustainable for 12 months; and
● Maximise NPV.

Mine planning must be risk based to plan for uncertainties. Experience has also shown that the improvement in communication and understanding of decision-making between management and mine planning engineering has added considerable growth for shareholder’s value. Mine planning is currently being done in three stages, namely:

i. Life-of-Mine Statement: the building blocks for Strategic Thinking. The life-of-mine plan is therefore a definition of the inventory available which exploited and managed the maximum value to shareholders in accordance with corporate policies and philosophies;

ii. Business Plan: is the route map to the future; and

iii. Operation Plan: annual budget / forecast

The Reserve Statement is usually the only representation of the future in the LOM. It suffers from several draw-backs, namely: It already contains mining decisions (minimum mining thickness, dilution etc.); it contains no measure of value (grade and tonnages give only a poor measure of profitability); and the “National” reserve definitions often constrain the statement to a short term future by accepting only measured and indicated.
The Reserve Statement is also usually much too short for strategic thinking. Life-of-mine open pit represents the outline of the open-pit boundary faces with no further reserves to be recovered by open-pit mining. For this reason a cut-off criterion is proposed which is the cost of producing the finished product from the final increment.

Typical financial criteria are insensitive to the boundary limit location and it is important that every mining block should be investigated for profitability at these limits. Compared to the traditional cut-off grade approach to pit design, the essential difference lies in the emphasis on determining the mining costs, either to the ore process point or to the stockpile or waste location. The emphasis is therefore that the decision must be based on cost of production rather than profit, which is related to assumed price.

Deciding on an acceptable cut-off is a business decision. It reflects the optimism and the risk which the company is prepared to accept in investing in the particular ore reserve. Some guidelines and principles underlying such a decision can however be postulated as follows:

1) The tonnage vs cost relationship for the ore reserve can be a first indicator. Should the cost indicate an inflection point, this could be taken as a decision on cost limit since the risk increased in cost, is not matched with a corresponding increase in product.

2) Cost in relationship with other world producers. Reference to a world producer cost curve is therefore necessary. The relative position of the planned operation on the world producers cost curve is a function of corporate philosophy. This also represents the acceptable margin of risk compatible with the company’s stated mission and philosophy.
3) The cut-off cost could be based on the breakeven equivalent underground operating cost. These cost comparisons are made on an operating cost basis only, ignoring capital.

Accurate cost modelling forms an essential part of mine planning, where different cost models apply to different planning phases. Many mining simulation packages are available which can produce a realistic schedule of production cost over a period and can reduce the amount of work involved and concentrate the effort and skill of the planning team to those issues to which they can contribute most i.e. improvement of the mine plan.

In the Business Plan, the targets and tactics are as follows:

- Financially / Productivity;
- Operational Effectiveness: continual adjustments of processes and procedures to make them more appropriate to conditions on mining difficulty;
- Flexibility: Ability to increase metal production / decrease cost for defined periods (amount of fully developed / exposed ore, amount of drilling ahead);
- Planning Category conversion: Material from inferred to indicated etc.
- Capital program: Ensure program schedules achieved.

Mine planning has a complexity in the measurement achieved and it is recommended that there must be focus on two categories, namely: Organisational Structures and Key Dimensions. Organisational Structures involved cultural and organisational structures, systems, people and management practices such as:
Mine planning protocols and set standards with scheduled outputs, dates and responsibilities.

Incorporation of risk analysis into planning by establishing management control on critical variables.

Optimal stripping strategy in terms of volume, product qualities, and cash flow.

Buffer stockpiles management

Application of SAMREC and JSE standards.

Mine Planning is all about the span of control where constant improvements are investigated from a hierarchical level. Acquisitions, joint ventures, shut downs, internal development, divestments and restructuring are all methods to improve or gain a competitive advantage. Enabling strategies also refer to internal and external strategies. Internal strategies are all about:

- Training;
- Technology
- Incentives / rewards;
- Systems;
- Services; and
- Quality.

While external strategies look at:

- Customer satisfaction;
- Value;
- Pricing;
- Quality
- Reliability
Key dimensions or key principles can be defined as:

- Economic pit layouts that incorporate bench heights and equipment strategy;
- Design and selection of mining methods and equipment. This ensures continuous mine improvement, operational effectiveness and ore recovery;
- Real time management systems that are integrated with other value chain elements. Management Information Systems serve the report and make provision for measurement of information for the achievement of goals and strategies. It is all in “what gets measured, gets done”.
- Financial performance;
- Interactive simulation within the scheduling environment;
- Multi disciplinary mine call factor team;
- Evaluation of alternative stripping scenarios;
- Effective use of technology / new innovations or products;
- Mapping of the mine planning process through all three stages namely:
 - LOM;
 - Long Term planning. The following important variables need to be evaluated according to throughput:
 - Geological conditions, mining conditions and mining methods;
 - Optimise contamination levels by effective utilization of low-grade areas as well as material compatibility (ROM) according to beneficiation properties. Furthermore the management of stockpiles and the buffer capacity between mining and beneficiation needed to ensure least outage;
 - Smoothing of production cost and product yield;
 - Choice of mining horizon;
Short term planning. Questions that need to be considered are:

» Maintenance schedule of the process plant
 - Maintenance of the mining equipment within the shut down times;
 - Waste mining during the plant shut down period to decrease rehandling from the stockpiles;
 - Must look at the availability of the mobile cranes between the plant and the major mining equipment.

» Blasting
 - Is it necessary within a critical area?;
 - Are the tonnages needed? Can the blasting be postponed when more blocks are available to blast?;
 - Can blasting be postponed if equipment is broken down within the scheduled blasting area?

Long-term planning

In the long term environment where Whittle 4X are used, certain limitations have been found:

1. From an equipment capacity point of view, the schedule is not taken into account for pit room limitations.

2. The schedule only considers economics based on cost and income and results in high variations in ore quality from one year to the next.

To address these shortcomings, a South African firm, “Large Scale Linear Programming Solutions” created a linear programming (LP) package based on the scheduling system. This LP package was provided by Haverly Inc. & Dash and is
widely used in the mining industry. This package is capable of using multiple processors through a network, assisting in solving large LP matrices and cutting down on solution time. The aim of a linear programming model is to design a maximum profit, maximum net present value or a minimum cost plan.

For the LP scheduling, the Whittle optimised final pit limits are needed through the Whittle interface of the general mining package. The LP works on the principle that if a block is to be mined, it must mine all the blocks above it as used by the Lerchs Grossman algorithm in Whittle.

Weighted average ore qualities, mining and plant costs and ore and waste tonnages per block are accumulated in a separate list for each pit that can be mined independently. Equipment capacity constraints are provided by subdividing the total mine model into pits, each with minimum and maximum tonnages to be mined for the next scheduling period. The maximum tonnage is determined by the number of shovels that will fit into the pit, each requiring two blasting blocks with a preset face length. Although these standards may increase, it will require a lower utilization of equipment as a result of frequent blasting and a lot of time spent on waiting and travelling between blasts. The minimum tonnage per pit can be used in order to force the LP to mine out a specific pit prematurely, for example, during an investigation into the potential of backfilling of waste rock from adjacent pits. After each scheduling run, normally a one-year period during which the LP has found the optimum combination of blocks meeting the constraints, can the cost of mining and the final grade of ROM product be evaluated and compared using a short term auto scheduler package such as XPAC. (Source: L. Scheepers)

In Figure 5.7.1 a typical a waste stripping curve can be seen which shows the following:
- The maximum stripping curve is the cumulative ore and waste mined if mining is done bench by bench from the top to the bottom.

- The minimum stripping curve is the cumulative ore and waste mined if mining is done according to the LP schedule without any exposed ore reserves and pre-stripping.

- The planned stripping curve is the cumulative ore and waste mined if mining is done according to the approved stripping strategy, ensuring the required ore exposure and future profitability of the mine without high risks.

![Figure 5.7.1: Minimum & Maximum Stripping Curves](image)

The LP schedule therefore follows the same pattern in pit deployment as the Whittle schedule but looking additionally that low cost pits are usually mined at a lower rate and high cost pits mined sooner due to ore quality and pit room constraints. It indicates:

- Which blocks from
which pits are to be
- blended in which proportions in
- which time periods and routed to
- the plant in order to meet mineral specifications so as to optimise cash flow, NPV or costs.

It generates the “how to get the optimal pit as generated by Whittle over time” scenarios. It further highlights the possibilities in terms of future ore quality trends and is a handy tool in order to evaluate and quantify different pit deployment strategies.

The LP model will only “mine” while the contribution of the total system remains positive. Each block is techno-economically evaluated in the full context of ALL CONSTRAINTS in the model, including an element of cross-subsidy, e.g. a given layer / bench of blocks may be unprofitable to mine, however, a block or layer / bench below it may be of sufficiently high grade to economically warrant the mining of the unprofitable layer / bench or block in order to reach and extract the high grade layer / bench or block. It should be clear that the model does not use conventional cut-off grade policies to decide whether to mine a block or not. It is far more complex than that, e.g. if mining costs increase with depth, the model will for example, cease mining at that layer where the contribution of the TOTAL system becomes zero or negative. (This in itself can be an indication to initiate underground mining).

Medium-term planning

On the medium-term planning there must be a rolling 18-month plan, where the main deliverable, is quantification of the operating cost. An optimized production schedule will have the least cost and the minimum risk that is obtainable. Final
product grade, cost of production, and “what-ifs” are furthermore important criteria that must be considered in the mining plan.

To be able to do this, it is now possible for the mine-planning engineer to know if the production process was effective and efficient. A prediction of the associated profit for each block or a combination of blocks can be made. A marginal mine block can therefore easily be identified and selectively mined so that profit can be made above the associated mining cost while mining dilution will be at minimum. Using this technique, a cost ranking exercise is completed. During scheduling, the combination of material from each pit or each shovel must be controlled in order to achieve the best blending scenario. The quality of the blend of material can be set according the geological and metallurgical specifications as required by mining or the beneficiation plant. See Mining Operations: Selective Mining.

Waste dump scheduling is crucial in mining planning, although less focussed, in comparison to the mine pit scheduling and layout. In open pit mining where normally high stripping ratio can be found, the mining cost is normally in the waste mining and therefore the waste dumps design and scheduling needs to be incorporated within medium-term planning.

By incorporating the haul road networking in the medium-term software packages, the best suited waste- and ore dumping position can be created. Animation and visualization is also helpful to easily simulate and communicate the mining operation’s actions and deficits. Risk on these deficits can then easily indicate future impacts.
Other Key Performance Indicators (KPI’s) for mine planning are:

- Frequency and on time mining plans while progress has been achieved to improve value;
- All mining standards have been revised for complete mine plan understanding;
- Continuity of plan;
- Accuracy of grade, tonnages and cost has been predicted;
- Adherence to plan through the total value chain.
- Development of a real time planning process (dynamic life of mine)

Furthermore, the following parameters must be incorporated into the mine planning phase, especially in EWAR where the mining engineers on the mine site are responsible for implementation, maintenance and control of it:

- Rainfall precipitation;
- Block specific risk (Fragmentation, digging rate, rock types)
- Grade estimate risk, using conditional simulation;
- Dewatering risk area’s;
- Equipment information (Replacement and rebuild schedule, allocation, optimal workable bench height etc.)

5.8. PLANT

The plant must be aligned with geology (in-situ reserves), mining (planning, scheduling and production), and the market (specifications and volume) by:

- Measure and reconcile the plant’s performance, primarily to actual material received and not against budget and planned targets;
- Measure the mining activities primarily to deviation from the given mining plan and not against ROM targets;

- Lab quality assurance is in place with optimised analytical techniques and improved integration of information and sampling results.

- Measure the mining activities primarily to waste/ore relationship and not feed grade.

- Cost estimates that are linked to the beneficiation plant are:

 a. Power distribution
 b. Tailings storage
 c. Water supply
 d. General plant services
 e. Access roads
 f. Employees required
 g. Mill operating cost / ton
 h. Plant operating cost / ton for different material types
 i. Administration and General Services

- Plant effectiveness monitoring looking at:

 - Screen grading;
 - Density deviation;
 - Production rate;
 - Beneficiation and effectiveness;
 - Yield; and
 - Total metal balance (monthly basis).

- Modular plant maintenance ensuring minimum total shutdown is applied to reduce production downtime looking at Shutdown and Turnaround management.
Companies that started using this maintenance procedure received great benefits and it appears to be a catalyst in realigning the plant personnel and providing a focus on planned work. In terms of feedback received on the major focus areas has been on differentiating between the modular and single line equipment and maintaining the focus on the latter during the shut. Here also the establishment of maintenance plans has been a challenge to the implementation. Mini shutdowns procedures prove to be compliment it

5.9. Mining operations

5.9.1. Selective mining

Selective mining deals with the identification of recoverable ore outside the definition of profitably mineable ore, or the upgrading of low-grade ore by applying an appropriate mining method.

Each ore/waste block must be inspected on a daily basis to ensure that the material is transported to the correct destination. The main emphasis is to offer alternative solutions for material classified as ore, but which has been contaminated with waste. Another purpose of these routine inspections is to confirm the accuracy of the different classifications as loading progresses, and to advise on ore occurring outside an ore classification. Information gathered during the inspection may result in the mine line being shifted or areas reclassified for selective mining.

It is generally the current practice that the contaminated ore is blended in on an ad hoc basis at a slow rate, or left in the mine for long periods, or when it hampers progress, it is reclassified as waste and transported to the appropriate dump. In most cases it resulted in a mining loss of ore.
To counter this abuse of potentially valuable ore, special dumps must be created to stockpile this diluted but high quality material. The material must be stockpiled until it can be blended in, or the beneficiation process is enhanced by technologically more advanced methods.

During mining, some degree of selectivity is applied during mining. Blocks & panels whose estimated value exceeds a specific cut-off grade are proposed as ore blocks, while blocks estimated cut-off grade are treated as waste. The decision to classify a block as an ore or waste block is made on the basis of the detailed but incomplete information available at the time mining takes place.

Information that can be used to classify a marginal blasting block either as ore or waste, are channel samples from the exploration drill holes, or the assayed blastholes. Consequently, some blocks will be estimated as being below cut-off grade whose true grade exceeds the cut-off grade. They will be incorrectly treated as waste blocks. Other blocks will be estimated as being above cut-off grade whose true grade is below cut-off grade. They will be incorrectly treated as ore blocks. In Figure 5.9.1.1 a scatter diagram shows a mining block represented by a horizontal block, estimated value Z^*, and a vertical true value Z. Ideally, one would mine only the ore blocks with true value Z exceeding the cut-off grade, but in fact, blocks will be mined whose estimated value Z^* exceeds the cut-off grade.
The scatter graph is divided in four sectors. The first sector contains ore blocks that will be treated as waste. The second sector contains ore blocks that will be treated as ore. The third sector contains waste blocks that will be treated as ore. The fourth sector contains waste blocks that will be treated as waste. The number of blocks falling in the first and third sector should be minimized.

In a selective mining environment, two types of dilution should be taken into account, known as external and internal dilution. The external dilution is caused by limitations in the mining method while internal dilution reflects a weakness in the method of reserve estimation. Both should be minimized to allow the minimum amount of ore to be sent for treatment.
Factors that influence the selective mining process are identified as follows:

<table>
<thead>
<tr>
<th>Process Variables (impacting on quality)</th>
<th>Estimated Impact of Variable on Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sampling accuracy</td>
<td>High</td>
</tr>
<tr>
<td>Function of:</td>
<td></td>
</tr>
<tr>
<td>- Lab accuracy</td>
<td></td>
</tr>
<tr>
<td>- Sampling methods</td>
<td></td>
</tr>
<tr>
<td>2 Accuracy of geological logging</td>
<td>High</td>
</tr>
<tr>
<td>Product dependant on geologist’s knowledge. Function of training and experience.</td>
<td></td>
</tr>
<tr>
<td>3 In situ orebody complexity</td>
<td>High</td>
</tr>
<tr>
<td>4 Accuracy of geological model</td>
<td>High</td>
</tr>
<tr>
<td>Function of:</td>
<td></td>
</tr>
<tr>
<td>- Ore definition</td>
<td></td>
</tr>
<tr>
<td>- Model’s structure</td>
<td></td>
</tr>
<tr>
<td>- Geological interpretations</td>
<td></td>
</tr>
<tr>
<td>- Geostatistic methods</td>
<td></td>
</tr>
<tr>
<td>- Algorithms – Sink/Float tests</td>
<td></td>
</tr>
<tr>
<td>5 Mining complexity/inaccuracies on blast blocks</td>
<td>High</td>
</tr>
<tr>
<td>- Block orientation</td>
<td></td>
</tr>
<tr>
<td>- Movement due to blasting</td>
<td></td>
</tr>
<tr>
<td>- Mining method</td>
<td></td>
</tr>
<tr>
<td>- Equipment size</td>
<td></td>
</tr>
<tr>
<td>- Loading procedures</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.9.1: Variables impact on Quality
Other methods that should be considered in selective mining are:

i. Contamination control where homogenized material are sent to the plant to minimize plant cost and improve metallurgical recoveries and plant throughput.

ii. Utilization of low-grade ore through the life of mine must also be constantly investigated.

iii. A Blasting (fragmentation) optimisation program is in place with selective blasting of ore zones (where applicable.)

iv. There is strict adherence to the planning schedule and follow up procedures on deviations.

v. There is formal collaboration with Grade Control and Production Geology.

vi. Clear control on blast hole sampling is evident and continuous audits with reporting structures are in place that is focused on optimised ore utilisation.

vii. There is commitment to selective mining and procedures to ensure compliance.

viii. There is strict adherence to loading and hauling instructions.

A commitment to selective mining and procedures must be given to ensure compliance. The costs that should be considered during selective mining are:

i. Beneficiation costs – more dilution creates higher metallurgical cost due to higher tonnage throughput x treatment cost / ton.

ii. Incremental cost - the benefit if ore is mined somewhere else.

iii. Costs of selective mining – the cost to load or track doze ore or waste separately from waste or ore. Selective mining also has lower production rates which cause production delays.

iv. Mining cost – Cost difference between waste mining and ore mining considering further / nearer hauling.
5.9.2. **Double Handling**

As with all mining practices, ground rules should be applied to set standards. The main rule applicable for double handling stated that transportation of material to special stockpiles can only be allowed if the material impedes the expansion of the pit in that specific area. If the situation does not meet this criteria, the material is left at its location until such time that it hampers expansion or can be used for blending purposes. This rule limits double handling of the materials and limits the potential growth of the special stockpiles and unnecessary mixing of material.

5.9.3. **Reconciliation**

The relationship between mining and plant can be determined by the Mine Call Factor (MCF), namely the Plant Head Content divided by the Mine Head Content. See Principles and KPI’s: Survey for detail discussion.

5.9.4. **Information Technology Management**

Technology enablers are a pre-requisite for the sustainable application of Mineral Resource Management. Benefits between the in-situ reserves and transactional areas of accounting, human resources, materials management and beneficiation can be aligned by related information technologies. Critical areas of focus are alignment of business systems with the operational planning; and the tracking and monitoring of production and commercial information.

Currently at EWAR, communication and information flows lack, thereby creating system inefficiencies. Most of the communication and information are via e-mail, which lead to complex data capturing and extensive lead-time before any sensible analysis and trends can be made. Problems experienced currently are:
1. No information flow integration between the mining sites and head office;

2. Wrong factors and budget figures were used due to more than one version being created while the latest reports were sent to different persons;

3. Inability of departmental analysts to do proper measurement / benchmarking and trend comparisons, due to not obtaining information within time. This leads to time constraints for proper trends and analysis.

4. Strategic contingencies such as:
 - Total metal balance sheet;
 - Bulk Mining Equation Spreadsheets;
 - Volume optimization;
 - 3 Year graphs for all CPI’s;
 - Optimisation between mine centers have not been done.

5. Conflicting performance measurements.

A great deal of time and effort is spent on reporting weekly and monthly performances from each mine. Not only one person is involved in creating these reports but a series of activities that are connected to each other are needed from different persons. Each activity has an input which serves as the driver and each has an output which is usually the driver for the next step in the process. In the middle, you’ve got a series of numbers which specify how much or what percentage of people’s time in this particular department is spent on each activity. The customer channel per product profitability can therefore be determined, adding a new dimension to the process.
The objectives of this process are:

i. Data integration;

ii. Eliminating duplicate administration procedures;

iii. Easy and up to date performance measurement of KPI’s, KPA’s and activity drivers;

iv. Effective benchmarking;

v. Performing business analysis on the performance measurement drivers;

vi. Understand and perform pro-active measurements to improve current performances;

vii. Automated reconciliation on all main procedures;

viii. Easily integrate and enhance regions’ vision and key drivers;

ix. Information value gap analysis;

x. Cost reduction and profit improvements through lessons learnt;

xi. Flexibility to run alternative plans or schedules (looking at contingencies / opportunities); and

xii. Performing risk analysis.

Benefits that will be received other than mentioned above are:

i. Real time computerized reporting;

ii. Improvement of communication between departments;

iii. Inter-departmental database flow;

iv. Decision making monitoring to assist decision making;

v. Cross-checks over the whole information flow;

vi. Compilation of Management reports;

vii. Standardization of information flow;
viii. Theory-of-Constraints (TOC) for daily measurements;

- Can be used to solve problems of bottlenecks, scheduling, and inventory reduction;

- Investigation on throughput analysis that caused a shift from cost-based decision making to decision making based on continuous improvement of processes in which system throughput, system constraints, and statistically determined protective capacities at critical points are key elements; and

- General application to attack a variety of process problems within organizations. TOC logic is applied to identify what factors are limiting an organization from achieving its goals, developing a solution to the problem, and getting the individuals in the process to invent the requisite changes for themselves.

ix. Stockpile volumes and weighted average ore grades on these stockpiles;

x. Daily production reporting of non-productive time and equipment analyses coupled with standard reports;

xi. Lost production and reasons for exceeding or failing to reach the target rates;

xii. Software that can be expanded by the user;

xiii. Clearer picture of the entire process;

xiv. Improvement of decision making;

xv. Aid in adding value to the business

It is critical that supportive processes and IT-systems flow seamlessly between the different value chain elements identifying all key measurements. The trick here is to flow chart and identifies all the key measures which are usually the activity
drivers. When the basic flow has been identified and created, the ideal process line can be identified, bypassing all repetition and delay loops. All non-value-added activity key triggers can therefore be identified and eliminated. If one tends to enhance the IT-process without re-engineering the IT-flow, one tends to lock inefficiencies. There is an awful lot of activity that does not add value within the process flow, measuring and recording trivial and unimportant stuff, while high level duplication across departments also hamper the system.

It must be remembered that IT-systems and process is not a solution to business efficiencies, but a tool to get sound fundamental business processes. One main aspect of such a system is on-time information to relevant decision makers so that decisions on the short term can be optimised or proactive measurement can be taken to leverage production lows and reduce risks. Process improvement, benchmarking and profitability analysis can therefore easily perform that are entirely coherent with what is trying to be achieved.

Therefore, the details of such an IT-system must be derived after the process flow has been optimized and re-engineered. It must also be closely aligned to the regions business process, organisational structure and strategy. The following steps will help to achieve an effective performance management IT-system:

1) Identifying the performance measurements and key resource indicators that the new system will enable. [See Addendum A for KPI’s that need to be benchmarked for the mining department.]

2) Mapping information flows - Information flow mapping identifies how data, information and knowledge are transferred to and from all relevant stakeholders, both inside and outside the working process. It identifies where the transfer adds little or no value, where information is provided in the correct format, whether timely or not and how information is transformed and how it is used. Information Flow Mapping will enable
significant improvement on quality and timeliness of important (or non-
important) data and information. Duplication and redundant information
flow can also be reduced. Furthermore it can improve customer
relationships.

The following needs to be done to ensure effective information flow
mapping:

i. Cross Functional Process Mapping. Depicts – through inputs and
outputs – how works gets done and which functions in the
organisation are involved in accomplishing a given task.

ii. Process Relationship Mapping. Shows – through inputs and
outputs – how each process interacts with other processes.

iii. Functional Relationship Mapping. Provides a picture of key
relationships, expressed as inputs or outputs, between its
departments and its customers/suppliers

Information mapping must therefore commence to provide a thorough
understanding of the information flow. Using the Mineral Resource Management
value chain as a guideline, information mapping needs to be done from geology,
grade control, mine engineering, up to and slightly beyond the plant throughput to
estimate reconciliation between mining and processing. Information that
therefore needs to be mapped is:

a) Where do the inputs come from and in what format?
b) What is done with the inputs?
c) When and how often?
d) In what media or format is it stored?
e) Format of the outputs and to whom?
f) Is the information being used by more than one person?
Detail design of the data, documentation, and functional system needs to be recorded to ensure that inefficiencies can be determined.

5.9.5. Performance Measurement

Performance measurement must relate to a specific Critical Performance Driver, matching employees’ and managers’ actions to the regions’ strategy. This can either be to identify resource allocation where there are problem areas; or to communicate progress towards strategic objectives; or to evaluate managerial performances. Performance appraisals and personal contracts must also support these specific performance drivers.

5.9.6. Quality Management Process

The purpose of the Quality Management Process is to ensure that the final products are produced at 100% within customer specification at point of delivery. This entails focusing on:

- **Preventative Quality Management Processes**
i.e. the control (through rigorous measurement) of production and distribution variables impacting on physical and chemical quality of the required throughput.
e.g. ISO standards, Standard Work Practices according to design

- **Corrective Quality Management Processes**
i.e. The work processes involved and activated when quality deviations occur
e.g. On-mine grade control

- **Effective Information Gathering Infrastructure and Processes**
i.e. Quality feedback loops
e.g. Laboratory outputs

- **Quality Management Philosophies**

 i.e. Supporting and contributing to stable on-mine operations optimizing use of available capacities.

5.9.7. Benchmarking

At East and West Africa Region Corporate Office, the objective is to have a balance between financial, social and environmental objectives. All three parts are interconnected. Intensive due diligence exercises are performed looking at quality assurance and control; standards and protocols; estimation and confidence levels; recognized techniques and models; reasonable levels of reputable external audits; recognition and application of best practices, and public disclosures and scrutiny.

However, since you can’t manage something if you can’t measure it, continuous audits and measurement are needed. This is where benchmarking, analysing of data and studying of best practices comes in. Benchmarking, trends and forecasting are necessary to be able to predict future risk and/or opportunities. In the Mining Department at Head Office, monthly meetings are held, discussing the following mining parameters for understanding trends, risks, future opportunities and/or limitations. These are:

1) For production control:

 - Volume mined;
 - Tonnage mined;
 - Grade mined;
 - Plant feed & grade;
 - Plant throughput & grade;
- High grade ore mined;
- Stripping ratio;
- Rehandling %;
- Volume blasted;
- Average density of material;
- Gold produced;
- Dewatering;
- Grade control;
- Gold produced.

2) Safety figures

- LTIFR;
- Accidents - small vehicles;
- Accidents - mining equipment;
- Value of accidents.

3) Production indicators;

- % Availability (all machinery except support equipment);
- % Utilisation (all machinery except support equipment);
- SMU hours (for all equipment);
- Penetration rate of drill machines (instantaneous Lm/hr);
- Production rate (BCM/hr);
- Powder factor (kg/BCM);
- % Redrilling (calculated from above);
- Truck factor;
- Diesel consumption for all equipment (L/BCM);
- Face length and exposed ore.

4) Cost
- Contractor's cost (US$/BCM);
- Total mining cost (US$/BCM);
- Total mine cost (US$/BCM);

Most of this information is already within the monthly management reports and does not need to be changed, while other information is susceptible for the needed analytical processes and evaluation. All information as mentioned is required on a monthly basis but also in YTD with the corresponding budget or revised budget. A rolling timeline covering a total of a 48 month period has been identified as beneficial in determining trends, risks or opportunities: 18 months history, 18 months forecast and 12 months for current financial performances.

Benchmarking is an important way of improving operational efficiency, but is not a tool for strategic decision-making. Everyone would want to occupy the point on the strategic landscape that the most successful competitor has staked out. Acknowledging this fact emphasises that benchmarking is not a once-off exercise and lean back to experience results. Benchmarking is an ongoing investigation and a learning experience that ensures that the best industry practices are uncovered, analyzed, adopted and implemented. The greatest benefit from benchmarking is from studying practices - the way the work is done rather than the results; and it requires participation of line personnel and management.
McKinsey & Company has identified 7 “generic” ground rules of world class management and analyzing operation effectiveness through benchmarking, the following must be sought:

<table>
<thead>
<tr>
<th>GROUNDRULE</th>
<th>PRE-REQUISITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture</td>
<td>A strong sense of “ownership” with a willingness to take risks</td>
</tr>
<tr>
<td>Portfolio view</td>
<td>Portfolio and asset driven targets with a split between expansion and maintaining production</td>
</tr>
<tr>
<td>Strategy</td>
<td>Operations must be strategically aligned</td>
</tr>
<tr>
<td>Ideas</td>
<td>Idea generation must be institutionalised and widespread with a pertinent value engineering mindset in place</td>
</tr>
<tr>
<td>Consistency</td>
<td>Compliance and standardisation driven by systems, process and tools/methodologies</td>
</tr>
<tr>
<td>Value creation</td>
<td>Rigorous, fact based financial evaluation of all projects with focus to maximise return on investments</td>
</tr>
<tr>
<td>Delivery</td>
<td>All benefits tracked and audited using measurable KPI’s</td>
</tr>
</tbody>
</table>

Table 5.9.7.1: Ground rules for Operating Effectiveness

5.9.8. Technology

Using new technology in mine operations is a strategic necessity to improving safety and operational effectiveness. Implementing new technology can therefore link core products to competencies and skills; knowledge and abilities; and competitive processes and procedures. Most of the time, failure of technology implementation is not with the technology itself, but within the environment to which the technology is introduced. Implementation of technology seems easier when using process environments above the common functional departments.

Technology is dependent on people, process and the technology required. Where these overlap, successful implementation is normally achieved. With this finding,
ground rules have been created for successful technology implementation within the mining industry (A.S. Macfarlane, 2001). These can be defined as:

i. Technology to be introduced must be appropriate to the level of development of the work system;

ii. The technology to be introduced must have a clear objective which is identifiable in terms of bottom line benefit;

iii. The introduction of new technology must be part of a common vision shared by all;

iv. The work system into which the technology is to be introduced must be adequately engineered to ensure its success;

v. The workforce who will operate the new technology or work process must be involved every step of the way in its design and implementation;

vi. Off the shelf technology may not be mineworthy in certain conditions: time must be allowed to establish mine worthiness through redesign and retrofitting;

vii. Quantified benefits must be documented, and mechanisms for sharing experience must be developed.

An essential measurement within a company is to determine and understand the technological health of the company. A useful tool to measure this is by means of a technology balance sheet looking at the technology itself; the role of the technology for the company; the resources that are going to use it; the maturity of the project / technology; the organisational architecture; the team and engineering culture; the products it will be used on, and how it fits within the strategy of the mine. Insights can therefore be gained on:

- Overview of the business technological capabilities in an easy to understand graphical format;
- The current / future markets and products are mapped and also the technologies required to sustain them;
- Which technology is essential to the organisation;
- Level of maturity of these key technologies; and
- Which key technological areas need to be scanned in the external environment for groundbreaking innovations.
<table>
<thead>
<tr>
<th>Processes</th>
<th>Products</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>Product A</td>
<td>Exchange</td>
</tr>
<tr>
<td>Extraction</td>
<td>Product B</td>
<td>Planning</td>
</tr>
<tr>
<td>Feasibility Studies</td>
<td>Resources</td>
<td>Integration</td>
</tr>
<tr>
<td>Mining</td>
<td>Market</td>
<td>Workforce Development</td>
</tr>
<tr>
<td>Geology</td>
<td>Sales</td>
<td>Human Resource Management</td>
</tr>
<tr>
<td>Trade Control</td>
<td>Current</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>Mine Planning / Layout</td>
<td>Information Technology</td>
<td>Risk Management</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>Process</td>
<td>R&D Development</td>
</tr>
<tr>
<td>Blasting</td>
<td>Product</td>
<td>Location</td>
</tr>
<tr>
<td>Loading</td>
<td>Marketing</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>Heating</td>
<td>Customer</td>
<td>Operations</td>
</tr>
<tr>
<td>Quality Assurance</td>
<td>Communication</td>
<td>Sales</td>
</tr>
<tr>
<td>Metallurgical Plant</td>
<td>Research and Development</td>
<td>Distribution</td>
</tr>
<tr>
<td>Ore Reduction</td>
<td>Environment</td>
<td>Operations</td>
</tr>
<tr>
<td>Size Classification</td>
<td>R&D</td>
<td>Marketing</td>
</tr>
<tr>
<td>Beneficiation Processes</td>
<td>Technology</td>
<td>Logistics</td>
</tr>
<tr>
<td>Smelting</td>
<td>Customer</td>
<td>Customer Service</td>
</tr>
<tr>
<td>Process Control</td>
<td>Manufacturing</td>
<td>Financial Management</td>
</tr>
<tr>
<td>Storage</td>
<td>Sales</td>
<td>Sales and Marketing</td>
</tr>
<tr>
<td>Product Handling and Storage</td>
<td>Marketing</td>
<td>Sales and Marketing</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Customer</td>
<td>Customer Service</td>
</tr>
<tr>
<td>SCM</td>
<td>Customer</td>
<td>Customer Service</td>
</tr>
<tr>
<td>Logistics</td>
<td>Customer</td>
<td>Customer Service</td>
</tr>
<tr>
<td>Storage</td>
<td>Customer</td>
<td>Customer Service</td>
</tr>
<tr>
<td>Transporting</td>
<td>Customer</td>
<td>Customer Service</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Customer</td>
<td>Customer Service</td>
</tr>
<tr>
<td>Marketing</td>
<td>Customer</td>
<td>Customer Service</td>
</tr>
<tr>
<td>E-commerce</td>
<td>Customer</td>
<td>Customer Service</td>
</tr>
</tbody>
</table>

Table 5.9.8.1: Example of a Technological Balance sheet or Value Matrix

Legend:
- Large Influence
- Small Influence
- 0 No knowledge or system, new technology
- 1 Lack in technology, low skill level, understanding of process or not used correctly
- 2 Some skill present, process can still be optimised and skills improved
- 3 High level of competency present, in-depth understanding

X’s or O’s Rating

0 to 3 Rating

Role of the Technology
- Key
- Basic

Maturity of the Project
- Emerging
- Growing
- Mature
- Declining

Note
- This table represents an example of a Technological Balance sheet or Value Matrix, which helps in analyzing and prioritizing the role of technology in various processes and their impact on business strategies.
5.9.9. Risk Management

Companies who successfully measure and act on risk-adjusted returns are typically rewarded with:

i. Higher valuations from financial markets;

ii. Higher credit ratings; and

iii. Lower costs of capital.

Small changes in valuation or evaluation can translate into significant returns on investment.

By listing all resource risks; geographically, in business units or market segments, it would assist everyone in the organization in defining process behaviours and outcomes. At the same time, it would provide the necessary diagnostic risk tools to help process owners and specialists in the various functional departments to visualize and anticipate complex relationships for faster reaction time and better defining of current and future operations. Projects and operational functions are therefore more clearly defined and higher earnings could be obtained.

Risk Management is performed to quantify the potential frequency of lost information; to ensure the reliability of information and help with information overflow. Furthermore, risk management is used to determine the potential severity of loss; vividness of consequences; and potential publicity of information. In all it is a tool to manage risk and measure consequences.

The aim is to provide risk reporting so that decision makers can quickly react to changing market conditions, rapidly identify new strategic directions and uncover sources of potential problems before they materialize.
Using Mineral Resource Management will determine the risks over the value chain and by using Risk Management, these risks can be ranked, resulting in:

- Better informed & defensible plans, budgets & schedules;
- Increases the likelihood that the project will follow plan;
- Provides a rigorous assessment of contingencies;
- Reducing the likelihood that economical flawed projects will be accepted;
- Contributes to an informal database of project experience useful to corporate;
- Enables objective comparisons of alternatives;
- Identifies & allocates responsibility to the best risk owner;
- Formalizes corporate experience & improves general communication;
- Improves understanding between disciplines & team spirit;
- Helps to distinguish between good luck & good management;
- Develops the ability of staff to assess risk in everyday tasks;
- Focuses management attention on the real issues;
- Demonstrates a responsible approach to staff, community & environment;
- Allows justifiable economic risk talking from a position of understanding;
- Encourage participation at all levels in the organization.

Other best operating principles that have not been discussed but help to develop and implement best operating practices additionally to MRM are:

- Total Quality Management (TQM);
- Business Process Re-engineering (BPR);
• Optimum Production Techniques (OPT);
• Total Productive Maintenance (TPM);
• Asset Management;
• Project / Capital Management.

6. MANAGEMENT ACCEPTANCE

Commitment from management towards the concept is absolutely vital, and depends on cross-functional understanding and relationships in the workplace. Certain traditional functional departments and their heads definitely must change to achieve the greatest benefits. This includes:

- Change the way they measure and understand their performance and contribution to the value chain;
- People in the hierarchy would have to accept new responsibilities and loose old responsibilities;
- Third parties will have a large input into the management of the production functional departments.

Determine the outputs and responsibilities of the organisational structure, bearing in mind what needs to be accomplished, are fundamental, depending on:

- The size of the Business Unit;
- The type of mining business involved e.g. Owner mining or Contract Mining;
- The amount of production systems across the total value chain;
- The level of maturity of the organisation in terms of cross-functional support and integration;
- The length of the value chain under consideration as regards different major value adding processes involved;
- Total management support;
- Effective change management process;
- Change to performance measurement programme;
- Responsibilities of individual persons.

7. IMPLEMENTATION: THE WAY FORWARD

Implementation would include ensuring that all systems have been used optimally in the value chain and have been integrated with each other. Defining optimization possibilities; information flow requirements; analysing and evaluation campaign and measurement and reconciliation procedures necessary; refinement of necessary work procedures and organizational structures are all to support Mineral Resource Management actions.

The ultimate purpose of Mineral Resource Management is to create value and decrease risk. It starts with the identification of what needs to be done, followed by different states of design, on to operation and ends with the phase-out of the desired outcome. To implement the principals as identified in this document, system or value engineering is the underlying theory to use.

Value engineering process consists of multiple cycles until target is achieved over the total identified mineral resource management chain. This chain consists of five stages that need to be aligned, namely:
Re-engineering is specifically developed to change systems, organisational structures and values, but also the processes that support it. One of these support processes is competency alignment which involves the systematic study, analysis, and assessment of job functions, tasks, and skills required by an organisation, ensuring the best job fits everyone. Competency alignment helps the reengineering process to perform on time, focusing on the right energy / task and creating internal and external customer satisfaction.

Although work teams are emphasized, the institutionalizing of MRM principles across the total value chain is necessary to ensure that the success of the principles does not function individually.

Together with reengineering, system engineering has been used to focus on evaluating and optimising each value chain process step. System engineering focuses on a three phase approach, namely business engineering, process engineering and detail engineering, as defined in Figure 7.2. After a potential business or working methodology is identified and initiated, business engineering, process engineering and then detail engineering approaches need to be taken to be evaluated and optimised. The economic or value evaluation forms the centre of all the processes and directs and governs the systems design towards value creation.
The fundamentals of value engineering are:

7.1) The culture required for success;

The success of the project depends on the team’s ability and willingness to improve the project. Dr Jay Hall defines competence as a sustained capacity for meeting demands in a committed and creative way.
There is a proper sequence to attain competence, namely: Collaboration, Commitment and Creativity. If these dimensions are approach out of sequence, the competence process is disrupted and a less healthy climate and lower productivity results. See Jay Hall’s competency process in Figure 7.1.1.

A. Collaboration

The collaboration approach is a triggering mechanism. Collaboration sets in motion the potential for heightened commitment on the part of the people who collaborate and paves the way for creativity on the part of those who are committed.

Figure 7.1.1: The Competence Process
Collaboration is a problem-solving activity, namely for task-decision making; job analysis; planning and forecasting; and allocating resources as well as responsibility. Furthermore, collaboration is sharing of power. It empowers, gets people personally involved in the task, and sees that supporting conditions exist for further performance implementation. The collective intelligence of an organisation is a contribution of all employees. (Source: J. Hall)

The Key Performance Area’s of collaboration are defined below:

i. Management Values
 - This reflects the basic managerial culture of the organisation;
 - Affirms management concern for excellence;
 - Gives evidence that management values the resources of it’s personnel; and
 - Acknowledge humanity of people.

ii. Supporting Management Structures

iii. Manageral credibility

iv. Team is working as one towards the focused goal

v. Willingness and belief in the ability to achieve the set targets among team members.

B. Commitment

Commitment is the psychological energy that powers and facilitates a creative interface between internal and external environments. Commitment has to do with power, the nature of the work itself, the incentives involved and with factors relevant to the work situation. This is also called willingness. To create this willingness, the following principles can be followed:
- Management must give permission to perform. They must be empowered. To empower people results in increased initiative, involvement, enthusiasm, innovation and speed, all in support of the company's mission. The word empowerment means to authorise, enable, and to permit. However, traditional leadership in a multi level organisational structure may be fearful of empowering their subordinates in anxiety that ideas and initiatives may undermine their authority and ultimately their position in the firm. It is a struggle but may be overcome by clear, ongoing communication and commitment from the top of the firm down.

 i. The process must be trusted;

 ii. Must be authentic and conscientious.

If authority, responsibility and accountability don’t exist, the commitment to make work a success is limited. If commitment has been achieved, the following advantages will be obtained:

- More creative and innovative ideas will be created;
- Better decisions can be made due to increase in the communication between different departments;
- Individuals will obtain individual job satisfaction;
- Less conflict will exists;
- Group cohesiveness will distribute work related problems and ideas; and
- Employees will be more in contact with top-management.

The culture is to evaluate and test assumptions (don’t assume, evaluate) rigorously and if a time limit exists, it is focused towards the improved goal.
Commitment equates to the energy that drives the competence process. The support conditions for Commitment are as follows:

i. Authority Relationships

The amount of impact that people feel or believe they may have on the decisions and policies that govern their work – the amount of power people have, and the freedom “to decide” and “handle problems” within the range of doing their jobs.

ii. Work incentives

The degree to which people feel the tasks to be done, performance rewards and activities are both relevant to organisational objectives and meaningful in terms of their personal goals. To be able to utilize these work ethics, EWAR region must change to performance management programmes for effective measurement of success and or possible opportunities / lessons learned in the region.

iii. Teamness

This is the extent to which people feel a sense of belonging to and identification with – mutual reliance upon and responsibility to – the organisational group in terms of both its objectives and its well-being.

C. Creativity

Creativity can be divided into divergent and convergent reasoning.

- *Divergent thinking* is the intellectual ability to think of many original, diverse, and elaborate ideas.

- *Convergent thinking* is the intellectual ability to logically evaluate critique and choose the best idea from a selection of ideas.
Both abilities are required for creative output. Divergent thinking is essential to the attitudes and in-depth understanding whereas convergent thinking is fundamental to the meaning of self-direction and teamwork. Playing a big part in creativity is the motive of the people. Without the motivation and opportunity to do so, it is unlikely that a person would complete an act. In addition, if a person does not have a passion for what he is doing, he will be doing what the rest of the crowd is doing. Employees will not have the courage to persist with their ideas and products and will be lacking guts.

To assist employees to become more creative, strategic focus is required from management by letting the employees understand the issues of global competition. Furthermore, management must share more information, educate employees of corporate goals; creating guiding structures and not controlling one’s; support, and encourage involvement; communicate key success factors; customer requirements & cost drivers. There are many ways to promote individual creativity but it needs to be focused towards a common goal.

Competitive challenges also need to be understood and employee’s roles as wealth creators. It’s all about opportunity and expanding horizons. From knowing why things occur to superficial knowledge.

Creativity reflects the capacity of the competence process. The support conditions for Creativity are as follows:

i. Work processes

The physical- and psychological structure of work within which people must do their jobs.

ii. Social processes
The prevailing system of social norms and priorities which define the nature of interpersonal transactions and workplace ambience.

iii. Problem Solving Processes

The values, priorities, and processes which govern the way organisational problems are addressed.

By moving over to processes that are normally complex and diverse, it can be streamlined for effective and efficient change or transition. With this, the organisational structure and its people within will be driven by the end results. This alignment will ensure key success drivers are continually searched for and communicated by integrated business and information technology systems. It will also create rapid informed and decision making process by making use of tools, metrics and formal investment and performance appraisals for up to date quality measurements.

Looking at Figure 7.1.2, MRM can be further broken down into four processes namely Customer Relationship Management; Production Process; Asset Management Process; and Continuous Improvement. Customer Relationship Management Process focuses on quality with full understanding of the internal and external customer’s requirements; while the Production Process manages all mining and plant activities for tonnage throughput to the plant. Asset Management Process focuses on maintenance and Capital Management while Continuous Improvement Process speaks for itself. By changing a typical functional organisation to a matrix organisation, more focus will be attained on the product / process / project, which is supported by systems, company culture and behavioural patterns. It is an instrument to overcome the unavoidable functional fragmentation of modern corporations.
Figure 7.1.2: Processes that enhancing MRM
A process driven organisation can only be achieved by knocking down silos and creating a multidisciplinary vision. Once that is done, one can then apply the best processes that are executed by the best people, which are normally, in this case, specialists in their fields. It also becomes easier to implement technology. See paragraph MINING OPERATIONS: Technology.

Advantages of such an organisation are:

- Better conflict resolution;
- Process orientation;
- Concerned with the co-ordination of specialist knowledge;
- Outward directed (Surging after higher performance, Product delivery, Goal driven)
- Mature authority improving team work, responsibility and decision making;
- Flexibility in resource usage;
- Increase development;
- Allowing more creativity;
- Fostering a direct relationship with external and internal clients; and
- Rapid responses are possible.

In EWAR the functional hierarchy can still be attained within the Business Units, while more and better support can be given from corporate using process management. This will also overcome the problems as mentioned in paragraph MINING OPERATIONS: Information Technology.
7.2. **The strategy that must be followed; and**

Strategy is defined in terms of focus on value and the required target that needs to be achieved. The organisation focus must therefore be to optimize the company and all actions should be directed to contribute to this goal. This goal becomes not only the most important, but also the only goal.

Critical decisions concerning development of the strategy and alternatives with substantial difference in economics must be made. Changes in strategic direction have major influences on costs, risks, capacity, and profitability. Within mining these strategic direction it is influenced by the Resources / Reserves estimations that are made out off different management disciplines such as Geology, Metallurgy, Marketing, Geotechnical, Ore quality and Civil work. The fundamental economics are depth, waste:ore ratio, ore characteristics (type, grade, plant yield) and the selling price.

For each cost centre / activity, it is required to determine the amount of waste removal and/or pre waste stripping to be done, cast blasting or just earth shaking, contractor usage, mine design, mining layout, mining equipment and mine scheduling, as well as the mining size or mining rate. For whole mine evaluation, the complete operating & capital costs for the mine must be developed and tabulated - leading to the whole mine cash flow analysis.

Guidelines must then be prepared and summarized to allow field personnel to make day-to-day decisions based on economic criteria. Decisions that influence the economics are therefore complete, allowing that actual costs can be compared with planned costs and to quickly highlight anomalies. An example of such guidelines is by producing a haul profile lookup table for field personnel to enable
them to decide on the best cost effective haul road for a particular blasted block. (See Table 7.2.1 for a look-up calculated capacity with varying haul distances.)

To create one’s own strategy, the process is comprehensive and needs to incorporate corporate issues such as sustainability, technical planning and due diligence. This strategy runs through the whole company internally from the reserves, environment, revenue, health & safety, social, debt, costs, ethics, people and prices and externally to financial-; environmental- and social reporting. These three parts are interconnected – if an economic decision has been made, environmental and social consequences will be obtained and vice versa. Nowadays other management issues need to be considered and the strategy towards it.
Table 7.2.1: Calculated capacity

<table>
<thead>
<tr>
<th>Cycle time</th>
<th>Parameters</th>
<th>Budgeted figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed loaded</td>
<td>35 km/h</td>
<td>These figures are only an approximation and only hold under the conditions set out in the table called "parameters"</td>
</tr>
<tr>
<td>Speed empty</td>
<td>35 km/h</td>
<td>To simulate the use of pumps and inclines, the average speed must be adjusted</td>
</tr>
<tr>
<td>Load time</td>
<td>4.5 min</td>
<td></td>
</tr>
<tr>
<td>Spot</td>
<td>1.3 mm</td>
<td></td>
</tr>
<tr>
<td>Tip time</td>
<td>11 min</td>
<td></td>
</tr>
<tr>
<td>Wash coder</td>
<td>1.6 m</td>
<td></td>
</tr>
<tr>
<td>Wash Shovel</td>
<td>3.6 m</td>
<td></td>
</tr>
<tr>
<td>Dust boxes</td>
<td>100 boxes</td>
<td></td>
</tr>
<tr>
<td>Waste boxes</td>
<td>240 boxes</td>
<td></td>
</tr>
<tr>
<td>No. trucks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average load</td>
<td>185 tonnes</td>
<td></td>
</tr>
<tr>
<td>Working hours</td>
<td>24 hours</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>
Once the strategy has been implemented, auditing and reporting needs to be done, asking questions such as:

(i) Is what was reported true?
(ii) Is it really happening as planned?
(iii) Are the systems in place?
(iv) Are the results being achieved?
(v) Are commitments achieved?

The focus areas for value improvement can be grouped according to Dr. Moll in the following groupings:

- Optimize functions (quality, speed and flexibility)
- Hunt out lazy capital
- Management of risk (and not killing it with capital)
- Minimize waste

It is required that a specific target must be aimed for. This target has to be stretched and be difficult to achieve. A target where the team knows beforehand how they are going to achieve would not result in the required frame of mind.

7.3. **The structure required for value engineering.**

Since the objective of value engineering is to optimize the value of a business, the dynamics of the factors contributing to this value have to be understood fully and clearly. Therefore analysis needs to be done to completely understand the business and to serve as a method to improve its value.
The basic process consists out of three basic steps preceded by an initiation phase where targets must be fixed. These three steps are:

- **Getting the facts of analysis;**
 Analysis is done with the clear focus of identifying improvement opportunities by identifying value destroying paradigms and by exposing non-optimised factors.

- **Finding the best solution or design using fundamental principles such as interviews, analyses, benchmarking, what-if scenarios, and financial manipulation; and**

- **Identify and communicate the need and potential for change** It is necessary to understand the fundamental aims of the project:

 i. Economically – Analysing the feasibility of the project by identify the financial parameters, the business drivers and list of assumptions with key risk areas;

 ii. Strategically – Develop strategies and ideas and ranking it;

 iii. Process a model to understand the work that needs to be done – Creating KPA’s; decompose performance areas into processes and identify technical and commercial requirements for each process;

 iv. Reviewing the technical requirements of the project assigning technical task teams and review current work assessments; and

 v. Creating Work Breakdown Structure (WBS) to plan and align resources and time.

The outcome of the initiation phase is a recommendation that the improvement exercise should be focused on a specific process within the value chain. It is
important not to address the different aspects in detail, but rather to scope and assess all aspects within the limited time available.

The fundamental aims of the project must be the business actions that were defined that need to be changed. To understand the activities that need to be performed, the current reality (define overall project objectives), the future intent (define sub-objectives) and the movement from business strategy reality to intent (define goal decomposition) must be understood. The output is a detailed work breakdown structure (WBS) and schedules.

Value can possible be improved by finding different concepts of linking the market or functional department to the resources or upstream & downstream processes. Not just horizontal integration but also vertical integration needs to be done to add value to the overall processes. Here we look at business drivers such as:

- Volume;
 Perceptions of economy of scale, lack of available cash and ballpark-type statements by management are often the factors determining the design volume of a business;

- Quality;
 Quality always must be compared to the value been added. An optimum quality against value can be found where thereafter value is destroyed if quality is improved further.

- Flexibility;
 Flexibility could be used to compensate for a lack of business information or market focus. Once the cost of flexibility and the fundamental reasons behind flexibility are understood, value can be improved.
• Minimized expenditure;

It is often possible to achieve the required outputs from a plant at a much reduced capital. By eliminating unnecessary equipment, not only capital but also a lot of maintenance and operating costs are eliminated. Lazy capital and capital fit for purpose are potential expenditures that must be eliminated. Three sources of lazy capital can be quickly identified namely:

- Capacity balancing;
- Provision for expansion; and
- Phasing / learning curve.

• Risk; and

A completely risk free plant would imply very high capital or operating costs. The relation between the cost of avoiding risk and the actual risk is not linear. Value can therefore be added by determining the right amount of risk to bear and by searching for alternative ways to improve the risk exposure.

• Waste.

Waste is defined as any activity or process that is not contributing to the bottom line. Categories of waste to look for are:

- Waste of over production;
- Waste of waiting time;
- Waste of transportation;
- Processing water;
- Inventory waste;
- Waste of motion;
- Waste from product or service defects;
- Waste of time;
- Waste of human capabilities; and
- Administrative waste.

This research document is set as an input to identify the required activities that need to be achieved. Final agreed target settings must be done to ensure EWAR management are committed to it.

8. CONCLUSION

Never in history has business been such a globally competitive endeavour, and to stay in business, radical different practices and management principles are needed. There is a subtle shift in focus, away from continuous improvement towards a commitment to learning, better understanding, and faster decision-making by streamlining the process flow. Continuous Improvement is still prerequisite for throughput analysis focussing on small, step-by-step improvement on key performance areas. Align it with process engineering and proposed strategies, principles and measurements, can integration within all aspects of the organisation be obtained that will snowball a vast number of improvement opportunities that may be lost if the focus is only on keeping within specification, budget and time constraints.

The way forward?

Using fundamental analysis focussing on the Business level, Process level and Engineering level, can key performance areas be identified that have not yet been optimised. Integrating this with the vertical as well as the horizontal objectives, can optimization over the whole value chain be obtained. See Table 8.1 for the fundamental analysis done in EWAR. The outcome of this is a vast number of smaller improvement opportunities or action lists.
Key Performance Area’s

<table>
<thead>
<tr>
<th>STRATEGY</th>
<th>Mission, Vision & Values</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mission, Vision & Values</td>
<td>Maximize revenue</td>
<td>Formulation of a strategic region plan and various MM forecasting, by creating a business simulation program using WinMall Mine or Portal</td>
<td>Market share</td>
</tr>
<tr>
<td></td>
<td>Mission, Vision & Values</td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td></td>
<td>Mission, Vision & Values</td>
<td>Cutting out loss-making activities & operations</td>
<td>Activity driven, continuous improvement budget</td>
<td>Employee satisfaction</td>
</tr>
<tr>
<td></td>
<td>Mission, Vision & Values</td>
<td>Monitor risks</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
<tr>
<td></td>
<td>Mission, Vision & Values</td>
<td>Create feasibility in operation</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Flexible plan</td>
</tr>
<tr>
<td></td>
<td>Mission, Vision & Values</td>
<td>Define & clarify objectives & goals</td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Minimum Risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANAGEMENT & BUSINESS INFORMATION</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management & Business Information</td>
<td>Maximize revenue</td>
<td>Formulation of a strategic region plan and various MM forecasting, by creating a business simulation program using WinMall Mine or Portal</td>
<td>Market share</td>
</tr>
<tr>
<td>Business Decisions</td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td>Business Opportunities</td>
<td>Cutting out loss-making activities & operations</td>
<td>Activity driven, continuous improvement budget</td>
<td>Employee satisfaction</td>
</tr>
<tr>
<td>Customer & Supplier Agreement</td>
<td>Create feasibility in operation</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
<tr>
<td></td>
<td>Define & clarify objectives & goals</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Flexible plan</td>
</tr>
<tr>
<td></td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
<tr>
<td></td>
<td>Maximize revenue</td>
<td>Formulation of a strategic region plan and various MM forecasting, by creating a business simulation program using WinMall Mine or Portal</td>
<td>Market share</td>
</tr>
<tr>
<td></td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td></td>
<td>Cutting out loss-making activities & operations</td>
<td>Activity driven, continuous improvement budget</td>
<td>Employee satisfaction</td>
</tr>
<tr>
<td></td>
<td>Monitor risks</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
<tr>
<td></td>
<td>Create feasibility in operation</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Flexible plan</td>
</tr>
<tr>
<td></td>
<td>Define & clarify objectives & goals</td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Minimum Risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUSINESS ACUMEN</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networks</td>
<td>Contribution to projects & other teams</td>
<td>Improve flow of information and resources</td>
<td>Training / creating mentors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establish project prioritization</td>
<td>Program for low-level management functions to improve knowledge (e.g., teams)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trade-off between competing objectives and alternatives</td>
<td>Career plans with rotation of staff between business units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical integration</td>
<td>Create / join a technology forum with other regions / sister companies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establish a creative environment</td>
<td>Create / join a technology forum with other regions / sister companies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improve communication</td>
<td>Establish a performance management integrated reporting database</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commitment & involvement of highest level</td>
<td>Establish a project capital management process in middle management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge sharing</td>
<td>Electronic filing system for all project completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control resources</td>
<td>Test plan with major goals, objectives, and targets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improve employees empowerment</td>
<td>Effective communication strategies for all project completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CROSS BOUNDARY MANAGEMENT</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationship</td>
<td>Improve plan vs. grade optimization</td>
<td>Improve on extraction / utilization</td>
<td>Training / creating mentors</td>
</tr>
<tr>
<td></td>
<td>Improve on extraction / utilization</td>
<td>Establish project prioritization</td>
<td>Program for low-level management functions to improve knowledge (e.g., teams)</td>
</tr>
<tr>
<td></td>
<td>Trade-off between competing objectives and alternatives</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td></td>
<td>Balance of short- and long-term objectives</td>
<td>Activity driven, continuous improvement budget</td>
<td>Employee satisfaction</td>
</tr>
<tr>
<td></td>
<td>Commitment & involvement of highest level</td>
<td>Improve communication</td>
<td>Improve employees empowerment</td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Flexible plan</td>
</tr>
<tr>
<td></td>
<td>Improve employees empowerment</td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Minimum Risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERPRETATION COMPETENCE</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance Teams</td>
<td>Values & Cultures</td>
<td>Maximize revenue</td>
<td>Formulation of a strategic region plan and various MM forecasting, by creating a business simulation program using WinMall Mine or Portal</td>
</tr>
<tr>
<td></td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td></td>
<td>Understanding current goals, objectives, risks, expectations</td>
<td>Activity driven, continuous improvement budget</td>
<td>Employee satisfaction</td>
</tr>
<tr>
<td></td>
<td>Balance of short- and long-term objectives</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
<tr>
<td></td>
<td>Commitment & involvement of highest level</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Flexible plan</td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Minimum Risk</td>
</tr>
<tr>
<td></td>
<td>Improve employees empowerment</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEAM WORK</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confident teams & individuals</td>
<td>Maximize revenue</td>
<td>Formulation of a strategic region plan and various MM forecasting, by creating a business simulation program using WinMall Mine or Portal</td>
<td>Market share</td>
</tr>
<tr>
<td>People development</td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td></td>
<td>Understanding current goals, objectives, risks, expectations</td>
<td>Activity driven, continuous improvement budget</td>
<td>Employee satisfaction</td>
</tr>
<tr>
<td></td>
<td>Balance of short- and long-term objectives</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
<tr>
<td></td>
<td>Commitment & involvement of highest level</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Flexible plan</td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Minimum Risk</td>
</tr>
<tr>
<td></td>
<td>Improve employees empowerment</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONFIDENCE BUILDING</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confident teams & individuals</td>
<td>Maximize revenue</td>
<td>Formulation of a strategic region plan and various MM forecasting, by creating a business simulation program using WinMall Mine or Portal</td>
<td>Market share</td>
</tr>
<tr>
<td>People development</td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td></td>
<td>Understanding current goals, objectives, risks, expectations</td>
<td>Activity driven, continuous improvement budget</td>
<td>Employee satisfaction</td>
</tr>
<tr>
<td></td>
<td>Balance of short- and long-term objectives</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
<tr>
<td></td>
<td>Commitment & involvement of highest level</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Flexible plan</td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Minimum Risk</td>
</tr>
<tr>
<td></td>
<td>Improve employees empowerment</td>
<td>Improve on processes and not in departments</td>
<td>Lower operating cost with set targets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANAGERIAL</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policies, Procedures and guidelines</td>
<td>Improve management / control</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td>Organisational structure</td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td>Business process understanding</td>
<td>Manage risk</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td>Business process understanding</td>
<td>Establish a clear audit trails</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td>Schedule, action plans and project plans</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Minimum Risk</td>
</tr>
<tr>
<td>Strategic control mechanisms</td>
<td>Create feasibility in operation</td>
<td>Improve communication</td>
<td>Improve employees empowerment</td>
</tr>
<tr>
<td>Communication management</td>
<td>Improve communication</td>
<td>Improve employees empowerment</td>
<td>Improve employees empowerment</td>
</tr>
<tr>
<td>Sound IT practices</td>
<td>Knowledge sharing</td>
<td>Improve employees empowerment</td>
<td>Improve employees empowerment</td>
</tr>
<tr>
<td>Health & Safety</td>
<td>Recognition & application of best practices</td>
<td>Improve employees empowerment</td>
<td>Improve employees empowerment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRIVE FOR RESULTS</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competent Staff</td>
<td>Maximize revenue</td>
<td>Formulation of a strategic region plan and various MM forecasting, by creating a business simulation program using WinMall Mine or Portal</td>
<td>Market share</td>
</tr>
<tr>
<td>Development Feedback, guidance & advice</td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td>Culture of learning</td>
<td>Optimized resource</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td>Unit skills plan</td>
<td>Improved communication</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Flexible plan</td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Minimum Risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTINUAL LEARNING AND DEVELOPMENT</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competent Staff</td>
<td>Maximize revenue</td>
<td>Formulation of a strategic region plan and various MM forecasting, by creating a business simulation program using WinMall Mine or Portal</td>
<td>Market share</td>
</tr>
<tr>
<td>Development Feedback, guidance & advice</td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td>Culture of learning</td>
<td>Optimized resource</td>
<td>Defining a strategic scope model (Risk Matrix) from simulation program</td>
<td>Bank of $XX</td>
</tr>
<tr>
<td></td>
<td>Improved communication</td>
<td>Establish a reward / recognition function for employees by creating Kaizen teams</td>
<td>Flexible plan</td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
<td>Establish a reward / recognition function for middle management for Social responsibility</td>
<td>Minimum Risk</td>
</tr>
<tr>
<td>Key Performance Area's</td>
<td>Objectives</td>
<td>Actions</td>
<td>Key Performance Indicators</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>NEW BUSINESS DEVELOPMENT</td>
<td>Exploration</td>
<td>Clarification of low-grade ore</td>
<td>Defining MRM planning and operation standards & definitions</td>
</tr>
<tr>
<td></td>
<td>Feasibility Studies</td>
<td>Cutting out low grade activities & operations</td>
<td>Link production simulation program to the strategic objectives</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geological Modelling</td>
<td>Integrating planning and operations</td>
<td>Creating Andon communication boards at shift change areas</td>
</tr>
<tr>
<td></td>
<td>Production Geology</td>
<td>Improve plant productivity</td>
<td>Preparing and communicating plans to support production and plan</td>
</tr>
<tr>
<td></td>
<td>Geotechnical Engineering</td>
<td>Grade Control</td>
<td>Establish a clear reconciliation</td>
</tr>
<tr>
<td></td>
<td>Mine planning / layout</td>
<td>Improve ore extraction</td>
<td>Integration of value chain activities</td>
</tr>
<tr>
<td></td>
<td>Drilling</td>
<td>Manage operating & planning & geological risks</td>
<td>Technical integration</td>
</tr>
<tr>
<td></td>
<td>Blasting</td>
<td>Establish a clear reconciliation</td>
<td>Technical integration</td>
</tr>
<tr>
<td></td>
<td>Loading</td>
<td>Maintain flexibility of operation</td>
<td>Continuous target communication</td>
</tr>
<tr>
<td></td>
<td>Hauling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survey</td>
<td>Optimal understanding / utilization of ore reserves</td>
<td>Balance of short- and long-term objectives</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drilling</td>
<td>Manage operational & planning & geological risks</td>
<td>Improve plant productivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geotechnical Engineering</td>
<td>Grade Control</td>
<td>Establish a clear reconciliation</td>
</tr>
<tr>
<td></td>
<td>Mine planning / layout</td>
<td>Improve ore extraction</td>
<td>Integration of value chain activities</td>
</tr>
<tr>
<td></td>
<td>Drilling</td>
<td>Manage operating & planning & geological risks</td>
<td>Technical integration</td>
</tr>
<tr>
<td></td>
<td>Blasting</td>
<td>Establish a clear reconciliation</td>
<td>Technical integration</td>
</tr>
<tr>
<td></td>
<td>Loading</td>
<td>Maintain flexibility of operation</td>
<td>Continuous target communication</td>
</tr>
<tr>
<td></td>
<td>Hauling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survey</td>
<td>Optimal understanding / utilization of ore reserves</td>
<td>Balance of short- and long-term objectives</td>
</tr>
<tr>
<td></td>
<td>Drilling & blasting</td>
<td>Manage operational & planning & geological risks</td>
<td>Improve plant productivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geotechnical Engineering</td>
<td>Grade Control</td>
<td>Establish a clear reconciliation</td>
</tr>
<tr>
<td></td>
<td>Mine planning / layout</td>
<td>Improve ore extraction</td>
<td>Integration of value chain activities</td>
</tr>
<tr>
<td></td>
<td>Drilling</td>
<td>Manage operating & planning & geological risks</td>
<td>Technical integration</td>
</tr>
<tr>
<td></td>
<td>Blasting</td>
<td>Establish a clear reconciliation</td>
<td>Technical integration</td>
</tr>
<tr>
<td></td>
<td>Loading</td>
<td>Maintain flexibility of operation</td>
<td>Continuous target communication</td>
</tr>
<tr>
<td></td>
<td>Hauling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survey</td>
<td>Optimal understanding / utilization of ore reserves</td>
<td>Balance of short- and long-term objectives</td>
</tr>
</tbody>
</table>
Objectives

- Establish better informed & defensible plans, budgets & schedules
- Manage financial risks
- Implement BME & SBM
- Implement Selective Mining & decrease Double Handling (Using REMIS)
- Implement Performance Contracts whereby bonuses & annual salary increases are based
- Establish project prioritising
- Installing a Technology Matrix
- Implement BFE & REMIS
- Establish a clear reconciliation
- Determine cost for mining/plant/engineering/procurement
- Implement benchmarking, forecasting & determine risk
- Improve communication to all stakeholders
- Technology Matrix
- Install/Utilize technology
- Manage risks in projects / capital requirements
- Establish project prioritising
- Establish a clear capital audit trail
- Technical integration between production / planning / asset mng.
- Establish a creative project environment
- Identify high impact cross-functional projects in the region
- Cross department participation in production planning and looking at the process
- Establish project prioritising
- Establish a clear audit trail
- Establish a reconciliation
- Balance of short- and long-term objectives
- Improve communication to all stakeholders / employees
- Improve compliance IT System and create interactive web-based reports

Key Performance Area’s

<table>
<thead>
<tr>
<th>Financial Management</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Establish better informed & defensible plans, budgets & schedules</td>
<td>Integrated compliance IT System and create interactive web-based reports</td>
<td>for mining/plant/engineering/procurement</td>
</tr>
<tr>
<td></td>
<td>Manage financial risks</td>
<td>Implement BME & SBM</td>
<td>BME</td>
</tr>
<tr>
<td></td>
<td>Establish project prioritising</td>
<td>Implement Selective Mining & decrease Double Handling (Using REMIS)</td>
<td>SBM</td>
</tr>
<tr>
<td></td>
<td>Establish a clear audit trail</td>
<td>Implement Performance Contracts whereby bonuses & annual salary increases are based</td>
<td>Integrated computerize IT System and create interactive web-based reports</td>
</tr>
<tr>
<td></td>
<td>Establish a clear reconciliation</td>
<td>Create a New-Balance sheet</td>
<td>Integrated computerize IT System and create interactive web-based reports</td>
</tr>
<tr>
<td></td>
<td>Understand current goals, objectives, risks, expectations</td>
<td>Using Analytical tool to do benchmarking, forecasting & determine risk</td>
<td>Increase of IT / Communication infrastructure</td>
</tr>
<tr>
<td></td>
<td>Trade-off between competing objectives and alternatives</td>
<td>Implement conditional simulation within short term scheduling for risk (Monte Carlo, conditional simulation)</td>
<td>Increase of IT / Communication infrastructure</td>
</tr>
<tr>
<td></td>
<td>Balance of short- and long-term objectives</td>
<td>Integration of people, processes and technology</td>
<td>Increase of IT / Communication infrastructure</td>
</tr>
<tr>
<td></td>
<td>Improve communication to all stakeholders / employees</td>
<td>Quality control systems (IT) throughout value chain</td>
<td>Increase of IT / Communication infrastructure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asset Management</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manage risks in projects / capital requirements</td>
<td>Get Business Engineering Department (Weswits) more involved in EWAR</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Establish project prioritising</td>
<td>Creating a communication forum / general meeting in WOC</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Establish a clear capital audit trail</td>
<td>Monitor compliance in short-term planning (extraction rate, sequence, quality)</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Technical integration between production / planning / asset mng.</td>
<td>Create a Waste Dumps Strategy</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Establish a creative project environment</td>
<td>Create process environment teams and reporting structures</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Improve communication between stakeholders / projects</td>
<td>Implement social upliftment plans</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Define & clarify current objectives / goals for asset management</td>
<td>Median - Future - BFE - BFEM - BME</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Understand new goals, objectives, risks, expectations</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Technical integration</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Benchmark</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Preventive Maintenance</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>High utilisation of condition-based technology</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Making use of vibration analysis; oil analysis; laser alignment; thermal imaging</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Weekly shutdown strategy</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Parts readily available – minimum lead time / minimum stock</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Accurate inventory data</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Daily item has a critical role</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Contractors should conform to Parent company safety and quality standards</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Contractor continuous performance reviews</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Safety contractor safety standards</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
<tr>
<td></td>
<td>Focus on full life cycle of the asset</td>
<td>Establish project prioritising</td>
<td>Production equipment needs and reporting structures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information Technology Management</th>
<th>Objectives</th>
<th>Actions</th>
<th>Key Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Understand current goals, objectives, risks, expectations</td>
<td>Establish a creative environment</td>
<td>BFE</td>
</tr>
<tr>
<td></td>
<td>Technical integration utilizing a process environment</td>
<td>Configure & Utilise technology</td>
<td>BFE</td>
</tr>
<tr>
<td></td>
<td>Establish a creative environment</td>
<td>Improve communication</td>
<td>BFE</td>
</tr>
<tr>
<td></td>
<td>Review definitions of standards</td>
<td>Streamline processes</td>
<td>BFE</td>
</tr>
<tr>
<td></td>
<td>Extensive / Effective use of information technology</td>
<td>Streamline processes</td>
<td>BFE</td>
</tr>
<tr>
<td></td>
<td>Streamline work processes</td>
<td>Streamline processes</td>
<td>BFE</td>
</tr>
<tr>
<td></td>
<td>Data accessible only once</td>
<td>Streamline processes</td>
<td>BFE</td>
</tr>
<tr>
<td></td>
<td>Creating interactive web-based reports</td>
<td>Streamline processes</td>
<td>BFE</td>
</tr>
<tr>
<td>Key Performance Area's</td>
<td>Objectives</td>
<td>Actions</td>
<td>Key Performance Indicators</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Research & Development (Feasibility)</td>
<td>Improve ore extraction / utilization</td>
<td>Establish project prioritising</td>
<td>Establish a clear project audit trail with a historical project database</td>
</tr>
<tr>
<td></td>
<td>Improve ore extraction / utilization</td>
<td>Create flexibility in operation</td>
<td>Create flexibility in operation</td>
</tr>
<tr>
<td></td>
<td>Understand current goals, objectives, risks, expectations</td>
<td>Optimal understanding / utilization of ore reserves</td>
<td>Optimal understanding / utilization of ore reserves</td>
</tr>
<tr>
<td></td>
<td>Technical integration</td>
<td>Technical integration</td>
<td>Technical integration</td>
</tr>
<tr>
<td></td>
<td>Establish a creative environment</td>
<td>Establish a creative environment</td>
<td>Establish a creative environment</td>
</tr>
<tr>
<td></td>
<td>Improve communication</td>
<td>Improve communication</td>
<td>Improve communication</td>
</tr>
<tr>
<td></td>
<td>Improve operating cost</td>
<td>Improve operating cost</td>
<td>Improve operating cost</td>
</tr>
<tr>
<td>Human Resource Management</td>
<td>Creating an incentive scheme according to individual & company performance</td>
<td>Creating an incentive scheme according to individual & company performance</td>
<td>Creating an incentive scheme according to individual & company performance</td>
</tr>
<tr>
<td></td>
<td>Clear accountabilities to all employees</td>
<td>Clear accountabilities to all employees</td>
<td>Clear accountabilities to all employees</td>
</tr>
<tr>
<td></td>
<td>Engaged individuals and teams</td>
<td>Engaged individuals and teams</td>
<td>Engaged individuals and teams</td>
</tr>
<tr>
<td></td>
<td>Flexible use of workforce (operators), looking at multi-skilling</td>
<td>Flexible use of workforce (operators), looking at multi-skilling</td>
<td>Flexible use of workforce (operators), looking at multi-skilling</td>
</tr>
<tr>
<td></td>
<td>Career development for management & specialist</td>
<td>Career development for management & specialist</td>
<td>Career development for management & specialist</td>
</tr>
<tr>
<td></td>
<td>Manage workforce according to needs</td>
<td>Manage workforce according to needs</td>
<td>Manage workforce according to needs</td>
</tr>
<tr>
<td></td>
<td>Attract & Retain high skills</td>
<td>Attract & Retain high skills</td>
<td>Attract & Retain high skills</td>
</tr>
<tr>
<td></td>
<td>Rotation & placement according to succession planning</td>
<td>Rotation & placement according to succession planning</td>
<td>Rotation & placement according to succession planning</td>
</tr>
<tr>
<td></td>
<td>Establish a creative environment</td>
<td>Establish a creative environment</td>
<td>Establish a creative environment</td>
</tr>
<tr>
<td></td>
<td>Development of emotional intelligence</td>
<td>Development of emotional intelligence</td>
<td>Development of emotional intelligence</td>
</tr>
<tr>
<td></td>
<td>Performance Management System</td>
<td>Performance Management System</td>
<td>Performance Management System</td>
</tr>
<tr>
<td></td>
<td>Performance Based Pay</td>
<td>Performance Based Pay</td>
<td>Performance Based Pay</td>
</tr>
<tr>
<td></td>
<td>Open & Transparency</td>
<td>Open & Transparency</td>
<td>Open & Transparency</td>
</tr>
<tr>
<td></td>
<td>Collaboration</td>
<td>Collaboration</td>
<td>Collaboration</td>
</tr>
<tr>
<td></td>
<td>Technical integration</td>
<td>Technical integration</td>
<td>Technical integration</td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
<td>Knowledge sharing</td>
<td>Knowledge sharing</td>
</tr>
<tr>
<td></td>
<td>Improve communication</td>
<td>Improve communication</td>
<td>Improve communication</td>
</tr>
<tr>
<td></td>
<td>Liaison with South African universities and technikons.</td>
<td>Liaison with South African universities and technikons.</td>
<td>Liaison with South African universities and technikons.</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Manage risks</td>
<td>Manage risks</td>
<td>Manage risks</td>
</tr>
<tr>
<td></td>
<td>Cutting out loss making activities & operations</td>
<td>Cutting out loss making activities & operations</td>
<td>Cutting out loss making activities & operations</td>
</tr>
<tr>
<td></td>
<td>Create flexibility in operation</td>
<td>Create flexibility in operation</td>
<td>Create flexibility in operation</td>
</tr>
<tr>
<td></td>
<td>Optimal understanding / utilization of ore reserves</td>
<td>Optimal understanding / utilization of ore reserves</td>
<td>Optimal understanding / utilization of ore reserves</td>
</tr>
<tr>
<td></td>
<td>Trade-off between competing objectives and alternatives</td>
<td>Trade-off between competing objectives and alternatives</td>
<td>Trade-off between competing objectives and alternatives</td>
</tr>
<tr>
<td></td>
<td>Understand current goals, objectives, risks, expectations</td>
<td>Understand current goals, objectives, risks, expectations</td>
<td>Understand current goals, objectives, risks, expectations</td>
</tr>
<tr>
<td></td>
<td>Improve communication</td>
<td>Improve communication</td>
<td>Improve communication</td>
</tr>
<tr>
<td></td>
<td>Quantified risk analysis</td>
<td>Quantified risk analysis</td>
<td>Quantified risk analysis</td>
</tr>
<tr>
<td></td>
<td>Improve data quality</td>
<td>Improve data quality</td>
<td>Improve data quality</td>
</tr>
<tr>
<td>Due Diligence</td>
<td>Establish a clear audit trail</td>
<td>Establish a clear audit trail</td>
<td>Establish a clear audit trail</td>
</tr>
<tr>
<td></td>
<td>Establish a clear reconciliation</td>
<td>Establish a clear reconciliation</td>
<td>Establish a clear reconciliation</td>
</tr>
<tr>
<td>Legal Compliance</td>
<td>Ensure compliance controls in short & long term planning</td>
<td>Ensure compliance controls in short & long term planning</td>
<td>Ensure compliance controls in short & long term planning</td>
</tr>
<tr>
<td></td>
<td>Ensure SOC compliance on reports</td>
<td>Ensure SOC compliance on reports</td>
<td>Ensure SOC compliance on reports</td>
</tr>
<tr>
<td></td>
<td>Ensure contractor has legal compliance</td>
<td>Ensure contractor has legal compliance</td>
<td>Ensure contractor has legal compliance</td>
</tr>
<tr>
<td></td>
<td>Ensure competent persons at each business unit</td>
<td>Ensure competent persons at each business unit</td>
<td>Ensure competent persons at each business unit</td>
</tr>
<tr>
<td></td>
<td>Give compliances to Project Managers</td>
<td>Give compliances to Project Managers</td>
<td>Give compliances to Project Managers</td>
</tr>
<tr>
<td>Audit</td>
<td>Establish a clear audit trail</td>
<td>Establish a clear audit trail</td>
<td>Establish a clear audit trail</td>
</tr>
<tr>
<td></td>
<td>Establish a clear reconciliation</td>
<td>Establish a clear reconciliation</td>
<td>Establish a clear reconciliation</td>
</tr>
<tr>
<td></td>
<td>Reasonable levels of reputable external audits</td>
<td>Reasonable levels of reputable external audits</td>
<td>Reasonable levels of reputable external audits</td>
</tr>
<tr>
<td></td>
<td>Reserves / Resources are audited</td>
<td>Reserves / Resources are audited</td>
<td>Reserves / Resources are audited</td>
</tr>
<tr>
<td></td>
<td>Risk / Uncertainties must a clear audit trail</td>
<td>Risk / Uncertainties must a clear audit trail</td>
<td>Risk / Uncertainties must a clear audit trail</td>
</tr>
<tr>
<td>Sustainable Development</td>
<td>Establish of low-grade ore</td>
<td>Establish of low-grade ore</td>
<td>Establish of low-grade ore</td>
</tr>
<tr>
<td></td>
<td>Improve ore extraction / utilization</td>
<td>Improve ore extraction / utilization</td>
<td>Improve ore extraction / utilization</td>
</tr>
<tr>
<td></td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
</tr>
<tr>
<td></td>
<td>Understand current goals, objectives, risks, expectations</td>
<td>Understand current goals, objectives, risks, expectations</td>
<td>Understand current goals, objectives, risks, expectations</td>
</tr>
<tr>
<td></td>
<td>Technical integration</td>
<td>Technical integration</td>
<td>Technical integration</td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
<td>Knowledge sharing</td>
<td>Knowledge sharing</td>
</tr>
<tr>
<td></td>
<td>Promote rural economic development & social upliftment of communities affected by mining</td>
<td>Promote rural economic development & social upliftment of communities affected by mining</td>
<td>Promote rural economic development & social upliftment of communities affected by mining</td>
</tr>
<tr>
<td>Environmental Risk</td>
<td>Improve ore extraction / utilization</td>
<td>Improve ore extraction / utilization</td>
<td>Improve ore extraction / utilization</td>
</tr>
<tr>
<td></td>
<td>Manage / quantify risks</td>
<td>Manage / quantify risks</td>
<td>Manage / quantify risks</td>
</tr>
<tr>
<td></td>
<td>Environmental risk must be deftly stated</td>
<td>Environmental risk must be deftly stated</td>
<td>Environmental risk must be deftly stated</td>
</tr>
<tr>
<td>Key Performance Area's</td>
<td>Objectives</td>
<td>Actions</td>
<td>Key Performance Indicators</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Technology Selection & Management</td>
<td>Allocation of new-grade ore</td>
<td>Improve ore extraction / utilisation</td>
<td>Knowledge sharing</td>
</tr>
<tr>
<td></td>
<td>Improve ore reserves</td>
<td>Manage current risks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimal understanding / utilisation of ore reserves</td>
<td>Define & clarify current / revised objectives & goals; risks, expectations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical integration</td>
<td>Establish a creative environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improve communication between BU on technology improvements</td>
<td>Knowledge sharing</td>
<td></td>
</tr>
<tr>
<td>General Economics & Evaluation</td>
<td>Allocation of new-grade ore</td>
<td>Cutting out loss-making activities & operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improve ore extraction / utilisation</td>
<td>Manage risks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Establish project prioritising</td>
<td>Optimal understanding / utilisation of ore reserves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trade-off between competing objectives and alternatives</td>
<td>Balance of short- and long-term objectives</td>
<td></td>
</tr>
<tr>
<td>Planning & Optimization</td>
<td>Integrating planning and operations</td>
<td>Improve plant efficiency vs. grade optimisation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimal understanding / utilisation of ore reserves</td>
<td>Improve ore extraction / utilisation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Establish a clear single reconciliation system</td>
<td>Variance analysis on production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical integration</td>
<td>Technical integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improve communication over the value chain</td>
<td>Continuous target communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decrease Double Handling by improving continuous blending</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improve selective mining in conjunction with blending</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmarking</td>
<td>Cutting out loss-making activities & operations</td>
<td>Cost curve comparison and where every Business Unit is laying on it.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Establish a clear single reconciliation system</td>
<td>Variance analysis on production</td>
<td></td>
</tr>
<tr>
<td>Total Quality Management</td>
<td>Understand new goals, objectives, roles, expectations</td>
<td>Ensure true data sourcing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensure controls are in place for quality mining plans</td>
<td>Ensure quality on contractor performance - not chasing profit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensure quality of communication to all parties</td>
<td>Ensure quality policies, plans & manuals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Run of periodic checks / analysis on simulation models</td>
<td>Reports must be standardised and quality assured</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality organisation leadership that promote collaboration</td>
<td>Quality organisation leadership that promote collaboration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line Project Management in procurement to ensure quality SOW</td>
<td>Line Project Management in procurement to ensure quality SOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance Management</td>
<td>Improve management control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enables better informed & defensible plans, budgets & schedules</td>
<td>Technical integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical integration</td>
<td>Establish a creative environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projects must have fixed time, cost and performance standards</td>
<td>Celebrate success and shared goals must be within performance appraisals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Team participation must be included in performance appraisals</td>
<td>SMART performance indicators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deliver vision and shared goals must be within performance appraisals</td>
<td>Align reward and recognition system</td>
<td></td>
</tr>
<tr>
<td>Reconciliation</td>
<td>Integrating detail planning and operations reconciliation</td>
<td>Improve ore extraction / utilisation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Establish a clear single reconciliation system</td>
<td>Variance analysis on production</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical integration</td>
<td>Technical integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improve communication</td>
<td>Knowledge sharing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge sharing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimization of company value</td>
<td>Establish a project database</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identify bottlenecks</td>
<td>Identify bottlenecks</td>
<td></td>
</tr>
</tbody>
</table>
Key Performance Area’s, objectives, actions and Key Performance Indicators have been identified that will cause a shift from cost-based decision making to decision making based on continuous improvement, a process in which system throughput, system constraints, and statistically determined protective capacities at critical points are key elements. The overall design is critical to sound implementation and must be best fit to organisational strategy.

This process gives us a high level picture of what ultimately are needed, and by defining a program of possible projects can the desired objectives be obtained – See Table 8.2. Fundamentally business goals and objectives must be supported by definable and documented measurement systems, and as identified one of EWAR earliest projects is to provide management- and reporting information that will serves as a driver for cost improvement and set the scene for a behavioural change.
<table>
<thead>
<tr>
<th>Priority</th>
<th>#</th>
<th>Project identified</th>
</tr>
</thead>
</table>
| 2A | 1 | Creating a business simulation program
Set-up a risk matrix
Link production simulation program to the strategic objectives
Create a LOM Stripping Curves for the whole region
Optimize grade profile over LOM and Region
Create a complete 18 month forecast rolling plan
Risk Assessment build within production plan
Using Analytical tools to do benchmarking, forecasting and determine risk
Specific contracts and standards to be measured against |
| 1B | 2 | Implement Continuous Improvement over the total value chain
Create teams at employees
Create teams at middle management over processes
Implement a reward / recognition system
Benchmarking over value chain
Have a storyline to communicate objectives, goals & expectations
Integration of people, processes and technology
De-bottle neck operations looking at TOC & continuous improvement |
| 1C / 2B | 3 | Implement continuous improvement within Budget
Risk Assessment build within production plan
Create a complete 18 month forecast rolling plan
Interactive mine planning over production & asset management processes
Implement conditional simulation within short term scheduling for risk (Monte Carlo, conditional simulation)
Communicate / Establish environmental objectives over total processes
Cross department participation in production planning looking at the process
Monitor compliance in short term planning (extraction rate, sequence, quality) |
| | 4 | Promote a continuous improvement environment
Identify mentors for engineers
Improve foreman & managerial functions to improve teamness
Look at Multi-Skilling for operators
Creating a communication forum / general meeting in H/O |
| | 5 | Setup career plans
Implement Performance Contracts whereupon bonuses and annual salary increases are based
360 Performance Evaluation
Create Career routes / development plans
Fast track and set goals for EE / localized candidates |
| 1A | 6 | Create a performance management integrated reporting database
Defining MRM planning and operation standards & definitions
Create an evaluation & reconciliation system
Creating Andon communication boards at shift change areas
Identify gaps in information system/process to increase communication
Implement BME & BFE
Using low grade ore by direct blending (Using RIEMS)
Create a Mass- Balance sheet |
Using Analytical tools to do benchmarking, forecasting and determine risk
Quality control systems (IT) throughout value chain
Develop integrated dynamic planning system which allow dynamic reporting
Specific contracts and standards to be measured against
Implement Selective Mining & decrease Double Handling (Continuous blending solutions)

<table>
<thead>
<tr>
<th>5</th>
<th>7</th>
<th>Setup project capital management process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electronic filing system for all project completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process for choose project go ahead</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Focusing on technical processes integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Create / Join a technology forum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installing a Technology Matrix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scrubbing and optimization of current capital projects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify high-impact cross functional projects over the whole region</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Ad-hoc Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Investigate In-Pit Crushing and conveying</td>
</tr>
<tr>
<td>7</td>
<td>Create a Waste Dumping Strategy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1D</th>
<th>Asset Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Create a full equipment life cycle asset management historic database</td>
</tr>
<tr>
<td></td>
<td>Implement Asset / Maintenance Management processes over mining/plant/engineering</td>
</tr>
</tbody>
</table>

Table 8.2: Program of possible projects

To implement the core production and management processes as defined above, two implementation phases are needed, while the third and forth phase are supporting these core processes. This will be done in a step phase manner over EWAR operations by focusing in the first phase on executive information, compilation of current Key Performance Indicator’s (KPI’s) and reports, as well as defining additional “quick win” indicators that can easily be integrated within the current reports. Streamlining of these indicators is a prerequisite to speed up the process, improving material movement and mass balance / metallurgical accounting. Quick wins can therefore receive while implementation costs will also be limited.
To implement the executive reports such as the Basic Mining Equations (BME) and Basic Financial Equations (BFE), is historical information needed. It must be ensured that the source data is integrated and validated within the same platform over the entire region. Hence the standardisation of definitions and principles is a key component of the integrated solution.

The third phase will be to capture the commercial and asset management information within the information flow to enable proper scenario analysis, continuous improvement and risk based audits. Part of the process is to integrate the additional KPI’s that have been identified, while business and financial models must also be accessed to ensure complete roll out of information flow. Once the data is captured and integrity is verified, can front-end portals be created, either for reporting or for business analysis, benchmarking and continuous improvement (Phase 4).

To determine the urgency and importance of each project, need the goals, the strategic basis of interest, the business benefit, the research & development investment needed, the implementation timing, toughest hurdles, and odds of success be tabled to align the projects into the total business plan. It must be realised local optimization (Corporate Office) does not guaranteed global optimization
KNOWLEDGE & SKILL ELEMENTS (Left Column)

1. Self management
 - Self responsibility for learning, growth & self education
 - Self awareness / insight, e.g. influence of self-esteem, learning styles / brain functioning
 - Understanding the need for flexible career management in a changing workplace and the importance of enhancing individual potential, abilities and competence.
 - Ability to do self development planning (elements & process)
 - Identification & utilisation of sources to develop
 - Skills to balance work & life: Stress & time management
 - Understanding own role, to build self management capabilities of subordinates

2. Change management
 - Understanding the nature & drivers of change
 - Understanding the leader’s role to support people in becoming more adaptable to change and the importance of global mindedness
 - Understanding change management principles & processes, e.g. to anticipate, initiate, manage & measure effective change and to ensure that change process is congruent to the organization’s vision, mission & strategies
 - Insight into the local process of people’s reaction to change, from resistance to full acceptance.
 - Ability to consider the full spectrum of change management dynamics when developing & implementing change plans.

3. People development
 - Shows insight into learning organizations theory & adult learning principles.
 - Understand the interrelationship between training & development, remuneration, employee utilisation and labour relations.
 - Understanding competency & output people development principles.
 - Understanding of the company’s leadership development strategy & process (company’s is one company and companies is several companies)
 - Ability to compile a unit skill plan.

4. Values & Culture
 - Understanding the nature / importance of organization, team values & culture
 - Interrelationship between vision, strategy, culture & values
 - Understanding current culture & values within the company (Conditions for : collaboration, commitment & creativity).
5. **Business understanding**
- Company business environment understanding: external and market forces
- Understanding how a Business works and what it takes to be successful
- Understanding your own business
- Understanding the business drivers
- Role of technology
- Principles of benchmarking

6. **Strategic & business planning**
- Understanding the company’s strategic & business planning process
- Understanding the company’s Business planning process: change
- Developing Strategy & Business plans which are aligned within the bigger picture
- Committing to courses of action to accomplish longrange goals/vision after developing alternatives based on logical assumptions, facts, constraints & values
- Strategy implementation/control
- Evaluating organizational effectiveness at different levels of work

7. **Relationship management skills**
- Identifying opportunities and taking action to build strategic relationships between one’s area and other areas, teams, departments, units or organizations to help achieve business goals
- Ability to do stakeholder analysis
- Networking skills
- Sharing ideas across functional/divisional boundaries

8. **Business process understanding**
- Understanding the value chain
- Technical knowledge of own business process & products
- Insight into business process optimization principles
- Customer/Supplier management (service agreements)

9. **Economic value management**
- Understanding value management philosophy/research
- Cost & cash flow management
- Calculating the value drivers
- Insight into risk management principles

10. **Companies financial statements & systems**
- Working knowledge of bookkeeping, budgeting & financial statements
- Financial accounting principles
- Interpreting financial statements

11. **Forecasting**
- Understanding the importance of evaluating strategic position
- Identifying / monitoring indicators of directions to sustain a competitive advantage
- Insight into forecasting process & principles
- Scenario planning skills
- Skills to check forecasting for reasonableness

12. Business information management
- Setting up ongoing procedures to collect and review information needed to manage an organization or ongoing activities within an organization.

13. Continuous Improvement
- Knowledge of company’s continuous improvement system / process
- Ability to integrate best practices
- Ability to facilitate CI team target settings

14. Target setting & tracking
- Setting team measures and standards
- CI tracking skills

15. Driving the business
- Balanced Scorecard principles understanding
- Ability to identify & leverage business drivers
- Insight into productivity improvement principles
- Ability to apply theory of constraints principles
- Business driver manipulation skills

16. Customer management
- Integrated customer management (internal / external)
- Shows insight into elements that enhance customer satisfaction & trust
- Clarifying customer needs, expectations, rights & responsibilities
- Ability to involve & tap customer / supplier knowledge
- Customer satisfaction measurement

17. Performance management
- Company performance management system knowledge
- Performance measurement principles understanding
- Individual objectives and standard setting skills
- Measuring individual performance
- Addressing under-performers
- Applying the company’s reward allocation principles to determine individual rewards

18. Inspiring leadership styles
- Insight into different leadership theories & styles
- Transformational – and Transactional leader behaviour
- Insight into pre-conditions to build trust
- Situational leadership styles understanding
- Strategic behaviour understanding (personality, politics, etc.)
19. **People motivation**
- Motivation theory (internal versus external, expectancy, etc.)
- Inspiring skills: Builds confidence in others; individual consideration; intellectual stimulation
- Knowledge of group/team motivation principles (influencing groups / members to co-operate willingly and productively to pursue set objectives)

20. **Recognition & Rewards**
- Insights into applicable people motivation principles/models
- Nature and types of recognition
- Ability to match & leverage reward/recognition to inspire specific individuals & groups
- Reward allocation skills

21. **High performance teamwork & team building principles**
- Understanding concepts/models of effective teamwork
- Insight into the process of establishing high performance teams, personalities etc.
- High performance team measures
- Using appropriate methods and a flexible interpersonal style to help build a cohesive team
- Insight into team building techniques e.g. facilitation of team goal setting, role clarification, relationship building
- Contributes to solving problems through constructive feedback, ideas & suggestions

22. **Micro skills**
- Insight into various behavioural styles and the effectiveness thereof
- Effective utilisation of interactive skills by listening, information gathering, summarizing, reflecting, empathizing and involving others in discussions

23. **Managing diversity**
- Knowledge of diverse individuals/groups/cultures
- Insight into principles for creating a collaborative environment/relationship
- Ways of interacting and relating to others over a broad spectrum e.g. religion & customs
- Demonstrate values that reflect dignity, respect for others & fairness
- Ability to apply principles to tap diversity within teams
- Implement a diversity management plan

24. **Problem solving**
- Insight into right/left brain approaches
- Understanding PR problem analysis processes/principles
- Problem analysis techniques
- Group problem solving techniques
- Stakeholder involvement process understanding
25. Decision-making
- Understanding various forms of decision making (independent; consultative; consensual; delegation)
- Insight into decision making process (identifying criteria etc.)
- Importance of a holistic approach to decision-making
- Insight into decision making techniques (group / individual)
- Potential problem / risk analysis skills

26. Communication management
- Planning and managing communication understanding
- Understanding the levels of communication in organizations
- Understanding the formal & informal channels of information
- Insight into approaches to organizational communication
- Insight into communication planning principles
- Communication Campaigning skills
- Business writing skills: grammar, vocabulary and structure to achieve communication objectives of a specific target group

27. Influencing / persuasive skills
- Understanding persuasive communication principles & guidelines
- Understanding of the elements that enhance interpersonal impact
- Building & communicating a “Case for Change”
- Communication / selling / translating strategy, vision & values
- Determining & communicating team mission, measures and values

28. Facilitation
- Understanding facilitation process to improve & helps groups / individuals
- Facilitating team decision making & problem solving
- Facilitating of ideas / inputs to build team implementation & improvement plans
- Applying group facilitating techniques to increase productivity
- Applying problem solving techniques
- Ability to manage boundaries that have an impact on own work
- Ensuring that meetings serve business objectives while using appropriate interpersonal styles and methods and considering the needs and potential contributions of others

29. Business presentation
- Understanding pre-conditions to creating audience rapport
- Applying content & structuring principles
- Insight into positive & negative influence of non verbal behaviour
- Application of communication principles to reach communication objective
- Application of audio visual techniques
- Use of techniques to involve audience & get feedback
30. **Conflict handling / management**
- Insight into various conflict handling styles
- Assertiveness principle understanding
- Removing barriers to effective communication
- Applying effective interpersonal skills / styles to deal with conflict

31. **Feedback**
- Understanding the importance of feedback within learning organizations
- Pre-conditions to receiving & asking for feedback, for development purposes
- Applying, giving & receiving feedback – principles
- Handling difficult feedback situations

32. **Mentoring**
- Various levels of mentoring (micro / macro)
- Company’s mentoring process: roles of mentor & protégé
- Pre conditions to build effective mentoring relationships

33. **Coaching**
- Providing timely guidance and feedback to help others to strengthen specific knowledge & skills needed to accomplish a task, solve problems or help others gain insight into business related issues
- Performance coaching & counselling skills
- Referring individuals to be coached / mentored

34. **Deal making / negotiations**
- Applying applicable negotiation approaches, techniques & practices
- Decision making process / principle understanding

35. **Planning principles**
- Insight into action planning and scheduling principles
- Ability to schedule and leverage resources to focus activities
- Insight into the function & use of procedures, policies, rules & values
- Ability to create buy-in to applicable procedures & policies
- Holistic time management techniques
- Establishing courses of action for self and others to ensure that work is completed efficiently

36. **Organization principles**
- Understanding the importance of balance between Organization & disorganization
- Insight into the relationship between organizing & people motivation
- Ability to create structure & simplify complex situations
- Personal organization effectiveness
- Allocating decision making responsibility / authority to enable or empower others to maximize the organization’s and individuals effectiveness
- Ability to apply delegation principles
37. Organization structures
 - Knowledge of various organizational structure types
 - Insight into team based structures
 - Ability to structure and facilitate role clarification within / between teams

38. Project Management principles
 - Ability to identify & integrate different steps / phases in a project and manage them during total span of project
 - Understanding the logistical process of a specific project and the resources needed
 - Manage the steps & activities involved in the project
 - To use the available resources and to control & co-ordinate activities logistically
 - Integrate management of all resources & activities to ensure timeous and effective implementation
 - Assessing the value added to a specific project

39. Managerial control
 - Understanding of effective monitoring systems & processes
 - Ensuring successful completion of assignments
 - Ability to control work against set criteria and / or work procedures to achieve high levels of quality, productivity or service

40. IR insight
 - Insight into legislation & basic employment conditions act
 - Insight into the procedures to handle grievances
 - Insight into the role of unions

41. Learning skills
 - Applying, reading, learning & memory enhancement techniques
 - Understanding various learning styles and importance of experiential & action learning

42. Information search
 - Monitoring information to learn and detect trends
 - Information processing & data reduction skills
 - Utilizing technology (web-surfing)

43. Critical thinking
 - Tendency to challenge assumptions behind ideas & actions
 - Ability to imagine & explore options – beyond the obvious

44. Business Ethics
 - Ability to distinguish between sound and unethical business practices
 - Insight into the implications of unethical business practices
 - Adhering to sound business ethics principles
45. Organizational development
- System theory: Shows insight into the cross-functional inter-relationship between different departments as smaller systems within bigger systems
- Understanding the inter-relationship / interdependence of culture, strategy, structure and other management processes in a complex, multi-level organization
- Understand the dynamics of organizational behaviour
- Insight into the assessment of organizational effectiveness & culture / climate

46. Operation management
- Insight into production process and operational managing issues (grade; quality; design criteria; waste; operational cost; equipment performance standards; breakdown maintenance programs; manpower needs & shift hours)
- Insight into condition of plant & equipment and implications thereof
- Implementing & managing maintenance strategies, replacement of equipment and consequent costs

47. Health & Safety
- Rescue & fire fighting aspects
- Integrated Environmental management

48. Values & Culture
- Adaptability
- Responsibility for own learning
- Global mindedness
- Sense of urgency
- Living core values / principles
- Acting as Role Model
- Customer focus
- Cost / quality / time / growth mindset
- Looking for people doing things right
- Open, continuous feedback approach
- Integrity / Honesty
- Customer / employee intimacy
- Personal effectiveness
- Doing the basics right
- Differences allowed / Diversity orientation
- Synergy mindset
- Confidence / optimism
- Respect / Interpersonal sensitivity
REFERENCES

3. Corporate Consultant for SRK Consulting, Strategic Mine Planning by Dr Chris Page – Normandy Group Mining Conference 22nd and 23rd April 1998, Perth

5. Gasper, J.H and Adler, L. Conceptual and geometric design of steep slope contour mining, Mining Engineering, November 1991

17. Principles for Operational Excellence, Kumba Way MRM Project Team, August 2002

18. Rossi, M.E. Improving the estimates of recoverable reserves, Mining Engineering, January 1999

19. SAPR/3 Solutions. Mineral Resource Management – A definite description and discussion of the process of implementation and the application in the mining industry, Date unknown

20. Slater, M. Lessons learned in the execution of a major project, Ion Consultants, February 2002

24. Value engineering for improvement of capital projects, VM Services (Pty) Ltd., 1999

25. Van Daalen, F. Selektiewe Mynbou, 2002

