
UNSUPERVISED ASSET CLUSTER
ANALYSIS IMPLEMENTED WITH

PARALLEL GENETIC ALGORITHMS
ON THE NVIDIA CUDA PLATFORM

by

Dariusz Cieslakiewicz
A dissertation submitted to the Faculty of Science, University of the

Witwatersrand, Johannesburg, in fulfilment of the requirements for the
degree of Master of Science

in the
Faculty of Science

School of Computational and Applied Mathematics

Johannesburg,March 11,2014

The financial assitance of the National Research Foundation (NRF) towards this
research is hereby acknowledged. Opinions expressed and conclusions arrived at, are

those of the author and are not necessarily attributed to the NRF.

mailto:dariuszcieslakiewicz@afrihost.co.za
http://www.wits.ac.za/academic/science
http://www.wits.ac.za/academic/science/cam/6271/home.html

Declaration of Authorship

I declare that this dissertation is my own, unaided work. It is being submitted for the
Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It
has not been submitted before for any degree or examination in any other University.

(Signature of candidate)

day of 20

i

UNIVERSITY OF WITWATERSRAND

Abstract
Faculty of Science

School of Computational and Applied Mathematics

Master of Science

by Dariusz Cieslakiewicz

During times of stock market turbulence and crises, monitoring the clustering behaviour
of financial instruments allows one to better understand the behaviour of the stock mar-
ket and the associated systemic risks. In the study undertaken, I apply an effective and
performant approach to classify data clusters in order to better understand correlations
between stocks. The novel methods aim to address the lack of effective algorithms to
deal with high-performance cluster analysis in the context of large complex real-time
low-latency data-sets. I apply an efficient and novel data clustering approach, namely
the Giada and Marsili log-likelihood function derived from the Noh model and use a Par-
allel Genetic Algorithm in order to isolate residual data clusters. Genetic Algorithms
(GAs) are a very versatile methodology for scientific computing, while the application
of Parallel Genetic Algorithms (PGAs) further increases the computational efficiency.
They are an effective vehicle to mine data sets for information and traits. However,
the traditional parallel computing environment can be expensive. I focused on adopting
NVIDIAs Compute Unified Device Architecture (CUDA) programming model in order
to develop a PGA framework for my computation solution, where I aim to efficiently
filter out residual clusters. The results show that the application of the PGA with
the novel clustering function on the CUDA platform is quite effective to improve the
computational efficiency of parallel data cluster analysis.

http://www.wits.ac.za/
http://www.wits.ac.za/academic/science
http://www.wits.ac.za/academic/science/cam/6271/home.html
mailto:dariuszcieslakiewicz@afrihost.co.za

Dedicated to my son Marcel, my parents Waldemar and Urszula
and my brothers Tomasz and Marek

iii

Acknowledgements

First and foremost, I would like offer my sincere gratitude to Professor Ebrahim Momo-

niat for his continuous support. Further, I would like to thank my supervisor Dr Diane

Wilcox for the comments, remarks and engagement through the learning process of this

dissertation.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iv

List of Figures ix

List of Tables xi

Abbreviations xii

Symbols xiii

1 Introduction 1
1.1 Objectives . 2
1.2 Rationale . 2
1.3 Structure . 3

2 Cluster Analysis 5
2.1 Introduction . 6
2.2 Measures of Similarity and Dissimilarity 6

2.2.1 Distance measures . 6
2.2.2 Correlation measure . 7
2.2.3 Ordinal Measures . 8
2.2.4 Hierarchical clustering . 8

2.2.4.1 Nearest-neighbour clustering 9
2.2.4.2 Farthest-neighbour clustering 10
2.2.4.3 Ward’s Method . 10

2.2.5 Center-Based Partitional Clustering 10
2.2.5.1 K-means clustering . 11

2.3 Applicability of Cluster Analysis in the finance industry 12
2.4 Cluster analysis based on the Maximum Likelihood principle 13

2.4.1 Giada and Marsili clustering technique 14
2.4.2 Search heuristic approach and rationale 17

v

Contents vi

3 Genetic Algorithms 19
3.1 Genetic Algorithms: An Overview . 19

3.1.1 Genetic Operators . 21
3.1.1.1 Selection . 21

Roulette Wheel Selection 22
Rank Selection . 22
Tournament Selection . 23
Random Selection . 23
Stochastic Universal Sampling 23

3.1.1.2 Crossover . 24
Single Point Crossover . 24
Two-Point Crossover . 24
Uniform Crossover . 25
Shuffle Crossover . 26

3.1.1.3 Mutation . 26
Flipping . 26
Interchanging . 27
Reversing . 27
Mutation Probability . 27

3.1.1.4 Elitism . 27
3.1.1.5 Replacement . 28

Random Replacement . 28
Weak Parent Replacement 29
Both Parents Replacement 29

3.1.1.6 Advantages of Genetic Algorithms 29
3.1.2 Non-binary Encodings . 30
3.1.3 Knowledge Based Techniques . 31

3.2 Parallel Genetic Algorithms . 32
3.2.1 Discretised Genetic Algorithms . 32
3.2.2 Master-slave Parallelisation . 33
3.2.3 Multiple-deme Parallelisation . 34

3.2.3.1 Model Parameters . 35
3.2.3.2 Migration Topology . 36
3.2.3.3 Number of Islands . 38

4 Computational Platform 39
4.1 Parallel computing . 39

4.1.1 Architectures . 39
4.1.2 Parallel programming and design paradigms 40
4.1.3 Rationale . 41

4.2 GPU . 41
4.3 NVIDIA CUDA platform . 42

4.3.1 Execution Environment . 43
4.3.2 Thread hierarchy . 43
4.3.3 Memory hierarchy . 46

4.3.3.1 Registers . 46
4.3.3.2 Shared memory . 47

Contents vii

4.3.3.3 Global memory . 48
4.3.4 Synchronisation . 48

4.3.4.1 CPU . 49
CPU Explicit Synchronisation 49
CPU Implicit Synchronisation 50

4.3.4.2 GPU . 50
GPU simple synchronisation 51
GPU tree-based synchronisation 52
GPU lock-free synchronization 52
Disadvantages of GPU synchronisation 53

4.3.5 Challenges . 55
4.3.6 Performance tuning techniques . 56

4.4 PGA implementations on GPUs . 58
4.4.1 GAROP: Genetic Algorithms framework for Running On Parallel

environments . 59
4.4.2 Hybrid Master-slave and Multiple-deme implementation on the

CUDA platform . 61

5 Implementation 64
5.1 Stock correlation taxonomy . 65
5.2 Approach . 66
5.3 Pre-processing of data for the Clustering Algorithm 68
5.4 Post-processing of data and depiction of residual clusters 69
5.5 Implementation of a Parallel Genetic Algorithm: Master-Slave approach . 69
5.6 Detailed analysis of the Parallel Genetic Algorithm: Master-Slave approach 72

5.6.1 Data Parallelism . 72
5.6.2 Initialisation . 74
5.6.3 Grid, block and thread heuristics 75
5.6.4 Master-slave GA computation parallelisation 75
5.6.5 Initial Population generation . 77
5.6.6 Evaluation of the fitness function 78
5.6.7 Genetic Operators and Genetic Algorithm configuration 79

5.6.7.1 Scaling . 80
5.6.7.2 Selection . 80
5.6.7.3 Crossover Operator . 81
5.6.7.4 Mutation Operator . 82

Creep mutation . 82
5.6.7.5 Random replacement . 84
5.6.7.6 Replacement Operator 84

5.6.8 Termination Criteria . 85
5.7 Parallel Genetic Algorithm tuning . 85
5.8 Measurement metrics . 87

5.8.1 Performance metric . 87
5.8.2 Average calculations . 88

6 Experiments and Measurements 89
6.1 Environment . 90

Contents viii

6.2 Data: Training Set . 91
6.2.1 Cluster Analysis in Matlab using a serial Genetic Algorithm 92
6.2.2 Experiments for tuning of parameters in Master-Slave PGA Algo-

rithm on the GPU . 93
6.2.2.1 Variation in Population Size 93
6.2.2.2 Variation in Crossover probability Pc 96
6.2.2.3 Variation in Mutation probability Pm 97
6.2.2.4 Variation in Knowledge-based crossover fragment opera-

tor probability Pcf . 99
6.2.2.5 Variation in Crossover genetic operator 100
6.2.2.6 Variation in Mutation genetic operator 102
6.2.2.7 Variation in number of elite individuals promoted to the

next generation . 104
6.3 Data: Intra-day stock prices for 18 stocks from the Johannesburg Stock

Exchange (JSE) . 106
6.4 PGA algo execution time trials of the CUDA cluster analysis algorithm . 114

6.4.1 PGA algo execution time trials results 114
6.4.2 Analysis of GA algo execution time trials 118

7 Conclusions and future prospects 119
7.1 Conclusions . 119
7.2 Future prospects . 120

Bibliography 122

List of Figures

2.1 Hierarchical clustering . 9

3.1 Basic scheme of the Genetic Algorithm. 20
3.2 Roulette Wheel Selection . 22
3.3 Stochastic Universal Sampling Approach 24
3.4 Single Point Crossover Approach . 25
3.5 Two-Point Crossover Approach . 25
3.6 Uniform Crossover Approach . 26
3.7 Flipping Approach . 27
3.8 Interchanging Approach . 27
3.9 Schematic representation of migration topologies: A. Chain B. Uni-directional

ring C. Ring D. Ring + 1 + 2 E. Ring + 1 + 2 + 3 F. Torus G. Cartwheel
H. Lattice [1] . 37

4.1 Three-Layered CUDA Application Architecture 42
4.2 Serial-Parallel code invocation and execution on Host and Device 44
4.3 Thread Hierarchy . 45
4.4 Heterogeneous Programming model . 47
4.5 CPU Explicit Synchronisation . 49
4.6 CPU Implicit Synchronisation . 50
4.7 GPU tree-based synchronisation . 52
4.8 Asynchronous and Sequential Data Transfers with Computations 58
4.9 GAROP Architecture . 60
4.10 GAROP Architecture for the GPU . 61
4.11 Hybrid PGA CUDA architecture . 62

5.1 A schematic depiction of a Master-slave PGA 71
5.2 Mapping of individuals onto the CUDA thread hierarchy 74
5.3 Stochastic uniform selection approach . 81

6.1 Fitness vs. generation with the following GA configuration: 40x40 corre-
lation matrix, 400 generations, a genome length of 40 and population size
of 400, 100 stall generations and tolerance value of 0.001. 92

6.2 Optimal cluster configuration of training set data obtained by Master-
Slave PGA . 94

6.3 Variation in Population Size . 95
6.4 Variation in Crossover probability Pc . 96
6.5 Variation in Mutation probability Pm . 98
6.6 Variation in Knowledge-based crossover fragment operator probability Pcf 100

ix

List of Figures x

6.7 Variation in Crossover genetic operator . 101
6.8 Variation in Mutation genetic operator . 103
6.9 Variation in Number of elite individuals promoted to the next generation 104
6.10 Early morning trading pattern on the 28th of September 2012 107
6.11 Early morning trading pattern on on the 1st of October 2012 108
6.12 Early morning trading pattern on the the 2nd of October 2012 109
6.13 Midday trading pattern snapshot on the 1st October 2012 110
6.14 Midday trading pattern snapshot on the 2nd October 2012 111
6.15 Midday trading pattern snapshot on on 4th October 2012 112
6.16 Afternoon trading pattern snapshot on the 1st October 2012 113
6.17 Afternoon trading pattern snapshot on the 1st October 2012 113
6.18 Afternoon trading pattern snapshot on the 3rd October 2012 114
6.19 GA execution time runs in various execution environments 115
6.20 PGA execution time runs in various execution environments (Average

execution time recorded) . 115
6.21 PGA execution time runs in various execution environments (Maximum

execution time recorded) . 116
6.22 PGA execution time runs in various execution environments (Minimum

execution time recorded) . 117

List of Tables

3.1 Migration Topology characteristics . 36

4.1 NVIDIA GPU cards . 55

6.1 Development and Testing environment . 91
6.2 GA parameter configurations . 93
6.3 GA parameter configurations: Variation in Population Size 94
6.4 GA parameter configurations: Variation in Crossover probability Pc . . . 96
6.5 GA parameter configurations: Variation in Mutation probability Pm . . . 98
6.6 GA parameter configurations: Variation in Knowledge-based crossover

fragment operator probability Pcf . 99
6.7 GA parameter configurations: Variation in Crossover genetic operator . . 101
6.8 GA parameter configurations: Variation in Mutation genetic operator . . 102
6.9 GA parameter configurations: Variation in number of elite individuals

promoted to the next generation . 104
6.10 Stocks traded on the Johannesburg Stock Exchange (JSE) 106

xi

Abbreviations

GA Genetic Algorithms

PGA Parallel Genetic Algorithms

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

SM Streaming Multiprocessors

SISD Single instruction stream/Single data stream

SIMD Single instruction stream/Multiple data stream

MISD Multiple instruction stream/Single data stream

MIMD Multiple instruction stream/Multiple data stream

MPI Mmessage passing interface

API Application programming interface

xii

Symbols

Rc random number

Pcf probability (rate) of crossover using a knowledge-based operator

Pm probability (rate) of mutation

Pc probability (rate) of crossover

Gstall stall generations

e tolerance value

xiii

Chapter 1

Introduction

Cluster analysis is applied to financial time series data in order to identify securities

with related returns, so that one can diversify and thus optimise a financial portfolio[2].

Clustering is the process of grouping data into clusters so that objects within a cluster

have high similarity in comparison to one another, but are very dissimilar to objects in

other clusters[3]. In order to be able to filter through all the noise and isolate structures,

one needs to make use of a computational approach, that is well-suited to the traversal

of vast search spaces of data and the computation of classifications. Genetic algorithms

are such an approach. They are numerical optimisation algorithms inspired by natural

selection and genetics[4–6], that intelligently exploit a search space to solve optimisation

problems. Although the algorithms must traverse huge spaces, the computationally

intensive calculations can be performed independently[4–6]. The application of Parallel

Genetic Algorithms (PGAs) increases the computational efficiency and represents an

efficient vehicle for the mining of data-sets for information and traits[6]. PGAs paired

with a parallel computing environment allows for quick and effective computation[6].

Compute Unified Device Architecture (CUDA) is NVIDIA’s parallel computing platform

1

Chapter 1. Introduction 2

that enables enthusiasts and scientists to dramatically improve computing performance

by harnessing the power of the GPU[7–10].

1.1 Objectives

The main objective of this research was to develop a Master-slave Parallel Genetic Al-

gorithm (PGA) framework for unsupervised cluster analysis on the CUDA platform.

Master-slave PGAs, also denoted as Global PGAs, involve a single population, but dis-

tributed amongst multiple processing units for determination of fitness values and the

consequent application of genetic operators[6, 9, 10]. It must be able to isolate residual

clusters using the Giada and Marsili likelihood function[11]. The Giada and Marsili’s[11]

maximum log-likelihood function is used as a measure of the similarity of objects. It

is an unsupervised clustering function, meaning that the optimal number of clusters is

unknown a priori and thus not fixed at the beginning of the cluster analysis. Addition-

ally, I investigated and determined the most appropriate genetic operators in order to

maximise quality and performance of the proposed cluster analysis approach[11].

1.2 Rationale

This main focus of this research is to investigate the suitability of using the Giada and

Marsili log-likelihood function[11] with PGAs in a GPU parallel computing environment.

Examining the clustering behaviour of financial instruments, allows me to eliminate any

overlap in an investment portfolio by identifying securities with related returns. This

approach increases diversification. Diversification strives to smooth out unsystematic

risk events in a portfolio so that the positive performance of some investments will

Chapter 1. Introduction 3

neutralize the negative performance of others and in turn will reduce the inherent risk

on the portfolio[2].

1.3 Structure

A three-tiered approach was applied to investigate the suitability of using the Giada and

Marsili log-likelihood function[11] with PGAs in a GPU parallel computing environment.

The first tier of the thesis presents an up-to-date literature study on cluster analysis,

where the reader is familiarised with a Giada and Marsili log-likelihood function[11].

This thesis is the continuation of work done by Mbambiso[12], where he utilised a simu-

lated annealing optimisation approach using a maximum likelihood model developed by

Noh[13] in order to isolate an underlying structure of correlated asset returns, denoted

as sectors, and correlated market-wide activities, denoted as states in the SA financial

markets. In this research, a similar data clustering approach will be followed by us-

ing a Giada and Marsili’s[11] log-likelihood function, as a measure of the similarity of

objects, and thus clusters, but one will apply a more efficient search heuristic, namely

Genetic Algorithms. Artificial Intelligence search heuristic approaches, denoted Genetic

Algorithms, are introduced in order to to apply the cluster analysis function in an op-

timal and efficient manner, thus forming the second tier of the research. The focus

then shifts onto Parallel Genetic Algorithms in order to provide a computational ap-

proach to push the boundaries of computational performance. The third tier comprises

the vehicle for computation: the CUDA platform on General Purpose Graphics Pro-

cessing Units(GPGPUs). GPGPUs are commodity hardware, which have revolutionised

cutting-edge research into Parallel Computing. A closer look is taken at the implementa-

tion of Master-Slave Parallel Genetic Algorithm(PGA), with a detailed dissection of all

Chapter 1. Introduction 4

the approaches taken. The results section depicts the behaviour and intrinsic properties

of the algorithm and features a section on algorithm tuning for a training set of four

clusters. It includes a section on code execution times obtained, where Gebbie’s serial

GA implementation[12, 14] and the newly developed clustering implementation were run

on various Operating Systems, justifying the utilisation of GPUs and Parallel Genetic

Algorithms with the cluster analysis approach taken. The section is rounded off by the

application of the cluster analysis approach to real-world data. It features a clustering

analysis of 1780 time units of real-word stock prices taken from the JSE spanning over

the time period from 28th September 2012 until 10th of October 2012. A high-level

interpretation of trends observed for that specific time period is presented using Mul-

tiple Spanning Trees, which depict the correlations of the stock prices of assets under

investigation. The conclusion succinctly summarises the findings and presents further

prospects which might emanate from this research.

Chapter 2

Cluster Analysis

In the research undertaken, I undertake to find an effective and performant approach

to classify data clusters in order to better understand correlations between stocks. The

novel methods discussed here aim to address the lack of effective algorithms to deal with

high-performance cluster analysis in the context of large complex real-time low-latency

data-sets. I apply an efficient and novel data clustering approach, namely the Giada and

Marsili log-likelihood function[11] derived from the Noh model[13], to try to classify data

clusters. The chapter provides an overview of measures of similarity and dissimilarity

to provide a measure for the clusterability of data. I then look at areas of applicability

of cluster analysis, list the common types of clustering procedures and then provide

an in-depth analysis of the chosen clustering approach, namely the Giada and Marsili

log-likelihood function[11]. The research will be performed on normalised financial data,

meaning that the data will undergo preconditioning in order to remove outliers caused

by unusual or one-time influences. The data-set comprises stock returns, which consist

of the income and the capital gains relative on an investment in a particular stock asset.

5

Chapter 2. Cluster Analysis 6

2.1 Introduction

Cluster analysis divides data into groups, or clusters, which are meaningful, useful or

both. The goal is that the objects in a group will be similar or related to one other and

different from or unrelated to the objects in other groups. The greater the homogeneity

within a group, and the greater the heterogeneity between groups, the more pronounced

the clustering[3].

2.2 Measures of Similarity and Dissimilarity

There are various measures to express the similarity or dissimilarity between pairs of

objects.

2.2.1 Distance measures

The most commonly used proximity measure is the Minkowski metric, which is a gen-

eralization of the normal distance between points in Euclidean space[3]. It is defined

as

Pij = (
d∑

k=1
‖xik − xjk‖r)

1
r (2.1)

where, r is a parameter, d is the dimensionality of the data object, and xik and xjk are,

respectively, the kth components of the ith and jth objects, xi and xj . Literature lists

the following Minkowski distances for specific values of r.[3]:

1. r = 1. City block or Taxicab distance, a common example being the Hamming

distance which measures the number of bits that are different in two binary vectors.

Chapter 2. Cluster Analysis 7

2. r = 2. The most common measure for the distance. This type of distance is

referred to as the Euclidean distance and is the most commonly used approach in

working with ratio or interval-scaled data.

3. r −→ ∞ .The supremum distance (Lmaxnorm,L∞), which denotes the maximum

difference between any component of the vectors.

The dimension d is combined with the respective Minkowski distance r to yield an overall

distance measure.

2.2.2 Correlation measure

The correlation measure is an approach to standardise data by using correlations, in

other words the statistical interdependence between data points. The correlation indi-

cates the direction and the degree of the relationship between two data points. The

direction of the relationship can either be positive or negative and if positive indicates

that the data points are in increasing positive relationship to each other, in other words

correlation, whilst if negative , in decreasing relationship to each other, denoted by the

term anti-correlation. The degree of the relationship measures the strength of the re-

lationship. The most common correlation coefficient which measures the relationship

between data points is the Pearson correlation coefficient, which is sensitive only to a

linear relationship between them. The Pearson correlation has a value of +1 in the

case of a perfect positive linear relationship and a value of −1 in the case of a perfect

decreasing linear relationship, and some value between −1 and 1 in all other cases, in-

dicating the degree of linear dependence between the variables. As it approaches zero

there is less of a relationship , meaning that there is a diminishing relationship or linear

Chapter 2. Cluster Analysis 8

interdependence between the points and the closer the coefficient is to either −1 or 1,

the stronger the correlation between the variables.

2.2.3 Ordinal Measures

Another type of proximity measure is derived by ranking the distances between pairs of

points from 1 to m * (m - 1) / 2. This type of measure can be used with most types of

data and is often used with a number of the hierarchical clustering, which is covered in

2.2.4.

2.2.4 Hierarchical clustering

[15] describes hierarchical clustering as procedures that are characterised by a tree-

like structure, a dendogram, which emerges in the course of the analysis. Clusters are

consecutively formed from objects. Initially, this type of procedure starts with each

object representing an individual cluster. These clusters are then sequentially merged

according to their similarity. First, the two most similar clusters , for example those

with the smallest distance between them, are merged to result in a new cluster at

the bottom of the hierarchy. This method builds the hierarchy from the individual

elements by progressively merging clusters and linking them to a higher level of the

hierarchy. This continues until a single, all inclusive cluster at the top and singleton

clusters of individual points at the bottom emerge. This allows a hierarchy of clusters

to be established from the bottom up. This category of hierarchical clustering is called

is agglomerative clustering. A cluster hierarchy can also be generated top-down, where

all objects are initially merged into a single cluster, which is then gradually split up

as I move down the hierarchy. In hierarchical clustering a cluster on a higher level

Chapter 2. Cluster Analysis 9

of the hierarchy always encompasses all clusters from a lower level. This means that

if an object is assigned to a certain cluster, there is no possibility of reassigning this

object to another cluster. This category of hierarchical clustering is called is divisive

clustering. The methodology is depicted in Figure 2.1. Hierarchical clustering features a

Figure 2.1: Hierarchical clustering

family of methods that differ by the way distances are computed. Apart from the usual

choice of distance functions, I also need to decide on the linkage criterion since a cluster

consists of multiple objects, and there exist multiple candidates for the computation of

the distance[15].

2.2.4.1 Nearest-neighbour clustering

The nearest-neighbour method computes the distance between the two closest elements

in two respective clusters. The linkage function is described by the following equation:

Chapter 2. Cluster Analysis 10

D(x, y) = min
x∈X,y∈Y

d(x, y) where X and Y are any two sets of data points considered as

clusters, and d(x, y) denotes the distance between the two elements x and y.

2.2.4.2 Farthest-neighbour clustering

The farthest-neighbour approach computes the maximum distance between a pair data

objects in respective clusters. D(x, y) = max
x∈X,y∈Y

(d(x, y)) where X and Y are any two

sets of data points considered as clusters, and d(x, y) denotes the distance between the

two elements x and y. This approach is an agglomerative procedure.

2.2.4.3 Ward’s Method

For Ward’s method the proximity between two clusters is defined as the increase in the

squared error that results when two clusters are merged. Thus, this method uses the

same objective function as is used by the K-means clustering. While it may seem that

this makes this technique somewhat distinct from other hierarchical techniques, some

algebra will show that this technique is very similar to the group average method when

the proximity between two points is taken to be the square of the distance between

them[15].

2.2.5 Center-Based Partitional Clustering

Another important group of clustering procedures are partitioning methods. As with

hierarchical clustering, there is a wide array of different algorithms; of these, the k-means

procedure and the k-mediod being the most recognised. The optimization problem

itself is known to be NP-hard, and thus the common approach is to search only for

approximate solutions. Both techniques are based on the notion that a center point

Chapter 2. Cluster Analysis 11

can represent a cluster. They distinguish themselves by the fact that K-means uses the

concept of a centroid, which is the median value of a group of points, which almost never

corresponds to an actual data point, whilst the K-medoid clustering approach utilises

the idea of determining a medoid, which is the most representative point of a group of

points.

2.2.5.1 K-means clustering

This algorithm uses the within-cluster variation as a measure of the homogeneity of a

cluster. The procedure aims at segmenting data in such a way that the variation of the

data points within a cluster is minimised. Prior to analysis, I have to decide on the

number of clusters. Based on this information, the algorithm randomly selects a center

for each cluster and the clustering process starts by randomly assigning objects to the

chosen number of clusters. I proceed then to re-allocate objects to other clusters in order

to reduce the within-cluster variation. Given a set of observations (x1, x2, ..., xn) , where

each observation is a d-dimensional real vector, k-means clustering aims to partition the

n observations into k sets S = (S1, S2, ..., Sk) so as to minimise the Euclidean distance,

that being the measure of proximity of the data point to the centroid of the cluster

denoted by

arg max
S

=
k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (2.2)

where µi is the mean of the points in Si. for every single object. Each object is then

assigned to the centroid with the shortest distance to it. I proceed in an iterative manner

until pre-defined termination criteria is reached, for example a predetermined number

of iterations or there is no change in cluster affiliations, meaning there is no change in

centroids.

Chapter 2. Cluster Analysis 12

2.3 Applicability of Cluster Analysis in the finance indus-

try

Conceptually meaningful groups of objects that share common characteristics, play an

important role in how people analyse and describe the world. The human mind divides

up objects into groups and assigning particular objects to these groups , by the process

of classification. In the context of understanding data, clusters are potential classes and

cluster analysis is the study of techniques for automatically finding classes.

Analytical models are critical in the Financial Services Industry in every phase of the

credit cycle such as Marketing, Acquisitions, Customer Management, Collections, and

Recovery. While such models are now commonplace, it is imperative to continuously

improve on those models to remain competitive. Customization of the models for each

segment of the population is a crucial step towards achieving that end, where cluster

analysis is used to segment the data in order to make better modelling decisions. The

clusters may be used to drive the model development process, to assign appropriate

strategies, or both[15].

In a trading context, cluster analysis is used by Bacidore, Berkow, Polidore and Saraiya[16]

to empirically identify the primary strategies used by a trader. They apply k-means to

a sample of ’progress charts’, representing the portion of the order completed by each

point in the day as a measure of a trade’s aggressiveness. Their methodology identi-

fies the primary strategies used by a trader and determines which strategy the trader

used for each order in the sample. They also look at ways to exploit this technique to

characterize trader behaviour, assess trader performance, and suggest the appropriate

benchmarks for each distinct trading strategy.

Chapter 2. Cluster Analysis 13

Da Costa, Cunha, Da Silva[17] employ cluster analysis to show that stocks from selected

companies of the Americas can be categorized according to their degree of integration.

They show that the stock returns are dependant on geography and macroeconomic

features, just to name a few and stock cluster analysis allows them to track those with

similar returns but different risks. Cluster analysis allows the informed investor to use

the data, which features stock groupings, for identifying same-return stocks and in turn

use this information to optimise a financial portfolio.

2.4 Cluster analysis based on the Maximum Likelihood

principle

Maximum likelihood estimations is a method of estimating the parameters of a statistical

model[11, 18]. Data clustering, on the other hand, deals with the problem of classifying

or categorising a set of N objects or clusters, so that the objects within that group or

cluster are more similar than objects belonging to different groups. If each object is

identified by a number of D observable features, then that object object i = 1, . . . , N

can be represented as a point ~xi = (x(1)
i , . . . , x

(n)
i) in a D dimensional space. Data

clustering will try to identify clusters as more densely populated regions in this vector

space. Thus, a configuration of clusters is represented by a set S = {si, . . . , sN} of

integer labels, where si denotes the cluster that object i belongs to and N is the number

of objects[11, 18]. Let’s assumes that si takes on values from 1 to M and M = N , then

each cluster is a singleton cluster constituting one object only. If si = sj = s, then

object i and object j reside in the same cluster.

Chapter 2. Cluster Analysis 14

2.4.1 Giada and Marsili clustering technique

Giada and Marsili’s[11] stipulate that objects that have something in common; they

are either similar to each other or belong to the same grouping. They found that the

maximum likelihood function leads naturally to a Hamiltonian of Potts variables, whose

low temperature behaviour describes the correlation structure of a data-set[11].

Hq = −
∑

si,sj∈S
Jijδsi,sj −

1
β

M∑
i=1

hMi si (2.3)

For example, in the Potts’ model of interacting market agents in the trading market, each

stock can assume q-states. The state represents a cluster of similar stocks. The model

comprises the factor component ∑si,sj∈S Jijδsi,sj and a noise component 1
β

∑M
i=1 h

M
i si.

The goal is to specify an objective function, which determines the quality of a classifi-

cation structure compared to a data-set being sampled. They observed that data-sets

belonging to the same cluster share common characteristics. This allowed them to con-

struct an expression for the likelihood of any possible classification structure. It allows

for the isolation of residual clusters in correlated data-sets, whilst there will be an ab-

sence of clusters uncorrelated data -sets [18]. The essence of Maximum Likelihood data

clustering is that objects belonging to the same cluster should share a common compo-

nent:

~xi = gsi ~ηsi +
√

1− g2
si
~εi. (2.4)

Equation 2.4 ~xi, represents the features of object i and si is the label of the cluster that

that object belongs to. The data is normalised to have zero mean, and unit variance, as

following:

∑
t x

(t)
i = 0, (2.5)

Chapter 2. Cluster Analysis 15

and

‖~xi‖2 = ∑
t

[
x

(t)
i

]2
= D. (2.6)

for all i = 1, . . . , N . ~εs is the vector of features of cluster s and gs is a loading factor that

emphasises the similarity or difference between objects in a cluster s. In this research

the data-set refers to a set of the objects, denoting N assets or stocks and their features

are prices across D days in the data-set. The variable i is an index for stocks or assets,

whilst d represents an index for days.

If gs = 1, all objects with si = s are identical, whilst if gs = 0 all objects are different.

The range of the cluster index is from 1 to N , in order to allow for singleton clusters of

one object or asset each. ~εi designates the deviation of the features of object i from the

cluster’s features and includes measurement errors. I take equation 2.4 as a statistical

hypothesis and assume that both ~ηsi and ~εs, for values of i, s = 1, . . . , N , are Gaussian

vectors and have zero mean and variance:

E
[(
ε(t)s

)2
]

= 1, (2.7)

and

E
[(
η(t)
s

)2
]

= 1. (2.8)

Then it is possible to compute the probability density P ({~xi}|G,S) for any given set

of parameters (G,S) = ({gs} , {si}) by observing the data-set {xi} , i, s = 1, . . . , N as a

realisation of common component Equation 2.4:

P ({~xi}|G,S) =
D∏
d=1

〈
N∏
i=1

δ(x(t)
i − gsi ~ηsi +

√
1− g2

si
~εi)
〉
. (2.9)

Chapter 2. Cluster Analysis 16

The variable δ is the Dirac delta function and 〈....〉 denotes the mathematical expecta-

tion. For a given cluster structure S, the likelihood is maximal when the parameter gs

takes the values

g∗s =
√
cs − ns
n2
s − ns

, ns > 1. (2.10)

If ns 6 1 then g∗s = 0. ns in Equation 2.10 denotes the number of objects in cluster s

ns =
N∑
i=1

δsi,s. (2.11)

The variable cs is the internal correlation of the s-th cluster denoted by the following

equation:

cs =
N∑
i=1

N∑
j=1

Ci,jδsi,sδsj ,s. (2.12)

The variable Ci,j is the Pearson’s coefficient of data denoted by the following equation:

Ci,j = ~xi ~xj√∥∥∥~xi2∥∥∥ ∥∥∥ ~xj2
∥∥∥ . (2.13)

The maximum likelihood of structure S can be written as P (G∗,S|~xi) ∝ eDL(S) , where

the resulting likelihood function per feature Lc is denoted by

Lc(S) = 1
2
∑

s:ns>1
[log ns

cs
+ (ns − 1) log n

2
s − ns
n2
s − cs

]. (2.14)

The maximum likelihood structure maximises Lc. From Equation 2.14, it follows that

Lc = 0 for cluster of objects that are uncorrelated , where g∗s = 0 or cs = ns or when

the objects are grouped in singleton clusters, where ns = 1 for all the cluster indexes.

Equation 2.14 illustrates that the resulting maximum likelihood function for S depends

Chapter 2. Cluster Analysis 17

on Pearson’s coefficient Ci,j and hence exhibits the following advantages in compari-

son to conventional clustering methods: it is unsupervised, meaning that the optimal

number of clusters is unknown a priori and not fixed at the beginning, and secondly

the interpretation of results is transparent in terms of the model, namely Equation 2.4.

Unsupervised measures of cluster validity are divided into classes: measures of clus-

ter cohesion denoting the compactness of objects within the cluster and measures of

cluster separation measuring how pronounced or well-separated the cluster is from the

other clusters. The Giada and Marsili log-likelihood function Lc classifies the objects

according to their similarity.

Summa Summarum, Giada and Marsili[11] state that maxSLc(S) provides a measure of

structure inherent in the cluster configuration represented by the set S = {s1, . . . , sn}

and the higher the value, the more pronounced the structure of the data-set.

2.4.2 Search heuristic approach and rationale

Marsili and Giada[11] made use of the simulated annealing algorithm in order to localise

clusters of normalised stock returns in financial data. Simulated annealing is a stochas-

tic metaheuristic utilised in optimization problems of locating a good approximation

to the global optimum of a given function in a large search space. It is motivated by

an analogy to annealing in solids, simulating the cooling of material in a heat bath.

This is a process known as annealing[19]. Marsili and Giada utilised −Lc as the cost

function in their application of the log-likelihood function on real-world data-sets to

substantiate their approach. The simulated annealing approach makes use of Metropolis

algorithm on si with progressively decreasing the temperature. They also compared it

to other clustering algorithms such as K-means as described in Section 2.2.5.1 and other

algorithms such as Single Linkage, Centroid Linkage, Average Linkage, Merging and

Chapter 2. Cluster Analysis 18

Deterministic Maximisation[11]. The algorithms simulated annealing and Determinis-

tic Maximisation proved to provide good approximations to the Maximum Likelihood

structure, but are inherently computationally expensive. This motivates to utilise a

more optimal approach. Parallel Genetic Algorithms are such an approach. Lc will be

used as the fitness function and analogous to Deterministic Maximisation utilise GAs

to find the maximum for Lc in order to efficiently isolate clusters in correlated data of

financial data, as explained in subsequent chapters.

Chapter 3

Genetic Algorithms

In order to be able use the Giada and Marsili[11] likelihood function, as described in

Chapter 2, to isolate structures and determine optimal cluster configurations, I need to

make use of a computational approach, that is well-suited for fast and efficient traversal of

vast search spaces. Genetic Algorithms are such a search heuristic and a viable candidate

for investigation[20–24]. This chapter reviews the mechanics of Genetic Algorithms,

especially Parallel Genetic Algorithms.

3.1 Genetic Algorithms: An Overview

Sivanandam and Deepa[6] state that genetic algorithms, genetic programming and evo-

lutionary computing are terms that can be classified as ”Evolutionary Computation”.

Genetic algorithms are computationally intensive search heuristics, which in contrast

to enumerative searches, apply biological evolutionary theory and adapt a population

of individuals in successive generations to iteratively hone in on the optimal solution

to the problem at hand. A search heuristic, also denoted a metaheuristic, is routinely

19

Chapter 3. Genetic Algorithms 20

used to generate useful solutions to optimisation and search problems. In an evolution-

ary algorithm, a representation scheme is chosen by the implementer to define the set

of solutions, denoted chromosomes, that are contained within the search space for the

algorithm. At the outset, a number of individual solutions are created, which will form

the initial population or search space. An established steps are then repeated itera-

tively until a solution is found which satisfies a predefined termination criterion. Each

individual is evaluated using a predefined fitness function that is specific to the prob-

lem being solved. Based upon their fitness values, a number of individuals are chosen

to be parents. Specific genetic operators are applied to the parents, in the process of

reproduction, which then give rise to offspring. The genetic operators are: selection,

crossover, mutation, elitism and replacement. Figure 3.1 depicts the basic scheme of a

Genetic Algorithm.

Figure 3.1: Basic scheme of the Genetic Algorithm.

Chapter 3. Genetic Algorithms 21

3.1.1 Genetic Operators

3.1.1.1 Selection

The selection is the process of selecting two viable individuals, the parents, for crossover.

The purpose of selection is to isolate the fitter individuals in the population and allow

them to breed so that they can give rise to new offspring which exhibit higher fitness

values. It randomly picks chromosomes out of the population according to their fitness

function. There are two types of methodologies when it comes to selection schemes:

proportionate selection and ordinal-based selection. Proportionate-based selection picks

out individuals based upon their fitness values relative to the fitness of the other individ-

uals in the population. Ordinal-based selection schemes selects individuals upon their

rank within the population. Selection has to be maintained in balance with varying

crossover and mutation. Too strong selection means highly fit individuals will take over

the population, reducing the diversity and converging towards a solution too quickly,

which might not be optimal as it might compromise the effort of sampling a diverse

search space of candidate solutions; too weak a selection will impede and slow down

the process of evolution. The convergence rate of GA is largely determined by selection

pressure. Selection pressure gives fitter individuals a higher probability of partaking

in the mating process in order to create the next generation so that the GA can focus

on promising regions in the search space. Higher selection pressures result in higher

convergence rates and lower selection pressures lead to longer search times, though a

selection pressure that is too high will lead to convergence towards a local minimum and

not the optimal solution to the problem at hand. One needs to find a balance in order

to tune the selection process in such a way that on the one hand premature convergence

Chapter 3. Genetic Algorithms 22

is avoided but on the other hand the search time for traversal of the search does not

spiral out of control[6].

Roulette Wheel Selection In Roulette Wheel Selection an analogy can be drawn

between the whole population forming a roulette wheel with the size of of an individual’s

slot proportional to it’s fitness. Then a random selection is made analogues to ’spinning’

the wheel and throwing a figurative ’ball’ in. The probability of the ’ball’ coming to rest

in any particular slot is proportional to the arc of the slot and thus to the fitness of the

respective individual. The probability of the selection of an individual can be computed

as follows:

pi = fi∑N
j=1 fj

(3.1)

where fi is the fitness of the ith individual and N is the number of individuals. The

following depicts the approach visually:

Figure 3.2: Roulette Wheel Selection

Rank Selection Rank Selection ranks the population by the value of their fitness

value. The worst has fitness 1 and the best has fitness N. Potential parents are selected

Chapter 3. Genetic Algorithms 23

and a tournament is held to decide which of the individuals will be the parent. There

are many ways this can be accomplished. Two possible suggestions are:

1. Select a pair of individuals at random. Generate a random number, R, between 0

and 1. If R<r use the first individual as a parent. If the R≥r then use the second

individual as the parent. This is repeated to select the second parent. The value

of r is a parameter to this method.

2. Select two individuals at random. The individual with the highest evaluation

becomes the parent. Repeat to find a second parent.

This approach stifles the rate of convergence in slow but keeps up selection pressure

when the fitness variance is low, thus preserving diversity and hence leading to a better

exploitation of the search space. In effect, potential parents are selected and a random

approach is followed to decide which of the individuals will be the parent[6].

Tournament Selection Tournament selection involves running several tournaments

among a variable size of Nu individuals chosen at random from the population. The

criteria for winning the tournament is having the highest fitness value. The winner is

then injected into the mating pool for generating new offspring. The variable tournament

size and difference in fitness value of the individuals allows for selection pressure tuning,

as a bigger pool will disadvantage weaker individuals, as their chances at selection will

be smaller[6].

Random Selection This technique randomly picks a parent from the population.

Stochastic Universal Sampling In Stochastic Universal Sampling the individuals

are mapped to contiguous segments on a selection line. The technique randomly samples

Chapter 3. Genetic Algorithms 24

all the solutions by choosing them at uniformly spaced intervals, thus exhibiting zero bias

to the selection approach and improves the chances of selection for weaker individuals[6].

The following depicts the approach visually:

Figure 3.3: Stochastic Universal Sampling Approach

3.1.1.2 Crossover

Sivanandam and Deepa[6] state that crossover is the process of mating, involving two

individuals, with the expectation that they can produce a fitter individual. The crossover

genetic operation involves the selection of a random loci to mark a cross site within the

two parent chromosomes and copy the genes to the offspring, thus giving rise to the

child that contains both parent’s genetic information and thus a new potential candidate

solution that can be interrogated for a fitness value.

Single Point Crossover Figure 3.4 visually depicts the process of Single Point

Crossover: The technique proceeds by slicing a pair of selected segments at a random

location, denoted by the term locus. The locus is selected in a random manner. The

segments beyond the locus in either individual are swapped between the two parent

individuals.

Two-Point Crossover Figure 3.5 visually depicts the process of Two-Point Crossover.

Analogous approach to Single-Point Crossover 3.1.1.2, but utilising two loci for exchange

Chapter 3. Genetic Algorithms 25

Figure 3.4: Single Point Crossover Approach

Figure 3.5: Two-Point Crossover Approach

of genetic material.

Uniform Crossover The Uniform Crossover Operator randomly decides which genes

a parent of a pair of individuals contributes according to a binary crossover mask, with

the distinguishing feature that binary value of 1 will signal to copy of the genetic infor-

mation from the first parent, whilst a 0 will indicate that the information will be sourced

from the second parent to yield the offspring[6]. The distribution of the binary values

is denoted the mixing ratio. Figure 3.6 depicts the technique.

Chapter 3. Genetic Algorithms 26

Figure 3.6: Uniform Crossover Approach

Shuffle Crossover The Shuffle Crossover approach is analogous to single-point crossover

3.1.1.2, with the distinction that prior to the genetic material being exchanged, the genes

are randomly shuffled in both parents. After performing the crossover operation, the

genes are ’unshuffled’ in reverse order. This removes positional bias as the genes are

randomly reassigned each time crossover is performed.

3.1.1.3 Mutation

Sivanandam and Deepa[6] state that mutation is the key driver of diversity in the candi-

date solution set or search space. This is an operator that is applied after crossover with

the aim of randomly distributing genetic information and inhibiting the algorithm from

being trapped in local minima. It introduces new genetic structures in the population

by randomly modifying some of its building blocks and enables the algorithm to traverse

the whole search space. It guarantees ergodicity, meaning that near-zero probability of

generating any identical solution from any population state.

Flipping A parent is chosen which yields an offspring artefact, by taking the chosen

binary genome representation and inverting all its bits. The 1’s in the parent become

0’s and vice versa. Figure depicts flipping.

Chapter 3. Genetic Algorithms 27

Figure 3.7: Flipping Approach

Interchanging Two random positions of the string are chosen and the bits corre-

sponding to those positions are interchanged. Figure depicts interchanging.

Figure 3.8: Interchanging Approach

Reversing A parent is chosen which yields an offspring artefact, by taking the chosen

binary genome representation and inverting the bit a specified locus.

Mutation Probability The important parameter in the mutation operation is the

mutation probability Pm, which determines how often parts of chromosome will be

mutated. If the mutation probability is 0%, then the artefacts generated by the crossover

operation are the final offspring after mating if mutation probability is 100%, whole

chromosome is subjected to the mutation operator[6].

3.1.1.4 Elitism

Sivanandam and Deepa[6] state that elitism is the process of preserving the fittest indi-

viduals, by inherent promotion to the next generation, without undergoing any of the

Chapter 3. Genetic Algorithms 28

genetic transformations of crossover or mutation. It is purported in literature [4], that

fitness-proportional selection does not necessarily favour the selection of any particular

individual, even if it is the fittest. This means that the fittest individuals might not

survive an evolutionary cycle, which has its advantages and disadvantages. The advan-

tage is that it leads to a more exploration approach of the search space, thus sampling

more possible combinations and thereby solutions to the problem in the search space.

The disadvantage is that it slows down the process of converging towards the optimal

solution and ultimately fails to find the true global optimum, thus not harnessing the

full potential of exploitation of discoveries within the search space[4].

3.1.1.5 Replacement

Sivanandam and Deepa[6] state that replacement is the last stage of any evolution cycle,

where the algorithms needs to replace old members of the current population and replace

them with new ones. There are two replacement schemes: generational updates and

steady-state updates The basic generational update scheme consists in producing N/2

children from a population of N to evolve and create the next generation population, and

this new population of children completely replacing the parent selection. This implies

that an individual can only reproduce with individuals from the same generation. In

a steady state update, new individuals are inserted in the population as soon as they

are created, as opposed to the generational update where an entire new generation is

produced in each generation. By introducing a new individual one needs to replace an

old member, where one can opt for the least fittest one.

Random Replacement Random replacement introduces the concept of two offspring

artefacts replacing two randomly chosen individuals in the population. The parents are

Chapter 3. Genetic Algorithms 29

also candidates for selection. This can be useful for continuing the search in small

populations, since weak individuals can be introduced into the population[4].

Weak Parent Replacement In Weak Parent Replacement, if two parents mate

and yield two offspring, the weaker parent will be replaced by the stronger child and

introduced in to evolved population. This introduces bias towards fitter individuals,

thus increasing the overall fitness of the population, but reducing the diversity of the

mating pool.

Both Parents Replacement In Both Parents Replacement, if two parents mate

and yield two offspring, both parents will be replaced by children and introduced in to

evolved population, thus each individual gets to breed once in the evolutionary cycle.

3.1.1.6 Advantages of Genetic Algorithms

One of the key advantages of genetic algorithms is that they are conceptually simple.

As explained in the previous section, Genetic Algorithms (GAs)can be represented by

the following steps: initialise population, evolve individuals, evaluate fitness, select indi-

viduals to survive to the next generation. Genetic Algorithms exhibit the trait of broad

applicability[6], as it can be applied to any problem whose solution domain can be quan-

tified by a function, that needs to be optimised. GAs find application in the many fields,

such as Engineering[25], Job scheduling[26], Process control, etc. They are adaptive to

changing environments, as they use the previously evolved solution to provide a basis

that one can tap into to make further improvements to the solution domain[6]. Contrary

to other optimisation methodologies, GAs do not need to return to the initial state of

computation. They can be implemented for all sorts of problem types, as long as one

Chapter 3. Genetic Algorithms 30

adheres to the basic guidelines. The evolution process lends itself to parallel process-

ing techniques[21], which opens up new avenues to explore in terms of hybridisation

with other optimisation techniques, which can give rise to more efficient ways to solve

problems in general. One could for example use a conjugate-gradient minimisation after

instituting a primary search with Genetic Algorithms[6].

3.1.2 Non-binary Encodings

By convention, a chromosome is a sequence of symbols and that these symbols are binary

in form, thus exhibiting a cardinality of 2. The most effective approach is though when

the encoding or the alphabet employed is problem-specific and most fittingly represents

the solutions in the search space, as it will be illustrated in this thesis. It shows that

higher-cardinality alphabets are more suited to certain type of problems[5, 6]. Empirical

studies of high-cardinality alphabets have typically applied chromosomes where each

encoding represents an integer[22, 27], or a floating-point number[28]. But those present

problems, in terms of the subject matter covered, on how to apply genetic operators

such as mutation and crossover to those encodings.[5] defines the following Crossover

and Mutation genetic operators for non-binary representations:

1. Crossover:

• Average : Apply the arithmetic average of the two parent genes.

• Geometric mean: Apply the square root of the product of the two values.

• Extension: Take the difference between two values and add to the higher or

subtract it from the lower of the two values

2. Mutation:

Chapter 3. Genetic Algorithms 31

• Random replacement : Replace the value at specific locus with a random

value

• Creep : Add and subtract a small, randomly generated amount.

• Geometric creep: Multiply by random amount close to one.

The random number generator in the above operations might base on a variety of dis-

tributions from exponential, uniform within a range to Gaussian or binomial models,

Gaussian being the preferred one.[6] states that experiments were conducted with float-

ing point representations and it was determined that floating point representations are

faster, more consistent from run to run, and provide higher precision, especially in large

domains where binary coding would require unusually long representations. At the same

time its performance can be enhanced by the application of special operators to achieve

high performance accuracy[28].

3.1.3 Knowledge Based Techniques

GA schemes usually apply the traditional crossover and mutation operators, but in

certain cases and also in this research undertaken in this thesis, I would rather advocate

using a specific type of operators for the task at hand, preferentially that is guided using

domain knowledge. This makes the GA less generic and more problem specific, but may

improve performance significantly[6, 29]. Where a GA is being designed to tackle a real-

world problem, and has to compete with other search and optimization techniques, the

incorporation of domain knowledge often is advisable[6, 29]. Domain knowledge may be

used to prevent obviously unfit chromosomes or prevent the algorithm from honing in

on a sub-optimal solution, or even violate problem constraints, from being produced in

the first place[6, 29]. This avoids wasting time evaluating such individuals, and avoids

Chapter 3. Genetic Algorithms 32

introducing poor performers into the population. [6] states that areas of utilisation

would be:

• Guiding the initialisation of the population at the beginning of the process[6].

• Guiding the crossover operator, so that the crossover operation does in fact yield

fitter offspring in order to prevent weaker individuals being introduced into suc-

cessive matings pools[6].

• Guiding the mutation operator. For example, the application of gradient like

bitwise (G-bit) improvement for one or more highly fit chromosomes, allows the

change of each bit one at a time to see if the fitness improves. If it does, one would

replace the original with the altered chromosome[6].

[6] advise to utilise hybrid GA schemes, combining GAs with other heuristic search

algorithms, such as hill climbing or greedy search. The GA would be utilised to locate

the solution in the search space or come close to it and then use those optimisation

schemes to hone in on the optimal value, thus improving the efficiency and competence

of the GA[6].

3.2 Parallel Genetic Algorithms

3.2.1 Discretised Genetic Algorithms

Genetic Algorithms are very effective in solving very complex problems. This positive

trait can be unfortunately offset by very long execution times, due to the traversal of the

search space. As mentioned in section 3.1.1.6, GAs lend themselves to parallelisation

and thus the fitness values can be determined independently for each of the candidate

Chapter 3. Genetic Algorithms 33

solutions, utilising one of the parallelisation schemes: master-slave models, multiple-

deme, and fine-grained PGAs[6]. I will focus on the master-slave models and the multiple-

deme parallelisation schemes. The master-slave parallelisation scheme are relatively easy

to implement. On the other hand, the multiple-deme parallelisation scheme currently

dominates the research on PGAs due its complexty and the fact that its behavior is

affected by many parameters[6].

3.2.2 Master-slave Parallelisation

Master-slave GAs, also denoted as Global PGAs, involve a single population, but dis-

tributed amongst multiple processing units for determination of fitness values and the

consequent application of genetic operators. It lends itself to computation on shared-

memory processing entities or to any type of distributed system topology, like for ex-

ample grid computing [9, 10]. Sivanandam and Deepa[6] have provided the following

depiction of the Master-Slave Parallel Genetic Algorithm:

Algorithm 1 Generic Master-Slave Parallel Genetic Algorithm
produce an initial population of individuals
evaluate the individual’s fitness
for all individuals do in parallel

evaluate the individual’s fitness
end parallel for
while not termination condition do

select fitter individuals for reproduction
produce new individuals
mutate some individuals
for all individuals do in parallel

evaluate the individual’s fitness
end parallel for
generate a new population by inserting some new good individuals
and by discarding some old bad individuals

end while

Chapter 3. Genetic Algorithms 34

Master-slave PGAs are easy to implement and they can be a very efficient method of

parallelisation when the evaluation needs considerable computations, thus reducing the

execution time of the algorithm. Besides, the method has the advantage of not altering

the search behaviour of the GA[6, 30], so all the theory available for simple GAs can be

applied directly without any modifications[6].

3.2.3 Multiple-deme Parallelisation

Multiple-population or Multiple-deme PGAs allow for the populations to be partitioned

into disjoint, autonomous sub-populations and undergo subsequent evolution, indepen-

dently of each other, thus in parallel. The complexity arises when trying to find a balance

between the communication cost, trying to constrain it to a minimum, whilst ensuring a

diverse mixture of individuals from the respective sub search spaces. I need to establish

an optimal segment sizing approach, in order to find the optimal number of demes which

will ensure diversity and a comprehensive set of candidate solutions. This will lead to

optimal convergence[10]. Multiple-deme parallel GAs are also called ”coarse-grained” or

”distributed” GAs, due to the fact that the communication to computation ratio is low,

and they are often implemented on distributed-memory computers[30]. They consist

of several sub-populations that undergo evolution independently of each other and at

pre-defined intervals, called epochs, exchange individuals with other sub-populations.

The arrangement and interconnectivity between the different sub-populations resembles

an archipelago, a cluster of islands, thus deeming the Multiple-deme model an ”island

model”. These algorithms are quite popular, but very difficult to understand, configure

and optimise due to unpredictability of the migration process. Additionally, there exist

many parameters that need to be configured that affect their accuracy and efficiency [31].

Chapter 3. Genetic Algorithms 35

Multiple-deme parallel GAs are also very difficult to configure as they introduce funda-

mental changes in the operation of the PGA and exhibit a different behaviour to simple

GAs[6]. The key drivers are the topology of the different interconnected sub-populations,

the deme size, and the migration rate [31]. Migration is geared at introducing diversity

and better exploration of the search space compared to other types of GAs.

Algorithm 2 Generic Multiple-deme Parallel Genetic Algorithm
initialize P sub-populations of size N each
generation number = 1
while not termination condition do

for all individuals do in parallel
evaluate and select the individuals by fitness
for all individuals do in parallel

evaluate the individual’s fitness
if generation number mod frequency = 0 then

send K < Nbest individuals to neighbouring population
receive K from neighbouring population
replace K individuals in the sub-population

end if
produce new individuals
mutate individuals

end parallel for
end parallel for
generationnumber ← generationnumber + 1

end while

3.2.3.1 Model Parameters

Multiple-deme PGA key drivers of efficiency are the following parameters[30]:

• The number of islands representing separate demes as part of the island cluster

configuration.

• The migration topology depicting the interconnectivity and arrangement of islands.

• The migration rate defining the number of individuals to be exchanged between

respective demes.

Chapter 3. Genetic Algorithms 36

• The migration frequency defining how often a exchange of individuals transpires.

This measure is directly related to the epoch, as the it signifies the period at which

the migrations take place.

• The migration algorithm specifying all the remaining details.

3.2.3.2 Migration Topology

There is a plethora of migration topologies. [1] have explored some of different migration

topologies. Figure 3.9 depicts different island cluster configurations. In the past the

Topology Number of
edges

Valid num-
ber of nodes

Diameter Degree of
connectiv-
ity

Clustering
coefficient

Chain (Step-
ping stone)

n- 1 n ∈ N n-1 0,1 0

Uni-
directional
Ring

n n ≥ 3 n-1 1 0

Ring n n ≥ 3 n
2 2 0

Ring + 1 + 2 2n n ≥ 5 n
4 4 0.5

Ring + 1 + 2
+ 3

3n n ≥ 7 n
6 6 0.6

Lattice 2(n−
√
n) n = k2 2(

√
n− 1) 2,3,4 0

Table 3.1: Migration Topology characteristics

migration model or topology was largely dependant on the hardware configuration and

platform the computations were run on [32]. The Chain topology is the simplest of the

migration topologies, where the communication can transpire in a uni- or bi-directional

manner. The first deme is not partaking in the exchange of individuals at the end of

the epoch, as can be deduced from Figure 3.9. A more versatile arrangement would

be that of a Ring topology. Again, communication may be uni-or bi-directional and is

utilised in many traditional GA Islands models [1]. The Ring + 1+ 2 and Ring + 1 + 3

archipelago topologies are extensions to the Ring topology, which distinguish themselves

by increasing the degree of connectivity between the islands. The increase in number of

Chapter 3. Genetic Algorithms 37

Figure 3.9: Schematic representation of migration topologies: A. Chain B. Uni-
directional ring C. Ring D. Ring + 1 + 2 E. Ring + 1 + 2 + 3 F. Torus G. Cartwheel

H. Lattice [1]

Chapter 3. Genetic Algorithms 38

edges is tabulated in 3.1. The topologies also affect the number of nodes that comprise

the topology arrangement, which entail a minimum number of nodes to be configured,

in order to be able to harness the full potential of the specific migration approach.

3.2.3.3 Number of Islands

The number of islands is dependant on the computing platform used , the underlying

hardware configuration or the migration topology utilised. PGAs scale very well and

with more hardware at my disposal for the goal of computation, I am able to partition the

search space into more sub-populations and henceforth improve the overall efficiency of

the computations. The migration topology also has a pronounced effect on the number

of sub-populations utilised. As tabulated in Section 3.2.3.2, the topology chosen will

necessitate a certain number of islands to be declared. In using a specific migration

scheme, I need to be cognisant of the fact that the greater the number of edges, the

greater the number of exchanges between the respective sub-populations within the

archipelago and also the higher the communication overhead. But [32] state, that the

higher the number of islands, the better the result of the computation. They also state

that this only holds for certain type of problems and algorithms, so quintessentially

there is no rule of thumb as to the optimal number of islands. The onus lies with

the researcher to apply different migration topologies and investigate the effects of the

different parameters on the efficiency of the algorithm.

Chapter 4

Computational Platform

In order to be able to fully harness the capabilities of a Parallel Genetic Algorithm as

described in the Chapter 3, I need to make use of a parallel computing platform. CUDA

is such a platform. It is a platform and a programming model invented by NVIDIA. This

chapter will firstly introduce conventional parallel computing architectures and then

acquaint the reader with the CUDA parallel computing platform, specifically chosen

for the task of delivering cluster analysis results in an efficient manner. It forms the

backbone of the research undertaken and also allows for the proposed clustering analysis

approach to be employed.

4.1 Parallel computing

4.1.1 Architectures

There exist several different parallel architectures. They can be grouped into four cat-

egories based upon the number of instructions that can be performed concurrently and

the number of data streams these instructions can operate upon. The classifications were

39

Chapter 4. Computational Platform 40

first proposed by Flynn[33] in 1966 and are the following: single instruction stream/s-

ingle data stream (SISD), single instruction stream/multiple data stream (SIMD), mul-

tiple instruction stream/single data stream (MISD), and multiple data stream/multiple

instruction stream (MIMD)[34]. The MIMD classification has replaced the SIMD as

the de facto parallel platform today. The MIMD classification includes shared memory

multiprocessor systems and message-passing multi-computers[35]. The architecture of

shared memory multiprocessors focuses on the idea of a globally addressable memory

location. In shared memory multiprocessor machines, also referred to as symmetric mul-

tiprocessors (SMPs), the memory location is physically equidistant or appears physically

equidistant from all processors. Variations on the traditional shared memory architec-

ture exist that relax the scalability limitations of traditional shared memory machines,

yet still provide the appearance of equidistant memory. These architectures are re-

ferred to as distributed shared memory machines and fall under the shared memory

category. These include cache coherent non-uniform access (CC-NUMA) machines[34].

In message passing multi-computers, or distributed memory architectures, each proces-

sor has its own memory location and the memory is not globally addressable. Parallel

architectures in the distributed memory classification do not suffer from the scalability

restrictions of the shared memory architectures and hence have gained popularity in the

high performance computing segment.

4.1.2 Parallel programming and design paradigms

Programming in parallel environments has being reliant on the use of compiler directives

and libraries. Those allow for the integration of parallelism directly into existing code

instead of having to use a new language, that is designed specifically for the parallel

Chapter 4. Computational Platform 41

environment. This allows the programmer to stay at least somewhat in a familiar en-

vironment, where syntax is concerned and allows already written and tested code to be

in some cases fairly easily parallelised. Programming in the distributed memory envi-

ronment has been dominated by message passing interface (MPI) for the last several

years. MPI provides a standard for implementations of message passing libraries for

many parallel architectures; it is highly portable and can also be used in shared memory

environments[36]. Shared memory programming has seen a resurgence of interest with

the development of OpenMP, which utilizes compiler directives to easily parallelise sec-

tions of code[37]. The following design paradigms are key to programming in a parallel

environment and determine the success or failure of an implementation:data placement,

communication latency and synchronisation[38].

4.1.3 Rationale

A proper design of a parallel algorithms along with careful consideration of the chosen

platform leads to substantial reductions in execution time. Additionally, new algorithm

designs provide benefits in solution quality due to the application of parallelism. How-

ever, without careful consideration to design and platform choice, it is also possible to

not obtain the full benefit of the parallel computing environment and in the worst case

negative results in performance[39].

4.2 GPU

Graphics processor units (GPU), traditionally designed for graphics rendering have

emerged as massively-parallel ’co-processors’ to the central processing unit(CPU). Ac-

cording to Flynn’s taxonomy, as stated in 4.1.1, GPUs are classified as SIMDs and belong

Chapter 4. Computational Platform 42

to the class of emerging parallel architectures. It has emerged, that small-footprint desk-

top supercomputers with hundreds of cores can deliver teraflops peak performance at

the price of conventional workstations[40]. This can be attributed to the increasing

hardware requirements for modern computer games. GPUs offer floating-point calcu-

lation much faster than today’s CPU and beyond graphics applications they are well

suited to computations which need to be highly parallelised[40]. In order to be able to

develop applications to run on the GPU, general purpose high-level languages for GPUs

have been developed in order to minimise the complexity of using graphics program-

ming paradigms and apply them to the non-graphics applications realm. One such is

NVIDIA’s Compute Unified Device Architecture(CUDA) platform[7].

4.3 NVIDIA CUDA platform

Figure 4.1: Three-Layered CUDA Application Architecture

Compute Unified Device Architecture(CUDA) is NVIDIA’s platform for massively par-

allel high-performance computing on the NVIDIA GPUs. In order to have hardware

cater only for high performance computing, NVIDIA developed the Tesla range of GPU

products that caters for the simulations and computations in the high-end market like

the oil, gas and computational finance industry. At its core are three key abstractions:

a hierarchy of thread groups, shared memories, and barrier synchronisation[7, 8, 41].

Chapter 4. Computational Platform 43

They are provided to the developer as a minimal set of language extensions, which pro-

vide a ’platform for fine-grained data parallelism and thread parallelism, nested within

coarse-grained data parallelism and task parallelism’[7, 8]. Task parallelism allows for

the parallelisation of computer code across multiple processors in parallel computing en-

vironments. Task parallelism focuses on distributing execution processes across different

parallel computing nodes, whilst data parallelism focuses on distributing the data of a

data-set across different parallel computing nodes and the execution of the same process

across the elements of the dataset[7].

4.3.1 Execution Environment

The CUDA execution model is based on the primitives of threads, thread blocks, and

grids. Code artefacts, denoted by the term kernel, are executed by lightweight individual

threads on the device within a thread block and grid. When a kernel function is invoked,

the grid’s properties are described by an execution configuration, which has a special

syntax in CUDA[8]. The kernel launches are asynchronous, meaning that the GPU will

return control to the CPU, even before the invoked kernel completed, which means that

successive kernel function invocations will be initiated without waiting for the completion

of the previously invoked kernel.

4.3.2 Thread hierarchy

The thread, also known as a stream, is a basic unit of manipulating data in CUDA, which

is a 3-component vector, so that threads can be identified using a one-dimensional, two-

dimensional, or three-dimensional index, forming a one-dimensional, two-dimensional, or

Chapter 4. Computational Platform 44

Figure 4.2: Serial-Parallel code invocation and execution on Host and Device

three-dimensional thread block. Those multi-dimensional blocks are organized into one-

dimensional or two-dimensional grids, each block can be identified by one-dimensional

or two-dimensional index, and all grids share one global memory [7]. Each thread has

a unique local index threadIdx in its block, and each block has a unique index blockIdx

in the grid. The dimensions of the thread are accessible through a built-in variable

blockDim, the dimensions equivalently stored in the variable gridDim. Figure 4.3 depicts

a fine-grained view of the thread hierarchy. The index of a thread executing in a grid

Chapter 4. Computational Platform 45

Figure 4.3: Thread Hierarchy

can be uniquely identified as per the mathematical depiction in 4.1.

thread(x, y, z) =



x = blockIdx.x ∗ blockDim.x+ threadIdx.x

y = blockIdx.y ∗ blockDim.y + threadIdx.y

z = blockIdx.z ∗ blockDim.z + threadIdx.z

(4.1)

For instance, kernels can use these indices to compute array subscripts. Threads in a

single block will be executed on a single multiprocessor, using a common data cache,

device memory, to share data. The kernel execution transpires in groups of 32 threads,

denoted by a warp. A warp will always be a subset of threads from a single block.

Threads in different blocks may be assigned to different multiprocessors concurrently, to

the same multiprocessor concurrently, or may be assigned to the same or different mul-

tiprocessors at different times, depending on how the blocks are scheduled dynamically.

Chapter 4. Computational Platform 46

There is a hard limit on the size of a thread block, this being 512 threads or 16 warps

for Tesla, 1024 threads or 32 warps for Fermi. Thread blocks are always created in warp

units, so there is no point in trying to create a thread block of size that is not a multiple

of 32 threads; all thread blocks in the whole grid will have the same size and shape. A

Tesla multiprocessor can have 1024 threads simultaneously active, or 32 warps. These

can come from 2 thread blocks of 16 warps, or 3 thread blocks of 10 warps, 4 thread

blocks of 8 warps, and so on up to 8 blocks of 4 warps; there is another hard limit of

8 thread blocks simultaneously active on a single multiprocessor. As mentioned, Fermi

can have 48 simultaneously active warps, equivalent to 1536 threads, from up to 8 thread

blocks.

4.3.3 Memory hierarchy

There are multiple data caches that CUDA threads may access data from during their

execution, as illustrated by Figure 4.4 [7].

4.3.3.1 Registers

Registers are the fastest memory units on a GPU, and each multiprocessor on the GPU

has a large, but limited, register file which is divided amongst threads residing on that

multiprocessor. Registers are private for each thread, and if the threads use more reg-

isters than at it’s disposal, a register spillover incurs, with L1 cache and global memory

being affected. The more threads utilised, the lower the register availability to each

thread [42].

Chapter 4. Computational Platform 47

Figure 4.4: Heterogeneous Programming model

4.3.3.2 Shared memory

The second fastest memory type is shared memory, which exhibits similar access times to

registers. It acts a common data cache for all threads belonging to a single thread block,

enabling threads to exchange data with each other. Its size is limited to 48 KB, which

can impose a limit on threads per block, if a high amount of data needs to be stored

or exchanged by threads in a thread block. Shared memory is physically organized into

32 banks that serve one warp with data simultaneously. However, for full speed, each

thread must access a distinct bank. Failure to do so leads to more memory requests,

one for each bank conflict. A classical way to avoid bank conflicts is to use padding,

Chapter 4. Computational Platform 48

where shared memory is padded with an extra element, so that neighbouring elements

are stored in different banks thus ensuring singular access to the bank [42].

4.3.3.3 Global memory

Global memory is the main memory of the GPU. It exhibits fast bandwidth, but has

a high latency, due to the fact that it takes an order of hundreds of clock cycles to

fetch a data value from global memory. This is hidden through rapid switching between

threads, but there are still pitfalls. First of all, just as with CPUs, the GPU transfers

full cache lines across the bus, called coalesced reads. As a rule of thumb, transferring a

single element consumes the same bandwidth as transferring a full cache line. Thus, to

achieve full memory bandwidth, I should enforce that warps access continuous regions of

memory and the full utilisation of cache lines, which involves address alignment achieved

again by padding. To fully occupy the memory bus, the GPU also uses memory par-

allelism, in which a large number of outstanding memory requests are used to occupy

the bandwidth. This is both a reason for high memory latency, and a reason for high

bandwidth utilisation [42].

4.3.4 Synchronisation

After performing any type of computation, the need might arise to collate the results.

This might be necessary as in the case on performing summation on a data-set with

a significant element count. This operation belongs to a categorisation of processes

denoted by the technical term reduction, which also involves the operations such as

sum, min, max, average, that necessitate the temporary storage of data and in such

data communication mechanism between respective threads. This might transpire on

Chapter 4. Computational Platform 49

CPUFunction () {
kernelFunction <<dimGrid ,dimBlock > >(...);
cudaThreadSynchronise ();

}

Figure 4.5: CPU Explicit Synchronisation

a intra-block and an inter-block level and entails various synchronisation approaches

that will allow for consolidation of results and enable further processing in an efficient

manner.

4.3.4.1 CPU

CPU Explicit Synchronisation CPU explicit synchronization is depicted in the

code snippet in Figure 4.5, in which kernel func() is the kernel function, and the implicit

synchronisation barrier is implemented by terminating the current kernel execution and

launching the kernel again, thus creating a barrier between the two kernel launches. In

addition, in the CPU explicit synchronization, the function cudaThreadSynchronize()

is utilised. It blocks until all the threads on the device have executed the kernel function.

Once this has been achieved and the control has been passed back to the CPU, a new

kernel can be invoked. Thus, in CPU explicit synchronization, the three operations of a

kernel’s execution are executed sequentially across different kernel launches. This phe-

nomenon is depicted in Figure 4.5, where func() is the kernel function, and the implicit

synchronisation barrier is implemented by terminating the current kernel execution and

launching the kernel again, thus creating a barrier between the two kernel launches. In

addition, in the CPU explicit synchronization, the function cudaThreadSynchronize()

is utilised. It blocks until all the threads on the device have executed the kernel function.

Once this has been achieved and the control has been passed back to the CPU, a new

Chapter 4. Computational Platform 50

CPUFunction (){
kernelFunction <<dimGrid ,dimBlock > >(...);

}

Figure 4.6: CPU Implicit Synchronisation

kernel can be invoked. In summary, three operations of a kernel’s execution are executed

sequentially across different kernel launches.

CPU Implicit Synchronisation The code snippet in Figure 4.6 depicts the omis-

sion of the synchronisation function cudaThreadSynchronize(). As per the discus-

sion in 4.3.1, kernel launches are asynchronous, but the successive kernel launches are

pipelined and thus the executions implicitly synchronised with the previous launch, for

the exception of the first kernel launch [43][7].

4.3.4.2 GPU

CUDA provides a simple and efficient mechanism for thread synchronisation within

a block, which forces all threads to wait, until they all reach this point of execution

in the code. The thread synchronisation mechanism is especially useful when using

shared memory to exchange data between threads in a block. The barrier function

synthreads() ensures proper communication, the process being referred to as intra-

block synchronisation. As stated in Section 4.1.1, CUDA adapts to the Single Program

Multiple Data (SPMD) paradigm, where a single kernel or block of code concurrently

processes partitioned segments of a collection of data, the same block of instructions

processing a different segment of source data. With that in mind, data communication

across different blocks might have not being considered by the CUDA developers to be

viable with that type of architecture or not considered to be pertinent, which accentuates

the fact that inter-block communication is not directly supported during the execution

Chapter 4. Computational Platform 51

of a kernel. The explicit or implicit CPU synchronisation approach covered in 4.3.4.1

try to address the functionality of inter-block communication, but in my opinion not

effectively. This poses a problem when it comes to the realisation of performant Parallel

Genetic Algorithms on the CUDA platform. It is not limited to those type of algorithms,

but other algorithms are out of scope of this paper. However, [43] have proposed three

strategies namely GPU simple synchronization, GPU tree-based synchronization, GPU

lock-free synchronization.

GPU simple synchronisation The algorithm 3 depicts the notion of GPU Simple

Synchronisation. It uses a global mutex variable to keep count of all the thread blocks

that reach the synchronisation point. This coupled with inter-block synchronisation will

ensure that all threads from all the blocks synchronise at the barrier and no thread will

proceed until all the threads have reached that execution point. Only one thread, the

leading thread, from the block will increase the counter and interrogate the state of the

mutex, the rest will synchronise via the barrier function. Once the mutex’s value equals

a certain value, either being a number of blocks allotted for kernel execution or some

pre-defined value, the ’sluice’ will be opened and the threads are allowed to proceed.

The value of the mutex is incremented using and atomic function that prevents dirty

reads or read-write conflicts [43].

Algorithm 3 GPU Simple Synchronisation
Set barrier value g barrier value
Initialise mutex variable g mutex
tid getsthreadIdx.x ∗ blockDim.y + threadIdx.y . id of thread in block
if tid = 0 then . Is it the leading thread? If yes, then continue

g mutex getsg mutex+ 1 . Atomic increment
while g mutex! = g barrier value do . Spin until g mutex = g barrier value

end while
end if

syncthreads()

Chapter 4. Computational Platform 52

GPU tree-based synchronisation The GPU tree-based synchronization is an im-

provement on the GPU simple synchronisation approach, which reduces the time of the

process to update the mutex variable. This can be achieved by increasing the con-

currency of the process of updating the mutex. As described in the previous Section

4.3.4.2, the increment operation needs to be atomic and all writes need to be sequential

in order to maintain consistency. Figure 4.7 depicts the approach of a 2-level tree-based

approach. The thread blocks are subdivided into m thread block groups, each group’s

completion state maintained by a group mutex variable g mutex i. Synchronisation

transpires on the group level first and proceeds to synchronisation on the block level, so

two sets of mutex variables are incremented and queried[43].

Figure 4.7: GPU tree-based synchronisation

GPU lock-free synchronization The GPU lock-free synchronization does away

with costly atomic operations and aims at maintaining the state without the use of a

mutex variable. Synchronization of different thread blocks is controlled by threads in a

single block, which can be synchronized by calling the barrier function synthreads().

Algorithm 4 conveys the core aspects of the synchronisation approach. Two array struc-

tures are used to realise synchronisation. The indices of these arrays correspond to a

block id, meaning that element at index i is mapped to thread blocki. The leading

thread drives synchronisation. If block i is ready to initiate communication, its leading

thread will set the value to a pre-defined value at its mapped arrayIn index location

Chapter 4. Computational Platform 53

and will wait until the same value has been set at its mapped arrayOut index location,

before it the ’sluice’ is opened and the threads within all the blocks can proceed beyond

the synchronisation point. Analogous to having a leading thread in block, a leading

block is chosen to drive the next stage of synchronisation, namely the first block. Any

other block in the grid can be chosen, but in order to maintain consistency and clarity

I should revert to using the first block of the grid. All the threads in the leading block

will read the value in arrayIn, i.e. the ith thread will read the value at index i in the

array. Should the value be that of the pre-defined barrier value, then the thread will set

the value of the corresponding element at index position i in arrayOut. This approach

further improves the level of concurrency as all the threads of the leading block are

assigned to oversee the state of the blocks in the grid and pull the proverbial lever so

that collectively they can open the ’sluice’ [43].

Disadvantages of GPU synchronisation Due to the latency on the call between

CPU and GPU, CPU synchronisation incurs a significant overhead and GPU synchro-

nisation is preferred. There is a downside to GPU synchronisation though, that in my

mind discredits the whole investigation and methodology. A constraint exits on the

number of blocks that can be configures and the number needs to smaller or equal to

the Streaming Multiprocessors(SM) on the GPU card. If the number of thread blocks

is bigger than the number of SMs on the card, execution will deadlock. This is due to

the non-preemptive warp scheduling behaviour of the GPU. If the number is bigger, this

will then automatically infer that more than one thread block will be assigned to a SM

for execution. The unscheduled thread blocks will not be executed, due to the fact that

the active blocks, resident on the SM, are in a state of busy-waiting for the unscheduled

thread blocks at the synchronisation point. Further, the published GPU synchronisation

approaches just seem not to be a viable option for synchronisation. I am constrained to

Chapter 4. Computational Platform 54

Algorithm 4 GPU lock-free synchronisation
Initialise barrier value g barrier value
tid← threadIdx.x ∗ blockDim.y + threadIdx.y . id of thread in block
numBlocks← blockDim.y ∗ blockDim.x . number of blocks executing
blockid← blockIdx.x ∗ gridDim.y + blockIdx.y . id of block in grid
if tid = 0 then . Leading thread drives synchronisation

arrayIn[blockId]← g barrier value
end if
if blockid = 1 then

if tid < numBlocks then
while arrayIn[blockId]! = g barrier value do . Spin until

gmutex = gbarriervalue
Spin

syncthreads()
if tid < numBlocks then

arrayOut[blockId]← g barrier value
end if

end while
end if

end if
if tid = 0 then

while arrayOut[blockId]! = g barrier value do . Spin until
gmutex = g barrier value

Spin
end while

end if
synthreads()

a very limited number of configurations, whilst even with the overhead, GPU synchro-

nisation adds more flexibility and might even allow for improvements in performance

due to the same trait. However, it would be premature to settle on a approach and a

comprehensive empirical study needs to be conducted, but that is beyond the scope of

the research undertaken. Table 4.1 depicts configurations for some of the NVIDIA GPU

cards on the market today. It is quite evident I am limited to a maximum of 16 thread

blocks per kernel execution. With a maximum thread count of 1024 threads per bock,

I would operate on a data-set of 16384 distinct data values, which for some problems

might be sufficient, but when dealing with data-sets in cluster analysis utilising PGAs

this just might be too constrictive.

Chapter 4. Computational Platform 55

Feature Tesla S2050 GTX 560Ti GTX 580 GTX 660Ti GTX 680
CUDA Cores 448 384 512 1344 1536

Streaming Multiprocessors (SM) 14 8 16 7 8
Compute Capability 2.0 2.1 3.0 3.0 3.0

Table 4.1: NVIDIA GPU cards

4.3.5 Challenges

One fundamental challenge of programming in CUDA is adapting to the data parallelism

paradigm, which differs from traditional parallel paradigms in that multiple instances

of a single program act on a body of data. Each instance of this program uses unique

offsets to manipulate pieces of that data. Data parallelism fits well in this paradigm

while task parallelism does not. Once the programming paradigm is understood, there

are additional difficulties in using the CUDA language. Since each warp is executed on a

single SIMD processor, divergent threads in that warp can severely impact performance.

Divergent threads are threads in a warp that follow different execution paths. If this

happens, the different execution paths must be serialized, since all of the threads of a

warp share a program counter; this increases the total number of instructions executed

for this warp. Once all the different execution paths have completed, the threads con-

verge back to the same execution path[41]. Hence, all other threads must effectively wait

until the divergent thread rejoins them. Thus, divergence forces sequential thread exe-

cution, negating a large benefit provided by SIMD processing[7, 41]. Another limitation

in CUDA is the lack of communication and consequently the lack of synchronization

between thread blocks and limited capability of communication between blocks. This

creates possible problems of data consistency, typical of parallel modification of singular

values and the design and implementation of certain type algorithms on the CUDA plat-

form. However, as described in 4.3.4 [43] have proposed efficient methods for inter-block

Chapter 4. Computational Platform 56

communication, that does not involve transferring control over to the CPU and thus ne-

cessitating the enforcement explicit synchronisation of all the threads on the CPU. But,

on the other hand, Section 4.3.4.2 highlights the disadvantages of those inter-block com-

munication mechanisms and until such time as these have being addressed and resolved

by the NVIDIA CUDA developers, the implementation of those approaches remains

more a theoretical exercise than reality.

4.3.6 Performance tuning techniques

”We should forget about small efficiencies, say about 97% of the time: premature opti-

mization is the root of all evil” [44]. Optimising in itself is a difficult task and an even

greater task to perform on cutting-edge technology such as GPUs. The CUDA platform

features a profiling platform, which provides an invaluable tool for that task. Optimisa-

tion is a ongoing exercise, where I will have to isolate one problem area after another, in

order to attain a collective improvement in performance. The core bottlenecks for bad

performance or degradation in processing throughput on the GPU are the following:

• Kernel might be limited to instruction throughput, memory throughput or laten-

cies.

• CPU-GPU communication[42], which leads to high latency. Please refer to Section

4.3.3.3.

1. The transfer of data between the host and the device should be minimised or if

unavoidable I should rather batch small transfers into one large transfer due to the

overhead incurred with the process of initialising a CPU-device data exchange.

Chapter 4. Computational Platform 57

2. Utilise optimal kernel launch configurations in order to harness as much of the

device’s computational capability as possible.

3. Make use of asynchronous data transfers with computations. This is only possible

with the utilisation of pinned memory. Pinned memory is memory allocated on

the host, that is prevented from being swapped out and which allows for faster

transfer times between the host and the device and thus higher throughputs. Fig-

ure 4.8 depicts the timeline of execution for two code segments. In the top segment

the computation and data transfer occur in a sequential manner. In the bottom

segment concurrent copy and kernel execution allows for the overlap of kernel ex-

ecution on the device with the data transfers between the host and device. This

is only a viable option if the results can be segmented into pieces and transferred

back to the host as soon as the segment has been computed and prepared for

transfer, and I am not reliant on the computational result as a whole.

4. Avoid divergent execution paths within the same warp.

5. Minimise redundant accesses to global memory as possible. It is of paramount

importance that accesses to global memory transpire in coalesced manner, so as to

minimise the clock cycles for writes and reads as fewer transactions will be needed

to serve the thread memory access pattern. The concurrent accesses of the threads

of a warp will coalesce into a number of transactions equal to the number of cache

lines necessary to service all of the threads of the warp.

6. Optimise instruction usage by avoiding instructions that have low throughput.

This equates to trading precision over throughput and utilise single-precision over

double-precision operations.

Chapter 4. Computational Platform 58

7. The number of threads per block should be a multiple of the warp size. The warp

size on the CUDA devices is 32 threads. This will provide optimal computing

efficiency and ensures coalescing of the memory accesses, so that memory accesses

transpire in an optimal manner and no unnecessary execution time is wasted on

sub-optimal fetch operations by the SMs. The minimum size of threads per thread

blocks should be 64, only in the case if multiple concurrent blocks execute per

thread block.

Figure 4.8: Asynchronous and Sequential Data Transfers with Computations

4.4 PGA implementations on GPUs

As stated in the introduction to this chapter, CUDA allows me to fully harness the

capabilities of Parallel Genetic Algorithms. [9, 10] describe the approaches taken to

implement PGAs on the CUDA platform.

Chapter 4. Computational Platform 59

4.4.1 GAROP: Genetic Algorithms framework for Running On Paral-

lel environments

[45] developed GAROP, a PGA framework which executes in parallel environments. The

target parallel processing architectures are multi-core CPUs and GPUs. The purpose

of GAROP is to have a user-friendly Application Programming Interface (API), which

will increase the user’s productivity by reducing the processing time without the specific

knowledge regarding parallel architecture and parallel processing. The target user group

of GAROP is presumed to be primarily GA developers. Users utilise a template specific

to the parallel execution environment their PGA will execute on, and deploy the tem-

plates and the code for evaluation function. The API encapsulates the communication

mechanisms and the implementation of scheduling for evaluation tasks. Thus, the users

can execute PGAs in parallel environments without needing to have knowledge of com-

munication mechanisms and schedulers, specific to the parallel execution environment.

GAROP introduces the concept of a data store, namely an individual pool, as an inter-

face to link users to parallel environments. The individual pool stores individuals, which

are to be evaluated in parallel, automatically. Using this design, any GA model can be

executed in parallel. The individual pool has two queues: a ’throw queue’, which stores

individuals tasked for evaluation, and a ’get queue’, which stores evaluated individuals.

As soon as individuals are sent to the ’throw queue’, they are routed to the calculation

resources and evaluated. Evaluated individuals are stored in the get queue. Figure 4.9

depicts GAROP’s conceptual architecture.

Chapter 4. Computational Platform 60

Figure 4.9: GAROP Architecture

GAROP uses a Master-slave parallelisation scheme for computations to be executed on

the CUDA platform. The GA runs on the CPU and initiates a sub thread, in order

to handle data transfers to and from the GPU. The configuration such as number of

blocks and thread, length of an individual, and number of individuals to be processed,

are computed on the GPU by a kernel function call. Individuals, that are sent to GPU,

are stored in GPU constant memory. Constant memory is accessible to all threads and

the CPU, but is limited in size. It is used to store data that will not change over the

course of a kernel execution. Each CUDA thread acquires individual information from

constant memory and commits data, pertaining to the evaluation of the individual, to

GPU global memory. Figure 4.9 depicts GAROP’s conceptual architecture for the GPU.

Chapter 4. Computational Platform 61

Figure 4.10: GAROP Architecture for the GPU

4.4.2 Hybrid Master-slave and Multiple-deme implementation on the

CUDA platform

[10] implemented a hybrid between a Master-slave and Multiple-deme parallelisation

approach for the CUDA GPU platform. They ran the genetic operations and fitness

evaluations on the GPU, utilising GPU shared memory to store computational data.

They divided block shared memory (see Section 4.3.3.2) into n number of parts, which

forms a series of continuous addresses. Thus, each block can access or write to each sub-

population independently. Due to access to high-speed shared memory in each thread

block, the communication cost is being kept to a minimum. They devised a hierarchical

PGAs, which is a hybrid of a Multi-deme PGA at a higher level and Master-Slave PGA

at lower level. The following steps are followed in the execution of the proposed PGA:

1. Initialise a single large panmictic population in GPU global memory.

2. Distribute each sub-population to the respective shared memory of thread block.

3. Initiate evolution in each thread block; the evolutions run independently of each

other.

Chapter 4. Computational Platform 62

Figure 4.11: Hybrid PGA CUDA architecture

4. After each evolution, initiate block exchanges of best individuals according to the

uni-directional ring migration model. See section 3.2.3.2.

5. Commit data, representing the new individual, to GPU global memory.

6. Update global memory with new individuals.

7. If termination criteria not satisfied, proceed with step 2.

Figure 4.11 depicts the architecture of the PGA implementation. The pseudo-code in

algorithm 5 illustrates the hybrid PGA.

Chapter 4. Computational Platform 63

Algorithm 5 Hierarchical Master-slave and Multiple-deme hybrid PGA
Initialise thread block.
Initialise grid.
Create initial population.
Distribute the population to block shared memory.
Invoke GPU kernel A.

GPU kernel B:
while termination criteria not met do

Exchange best individuals with neighbouring blocks (sub-populations).
Update shared memory with new individuals.

end while

GPU kernel A:
Access respective sub-population.
Apply genetic operator,i.e. selection, crossover, mutation and evaluation.
Update shared memory with generated children.

Chapter 5

Implementation

This chapter delineates the implementation details and approach taken in implementing

a adaptive heuristic search algorithm. As presented in Chapter 2, the Master-slave and

Multiple-deme Parallelisation Schemes were chosen to search for the optimal solution to

the Giada and Marsili[11] log-likelihood function. A high-level overview of the Master-

slave algorithm implementation is presented, the various choices for the genetic operators

clearly motivated and, in succession, an overview on the approach taken to implement

the kernels and PGA cluster analysis framework on the CUDA platform, provided. A

discussion on the execution time trial methodology between the serial Matlab and the

parallelised CUDA C implementation closes off the chapter.

A Multiple-deme coarse-grained PGA, leveraging of the CUDA framework, was partially

implemented. Implementing the scheme proved to be highly complex. Unfortunately

the algorithm crashes once the different code components are assembled. Possible causes

are platform drivers and device memory conflicts. This chapter also introduces a novel

self-developed knowledge-based genetic operator that allows for highly efficient traversal

of the search space.

64

Chapter 5. Implementation 65

5.1 Stock correlation taxonomy

A number of authors[46, 47] have focused on graph-theoretical representation and anal-

ysis of the financial market. [47] focused on devising hierarchical structures in finan-

cial markets, by presenting a topological characterization of the minimal spanning tree

(MST), that can be obtained by considering the price return correlations of stocks,

traded in a financial market.[46] used correlation matrices devised from stocks in a port-

folio, by computing the synchronous time evolution of the logarithm of the difference

of the daily stock price. A spanning tree of a graph is a subgraph that contains all the

vertices and is a tree. A single graph can have many different spanning trees. A weight

is assigned to each edge and used to assign a weight to a spanning tree by computing the

sum of the weights of the edges in that spanning tree. Thus, a minimum spanning tree

(MST) is then the spanning tree with weight less than or equal to the weight of every

other spanning tree. More generally, any undirected graph, which is not necessarily

connected, has a minimum spanning forest, which is a union of minimum spanning trees

for its connected components. [46] mapped the stocks into the graph nodes and pro-

jected the relations between the stocks into the graph edges. The correlations between

the pairs of stocks are transformed into metric distances, as depicted by the following

equation:

cij =
√

2 (1− ρij). (5.1)

ρij depicts the correlation value between stock i and stock j in the correlation matrix.

An application of the MST in the current financial context would denote the sum of

all weights of edges, which is minimal among all trees defined on the distance matrix.

The MSTs are visual representations of the stock correlation network, which are used

for observing, analysing and predicting stock market dynamics.

Chapter 5. Implementation 66

5.2 Approach

In this research two objectives had to fulfilled. I investigated and tuned the behaviour

of the PGA implementation using a pre-defined training set of 40 simulated stocks,

which features 4 distinct disjoint clusters. The second objective was to build a stock

correlation network based on stock price correlations, computed from the time series of

the respective securities by collecting the real-world ticker data for a pre-defined time

period from the Johannesburg Stock Exchange JSE). The approach of using a integer-

based encoding was chosen, as motivated in Section 3.1.2. The representation of the

individual is as per the Section 2.4 in Chapter 2 and looks as following:

Individual = {c1, c2, . . . , ci−1, ci} , c = 1, . . . ,K, i = 1, . . . , N. (5.2)

The variable ci is the cluster that the object i belongs to. In terms of the terminology

pertaining to Genetic Algorithms, it means that the i − th gene denotes the cluster

that i − th object or asset belongs to. The numbers of objects or assets is N . This

representation was implemented by Gebbie[12, 14] in his serial GA algorithm and was

also adopted in this research. Section 5.6.7 dissects the type of Genetic Operators used

in line with argumentation in Section 3.1.2. The fitness function will be the Giada and

Marsili maximum log-likelihood function Lc as derived in 2.4.1, which is as following:

Lc(S) = 1
2
∑

s:ns>1
[log ns

cs
+ (ns − 1) log n

2
s − ns
n2
s − cs

] (5.3)

The fitness function will be used as the measure to determine whether the cluster con-

figuration represents the inherent structure of the data set, i.e. the GA will hone in on

the fittest individual, which will represent the cluster configuration of distinct residual

Chapter 5. Implementation 67

clusters of correlated assets or objects in the data set.

The preconditioning and post-processing of the data was performed in MATLAB mak-

ing use of data pre-processing, post-processing and Minimal Spanning Tree(MST) code

libraries supplied by the supervisors for this research[48, 49]. In order to comply with

the chosen approach, I had to make modifications to the code libraries. I chose to ap-

ply the Batch Sequential Architectural Pattern[50] for the data processing. In a Batch

Sequential architecture, the task is subdivided into small processing steps, which are

implemented as separate, independent components. Each step runs to completion and

then calls the next sequential step until the whole task or job completed. During each

step a batch of data is processed and sent as a whole to the next step in form of a batch

file. The following steps are executed in order to build the stock correlation network are

in adherence with the chosen Architectural Pattern[50].

1. Precondition the data for the cluster analysis algorithm and persist the data to

batch file. This is done via the MATLAB function createRWData.m.

2. Load the preconditioned data and feed the preconditioned data into the CUDA

GA cluster analysis application and persist the data with the calculated cluster

configurations to batch file.

3. Load the cluster configurations from the batch file and feed it into the MST gen-

eration engine. Plot the generated MSTs and persist the graphical depictions as

PNG file type. This is done via the MATLAB function createMSTs.m.

4. (Alternative) Collate the plots to an AVI file.

Chapter 5. Implementation 68

5.3 Pre-processing of data for the Clustering Algorithm

In order to generate the correlation matrices for the relevant stock prices compris-

ing N stocks, the following approach was adopted: the ticker data file, serialised as

FTS(Financial Time Series) objects, is read into memory and the data conditioned.

Holes in the time series data are plugged using the Matlab function fillts() utilising a

zero-order hold interpolation approach in order to substitute missing values, denoted by

Not A Number(NaN) in the data file. Subsequently, the time series data is extracted

out of the FTS format and copied into a 2-columnar matrix, the first column containing

the ticker time values and the second column the monetary value of the stock data.

The function average() is applied to normalise the data and remove the market mode

by recursive averaging of the financial data in the matrix. Successively, I remove the

Gaussian noise from the generated covariance matrix in order to make the residual clus-

ters more pronounced thus conducting a cleansing of the correlation matrix. Random

Matrix Theory is applied in order clean the covariance matrix. The respective matrix is

decomposed and re-built via the eigenvector decomposition theorem as per the following

equation:

CorrelationMatrix = eigenvectors ∗ diag(eigenvalues) ∗ eigenvectorsT (5.4)

The sum of the eigenvalues, i.e. the variance of the system is preserved throughout the

cleansing process. The derived covariance matrix is converted into a correlation matrix,

resulting in a Hermitian matrix. The data is serialised to a text file, which is fed into the

cluster analysis PGA algorithm 5.5 for the computation of residual clusters. The cluster

configurations are then saved to a flat file for further processing and the rendering of

a graphical depiction of the financial data’s clustering characteristics using Minimum

Chapter 5. Implementation 69

Spanning Trees (MSTs), as discussed in section 5.4.

5.4 Post-processing of data and depiction of residual clus-

ters

Computed cluster configurations are read from the flat file and residual anomalies

pruned. Successively, a distance matrix is constructed by using data values from the

correlation matrix in conjunction with computed cluster configuration of the respec-

tive data set. The distance matrix is now used to construct the Minimum Spanning

Tree (MST). The MST exhibits N-1 edges, connecting the N stocks of the data set in

such a manner such that the sum of the weights of the edges is a minimum. Kruskal’s

algorithm was used to generate the MSTs, which depict the linkages between highly

correlated stocks, and in such allows me to draw observations and conclusions from it

as explained in Section 5.1.

5.5 Implementation of a Parallel Genetic Algorithm: Master-

Slave approach

As mentioned in Section 4.3 in Chapter 4, the NVIDIA CUDA platform provides key

abstractions, namely thread groups, shared memories, and barrier synchronization, ’for

fine-grained task parallelism and thread parallelism, nested within coarse-grained data

parallelism’[7]. This means, that I am afforded the capability to subdivide the task that

can undergo coarse-grained parallelism, that is tasks in which exchange of data between

processing units ensues in an infrequent manner, and most of the execution time is

devoted to processing the task or tasks at hand. Those tasks are solved independently in

Chapter 5. Implementation 70

parallel by blocks of threads, and each sub-problem into even finer units of execution that

can be solved cooperatively in parallel by all threads within the block. The primary focus

was to leverage of the CUDA’s very scalable programming model in order to parallelise

as many of the different operations of the PGA as possible so that computations would

ensue in an efficient manner.

The unparallised GA implementation of the likelihood function implemented in MAT-

LAB by Gebbie[12, 14] served as the starting point for this research. In order to max-

imise the performance of the Genetic Algorithm, the application of genetic operators and

evaluation of the fitness function were parallelised. The Master-slave PGA or Global

PGAs use a single population, where evaluation of the individuals and successive appli-

cation of genetic operators are conducted in parallel. The global parallelization model

does not predicate anything about the underlying computer architecture, so it can be

implemented efficiently on a shared-memory and distributed-memory model platform

[6]. I need to outsource as much of the GA execution to the the GPU and make use

of GPU memory as extensively as possible[10]. This allows for the minimisation of the

data transfers between the host and a device, as those transfers have a significantly

lower bandwidth than data transfers transpiring between shared or global memory and

the kernel executing on the GPU. I need to minimise and even avoid kernel accesses to

global memory [51], but this is not a viable option in this case due to the fact that I need

to utilise global memory for the storage of the population, which undergoes evolution.

The algorithm in 6 was modified in such a manner as to maximise the performance of

the Master-slave PGA and have a clear distinction between the master node, the CPU,

which controls the evolutionary process, by issuing the commands for the GA operations

to be performed on the GPU, the slave nodes or otherwise denoted the worker nodes. In

the Master-slave model, as depicted in Figure 5.1, the master, the CPU in this scenario,

Chapter 5. Implementation 71

Algorithm 6 Master-slave PGA Implementation for residual cluster determination
Initialise ecosystem for evolution
Size the thread blocks and grid to achieve the highest level of parallelisation.

On GPU: Create initial population
for current generation ≤MAX NO OF GENERATIONS do

On GPU: Evaluate fitness values of all individuals in current generation
On GPU: Evaluate state and statistics for current generation
On GPU: Determine if termination criteria are met
if Yes then

Terminate ALGO; Exit While Loop;
else

Continue
end if

On GPU: Isolate fittest individuals
On GPU: Apply elitism
On GPU: Apply scaling
On GPU: Apply genetic operator : selection
On GPU: Apply genetic operator : crossover
On GPU: Apply genetic operator : mutation
On GPU: Apply replacement . A new generation has been created

end for
Report on Results
Clean-up . Deallocate memory on GPU and CPU;Release Device

Figure 5.1: A schematic depiction of a Master-slave PGA

initiates the population for the Genetic Algorithm and distributes the individuals of

a single panmictic population for computation of the fitness function and subsequent

application of genetic operators such as selection, crossover, mutation and replacement

amongst the slave processing units, this being the Streaming Multiprocessors(SM) of

the GPU. A panmictic population is a population with no mating restriction upon the

population, and where all recombinations are possible.

Chapter 5. Implementation 72

5.6 Detailed analysis of the Parallel Genetic Algorithm:

Master-Slave approach

A sound solution design and implementation of the CUDA kernels is of paramount

importance to the successful implementation of an efficient cluster analysis algorithm.

Apart from CUDA’s Mersenne Twister implementation, the source code for the whole

cluster analysis algorithm is self-developed. Best Practices were applied consistently in

the writing of the kernels, as stipulated by Czapinski, Robilliard, Langdon, Chen, Strat-

ton and the CUDA Programming and Best Practises Guide compiled by NVIDIA[52–60].

For random number generation, I made use of CUDA’s Curand API[61] and the CUDA

Mersenne Twister implementation, opting for the latter in terms of reliability when exe-

cuting the CUDA PGA clustering application. I also made use of the CUDA THRUST

Standard Template Library(STL) [62] in order to sort, merge data and perform summa-

tion operations in the cluster analysis algorithm. CUDA THRUST Standard Template

Library(STL) is a C++ template library for CUDA based on the Standard Template

Library (STL) standard. Thrust allows me to develop high performance parallel appli-

cations with minimal programming effort through a high-level interface that wraps the

CUDA C framework.

5.6.1 Data Parallelism

Data parallelism aims at distributing the data across the fine-grained units of execution

in the most efficient manner. In the PGA implementation, the main objective was to have

a very fine-grained distribution of the population of individuals, so that I can optimally

map data elements, or the individual’s genes, to parallel processing threads[7]. As

described in Section 5.2, the individuals in the population typify a cluster configuration

Chapter 5. Implementation 73

and its representation is as following:

Individual = {c1, c2, . . . , ci−1, ci} , c = 1, . . . ,K, i = 1, . . . , N. (5.5)

The variable ci is the i − th gene which denotes the cluster that i − th object or asset

belongs to. The numbers of objects or assets is N . For example, if I had to create a

population of N = 400 individuals and was analysing the data for 16 objects or assets

the population could have the following constitution:

Individual1 = (1, 2, 4, 5, 7, 8, 2, 8, 9, 9, 1, 2, 3, 4, 5, 6)

Individual2 = (9, 2, 1, 1, 1, 3, 2, 8, 8, 8, 5, 6, 4, 3, 1, 2)

Individual3 = (3, 1, 3, 4, 6, 8, 2, 1, 1, 9, 2, 2, 2, 2, 2, 2)

Individual4 = (2, 1, 3, 3, 7, 9, 9, 1, 1, 9, 2, 2, 2, 2, 1, 1)

. . .

Individual400 = (8, 1, 9, 8, 7, 6, 5, 10, 5, 3, 6, 5, 4, 4, 3, 3)

One can envisage the population, the individuals and the genes as data on a two-

dimensional data grid. The data grid cells are mapped to threads, where each thread

executes a kernel processing the data cell at that x,y-coordinate. Thus one can envisage

the mapping as depicted in Figure 5.2.

Chapter 5. Implementation 74

Figure 5.2: Mapping of individuals onto the CUDA thread hierarchy

5.6.2 Initialisation

The initialisation basically encompasses the memory allocation of the algorithm’s various

variables and data containers. The initialisation code takes a two-pronged approach:

1. Allocate host memory to variables and data containers.

2. Allocate device memory to variables.

The data containers include containers for results from the computations, statistics and

time measurement data. The C STRUCT complex data type is utilised to store the GA

data, configuration-specific information, statistics and GA state data. The reasoning

stems from the approach to have a data structure that aggregates cohesive attributes or

fields, which allows for flexiblity and ease of maintainability as I am able to maintain

and extend the functionality of the code base without having do many code changes to

the interfaces or methods utilised and have all the information encapsulated in one data

structure.

Chapter 5. Implementation 75

5.6.3 Grid, block and thread heuristics

In line with the ’best practises’ listed in section 4.3.6 in Chapter 4, I need to compute

the dimension and size of the blocks per grid and the dimension and size of threads per

block, whilst being cognisant of the constraints imposed to achieve optimal efficiency.

The algorithm code computes the appropriate size metrics for each of the kernels. If I

look at the GA execution model in Figure 5.2, I would require a thread block dimension

of 16x16 (256 threads) and a grid dimension of 1x25 blocks. It is quite evident that the

GPU is nowhere near full utilisation, but this is the limitation imposed by the nature of

the data in the research undertaken.

The sizing for the training set with 40 simulated stocks is not as trivial as the number of

assets is not a multiple of the recommended warp size. If I take the population size to be

400, the thread dimensions will still be 16x16 (256 threads), but the grid dimensions will

be 25x3. This will activate 48 threads to compute 40 objects. The code implementation

features checks in place that will interrogate the thread ID and index, and will prohibit

it from processing, if there is no logical mapping between the gene and the thread.

5.6.4 Master-slave GA computation parallelisation

The Master-slave implementation features 44 kernels, each addressing a different aspect

of the PGA and depicted in the following listing:

#if defined (MERSENNE_TWISTER)

createPopulation <<<dimGrid , dimBlock > > >(...);

#elif defined (CURAND)

createPopulation <<<dimGrid , dimBlock > > >(...);

endif

// Start evolution

Chapter 5. Implementation 76

for (int currGen = 1; currGen <= gaConfig . generations ; ++ currGen) {

// Evaluate fitness of population

evaluteFitnessOfPopulation <<<dimGrid , dimBlock > > >(..);

consolidateFitnessValues <<< dimGridFitness , dimBlock > > >(...);

// Sorting of population according to fitness score

thrust :: sort_by_key (thrust :: device_ptr <float >(...) ,

thrust :: device_ptr <float >(...) ,

thrust :: device_ptr <int >(...) ,

thrust :: greater <float >());

// Compute sum of all fitness values

sumFitnessValues = thrust :: reduce (...);

// Evaluate the current state of the GA and compute GA statistics

evaluateGAState <<< dimGridSingleExecution , dimBlockSingleExecution > > >(..);

// Isolate the fittest individuals

evaluateFittestIndividual <<< dimGridEvalFittest , dimBlockEvalFittest > > >(...);

if (terminateEvolutionHost == true) {

break ;

}

// Apply elitism

if (gaConfig . applyElitism) {

applyGeneticOperator_Elitsim <<< dimGridElitism , dimBlock > > >(...);

}

// Apply scaling

applyScaling <<< dimGridScaling , dimBlock >>>(scaledScores , metrics . columns);

Chapter 5. Implementation 77

int sumScaledScores = thrust :: reduce (...);

// Apply

performGeneticOperatorPreSelector <<< dimGridSingleExecution , dimBlockSingleExecution > > >(...);

// Apply Crossover

performGeneticOperatorCrossover (...);

// Apply Mutation

#if defined (MARSENNE_TWISTER)

applyGeneticOperator_Mutation <<< dimGridGeneticOperator , dimBlockGeneticOperator > > >(...);

#elif defined (CURAND)

applyGeneticOperator_Mutation <<< dimGridGeneticOperator , dimBlockGeneticOperator > > >(...);

applyGeneticOperator_Replacement <<<dimGrid , dimBlock > > >(...);

}

Listing 5.1: Master-slave PGA algorithm (Focus has been placed on the core func-

tionality and thus certain code deatils omitted)

5.6.5 Initial Population generation

The PGA initialises the population of the GA at the beginning, having two random

number generators at our disposal: namely CURAND, a library that offers efficient

generation of high-quality pseudo-random and quasi-random numbers and the CUDA

Marsenne Twister implementation, NVIDIA’s implementation of a generator for uniform

pseudo-random numbers. The initial population was created by multiplying a random

number in the range of [0,1] with the number of objects or assets in the data-set. The

population and data pertinent to the evolution process resides in global GPU memory

throughout the execution of the PGA.

Chapter 5. Implementation 78

5.6.6 Evaluation of the fitness function

Analogous to the computation for population generation, the following computations

execute on a very fine-grained level, where each thread alloted to the computation com-

putes values for each gene in the individual or in the case of the evaluation of the fitness

value, the number of clusters K is equal to the number of objects N or the length of

chromosome. I proceed to evaluate the fitness Lc of the individuals in the population.

It is a two pass approach:

• Pass 1: Calculate the values for ns and cs for each of the clusters in each individual

by calling kernel evaluteFitnessOfPopulation().

• Pass 2: Collate the results and compute the fitness value Lc for each individual by

calling consolidateFitnessValues().

In Pass 1 the algorithm interrogates the individual and determines the number of objects

ns in each of the clusters. The kernel initialises storage in the device’s shared memory

and sums up the number of objects for each of the cluster indexes from 1, . . . , N , N

being the number of objects or the chromosome length. The cluster indices for which

there are no objects are given the value 0 and are eliminated from further computations.

Subsequently, the internal correlation cs of the cluster indices with ns > 0 is computed.

In Pass 2 the kernel reads the computed values for variables cs and ns. It filters out

the cluster indexes. Analogous, all the cluster indexes with ns = 0 are not considered,

i.e. those are indexes for clusters that are not represented in the individual depicting

a possible residual cluster configuration. This means, for example ,that Individual 2 in

Section 5.6.1 would have not have any asset or object belonging to a cluster of index 7.

Analogous to the fitness function implementation by by Gebbie[12, 14] in his serial GA

Chapter 5. Implementation 79

algorithm, I put another constraint on the permissible values for the computation. The

constraint is that if ns = 1, the value for the internal correlation must be cs < 1. If the

value is cs ≤ 1 , the the fitness value is set to 0. The algorithm then computes the value

for the Lc for all individuals in the population.

Computation of the statistics and current state of the algorithm ensues by calling the

kernel evaluateGAState(). Determination of the fittest individuals follows by comput-

ing the index of the fittest individuals within the population. In case of elitism being

applied, the fittest individuals, in number determined by configuration, are promoted

directly to the next generation. Scaling, denoted by the kernel call applyScaling() is

applied to the fitness values of the remainder of the population upon which selection of

the parents for the mating process takes place.

5.6.7 Genetic Operators and Genetic Algorithm configuration

After determining the parents’ artefacts, crossover and mutation operations ensue and

children are created that constitute the individuals of the next generation. The evolu-

tion process stops upon meeting the termination criteria for the GA. Once the optimal

individual has been determined, the data, including statistics for each of the generations,

is copied back to the host.

Genetic operators and certain Genetic Algorithm configurations are the key factors which

will determine the performance of the GA. Finding a balance between explorative and

exploitative features of GA is paramount to the success of the GA and henceforth pa-

rameter tuning of the operators and the GA configuration is unavoidable[26]. Adewumi

and Ali[26] state that this includes the tuning of parameters such as mutation probabil-

ity, the crossover operator and the population size. They also state that the parameters

Chapter 5. Implementation 80

should be dependent on the internal dynamics of the algorithm. Although the paper

by Adewumi and Ali[26] focuses on a multi-stage space allocation problem in the realm

of domain specific combinatorial optimisation problems, the methodology of tuning the

parameters is generic in nature and can be applied to any type of GA problem and

served as the basis for the PGA algorithm tuning.

5.6.7.1 Scaling

A call is issued to the kernel applyScaling() to initiate scaling on the GPU. As dis-

cussed in Section 3.1.1.1, prior to selecting the operator that will be applied to the

population, I need to adjust and scale the fitness value. The decision was taken to

opt for rank fitness scaling, analogous to the approach used by MATLAB’s GA library.

Rank fitness scaling initially adjusts the fitness value of the individuals in such a manner

that the fittest individual is assigned the value of rank 1 and the least fit the value of

P, where P is the population size. This represents the first transform. In the second

transform, the following formula is applied :

scoreIndividualn = 1
RankIndividualn

, N ≤ P

This allows for full exploitation of the search space, giving all the weakest individuals

the opportunity to partake in the mating process.

5.6.7.2 Selection

A call is issued to the kernel performGeneticOperatorPreSelector() to initiate selec-

tion on the GPU. In terms of the selection approach, I applied the stochastic uniform

selection method(see Section 3.1.1.1 for description). This method provides a more

Chapter 5. Implementation 81

favourable selection pressure as it exhibits zero bias to the selection approach and im-

proves the chances of selection of weaker individuals, which increases diversity[6]. The

method creates contiguous segments of a line, where each parent’s segment is propor-

tional in length to its scaled value. The algorithm moves along the sequence in steps of

equal size. At each step, the algorithm allocates a parent from the section it lands on.

After applying selection, the individuals are committed to the GPU’s global memory

Figure 5.3: Stochastic uniform selection approach

and I proceed with the application of the crossover and mutation genetic operators.

5.6.7.3 Crossover Operator

The Master-Slave algorithm feature 3 types of crossover algorithms ,namely Single-Point

Crossover 3.1.1.2, Two-Point Crossover 3.1.1.2 and a Knowledge-based Crossover 3.1.3

techniques. The Knowledge-based Crossover genetic operator was developed specifically

for the problem of increasing the efficiency of the Master-Slave and is Parallelisation

Scheme agnostic and can be applied to any type of Genetic Algorithm. It needs to be

underlined that it is not featured anywhere in literature and is a novel approach. Section

3.1.3 motivates why I chose to utilise that operator. The genetic operator is a hybrid

between Single-Point Crossover and the use of a guiding function namely the Giada and

Marsili log-likelihood function 2.14, which uses the function, to determine which segment

from the respective two individuals to copy over to the child. The explanation to use

Chapter 5. Implementation 82

the likelihood function as described in Section2.4.1, in order to determine the ’fitter’

segment, is motivated by the fact that the application of the measure of likelihood for

cluster structure should not be restricted only to the whole data-set, but can also be

applied to subsets of data. Initially, a separate algorithm randomly determines crossover

sites for all selected parents in the population. Each parent is assigned a different locus.

Due to the nature of a Single-Point Crossover, there will be two segments per parent, a

segment left of the randomly selected crossover site and the segment right, or segment

with a starting index bigger or equal than the computed crossover site. The guiding

function is used to ascertain which of the two segments at the pre-determined loci will

be copied. A random number is generated and compared to Pcf . Should the random

number be bigger than the crossover probability, then the algorithm will copy over the

segment with the highest segment fitness value as determined by Equation 5.6, in the

event that the random value is smaller, the ’less’ fit segment is copied over, i.e. the

segment from the other individual. Two parents are selected which yield one child, that

will be injected in to the population undergoing evolution.

f = argmax‖∏→1‖

1
2
∑

s:ns>1
[log ns

cs
+ (ns − 1) log n

2
s − ns
n2
s − cs

]

 (5.6)

Algorithm 7 depicts the novel Knowledge-based Crossover: The crossover operation is

initiated by the call to method performGeneticOperatorCrossover(). This in turn calls

one kernel to compute the segment scores and the other to apply the crossover operator.

5.6.7.4 Mutation Operator

Creep mutation The mutation operation is initiated by the call to method applyGeneticOperator Mutation().

Two distinct mutation operators were implemented. The first operator employs an

Chapter 5. Implementation 83

Algorithm 7 Custom Knowledge-based Crossover operator
Randomly determine crossover sites for parents selected for mating
Generate random number Rc
Determine fitness of segments FP1

SegmentLeft
,FP2
segmentLeft

, FP1
SegmentRight

for locus ≤ genomeLength do in parallel
if locus < crossoversite then

if FP1
SegmentLeft

≥ FP1
SegmentLeft

then . Isolate first segment to be copied over
to the offspring.

if Rc > Pcf then . Isolate second segment to be copied over to the
offspring.

OffSpringSegmentLeft
← Parent1SegmentLeft

. Copy Over segment from
individual 1

else
OffSpringSegmentLeft

← Parent2SegmentLeft
. Copy Over segment from

individual 2
end if

else
if Rc > Pcf then

OffSpringSegmentLeft
← Parent2SegmentLeft

. Copy Over segment from
individual 2

else
OffSpringSegmentLeft

← Parent1SegmentLeft
. Copy Over segment from

individual 1
end if

end if
else

if FP1
SegmentRight

≥ FP1
SegmentRight

then . Isolate right segment to be copied
over to the offspring.

if Rc > Pcf then . Isolate second segment to be copied over to the
offspring.

OffSpringSegmentRight
← Parent1SegmentRight

. Copy Over segment
from individual 1

else
OffSpringSegmentRight

← Parent2SegmentRight
. Copy Over segment

from individual 2
end if

else
if Rc > Pcf then

OffSpringSegmentRight
← Parent2SegmentRight

. Copy Over segment
from individual 2

else
OffSpringSegmentRight

← Parent1SegmentRight
. Copy Over segment

from individual 1
end if

end if
end if

end parallel for

Chapter 5. Implementation 84

approach as utilised by [24] in a genetic algorithm-based clustering technique, called

GA-clustering, which searches for appropriate cluster centres. A number is generated

in the range between [0,1] with uniform distribution. In order to facilitate this, the

Mersenne-Twister random number generator is invoked. If the value of a gene at a

pre-defined locus is v, then the mutation approach, as depicted in 5.7 is applied to the

integer-based chromosome as following:

vt+1 =


vt ± 2 ∗ δ ∗ vt if vt 6= 0

vt ± 2 ∗ δ if vt = 0

(5.7)

5.6.7.5 Random replacement

The replacement operation is trigger by the call to method applyGeneticOperator Replacement().

The second mutation operator utilises the Mersenne-Twister random number generator

to generate a number in the range [0, 1] and multiply that number with the upper

bound value pertaining to a cluster affiliation. In the case of the training set of 40

simulated stocks, we have 40 objects, which can either belong to either a singleton or

represent 40 disjoint data points. Therefore, I would have to ensure that the generated

mutation value is within the bounds of [0,40), otherwise I would have an invalid cluster

configuration.

5.6.7.6 Replacement Operator

There are a few replacement operators, as discussed in 3.1.1.5. I chose using a weak

parent replacement scheme 3.1.1.5, where the stronger parent and the offspring are

promoted to the next phase of evolution. This introduces bias towards fitter individuals,

Chapter 5. Implementation 85

thus increasing the overall fitness of the population, but reduces the diversity of the

mating pool.

5.6.8 Termination Criteria

There are two significant termination criteria, namely

• Once a pre-defined number of maximum evolutions has been executed, the algo-

rithm terminates.

• If there is no notable improvement in the fitness value of the fittest individual,

representing the most optimal cluster configuration resident in the data-set being

analysed, the algorithm will continue to iterate through a pre-defined number

of evolutions, denoted stall generations Gstall. The fittest individual from the

previous evolution is compared to the fittest individual of the current evolution

and if the difference between the two values is smaller than a pre-defined error

tolerance, one would classify this as a stall generation.

5.7 Parallel Genetic Algorithm tuning

In order to ensure an efficient implementation of the Master-slave algorithm, I need to

find a balance between exploration of the search space and exploitation of the discoveries

in the search space. The more exploitation of the discoveries that is made, the faster the

PGA will converge towards a solution, but will fail at finding the true global optimum.

The more exploration will lead to finding the true optimum, but will slow down conver-

gence. I opted for tuning the mutation probability, the crossover operator parameter and

the population size, analogous to the approach taken and motivated by Adewumi and

Chapter 5. Implementation 86

Ali[26]. I additionally looked at finding an efficient mutation operator, finding an ideal

setting for the novel and self-developed knowledge-based crossover operator (see Section

5.6.7.3) and at tuning the number of elite individuals that get promoted to the next

generation. The following algorithm parameter tuning experiments were compiled in

order to arrive at the optimal algorithm configuration settings, as the PGA parameters

affect the algorithms search quality and efficiency[30]:

• Investigation into the effect of population size on the efficiency of the PGA

• Investigation into the effect of crossover probability Pc on the efficiency of the

PGA

• Investigation into the effect of crossover probability Pc on the efficiency of the

PGA

• Investigation into the effect of mutation probability Pm on the efficiency of the

PGA

• Investigation into the effect of knowledge-based crossover fragment operator prob-

ability Pcf on the efficiency of the PGA

• Investigation into the effect of crossover genetic operator on the efficiency of the

PGA

• Investigation into the effect of mutation genetic operator on the efficiency of the

PGA

• Investigation into the effect of the number of elite individuals promoted to the

next generation on the efficiency of the PGA.

Chapter 5. Implementation 87

5.8 Measurement metrics

The tuning exercise was performed on the training set of 4 disjoint clusters and in such

it represents the optimal GA parameters for the training set data set.

5.8.1 Performance metric

In order to analyse the efficiency of an algorithm, I would usually apply time complexity

analysis to get an estimate of the running time as a function of the size of the input data.

This result is normally expressed using Big O notation. This is useful for comparing

algorithms in cases where a large amount of data is to processed, which is not the case

in this research. This research focuses on a small set of data-and the goal of returning

a result in the shortest possible time. This will in turn lead to faster computation

of high-frequency, low-latency data feeds, where a high throughput of data needs to

be processed efficiently. Secondly, algorithms which include parallel processing may

be more difficult to analyse using the Big O notation. Thus, in order to be able to

measure the efficiency of the algorithm, measurements of the time taken to execute a

clustering analysis on a data set were conducted. Two common time measures are: CPU

time and Elapsed time. CPU time is the actual time it takes the Central Processing Unit

(CPU) to process the instructions of a computer program or the Operating System (OS).

This does not include the waiting for Input/Output resources (I/O) to complete their

operations or the context switching operations in the OS. The Elapsed time measures

the total time pertaining to the execution of a computer program, which means the

duration from when the process was started until the time it terminated. Execution

time trails of each of the implementations were executed. The decision was taken to use

the elapsed time as a benchmarking metric. It is quite an involved process to be able to

Chapter 5. Implementation 88

compare computational times for an algorithm that can both run on a CPU and a GPU

and in such somehow try to quantify its efficiency. The CUDA framework provides a

profiling workbench, which reports benchmarking metrics to a fine level of granularity.

It will report on CPU and GPU time spent on executing a piece of CUDA code and for

example, on the time taken to for transfer of data between the host and device; such a

level of detail is beyond the scope of this research. I rather opted for introducing time

measuring barriers, localised in such places in the code base so that they give a good

enough indication as to the execution times of the different manifestations of a PGAs run

on various platforms under different configurations and run on multiple environments

as listed in Section 6.1.

5.8.2 Average calculations

Algorithm tuning experiments described in Section 6.2.2 employed the calculation of

the arithmetic average value for the fitness of all individuals in the population for that

generation, which was calculated in the following manner: Fave = 1
n

∑N
i=1 Findividual,

where n denotes the number of the individuals, Fave the average fitness and Findividual

the respective fitness value of the individual. This metric will indicate the quality of the

successive population of individuals generated by the PGA.

Chapter 6

Experiments and Measurements

This chapter reports on the algorithm tuning and execution time trials of the CUDA

PGA implementation being executed on two OS platforms, and against the serial GA

implementation[14]. The following algorithm parameter tuning experiments were com-

piled in order to arrive at the optimal algorithm configuration settings as described and

motivated in Section 5.7:

• Investigation into the effect of population size on the efficiency of the PGA.

• Investigation into the effect of crossover probability Pc on the efficiency of the

PGA.

• Investigation into the effect of crossover probability Pc on the efficiency of the

PGA.

• Investigation into the effect of mutation probability Pm on the efficiency of the

PGA.

• Investigation into the effect of knowledge-based crossover fragment operator prob-

ability Pcf on the efficiency of the PGA.

89

Chapter 6. Results and Discussion 90

• Investigation into the effect of crossover genetic operator on the efficiency of the

PGA.

• Investigation into the effect of mutation genetic operator on the efficiency of the

PGA.

• Investigation into the effect of the number of elite individuals promoted to the

next generation on the efficiency of the PGA.

It also presents clustering analysis results, depicted in the form of Minimum Spanning

Trees, as described in Section 5.1, of 1780 time units of real-word stock prices taken

from the Johannesburg Stock Exchange(JSE) spanning over the time period from 28th

September 2012 until 10th of October 2012.

6.1 Environment

The CUDA algorithm and the respective test harness were primarily developed on the

Linux platform. It was successively ported to the Windows environment. Multiple en-

vironments were configured as per the configuration depicted in Table 6.1 in order to

provide a high-level overview of the versatility of the CUDA cluster analysis algorithm

and highlight that its efficiency is not confined to one platform and thus is platform-

independent. All the CUDA code was compiled with the the CUDA C compiler nvcc,

version 5.0. The code was compiled against two configuration sets, namely the DEBUG

configuration for debugging and testing, and a RELEASE configuration, optimised to

perform code execution time measurements. The code was compiled with CUDA com-

pute capabilities of 2.0 and 3.0. The CUDA compute capability designates a ’feature set’,

being both software and hardware features, that a device supports. In the RELEASE

Chapter 6. Results and Discussion 91

Environment Configuration Algorithm execu-
tion environment
or framework

LINUX Linux Mint 13 Maya (3.2.0-23-generic(x86 64)), In-
tel Core i7-2600 CPU @ 3.4 GHz, 8 GB of RAM,
Geforce 560 Ti and Geforce 660 Ti with 2 GB of
RAM

CUDA 5.0

WINDOWS Windows 7 Home Premium 64-bit, Intel Core i7-
3630QM CPU @ 2.4 GHz, 8 GB of RAM, Geforce
GTX 660M with 2 GB of RAM

CUDA 5.0

WINDOWS Windows 7 Home Premium 64-bit, Intel Core i7-
3630QM CPU @ 2.4 GHz, 8 GB of RAM, Geforce
GTX 660M with 2 GB of RAM

MATLAB 2011b

Table 6.1: Development and Testing environment

configuration, the compiler switch -use fast math and the the flag -03 were set. The

CUDA compiler switch -use fast math was utilised to increase the performance of the

code, by coercing every functionName() call to the equivalent functionName() call.

The C++ compiler flag -03 ensures that the code is fully optimised. Those flags were

omitted in the DEBUG configuration compilation. Please refer to [7, 41] for definitions

and further descriptions of technical terms.

6.2 Data: Training Set

The following results are based on a test set of 40 simulated stocks, which features 4

distinct disjoint clusters. This will provide a clear delineation, that the algorithm is

processing the data as expected, resulting in a optimal cluster configuration of 4 distinct

clusters. The training set was hard-coded and also persisted to a flat file, to be passed

into the respective algorithm implementation, so that it can be processed. It was utilised

to tune the various genetic operators.

Chapter 6. Results and Discussion 92

6.2.1 Cluster Analysis in Matlab using a serial Genetic Algorithm

The algorithm runs on a CPU only. Attempts were made to port parts of the code to run

on the GPU, but proved to be unsuccessful, due to the fact that MATLAB’s Parallisation

Toolbox’s interface for GPU computing has not matured yet. The results obtained are

depicted in Figures 6.1, with the first graph depicting the correlation matrix for the

training set. The graph clearly depicts 4 coloured regions, depicting highly-correlated

data, which represents 4 distinct disjoint clusters.

Figure 6.1: Fitness vs. generation with the following GA configuration: 40x40 corre-
lation matrix, 400 generations, a genome length of 40 and population size of 400, 100

stall generations and tolerance value of 0.001.

Chapter 6. Results and Discussion 93

6.2.2 Experiments for tuning of parameters in Master-Slave PGA Al-

gorithm on the GPU

Optimal cluster configuration for the chosen training set will yield ideally the same

value for adjacent genes of the fittest individual, with four distinct segments of values

within the instance of the chromosome each denoting a cluster, offset by a stepped

transition in value at a specific locus as depicted in figure 6.2 and explained in Section

6.2. The algorithm parameter tuning experiments, as explained in Section 5.7, yielded

the following optimal configuration for the Master-Slave PGA: Figure 6.2 depicts the

Parameter Value
Population Size 1000/600
Number of Generations 400
Crossover Probability (Pc) 0.9
Mutation Probability (Pm) 0.1
Error tolerance 0.00001
Stall generations (Gstall) 50
Elite size 10
Crossover Operator Knowledge-based Operator .See 5.6.7.3
Mutation Operator Random replacement .See 5.6.7.5
Knowledge-based crossover operator probability
(Pcf)

0.9

Table 6.2: GA parameter configurations

optimal cluster configuration, which was computed by running the cluster analysis on

the training set.

6.2.2.1 Variation in Population Size

The size of the population was varied between 0 and 1000 in steps of 200. The following

static parameters were used:

Chapter 6. Results and Discussion 94

Figure 6.2: Optimal cluster configuration of training set data obtained by Master-
Slave PGA

Parameter Value
Number of Generations 400
Mutation Probability (Pm) 0.09
Crossover Probability (Pc) 0.9
Error tolerance 0.00001
Stall generations (Gstall) 50
Elite size 4
Crossover Operator Knowledge-based Operator .See 5.6.7.3
Mutation Operator Random replacement .See 5.6.7.5
Knowledge-based crossover operator probability
(Pcf)

0.5

Table 6.3: GA parameter configurations: Variation in Population Size

The results for the variation of the population as illustrated in Figure 6.3 underlines

the fact that the population size will depend on the complexity of the problem, the

various parameter settings and choice of genetic operators applied. In order to be able

to find the most optimal solution to the problem, the population should firstly have a

large enough gene pool and exhibit a high degree of diversity in order to be able to

traverse and explore the whole search space and not hone in on a local minimum, which

will lead to a sub-optimal solution to the exercise. The graph illustrates the fact that

the bigger the population, the bigger the resultant fitness value as can be observed by

Chapter 6. Results and Discussion 95

Effect of Population Size on Convergence Rate and Effectiveness of PGA

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

fi
tn

e
s
s
 v

a
lu

e

generation

Population size: 1000
Population size: 800
Population size: 600
Population size: 400
Population size: 200

Figure 6.3: Variation in Population Size

choosing a population size of 1000 or 600 and the lowest at population size of 400. No

deduction can be made as to the pattern with the rate of convergence as it is highest at

the highest population size, but inconsistent for the stepped decrease in the population

thereafter. I can only attribute this to the level of diversity present in the population

at the beginning. Summa Summarum, for a GA efficiency to reach a global optimum

instead of a local one it is largely dependant on the size of the population [6]. It entails

a higher computational cost and utilisation of memory resources, which further cements

the case for running the described algorithms on a parallel computing architecture such

as CUDA.

Chapter 6. Results and Discussion 96

6.2.2.2 Variation in Crossover probability Pc

Coley[4] recommends to use values between 0.4 and 0.9. In order to gain more insight

into how this parameter effects the efficiency of the algorithm, the range was widened and

the probability of crossover varied between 0 and 0.9. The following static parameters

were used:

Parameter Value
Population Size 600
Number of Generations 400
Mutation Probability (Pm) 0.09
Error tolerance 0.00001
Stall generations (Gstall) 50
Elite size 4
Crossover Operator Knowledge-based Operator .See 5.6.7.3
Mutation Operator Random replacement .See 5.6.7.5
Knowledge-based crossover operator probability
(Pcf)

0.5

Table 6.4: GA parameter configurations: Variation in Crossover probability Pc

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a
v
e

ra
g

e
 f

it
n

e
s
s

crossover probability

Effect of crossover probability on average fitness

Effect of crossover probability on average fitness

Figure 6.4: Variation in Crossover probability Pc

Chapter 6. Results and Discussion 97

The increased crossover probability increases the chromosome gene recombination prob-

ability, which is favourable, but on the other hand this increase of probability can lead to

the loss of favourable genetic make-up, which would in theory yield a lower fitness value.

As depicted in Figure 6.4, the average fitness increases with an increase in crossover

probability up until a value of 0.6, which would mean that 60% of the population will

be formed by selection and crossover and 40% by selection only used in tandem with an

additional stochastic operator to either allow or ignore the crossover operation to take

place at the respective crossover probability of Pc.

6.2.2.3 Variation in Mutation probability Pm

The probability of mutation was varied between 0.1 and 0.01. Coley[4], Sivanandam and

Deepa [6] recommend that the probability should be

Pm = 1√
L

,where L = genomelength

, which is within the range of this investigation. Configurations of have

Pm = 1
N
√
L

,where L = genomelength,N = PopulationSize

also been implemented, but were not found to be viable. The following static parameters

were used:

Chapter 6. Results and Discussion 98

Parameter Value
Population Size 600
Number of Generations 400
Crossover Probability (Pc) 0.9
Error tolerance 0.00001
Stall generations (Gstall) 50
Elite size 4
Crossover Operator Knowledge-based Operator .See 5.6.7.3
Mutation Operator Random replacement .See 5.6.7.5
Knowledge-based crossover operator probability
(Pcf)

0.5

Table 6.5: GA parameter configurations: Variation in Mutation probability Pm

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

a
v
e

ra
g

e
 f

it
n

e
s
s

mutation probability

Effect of mutation probability on average fitness

Effect of mutation probability on average fitness

Figure 6.5: Variation in Mutation probability Pm

The optimal value for the mutation probability Pm is problem specific. A too high

mutation rate increases the probability of searching more regions of the search space,

but prevents the algorithm from converging towards an optimum solution. On the other

hand, too small a mutation rate may result in premature convergence by honing in on

a local optima instead of global optimum. Figure 6.5 depicts the graph for the average

fitness of the population with the variation of mutation probability Pm with an apogee

Chapter 6. Results and Discussion 99

at around the 0.1 mark. The minima for the average fitness value for the mutation

probability Pm for the ranges between 0.03 and 0.06, is reached at Pm = 0.05 and

for Pm ranges 0.06 and 0.09, at Pm = 0.07. Figure 6.2 depicts the optimal cluster

configuration with 4 clusters of 10 objects each. The troughs in the development of the

average fitness value at those specific Pm values can be attributed to the fact that the rate

of mutation applied introduces too much disorder to the residual cluster configuration,

in other words introduces to much noise to the hill-climbing algorithm and bumps the

GA algorithm into another region of the search space, which leads to non-optimal object

constellations. In laymans term, the optimal Pm setting is problem specific; devising a

heuristic for determining the optimal Pm for all data sets is quite a complex exercise: the

only viable approach known at present would be to apply an adaptive, self-tuning GA

with a feedback mechanism that would report on the efficiency of an applied parameter

and in such would allow a controller to adjust the Pm for successive generations.

6.2.2.4 Variation in Knowledge-based crossover fragment operator proba-

bility Pcf

The probability was varied 0 and 1. The range of values was determined empirically.

The following static parameters were used:

Parameter Value
Population Size 600
Number of Generations 400
Crossover Probability (Pc) 0.9
Mutation Probability (Pm) 0.09
Error tolerance 0.00001
Stall generations (Gstall) 50
Elite size 4
Crossover Operator Knowledge-based Operator .See 5.6.7.3
Mutation Operator Random replacement .See 5.6.7.5

Table 6.6: GA parameter configurations: Variation in Knowledge-based crossover
fragment operator probability Pcf

Chapter 6. Results and Discussion 100

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a
v
e

ra
g

e
 f

it
n

e
s
s

Knowledge-based crossover fragment operator probability

Effect of crossover probability on average fitness

Effect of crossover probability on average fitness

Figure 6.6: Variation in Knowledge-based crossover fragment operator probability
Pcf

Figure 6.6 depicts ’seesaw-like’ behaviour, analogeous to the behaviour observed in

6.2.2.3 with the distinction that a high value for the crossover fragment operator prob-

ability Pcf is attained at 0.1 with a tapering of the average fitness value, reaching a

minimum at 0.7 and then rising sharply, reaching an apogee at 0.9 and then dropping

again. Again this can be attributed to the specific dimensions of the training set and

that certain Pcf yield unfavourable results for the problem I am trying top solve.

6.2.2.5 Variation in Crossover genetic operator

Three different types of crossover operators were implemented and investigated, as per

the discussion in 5.6.7.3. The approaches are the following: Single-point crossover, Two-

point crossover and the novel and newly-devised Knowledge-based crossover operator.

The following static parameters were used:

Chapter 6. Results and Discussion 101

Parameter Value
Population Size 600
Number of Generations 400
Crossover Probability (Pc) 0.9
Mutation Probability (Pm) 0.09
Error tolerance 0.00001
Stall generations (Gstall) 50
Elite size 4
Mutation Operator Random replacement .See 5.6.7.5
Knowledge-based crossover operator probability
(Pcf)

0.5

Table 6.7: GA parameter configurations: Variation in Crossover genetic operator

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

fi
tn

e
s
s
 v

a
lu

e

generation

Convergence rate with various crossover operator approaches

Crossover operator: Single-point crossover
Crossover operator: Two-point crossover

Crossover operator: Knowledge based crossover operator

Figure 6.7: Variation in Crossover genetic operator

Figure 6.2.2.2 motivates the approach taken, as introduced in 3.1.3. I observed that,

using a knowledge-based crossover operator guides the algorithm in such a way that it

converges towards an optimal fitness value at a faster rate compared to the alternate

crossover operators, namely Single-point crossover and Two-point crossover. Single-

point crossover is more efficient in guiding the GA towards the maximum fitness, thus

allowing me to isolate the optimal residual cluster configuration. The knowledge-based

Chapter 6. Results and Discussion 102

crossover operator and the single-point crossover share a common trait: they both use

only a single locus for the crossover operation. Analogous to the reasoning provided in

Section 6.2.2.3, I can deduce that this behaviour is specific to the nature of problem. In

reference to Section 6.2.2, I could make the assumption that two-point crossover would

add too much diversity and in such create too much noise and divert the GA off the

path of finding the optimal solution for this problem.

6.2.2.6 Variation in Mutation genetic operator

Two different mutation operators were implemented and investigated, as per the dis-

cussion in Section 5.6.7.4. The approaches are the following: Modified Creep Mutation

(see 5.6.7.4) and Random replacement (see 5.6.7.5) The following static parameters were

used:

Parameter Value
Population Size 600
Number of Generations 400
Crossover Probability (Pc) 0.9
Mutation Probability (Pm) 0.09
Error tolerance 0.00001
Stall generations (Gstall) 50
Elite size 4
Crossover Operator Knowledge-based Operator .See 5.6.7.3
Knowledge-based crossover operator probability
(Pcf)

0.5

Table 6.8: GA parameter configurations: Variation in Mutation genetic operator

Chapter 6. Results and Discussion 103

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120 140 160 180 200

fi
tn

e
s
s
 v

a
lu

e

generation

Convergence rate with various mutation operator approaches

Mutation operator: Arithmetic mutation
Mutation operator: Random value mutation

Figure 6.8: Variation in Mutation genetic operator

Figure 6.8 depicts the typical difference between exploration of the search space and

exploitation of discoveries [4]. Random value mutation has a more pronounced effect on

the performance of the algorithm: whilst it converges at a slower rate, it enables the

GA to hone in on the global optimum. Arithmetic mutation or Modified Creep mutation

allows the change of the cluster value in small steps in contract to random value mutation,

which exploits the whole spectrum of permissible random values for the cluster value

and henceforth would lend itself to exploitative approach, as can be deduced from the

formula applied and illustrated in 5.6.7.4. This is the reason why it converges towards

a maximum at a higher rate but does not locate the true global optimum as it hones in

on the local minimum of around 1.5 - 1.6.

Chapter 6. Results and Discussion 104

6.2.2.7 Variation in number of elite individuals promoted to the next gen-

eration

This section investigates the effect of the number of elite individuals, which are promoted

to the next generation, on the overall average fitness value of the population. The elite

size was varied between 0 and 10. The following static parameters were used:

Parameter Value
Population Size 600
Number of Generations 400
Crossover Probability (Pc) 0.9
Mutation Probability (Pm) 0.09
Error tolerance 0.00001
Stall generations (Gstall) 50
Crossover Operator Knowledge-based Operator .See 5.6.7.3
Mutation Operator Random replacement .See 5.6.7.5
Knowledge-based crossover operator probability
(Pcf)

0.5

Table 6.9: GA parameter configurations: Variation in number of elite individuals
promoted to the next generation

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 2 4 6 8 10

a
v
e

ra
g

e
 f

it
n

e
s
s

number of elite individuals

Effect of number of elite individuals on average fitness value

Effect of number of elite individuals on average fitness value

Figure 6.9: Variation in Number of elite individuals promoted to the next generation

Chapter 6. Results and Discussion 105

Figure 6.9 depicts, with the exception a couple of anomalies, the expected behaviour

that, if I allow for the increase of the number of the fittest individuals that are promoted

to the next generation, the average fitness will increase due to the increase in probability

that the fittest individuals will exchange genetic information. Also, the higher the

number of elite individuals, the more pronounced the effect of the fitter individual’s

fitness on the average fitness of the population.

Chapter 6. Results and Discussion 106

6.3 Data: Intra-day stock prices for 18 stocks from the

Johannesburg Stock Exchange (JSE)

The following investigation focused on 1780 time units of real-word stock prices taken

from the Johannesburg Stock Exchange (JSE), spanning the time period from 28th

September 2012 until 10th of October 2012. The computed cluster configurations were

used to build a correlation-based Minimal Spanning Tree(MST) for stock prices, taken

at a specific point in time during trading hours. The time interval for the ticker data

was 3 seconds. The stocks under investigation are listed in table 6.10. The time in-

terval of the ticker data is too narrow to report on any pronounced trends emerging,

but I made note of some key observations and developments restricting myself to the

time period under investigation. In no way is the interpretation meant to infer some

intrinsic behaviour in the South African Market today or at any point in time. The

Stock JSE identifier Description
AGL Anglo American Plc
AMS Anglo American Plat Limited
ANG Anglogold Ashanti Limited
ASA ABSA Group
BIL BHP Billiton Plc
CFR Compagnie Fin Richemont
FSR Firstrand Limited
GFI Gold Fields Limited
IMP Impala Platinum Holdings Limited
KIO Kumba Iron Ore
MTN MTN Group
NPN Naspers
OML Old Mutual Plc
SAB Sabmiller Plc
SBK Standard Bank Group
SHF Steinhoff International Holdings
SLM Sanlam
SOL Sasol Limited

Table 6.10: Stocks traded on the Johannesburg Stock Exchange (JSE)

configuration for the GA algo was per the optimal settings, specified in table 6.2. By

Chapter 6. Results and Discussion 107

close inspection of the Minimum Spanning Trees (MSTs) for the 18 stocks in the time

period between 28th September 2012 until 10th of October 2012, I observe that in the

early hours of trading there is some notable activity, with the emergence of 1 significant

cluster with lower weighted edges and two or three smaller clusters with higher weighted

edges as illustrated by Figures 6.10, 6.11 and6.12. As illustrated in Figure 6.10, I observe

Figure 6.10: Early morning trading pattern on the 28th of September 2012

low correlations between Old Mutual Plc, Gold Fields Limited, Sanlam, Standard Bank

Group, Anglo American Plat Limited, Kumba Iron Ore and Firstrand Limited. I notice

three 2-element clusters in Figure 6.10 with high weight edges and thus high correla-

tions between Sasol Limited and Steinhoff International Holdings, between Compagnie

Fin Richemont and MTN Group, and between Naspers and Sabmiller Plc. As illustrated

Chapter 6. Results and Discussion 108

Figure 6.11: Early morning trading pattern on on the 1st of October 2012

in Figure 6.11, I see low correlations between Old Mutual Plc, Gold Fields Limited, San-

lam, Standard Bank Group, Anglo American Plat Limited, Kumba Iron Ore, Steinhoff

International Holdings and ABSA Group. I notice a 2-element cluster with high weight

edges and thus high correlations between Anglogold Ashanti Limited and Compagnie

Fin Richemont. As illustrated in Figure 6.12, I observe low correlations between Old

Mutual Plc, Gold Fields Limited, Sanlam, Standard Bank Group, Anglo American Plat

Limited, Kumba Iron Ore, Steinhoff International Holdings and ABSA Group. I notice

two smaller clusters with high weight edges and thus high correlations between MTN

Group and Compagnie Fin Richemont, and between between Anglo American Plc, Sasol

Limited and BHP Billiton Plc

The early morning trading pattern snapshots depict the trend that the primary stocks

Chapter 6. Results and Discussion 109

Figure 6.12: Early morning trading pattern on the the 2nd of October 2012

more or less exhibit the slightly similar trending characteristics, following the same pat-

tern on a daily basis with no notable disturbances with one or two outliers behaving

differently, showing high correlations. The low correlations between the majority of the

stocks signifies that there is no definitive underlying cause, be it a macroeconomic or

microeconomic factor that might drive the trend of the stocks under observation. The

following stocks show a similar morning trending pattern in trading: Old Mutual Plc,

Gold Fields Limited, Sanlam, Standard Bank Group, Anglo American Plat Limited,

Kumba Iron Ore, Steinhoff International Holdings and ABSA Group.

Looking at the outliers, the same applies. All the stocks belong to different industry

segments, so there is no evidence that the early morning trending pattern might be

intrinsic to either the mining, banking, petroleum, telecommunication, beverage or any

Chapter 6. Results and Discussion 110

other type of industry sector.

The midday does not deviate from the morning trending pattern, but shows higher

weighted edges between the respective stocks in the MST, thus more pronounced cor-

relation between the nodes of the MST, taken from a random midday snapshot in the

time period under investigation shown in 6.14. The midday trading periods yields MST

star topologies, as illustrated by the following snapshots, namely 6.13 and 6.15.

Figure 6.13: Midday trading pattern snapshot on the 1st October 2012

Chapter 6. Results and Discussion 111

Figure 6.14: Midday trading pattern snapshot on the 2nd October 2012

The afternoon and late afternoon trending patterns expose a more pronounced occur-

rence of Minimum Spanning Tree (MST) star topologies as depicted in Figures 6.16,

6.17 and 6.18. As illustrated in Figure 6.16, one sees Anglo American Plc driving the

trending pattern for stocks such as Naspers, Sasol Limited, Sabmiller Plc, etc. As illus-

trated in Figure 6.17, I notice Sanlam, American Plat Limited and Gold Fields Limited,

in other words stocks in the mining sector driving the trending pattern on the securities

exchange. As illustrated in Figure 6.18, it is quite evident again that Anglo American

Plc (JSE:AGL) drives the trending pattern for all other assets on the exchange for that

time snapshot, depicted by higher weighted edges, thus higher correlations with the

other stocks. In conjunction with 6.18, I could say that late stock trading is largely

dictated by the mining sector, which in turn could be attributed to some underlying

Chapter 6. Results and Discussion 112

Figure 6.15: Midday trading pattern snapshot on on 4th October 2012

factor. The determination of such would necessitate further and more detailed analysis

and investigation.

Chapter 6. Results and Discussion 113

Figure 6.16: Afternoon trading pattern snapshot on the 1st October 2012

Figure 6.17: Afternoon trading pattern snapshot on the 1st October 2012

Chapter 6. Results and Discussion 114

Figure 6.18: Afternoon trading pattern snapshot on the 3rd October 2012

6.4 PGA algo execution time trials of the CUDA cluster

analysis algorithm

6.4.1 PGA algo execution time trials results

Execution time trail tests, as illustrated in Figures 6.19, 6.20, 6.21 and 6.22, were run on

the environments listed in Section 6.1. The PGA algo execution time trail runs include

algorithm tuning tests as described in Section 6.2.2, a single cluster analysis execution

of the training set, and the process of cluster analysis of 1000 correlation matrices

of real world data as depicted in Section 6.3. Time measurements were conducted

using the StopWatch utility by Tommaso Urli[63]. Measurements were taken as per the

methodology described in Section 5.8.1.

Chapter 6. Results and Discussion 115

Real
worl

d da
ta

clu
ste

r an
aly

sis
run

0

10

20

30

40

T
im

e
(s

)

MATLAB GA on WINDOWS
CUDA PGA on WINDOWS

CUDA PGA on Linux

Figure 6.19: GA execution time runs in various execution environments

Vari
ati

on
in

Pop
ula

tio
n Siz

e

Vari
ati

on
in

Muta
tio

n pro
ba

bil
ity

Vari
ati

on
in

Cros
sov

er
pro

ba
bil

ity

Vari
ati

on
in

Kno
wled

ge-
ba

sed
cro

sso
ver

fra
gm

ent
op

era
tor

pro
ba

bil
ity

Vari
ati

on
in

Muta
tio

n gen
eti

c op
era

tor
0

0.5

1

1.5

T
im

e
(s

)

CUDA PGA on WINDOWS
CUDA PGA on Linux

Figure 6.20: PGA execution time runs in various execution environments (Average
execution time recorded)

Chapter 6. Results and Discussion 116

Vari
ati

on
in

Pop
ula

tio
n Siz

e

Vari
ati

on
in

Muta
tio

n pro
ba

bil
ity

Vari
ati

on
in

Cros
sov

er
pro

ba
bil

ity

Vari
ati

on
in

Kno
wled

ge-
ba

sed
cro

sso
ver

fra
gm

ent
op

era
tor

pro
ba

bil
ity

Vari
ati

on
in

Muta
tio

n gen
eti

c op
era

tor
0

0.5

1

1.5

2

2.5

T
im

e
(s

)

CUDA PGA on WINDOWS
CUDA PGA on Linux

Figure 6.21: PGA execution time runs in various execution environments (Maximum
execution time recorded)

Chapter 6. Results and Discussion 117

Vari
ati

on
in

Pop
ula

tio
n Siz

e

Vari
ati

on
in

Muta
tio

n pro
ba

bil
ity

Vari
ati

on
in

Cros
sov

er
pro

ba
bil

ity

Vari
ati

on
in

Kno
wled

ge-
ba

sed
cro

sso
ver

fra
gm

ent
op

era
tor

pro
ba

bil
ity

Vari
ati

on
in

Muta
tio

n gen
eti

c op
era

tor
0

0.2

0.4

0.6

0.8

1

T
im

e
(s

)

CUDA PGA on WINDOWS
CUDA PGA on Linux

Figure 6.22: PGA execution time runs in various execution environments (Minimum
execution time recorded)

Chapter 6. Results and Discussion 118

6.4.2 Analysis of GA algo execution time trials

The results show a clear picture of the efficiency of the CUDA PGA implementation.

The performance improvement in the case of the training set cluster analysis run is in the

region of 13 000% on the Linux, 6500% on the Windows. This can be attributed to the

utilisation of a parallel computation platform, a novel genetic operator and the extensive

and comprehensive algorithm tuning techniques employed. Similar performance gains

are also observed in the real world data code execution time runs, namely that the

CUDA PGA executes at around 100 times faster than the serial MATLAB GA algorithm.

Shifting the focus to the various algorithm tuning runs, I noticed that, on average, there

is a very notable performance improvement between the LINUX and the WINDOWS

platform. The same compilation options were utilised on both platforms, but the code

optimised for the Linux platform. This might explain the discrepancy in execution times

between LINUX and the WINDOWS environment. In order to make a more substantial

assessment, I would have to profile the algorithm on both platforms and investigate the

causes for the discrepancies; but this is beyond the scope of this research.

Chapter 7

Conclusions and future prospects

7.1 Conclusions

The range of investigations that were undertaken show that the Giada and Marsili likeli-

hood function[11], inspired by the Noh model, is a viable approach for isolating residual

clusters in data-sets. Its key advantages, in comparison to conventional clustering meth-

ods, are that it is unsupervised and that the interpretation of results is transparent in

terms of the model.

Two evolutionary search heuristics were reviewed, namely the Master-slave Parallel Ge-

netic Algorithm and the Multipe-deme Parallel Genetic Algorithm. The implementation

of the Master-slave PGA showed that the efficiency depends on various parameter set-

tings and that fine-tuning such an algorithm is not easy. The research shows that the

PGA efficiency is largely dependant on the size of the population, a statement which is

also supported by literature[6], but entails a higher computational cost and utilisation

of memory resources. The increased crossover probability increases the chromosome

gene recombination probability and thus, on average, enables the PGA to generate fitter

119

Chapter 7. Conclusion and future prospects 120

individuals. The same applies to the mutation probability. A novel knowledge based

crossover operator was introduced. The results show that it outperforms traditional

crossover operators, such as Single-point crossover and Two-point crossover genetic op-

erators as the PGA achieves higher convergence rates and creates successive populations

with higher average fitness values. The type of mutation operator utilised has a pro-

nounced effect on the algorithm’s efficiency to isolate the optimal solution in the search

space, whereas other parameter settings primarily impact the convergence rate. The

Arithmetic mutation operator allows the PGA to create offspring with optimal fitness

values. The final test run investigated the effect of the number of elite individuals, that

are promoted to the next generation on the average fitness of the successive generation.

I can conclude, that, the higher the number of elite individuals that are promoted, the

higher the average fitness value of the successive generation and thus the higher the

quality of offspring created. According to the time trial results, the CUDA PGA imple-

mentation runs 100-130 times faster than the serial GA implementation in MATLAB,

which is the true litmus test of the success of the research undertaken. It illustrates that

the application of the Master-slave Parallel Genetic Algorithm (PGA) framework for

unsupervised cluster analysis on the CUDA platform, using the Giada and Marsili log-

likelihood function as the fitness function, is a novel and promising new cluster analysis

approach.

7.2 Future prospects

The current configuration of the Master-slave algorithm only allows for a minimal util-

isation of the computational platform, using a fraction of the memory and processing

capability due to the small size of the data-sets utilised. In theory, I could improve

Chapter 7. Conclusion and future prospects 121

on the Master-slave algorithm by fully exploiting the extent of resources that the GPU

provides and as such, fully utilise the whole grid of thread blocks and run multiple clus-

tering analysis processes in tandem. This would boost the efficiency of the Master-slave

PGA and result in a novel hybrid Master-slave PGA for cluster analysis, where huge

low-latency data feeds could be harvested for cluster characteristics in a fraction of the

time it would take other algorithms to derive similar results.

Future prospects would include the proper implementation, testing and research of a

Multiple-deme PGA on the GPGPU platform. Research, presented in Section 3.2.3,

shows that the Multiple-deme approach scheme shows the most promise in terms of

computational performance, and that it warrants further investigation.

Bibliography

[1] Marek Rucinski, Dario Izzo, and Francesco Biscani. On the impact of the migration

topology on the island model. CoRR, abs/1004.4541, 2010.

[2] R.B. Litterman and Goldman Sachs Asset Management. Quantitative Resources

Group. Modern Investment Management: An Equilibrium Approach. Wiley Finance

Series. John Wiley, 2003. ISBN 9780471124108. URL http://books.google.co.

za/books?id=k8Jyhasdu98C.

[3] D. Barbara. An introduction to cluster analysis for data mining. 2000.

[4] D.A. Coley. An Introduction to Genetic Algorithms for Scientists and Engineers.

World Scientific, 1999. ISBN 9789810236021. URL http://books.google.co.za/

books?id=-D568prVv0QC.

[5] Lawrence Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[6] S.N. Sivanandam and S.N. Deepa. Introduction to Genetic Algorithms. Springer,

2010. ISBN 9783642092244.

[7] NVIDIA. NVIDIA CUDA C Programming Guide. NVIDIA Corporation, 2011.

[8] NVIDIA. CUDA DYNAMIC PARALLELISM PROGRAMMING GUIDE.

NVIDIA Corporation, 2012.

122

http://books.google.co.za/books?id=k8Jyhasdu98C
http://books.google.co.za/books?id=k8Jyhasdu98C
http://books.google.co.za/books?id=-D568prVv0QC
http://books.google.co.za/books?id=-D568prVv0QC

Bibliography 123

[9] Petr Pospichal, Jiri Jaros, and Josef Schwarz. Parallel genetic algorithm on the

CUDA architecture. In Proceedings of the 2010 international conference on Ap-

plications of Evolutionary Computation - Volume Part I, EvoApplicatons’10, pages

442–451, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-12238-8, 978-3-642-

12238-5.

[10] Sifa Zhang and Zhenming He. Implementation of parallel genetic algorithm based

on cuda. In Proceedings of the 4th International Symposium on Advances in Compu-

tation and Intelligence, ISICA ’09, pages 24–30, Berlin, Heidelberg, 2009. Springer-

Verlag. ISBN 978-3-642-04842-5.

[11] Lorenzo Giada and Matteo Marsili. Algorithms of maximum likelihood

data clustering with applications. Physica A: Statistical Mechanics and its

Applications, 315(3âĂŞ4):650 – 664, 2002. ISSN 0378-4371. doi: 10.

1016/S0378-4371(02)00974-3. URL http://www.sciencedirect.com/science/

article/pii/S0378437102009743.

[12] B. Mbambiso. Dissecting the south african equity markets into sectors and states.

Master’s thesis, Faculty of Science, University of Cape Town, February 2009.

[13] J.D Noh. Phys. Rev. E, 61, 2000.

[14] T. Gebbie. (Private communication) Unparallized GA implementation of the like-

lihood function implemented in MATLAB, 2012.

[15] Erik Mooi and Marko Sarstedt. A Concise Guide to Market Research. Springer

Berlin Heidelberg, 2011. ISBN 978-3-642-12540-9. URL http://www-users.cs.

umn.edu/˜kumar/dmbook/.

http://www.sciencedirect.com/science/article/pii/S0378437102009743
http://www.sciencedirect.com/science/article/pii/S0378437102009743
http://www-users.cs.umn.edu/~kumar/dmbook/
http://www-users.cs.umn.edu/~kumar/dmbook/

Bibliography 124

[16] Jeff Bacidore, Kathryn Berkow, Ben Polidore, and Saraiya Nigam. Cluster Analysis

for Evaluating Trading Strategies. The Journal of Trading, 7(3), 2012. URL http:

//www.iijournals.com/doi/abs/10.3905/jot.2012.7.3.006.

[17] Newton Da Costa Jr, Jefferson Cunha, and Sergio Da Silva. Stock Selection Based

on Cluster Analysis. Economics Bulletin, 2005.

[18] Lorenzo Giada and Matteo Marsili. Data clustering and noise undressing of corre-

lation matrices. Phys. Rev. E, 63:061101, May 2001. doi: 10.1103/PhysRevE.63.

061101. URL http://link.aps.org/doi/10.1103/PhysRevE.63.061101.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-

ing. Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671. URL

http://www.sciencemag.org/content/220/4598/671.abstract.

[20] Cowgill Marc C., Harvey Robert J., and Watson Layne T. A genetic algorithm

approach to cluster analysis. Technical report, Virginia Polytechnic Institute &

State University, Blacksburg, VA, USA, 1998.

[21] Turku Centre For, Juha KivijÃďrvi, Juha Kivijrvi, Joonas Lehtinen, Joonas Lehti-

nen, Olli Nevalainen, and Olli Nevalainen. A parallel genetic algorithm for cluster-

ing, 2002.

[22] Jian-Hui Jiang, Ji-Hong Wang, Xia Chu, and Ru-Qin Yu. Clustering data using

a modified integer genetic algorithm (iga). Analytica Chimica Acta, 354(1âĂŞ3):

263 – 274, 1997. ISSN 0003-2670. doi: 10.1016/S0003-2670(97)00462-5. URL

http://www.sciencedirect.com/science/article/pii/S0003267097004625.

[23] L.E. AgustÄśÂťn-Blas, S. Salcedo-Sanz, S. JimÃľnez-FernÃąndez, L. Carro-Calvo,

J. Del Ser, and J.A. Portilla-Figueras. A new grouping genetic algorithm for clus-

tering problems. Expert Systems with Applications, 39(10):9695 – 9703, 2012. ISSN

http://www.iijournals.com/doi/abs/10.3905/jot.2012.7.3.006
http://www.iijournals.com/doi/abs/10.3905/jot.2012.7.3.006
http://link.aps.org/doi/10.1103/PhysRevE.63.061101
http://www.sciencemag.org/content/220/4598/671.abstract
http://www.sciencedirect.com/science/article/pii/S0003267097004625

Bibliography 125

0957-4174. doi: 10.1016/j.eswa.2012.02.149. URL http://www.sciencedirect.

com/science/article/pii/S0957417412004125.

[24] Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Sanghamitra B. Genetic

algorithm-based clustering technique. Pattern Recognition, 33:1455–1465, 2000.

[25] Abbas Mahmoudabadi and Reza Tavakkoli-Moghaddam. The use of a genetic

algorithm for clustering the weighing station performance in transportation - a

case study. Expert Syst. Appl., 38(9):11744–11750, 2011. URL http://dblp.

uni-trier.de/db/journals/eswa/eswa38.html#MahmoudabadiT11.

[26] A. O. Adewumi and M. M. Ali. A multi-level genetic algorithm for a multi-stage

space allocation problem. Math. Comput. Model., 51(1-2):109–126, January 2010.

ISSN 0895-7177. doi: 10.1016/j.mcm.2009.09.004. URL http://dx.doi.org/10.

1016/j.mcm.2009.09.004.

[27] Mohamad M. Tawfick, Hazem M. Abbas, and Hussein I. Shahein. An integer-

coded evolutionary approach for mixture maximum likelihood clustering. Pat-

tern Recognition Letters, 29(4):515 – 524, 2008. ISSN 0167-8655. doi: 10.1016/

j.patrec.2007.11.003. URL http://www.sciencedirect.com/science/article/

pii/S0167865507003625.

[28] Cezary Z. Janikow and Zbigniew Michalewicz. An experimental comparison of

binary and floating point representations in genetic algorithms. In ICGA, pages

31–36, 1991.

[29] Gaowei Yan, Gang Xie, Zehua Chen, and Keming Xie. Knowledge-based genetic

algorithms. In Guoyin Wang, Tianrui Li, JerzyW. Grzymala-Busse, Duoqian Miao,

Andrzej Skowron, and Yiyu Yao, editors, Rough Sets and Knowledge Technology,

volume 5009 of Lecture Notes in Computer Science, pages 148–155. Springer Berlin

http://www.sciencedirect.com/science/article/pii/S0957417412004125
http://www.sciencedirect.com/science/article/pii/S0957417412004125
http://dblp.uni-trier.de/db/journals/eswa/eswa38.html#MahmoudabadiT11
http://dblp.uni-trier.de/db/journals/eswa/eswa38.html#MahmoudabadiT11
http://dx.doi.org/10.1016/j.mcm.2009.09.004
http://dx.doi.org/10.1016/j.mcm.2009.09.004
http://www.sciencedirect.com/science/article/pii/S0167865507003625
http://www.sciencedirect.com/science/article/pii/S0167865507003625

Bibliography 126

Heidelberg, 2008. ISBN 978-3-540-79720-3. doi: 10.1007/978-3-540-79721-0 24.

URL http://dx.doi.org/10.1007/978-3-540-79721-0_24.

[30] Erick CantÃž-Paz and David E. Goldberg. Efficient parallel genetic al-

gorithms: theory and practice. Computer Methods in Applied Mechanics

and Engineering, 186(2âĂŞ4):221 – 238, 2000. ISSN 0045-7825. doi: 10.

1016/S0045-7825(99)00385-0. URL http://www.sciencedirect.com/science/

article/pii/S0045782599003850.

[31] Erick Cantu-Paz. Topologies, migration rates, and multi-population parallel ge-

netic algorithms. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H.

Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings

of the Genetic and Evolutionary Computation Conference, volume 1, pages 91–98,

Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann. ISBN 1-55860-611-4.

URL http://dangermouse.brynmawr.edu/ec/gecco99-topologies.pdf.

[32] Marek Rucinski, Dario Izzo, and Francesco Biscani. The generalized island model.

Parallel Architectures & Bioinspired Algorithms, pages 151–169, 2012.

[33] M. Flynn. Some computer organizations and their effectiveness. Computers, IEEE

Transactions on, C-21(9):948–960, Sept 1972. ISSN 0018-9340. doi: 10.1109/TC.

1972.5009071.

[34] David Culler, J.P. Singh, and Anoop Gupta. Parallel Computer Ar-

chitecture: A Hardware/Software Approach. Morgan Kaufmann, 1st

edition, 1998. ISBN 1558603433. URL http://www.amazon.com/

Parallel-Computer-Architecture-Hardware-Software/dp/1558603433. The

Morgan Kaufmann Series in Computer Architecture and Design.

http://dx.doi.org/10.1007/978-3-540-79721-0_24
http://www.sciencedirect.com/science/article/pii/S0045782599003850
http://www.sciencedirect.com/science/article/pii/S0045782599003850
http://dangermouse.brynmawr.edu/ec/gecco99-topologies.pdf
http://www.amazon.com/Parallel-Computer-Architecture-Hardware-Software/dp/1558603433
http://www.amazon.com/Parallel-Computer-Architecture-Hardware-Software/dp/1558603433

Bibliography 127

[35] Barry Wilkinson and Michael Allen. Parallel programming - techniques and ap-

plications using networked workstations and parallel computers (2. ed.). Pearson

Education, 2005. ISBN 978-0-13-191865-8.

[36] Jack Dongarra, Steve W. Otto, Marc Snir, and David W. Walker. A message passing

standard for mpp and workstations. Commun. ACM, 39(7):84–90, 1996. URL

http://dblp.uni-trier.de/db/journals/cacm/cacm39.html#DongarraOSW96.

[37] Rudolf Eigenmann and Michael Voss, editors. OpenMP Shared Memory Parallel

Programming, International Workshop on OpenMP Applications and Tools, WOM-

PAT 2001, West Lafayette, IN, USA, July 30-31, 2001 Proceedings, volume 2104

of Lecture Notes in Computer Science, 2001. Springer. ISBN 3-540-42346-X. URL

http://dblp.uni-trier.de/db/conf/wompat/wompat2001.html.

[38] C. Leopold. Parallel and Distributed Computing: A Survey of Models,

Paradigms and Approaches. A Wiley-Interscience publication. Wiley, 2001. ISBN

9780471358312. URL http://books.google.co.za/books?id=J1MZAQAAIAAJ.

[39] Tabitha L. James, Reza Barkhi, and John D. Johnson. Platform impact on per-

formance of parallel genetic algorithms: Design and implementation considera-

tions. Engineering Applications of Artificial Intelligence, 19(8):843 – 856, 2006.

ISSN 0952-1976. doi: http://dx.doi.org/10.1016/j.engappai.2006.02.004. URL

http://www.sciencedirect.com/science/article/pii/S0952197606000558.

[40] Julien C. Thibault and Inanc Senocak. Accelerating incompressible flow com-

putations with a Pthreads-CUDA implementation on small-footprint multi-

GPU platforms. J. Supercomput., 59(2):693–719, February 2012. ISSN 0920-

8542. doi: 10.1007/s11227-010-0468-1. URL http://dx.doi.org/10.1007/

s11227-010-0468-1.

http://dblp.uni-trier.de/db/journals/cacm/cacm39.html#DongarraOSW96
http://dblp.uni-trier.de/db/conf/wompat/wompat2001.html
http://books.google.co.za/books?id=J1MZAQAAIAAJ
http://www.sciencedirect.com/science/article/pii/S0952197606000558
http://dx.doi.org/10.1007/s11227-010-0468-1
http://dx.doi.org/10.1007/s11227-010-0468-1

Bibliography 128

[41] NVIDIA. CUDA C BEST PRACTICES GUIDE. NVIDIA Corporation, 2012.

[42] A.R. Brodtkorb and et al. Graphics processing unit (GPU) programming strategies

and trends in GPU computing. J. Parallel Distrib. Comput., 73(1):4–13, 2013. ISSN

0743-7315. doi: 10.1016/j.jpdc.2012.04.003. URL http://dx.doi.org/10.1016/

j.jpdc.2012.04.003.

[43] Shucai Xiao and Wu chun Feng. Inter-block GPU communication via fast bar-

rier synchronization. In IPDPS, pages 1–12. IEEE, 2010. URL http://dblp.

uni-trier.de/db/conf/ipps/ipdps2010.html#XiaoF10.

[44] Donald E. Knuth. Structured programming with GOTO statements. Computing

Surveys, 6:261–301, 1974.

[45] Hiroyasu Tomoyuki, Yamanaka Ryosuke, Yoshimi Masato, and Miki Mitsunori.

Garop: Genetic algorithm framework for running on parallel environments. IPSJ

SIG Notes, 2012(5):1–6, jul 2012. ISSN 09196072. URL http://ci.nii.ac.jp/

naid/110009421221/en/.

[46] R. N. Mantegna. Hierarchical structure in financial markets. European Physical

Journal B, 11:193–197, 1999.

[47] Giovanni Bonanno, Guido Caldarelli, Fabrizio Lillo, and Rosario N. Mantegna.

Topology of correlation-based minimal spanning trees in real and model markets.

Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 68(4):046130+,

2003. URL http://dx.doi.org/10.1103/physreve.68.046130.

[48] Tim Gebbie and Diane Wilcox. (Private Communication) MATLAB data pre-

processing libraries and data, 2012.

http://dx.doi.org/10.1016/j.jpdc.2012.04.003
http://dx.doi.org/10.1016/j.jpdc.2012.04.003
http://dblp.uni-trier.de/db/conf/ipps/ipdps2010.html#XiaoF10
http://dblp.uni-trier.de/db/conf/ipps/ipdps2010.html#XiaoF10
http://ci.nii.ac.jp/naid/110009421221/en/
http://ci.nii.ac.jp/naid/110009421221/en/
http://dx.doi.org/10.1103/physreve.68.046130

Bibliography 129

[49] T. Gebbie. (Private Communication) MATLAB Minimal Spanning Tree code li-

braries for the generation of tree and the animation thereof., 2012.

[50] Paris Avgeriou and Uwe Zdun. Architectural patterns revisited âĂŞ a pattern

language. In In 10th European Conference on Pattern Languages of Programs (Eu-

roPlop 2005), Irsee, pages 1–39, 2005.

[51] NVIDIA. CUDA C BEST PRACTICES GUIDE. NVIDIA Corporation, 2012.

[52] Michal Czapiński and Stuart Barnes. Tabu Search with two approaches to parallel

flowshop evaluation on CUDA platform. J. Parallel Distrib. Comput., 71(6):802–

811, 2011. ISSN 0743-7315.

[53] Denis Robilliard, Virginie Marion-Poty, and Cyril Fonlupt. Genetic programming

on graphics processing units. Genetic Programming and Evolvable Machines, 10(4):

447–471, December 2009. ISSN 1389-2576. doi: 10.1007/s10710-009-9092-3. URL

http://dx.doi.org/10.1007/s10710-009-9092-3.

[54] W. B. Langdon. A fast high quality pseudo random number generator for nVidia

CUDA. In Proceedings of the 11th Annual Conference Companion on Genetic and

Evolutionary Computation Conference: Late Breaking Papers, GECCO ’09, pages

2511–2514, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-505-5. doi: 10.

1145/1570256.1570353. URL http://doi.acm.org/10.1145/1570256.1570353.

[55] Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-Mei W. Hwu. Cuda-

lite: Reducing gpu programming complexity. In José Nelson Amaral, editor, Lan-

guages and Compilers for Parallel Computing, pages 1–15. Springer-Verlag, Berlin,

Heidelberg, 2008. ISBN 978-3-540-89739-2.

http://dx.doi.org/10.1007/s10710-009-9092-3
http://doi.acm.org/10.1145/1570256.1570353

Bibliography 130

[56] Dehao Chen, Wenguang Chen, and Weimin Zheng. CUDA-Zero: a framework

for porting shared memory GPU applications to multi-GPUs. SCIENCE CHINA

Information Sciences, 55(3):663–676, 2012.

[57] John A. Stratton, Sam S. Stone, and Wen-Mei W. Hwu. Mcuda: An efficient

implementation of cuda kernels for multi-core cpus. In José Nelson Amaral, editor,

Languages and Compilers for Parallel Computing, pages 16–30. Springer-Verlag,

Berlin, Heidelberg, 2008. ISBN 978-3-540-89739-2.

[58] William B. Langdon. Debugging cuda. In Proceedings of the 13th annual conference

companion on Genetic and evolutionary computation, GECCO ’11, pages 415–422,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0690-4.

[59] NVIDIA. The CUDA Compiler Driver NVCC Manual. NVIDIA Corporation, 2011.

[60] NVIDIA. CUDA-GDB: The NVIDIA CUDA Debugger Manual. NVIDIA Corpo-

ration, 2011.

[61] NVIDIA. CUDA CURAND Guide. NVIDIA Corporation, 2012.

[62] NVIDIA. CUDA Toolkit 4.0 Thrust Quick Start Guide. NVIDIA Corporation,

2011.

[63] T. Urli. Stopwatch implementation for C++, 2010.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Objectives
	1.2 Rationale
	1.3 Structure

	2 Cluster Analysis
	2.1 Introduction
	2.2 Measures of Similarity and Dissimilarity
	2.2.1 Distance measures
	2.2.2 Correlation measure
	2.2.3 Ordinal Measures
	2.2.4 Hierarchical clustering
	2.2.4.1 Nearest-neighbour clustering
	2.2.4.2 Farthest-neighbour clustering
	2.2.4.3 Ward's Method

	2.2.5 Center-Based Partitional Clustering
	2.2.5.1 K-means clustering

	2.3 Applicability of Cluster Analysis in the finance industry
	2.4 Cluster analysis based on the Maximum Likelihood principle
	2.4.1 Giada and Marsili clustering technique
	2.4.2 Search heuristic approach and rationale

	3 Genetic Algorithms
	3.1 Genetic Algorithms: An Overview
	3.1.1 Genetic Operators
	3.1.1.1 Selection
	Roulette Wheel Selection
	Rank Selection
	Tournament Selection
	Random Selection
	Stochastic Universal Sampling

	3.1.1.2 Crossover
	Single Point Crossover
	Two-Point Crossover
	Uniform Crossover
	Shuffle Crossover

	3.1.1.3 Mutation
	Flipping
	Interchanging
	Reversing
	Mutation Probability

	3.1.1.4 Elitism
	3.1.1.5 Replacement
	Random Replacement
	Weak Parent Replacement
	Both Parents Replacement

	3.1.1.6 Advantages of Genetic Algorithms

	3.1.2 Non-binary Encodings
	3.1.3 Knowledge Based Techniques

	3.2 Parallel Genetic Algorithms
	3.2.1 Discretised Genetic Algorithms
	3.2.2 Master-slave Parallelisation
	3.2.3 Multiple-deme Parallelisation
	3.2.3.1 Model Parameters
	3.2.3.2 Migration Topology
	3.2.3.3 Number of Islands

	4 Computational Platform
	4.1 Parallel computing
	4.1.1 Architectures
	4.1.2 Parallel programming and design paradigms
	4.1.3 Rationale

	4.2 GPU
	4.3 NVIDIA CUDA platform
	4.3.1 Execution Environment
	4.3.2 Thread hierarchy
	4.3.3 Memory hierarchy
	4.3.3.1 Registers
	4.3.3.2 Shared memory
	4.3.3.3 Global memory

	4.3.4 Synchronisation
	4.3.4.1 CPU
	CPU Explicit Synchronisation
	CPU Implicit Synchronisation

	4.3.4.2 GPU
	GPU simple synchronisation
	GPU tree-based synchronisation
	GPU lock-free synchronization
	Disadvantages of GPU synchronisation

	4.3.5 Challenges
	4.3.6 Performance tuning techniques

	4.4 PGA implementations on GPUs
	4.4.1 GAROP: Genetic Algorithms framework for Running On Parallel environments
	4.4.2 Hybrid Master-slave and Multiple-deme implementation on the CUDA platform

	5 Implementation
	5.1 Stock correlation taxonomy
	5.2 Approach
	5.3 Pre-processing of data for the Clustering Algorithm
	5.4 Post-processing of data and depiction of residual clusters
	5.5 Implementation of a Parallel Genetic Algorithm: Master-Slave approach
	5.6 Detailed analysis of the Parallel Genetic Algorithm: Master-Slave approach
	5.6.1 Data Parallelism
	5.6.2 Initialisation
	5.6.3 Grid, block and thread heuristics
	5.6.4 Master-slave GA computation parallelisation
	5.6.5 Initial Population generation
	5.6.6 Evaluation of the fitness function
	5.6.7 Genetic Operators and Genetic Algorithm configuration
	5.6.7.1 Scaling
	5.6.7.2 Selection
	5.6.7.3 Crossover Operator
	5.6.7.4 Mutation Operator
	Creep mutation

	5.6.7.5 Random replacement
	5.6.7.6 Replacement Operator

	5.6.8 Termination Criteria

	5.7 Parallel Genetic Algorithm tuning
	5.8 Measurement metrics
	5.8.1 Performance metric
	5.8.2 Average calculations

	6 Experiments and Measurements
	6.1 Environment
	6.2 Data: Training Set
	6.2.1 Cluster Analysis in Matlab using a serial Genetic Algorithm
	6.2.2 Experiments for tuning of parameters in Master-Slave PGA Algorithm on the GPU
	6.2.2.1 Variation in Population Size
	6.2.2.2 Variation in Crossover probability Pc
	6.2.2.3 Variation in Mutation probability Pm
	6.2.2.4 Variation in Knowledge-based crossover fragment operator probability Pcf
	6.2.2.5 Variation in Crossover genetic operator
	6.2.2.6 Variation in Mutation genetic operator
	6.2.2.7 Variation in number of elite individuals promoted to the next generation

	6.3 Data: Intra-day stock prices for 18 stocks from the Johannesburg Stock Exchange (JSE)
	6.4 PGA algo execution time trials of the CUDA cluster analysis algorithm
	6.4.1 PGA algo execution time trials results
	6.4.2 Analysis of GA algo execution time trials

	7 Conclusions and future prospects
	7.1 Conclusions
	7.2 Future prospects

	Bibliography

