KNOWLEDGE, ATTITUDES, BELIEFS AND PRACTICES
CONCERNING HIV INFECTION AND AIDS AMONG PATIENTS
PRESENTING WITH SEXUALLY TRANSMITTED DISEASES AT A
SOWETO COMMUNITY HEALTH CENTRE.

Anben Pillay

A research report submitted to the Faculty of Medicine, University of the
Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the
degree of Master of Medicine in the branch of Family Medicine.

Johannesburg, 2000
DECLARATION:

I, Anben Pillay declare that this research report is my own work. It is being submitted as a part fulfilment for the degree of Masters in Family Medicine, in the Faculty of Medicine, University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.


31st day of JANUARY 2000
In memory of my father
Thangavelu M. Pillay
1933 - 1998
SUMMARY:

Objectives. To investigate the knowledge, attitudes, beliefs and practices regarding HIV infection and AIDS among patients presenting with a sexually transmitted disease at the polyclinic department of the Chiawelo Community Health Centre in Soweto, Gauteng, South Africa.

Design. The data was collected using a structured interview administered by the researcher. Diagnosis of the sexually transmitted diseases (STDs) was based on the Syndromic Approach.

Subjects. The study sample consisted of 200 patients, over the age of eighteen years, presenting with a sexually transmitted disease at the polyclinic department. One hundred and ninety-seven patients, 152 men and 45 women, of the study sample consented to be interviewed, a response rate of 98%. The three patients that refused to partake in the study were all men.

Results. The median age of the men and women was 26 years and 24 years respectively. The median range of residence in Soweto was 19 years. Most of the respondents were single (68.5%) and unemployed (43.2%). At the beginning of the interview, most of the respondents, 53.3% (105), felt that their knowledge of HIV/AIDS was adequate. The median grade of education was 8. Education level of the respondents related significantly to their perceived knowledge of HIV/AIDS (p<0.05). Urethral discharge was the most common presenting STD (43.1%). Only 17.8% (20.1% men and 15.6% women) of the respondents’ main concern of their presenting illness was that of contracting the AIDS-virus. The majority of the respondents were aware of the common modes of transmission of STDs and HIV, yet only 4.1% of the respondents used condoms regularly with
multiple sexual partners. The most significant reason cited for not using condoms was that it made sex less enjoyable (40.1%). Moreover 65.4% of the respondents had multiple sexual partners. Majority of the men, 80.3%(122) had multiple sexual partners, previous episodes of STDs (67.8%) and had an extremely low level of condom usage (1.7%). Although most of the women, 84.5%(38) had monogamous relationships with very low condom usage (11.2%), they still presented with STDs, indicating that they were at a high risk of contracting the AIDS-virus. The most influential source of information regarding HIV/AIDS proved to be the news media (television, radio, newspaper, and pamphlets/advertisement). Respondents had some negative attitudes to people living with HIV/AIDS, such as not befriend or accepting them as part of society. Of the 57.4% of the respondents who received treatment for a previous STD at the polyclinic, 33.6% did not receive counselling on HIV/AIDS and the use of condoms. Forty percent (18) of the women and 37.5%(57) of the men considered themselves at risk of HIV and were willing to be tested for the AIDS-virus. Significant differences existed between frequency of condom usage and multiple sexual partners (p<0.05), and between multiple partners and previous history of treatment for a sexually transmitted disease (p<0.01). Being male, unemployed, between the age of 21 – 30 years, with multiple sex partners and having had a previous STDs, related to a significant risk of contracting HIV infection. More information about HIV/AIDS was requested by 98.5%(194) of the respondents.

Conclusions. The respondents' factual knowledge, as assessed by most criteria regarding HIV infection and AIDS was relatively high, their use of condoms was low, their perceived level of risk of HIV infection was very low and therefore they did not feel the need to change their behaviour.

Recommendations. Future interventions regarding the prevention of HIV infection need to move beyond providing information and to focus more on producing behavioural change in communities
and to facilitate the target populations to achieve such changes. The integration of the Health Belief Model and use of patients' reason for encounter in these prevention programmes may prove extremely useful in our endeavour to curb the spread of HIV-infection.
ACKNOWLEDGEMENTS:

I would like to thank the following institutions and people:

The University of Witwatersrand for providing me the opportunity of pursuing postgraduate studies in the Department of Family Medicine.

Professor BLW Sparks, Head of the Family Medicine Department, University of the Witwatersrand, and my supervisor for his meticulous supervision, and for providing me the opportunity to undertake this study.

Dr David Coetzee, my co-supervisor, for his useful advice, guidance, and keen interest shown in my project.

Dr Anne Wright, for her invaluable advice and encouragement.

The staff and patients at the Chiawelo Soweto Community Health Centre, for their co-operation and patience.

Mrs Danuta Klielkowski of the Epidemiology Unit, NCOH for her assistance in statistically analysing the results obtained.

My wife, Romiela and children, Nikita and Shaylan, for their unflagging moral support.
# Table of Contents

**Summary:**                                                                                           IV

**Acknowledgements:**                                                                                     VII

**List of Figures:**                                                                                             X

**List of Tables:**                                                                                              XI

**List of Appendices:**                                                                                           XII

**Nomenclature:**                                                                                               XIII

1. **Introduction**                                                                                                  1

2. **Literature Review**                                                                                           7
   2.1 Interaction Between Sexually Transmitted Diseases and HIV Infection                                         7
   2.2 Syndromic Management Of Sexually Transmitted Diseases                                                     8
   2.3 Findings of Knowledge, Attitudes, Beliefs and Practices (KABP) Studies Among Persons with Sexually Transmitted Diseases Regarding HIV/AIDS and Condom Usage in South Africa                           10
   2.4 The Health Belief Model                                                                                     15
   2.5 Reason for Encounter                                                                                         16
   2.6 Rationale, Aims and Objectives for Research                                                              18
      2.6.1 Rationale for Research                                                                                18
      2.6.2 Aims                                                                                                  19
      2.6.3 Objectives                                                                                             19

3. **Materials and Methods**                                                                                      20
   3.1 Site of Study                                                                                               20
   3.2 Study Design and Sampling                                                                                   21
   3.3 Diagnostic Criteria Used for Sexually Transmitted Disease                                                  22
   3.4 Administration of the Questionnaire                                                                         23
   3.5 The Questionnaire                                                                                           23
   3.6 Ethical Approval and Other Considerations                                                                25
   3.7 Analysis                                                                                                   26

4. **Results**                                                                                                   27
   4.1 Response Rate                                                                                                27
   4.2 Demographic Information                                                                                     27
      4.2.1 Age and gender distribution                                                                            27
      4.2.2 Place of residence                                                                                      28
      4.2.3 Marital Status                                                                                          28
      4.2.4 Education                                                                                            29
      4.2.5 Employment Status                                                                                       30
   4.3 Clinical Syndromes of Sexually Transmitted Diseases                                                       30
   4.4 Reason for Encounter                                                                                       31
   4.5 Knowledge of HIV/AIDS                                                                                      32
      4.5.1 Source of Information                                                                                   33
      4.5.2 Transmission of HIV/AIDS                                                                               33
      4.5.3 Groups at risk of HIV Infection                                                                         34
4.5.4 Ability to Recognise a HIV-infected individual ................................................................. 35
4.5.5 Prevention of HIV/AIDS ................................................................................................... 36
4.5.6 Knowledge about condom usage ..................................................................................... 37
4.5.7 Period taken for AIDS syndrome to manifest ................................................................. 38
4.5.8 Female Condom .............................................................................................................. 38
4.6 BELIEFS AND ATTITUDES ABOUT HIV-INFECTION AND AIDS ............................................. 39
4.6.1 The impact of HIV/AIDS on the South African population .................................................. 39
4.6.2 Attitudes towards people living with HIV/AIDS ................................................................. 39
4.7 SEXUAL PRACTICES ........................................................................................................... 40
4.7.1 Number of sexual partners .................................................................................................. 40
4.7.2 Frequency of condom usage with sexual partner’s ................................................................ 41
4.7.3 Previous STD treatment and counselling regarding HIV/AIDS ............................................. 42
4.7.4 Cure for STD and HIV/AIDS ............................................................................................ 43
4.7.5 Requests for HIV-testing .................................................................................................. 44
4.8 VARIABLES FOUND TO BE SIGNIFICANTLY ASSOCIATED WITH PERCEIVED KNOWLEDGE REGARDING HIV/AIDS ........................................................................................................ 44
4.8.1 Variables of attitudes and beliefs that were significantly associated with having a perceived adequate knowledge of HIV/AIDS ........................................................................................................ 46
4.9 VARIABLES SIGNIFICANTLY RELATED TO USAGE OF CONDOMS TO PREVENT HIV INFECTION ........................................................................................................................................ 47
4.10 VARIABLES SIGNIFICANTLY ASSOCIATED WITH LOW FREQUENCY OF CONDOM USAGE WITH SEXUAL PARTNERS ........................................................................................................ 47
4.11 VARIABLES SIGNIFICANTLY ASSOCIATED WITH HAVING MULTIPLE SEXUAL PARTNERS ........................................................................................................................................ 48
4.12 VARIABLES SIGNIFICANTLY ASSOCIATED WITH HAVING HAD PREVIOUS TREATMENT FOR A STD ........................................................................................................................................ 49
4.13 VARIABLES SIGNIFICANTLY ASSOCIATED WITH THE WILLINGNESS TO TAKE A HIV BLOOD TEST ........................................................................................................................................ 49
4.14 VARIABLES SIGNIFICANTLY ASSOCIATED WITH THE EDUCATION LEVEL OF THE RESPONDENTS ........................................................................................................................................ 51
4.15 AGE-RELATED DIFFERENCES ............................................................................................... 51
4.16 GENDER-RELATED DIFFERENCES ....................................................................................... 52
5 DISCUSSION .................................................................................................................................. 53
5.1 INTRODUCTION .......................................................................................................................... 53
5.2 PROFILE OF THE RESPONDENTS .......................................................................................... 53
5.3 STD PROFILE ............................................................................................................................. 54
5.4 REASON FOR ENCOUNTER ........................................................................................................ 54
5.5 SOURCE OF INFORMATION ...................................................................................................... 55
5.6 KNOWLEDGE OF HIV/AIDS .................................................................................................. 56
5.7 BELIEFS AND ATTITUDES OF HIV/AIDS ............................................................................. 58
5.8 SEXUAL PRACTICES AND PERCEIVED RISK OF HIV-INFECTION .............................................. 59
5.9 LIMITATIONS OF THE STUDY ................................................................................................. 62
6 CONCLUSION .................................................................................................................................. 64
7 RECOMMENDATIONS ................................................................................................................... 66
APPENDICES ..................................................................................................................................... 68
REFERENCES ..................................................................................................................................... 92
LIST OF FIGURES:

Figure 4.1 Ability to recognise a person with HIV infection (n=197) ........................................ 36
Figure 4.2 Period taken from HIV-infection to AIDS disease (n=197) ........................................ 38
Figure 4.3 Previous STD treatment and counselling (n=113) ..................................................... 42
Figure 4.4 Frequencies for STDs and HIV/AIDS cures (n=197) ............................................... 43
Figure 4.5 Respondents willing to take an HIV-blood test (n=75) ............................................. 44
LIST OF TABLES:

Table 4.1 Age and gender distribution of the respondents (n = 197) .............................................................. 28
Table 4.2 Marital status of the respondents (n = 197) .......................................................................................... 29
Table 4.3 Educational status of the respondents (n = 197) .................................................................................. 29
Table 4.4 Employment status of the respondents (n = 197) ............................................................................. 30
Table 4.5 Clinical STD-syndromes as defined by the syndromic approach (n = 197) ........................................... 31
Table 4.6 Reason for encounter (n=197) ............................................................................................................. 32
Table 4.7 Sources of information regarding HIV infection (n=197) ................................................................. 33
Table 4.8 Transmission of HIV infection (n = 197) ............................................................................................. 34
Table 4.9 Groups at risk of HIV infection (n = 197) ............................................................................................. 35
Table 4.10 Knowledge on the prevention of HIV infection (n = 197) ................................................................. 37
Table 4.11 Knowledge and beliefs about condom usage (n=197) ....................................................................... 37
Table 4.12 Number of sexual partners (n=197) ................................................................................................. 40
Table 4.13 Condom usage among sexual partner/s (n=197) ............................................................................ 41
Table 4.14 Variables significantly related to having adequate knowledge of HIV/AIDS .................................... 45
Table 4.15 Variables positively related to having an adequate knowledge of HIV/AIDS .................................. 46
Table 4.16 Variables significantly related to the low frequency of condom usage with sexual partner/s ............. 48
Table 4.17 Variables significantly associated with having multiple sexual partners ....................................... 48
Table 4.18 Variables significantly associated with previous treatment of a STD ............................................. 49
Table 4.19 Variables significantly associated with the willingness to take an HIV blood test ....................... 50
Table 4.20 Variables significantly associated with the level of education ....................................................... 51
LIST OF APPENDICES

Appendix

A. Approval for the study to be conducted at the Chiawelo Community Health Centre.

B. Protocols for syndromic case management of sexually transmitted diseases.

C. Questionnaire.

D. Protocol Approval

E. Approval of the study by the Committee for research on human subjects.
NOMENCLATURE:

Acquired Immunodeficiency Syndrome (AIDS)
Is a secondary immunodeficiency syndrome resulting from HIV infection and characterised by opportunistic infections, malignancies, neurological dysfunction and a variety of other syndromes.

Attitudes
The feelings or the state of mind of the respondents with regard to HIV/AIDS.

Beliefs
 Respondents have faith in beliefs, whether they are true or not. Beliefs about personal disease susceptibility, the value of a preventative act, and the general importance of staying healthy are critical determinants of behavioural patterns.

Health Belief Model (HBM)
A model developed by Rosenstock in 1974, which identified certain variables believed to influence the taking of a preventive action.

Human Immunodeficiency Virus (HIV)
Infection caused by one of several retroviruses that become incorporated into host cell DNA and result in a wide range of clinical presentations varying from asymptomatic carrier status to severely debilitating and fatal disorders.
Knowledge

Factual knowledge possessed by respondents about sexually transmitted diseases relating to its transmission, prevention and association with HIV/AIDS.

Illness

Illness refers to how people react to signs and symptoms.

Reason for encounter\(^2\) (RFE)

The recordings that provide a greater insight into why the respondents consult their primary health care provider and how they present their problems.

Sexual behaviour

Sexual behaviour refers to those activities people undertake to avoid sexually transmitted diseases.

Sexually transmitted disease (STD)

A sexually transmitted disease encompasses not only the five venereal diseases (syphilis, gonorrhoea, chancroid, lymphogranuloma venereum, and granuloma inguinale) but also a number of other diseases, which might be considered the "new generation" of sexually transmitted diseases\(^3\). The most recently recognised STD is the acquired immunodeficiency syndrome, caused by the AIDS retrovirus.

Syndromic approach

STD syndromes are a way to group together sexually transmitted diseases that cause similar signs and symptoms\(^4\). These syndromes form the basis of diagnosis and treatment.
1 INTRODUCTION

The 1998 report of the UNAIDS Joint Nation Programme on HIV/AIDS states that globally there are a total of 33.4 million people, 32.2 million adults and 1.2 million children below the age of 15 years, living with HIV-infection or AIDS. Women make up 13.8 million of the adult population. Since the beginning of the epidemic a total of 13.9 million people have died, 10.7 million adults and 3.2 million being children below the age of 15 years. In 1998 alone, 5.8 million people have become infected with AIDS, 70% of these people are from Sub-Saharan Africa.

In South Africa the HIV/AIDS epidemic is progressing rapidly, with over 3.2 million people infected by 1998. It was estimated that at the end of 1998, 22.8% of women who attended the antenatal clinics of the public health facilities were infected with HIV, 33% up from the previous year. It has also been estimated that 1500 people are being infected daily, which is equivalent to more than 550 000 new infections a year. Statistical trends also indicate that within three years almost 250 000 South Africans will die of AIDS each year, and this figure is estimated to be 500 000 by the year 2008. This could effectively leave 600 000 children orphaned.

In excess of 70% of HIV infections are sexually transmitted worldwide, both heterosexually and homosexually, but it is the heterosexual transmission that is the single greatest factor in the spread of the disease. Persons characterised by a high prevalence of sexually transmitted diseases increase the susceptibility to being infected by HIV, both
because the presence of other STDs increases the probability of transmission of HIV per contact, and because the presence of an STD may suggest a relatively high number of sexual partners.

In South Africa the majority of HIV infections, like elsewhere on the subcontinent follow the pattern of HIV-transmission, that is, HIV infection that is acquired by heterosexual contact and these rates of infection are highest among sexually transmitted (STD) clinic attendees. Because HIV is largely sexually transmitted it becomes a significant health problem in situations where there is a high level of sexually transmitted diseases. Sexually transmitted diseases are among the five most common health problems for which people seek treatment. Because of the large number of patients treated for STDs in South Africa, this high-risk group is likely to contribute significantly to the HIV/AIDS epidemic. Control of sexually transmitted diseases is therefore important in limiting the spread of HIV.

To minimise the impact of the HIV epidemic in South Africa, it has been recognised that sexually transmitted diseases (STDs) are one of the most readily modifiable risk factors for the spread of HIV-infection. Both bacterial and viral STDs have been implicated as cofactors in sexual transmission of HIV. South Africa has one of the highest rates of sexually transmitted diseases in the world, with an estimated 5 million infected with at least one sexually transmitted disease every year.
The HIV epidemic cannot be controlled without a full understanding of STDs and a commitment to control the current high rates of these diseases. STD clinics services provide an important access point and offer opportunities for introducing and reinforcing appropriate health education and counselling on the adoption of risk reducing measures such as condom usage and reducing the number of sexual partners⁹. The landmark research in Tanzania also pointed to the same conclusion, that improved management of persons with STDs and prompt health seeking behaviour for STDs nearly halved the number of new HIV infections¹¹.

It is essential that an STD prevention programmes include STD prevention and awareness, accessible user-friendly services, simple and effective way to treat STDs and prevent further episodes, ways to decrease carriers by tracing and managing contacts, and ways of detecting symptomatic and asymptomatic carriers¹⁰. Moreover these programmes should also take into account other co-factors other than knowledge and attitudes to bring about safer sexual practices. These co-factors include cultural constraints on women which make them particularly vulnerable in negotiating sexual encounters, and socio-economic factors such as poverty, migrant labour, single-sex hostels and commercial sex workers which contribute to creating a high risk situation for contracting HIV/AIDS, and low sexual self-concept which make people more likely to indulge in unsafe sexual behaviour¹².

The burden of sexually transmitted diseases in this country is enormous, and as in most developing countries the Department of Health has adopted the Syndromic Approach Management⁴ as the only feasible way to control sexually transmitted diseases. This
syndromic approach treats sexually transmitted diseases as syndromes of curable sexually transmitted diseases, which are grouped together according to similar signs and symptoms. It is comprehensive in that it does not only include correct drug treatment but also condom provision, identification and treatment of sexual partners, and counselling to promote risk reduction. The syndromic approach management has however two major limitations in that asymptomatic patients will not present and there are no existing feasible screening strategies to identify asymptomatic patients. This may result in partially ineffective treatment, which could be a factor, associated with the high prevalence of STDs in South Africa. Therefore the only option besides a form of mass treatment to reduce STD prevalence is a high quality comprehensive syndromic approach combined with mass media campaigns to raise the awareness about sexually transmitted diseases and its inter-relationship with HIV infection, and to promote positive health seeking behaviour.

The current situation in South Africa, like other developing countries is such that social and cultural factors are crucial in determining beliefs, attitudes and behaviour, especially in as personal a sphere as sexual behaviour. What is less recognised is that beliefs and attitudes can also affect health seeking behaviour and attitudes to diseases. Many studies are now being conducted on knowledge, attitudes and practices regarding sexual behaviour and the effectiveness of educational programs. Several studies in South Africa have found that despite high levels of knowledge about HIV/AIDS, mineworkers, street-children, commercial sex workers and university students still indulge in a range of high-risk behaviours. A patient presenting with a STD is a person at risk for HIV infection.
and thus offers unique opportunity for education, counselling and condom promotion, which should not be missed. It is therefore essential to monitor this risk group.

Eradication of sexually transmitted diseases could be achieved by the development and mass application of ideal drugs (not currently available) or effective vaccines (not generally available for the organisms involved in sexually transmitted diseases)\(^{18}\).

Conversely, sexual transmission of disease could be eliminated if persons adopted life-long sexual exclusivity between couples. However, sexual exclusivity seems to be decreasing in most countries rather than increasing\(^{19}\). The present situation has resulted not due to a lack of knowledge or a shortage of resources but because there been (i) inadequate use of well-established techniques, such as the "health belief model"\(^{20}\) when formulating prevention programmes for STDs\(^{20}\), and (ii) incorrect use of social and educational approaches\(^{21}\). Dissemination of information is not enough. The principle aim of an educational effort will need to encourage behaviour that will ultimately reduce the impact of sexually transmitted diseases in the community.

Soweto, a predominantly black township in Gauteng, South Africa is experiencing part of this devastating AIDS epidemic\(^{22}\). The profile of STDs in this urban area of South Africa is very similar to that of other African and developing countries. Furthermore the social environment of rapid urbanisation, poverty, poor housing, informal settlements, and the low status of women form the ideal setting for the spread of STDs and the risk of HIV transmission. Other factors such as the apartheid legacy of the migrant labour system and high rate of unemployment compounds this problem\(^{14}\).
The very high rates of STD prevalence in Soweto will certainly play a major role in the spread of HIV infection. The identification and treatment of these STDs in the community is the key factor in slowing the early stage of the epidemic. Education and most importantly changes in sexual behaviour is urgently required.

The goal of this study is to investigate the knowledge, beliefs and attitudes concerning HIV infection and AIDS of patients presenting with a sexually transmitted disease at a Soweto community health centre, and how these impacted on sexual behaviour. It is hoped that the results obtained from this study will contribute to existing STD prevention strategies to limit the spread of HIV infection. The control of sexually transmitted diseases is thus an urgent priority in this country.
2 LITERATURE REVIEW

2.1 Interaction Between Sexually Transmitted Diseases and HIV infection

It is clear that in South Africa and worldwide particularly in developing countries the predominant mode of transmission of HIV is by heterosexual activity\(^9\). Furthermore, over the past decade, there has been increasing evidence that HIV transmission and acquisition can be facilitated by other sexually transmitted infections\(^{24}\). Most epidemiological studies worldwide have indicated that there is a two to six fold increase in the risk of acquiring HIV infection when infected with concurrent sexually transmitted diseases\(^{25}\). Furthermore these studies have shown risk is generally higher with genital ulcer disease than with non-ulcerative sexually transmitted diseases, although the latter still cause a significant increase in relative risk in studies that have been carefully controlled for other factors, such as sexual behaviour and condom use\(^9\).

The mechanisms explaining increased transmission of HIV is not fully understood, but there are at least two biological plausible explanations. Firstly, HIV-positive men and women may have increased infectiousness due to an increased shedding of HIV from inflammatory and exudative sexually transmitted disease lesions. Secondly, one might expect an increased susceptibility of HIV- negative men and women to HIV because of changes in the epithelium barriers of HIV target cells, such as T-lymphocytes and
Several studies have been initiated in different countries to see whether increased facilities for the diagnosis and treatment of sexually transmitted infections decreased the incidence of HIV infection. The first study reported from the Mwanza region, Tanzania, provided strong support for this hypothesis. The annual incidence of HIV was almost halved in this population from 1.9% to 1.1% per year\(^2^7\). This 42\% reduction was achieved with no appreciable change in condom usage, which remained extremely low. However, other studies have shown that condom usage is effective in preventing HIV transmission. For example, sexually transmitted disease, including HIV, was reduced by condom usage in a prostitution population in Zaire\(^2^8\). Another study in Europe showed that HIV transmission could be prevented by consistent use of condoms in heterosexual couples of which one partner was HIV positive\(^2^9\).

### 2.2 Syndromic Management Of Sexually Transmitted Diseases

The World Health Organisation (WHO) has recommended the syndromic management as a public health approach for the control of STDs\(^3^0\). The Department of Health in Gauteng, South Africa have adopted this approach. By definition the syndromic approach is the identification of the signs and symptoms of a clinical syndrome and treatment for the most likely organism that cause the syndrome. These clinical syndromes include, genital ulcer...
disease and swollen testis, urethral discharge, vaginal discharge and lower abdominal pain. Also included are protocols for treatment for neonatal conjunctivitis, neonates with or at risk of congenital syphilis, herpes/blisters, lymphogranuloma venereum (LGV), warts, pubic lice, molluscum contagiosum and latent syphilis (see appendix B). It has been shown that by treating persons with STDs in this way was more efficient and cost effective.31

The key principles behind the strategy are (i) it does not provide for an accurate etiological diagnosis for patients presenting with STDs, and (ii) many patients with an STD have multiple infections. Therefore based on the prevalence of etiological agents and drug susceptibility patterns for that region, health departments in most developing countries recommend particular combinations of drugs for each STD syndrome. Although widely recommended and used, there is surprisingly little evidence that syndromic treatment actually cures most patients when used under programmatic conditions.4

Drug therapy is but one aspect of the syndromic management. Other important components of this approach include promoting adherence to therapy, promoting condom use, provision of counselling to patients, and promoting partner notification and treatment.30 While the syndromic approach eliminates the need for laboratory testing, it does have the disadvantage of excluding asymptomatic infections, which do not produce any visible signs e.g., syphilis, and there are no feasible screening strategies to identify asymptomatic patients in developing countries.4
2.3 Findings of Knowledge, Attitudes, Beliefs and Practices (KABP) studies among persons with sexually transmitted diseases regarding HIV/AIDS and condom usage in South Africa

Although there is a high level of HIV/AIDS awareness in South Africa, the high rate of new infections suggests that this awareness has not resulted in behavioural change. Information about knowledge, attitudes, beliefs, and behaviour, among STD-patients regarding HIV/AIDS is therefore essential when designing effective strategies and messages to prevent further rise in the rate of HIV infection.

Review of studies in South Africa indicates that stigmatisation, negative attitudes, cultural taboos, limited knowledge and poor recognition of symptoms of sexually transmitted diseases affect health-seeking behaviour for sexually transmitted diseases. Moreover, those with sexually transmitted diseases continue to engage in high-risk behaviour with multiple partners and inconsistent use of condoms. An assessment of AIDS knowledge, awareness, and practice among STD clinic attendees in the Cape Peninsula revealed that there existed inadequate understanding of the difference between HIV and AIDS, and the lack of knowledge regarding both the transmission and cure for HIV/AIDS. Risk-taking behaviour was common in this study, but perceptions of risk were low, as was the intention to change behaviour.

The AIDSCAP study carried out in a mining community among the general population, STD-patients, commercial sex workers, sex workers' clients, healthcare providers and
tavern or shebeen workers, found that although respondents knew the concept of sexually transmitted disease, many still perceived STDs as having a social case, such as punishment for violating social law or taboo, rather than a biomedical cause. Some also believed that traditional medicine protects against STDs and there were many misconceptions about the cause and consequence of STDs. The study also showed that there was very little information about knowledge of the links between STDs and HIV transmission, and the importance of STD treatment to reduce HIV risk. This study also highlighted key issues related to STDs among women, such as low levels of preventative behaviour and stigmatisation by using services providing STD treatment. Commercial sex workers were shown also to under-utilise these services in part because prostitution is illegal and the fear of losing clients if it became known they had a STD. Respondents in this study considered STD as serious at first but changed their minds if symptoms persisted. Self treatment followed by visits to traditional healers were the initial response to symptoms.

Similar results to the AIDSCAP study were also found among STD-patients in the Western Cape \( ^{35} \). Respondents in this study did not understand the concept of latent or asymptomatic infection and some believed that the prescribed STD medication they received prevented them from contracting HIV. Also some respondents who tested negative for a syphilis serology test misconstrued it for being also HIV-negative.

A study among STD patients in Cape Town and rural area of Mapumalanga showed that STD health-seeking behaviour was determined by beliefs about the causes of STDs, the recognition of STDs, and access to STD services \( ^{36} \). Respondents in this study believed
that ignoring sexual taboos or sorcery caused sexually transmitted diseases and they would therefore seek help from traditional healers. Some respondents believed that using contraceptives, including condoms were responsible for STDs and some men and women blamed other women for transmission of sexually transmitted diseases.

Recent statistics for the national help-line\textsuperscript{37} for HIV/AIDS in South Africa showed that of the 30,000 calls received between January and August 1998, the most common issues callers wanted to know about were condoms, transmission, symptoms, testing, treatment and care. This implies that uncertainty of specific aspects of HIV/AIDS existed.

McCoy\textsuperscript{38} and Wilkinson\textsuperscript{39} respectively found that women waited longer before seeking treatment because of the stigma associated with STDs and the negative attitudes of health workers towards female patients with a sexually transmitted disease.

A study among mineworkers\textsuperscript{40} with STDs found that despite availability of treatment facilities most preferred to consult traditional healers as the first line of treatment because of negative attitudes of healthcare providers, stigmatisation and that certain illnesses are best treated by traditional medication.

In a study in the private sector\textsuperscript{41} of South Africa concerns about confidentiality, stigma, fear about HIV-testing and subsequent loss of employment were the reasons found for low utilisation of a workplace clinic. The study showed that anonymity, confidentiality and the
quality of care among private practitioners, including traditional healers were the main reasons for higher utilisation of private services than public services.

Research in South Africa suggests that partner notification rates are low thus giving rise to higher rates of transmission of both STDs and HIV\textsuperscript{42}. Women in particular experienced fear and anxiety about discussing sexually transmitted diseases with their partners due to lack of power.

A study of partner communication\textsuperscript{43} about sexually transmitted diseases and HIV infection found that while both men and women expressed anxiety about telling their partners about their STD, men indicated that they felt embarrassed while women were more fearful.

A study of adolescent sexually and reproductive health by the Health Systems Development Unit\textsuperscript{44} found that those infected with a sexually transmitted disease failed to seek treatment because of limited or accurate knowledge and negative perceptions regarding STDs. Also problems in accessing reproductive health services contributed to them failing to seek treatment.

The low rate of condom use in South Africa also contributes to high levels of sexually transmitted diseases and HIV infection. A study in Kwazulu Natal found that regular condom use was reported by only 3% to 7% of individuals treated for a STD\textsuperscript{45}. Another study in Welkom showed that three-quarters of women commercial sex workers visiting a STD project clinic never used condoms and less than 1% reported frequent use\textsuperscript{46}. 
One important barrier to condom use is negative male attitudes towards condoms, including concerns about reduction in sexual pleasure\textsuperscript{33}. Other barriers identified by qualitative research by Harden\textsuperscript{47}, includes the desire to have children, traditional beliefs about the link between sperm and ancestors, the issue of trust, low perception of personal risk and traditional remedies protected against HIV infection.

Meyer-Weitz's\textsuperscript{36} found that people perceive condoms to be unnatural, results in a “waste of sperms”, results in death if the condom gets lost in the woman's womb, and that condom use is strongly associated with promiscuity and sexually transmitted diseases.

Evidence from research done locally suggest that condom use by adolescents and young adults, is not high\textsuperscript{48}. This study among teenagers seeking condoms at family planning services found that the reasons for adolescents not making use of condoms were problems with accessibility, negative attitudes of health workers, lack of privacy, and inadequate information of condom use. The study also found that condom use signified lack of trust in sexual partners, associated with sexually transmitted diseases, and the desire to prove fertility. One of the more recent studies in the Northern Province of South Africa found that one of the main reasons for not using condoms was the belief that it reduces sexual pleasure\textsuperscript{33}.

A study among 110 men in homesteads in a rural area of Kwazulu Natal showed that although HIV prevalence was between 5\% and 10 \%, 40\% of the sexually active men had more than one concurrent sexual partner and only 14\% had ever used a condom\textsuperscript{49}.
With regards to the female condom, Harden\textsuperscript{47}, found that both men and women had limited understanding of both its use and the female anatomy.

Most educational strategies and interventions in South Africa results in higher awareness of HIV, STDs and the protective effect of condoms, however most of these studies indicate that actual condom use is still low and the barriers to condom use remain\textsuperscript{47}.

\subsection*{2.4 The Health Belief Model}

Both HIV/AIDS and STD prevention programmes and educational interventions for specific target groups need to be integrated and should aim not only to transmit information about HIV/AIDS and STDs but to change the culture and psycho-social context in which people make behavioural sexual decisions. The most widely used and researched scheme in family medicine to provide a theoretical understanding about how people come to their choices that influence health is "the health belief model". This model state that an action a person takes for the purpose of preventing disease is largely determined by:

(a). How susceptible he/she feel to a disorder.

(b). How seriously the disorder is perceived.

(c). A weighing-up of the advantages of prevention versus the cost

\hspace{1cm} (human and financial) of the proposed change or choice.

(d). The general health motivation of the individual.

(e). The cues/trigger factors which tip the balance of the decision one-way or the other.
The barriers of behavioural change may include poverty, weakness, disability, fear, disinterest, religion, negativism, jealousy, greed and education.

Family physicians need to be aware of all these behavioural factors and barriers that influence whether an intended action is translated into actual behaviour. Thus the control of sexually transmitted diseases poses particular problems for health education. Disapproval by the culture of sexual behaviour, which leads to disease acquisition, may prove a barrier to effective disease control by stigmatising infective individuals.

2.5 **Reason for encounter**

In 1987 the Classification Committee of the World Organisation of National Colleges, Academia and Associations of General Practitioners/Family Physicians (WONCA) developed the International Classification of Primary Care (ICPC) to classify reasons why patients make contact with primary health care services. This classification encompasses three important elements of the health care encounter; reasons for encounter (RFE), diagnosis or problems, and the process of care.

The ICPC defines the reasons for encounter as an agreed statement of the reason(s) why a patient enters the health care system, representing the demand for care by that person. They may be symptoms or complaints (urethral discharge or fear of AIDS), known diseases (genital ulcer or gonorrhoea), requests for preventive or diagnostic services (contraception or blood test), a request for treatment (prescription), to get test results, or
administrative (a medical certificate). In this respect, reason for encounter is patient orientated rather than disease- or provider-orientated. These reasons are usually to one or more underlying problems which the doctor formulates at the end of the encounter as the condition that have been treated, which may or may not be the same as the reasons for the encounter.

The reason for encounter has been established to be a practical source of patient information, also useful for research and education.

In South Africa, because there is such a diversity of culture within communities, the control of sexually transmitted diseases is very much dependent on health workers developing a biopsychosocial approach to treating patients presenting with STDs.

Each episodic encounter between the healthcare provider and the person presenting with a sexually transmitted disease is influenced not only by the presenting biological disease but also by cultural, social structure and psychological factors. These factors also influence the personal reactions involving target or priority groups interacting with other persons, and between infected patients and their sexual partners.
2.6 RATIONALE, AIMS AND OBJECTIVES FOR RESEARCH

2.6.1 RATIONALE FOR RESEARCH

The control of the STD epidemic is one of the major challenges facing South Africa at the present time. Although there is widespread perception that the level of awareness of HIV/AIDS is high in South Africa, the high rate of new infections suggests that this awareness has not resulted in sexual behavioural change. To prevent HIV from spreading, people have to fundamentally change their behaviours, including their most intimate ones. A patient with an STD is a person at risk for HIV infection, and it is therefore essential to monitor this risk group. For future prevention campaigns to be more successful it would need to have sound information about knowledge, attitudes, beliefs and sexual practices to identify those at risk and their reasons for risk-taking behaviour.

It is hoped that the data and results obtained from the study would aid in the formulation of STD/AIDS prevention programmes to endeavour to reduce the rate of transmission of HIV.
2.6.2 Aims

The aim of the study was to examine the knowledge, attitudes, beliefs and practices concerning HIV infection and AIDS among the patients presenting with sexually transmitted diseases at the Chiawelo Community Health Centre in Soweto.

2.6.3 Objectives

The objectives were:

i. To define the socio-demographic profile of the patients presenting with a STD at the clinic.

ii. To determine the reason for encounter (RFE)

iii. To determine knowledge, perceptions and the most important information source regarding HIV infection and AIDS.

iv. To determine knowledge regarding condom usage.

v. To determine the extent to which those at risk of HIV infection modify their behaviour.
3 MATERIALS AND METHODS

3.1 Site of study

The study was conducted at the Chiawelo Community Health Centre, which is one of the largest of the eleven Soweto Community Health Centres run by the Gauteng Health Department. Permission to conduct the study was granted by the Director of the Soweto Community Health Centres (Appendix A).

It is estimated that the current population of Soweto is around 3.1 million and the estimated catchment area and population served by the centre is a 1.5 kilometre radius and 80 000 people respectively. The centre serves the communities of Chiawelo, Phiri, Mapetla, Protea North, Protea Glen and Protea South areas. The Chiawelo Community Health Centre provides a comprehensive health care service, including maternity and curative care. It also administers a series of vertical programmes, namely, a large family planning service, a community health education infrastructure, and community psychiatric and district nursing services.

A review of the centre’s patient registers for the period June 1995 to June 1996 indicated that over 9% of patients treated at the polyclinic complained of a sexually transmitted disease, (7714 patients out of a total of 85 395 seen over the 13-month
period). This makes sexually transmitted diseases one of the most common groups of conditions treated at the clinic.

3.2 Study design and sampling

A cross sectional descriptive study was conducted using a structured interview. The study population consisted of all patients over the age of 18 years presenting with a sexually transmitted disease at the polyclinic department.

Other health care workers of the polyclinic department referred patients directly on diagnosis of a sexually transmitted disease to the researcher. The diagnosis was confirmed and managed in accordance with the syndromic approach (see section 3.3). A systematic sample was used, whereby after a random start, every 3rd patient confirmed of having a sexually transmitted disease was selected and interviewed after obtaining informed consent. The study sample consisted of 200 patients of both men and women. This sample size was determined by a 5% margin of error with 95% confidence intervals. All patients included in the study were reassured that their referral by the health care workers was for research purposes only and not as a consequence of the nature or severity of their illness.

All the patients referred to the researcher on diagnosis of a sexually transmitted disease, including those that were not included in the study sample were treated and information pamphlets together with condoms was made available.
A pilot study was undertaken at the same community health centre. A total of 20 patients consented and were interviewed in the pilot study to check the process of patient referral to the researcher, as well as the feasibility and suitability of the questionnaire. These patients were screened by the other health care workers before referral to the researcher in the final study and were excluded from being selected. As all interviews were anonymous it was not possible to determine whether any patient in the pilot study was allowed to slip through into the final study sample on a subsequent visit.

3.3 Diagnostic criteria used for sexually transmitted disease

The Syndromic Approach\textsuperscript{54} to the management of STDs was used to determine the diagnosis of the respondents. The Department of Health in Gauteng, South Africa has adopted this approach (see appendix B), which has been recommended by the World Health Organisation (WHO). By definition the syndromic approach is the identification of the signs and symptoms of a clinical syndrome and treatment for the most likely organisms that cause the syndrome. Those respondents with ulcers suggestive of lymphogranuloma venereum (LGV) were grouped under the syndrome of genital ulcer disease.
3.4 Administration of the questionnaire

A structured interview was administered to each patient in the study sample by the researcher. An interpreter was used when language barriers were encountered.

Informed verbal consent was obtained from each of the interviewees (see appendix C). They were informed of the nature of the research being carried out, reassured that their names would not be recorded and that all information received would remain confidential. They were advised of their right to refuse to answer any question or discontinue participation at any stage of the interview, for whatever reason. They were also reassured that their confidentiality was protected, and that their future treatment at the clinic will in no ways be jeopardised if they refused to partake in the study.

The study commenced on the 14th January 1998, and all the interviews were completed by the 12th February 1998.

3.5 The questionnaire

The structured interview consisting of twenty-six questions was administered by using a standardised questionnaire (see appendix C) that was anonymous. Most of the questions were closed-ended and included socio-demographic details such as age, marital status, education and employment status. The questionnaire also included information on the
patients' place of abode, period of stay at current residence, and diagnosis of their STD syndrome.

The questionnaire also collected information relating to the following:

i. Reason For Encounter (RFE)

For the interest of this study, only the respondents' perceived reasons for encounter was recorded to gain greater insight into their presenting illnesses, that is, the sexually transmitted disease. This included recording the particular concerns and beliefs held by the patient, which precipitated the encounter with the health service. Each interviewee’s health-seeking behaviour was explored by means of a patient-centered approach. A patient-centered approach is a consultative process that has been proved to go beyond the conventional biomedical approach in providing a better understanding of disease and illness experience. It provides for better patient care and improved doctor satisfaction by integrating personal and social dimensions of illness into the consultation process. By this approach the respondents’ fears, feelings, views, expectations, and effect on functioning regarding their illness were explored. The reason for encounter was recorded by establishing what their major concerns were regarding their presenting illness.
ii. Knowledge of HIV/AIDS

This section of the questionnaire mainly tested the patients' factual information regarding the transmission, prevention, people at risk and manifestations of HIV infection and AIDS.

iii. Attitudes and Belief of HIV/AIDS

Respondents' feelings and ideas towards people living with AIDS, condom usage, their perceived risk of infection, and therapy of HIV/AIDS, was explored in this section of the questionnaire.

iv. Practices

Questions regarding the patients' sexual practices and behaviour focused on the current number of active sexual partners, their use of condoms, and previous infection with STDs or counselling with regard to HIV infection and AIDS.

3.6 Ethical Approval and Other Considerations

Both the University of Witwatersrand Postgraduate Committee (Appendix D), as well as the University's Committee for research on Human Subjects approved the study (appendix E).
The cost of the research was funded entirely by the researcher.

3.7 Analysis

The data was analysed using Epi info 6.0, a word processing, database and statistical package for public health.
4 RESULTS

4.1 Response rate

One hundred and ninety-seven of the 200 respondents that met the inclusion criteria consented to participate in the study, a response rate of 98%. The three patients that refused to take part in the study were all men. No difficulties were experienced in administration of the questionnaire. The average length of the interview was 20 minutes.

4.2 Demographic information

4.2.1 Age and gender distribution

The sample consisted of 77.2%(152) men and 22.8%(45) women respectively. Table 4.1 depicts the age and gender distribution of the respondents. The age group between 21 and 30 years consisted of the highest proportion for both genders, that is, 70.4%(107) men and 55.5%(25) women. The mean age of the men was 27.3 years, the mode 24.0 years and the median 26 years, while the mean, median and mode of the age of the women was 25.0, 24.0, and 18 years respectively.
Table 4.1 Age and gender distribution of the respondents (n = 197)

<table>
<thead>
<tr>
<th>AGE DISTRIBUTION</th>
<th>MEN FREQ.</th>
<th>%</th>
<th>WOMEN FREQ.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 – 20 years</td>
<td>8</td>
<td>5.3</td>
<td>13</td>
<td>28.9</td>
</tr>
<tr>
<td>21 – 30 years</td>
<td>107</td>
<td>70.4</td>
<td>25</td>
<td>55.5</td>
</tr>
<tr>
<td>31 – 40 years</td>
<td>27</td>
<td>17.8</td>
<td>7</td>
<td>15.6</td>
</tr>
<tr>
<td>41 + years</td>
<td>10</td>
<td>6.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>152</td>
<td>100.0</td>
<td>45</td>
<td>100.0</td>
</tr>
</tbody>
</table>

4.2.2 Place of residence

The majority of the respondents, 93.9%(185), resided in Soweto; and the mean residency period in the township was 19.0 years. The other twelve respondents were visiting the township from neighbouring areas.

4.2.3 Marital Status

The marital statuses of the respondents are shown in Table 4.2. The majority, 68.5%(135), were single.
Table 4.2 Marital status of the respondents (n = 197)

<table>
<thead>
<tr>
<th>MARITAL STATUS</th>
<th>FREQUENCY</th>
<th>PERCENTAGE</th>
<th>CUMULATIVE PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>135</td>
<td>68.5</td>
<td>68.5</td>
</tr>
<tr>
<td>Married</td>
<td>39</td>
<td>19.8</td>
<td>88.3</td>
</tr>
<tr>
<td>Living with a partner</td>
<td>20</td>
<td>10.2</td>
<td>98.5</td>
</tr>
<tr>
<td>Separated/divorced</td>
<td>3</td>
<td>1.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Widowed</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>197</strong></td>
<td><strong>100.0</strong></td>
<td></td>
</tr>
</tbody>
</table>

4.2.4 Education

Respondents were asked the type of education they had and these were categorised as shown in Table 4.3. The median grade of education was 8.

Table 4.3 Educational status of the respondents (n = 197)

<table>
<thead>
<tr>
<th>TYPE OF EDUCATION</th>
<th>FREQUENCY</th>
<th>PERCENTAGE</th>
<th>CUMULATIVE PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No formal Education</td>
<td>5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Primary Education (Grade 1 - 7)</td>
<td>78</td>
<td>25.9</td>
<td>28.4</td>
</tr>
<tr>
<td>Secondary Education (Grade 8 - 12)</td>
<td>100</td>
<td>64.5</td>
<td>92.9</td>
</tr>
<tr>
<td>Tertiary Education</td>
<td>14</td>
<td>7.1</td>
<td>100.0</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>197</strong></td>
<td><strong>100.0</strong></td>
<td></td>
</tr>
</tbody>
</table>
4.2.5 Employment Status

The employment status and not the type of occupation of the respondents were recorded. This is shown in Table 4.4. A large proportion of the respondents 43.2%(85) were unemployed at the time of the study.

Table 4.4 Employment status of the respondents (n = 197)

<table>
<thead>
<tr>
<th>EMPLOYMENT STATUS</th>
<th>MEN</th>
<th>WOMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FREQ.</td>
<td>%</td>
</tr>
<tr>
<td>Employed</td>
<td>74</td>
<td>48.7</td>
</tr>
<tr>
<td>Unemployed</td>
<td>59</td>
<td>38.9</td>
</tr>
<tr>
<td>Student</td>
<td>19</td>
<td>12.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>152</td>
<td>100.0</td>
</tr>
</tbody>
</table>

4.3 Clinical syndromes of sexually transmitted diseases.

The urethral discharge and swollen testis syndrome constituted the highest proportion of STDs diagnosed, 43.1%, followed by genital ulcer disease, vaginal discharges and lower abdominal pain with 36.0%, 7.1% and 4.1% respectively. The women accounted for 24.0%(17) of the respondents with genital ulcer disease. Table 4.5 indicates the proportions of all clinical syndromes diagnosed in the study.
Table 4.5 Clinical STD-syndromes as defined by the syndromic approach (n = 197).

<table>
<thead>
<tr>
<th>CLINICAL SYNDROME</th>
<th>FREQ.</th>
<th>%</th>
<th>CUM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Urethral discharge and swollen Testis</td>
<td>85</td>
<td>43.1</td>
<td>43.1</td>
</tr>
<tr>
<td>2. Genital ulcer disease (including LGV)</td>
<td>71</td>
<td>36.0</td>
<td>79.1</td>
</tr>
<tr>
<td>3. Vaginal discharge</td>
<td>14</td>
<td>7.1</td>
<td>86.2</td>
</tr>
<tr>
<td>4. Lower abdominal pain</td>
<td>8</td>
<td>4.1</td>
<td>90.3</td>
</tr>
<tr>
<td>5. Pubic lice</td>
<td>6</td>
<td>3.1</td>
<td>93.4</td>
</tr>
<tr>
<td>6. Genital warts</td>
<td>6</td>
<td>3.1</td>
<td>96.5</td>
</tr>
<tr>
<td>7. Herpes</td>
<td>5</td>
<td>2.5</td>
<td>99.0</td>
</tr>
<tr>
<td>8. Molluscum contagiosum</td>
<td>2</td>
<td>1.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>197</td>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

4.4 Reason for encounter

Information on the respondents actual reason for encounter, which includes their views, feelings, fears and expectations of their presenting complaints was obtained through a patient-centred approach (see section 3.5). Respondents concerns of their presenting illnesses as determined by their reasons for encounter were categorised as shown in Table 4.6 below. The respondents main concern appeared to be a concern of sexual dysfunction, sterility, and infidelity rather than a concern of contracting a life threatening
sexually transmitted disease such as HIV infection. Contraction of the AIDS-virus was a concern of only 21.0% (32) of the men and 15.6% (7) of the women respectively.

Table 4.6 Reason for encounter (n=197).

<table>
<thead>
<tr>
<th>REASON FOR ENCOUNTER</th>
<th>MEN</th>
<th>WOMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FREQ. %</td>
<td>FREQ. %</td>
</tr>
<tr>
<td>1. Fear of death*</td>
<td>5 3.3</td>
<td>2 4.5</td>
</tr>
<tr>
<td>2. Fear of HIV/AIDS*</td>
<td>32 21.0</td>
<td>7 15.6</td>
</tr>
<tr>
<td>3. Fear of STD*</td>
<td>34 22.4</td>
<td>10 22.2</td>
</tr>
<tr>
<td>4. Fear of sexual dysfunction*</td>
<td>45 29.6</td>
<td>15 33.3</td>
</tr>
<tr>
<td>5. Fear of loss of sterility/infertility*</td>
<td>33 21.7</td>
<td>8 17.8</td>
</tr>
<tr>
<td>6. Fear of cancer*</td>
<td>3 2.0</td>
<td>3 6.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>152 100.0</td>
<td>45 100.0</td>
</tr>
</tbody>
</table>

*Concern or fear of these diseases/illnesses in the respondents without the diseases/illnesses or until the diagnosis is proven.

4.5 Knowledge of HIV/AIDS

When respondents were asked if they had a good knowledge of HIV/AIDS, more than half, 53.3%, (24 females and 81 males) responded positively while 46.7%, (21 females and 71 males) thought their knowledge was inadequate.
4.5.1 Source of Information

The most effective source of information about HIV infection and AIDS proved to be the news media, especially television, followed by the health worker, friends and families. Table 4.7 represents the sources of information that the respondents believed to be the most effective.

Table 4.7 Sources of information regarding HIV infection (n=197).

<table>
<thead>
<tr>
<th>INFORMATION SOURCE</th>
<th>FREQ.</th>
<th>PERCENT</th>
<th>CUM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Television</td>
<td>55</td>
<td>27.9</td>
<td>27.9</td>
</tr>
<tr>
<td>2. Newspaper</td>
<td>35</td>
<td>17.8</td>
<td>45.7</td>
</tr>
<tr>
<td>3. Health Worker</td>
<td>29</td>
<td>14.7</td>
<td>60.4</td>
</tr>
<tr>
<td>4. Friends</td>
<td>25</td>
<td>12.7</td>
<td>73.1</td>
</tr>
<tr>
<td>5. Pamphlets/Adverts</td>
<td>20</td>
<td>10.2</td>
<td>83.3</td>
</tr>
<tr>
<td>6. Radio</td>
<td>16</td>
<td>8.1</td>
<td>91.4</td>
</tr>
<tr>
<td>7. Magazines</td>
<td>13</td>
<td>6.6</td>
<td>98.0</td>
</tr>
<tr>
<td>8. Family</td>
<td>4</td>
<td>2.0</td>
<td>100.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>197</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

4.5.2 Transmission of HIV/AIDS

Respondents were asked about ways in which the AIDS-virus can be transmitted. Their positive, negative and uncertain responses in this regard are indicated in Table 4.8. It is
important to note that 16.2%, 8.6%, 12.2%, and 28.4% of the respondents believed that a person could be infected with the AIDS-virus from toilet seats, sharing of clothing, sharing of eating utensils, and from insect bites, respectively.

Table 4.8 Transmission of HIV infection (n = 197).

<table>
<thead>
<tr>
<th>WAYS IN WHICH HIV VIRUS CAN BE TRANSMITTED</th>
<th>ANSWERED “YES”</th>
<th>ANSWERED “NO”</th>
<th>UNCERTAIN RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FREQ.</td>
<td>%</td>
<td>FREQ.</td>
</tr>
<tr>
<td>1. Water</td>
<td>5</td>
<td>2.5</td>
<td>176</td>
</tr>
<tr>
<td>2. Air</td>
<td>4</td>
<td>2.0</td>
<td>180</td>
</tr>
<tr>
<td>3. Toilet seats</td>
<td>32</td>
<td>16.2</td>
<td>146</td>
</tr>
<tr>
<td>4. Sharing of clothing</td>
<td>17</td>
<td>8.6</td>
<td>164</td>
</tr>
<tr>
<td>5. Sharing of eating utensils</td>
<td>24</td>
<td>12.2</td>
<td>157</td>
</tr>
<tr>
<td>6. Having sex with HIV-infected partner without a condom</td>
<td>189</td>
<td>95.9*</td>
<td>6</td>
</tr>
<tr>
<td>7. Having sex with a HIV-infected partner with a condom</td>
<td>12</td>
<td>6.1</td>
<td>182</td>
</tr>
<tr>
<td>8. Insect Bites</td>
<td>56</td>
<td>28.4</td>
<td>107</td>
</tr>
<tr>
<td>9. Shaking hands</td>
<td>12</td>
<td>6.1</td>
<td>175</td>
</tr>
<tr>
<td>10. Blood transfusion</td>
<td>184</td>
<td>93.4*</td>
<td>6</td>
</tr>
</tbody>
</table>

* indicates the scientifically correct response.

4.5.3 Groups at risk of HIV infection

To determine their knowledge of persons most at risk of contracting HIV infection, the respondents were asked to select from a list, groups of people that they thought were at a high-risk level. The positive responses are represented in Table 4.9.
Table 4.9 Groups at risk of HIV infection (n = 197)

<table>
<thead>
<tr>
<th>RISK GROUPS IDENTIFIED AT RISK OF HIV</th>
<th>POSITIVE RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FREQ.</td>
</tr>
<tr>
<td>1. People who do not use condoms with casual partners</td>
<td>189</td>
</tr>
<tr>
<td>2. People who have many sexual partners</td>
<td>194</td>
</tr>
<tr>
<td>3. Prostitutes</td>
<td>161</td>
</tr>
<tr>
<td>4. Heterosexuals</td>
<td>110</td>
</tr>
<tr>
<td>5. Drug addicts</td>
<td>101</td>
</tr>
<tr>
<td>6. Homosexuals</td>
<td>70</td>
</tr>
<tr>
<td>7. People who take care of patients with AIDS</td>
<td>27</td>
</tr>
<tr>
<td>8. People who use condoms with casual partners</td>
<td>6</td>
</tr>
</tbody>
</table>

4.5.4 Ability to Recognise a HIV-infected individual

The respondents were asked if they would be able to recognise a person who was infected with the AIDS-virus. Figure 4.1 illustrates their responses. Six percent claimed that they
would be able to identify a person with HIV by his/her appearance.

![Pie chart showing 14% unsure, 6% yes, and 80% no]

Figure 4.1 Ability to recognise a person with HIV infection (n=197)

4.5.5 Prevention of HIV/AIDS

Table 4.10 indicates the subjects' responses to the ways in which the AIDS-virus can be prevented from being transmitted from one person to another. Although most responses (92.9%), indicated that the use of the condom could limit the spread of the AIDS-virus, it is important to note that 8.1% and 6.6% responses indicated that the oral contraceptive pill and the intra-uterine device respectively prevented the transmission of HIV. Only 51.8% of the responses indicated that the control of STDs reduced the risk of HIV infection.
Table 4.10 Knowledge on the prevention of HIV infection (n = 107).

<table>
<thead>
<tr>
<th>PREVENTION OF HIV-INFECTION</th>
<th>POSITIVE RESPONSES</th>
<th>FREQ.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Use of condoms</td>
<td></td>
<td>183</td>
<td>92.9</td>
</tr>
<tr>
<td>2. Prevention and treatment of STDs</td>
<td></td>
<td>102</td>
<td>51.8</td>
</tr>
<tr>
<td>3. Oral contraceptive pill</td>
<td></td>
<td>16</td>
<td>8.1</td>
</tr>
<tr>
<td>4. Intrauterine device (IUD)</td>
<td></td>
<td>13</td>
<td>6.6</td>
</tr>
</tbody>
</table>

4.5.6 Knowledge about condom usage

Respondents were asked about their knowledge and feelings on the use of condoms. Table 4.11 indicates that the respondents' knowledge regarding the use of condoms were adequate, but a large proportion, 40.1%, felt that it made sex less enjoyable.

Table 4.11 Knowledge and beliefs about condom usage (n=197).

<table>
<thead>
<tr>
<th>QUESTION:</th>
<th>YES</th>
<th>NO</th>
<th>DON'T KNOW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FREQ.</td>
<td>%</td>
<td>FREQ.</td>
</tr>
<tr>
<td>Do you think condoms:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makes sex less enjoyable?</td>
<td>79</td>
<td>40.1</td>
<td>64</td>
</tr>
<tr>
<td>Help prevent pregnancy?</td>
<td>195</td>
<td>99.0</td>
<td>1</td>
</tr>
<tr>
<td>Can prevent STDs?</td>
<td>193</td>
<td>98.0</td>
<td>2</td>
</tr>
<tr>
<td>Can prevent HIV?</td>
<td>193</td>
<td>98.0</td>
<td>3</td>
</tr>
<tr>
<td>Can be used more than once?</td>
<td>1</td>
<td>0.5</td>
<td>195</td>
</tr>
<tr>
<td>Should only be used with regular partners?</td>
<td>72</td>
<td>36.5</td>
<td>124</td>
</tr>
<tr>
<td>Should only be used with casual partners?</td>
<td>194</td>
<td>98.5</td>
<td>1</td>
</tr>
<tr>
<td>Are too expensive?</td>
<td>11</td>
<td>5.6</td>
<td>172</td>
</tr>
</tbody>
</table>
4.5.7 Period taken for AIDS syndrome to manifest

The respondents were asked about the time period it would take for HIV infection to develop into AIDS. Responses to each of the time periods “immediately”, “weeks”, “months” and “years” were recorded and these are shown in Figure 4.2 below. Majority of the responses, 87.3%, indicated that it would take “years”, followed by 34% of responses for “months”.

![Figure 4.2 Period taken from HIV infection to AIDS disease (n=197)](image)

4.5.8 Female Condom

Only 11.7% of the respondents had any knowledge of the availability of the female condom. Of all of the respondents, 88.9%(40) of the women and 77.9%(134) of the men were not aware that a female condom actually existed.
4.6 **Beliefs and Attitudes about HIV-infection and AIDS**

4.6.1 **The impact of HIV/AIDS on the South African population**

One hundred and eighty-five (93.9%) of the respondents (n=197) responded positively when asked if AIDS posed a serious threat to the health of the population of South Africa.

4.6.2 **Attitudes towards people living with HIV/AIDS**

Only 34 (17.3%) of the respondents knew another person infected with the AIDS-virus.

When the respondents were asked whether people living with HIV or AIDS should be removed from society, 37.6% (74) agreed, 42.6% (84) disagreed while 19.8% (39) were uncertain.

When asked whether they would befriend a person living with HIV or AIDS, 40.6% (80) of the respondents said that they were willing; 42.6% (84) would not, while 16.8% (33) were uncertain.

One hundred and fourteen (57.9%) of the respondents said that they would inform their sexual partner/s should they contract the AIDS-virus, 19.9% (39) said that they would not inform, while 22.3% (44) were uncertain whether they would disclose their HIV-status should they become infected.
4.7 Sexual Practices

4.7.1 Number of sexual partners

Table 4.12 indicates the number of sexual partners the respondents had at the time the study was conducted. One hundred and twenty-nine (65.4%) of the respondents (n=197) had multiple sexual partners.

Table 4.12 Number of sexual partners (n=197).

<table>
<thead>
<tr>
<th>NUMBER OF SEXUAL PARTNERS</th>
<th>MEN</th>
<th>WOMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FREQ.</td>
<td>%</td>
</tr>
<tr>
<td>One partner only</td>
<td>30</td>
<td>19.7</td>
</tr>
<tr>
<td>Two partners</td>
<td>78</td>
<td>51.3</td>
</tr>
<tr>
<td>Three and more partners</td>
<td>44</td>
<td>29.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>152</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A large proportion of the men, 80.3%(122) had more than one sexual partner, which included 29.0%(44), who had three or more sexual partners. Only 19.8%(30) of the men had only one sexual partner. Majority of the women, 84.5%(38) were involved in monogamous relationships. None of the women had more than two sexual partners.
4.7.2 Frequency of condom usage with sexual partner/s

Table 4.13 indicates how often the men and women used condoms with their sexual partner/s. It is important to note that of 67.7% (103) of the men who did not use condoms at all, 75.7% (78) had two or more sexual partners. Of the men who were not consistent condom users a large proportion 87.5% (42) had two or more sexual partners. Only 1.7% (2) of the men used condoms consistently with their multiple sexual partners.

Of the 73.3% (33) women who did not use condoms at all with their sexual partners, 84.2% (28) had one sexual partner only and 15.2% (5) women had two sexual partners.

Table 4.13 Condom usage among sexual partner/s (n=197)

<table>
<thead>
<tr>
<th>CONDOM USAGE</th>
<th>NO. OF SEXUAL PARTNERS OF THE MEN</th>
<th>NO. OF SEXUAL PARTNERS OF THE WOMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 &gt;2 Total</td>
<td>1 2 &gt;2 Total</td>
</tr>
<tr>
<td></td>
<td>Freq. %</td>
<td>Freq. %</td>
</tr>
<tr>
<td>All of the time</td>
<td>1 2 0 3 2.0 3 2 0 5 11.1</td>
<td></td>
</tr>
<tr>
<td>Some of the time</td>
<td>4 22 20 46 30.3</td>
<td>7 0 0 7 15.6</td>
</tr>
<tr>
<td>Not at all</td>
<td>25 54 24 103 67.7</td>
<td>28 5 0 33 73.3</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>30 78 44 152 100</td>
<td>38 7 0 45 100</td>
</tr>
</tbody>
</table>
4.7.3 Previous STD treatment and counselling regarding HIV/AIDS

One hundred and thirteen of all respondents (n=197) indicated that they were previously treated at the clinic for a STD, and as shown in Figure 4.3, a large proportion, 66.4% (68 men and 7 women) of the respondents did however receive counselling by the healthcare providers on HIV infection, AIDS and the use of condoms at the time of their previous diagnosis.

![Bar chart showing previous STD treatment and counselling](image)

Figure 4.3 Previous STD treatment and counselling (n=113)

Fifty-two respondents, 46.1% (48 men and 4 women), of the 113 respondents previously treated for a sexually transmitted disease indicated that the main reason for them not using condoms regularly was that it made sex less enjoyable.
4.7.4 Cure for STD and HIV/AIDS

Of the 197 respondents who presented with a sexually transmitted disease 77.7% (153) believed that they could be cured; only 3.0% (6) felt there was no cure for their presenting illnesses, while 19.3% (38) were uncertain.

Most importantly, 20.8% (40) of the respondents believed that HIV or AIDS could be treated and cured; 18.8% (37) of the respondents were uncertain, while 60.4% (119) were sure that no cure existed for the AIDS-virus.

Figure 4.4 indicates the proportions of the positive responses that STDs and HIV/AIDS could be cured.

Also, of the 113 respondents that were previously treated for a STD, 74.3% (84) believed that sexually transmitted diseases were curable, while 17.6% (20) believed that HIV/AIDS could be cured.
4.7.5 Requests for HIV-testing

When the respondents were asked if they would consider taking a HIV-blood test, 37.5% (57) of the men and 40% (18) of the women responded positively. This is illustrated in Figure 4.5 below.

![Figure 4.5 Respondents willing to take an HIV-blood test (n=75).](image)

At the end of the interviews, when the respondent were asked if they required further information about AIDS and HIV infection, 98.5% (194) of the respondents (n = 197) responded positively.

4.8 Variables found to be significantly associated with perceived knowledge regarding HIV/AIDS

Just over half of all respondents (53.3%) indicated at the start of the interview that they had an adequate knowledge of HIV/AIDS. This variable correlated with the level of education, yielding a p-value of 0.00153.
The variable of having a perceived adequate knowledge was cross tabulated against various other variables assessing knowledge of transmission, prevention, groups at increased risk and other general knowledge on HIV/AIDS. Variables were considered to be significant when cross-tabulated and yielded a p-value of <0.05. These are shown in Table 4.14.

Table 4.14 Variables significantly related to having adequate knowledge of HIV/AIDS.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug addicts are at an increased risk of HIV/AIDS</td>
<td>0.000056</td>
</tr>
<tr>
<td>Heterosexuals are at an increased risk of HIV/AIDS</td>
<td>0.0033</td>
</tr>
<tr>
<td>HIV/AIDS can be transmitted by toilet seats</td>
<td>0.0046</td>
</tr>
<tr>
<td>Oral contraception limits the spread of HIV/AIDS</td>
<td>0.0059</td>
</tr>
<tr>
<td>Condom use prevent STDs and HIV infections</td>
<td>0.0063</td>
</tr>
<tr>
<td>Intrauterine devices limits the spread of HIV/AIDS</td>
<td>0.0069</td>
</tr>
<tr>
<td>Prostitutes are at an increased risk of HIV/AIDS</td>
<td>0.0089</td>
</tr>
<tr>
<td>Takes months for AIDS to manifest once infected with HIV</td>
<td>0.0091</td>
</tr>
<tr>
<td>HIV/AIDS can be transmitted by insects</td>
<td>0.0105</td>
</tr>
<tr>
<td>Takes immediately for AIDS to manifest once infected with HIV</td>
<td>0.0113</td>
</tr>
<tr>
<td>Availability of the female condom</td>
<td>0.0193</td>
</tr>
<tr>
<td>Homosexuals are at an increased risk of HIV/AIDS</td>
<td>0.0255</td>
</tr>
<tr>
<td>Takes weeks for AIDS to manifest once infected with HIV</td>
<td>0.0278</td>
</tr>
<tr>
<td>HIV/AIDS can be transmitted by air</td>
<td>0.0307</td>
</tr>
</tbody>
</table>
No correlation existed between having a perceived adequate knowledge of HIV/AIDS and the variables for, age-group, source of information, and that it takes years for AIDS to manifest once infected with HIV.

4.8.1 Variables of attitudes and beliefs that were significantly associated with having a perceived adequate knowledge of HIV/AIDS

The variables relating to attitudes and beliefs that were significantly associated with the variable of having a perceived adequate knowledge of HIV/AIDS are shown in Table 4.15. The variable that showed no correlation were the belief that both STDs and HIV can be cured.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Befriending a person with HIV/AIDS</td>
<td>0.00109</td>
</tr>
<tr>
<td>People living with AIDS should remain as part of society</td>
<td>0.00059</td>
</tr>
<tr>
<td>Belief that condoms make sex less enjoyable</td>
<td>0.0052</td>
</tr>
<tr>
<td>HIV/AIDS is a serious threat to the population of South Africa</td>
<td>0.0059</td>
</tr>
<tr>
<td>Belief that condoms are expensive</td>
<td>0.0163</td>
</tr>
<tr>
<td>Ability to inform spouse/sexual partner of ones' HIV/AIDS status</td>
<td>0.0403</td>
</tr>
</tbody>
</table>

All the variables that were related to sexual behaviour and practices showed absolutely no correlation with having an adequate knowledge of HIV/AIDS. These variables included
the frequency of condom usage, having multiple sexual partners, previous treatment for a STD, and the perceived risk of HIV infection by respondents' consideration of taking an HIV blood test.

4.9 Variables significantly related to usage of condoms to prevent HIV infection

Only two variables showed a significant difference to the use of condoms to prevent HIV infection. These were the knowledge relating to the contraction of HIV by having sex with a HIV-infected person without using a condom \((p < 0.01)\), and the belief that condoms make sex less enjoyable \((p < 0.05)\). Alarmingly no correlation existed for variables related to sexual practices and behaviour, which included the fact that condoms prevented sexually transmitted diseases, the use of condoms with multiple sex partners limits the spread of HIV/AIDS, and previous treatment of STDs, including counselling regarding HIV/AIDS and condom usage.

4.10 Variables significantly associated with low frequency of condoms usage with sexual partner/s

All variables related to knowledge, attitudes and beliefs of HIV/AIDS did not show any significant association with low frequency of condom usage with sexual partner/s. The only positive correlation existed with variables relating to sexual behaviour, and perceived risk of contracting HIV/AIDS. These are shown in Table 4.16.
Table 4.16 Variables significantly related to the low frequency of condom usage with sexual partner/s

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>( p )-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief that condoms makes sex less enjoyable</td>
<td>0.00089</td>
</tr>
<tr>
<td>The willingness to take an HIV blood test</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

4.11 Variables significantly associated with having multiple sexual partners

No association existed between having multiple sexual partners and variables relating to knowledge of HIV/AIDS. The only significant correlation existed with variables related to sexual behaviour and condom usage. These are shown in Table 4.17.

Table 4.17 Variables significantly associated with having multiple sexual partners

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>( p )-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Having had previous treatment for STD</td>
<td>0.00343</td>
</tr>
<tr>
<td>Frequency of sexual activity without condom usage</td>
<td>0.0107</td>
</tr>
<tr>
<td>Belief that STDs can be cured</td>
<td>0.0135</td>
</tr>
</tbody>
</table>
4.12 Variables significantly associated with having had previous treatment for a STD.

Table 4.18 indicates the variables that showed a significant association with the variable of having had previous treatment for a STD.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>P - VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>0.00006</td>
</tr>
<tr>
<td>Having multiple sexual partners</td>
<td>0.00034</td>
</tr>
<tr>
<td>Belief that intrauterine devices limits the spread of HIV</td>
<td>0.0050</td>
</tr>
<tr>
<td>The willingness to take an HIV blood test</td>
<td>0.0241</td>
</tr>
<tr>
<td>Age group 21 – 30 years</td>
<td>0.0359</td>
</tr>
<tr>
<td>Belief that oral contraceptives limits the spread of HIV</td>
<td>0.0374</td>
</tr>
<tr>
<td>Being unemployed</td>
<td>0.0453</td>
</tr>
</tbody>
</table>

4.13 Variables significantly associated with the willingness to take a HIV blood test

40% of the respondents were willing to take a HIV blood test (see section 4.7.5), indicating their perceived risk for HIV-infection. The willingness to take a HIV blood test was found to be significantly associated with the variables shown in Table 4.19.
Table 4.19 Variables significantly associated with the willingness to take an HIV blood test

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to inform spouse or sexual partner of HIV/AIDS status</td>
<td>0.000012</td>
</tr>
<tr>
<td>Belief that intrauterine devices limits the spread of HIV infection</td>
<td>0.000048</td>
</tr>
<tr>
<td>Drug addicts are at an increased risk of HIV infection</td>
<td>0.00021</td>
</tr>
<tr>
<td>Frequency sexual activity without of condom use</td>
<td>0.00072</td>
</tr>
<tr>
<td>Taking care of patients living with HIV/AIDS</td>
<td>0.0006</td>
</tr>
<tr>
<td>Condoms limits the spread of HIV infection</td>
<td>0.0016</td>
</tr>
<tr>
<td>Heterosexuals are at an increased risk of HIV infection</td>
<td>0.0018</td>
</tr>
<tr>
<td>Belief that HIV/AIDS can be cured</td>
<td>0.0019</td>
</tr>
<tr>
<td>Belief that oral contraceptives limits the spread of HIV infection</td>
<td>0.0034</td>
</tr>
<tr>
<td>Knowing someone living with HIV/AIDS</td>
<td>0.0062</td>
</tr>
<tr>
<td>Diagnosis of the presenting sexually transmitted disease</td>
<td>0.0105</td>
</tr>
<tr>
<td>Belief that HIV/AIDS can be transmitted by toilet seats</td>
<td>0.0145</td>
</tr>
<tr>
<td>Ability to recognise a person infected with HIV</td>
<td>0.0160</td>
</tr>
<tr>
<td>Previous treatment for a STD</td>
<td>0.0241</td>
</tr>
<tr>
<td>Education status</td>
<td>0.0281</td>
</tr>
<tr>
<td>Knowledge that HIV/AIDS poses a serious threat to the population of South Africa</td>
<td>0.0498</td>
</tr>
</tbody>
</table>
4.14 Variables significantly associated with the education level of the respondents

All variables were cross-tabulated with the level of education and those with significant differences are shown in the table below.

<table>
<thead>
<tr>
<th>EDUCATION</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived knowledge of HIV/AIDS</td>
<td>0.0015</td>
</tr>
<tr>
<td>Ability to Inform spouse/sexual partner of ones’ HIV/AIDS status</td>
<td>0.0165</td>
</tr>
<tr>
<td>Ability to recognise someone infected with HIV</td>
<td>0.0235</td>
</tr>
<tr>
<td>Belief that intrauterine devices limits the spread of HIV/AIDS</td>
<td>0.0251</td>
</tr>
<tr>
<td>Willingness to take a HIV-blood test</td>
<td>0.0281</td>
</tr>
</tbody>
</table>

4.15 Age-related differences

All age groups were cross-tabulated against all other variables. No significant differences between the different age groups were found except that age-group 21 – 30 years were found closely associated with a previous treatment for sexually transmitted diseases (see section 4.12).
4.16 Gender-related differences

Both male and females were cross-tabulated against all other variables. No significant differences existed between the genders for variables related to knowledge regarding transmission, prevention and groups at risk of HIV infection.

The female gender showed significant differences to variables relating to attitudes of HIV/AIDS. The females believed more strongly than the males that people living with HIV should remain as part of society (p< 0.05), and were more likely to befriend a person infected with HIV or had AIDS (p< 0.05).

Interestingly, the females used condoms less frequently (p< 0.01), than their male counterparts. This observation, should be read with caution as 84.4%(38) of the females were involved in monogamous relationships of which 73.7%(28) did not use condoms at all (see section 4.7.2) and also from cultural point of view the females may have less power in the decision of using condoms during sexual intercourse.

A significant difference among the males was that they were more likely to have had previous treatment for a sexually transmitted disease (p<0.01), had multiple sexual partners (p<0.01) and received counselling regarding HIV/AIDS and condom usage (p< 0.05).
5 DISCUSSION

5.1 Introduction

The accurate assessment of knowledge, beliefs, attitudes and sexual practices regarding HIV infection and AIDS by way of an interview is fraught with difficulties. The use of an interpreter, a random sampling technique, a target specific pre-tested structured questionnaire, and together with an uncoerced confidential approach and high response rate contributed to the validity of the data and makes for a useful study. This chapter draws conclusions in line with the study’s aims and objections and make comparisons between this study’s findings and that of both local and international literature. Some of the findings are discussed with reference to the health belief model.

5.2 Profile of the respondents

The young age of the sample, which consisted mainly of the age group between 21 and 30 years, is consistent with other studies. The high rates of unemployment (43.2%), single marital status (68.5%), together with a predominance of the male gender (77.2%) and low to medium educational level is typical of a region of social instability in which there is high prevalence and spread of STDs, including HIV.
5.3 **STD profile**

Urethral discharge (43.1%) followed by genital ulcer disease (36.0%) was the most frequently diagnosed STDs of the respondents. These results are consistent with an STD surveillance study\(^5\) that was carried out for other regions of the Gauteng province which showed that urethral discharged (24.2%) was the most prevalent STD syndrome followed by genital ulcer disease (10.3%).

5.4 **Reason for encounter**

It is interesting to note that only 21.0%(32) of the male respondents' and 15.6%(7) of the female respondents' major concern regarding their presenting problems of sexually transmitted diseases were that of contracting the HIV infection. Respondents were mainly concerned about sexual dysfunction, guilt of infidelity and sterility as the result of the STD. It is therefore important when treating patients with sexually transmitted diseases, to explore patients' fears, feelings, ideas and expectations of the presenting illness; as people bring with them, not just a set of STD symptom\(^\text{\textsuperscript{-s}}\), but also strongly internalised perceptions of what the disease mean to them, that may pose a threat to their relationships. Family physicians and other health care workers are in an ideal working environment to assess these behaviours and to report on them. There are therefore challenges and opportunities involved in providing STD-care that go far beyond diagnosing and dispensing medicines. Reason for encounter can thus contribute
significantly when formulating prevention programmes to prevent the spread of HIV/AIDS.

5.5 Source of information

The respondents considered the mass media such as television (27.9%), radio (8.1%) and newspaper (17.8%) as their most important source of information regarding HIV/AIDS. Unlike many other countries these media are under-utilised in South Africa in educating communities about AIDS. Consistent with a study carried out on STD-patients in Johannesburg, is the low ranking of the health care provider (14.7%) in providing information about HIV/AIDS. In this study by Sekerto et al in 1993 only 31% of the respondents indicated that they received their information about HIV/AIDS from the health care provider.

A great concern is that those previously treated at the clinic for a STD, a large proportion (33.6%) did not receive any counselling regarding HIV/AIDS or condom usage. Furthermore, a 98.5% of the respondents requested further information about AIDS and HIV infection after the interview. These results suggest that there is scope for further reduction in STD incidence through counselling of patients presenting with a sexually transmitted disease at this community health centre.
5.6 Knowledge of HIV/AIDS

A significant majority of the respondents, 53.3%, volunteered that their knowledge regarding HIV infection and AIDS was adequate. Similar results were also found with other studies done in South Africa among black gold miners, STD-clinic attenders, and urban black mothers. Education correlated with the respondents perceived knowledge of HIV/AIDS ($p<0.01$), which is also consistent with studies done in this country among black gold miners, STD-patients, and family planning clinic attenders.

Although most respondents felt their knowledge regarding HIV/AIDS was adequate a few important misconceptions relating to the transmission of the AIDS-virus existed. These included transmission of the virus via insects ($p<0.05$), toilet seats ($p<0.01$) and air ($p<0.05$). Also a high proportion of responses indicated that the sharing of eating utensils could transmit the virus.

Groups of people at high risk of contracting HIV were readily identified, except for 13.7% of respondents who also believed that people caring for HIV/AIDS patients were at risk.

The concept of latency, an important part of understanding HIV infection and AIDS disease was not understood by a large proportion (20%) of the respondents (see Figure 4.1). This finding has also been described in other studies. Most respondents also believed that after contracting the AIDS-virus the infected person
converted to the AIDS disease either immediately (5.6%), within weeks (11.2%) or months (34%).

A majority of the respondents had adequate knowledge that condoms prevented HIV infection, yet some important false beliefs prevailed. The use of the intrauterine device (p<0.01) and oral contraception (p<0.01) were believed to prevent the spread of the AIDS virus. At the time this study was carried out the Department of Health were distributing the female condom at selected public health centres, yet neither the male (88.9%) nor the female (77.9%) respondents had any knowledge of its availability. Although the female condom has the potential to empower women to protect themselves simultaneously against both STDs and HIV infection little data has been found in the literature concerning awareness and use of this device among high-risk populations. More proactive advocacy among health care providers and public programs need to analogue those efforts that promoted the male condoms in the 1980s.

Over half of the total respondents (51.8%) knew that the prevention of STDs limited the spread of HIV, but an alarmingly high proportion, 20.8%, believed that AIDS could be cured while another 18.8% were unsure whether a cure existed. A recent study among STD clinic attendees in the Cape Peninsula also found that up to 41% of the respondents believed that HIV/AIDS is curable. As long as people believe that AIDS can be successfully treated, they will not change their sexual behaviour. Therefore information alone is not sufficient to promote meaningful behavioural change.
5.7 Beliefs and Attitudes of HIV/AIDS

In terms of the health belief model, majority of the respondents (93.9%) considered AIDS to pose a serious threat to the health of the population (perceived severity) and some of the most important benefits of condom usage were identified (see Table 4.11). However, some of the barriers to condom use were also identified. The most significant of these barriers was that respondents believed condoms interfered with sexual pleasure. This was the belief of 40.1% (79) of the respondents. Another barrier identified was that although condoms were freely available at the health centre 5.6% of the respondents felt that it was too expensive to obtain. Similar reasons for not using condoms were found among clients attending public inner city STD-clinics in Maryland USA. The main reasons included lack in partner trust, sex was less enjoyable and the lack of availability of condoms.

The respondents identified the benefits of condom use as depicted in Table 4.11, however in prospective studies, these same beliefs were not related to future condom use. Although the respondents' belief favoured condom use, other factors in addition to both belief and knowledge also influenced behaviour. The health-belief model was developed to explain why some people accepted recommended health behaviour and the others not. The model predicts that respondents who believe that they were susceptible to infections, that sexually transmitted diseases were serious, and that condoms could prevent disease transmission were more likely to use condoms.

Only 17.3% of the respondent knew another person with HIV/AIDS and the respondents' attitudes to people living with HIV/AIDS were not encouraging. A large proportion of the
respondents would not befriend a HIV/AIDS-infected person, nor accept them as part of their society within the community. Also 6.1% (12) of the respondents believed that shaking hands could transmit the AIDS-virus. These negative attitudes towards HIV/AIDS patients could have serious repercussions for future AIDS sufferers in the community. The ability to disclose a HIV-status to a spouse or sexual partner by 57.9% (114) respondents should they become infected was however promising.

Taking care of AIDS patients (p<0.01) and knowing someone with HIV/AIDS (p<0.01) correlated with the willingness to take an HIV-blood test. These are important concerns especially as communities need to equip themselves for the care of the expected high number of AIDS-related illnesses.

5.8 Sexual Practices and perceived risk of HIV-infection

While perceived knowledge was good and tested knowledge and attitudes of HIV/AIDS was fairly good, which is an important finding, the respondents' sexual practices was of a high risk. This discrepancy between knowledge and sexual behaviour were confirmed in many studies, conducted both locally and internationally. Behavioural factors therefore are integral to the dynamics of both STDs and HIV infection. The risk of becoming infected can be reduced by decreasing the number of sex partners and by using condoms consistently.

Although 92.9% of respondents knew that the use of condoms would effectively curb the spread of HIV infection, only a few (4.1%) used condoms at all times. Fifty-three
(26.9%) used condoms only occasionally, while 136 (69.0%) did not use condoms at all. The most common reason cited for inconsistent condom use was the inability to experience sexual pleasure. This finding of the reduction of sexual pleasure with the use of the condom is consistent with other studies done in South Africa among inner-city high school students, township school students, and STD-patients, and indicates the need to increase positive attitudes towards condom usage. Learning to “eroticise” condom use increases positive attitudes towards condoms because it is suggested that perceived enjoyment of various sexual behaviours depends on the extent to which they are performed.

Even though 193 (98%) of the respondents indicated that they believed that a reduction in multiple partners would decrease the risk of contracting the HIV infection, one hundred and twenty-nine (65.5%) of the respondents (n=197) had multiple sexual partners at the time the study took place. Eighty-five and 44 respondents had two and three or more sexual partners respectively. However, the high proportion (66.4%) of respondents previously treated for STDs, who received counselling from health workers at this healthcare centre was encouraging.

The men in this study, consistent with another local study, were at an increased risk of HIV infection as a significant number, 80.3% (122), of the male respondents had multiple sexual partners, and only 1.7% (2) of them used condoms consistently. Furthermore 91.2% (103) of the respondents (n=113) that had previous treatment for STDs were men.
This is consistent with recent research done on men in other parts of the country of South Africa\textsuperscript{68,69}.

The female respondents were predominately involved in monogamous relationships (84.5\%) and only 11.2\%(5) used condoms consistently, yet they presented with sexually transmitted diseases, including 15.6\%(7) who had previous episodes of STDs. This implies that they were at an even higher risk of HIV infection than their male counterparts. Moreover only 15.6\%(7) of the women had multiple sexual partners, and of these 71.5\%(5) did not use condoms at all during sexual intercourse. These findings are consistent with those of Karim\textsuperscript{48} and Montgomery\textsuperscript{70}, which concluded that that women lack the power to initiate safer sex behaviour.

Only a few men and women perceived themselves at risk of HIV infection and were willing to take a HIV-blood test. This lack of perception of personal risk is also a common finding to other studies\textsuperscript{14,17}. The most significant reasons for the willingness to take a HIV-blood test are shown in Table 4.19. These reasons related mainly to the transmission and prevention of HIV infection, and condom usage.

It is important to note from Table 4.18 that being an unemployed male between the age of 21 and 30 years, having multiple sexual partners, believing that intrauterine devices and oral contraception prevented HIV infection and perceived themselves at risk by willing to take a HIV-blood test correlated well with a previous treatment for a STD. These are suggestive of an increased risk of contraction of the AIDS-virus.
Determining the occurrence of a prior STD had two purposes. Firstly it verified a risk behaviour that permitted prior exposure and infection by a sexually transmitted disease and, secondly STDs are implicated as a cofactor for HIV infection\textsuperscript{71}. Therefore a previous history of a sexually transmitted disease among the respondents attending this community health centre is an indication of vulnerability to HIV/AIDS. These findings indicate an urgent need for intervention programmes to decrease the risk of HIV infection. The STD and HIV epidemics are interdependent. Similar behaviours, such as frequent unprotected intercourse with different partners, place the individual at high risk of both infections. Therefore the development of effective programmes for the control of STDs is a potential strategy for HIV control.

5.9 Limitations of the study

No difficulties in the use of the English language in the administration of the questionnaire were experienced, and the use of the interpreter was minimal. It would however been preferred to have administered the interview in the respondents' own language.

With regards to the syndromic management of STDs, the syndromes of vaginal discharge and lower abdominal pain which pertains only to women, has the limitation in that it may include infections such as candidiasis and trichomoniasis, which are not conventionally classified as "true" sexually transmitted diseases.
Shortcomings of the questionnaire was that it excluded some important issues relating to condom use, such as its association with illicit sex, lack of trust and intimacy. These factors were shown to influence condom usage among STD-patients.

Condom use has been shown to vary according to the sexual activity performed; rates of use vary with for anal, oral and vaginal sex. A limitation of this study is that type of sexual activity was not reported or requested. The questions regarding sexual practices in the questionnaire assumed heterosexual sexual activity of the vaginal type.

A further limitation is that sexual practices including condom use were self-reported. Respondents may incorrectly give socially desirable responses rather than accurately characterising their sexual behaviour.
Patients attending the Chiawelo Community Health Centre for sexually transmitted diseases felt that they had a good perceived knowledge of HIV/AIDS, yet their tested knowledge showed important misconceptions regarding HIV transmission and prevention. Only a small proportion of the respondents' main concern of their presenting STD symptoms was that of contracting the AIDS virus. The male respondents were at an obvious increased risk of HIV infection because of high risk-taking sexual behaviour, which included having multiple sexual partners and low frequency of condom usage. The study showed more importantly, that although the women respondents had a lower level of risk-taking sexual behaviour they were still presenting with sexually transmitted diseases and were at risk of HIV infection. Both the men and women perceived level of risk of HIV infection were low. The health-service at the community health centre regarding the prevention of HIV/AIDS was not optimal as a large proportion of respondents previously treated for STDs were not counselled regarding HIV/AIDS and condom usage. Furthermore, a large proportion of the respondents requested further information regarding HIV/AIDS after the interview, which indicated a lack of preventative education at the centre. As shown in this study there is also an urgent need for these preventative programmes to promote positive attitudes towards people living with HIV/AIDS. Although the respondents' knowledge of HIV/AIDS was fairly adequate they do not perceive themselves at risk of infection and therefore did not feel the need to change their behaviour. These findings are consistent with a substantial amount of research
in the social-science literature that suggests that changing peoples' knowledge and attitudes is not enough to change their behaviour.
7 RECOMMENDATIONS

The finding of important misconceptions about HIV/AIDS transmission despite perceived good knowledge by respondents highlights an important recommendation to the Department of Health to review its messages about HIV/AIDS, as it seems that there is still poor knowledge in the greater community about HIV/AIDS. Prevention programmes that are required at this community health centre should form an important component of public health efforts to contain the current epidemic of HIV infection and other sexually transmitted diseases. As a group, these men and women who seek treatment for STDs are at a higher risk than the general population and less likely to be consistent condom users. However, among these STD clinic attendees, there is substantial diversity. There were significant differences in sex practices and condom use, as well as in gender related knowledge and attitudes. To be most effective, educational intervention must also address this diversity to meet specific needs of this community.

The results of this study suggest that knowledge and concerns do not appear to be sufficient for preventing risky behaviour and presents a need to reconsider some of our HIV/AIDS education and prevention efforts at the health centre. Thus far, no scientific attempted intervention has significantly altered the course of the epidemic. Education programmes may succeed in disseminating information, but are far less successful in bringing about behavioural change. The “knowledge-attitudes-practices (KAP),” framework that views knowledge and attitudes as primary determinants of behaviour is limited. As researchers we need to develop HIV/AIDS prevention programmes, which
conceptualises sexual behavioural practices more broadly than the KAP model. The use of
the patients' reason for encounter\textsuperscript{2} and the health belief model\textsuperscript{1} in future preventative
programmes may prove useful. Furthermore, political, social and economic factors often
create conditions, which make it extremely difficult for people to change their sexual
lifestyles\textsuperscript{14}.

Researchers need to develop and evaluate an innovative educational programme that not
only transmit information about health risks but also changes the culture and context, in
which people make decisions about sexual behaviour. These interventions should not only
include perceptions of health but also be based on the psychosocial context of that
particular group needing the intervention. These programmes should also remove the
stigmatisation attached to the disease so that communities and families would be able to
take care for the victims of the disease without any form of discrimination. If such
programmes are to succeed, the primary healthcare organisations with family physicians
are likely to be the most successful, instead of specialised vertical services.

Health workers should take more opportunities in providing information about HIV/AIDS
when managing people with sexually transmitted diseases. The use of the news media in
future prevention programmes at the clinic may prove useful in preventative education and
promoting condom usage, as it accounted for the most important source of information
regarding HIV/AIDS. The health service at this clinic should be commended for the large
proportion (66.4\%) of respondents previously treated for STDs, who received counselling
from health workers. They should also be encouraged to improve this rate.
APPENDICES

APPENDIX A

APPROVAL FOR THE STUDY TO BE CONDUCTED
AT THE CHIAWELO COMMUNITY HEALTH CENTRE
TO WHOM IT MAY CONCERN

Regarding research at Chiawelo Community Health Centre by Dr Pillay –
Family Medicine Department – Wits University.

Respected Doctor

We Soweto CHC Management are pleased to grant you the permission to conduct your
proposed research at Chiawelo CHC.

Wish you well.

DR S NATHA
DIRECTOR
APPENDIX B

PROTOCOLS

FOR THE

SYNDROMIC CASE MANAGEMENT

OF

SEXUALLY TRANSMITTED DISEASES

DIRECTORATE: HIV/AIDS and STDs
DEPARTMENT OF HEALTH
PRETORIA
SOUTH AFRICA

70
PROTOCOL 1

Urethral discharge and swollen testis

- Confirm discharge by examination. Look for other STD syndromes.
- Confirm painful and swollen testis.
- Rule immediately if torsion.
- No discharge or history of discharge:
  - <18 yrs old or not sexually active
  - History of trauma

- Ciprofloxacin 500 mg p.o. stat
- Doxycycline 100 mg p.o. BD for 7 days

- Manage partner for cervical infection as in protocol 3.
- Consider treating a person with burning on micturition, in the absence of a discharge, if there is a significant risk of the person having acquired an STD.
- Some provinces have chosen to use a 250 mg dose of Ciprofloxacin.
Genital ulcers

☐ Confirm presence of ulcer(s) by examination.
   Look for other STD syndromes.

☐ Benzathine Penicillin 2.4 MU IMI stat
   plus
☐ Erythromycin 500 mg p.o. TDS for 5 days
☐ Aspirate any fluctuant glands

Complete treatment
Counsel on safer sex and HIV risk
Condom promotion
Contact management

☐ If allergic to penicillin, give Erythromycin 500 mg QID for 14 days.

☐ If on return, lesion(s) healing but not cured: ie. decrease in size or decrease in number, continue with another course of Erythromycin. If lesions are worse, refer.
PROTOCOL 3.

Vaginal discharge

☑ Confirm abnormal discharge by examination.
☑ Do digital examination
☑ Do speculum examination wherever possible:
  • look for other STDs within the vagina
  • feel and view the cervix and if abnormality suspected, refer

☐ For young sexually active, non-pregnant women treat for cervical infection
  □ Ciprofloxacin 500 mg p.o. stat
  plus
  □ Doxycycline 100 mg BD p.o. for 7 days
  plus
  □ Metronidazole 2 G p.o. stat

☐ For pregnant women and peri/post menopausal women
  □ Metronidazole 2 G p.o. stat
  (not in first trimester of pregnancy)
  ☑ Ask to return *

☐ IF candidiasis detected – itchy, 'cottage cheese' discharge
  ADD – Clotrimazole 500 mg pessary insert stat

Complete treatment • Counsel on safer sex and HIV risk
  • Condom promotion • Contact management

☐ If woman treated for cervical infection manage partner as in protocol 1.
☐ * If on return, discharge not improved, treat for cervical infection – if pregnant give Spectinomycin 2 G IMI stat plus Erythromycin 500 mg QID for 7 days or refer.

☐ Ceftriaxone 125 mg IMI stat may be used instead of Spectinomycin.
☐ Some provinces have chosen to use a 250 mg dose of Ciprofloxacin.
Lower abdominal pain

- Confirm lower abdominal pain and cervical motion and adnexal tenderness.
- Counsel on safer sex and HIV risk.
- Condom promotion.
- Contact management.

Refer to hospital if:
- Patient very ill, cannot walk upright, temp >38.5°C.
- Severe abdominal tenderness or pelvic mass.
- Pregnancy or recent delivery/abortion.
- Abnormal vaginal bleeding.
- Missed or overdue period.

- Ciprofloxacin 500 mg p.o. stat.
- Doxycycline 100 mg p.o. BD for 7 days.
- Metronidazole 400 mg p.o. BD for 7 days.

Complete treatment.
- Some provinces have chosen to use a 250 mg dose of Ciprofloxacin.

Manage partner as in protocol 1.
**Neonatal Conjunctivitis**

- Confirm purulent discharging eye(s) by examination

- Treat baby, mother and partner(s)

### Baby
- Irrigate eyes
- Spectinomycin 25 mg/kg/IMI stat maximum dose 75 mg *plus*
- Erythromycin 62.5 mg QID p.o. for 7 days

### Contacts

#### Mother
- Spectinomycin 2 G IMI stat *plus*
- Erythromycin 500 mg p.o. QID for 7 days

#### Father / partner(s)
- Treat as in protocol 1

**Complete treatment**
- Counsel on safer sex / HIV risk
- Condom promotion
- Contact management

- Ceftriaxone 25-50 mg IMI stat may be used in the neonate and 125 mg IMI stat in the mother instead of Spectinomycin.

- In some provinces babies with conjunctivitis are referred and Ciprofloxacin is given to breast feeding mothers as Spectinomycin is not available at the primary care level.

---

*Department of Health*
PROTOCOL 6

Neonates with or at risk of congenital syphilis

- Find syphilis serology result in mother, and examine baby

- **Mother positive**
  - Mother treated at least one month before delivery
  - Asymptomatic well baby

- **Mother positive or result unknown**
  - Mother not treated
  - Asymptomatic well baby

- **Symptomatic baby**
  - Signs and symptoms:
    - characteristic rash
    - purpura
    - pallor
    - jaundice
    - hepatosplenomegaly
    - low birth weight
    - respiratory distress
    - large pale placenta

- No treatment
- Benzathine Penicillin 50,000 units/kg IM I stat in anterolateral aspect of thigh
- Notify
  - Procaine Penicillin 50,000 units/kg IMI for 10-14 days or Penicillin G 150,000 units/kg IVI 12-hourly for 10-14 days.

Complete treatment • Counsel on safer sex and HIV risk • Condom promotion • Contact management

- If testing available on site – test and treat mother and baby accordingly. Every effort should be made to keep mother and baby together during treatment.

- Remember to treat mother and father/partner(s) if baby is treated or referred.
**OTHER CONDITIONS**

**Herpes/Blisters**
- Confirm vesicles or blisters.
- Treat with acyclovir, famciclovir or valaciclovir if available.
- Counsel on the nature of the disease and provide for pain relief.

**Lymphogranuloma venereum (LGV)**
- Confirm inguinal swelling/bubo in the absence of an ulcer.
- If ulcer present use ulcer protocol.
- Provide Doxycycline 100 mg BD for 14 days. Aspirate fluctuant glands.
- Provide Erythromycin 500 mg QID for 14 days if pregnant.

**Warts**
- Confirm wart(s). If less than 10 mm apply podophyllin weekly. If more than 10 mm, or within the vagina or in pregnant women, refer.

**Pubic lice**
- Confirm. Apply benzyl benzoate (25%) for 2 weeks.

**Molluscum contagiosum**
- Confirm. Apply tincture of iodine.

**Latent syphilis**
- Take blood for RPR/VDRL if results are acted upon.
- If RPR positive, treat with Benzathine penicillin LA 2.4 MU IM stat weekly for 3 weeks. If treated in past year treat with one dose.
- If allergic to penicillin give Erythromycin 500 mg QID for 14 days.
- If allergic to penicillin and pregnant refer for desensitisation.
APPENDIX C

QUESTIONNAIRE:

Knowledge, Attitudes, Beliefs and Practices concerning HIV-infection and AIDS among patients presenting with sexually transmitted diseases at a Soweto Community Health Centre.

Date of interview: -----------------------------

Clinical syndrome: -----------------------------

Sex:

Male | Female

I am a 1st. year post-graduate student of the Family Medicine Department of the University of the Witwatersrand carrying out a study on AIDS.

I wish to assess the knowledge, attitudes, beliefs and practices concerning HIV-infection and AIDS, of patients attending this clinic.

A request is therefore being made to you to participate in this study. Should you agree to do so, I will be asking you some questions. Any question you do not wish to answer, you need not do so, and you may withdraw from the interview at any stage.

I do not need your name, so your answers are truly anonymous.

Pamphlets on AIDS, and information on counselling will be provided after the interview if necessary or needed.

If you do not wish to be interviewed, the treatment given to you here WILL IN NO WAY CHANGE OR BE JEOPARDISED.
Do you wish to participate in this study?

<table>
<thead>
<tr>
<th>Yes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
A. **REASON FOR ENCOUNTER:**

Q.1. What is your reason for coming today?

B. **DEMOGRAPHICS AND SOCIO-ECONOMIC CHARACTERISTICS:**

Q.2. How old are you?

Q.3. Where do you live?

Q.4. How long have you lived there?

<table>
<thead>
<tr>
<th>Q.5: Are you presently:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Single</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Married</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Divorced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Widowed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Separated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Living with someone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q.6. How many years of schooling have you completed?

| a. No schooling |   |
| b. Standard passed |   |
| c. Tertiary education |   |

Q.7. What type of work do you do presently?

C. KNOWLEDGE:

Q.8. Do you think you have a good knowledge of AIDS?

| a. Yes |   |
| b. No  |   |

Q.9. Which of the sources below do you think has been most effective in conveying information about AIDS to you?

| a. Radio |   |
| b. Television |   |
| c. Newspaper |   |
| d. Magazines |   |
| e. Pamphlets/Advertisements |   |
| f. Family |   |
| g. Friends |   |
| h. Health Worker |   |
Q. 10. How do you think that a person can be infected with the HIV-virus.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Toilet seats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Sharing clothing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Sharing eating utensils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. <strong>Having sexual intercourse with a HIV-infected partner without using a condom</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. <strong>Having sexual intercourse with a HIV-infected partner with a condom</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. insect bites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Shaking hands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. Blood transfusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q. 11. Which group of people do you think are most likely to get AIDS?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Homosexuals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Prostitutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Drug addicts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Heterosexuals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. People with many sexual partners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. People who use condoms with casual partners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. People who do not use condoms with casual partners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. People caring for people with AIDS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q. 12. Which of the following will be effective to prevent the spread of HIV?

<table>
<thead>
<tr>
<th>Option</th>
<th>Yes</th>
<th>No</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. The contraceptive Pill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Use of Condoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Intrauterine Device (IUD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Prevention and treatment of STDs.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q. 13. If a person is infected with the HIV-virus, how long will it take for AIDS to manifest?

<table>
<thead>
<tr>
<th>Option</th>
<th>Yes</th>
<th>No</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Immediately</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Years</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q. 14. Will you be able to recognise a person who has HIV by the way he/she looks?

<table>
<thead>
<tr>
<th>Option</th>
<th>Yes</th>
<th>No</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Don't know</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q. 15. Do you have any knowledge of the new female condom presently available?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Yes</td>
</tr>
<tr>
<td>b.</td>
<td>No</td>
</tr>
</tbody>
</table>

D. ATTITUDES AND BELIEFS:

Q. 16. Do you believe that AIDS poses a serious threat to the health of the population of South Africa?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Yes</td>
</tr>
<tr>
<td>b.</td>
<td>No</td>
</tr>
</tbody>
</table>

Q. 17. Do you know anyone who has HIV/AIDS?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Yes</td>
</tr>
<tr>
<td>b.</td>
<td>No</td>
</tr>
</tbody>
</table>

Q. 18. Do you believe that if a person has HIV/AIDS, their spouse or sexual partner should be informed?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Yes</td>
</tr>
<tr>
<td>b.</td>
<td>No</td>
</tr>
<tr>
<td>c.</td>
<td>Don't know</td>
</tr>
</tbody>
</table>
**Q. 19. Should people who have the HIV-virus be removed from society?**

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Don't know</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Q. 20. Would you be friends with a person who has HIV?**

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Don't know</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Q. 21. Do you think that condoms:**

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Make sex less enjoyable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Help prevent pregnancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Can prevent STDs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Can prevent HIV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Can be used more than once</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Should only be used with regular partners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Should only be used with casual partners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Are too expensive</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q. 22. Do you think that sexually transmitted diseases can be cured?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Yes</td>
</tr>
<tr>
<td>b.</td>
<td>No</td>
</tr>
<tr>
<td>c.</td>
<td>Don't know</td>
</tr>
</tbody>
</table>

Q. 23. Do you think that a person who has HIV can be cured?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Yes</td>
</tr>
<tr>
<td>b.</td>
<td>No</td>
</tr>
<tr>
<td>c.</td>
<td>Don't know</td>
</tr>
</tbody>
</table>

E. PRACTICES:

Q. 24. How many sexual partners do you have presently?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>One only</td>
</tr>
<tr>
<td>b.</td>
<td>Two</td>
</tr>
<tr>
<td>c.</td>
<td>Three or more</td>
</tr>
</tbody>
</table>
Q. 25. Do you or partner's use condoms?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. All of the time</td>
<td></td>
</tr>
<tr>
<td>b. Some of the time</td>
<td></td>
</tr>
<tr>
<td>c. Not at all</td>
<td></td>
</tr>
</tbody>
</table>

Q. 26. Have you ever been previously treated for a sexually transmitted disease?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Yes</td>
<td></td>
</tr>
<tr>
<td>b. No</td>
<td></td>
</tr>
</tbody>
</table>

Q. 27. If 'yes' to Q.23, have you been counselled re: AIDS/HIV, and the use of condoms?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Yes</td>
<td></td>
</tr>
<tr>
<td>b. No</td>
<td></td>
</tr>
</tbody>
</table>

Q. 28. Would you consider having an AIDS/HIV test?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Yes</td>
<td></td>
</tr>
<tr>
<td>b. No</td>
<td></td>
</tr>
<tr>
<td>c. Don't know</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D

PROTOCOL APPROVAL
27 November 1995

Dr A Pillay  
P.O. Box 10209  
LENASIA  
1820

Dear Dr Pillay,

APPROVAL OF PROTOCOL ENTITLED "KNOWLEDGE, ATTITUDES, BELIEFS AND PRACTICES CONCERNING HIV INFECTION AND AIDS AMONG PATIENTS PRESENTING WITH SEXUALLY TRANSMITTED DISEASES AT A SOWETO COMMUNITY HEALTH CENTRE"

I should like to advise you that the protocol that you have submitted for the degree of MFamMed has been approved by the Postgraduate Committee at its recent meeting, for continuation of candidature, (subject to ethics approval being obtained).

Professor B Sparks of the Department of Family Medicine has been appointed as your supervisor. You are asked to maintain regular contact with your supervisor who must be kept advised of your progress.

Please note that all candidates for higher degrees must make reference in their research reports to the clearance number of the relevant ethics committee. The final title should comply with the above approved title, and a signed declaration, noting that the work has been your own and not submitted to any other University, must also be included.

Yours sincerely,

MRS G GABRIEL  
FACULTY OFFICER (POSTGRADUATE)  
FACULTY OF HEALTH SCIENCES
APPENDIX E

APPROVAL OF STUDY

BY THE

COMMITTEE FOR RESEARCH ON HUMAN SUBJECTS
Division of the Deputy Registrar (Research)

COMMITTEE FOR RESEARCH ON HUMAN SUBJECTS (MEDICAL)
Ref: R14/49 Pillay

CLEARANCE CERTIFICATE

PROJECT
Knowledge, attitudes, beliefs & practice concerning HIV infection and aids among patients presenting with sexually transmitted diseases at a Soweto Community Health Centre

INVESTIGATORS
Dr A Pillay

DEPARTMENT
Family Medicine, Soweto Com Health Centr

DATE CONSIDERED
951027

DECISION OF THE COMMITTEE *

Approved unconditionally

DATE
951113

CHAIRMAN...........
Professor P E Cleaton-Jones

* Guidelines for written "informed consent" attached when applicable.

Cc Supervisor: Professor B L V Sparks
Dept of Family Medicine, Medical School

DECLARATION OF INVESTIGATOR(S)

To be completed in duplicate and ONE COPY returned to the Secretary at Room 10001, 10th Floor, Senate House, University.

I/we fully understand the conditions under which I am/we a authorized to carry out the abovementioned research and I/ guarantee to ensure compliance with these conditions. Should a departure to be contemplated from the research procedure approved I/we undertake to resubmit the protocol to the Committee.

DATE.............

SIGNATURE

PLEASE QUOTE THE PROTOCOL NUMBER IN ALL ENQUIRIES
REFERENCES


34. AIDSCAP/Family Health International. Periodic presumptive treatment of women at high risk: an intervention to reduce the prevalence of curable STDs in a South African mining community. 1997.


66. Catania JA, Kegeles SM, Coates TJ. Towards an understanding of risk behaviour: an 

67. Matshidze P. Sexual behaviour, condom use and knowledge of sexually transmitted diseases in a 
   AIDS Conference* 1998; Abstract 23415.

68. Ratsaka M, Hirschowitz R. Knowledge, attitudes and beliefs amongst inhabitants of high density 
   informal settlements with regard to sexuality and AIDS in Alexandra township. *Curationis* 1995; 
   18(2): 41-44.

   23160.

70. Montgomery E, Harrison A. An investigation of women’s health status in Hlabisa District, Kwazulu 

71. Wasserheit JN. Epidemiology synergy. Inter-relationships between human immunodeficiency virus 

   and cultural diversity; knowledge, attitudes, and risk behaviours among black and Hispanic 

73. Timmins P, Gallios C, Terry D. Theory of reasoned action and the role of perceived risk 
   in the study of safer sex. In: The theory of reasoned action: its application to AIDS preventive 