CLIMATE CHANGE AND AGROPASTORAL SUSTAINABILITY IN THE SHASHE/LIMPOPO RIVER BASIN FROM AD 900

Jeannette Marie Smith

A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy

Johannesburg, 2005
DECLARATION

I declare that this thesis is my own unaided work unless otherwise acknowledged. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any other degree or examination in any other university.

G. Smith

14th day of April, 2005
ABSTRACT

This thesis investigates agropastoral production and ecological conditions under which complex socio-political systems in the Shashe/Limpopo River Basin, southern Africa, periodically expanded and declined between ~AD 900 and 1700. Environmental reconstruction for this period, derived from multi-stable isotope analysis of modern and archaeological fauna from the area, demonstrate that agropastoral settlement and changes in their social, economic and political complexity were less driven by climate than previously had been assumed. Rather, at a relatively short-term climatic scale, these cultural events took place even as precipitation and temperature appeared to have fluctuated above and below the modern seasonal mean of ~350mm and ~22°C, conditions presently considered to be marginal for agropastoral production. Alternative to a climate driven model for settlement, ethnographies of traditional southern African agropastoral systems provide a comparative basis for understanding the range of environmental and social parameters that past agropastoralists in the Shashe/Limpopo River Basin may have employed to sustain population growth and intensify socio-political complexity in the face of short- and long-term climatic variability.

Over a long-term climatic scale, the $\delta^{15}N$ and $\delta^{18}O$ values from Bos taurus and Ovis/Capra indicate that the initial settlement by Zhizo agropastoralists people, between AD 900 and 1010, took place under semi-arid conditions that were similar to, or only marginally wetter, than the present. This thesis suggests that the Zhizo settlement and their ‘capital’ site of Schroda were motivated by broader cultural factors, such as trade networks, and not solely by climate conducive for agriculture. As documented ethnographically, crops and livestock herds could have been sustained by taking advantage of various geographical features of the river basin, such as planting near outcrops where dammed water keep soils moist even in dry periods and using browse and crop fodder to offset diminished grazing lands. Results for sites dating between AD 1010 to 1415, support previous interpretations that the Leopard’s Kopje A and B cultural period ‘capitals’ of K2 and Mapungubwe, respectively, rose to prominence under a trend towards increased available moisture. The additional moisture would have facilitated the greater
floodplain settlement recorded between AD 1010 and 129, which was most likely a response to increased population pressures of the capitals and the need to extend cultivated lands. This spatial shift was accompanied by an apparent greater management of livestock. The preliminary $^{87}\text{Sr}/^{86}\text{Sr}$ data, together with intra-annual $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ values, from $B. \text{taurus}$ and $Ovis/\text{Capra}$ indicates a geographical expansion of herd management took place with the transition from K2 to Mapungubwe. This thesis proposes that to sustain population and socio-political growth in the face of short-and long-term climatic variability, livestock management would need to be politically coordinated. Maintaining large-scale herds outside the river basin would have allowed for expansion of crop production onto previous river basin pasturelands, while extending territories or networks.

Further, the $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ data indicates that the period of increased available moisture extended beyond the abandonment of Mapungubwe at AD 1290. Previous assumptions that link this event to the negative agricultural impact of a cool dry trend starting at ~AD 1300, as extrapolated from sub-continental scale climatic sequence, must be re-assessed. The isotopic data from Moloko/Khami cultural period sites suggest that drier conditions did not develop in the area until after ~AD 1450. Their initial settlement in the area during this drier period needs to be re-considered, as does the entire sequence from ~AD 900 onward, in terms of agropastoral production strategies within shifting natural, economic and political environments.
ACKNOWLEDGEMENTS

I gratefully acknowledge the support of the following individuals and institutions during the course of this thesis research. I would like to thank my supervisors, Simon Hall and Julia Lee-Thorp, for their support during the different phases of the project, and for discussion and direction on the ideas presented within this thesis. Funding for fieldwork and research was provided by the National Research Foundation through a grant to Simon Hall and a Wenner-Gren dissertation fieldwork grant. I would also like to thank both the Department of Archaeology and Archaeological Resource Management at the University of the Witwatersrand (WITS) for logistical support in undertaking fieldwork and the subsequent analyses. Laboratory analysis at the University of Cape Town (UCT) and research were funded by the National Research Foundation through a team-grant to Julia Lee-Thorp. Additional financial support for studies at the University of the Witwatersrand was made available through a Postgraduate Merit Award from the university.

Special thanks go to Tom Huffman of WITS Archaeology Department for including me in his field programme and who, along with Simon Hall, introduced to me the archaeology of the Shashe/Limpopo River Basin. Tom’s help in field sample collection and support in exploring research questions stemming from his 1996 *Quaternary International* article and discussions thereof are greatly appreciated. I would also like thank to Amanda Esterhuysen of WITS Archaeology Department for her contributions to this discussion and fieldwork, and for her encouragement of the research. She is acknowledged also for assistance in carrying out interviews with farmers from Venda, as are Jeanetta Selier, Simeon Kolobe and Grant Hall, while at Mashatu Game Reserve, for interviews with farmers from northeastern Botswana. I am particularly grateful to the participants from both communities for generously giving of their time and allowing me to record their perspectives and strategies on cropping and herding.

A number of groups assisted in the collection of material for this study. In my field sampling of the faunal and vegetation specimens and related information for developing the modern
ecological and isotopic baselines, I thank the Mara Agricultural Research Station and Game Reserve, Langjaan Game Reserve and areas now within the Mapungubwe National Park. Grant Hall provided specimens from Mashatu Game Reserve and Matt Sponheimer of the University of Colorado at Boulder contributed those from the Venetia Game Reserve. The archaeological specimens were sampled from their institutions of curation. John van Schwalkwyk and staff of the National Cultural History Museum of South Africa assisted in accessing the curated faunal material from the sites of Schrodra, Pont Drift and Icon. From the University of Pretoria, faunal samples from K2 and Mapungubwe were made available by Andre Meyer and Maryna Steyn. Geoff Lathey provided access to the faunal material from Faure and Kolope that is being analysed in the WITS Archaeology Department.

I would like to express further appreciation to members of UCT Archaeology Department for allowing me to use their resources and providing me with a base to carry out laboratory analysis. Several individuals gave of their time and/or assisted in technical or methodological aspects of this project. John Lanham provided technical support for stable light isotope mass spectrometry and the laboratory equipment. Andreas Spath of UCT Geology Department prepared and measured samples for LA-ICP-MS, while comparative isotopic analysis was done by Steve Prevec of WITS Bernard Price Institute for Geophysics. Ian Newton and Warren Marcus prepared a number of the samples for isotopic analysis. UCT Chemistry Department assisted with FTIR analysis. Judy Sealy of UCT Archaeology Department, Lynne Bell, Glenda Cox and Matt Sponheimer offered advice on bone collagen and/or bioapatite methodology and discussions on the interpretations of the results. During my various trips to Cape Town, Harriet Clift, Tim Hart, David and Shelona Klatzow and Virginia Sanders provided congenial places to stay.

Finally, in the completion of this thesis I would like to thank Amanda Esterhuysen, Tom Huffman, Judy Stevenson and Mat Wooller for their comments on ideas and content. To Martha Hanlon, I am very appreciative for her help and support on the later drafts and production of this thesis. I thank Rosemary and Peter Esterhuysen and Esther and Ross Smith for their support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER ONE
RESEARCH BACKGROUND AND APPROACHES

1.1 Background to the Study

1.2 Research Review and Archaeological Context

1.2.1 ~AD 900 to 1290: Agropastoralist expansion, increasing socio-political complexity and the collapse of Mapungubwe

1.2.2 ~AD 1300 to 1700: Nature of post 1290 environment and occupation

1.3 Theoretical Approaches to Semi-Arid Agropastoral Ecologies

1.4 Alternative Methods for Reconstructing SLRB Agropastoral Ecology

CHAPTER TWO
THE ENVIRONMENTAL AND ETHNOGRAPHIC PRESENT:
the organisation of agropastoral production in the SLRB and semi-arid regions

2.1 Introduction

2.1.2 Climatic Context for the SLRB

2.2 Cultural Perspectives for Agropastoral Strategies

2.3 Ethnographic and Historical Agropastoral Ecology of the SLRB

2.3.1 Crop Production

 Cropping Strategies

 Plant Characteristics

2.3.2 Soils and Geology Relating to Crop Yields and Pastureland

2.3.3 Natural Vegetation and Characteristics of Pasturelands
2.3.4 Herding Strategies and Ecological Interactions 60

Domestic Fauna 62

Wild Fauna 69

2.4 Summary 70

CHAPTER THREE
ISOTOPIC DETERMINATION OF MODERN ENVIRONMENTAL VARIABILITY 74

3.1 Introduction 74

3.2 Principles of Isotope Ratio Analysis for Ecological Applications 76

3.2.1 \(^{13}\text{C}/^{12}\text{C}\) Ratios 77

3.2.2 \(^{15}\text{N}/^{14}\text{N}\) Ratios 82

3.2.3 \(^{18}\text{O}/^{16}\text{O}\) Ratios 85

3.2.4 \(^{87}\text{Sr}/^{86}\text{Sr}\) Ratios 88

3.2.5 Seasonal Signatures: \(^{13}\text{C}/^{12}\text{C}\), \(^{18}\text{O}/^{16}\text{O}\) and \(^{87}\text{Sr}/^{86}\text{Sr}\) 90

3.3 Sampling of the Modern SLRB and Surrounding Areas 90

3.3.1 Vegetation 93

3.3.2 Fauna 94

3.4 Methods: Stable Light Isotope Analysis 97

3.4.1 Preparation of Organic Materials and Mass Spectrometry 97

Bone Collagen 97

Vegetation 98

Mass Spectrometry 98

3.4.2 Inorganic Preparation and Mass Spectrometry 98

Enamel Bioapatite 98

Bone Bioapatite 101

Mass Spectrometry 101

3.5 Methods: Preparation and Radiogenic Analysis of \(^{87}\text{Sr}/^{86}\text{Sr}\) Ratios 102

3.6 Results and Ecological Implications 103

3.6.1 Vegetation 103

\(\delta^{13}\text{C} \text{ and } \delta^{15}\text{N}\) Values 103
3.6.2 Fauna
 δ¹³C Values
 δ¹⁵N Values
 δ¹⁸O Values

3.6.3 Strontium Values

3.6.4 Serial Sampling Values

3.7 Implications for Interpreting SLRB Palaeoecological and Agropastoral Sequences

CHAPTER FOUR
AGROPASTORAL PALAEOECOLOGY IN THE SLRB: ~AD 900 to 1700

4.1 Introduction

4.2 Sampling and Methods

4.3 Stable Light Isotope Results

4.3.1 AD 900 to 1010 (Zhizo Period)
 δ¹⁵N, δ¹⁸O and δ¹³C Values
 Toothrow δ¹³C and δ¹⁸O Values

4.3.2 AD 1010 to 1220 (Leopard’s Kopje A Period)
 δ¹⁵N, δ¹⁸O and δ¹³C Values
 Toothrow δ¹³C and δ¹⁸O Values

4.3.3 AD 1190 to 1290 (Leopard’s Kopje B Period)
 δ¹⁵N, δ¹⁸O and δ¹³C Values
 Toothrow δ¹³C and δ¹⁸O Values

4.3.4 AD 1310 to 1415 (Icon Facies of Moloko Period)
 δ¹⁵N, δ¹⁸O and δ¹³C Values
 Toothrow δ¹³C and δ¹⁸O Values

4.3.5 ~AD 1475 to 1685 (Moloko and Khami Period)
 δ¹⁵N, δ¹⁸O and δ¹³C Values

4.4 Discussion of Stable Isotope Data

4.4.1 Precipitation and Evapotranspiration

4.4.2 Life Average Diet and Seasonal Variation in Diet and Evapotranspiration
4.4.3. Summary of Isotope Data in Relation to Climatic Models

CHAPTER FIVE
TRANSHUMANT MANAGEMENT OF LIVESTOCK: ~AD 900 to 1700

5.1 Introduction

5.2 Sampling and Methods

5.3 $^{87}\text{Sr}/^{86}\text{Sr}$ Results

5.3.1 Schroda and K2: Leopard’s Kopje A Period (LKA)

Bos $taurus$ $Results$

5.3.2 Mapungubwe: Leopard’s Kopje B Period (LKB)

Bos $taurus$ $Results$

$Ovis/Capra$ $Results$

5.4 Discussion

5.4 Agropastoral Palaeoecology and Transhumant Movement of Livestock

CHAPTER SIX
SUMMARY AND CONCLUSIONS

REFERENCES

APPENDIX A: Agropastoralist Interviews

APPENDIX B: Climate Records

APPENDIX C: Ecology of Modern Fauna

APPENDIX D: Bone Apatite Trials

APPENDIX E: Stable Light Isotope Data from Modern Fauna

APPENDIX F: Toothrow Stable Light Isotope Data from Modern Fauna

APPENDIX G: Stable Light Isotope Data from Archaeological Fauna
LIST OF FIGURES IN TEXT

<table>
<thead>
<tr>
<th>Figure 1.1:</th>
<th>Approximate locations of the SLRB and sites discussed in thesis</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.2:</td>
<td>Origins of southern African agropastoral ceramic traditions discussed in chapter</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.3:</td>
<td>Approximate spatial distributions of SLRB sites between AD 900 and 1300</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.4:</td>
<td>Estimated area under control of the capitals of Mapungubwe, Great Zimbabwe and Khami</td>
<td>24</td>
</tr>
<tr>
<td>Figure 1.5:</td>
<td>Population induced degradation model for semi-arid Africa</td>
<td>28</td>
</tr>
<tr>
<td>Figure 1.6:</td>
<td>Approximate locations of Zhizo, Leopard’s Kopje A Leopard’s Kopje B, Moloko and Moloko/Khami sequences analysed</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.1a:</td>
<td>Mean monthly precipitations from 1975 to 1998 for weather stations in the greater SLRB region</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.1b:</td>
<td>Mean monthly temperature from 1975 to 1998 for weather stations in the greater SLRB region</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.2:</td>
<td>Annual seasonal precipitation record from 1975 to 1998 for weather stations in the greater SLRB region</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.3:</td>
<td>Comparison of mean annual precipitation between regions in northeastern Limpopo Province</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2.4:</td>
<td>Dotted areas indicate approximate location of agropastoralists interviewed from districts in northeastern Botswana and northeastern Limpopo Province</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.5:</td>
<td>Major geological areas in northeastern Limpopo Province</td>
<td>54</td>
</tr>
<tr>
<td>Figure 2.6:</td>
<td>Floodplain west of the confluence of the Shashe and Limpopo Rivers</td>
<td>57</td>
</tr>
<tr>
<td>Figure 2.7:</td>
<td>Outcrops and escarpment east and south of the confluence of the Shashe and Limpopo Rivers</td>
<td>59</td>
</tr>
<tr>
<td>Figure 2.8:</td>
<td>Vegetation changes in the SLRB</td>
<td>61</td>
</tr>
<tr>
<td>Figure 2.9:</td>
<td>Historical distribution of Malignant Catarrhal Fever, East Coast Fever and Foot-And-Mouth Disease</td>
<td>65</td>
</tr>
<tr>
<td>Figure 2.10:</td>
<td>Present-day and historical distribution of tsetse fly</td>
<td>67</td>
</tr>
<tr>
<td>Figure 3.1:</td>
<td>Approximate locations of the sampling areas for modern fauna</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.2:</td>
<td>Carbon isotope pathways modern African herbivores, using a composite of datasets</td>
<td>81</td>
</tr>
<tr>
<td>Figure 3.3:</td>
<td>Transverse line sampling and approximate seasons of enamel formation</td>
<td>100</td>
</tr>
<tr>
<td>Figure 3.4a:</td>
<td>Plotted individual δ13C values for modern grasses</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF TABLES IN TEXT

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Climatic events and the linked cultural sequence for SLRB between ~AD 900 and 1850</td>
<td>8</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Huffman’s (2000) estimated population increase for SLRB capitals and related homesteads between ~AD 900 and 1300</td>
<td>15</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Estimated increase in livestock for the SLRB capitals of Schroda, K2 and Mapungubwe between ~AD 900 and 1290</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Potential southern African agricultural land use pattern at different temporal and spatial scales</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Species of modern herbivore fauna analysed from the northern Limpopo Province, SLRB and northeastern Botswana</td>
<td>71</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Approximate age range for permanent tooth crown formation in B. taurus and Ovis/Capra</td>
<td>91</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Location and geological provenance of modern herbivores</td>
<td>95</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Individual $\delta^{13}C$ and $\delta^{15}N$ values of modern vegetation</td>
<td>104</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Mean bone collagen and enamel bioapatite $\delta^{13}C$ values for modern herbivore</td>
<td>109</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Mean bone collagen $\delta^{15}N$ and enamel bioapatite $\delta^{18}O$ values for modern herbivores</td>
<td>113</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Mean bone collagen $\delta^{15}N$ and enamel bioapatite $\delta^{18}O$ values for modern herbivores</td>
<td>114</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Mean seasonal precipitations for MARS and the greater SLRB region: 1990 and 1998</td>
<td>116</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Individual ICP-MS and LA-ICP-MS $^{87}\text{Sr}/^{86}\text{Sr}$ ratios for modern herbivores</td>
<td>122</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Comparison of $^{87}\text{Sr}/^{86}\text{Sr}$ ratios from Acid Digestion and Laser Ablation ICP-MS with TIMS</td>
<td>124</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Estimated precipitation and temperature extrapolated from $\delta^{15}N$ and $\delta^{18}O$ values for modern herbivores from the Soutpansberg and SLRB</td>
<td>130</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Archaeological cultural periods and site sampling details</td>
<td>139</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Mean $\delta^{15}N$, $\delta^{13}C$ and $\delta^{18}O$ values of Ovis/Capra and B. taurus according to site layers</td>
<td>142</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Toothrow enamel bioapatite $\delta^{13}C$ and $\delta^{18}O$ values for Ovis/Capra and Bos taurus according to site layers</td>
<td>144</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Mean $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of the five geological areas of the greater SLRB region as determined from modern fauna</td>
<td>178</td>
</tr>
</tbody>
</table>
Table 5.2: Intra-annual distribution of *Bos taurus* $^{87}\text{Sr}/^{86}\text{Sr}$ ratios for Leopard's Kopje A layers at Schroda and K2

Table 5.3: Intra-annual distributions of *Bos taurus* and *Ovis/Capra* $^{87}\text{Sr}/^{86}\text{Sr}$ ratios for Leopard's Kopje B layers at Mapungubwe sites of MST and MK1

Table 6.1: A revised climatic sequence for the SLRB and proposed mechanisms of agropastoralist settlement
...small scale farmers are neither irrational nor tradition-bound, and...their agricultural patterns are the consequence of long-and short-term adaptations based on observation and experimentation. (P.F. Barlett 1980)