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Abstract

A literature review of vehicle routing problems (VRPs) in general, and specifically

airline scheduling problems and the airline taxi problem, is provided. A real-world

airline taxi scheduling problem is described as experienced by a tourist airline oper-

ating in the Okavango Delta, Botswana. In this problem, a daily schedule is drawn

up manually by a team of experienced schedulers a few days before the day in ques-

tion. In this research, a slightly relaxed version of the problem is considered in order

to develop heuristics and modelling methods which will be useful for general cases.

Various methods and heuristics are proposed for the problem and tested on a small

version of the problem as well as the full-sized version. The most promising methods

are demonstrated and solutions provided. One of the methods was applied to the

actual problem to demonstrate the practical usefulness. In this case a schedule with

a cost 12% lower than the manual schedule cost was achieved. All the heuristics and

methods are applicable to certain other VRPs, particularly real-world or highly-

constrained VRPs. An example is provided of a solution method for a real-world

instance of the multi-vehicle capacitated vehicle routing problem (MVCVRP). An-

other example is provided of a standard, benchmark instance from the internet of a

capacitated vehicle routing problem with time windows (CVRPTW).
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1 Introduction

1.1 Scheduling in Commercial Scheduled Airlines

Operations research techniques applied to airline scheduling have been studied ex-

tensively. Applications in scheduled commercial applications date back to 1993 when

Delta Airlines successfully implemented a fleet assignment problem [1] which saved

them many millions of dollars. Since then almost all of the world’s scheduled com-

mercial airlines have followed suit. In many ways the airline planning and scheduling

problems are the most demanding in the transportation industry due to the size of

the airlines and the possible savings involved.

Given a timetable, the airline scheduling problem can be divided into two sub-

problems, fleet assignment and aircraft routing [2]. Fleet assignment involves assign-

ing an aircraft type to the flights in the timetable. Aircraft routing (or generating

aircraft rotations) refers to the procedure of creating routes for a fleet of aircraft

such that all of the flights are provided as required.

Generating the timetable is referred to as schedule design [3]. In this problem, the

flight legs are created which are intended to satisfy demand and generate revenue

for the airline. Typically commercial airlines generate the schedule, then do the

fleet assignment and maintenance routing, followed by the crew scheduling problem.

Maintenance routing involves scheduling and routing of maintenance opportunities

for every aircraft in the fleet [4]. Theoretically, all four of these problems could be

solved in one and this is referred to as the integrated problem. However, the size of

many airlines precludes such a large problem from being solved practically, and the

problems are addressed sequentially, separately and in an iterative manner.

Fleet assignment problems are often modelled using overlapping time-distance net-

work flow models (or multi-commodity network flow, MCNF) with many variables

restricted to binary or integer types. This results in mixed integer programming

1



(MIP) models with large numbers of variables and constraints. Because of the com-

putational effort involved, solutions can take impractically long times to achieve.

Much effort has been spent on techniques to solve these problems within reasonable

time limits.

Passenger airlines might only design and optimize their schedule once from scratch.

This is called ‘cold start’ [1]. Such models can be huge and take hours if not days

to run. In most cases, a previously designed feasible schedule is optimized (‘warm

start’) which results in much faster solution times. A schedule sometimes repeats

itself daily and/or weekly and does not change for months. Changes that are imple-

mented are normally small.

1.2 On-Demand Airline Scheduling

Certain charter airlines schedule their aircraft to satisfy some demand such as that

generated by a once off event, e.g. a sporting event. In this case, the objective is to

maximize profit and the demand does not necessarily have to be completely satisfied.

Either the group requiring the transport will hire the plane to accommodate all group

members, or the charter company will schedule a special trip to meet the demand,

for example, from multiple groups.

The airline taxi scheduling problem is different in that demand must be met com-

pletely at the lowest cost possible. An airline taxi service is operated by a charter

airline company called Sefofane Air in the Okavango Delta region in Botswana. The

extensive waterways that make up this geographical feature make land transport

difficult and often impossible. In addition the authorities have legislated that pas-

sengers must be ferried between the various tourist camps by aircraft to minimize

environmental effects. Therefore small groups of tourists must be ferried by air-

craft between places of interest or accommodation according to a schedule that has

previously been designed by a tour operator and paid for by the client (passengers).

The schedule for such an airline changes completely every day. Often the next

day’s schedule needs to be designed from scratch. Currently, these schedules are

generated manually by a team of experienced people. Growth of airline traffic and

risks with regard to the possibility of losing scheduling staff has created the need to

automatically create good schedules and to reduce aircraft operation and scheduling

costs. Sefofane Air must satisfy 158 bookings on a busy day, using 14 aircraft of two

different types and serving 21 destinations.

2



There are some other similar or closely-related problems in the literature, namely

the static dial-a-flight problem (SDAFP) [5], air taxi [6] or per-seat, on-demand

(PSOD) air transportation problem [7]. The problems described appear to be largely

similar, therefore the Sefofane Air scheduling problem can be classed in vehicle

routing literature accordingly.

1.3 Research Motivation

This research is intended to complement current methodologies for taxi airline

scheduling. In doing so, it is intended to add to the body of knowledge of solu-

tion methods for vehicle routing problems (VRPs) in general.

This work specifically addresses construction heuristics to create variables for use in

airline taxi minimum cost network flow (MCNF) formulations. As such, most of the

formulations make use of time-space networks, as described in Chapter 3, section

3.2.1.

The problems approached in this work vary in size up to 158 requests (or customers).

For all instances, smaller versions of the actual instances are created and used for

demonstration and, where applicable, parameter tuning.

A customer aggregation heuristic and a geographic heuristic are introduced for the

airline taxi problem, both of which will find applicability in certain instances of other

VRPs such as the dial-a-ride problem (DARP) [8]. These allow a standard MCNF

formulation to be used for small versions of the airline taxi problem.

A framework for using greedy agents to generate variables for an MCNF formulation

is demonstrated. This allows larger-sized versions of the airline taxi problem to be

solved, such as the size of schedules that are generated by Sefofane Air.

A method of creating composite variables which vastly reduces the number of vari-

ables in an MCNF formulation for the airline taxi problem is presented. The ideas

behind this method were first applied to the airline taxi problem and presented by

Silverwood [9], then refined by Lafoyi [10]. In the former, a constraint programming

formulation was presented using a similar composite variable construction method

as described in this work. In the latter, the composite variable method was further

developed to be used in an integer linear program (ILP) formulation. In this work,

the method is refined and a practical solution to the full problem is provided. The

quality of the solution obtained is evaluated.

3



Finally, it is shown that these methods offer alternative approaches to other VRPs.

This is done by tackling a real-world multi-vehicle capacitated vehicle routing prob-

lem (MVCVRP) [11] and a standard, benchmark VRP with time windows obtained

from the Internet.

The airline taxi problem addressed is an actual, real-world problem, and as such is

highly constrained with operational requirements. Similarly, the MVCVRP in Chap-

ter 11 is a real-world problem described by the company concerned. The VRPTW

in Chapter 11 is a problem artificially created specifically to be a benchmark prob-

lem, and as such it does not have the typical operational constraints of a real-world

problem (i.e. it is less highly constrained).

Results are presented showing the usefulness of the various methods proposed.
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2 Objectives

This work was inspired by the Sefofane Air scheduling problem, which will be de-

scribed in more detail in Chapter 5. One objective is to provide practical methods

to solve that problem and demonstrate these methods. In order to achieve this,

methods to solve the airline taxi problem will be developed. Heuristics offer the

most viable methods to achieve this. This work will only deal with construction of

solutions, as opposed to solution improvement techniques and heuristics.

Therefore, the objectives are stated as follows:

• To develop and evaluate construction heuristic methods to solve the airline

taxi problem in general and the specific problem under consideration.

• To suggest and consider the use of such methods in other vehicle routing

problems.
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3 Literature Review

3.1 Vehicle Routing

3.1.1 Types of Vehicle Routing Problems

There are a number of standard vehicle routing problems (VRPs) defined in the

literature, all classified as NP -hard and therefore difficult to solve, even for small

instances. In practice, such problems become increasingly more difficult to solve as

they grow in size, so keeping the number of variables to a minimum is important.

The travelling salesperson problem (TSP) is a problem where the shortest path

through a number of locations must be obtained, and each location is only visited

once. It is important because, although NP -hard, a number of efficient algorithms

have been developed for it, notably the famous Lin-Kernighan (L-K) heuristic algo-

rithm [12]. VRP solution methods often involve solving some sub-problem/s which

are TSPs.

TSPs, like VRPs, can be formulated as integer linear programs (ILPs), and solved as

such. If no heuristics are used, the solution is termed exact, since, if well-formulated,

the solution obtained is optimal. However the methods for solving ILPs are generally

based on branch and bound, which is a form of enumeration and therefore varies

in solution time for different instances. Solving can be slow, especially if there are

many variables and constraints.

The term VRP often refers to a delivery problem with depot and customers. Be-

cause of the difficulties in application of exact methods to practically-sized problems,

heuristics and metaheuristics are frequently applied. Variations of the VRP include

the capacitated VRP (CVRP) and the multi-vehicle CVRP (MVCVRP).

The CVRP involves using vehicles of one type, but with limited capacity, to deliver

goods from a depot to a number of customers. The CVRP with time windows

6



(CVRPTW) is similar, but with the addition of time windows which define times

within which the deliveries must be made to the customers. The MVCVRP is a

variation of the CVRP but with multiple vehicle types, each of different capacity.

VRPs may have probabilistic variables. An example is the courier delivery prob-

lem, a variant of the VRPTW in which customer arrivals and service times are

probabilistic [13].

A class of VRPs deals with situations where goods are transported between pickup

and delivery locations. These are called VRPs with pickup and deliveries (VRPPDs)

[14]. There are three versions, the pickup and delivery problem (PDP), the pickup

and delivery vehicle routing problem (PDVRP) and the dial-a-ride problem (DARP).

The PDP comes in variants such as the PDP with time windows (PDPTW) and

the multi-vehicle PDPTW (MV-PDPTW) [15]. The PDP and variants deal with

the case of paired pickup and delivery points, as opposed to the PDVRP which

has unpaired pickup and delivery points. Paired pickup and delivery points refer

to situations where each customer or delivery has a unique pickup and a unique

drop-off point.

The dial-a-ride problem (DARP) is a paired vehicle taxi scheduling problem where

passengers must be collected from pickup points and delivered to drop-off points.

These drop-off points can be anywhere on a route network.

There are many other variations to the VRP and the interested reader is referred to

various literature surveys of such problems such as those of Aronson [16], Laporte

[17] and Kumar and Panneerselvam [11].

There does not appear to be consensus yet as to what defines a VRP. Eksioglu

et al. [18] place the travelling salesperson problem (TSP), the VRP and DARP as

seperate categories of the generalised routing problem, along with the shortest path

problem, the Chinese postman problem, the rural postman problem and the arc

routing problem.

A VRP taxonomic review has been compiled recently [18] and is shown in Table

3.1. Broadly, there are five classifications, these being type of study, scenario char-

acteristics, problem physical characteristics, information characteristics and data

characteristics. The variety of attributes that can be encompassed in a VRP, and

the possibility for subtle differences between problems, is evident.

When comparing the research to be presented in this thesis with other VRP work

7



(Table 3.1), it is notable that the work in this thesis addresses relatively under-

researched areas including real-world problems, directed network, multiple origins,

and multiple depots.

The airline taxi problem or dial-a-flight problem (DAFP) can best be classified

under the PDP class of problems. It differs from the DARP in that passengers

can only start and end their journeys at a limited number of pre-specified locations

(airports), and not at any point on the network. This difference implies that in

the DARP, passengers or passenger groups are unlikely to have origin or destination

locations matching those of any other passenger groups, whereas in the DAFP,

different passengers are likely to have matching locations for origin and destination.

In practical or real world problems, there are a number of often subtle differences

between different situations and these make generalised modelling methods difficult

to devise, even between problems which are apparently of the same type.

Exact methods mostly refer to large-scale integer linear programming problems

(ILPs) and can be difficult to solve. Hasle and Kloster [19] suggest instances of

50-100 bookings cannot be solved consistently using exact methods. This is the

reason both heuristics and metaheuristics are of such widespread interest.
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3.1.2 Solving VRPs

Heuristics

Classifications Heuristics are common-sense methods to reduce the size of prob-

lems by, for example, removing variables from a problem. As such they are commonly

used on their own or in conjunction with other methods forNP -hard problems. They

can be classified as construction, improving, mathematical or practical types.

Construction heuristics are applied when constructing the problem (i.e. assembling

the variables and constraints) to achieve a first, feasible solution. In contrast, im-

proving heuristics are applied to an existing solution to improve it.

Mathematical heuristics relate to mathematical manipulations of the formulation.

They are those heuristics suggested by a numerical examination of the problem, for

example, in a maximization problem paying more attention to the variables with

relatively larger objective function coefficients, or lower costs, as is done in column

generation. Preprocessing done by ILP solvers such as implementing cutting planes

(cuts/extra constraints to reduce the feasible region) is another example.

Practical heuristics relate to practical evaluations of the problem setting or envi-

ronment, and removal of obviously impossible or unlikely solutions. They involve

reducing the problem size by specifically eliminating variables which are likely to be

zero in practice. For example, in a scheduling problem, eliminate routes (variables)

which are comparatively long and expensive. Another example is a valid inequality,

which is a cut/additional constraint designed for the problem at hand to decrease

the size of the search region.

Heuristic methods can be applied when using mathematical programming tech-

niques. For example, an iterative method could proceed as follows:

• Formulate an easy to solve relaxed problem by removing some constraints.

• Adjust the problem such that it satisfies the dropped restrictions, or add some

restrictions, and solve the problem again.

• Repeat until an acceptable, feasible solution is obtained.

Heuristics are useful in conjunction with other techniques since they can reduce the

size of a problem substantially. However, since they eliminate possible solutions they
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need to be carefully considered. Often useful heuristics can be developed which are

specific to a certain problem or problem type.

The best solution procedures are specific to variable types. For example, problems

with only continuous variables can be efficiently solved using the simplex method,

and special techniques exist for efficiently solving purely binary variable problems

[20,21]. Also, numerical heuristic techniques such as Feaspump [22] often work well

for general integer variables and less well for binary variables, so much so that the

latest version works in two phases, first dealing with the binary variables and then

the integer variables. Benders decomposition [23] exploits structure by decomposing

the problem by variable type, i.e. the subproblem is purely binary or purely general

integer.

Construction Heuristics Algorithms Aronson [16] has listed some of the main

construction heuristics for the VRP. An obvious one is the greedy or nearest neigh-

bour algorithm [7] used for the TSP, where the closest neighbour is always the one

travelled to next. Another, related method involves finding and converting minimum

spanning trees (MSTs) into feasible routes [24].

A nearest neighbour algorithm for the VRPTW is described by Solomon [25]. Solomon

uses a distance measure consisting of both geographic and temporal measures of dis-

tance in his algorithm. This distance is given by cij = w1dij +w2Tij +w3vij , where

dij is the geographical distance between two customers, Tij is the time difference

between the completion of the service at i and the start of service at j, and vij is the

urgency of servicing customer j. This urgency is calculated as the time remaining

until the deadline of servicing customer j is reached. w1, w2 and w3 are weights

which when summed together add up to 1.

Hosny [26] describes the construction procedure as follows: A route is created with

one customer. Thereafter, customers are inserted sequentially into the route until

no further insertions can feasibly occur. With reference to Figure 3.1, unrouted

customer k is inserted between customers i and j. Insertions are done based on the

time-modified distance measure.

Subtour patching [16] or insertion procedures [7] for a TSP involve creating a number

of subtours, i.e. solving a relaxed version of the TSP without the subtour elimination

constraints. The subtours are then merged (patched) into one cycle. The most

common insertion heuristic is termed the nearest neighbour insertion algorithm [7].

This proceeds in two steps. It first takes a subtour of nodes and finds a node which

12



Figure 3.1: An Insertion Heuristic [26]

should join the subtour next (selection step), then determines where in the subtour

it should be inserted (insertion step).

The savings algorithm is a classic algorithm described by Clarke and Wright [27] for

the VRPTW and involves computing the savings (typically in distance) by adding

nodes to a subtour, then selecting the largest saving node and adding it to the

subtour. Initially, each customer is assigned to one vehicle. Thereafter, the savings

achieved by combining two such routes, i.e. taking one such customer i and adding

that customer to the route of another customer j will result in a savings in cost of

Sij = cio + coj − cij , as depicted in Figure 3.2

Figure 3.2: A Savings Heuristic [26]

Two types of construction heuristics are defined by Hosny [26]. These are sequential

construction where routes are constructed after each other, and parallel construction

13



where routes are constructed at the same time. The parallel version of the savings

algorithm involves finding the highest saving among all the customers and executing

that change. The sequential version considers one route at a time and implements

the best saving by joining another route to it.

The nearest merger algorithm involves setting up a number of subtours which are

then merged in a way to reduce costs.

Two-phase algorithms [7,16] are often applied to VRPs. They involve a clustering

phase followed by a routing phase. In these methods, each city is assigned to a

vehicle, and the TSPs are solved for each vehicle-cluster combination. For example,

in the sweep algorithm [28], nodes are first assigned to vehicles, then the order of

visitation is assigned. Customers are represented by their polar coordinates [29].

An angle of 0 is assigned to an arbitrary customer and all other customers’ angles

calculated relative to that and ranked. The procedure is then:

• Choose an unused vehicle.

• Start from the next customer having the smallest angle, and assign customers

to the vehicle until its capacity is reached.

• Optimize each vehicle route using a TSP method.

• Perform vertex exchanges between routes if cost is reduced and re-optimise.

The Fisher and Jaikumar algorithm [30] does the clustering, then uses a TSP to do

the routing for each vehicle. A general assignment problem (GAP) is solved to assign

customers to vehicles. Thereafter a travelling salesperson problem (TSP) with time

windows is solved to optimise the vehicles’ routes. The method is applied to VRPs

from 50 to 199 customers.

Hierarchical cycling involves clustering first into clusters no bigger than some pa-

rameter, then replacing each cluster with a representative node. The new nodes

are clustered in the same way, until only one cluster remains. The node is replaced

with its cluster and the shortest path through the cluster is found. The process is

repeated.

Route first/cluster second algorithms [16] involve constructing a TSP tour for all

nodes except the depot, then breaking the tour into pieces such that all pieces can

be assigned to a vehicle.
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Many of the heuristics for the multi-vehicle DARP (MVDARP) are two-phase algo-

rithms in which phase 1 selects and clusters users and phase 2 routes the vehicles.

Dumas et al. [31] proposed creating mini-clusters of customers, where each mini-

cluster is transportable by one vehicle, while respecting time constraints, vehicle

capacity, pairing and precedence. The mini-clusters are combined to form feasible

routes using column generation. Ioachim et al. [32] showed that an optimisation

technique in the clustering phase is advantageous.

Improving Heuristics Algorithms These involve taking a solution and search-

ing for improving modifications, often iteratively. A feasible solution must first be

found using a construction method. Then, for example, a search will be conducted

among neighbouring solutions for an improved one. The definition of the neigh-

bourhood defines how the search is conducted. For example, a savings/insertion

algorithm quickly finds an initial solution, sometimes by creating many routes with

only one customer, then improves it towards a cheaper solution. This is done by

merging routes together as long as this process saves costs.

If a reduced cost solution is found it may be adopted if the first acceptance criteria

is used [26]. Otherwise, if using the best acceptance criteria, all the neighbourhood

solutions are evaluated first and the best is chosen to be implemented.

A local search involves finding a new solution in the neighbourhood of the current

solution [26]. Care must be taken to avoid local optima which is why techniques such

as tabu search are used. The neighbourhood size can be varied. If it is increased

it becomes a large neighbourhood search (LNS) method. Variable neighbourhood

search (VNS) has been suggested by Hansen and Mladenovic [33]. This involves

gradually increasing the neighbourhood size until a stopping condition is met. VNS

has been successfully applied to a number of VRPs, for example, the VRPTW [34],

the PD travelling salesperson problem (PDTSP) [35], the periodic VRPTW [36] and

the multi-depot VRPTW [37]). It was hybridised with simulated annealing (SA) to

solve the PDP by Hosny [26].

Improvement/exchange algorithms involve finding an initial solution, then improv-

ing/exchanging edges, nodes and/or vehicles to find improvements (edges are some-

times also referred to as links, arcs or legs in a routing network). The most common

are the k-optimal methods involving the deletion of k edges and replacement by k

other edges. 2-opt and 3-opt versions are most common, since using more edges typ-

ically expands the neighbourhood too much and involves too many options, making

the algorithm slow. An example of a 2-opt exchange move is shown in Figure 3.3.
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Figure 3.3: 2-Opt Exchange Move [26]

The famous Lin-Kernighan (LK) algorithm [12] for the TSP decides dynamically how

many edges to exchange at each iteration. In an iteration it may swap a subtour of

2 paths (2-opt) or 3 paths (3-opt) for another to make the tour shorter.

Or-opt is a special case of 3-opt where up to 3 edges are removed and replaced

at a different location in the same route. Because there are much fewer options,

it is computationally less demanding than 3-opt and provides comparable quality

solutions.

A 2-opt exchange swaps paths which belong to the same route. Potvin and Rousseau

[38] introduced 2-opt* which tries to combine two different routes by joining the last

customers of the second route after the first customers on the first route.

Inter-route operators were introduced by Savelsbergh [39]. These include:

• Re-locate: Moves a customer from one route to another.

• Exchange: Swaps two customers in different routes.

• Cross: Similar to 2-opt*.

Other neighbourhood operators include:

• λ-exhange [40]: Replaces a set of customers on a route with another set, pos-

sibly of a different size.
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• CROSS-exchange [41]: Swaps two groups of customers from one route to an-

other.

• GENI-exchange [42]: An extension of the re-locate operator to allow for cus-

tomer insertion between non-consecutive customers on another route.

• Ejection chains [43]: Exchange of customer sets, but operates on more than

two routes.

• Cyclic k-transfers [44]: Transfer of customers from one route to another.

• Modified ejection chains [45]: Includes re-ordering of routes.

Most heuristic methods are specific to a certain type of problem. Pisinger and Ropke

[46] describe a heuristic which can solve five variants of the VRP; the vehicle routing

problem with time windows (VRPTW), the capacitated vehicle routing problem

(CVRP), the multi-depot VRP (MDVRP), the site-dependant VRP (SDVRP) and

the open VRP (OVRP). An adaptive large neighbourhood search (ALNS) framework

is described which involves a number of simple, fast algorithms competing to modify

the current solution. Each iteration involves choosing an algorithm to destroy the

current solution and then choosing an algorithm to repair the solution.

Large neighbourhood search (LNS) algorithms [15] might remove and replace a large

number of customers (30% - 40%) in an iteration. They are computationally more

expensive than faster, simpler algorithms but can provide good results [47] [46]. It

has been suggested that the success of neighbourhood search algorithms obviates the

need for sophisticated construction algorithms which are generally time consuming,

parameter dependent and hard to implement [15].

Metaheuristics Metaheuristics have become popular for VRPs because they al-

low smaller, non-linear and discrete variable model formulations, at the expense

of slow processing and convergence. Genetic algorithms (GA), tabu search (TS),

particle swarm optimization (PSO), ant colony optimization (ACO) and simulated

annealing (SA) have been applied to vehicle transport scheduling problems.

A summary of metaheuristic techniques for the VRPTW is shown in Table 3.2[26].

Practitioners often apply a cheapest insertion method for initial feasible solution

construction such as that proposed by Solomon [25]. Solomon’s I1 insertion heuristic

starts by initialising a route, then inserts a new customer between two others in

the route. The cost of insertion is minimised while retaining feasibility. Solution

improvement generally uses a k-opt method. Heuristics are designed for the specific
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problem to reduce the search area. Specifically, Garcia et al. [48] only allow inclusion

of the relatively shorter edges.
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Simulated annealing (SA) is a search procedure successfully applied to various VRPs

including those devised by Osman [40]. Nanry and Barnes [56], Cordeau and Laporte

[8] and Gendreau et al. [57] apply tabu search for the multiple VRP with pickup and

delivery (VRPPD), DARP and urban courier service problems (UCSP) respectively.

Cordeau and Laporte [58] state that tabu search is the most successful metaheuristic

for the VRP, having outperformed alternative methods in a number of benchmark

studies.

Ant colony optimization (ACO) has been applied to certain VRPs such as the

VRPPD [59,60], the CVRP [61,62], VRPTW [60], the TSP [63] and the standard

VRP [64]. It has not been applied to the MVCVRP or MVCVRPTW, since there

appear to be issues dealing with the multi-vehicle constraint.

Like most metaheuristics, ACO can be adjusted in various ways for a specific prob-

lem. Gambardella et al. [54] used it to solve the VRPTW and use global pheromone

updating, as opposed to the more usual local updating.

Hybrid metaheuristics refer to combining two or more methods and have become

popular for VRPs. A taxonomy of such methods has been presented by Talbi [65].

Hybridisations can be classified according to whether the different methods occur

sequentially (relay) or whether agents are parallel (or teamwork/cooperating). Lo-

cal optimisations can be carried out by different metaheuristics (low-level), or the

metaheuristic for the global optimisation (high-level) could be varied. Methods can

include deterministic methods such as ILPs and often heuristic methods are also

included. Hosny [26] has compiled a table of genetic algorithm (GA) approaches to

the VRPTW (Table 3.3) and found almost all GA techniques are combined with

some other heuristic, local search or other metaheuristic for solution construction

and/or improvement.
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The “ants” in ACO schemes could be termed “agents” and compared to the use of

intelligent agents in, for example, agent-based simulation (ABS). In fact, ABS has

been successfully used to solve VRPs [72–74].

Barbucha [73] describes a multi-agent co-operative search, where agents can ex-

change information about states or sub-problems via a shared memory. All coop-

erative search schemes share two features, namely a set of autonomous programs,

each executing a particular solution method, and a cooperation scheme, which allows

them to use each other’s information. These methods are parallel and hybrid, in

that they most often combine other methods. Barbucha’s strategy is outlined in Fig-

ure 3.4, where “NSP” stands for “number of search procedures”. Search procedures

proposed are k-opt or other neighbourhood exchange methods.

In highly constrained problems, agents can be taught, either online or from previous

schedules, what constitutes a good decision at any juncture. Weightings can then

be adjusted to enhance the likelihood of previously learned good choices being used

in the future. Such learning processes are performed by weight updating processes

in neural networks (NN), or pheromone trail updating in ACO.

Figure 3.4: Multi Agent Cooperative Search [73]

Vokř́ınek et al. [74] propose using 3 different types of agents:

1. a task agent for processing of demands and allocation invocation,

2. an allocation agent to maintain allocation and the improvement process, and

3. a vehicle agent for route planning and optimisation.

The allocation agent must apply a defined strategy to allocation of customers to
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routes/vehicles with a cost minimising objective. It works in two phases, an alloca-

tion phase and an improvement phase. The vehicle agent solves a TSP to find the

best route.

Neural networks were employed by Potvin et al. [75] in competitive form to improve

the construction phase of a parallel insertion heuristic for a VRPTW. In another

study [76], neural networks are used in the selection of the best heuristic for a VRP

based on the problem characteristics. Torki et al. [77] describe achieving good results

using a competitive neural network to solve the TSP, the m-TSP and the CVRP.

The TSP normally involves one “salesman” travelling to all the cities. m-TSP is the

version of the TSP with multiple salesmen available to visit the cities.

Pickup and Delivery Problems General PDPs (GPDPs) occur frequently in

practice in areas such as courier services, transportation of raw materials from sup-

pliers to factories, food collection and delivery and newspaper delivery [26]. Parragh

et al. [78] provide a survey and classification of GPDPs as shown in Figure 3.5. The

following acronyms are used [79]:

• VRPB: VRP with backhauls.

• TSPCB: TSP with clustered backhauls.

• VRPCB: VRP with clustered backhauls.

• TSPMB: TSP with mixed linehauls and backhauls

• VRPMB: VRP with mixed linehauls and backhauls.

• TSPDDP: TSP with divisible delivery and pickup.

• VRPDDP: VRP with divisible delivery and pickup.

• TSPSDP: TSP with simultaneous delivery and pickup.

• VRPSDP: VRP with simultaneous delivery and pickup.

• VRPPD: VRP with pickups and deliveries

Some problems have full truckloads and others less than full truckloads. Delivery

locations may be paired where no other customer can be visited in-between. A single

commodity or multiple commodities may be involved, or the problem may involve

the transportation of people.

Important GPDP constraints include [26]:
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Figure 3.5: GPDP Classification [78]

1. A precedence constraint to enforce the delivery to occur after the pickup.

2. A coupling constraint ensuring the pickup and delivery points are visited by

the same vehicle.

3. A vehicle capacity constraint.

4. A time window constraint.

5. A maximum ride time constraint.

According to Hosny [26], the methods of choice for this class of problems are the

GA, LNS, adaptive LNS (ALNS) and grouped GA.

In the PDVRP, every unit picked up can be used to satisfy every customer’s demand.

In the PDP, every pickup is associated with a delivery point and both origin and

destination must be served by the same vehicle. Delivery can only occur after

pickup. In the DARP, constraints related to user inconvenience are also required.

Constraints for TWs and maximum trip length can be included. Single vehicle cases

are denoted SDARP and SPDP. For the DARP, static and dynamic versions occur

in the literature.

The MV-PDPTW is a grouping and routing problem, where grouping refers to

assigning vehicles to bookings, and routing involves the best routing for a vehicle

to service the assigned bookings. For this reason these two aspects are handled

separately by clustering first and then routing, or vice versa. Solutions are also

generated using a two stage methodology [15]. Stage 1 involves constructing a
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solution and stage 2 improving the solution. A typical construction methodology is

a least-cost insertion algorithm.

The vehicle routing problem with backhauls (VRPB) involves the transportation of

goods from the depot to customers and vice versa [26]. This type of problem can be

one of four sub-types:

1. Vehicle routing problem with clustered backhauls (VRPCB): All delivery cus-

tomers must be visited after all pickup customers.

2. Vehicle routing problem with mixed linehauls and backhauls (VRPMB): Mixed

visiting of pickup and delivery customers is allowed.

3. Vehicle routing problem with divisible deliver and pickup (VRPDDP): Each

customer is both a pickup and a delivery customer and two visits to the same

customer are allowed.

4. Vehicle routing problem with simultaneous delivery and pickup (VRPSDP):

Each customer requires a pickup and a delivery, but only one visit is allowed.

According to Hosny [26], for this class of problems the large neighbourhood search

algorithm (LNS) is the heuristic of choice.

DARP services can be operated as static or dynamic, static being the case where

bookings are known in advance, and dynamic where the bookings change on the day

of operation and during execution.

Dynamic programming was used to achieve an exact solution to the DARP by

Psaraftis [80] and Desrosiers [81] for the single vehicle case and up to 40 requests.

Cordeau [82] uses a branch and cut algorithm for the static DARP. Valid inequalities

previously developed for VRPs and PDPs, as well as new ones are used. Cordeau

also applies various other rules for removing infeasible variables prior to solving and

reducing problem size based on specific features of the problem.

For the multiple vehicle case, most algorithms are heuristics or metaheuristics [82].

A summary of heuristic literature for the static DARP has been compiled by Parragh

et al. [78] and is shown in Table 3.4. Ranges of problem sizes and methods used

are shown. Anything special about the problem is listed under column “Type”, and

special constraints for the problem are listed under column “Constraints”. Insertion

heuristics and clustering-based (mostly cluster first route second) methods are the

dominant choices. The number of references in this field shows that heuristics have

been the preferred solution methods in the past.
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A large scale (500 to 1000 requests) DARP was solved using a parallel regret insertion

heuristic by Diana and Dessouky [103]. The problem is described as extremely highly

constrained with tight time windows to ensure a high quality of service. A review of

past research suggested to the authors that insertion methods are the best to be used

on routing problems with time windows. Parallel insertion was chosen as it tends to

outperform sequential insertion. The first part of the procedure involved selecting

a seed customer. One way is to choose customers with the earliest pickup times;

however, for better performance the spatial positioning also needs to be taken into

account. Choosing less decentralised customers prevents inconvenient and difficult

to insert requests being left to last.

The regret insertion algorithm starts by finding a best insertion cost for each un-

routed request. A table is created with requests as rows and routes as columns. The

request regret is the difference for each route from the minimum in the row. The

request with the largest regret is inserted.

Jaw et al. [92] propose a sequential insertion procedure in which customers are first

ordered by increasing earliest pickup time. Then they are inserted according to the

cheapest feasible insertion criterion.

The DARP is addressed using a cluster first, route second approach by Borndor-

fer et al. [101]. Both problems are modelled as set partitioning problems, with

the routing problems only being solved approximately using a branch and bound

algorithm.

Recently, interest in metaheuristics for DARP has increased significantly [107]. No-

tably, Cordeau and Laporte [8] use tabu search with great success. Toth and Vigo

[100] use a local search based heuristic in the form of a tabu thresholding algorithm

for the multi-vehicle DARP. Initial construction uses parallel insertion.

Table 3.5 [78] shows the use of metaheuristics for DARPs. Jorgensen [108] used

a space-time network to define the nearest neighbour. Tabu search and genetic

algorithms are the methods of choice. Most recent work appears to be concentrated

on these two metaheuristic methods.

Comparisons between cases in the literature are complicated due to the fact that

many of the problems have been inspired by real-world instances, and none have been

applied to standardised data sets [14]. When similar data sets are used, different

objectives are considered. In general, metaheuristic methods give better solutions,

but heuristic methods are faster.
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Exact Methods There is a long history of research in exact methods for VRPs.

Due to the fact that these problems are NP -hard, complex solution methods are de-

vised, including those involving decomposition, column generation, row-generation,

or combinations thereof.

A survey of exact methods for the VRP has been done by Laporte [29]. His definition

of a VRP covers situations with a depot and customers. Exact methods can be

classified as direct tree search methods, dynamic programming or integer linear

programming (ILP).

Laporte et al. [117] [118] describe a formulation for CVRPs which exploits the

fact that an m-TSP can be transformed into a 1-TSP by introducing artificial de-

pots. The problem can be solved using a branch-and-bound process where the

sub-problems are assignment problems, as in the assignment-based solution to the

TSP (as described in [119]). Several variations of the basic VRP have been solved.

The k-degree center tree algorithm for the MCVRP was developed by Christofides

et al. [120]. They divide the edges into four subsets and devise a special formulation

accordingly.

Set partitioning has become popular in exact algorithms. In these formulations,

routes are chosen from sets of depots which make up feasible routes with a cost

minimizing objective [119]. Because the variable sets can be huge, column generation

is the natural way to address these types of problems. In such formulations, any

feasible solution is generated with only a few variables, then new routes are added

depending on the marginal cost of other possible routes. Finding these new routes

to add can, in some cases, be a challenge, and dynamic programming has been used

or shortest path [119] has been used, depending on problem features. Because of

the integer variable constraints, the procedure must be used in conjunction with a

branch-and-bound algorithm.

Three-index formulations refer to formulations where each variable xijk refers to a

specific vehicle or fleet k using an arc ij, where the variable is binary and equal to

1 if the arc is used [119]. Two-index formulations are where variables xij refer to an

arc ij only.

A number of valid inequalities (cutting planes) have been proposed for various VRPs.

One such approach is that of Cordeau [82]. Chandran and Raghavan [121] demon-

strate the use of tree structures to solve CVRPs and other VRPs. In special cases,

when a problem can be represented in tree form, a number of valid inequalities and
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special formulations are applicable.

Exact methods for VRPPDs have been surveyed by Cordeau et al. [122]. Formula-

tions are provided for the VRPPD with time windows (VRPPDTW). Early DARP

exact formulations made use of dynamic programming (DP). Thereafter, few if any

exact formulations have been proposed, with heuristics and metaheuristics the most

commonly used techniques. According to Parragh et al. [14], the reason exact meth-

ods are not used for the DARP is that the concept of “optimal solutions” becomes

debatable for these types of problems.

3.2 Airline Scheduling

3.2.1 Scheduled Airlines

Schedule Planning and Generation

The airline schedule planning problem can be disassembled into the schedule design

problem, the fleet assignment problem, the maintenance routing problem and the

crew scheduling problem [123]. Because of the size of typical scheduled flight (or

commercial) airline companies, these problems are most often each addressed sep-

arately and often iteratively. Some work has been done on integrating some or all

of these problems. Much work has been done on solution methodologies for opti-

mising the resultant large models. Solutions are most often generated using linear

programming models of various types, including network flow and integer linear

programming (ILP). Because of the massive sizes of models, heuristics are often an

important part of the modelling and solution process. An overview of formulations

and solution methods is provided by Gronkvist [2].

Schedule Design Problem

Schedule planning involves maximizing revenues [124] by providing services to meet

expected demand. Constraints include gate facilities, available slots, connections,

etc. The schedule should be flyable with available resources. Flight legs are designed,

each leg consisting of one aircraft flight, and with an associated origin and destination

(O-D) and time of departure and time of arrival. Typically airlines must consider

peak passenger times and frequency of service, size of aircraft, competition and the

effect the provision of the services will have.
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After generation of the schedules, fleet assignment and aircraft routing can be per-

formed.

Fleet Assignment Problem

Description This is the process of assigning the optimum aircraft type to each

leg in a schedule, to maximize revenues and minimise costs. This type of problem

is often formulated as a multi-commodity network flow problem (MCNFP) with

aircraft flowing through the network. The formulation can be done using a time-

line network (Figure 3.6), sometimes also called a time-space network, with arcs

representing flights. The different aircraft types or fleets are then the commodities.

Figure 3.6: Time-Space Network

Unfortunately such MCNF models cannot use the computationally efficient network

simplex method and must be solved using integer programming methods. Mainte-

nance considerations can be taken into account by adding constraints accordingly.

Although crew scheduling is a separate and extensive modelling effort, crew can be

taken into account in the fleet assignment phase such that more feasible and cheaper

crew schedules are likely to be available in the crew scheduling phase [2].

Kontogiorgis [125] describes using A Mathematical Programming Language (a com-

mercial mathematical modelling language, AMPL) to assign fleets for US Airways.

US Airways typically flies 2500 flights to more than a hundred markets using 400
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aircraft of 14 different types. The model maximizes revenue and reduces costs. The

solution procedure involves solving the linear programming (LP) relaxation, fixing

variables and finally solving the reduced mixed integer program (MIP) with a branch

and bound solver to find the remaining variables. According to Rushmeier et al.

[124], such a problem could have 75000 binary variables, 1000 integer variables and

50000 constraints. Normally a solution is required within a day. The solution pro-

cess involves preprocessing, aggregating of nodes and other size reduction heuristics.

Then, based on an LP relaxation, a number of variables are fixed. After this, a

model may have 12% of the rows and 20% of the variables remaining. Subsequently

an integer solution is sought using a branch and bound method.

In some cases, fleet assignment is not necessary, for example, if the airline uses one

fleet type [126], and only aircraft routing and crew pairing is done. These are solved

iteratively to achieve a series of feasible solutions. Ray and Tomlin [127] address the

aircraft routing problem by using an IP model with time-space network and time

windows. A heuristic and LP relaxation plus rounding technique are suggested to

find good solutions.

Time-Space Networks Timespace networks have been used many times in lit-

erature to represent aircraft fleet assignment and/or routing problems and thereby

create model formulations. An example is the network used by Barnhart [3]. The

most commonly used time-space network representation is shown in Figures 3.6

and 3.7. Each node has a geographical position and time associated with it and

arcs represent movement of aircraft between nodes. Arcs can represent flight legs

or they may be “ground arcs” and represent time when an aircraft is stationary on

the ground at a specific location.

For such a model, aircraft may be grouped by fleet, such that a fleet consists of

similar, interchangeable aircraft, in which case a fleet will represent a commodity

in a multi-commodity network flow problem. The addition of passengers represents

another type of commodity, where passenger groups with different origin-destination

(O-D) pairs will each represent a different commodity. Passenger movement must

then be linked to aircraft movement using aircraft capacity constraints [128].

A “passenger leg” will typically refer to a passenger group travelling on a single, spe-

cific flight leg. Similarly, “passenger ground arcs” represent time spent by passenger

groups waiting on the ground at some location.
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Time-Discretised Networks The most commonly used formulation method uses

time discretisations. In these formulations, time is discretised into suitably sized time

steps and a node is placed at each step, in each location, as shown in Figure 3.7.

Depending on problem requirements, these networks are required for each of the

individual aircraft, each fleet type, and/or each passenger or each passenger group.

Figure 3.7: Time-Space Network with Time Discretisations

Using this method the number of variables for a MCNFP can be calculated as follows:

• Number of locations Nc

• Number of time steps Nts

• Number of fleets Nf

• Number of passenger groups Npg

• Number of nodes

Nn = Nc ×Nts +Nc (3.1)

• Number of fleet legs

Nfl = Nn × (Nc − 1)×Nf (3.2)

• Number of passenger legs

Npl = Nfl ×Npg (3.3)
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• Number of fleet ground arcs

Nfr = (Nn +Nc)×Nf (3.4)

• Number of passenger group ground arcs

Npr = (Nn +Nc)×Npg (3.5)

• Number of variables in problem

Nv = Nfl +Npl +Nfr +Npr (3.6)

The model time may consist of a single day, or longer periods, such as a week. For

this work, a single day is used. It should be noted that the number of fleet ground

arcs calculated (Nfr) includes ground arcs for each fleet between every node, as well

as a ground arc into the first node at every location at the start of the day, and a

ground arc out of the last node at every location at the end of the day.

With reference to Figure 3.7, the number of flight legs starting from a single node is

equal to Nc − 1 for each fleet type. The arrival time of a flight leg is the departure

node time plus the flight time. This flight time will fall between the times of two

nodes at the destination location. The later of these two nodes is assigned as the

leg arrival node.

It should be noted that flight legs that depart near the end of the day may have

arrival times which are beyond the end-of-day time, so no nodes can be assigned as

arrival nodes. These flight legs are not included in the problem. There is no way

to predict how many flight leg variables will be left out for this reason before the

problem parameters are known. The equation shown for number of fleet legs (3.2)

includes these legs and will therefore produce a higher figure than will actually be

the case for any instance.

Unfortunately in practice the size of these problems quickly grows impractically large

in terms of variables for even small-sized problems. For example, using the formulas

(3.1) to (3.6), a 7 city, 26 passenger group, 2 fleet type, 12 hour day problem with

10 minute steps will result in 177604 variables, 157248 of which are passenger group

leg variables.

In many such problems most of the variables are aircraft flight legs or passenger

legs and will never be used. The obvious solution is to use heuristics to leave out as

many unlikely-to-be-used variables as possible. These heuristics must be developed

after careful study of the specific problem.
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Maintenance Routing Problem

The aircraft maintenance routing problem involves assigning a particular aircraft

to each flight leg [123]. Consistency with the fleet assignment problem must be

maintained. Each aircraft must be assigned a feasible sequence of flight legs such

that the periodic maintenance checks for that specific aircraft can be undertaken

within legal requirements.

Crew Scheduling Problem

This problem involves determining the cost-minimising assignments of crew to each

leg in the aircraft schedule [123]. The schedule will specify activities for a crew

member typically for a period of a month. All labour regulations must be satisfied.

The crew scheduling problem was the first of the airline scheduling sub-problems to

receive attention in 1969, see Arabeyre et al [129] for details. This was because of

the large size of such problems in practice. Typically, many possible pairings (i.e.

crew-aircraft combinations) are generated and the best combination (minimum cost)

is sought using integer programming methods [124]. Since then, many others have

considered the problem using various techniques.

Integrated Models

Integrated scheduling refers to combining routing, scheduling, fleet assignment and

crew scheduling [130]. This has been addressed by Barnhart [131] using flight strings.

Papadakos [130] presents an integrated model including fleet assignment, aircraft

maintenance routing and crew scheduling. The problem is solved using enhanced

Benders decomposition and accelerated column generation.

A warm-start type of model was developed by Stojkovic et al [132]. The model re-

optimizes a schedule after a perturbation (disruption), and therefore must be able

to generate real-time data. This problem is often referred to as the day-of-operation

changes model [133]. The problem was a linear programming problem, and the dual

of the problem was a network problem and therefore relatively easily solvable using

the network simplex method.

An integrated scheduling method is devised by Haouari et al. [134]. They use

a 2-phase network flow heuristic which starts with clustering flights and assigning
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aircraft to flights using a greedy heuristic. Thereafter a series of assignment problems

are solved, and a further set of MCNF problems solved in phase 2.

3.2.2 Charter Airlines

Charter airline scheduling has been addressed by a number of researchers. This

work has been mostly restricted to the case where demand need not be completely

satisfied. Erdman et al. [133] have proposed a schedule generation problem for a

charter airline to maximize profits. The model is a capacitated network model with

side constraints (i.e. an ILP). Variables relate to aircraft rotations (daily routes

or itineraries). Since the model provides weak relaxations, cutting plane methods

of relaxation tightening are proposed. Essentially, the constraint causing the weak

relaxations was identified as the constraint restricting the number of passengers

transported due to the aircraft capacity. This was addressed by adding suitable

cutting plane constraints to limit passenger demand to aircraft size.

Kim and Barnhart [135] consider the charter airline service network design problem

by developing exact and heuristic network design models. They develop a fast

method for a single fleet model and adapt it to create a heuristic approach to the

multiple fleet model. Weak relaxations were improved by adding constraints forcing

at least one aircraft to be assigned to a group of passengers. For large instances, a

column generation scheme is proposed where aircraft itineraries with reduced costs

are sought by means of shortest path type sub-problems.

Yan and Tseng [128] developed a demand-driven integrated fleet routing and flight

scheduling model for a charter airline company, i.e., where not all demand needed to

be met. They use a fleet flow time-space network for each fleet type, as well as a pas-

senger flow time-space network for each demand (O-D) pair. Time discretisations are

used. The model is a cost minimising multi-commodity network flow problem. The

resulting large-sized problem is solved using Lagrangian relaxation, a sub-gradient

method, specialised heuristics and a custom-designed solution sequence. The model

was applied to a Taiwanese airline with 11 cities served by 170 daily flights and 2

fleet types. The model had 9504 nodes, 25558 arcs and 10407 constraints.

3.2.3 On-Demand Air Transportation

In 2004, Cordeau et al. [5] compiled a literature review on the transportation on

demand (TOD) types of problems. They found little or no literature for the static
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dial-a-flight problem (DAFP) and therefore presented an ILP formulation. The

static version must schedule a known number of demands in a day. The dynamic

version of the DAFP addresses the problem where passengers may arrive and re-

quest service immediately, but then may be denied service at some cost to the

provider. The suggested time-discretised multi-commodity network flow problem

becomes large quickly, and specialised methods are required to solve instances in-

volving 15 to 30 airports and 5 to 10 airplanes. It should be noted that the problem

at hand matches this type of problem. Therefore, the problem descriptions “DAFP”

and “airline taxi” are used interchangeably in this work.

Courier services operate a type of on-demand delivery service. Armacost et al. [136]

describes a system developed to schedule packages for United Parcel Service (UPS),

an American courier company. UPS delivers 13 million packages globally every

day. The model determines aircraft routes, fleet assignments and package routings.

The main problem with the formulation used, as with many such problems, was

the weakness of relaxations. A solution involved redefining the decision variables

as composite variables. Effectively, instead of using the actual aircraft decision

variables, new variables specifically designed to have sufficient capacity to carry the

full parcel loads that are needed to be transported are defined. For example, if one

aircraft type is too small to carry the load, another decision variable is introduced

which represents two of that aircraft type in one variable.

Business and service considerations for the DAFP include how many stops a pas-

senger may experience, passengers changing planes at stops, waiting times and total

journey times (Cordeau et al. [5]). In terms of costs, short flights use more fuel per

km of distance flown than long flights. Fuel consumption is also dependent on how

heavily loaded the aircraft is.

The turnaround time refers to the time it takes for an aircraft to be ready to take

off after having landed and stopped to offload and take on new passengers. There

are varying amounts of turnaround time necessary, depending on factors such as

whether passengers and their baggage must change aircraft, number of passengers

in the aircraft, whether refueling is required and aircraft size.

An on-demand air transportation type of problem was addressed by Ronen [137]. A

set of revenue trips needed to be partially satisfied by a fleet of aircraft at minimal

cost, and any remaining flights were to be sold to other operators. A large set of

feasible candidate schedules is generated for each aircraft using heuristics. The best

set is then selected using an MIP-type solver.
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Lee et al. [6] address the air taxi service problem with probabilistic variables. They

model the situation where passengers must request the service in advance, as opposed

to simply arriving when transport is needed. Discrete event simulation methods to

maximize revenues are used.

The most recent literature dealing with the airline taxi problem is that of Espinoza

et al [7]. The research dealt with the hiring of executive jets in the USA and is

termed the per-seat, on-demand air transportation problem (PSOD). This problem

description closely matches that of the problem at hand, suggesting the PSOD is

similar to the airline taxi problem to be addressed.

In such a problem, business people provide a required origin-destination (O-D) pair

(demand) and timing window a few days or one day in advance, and the jet provider

must assemble a schedule to accommodate all of these bookings. A time-discretised

network model resulted in a multi-commodity network flow model with side con-

straints. Heuristics designed to eliminate obviously infeasible routes are captured

in the form of a rolling forward algorithm. These heuristics relate to plane capac-

ity, timing constraints such as time of day, elimination of sequences which involve

two consecutive flights without passengers on board, eliminating later departures in

flight sequences if earlier departures are available. Time windows are also intelli-

gently chosen such as to coincide with key moments of the day, hopefully eliminating

the need for many variables. Aggregation of nodes was carried out to further re-

duce the network size. This involved eliminating arcs and nodes. Problems of up to

81 requests, 8 jets and 17 airports are solved. A second paper [138] describes im-

proved neighbourhood search techniques and parallelisation of the search to achieve

solutions for larger instances.

The on-demand air transportation problem or DAFP or airline taxi problem is to

some extent similar to certain vehicle routing problems such as PDPs, since both

have pickups and deliveries and time windows. It differs from the DARP in that, in

an airline taxi scheduling problem, all passengers must be picked up and dropped

off at predefined points, namely airports, whereas in the DARP, passengers can be

picked up and dropped off anywhere on the network.

This means there are likely to be fewer locations in a DAFP than a DARP for

a similar number of bookings, allowing a smaller-sized formulation for the DAFP.

Different heuristics might be applicable. In practice in a DAFP, it is often acceptable

from a quality of service point of view to drop off passengers at a location such

that they can be collected by another vehicle to continue their journey. This is

not only unlikely to be acceptable in a DARP, but, due to the random positioning
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of each passenger pickup and delivery points, there should be fewer cost-effective

opportunities to do this.

3.3 Solving large MIP problems

Aircraft scheduling problems often have large numbers of variables, including many

binary variables. Integer and continuous variables may also be present. Such prob-

lems can be easier to solve by, for example, reducing variable count at the expense

of more constraints, or by exploiting special structures related to the binary vari-

ables [139] . More constraints help with respect to integer solution methods by

reducing the size of the search space, but can slow down the solution of the linear

programming (LP) relaxations.

In practice, various mathematical solution algorithms and methods are used, includ-

ing decomposition, column generation, branch, price and cut. The objective function

can be modified by means of Lagrangian multipliers to effectively remove difficult

constraints and result in a problem with a simple structure. This might be done,

for example, to allow the model to be solved using an efficient network algorithm

[2]. Typically, the aircraft capacity constraints are dealt with in this manner.

Column generation is a well-established technique which involves progressively adding

variables to the problem and proceeding with LP relaxation solutions accordingly

[140]. The technique applied to IP is referred to by the term ‘branch and price’.

Branch and price has become popular for many VRP problems. Examples include

those of Salani, Fukasawa et al. and Prescott-Gagnon et al. [141–143]. There are

issues which arise and make these methods more suited to achieving good solutions

than optimal solutions. For example, the method normally involves a reformulation

of the problem such that variables inherently contain more information. This allows

each variable to be priced to determine if it should be in a solution or not. The prob-

lem then revolves around how to make up or select feasible integer variables that

should be included in the problem. This search procedure is done at each branch of

the branch and bound process, and is sometimes done using dynamic programming

(DP) or metaheuristics. The technique has been successfully applied to a number

of routing-type problems.

Branch and cut involves leaving constraints out of the LP relaxation. Then, if a

solution is infeasible, a subproblem (the separation problem) is solved to identify

violated inequalities. Some of these are added to the LP to cut the infeasible region
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off. Branching occurs when no violated inequalities are found. Both techniques can

be used on a problem simultaneously.

Feaspump [22] is a heuristic method which works by considering two solutions, the

feasible LP relaxation optimum and an integer solution which is the LP rounded

solution and thus may or may not be optimum. The idea is to search in the di-

rection of the LP optimum for a better integer solution. This is done by finding

the closest LP feasible point to the current infeasible integer solution. The method

first addresses the binary variables, then having fixed them, attends to the general

integer variables.

Benders [23] proposed what is now called Bender’s decomposition. Effectively, the

MIP problem is decomposed by variable type. This or modifications thereof may

have advantages in practice since efficient methods can often be developed to solve

problems with purely one kind of variable, but not mixed types. Papadakos [130]

uses Benders decomposition in this way in a necessarily large integrated model for

airline scheduling.

Kamath et al. [144] and Karger and Plotkin [145] have developed fast approxima-

tion algorithms for the minimum cost multi-commodity network flow problem. The

algorithm starts with zero flow and at each iteration, identifies incremental flows in

the network.
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3.4 Conclusions from Literature Review

There has been a substantial amount of work done on heuristics for VRP problems in

general. In recent heuristic research, construction heuristics such as greedy heuris-

tics, insertion heuristics and clustering, including cluster-first route-second methods,

are favoured.

The latest dial-a-ride problem research is dominated by tabu search and genetic

algorithm based methods. A wide range of sizes of problems have been approached

with these methods. Exact methods tend to be avoided for multi-vehicle pickup and

delivery problems in particular.

Work on agent routing, including ACO, for VRPs is becoming more popular. Apart

from ACO and other nature-based methods, there seems to be little, if any, work on

training of agents in agent-based routing.

There is very little work on the airline taxi problem in published literature.
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4 Methodology

4.1 Overview

The type and size of the problem at hand suggests it could be approached by ap-

plying similar techniques as have been used for the DARP, such as the use of im-

provement heuristics or local search-based metaheuristics. Compared to the large

DARP described by Diana and Dessouky [103], this problem is relatively small and

less tightly constrained, since many of the customers have wide time window re-

quirements. However, it would be regarded as fairly tightly constrained compared

to many VRPTW research problems, such as the VRPTWs used by Solomon [25].

In general, heuristic methods give lower quality solutions than metaheuristic meth-

ods [5]. The nature of the problem suggests solution methods for reasonably tightly

constrained and medium-sized problems, such as exact or metaheuristic methods.

Very little work has been done on construction methods which is the focus of this

research. Theoretically, if good solutions can be obtained in a reasonable time using

a construction method, improvement heuristics might not be needed, or need less

time to improve the solution.

A reason to avoid the use of purely heuristic methods is the cost of the service. Since

the service is provided by an expensive vehicle type, the cost of a less than optimal

solution is high compared to a road-based taxi service.

In this work, a pure version of the airline taxi problem was addressed using the

relevant Sefofane Air data, but leaving out certain constraints. A small problem

was created to test the methods and for benchmarking purposes. Thereafter, the

problem with all constraints was addressed.

47



Constraints that were relaxed included:

• No forced end-of-day positions for aircraft for certain versions of the problem.

• No special considerations with regard to the number of crew required or spe-

cial customer requests (customers can request special arrangements for their

journey).

For PDPs, particularly real-world problems, it is considered difficult to construct

feasible solutions [15]. However, existing literature is concentrated around improve-

ment heuristics and metaheuristic techniques, which need such a feasible solution

to begin. Metaheuristic techniques are beneficial because the actual, constrained

feasible region in these problems can be small. Therefore methods to produce good

starting feasible solutions for such problems are required.

The full problem, as experienced by Sefofane Air, is first described in detail in

Chapter 5. Thereafter various approaches to the solution of the air taxi problem

that underlies it are detailed.

The problem described in this work can be addressed using an exact ILP and prob-

lem size reduction heuristics, as done by Espinoza et al. [7]. Such an exact method

is presented in Chapter 6, together with newly-developed heuristics in Chapter 7.

This method involves the use of a multi commodity network flow (MCNF) integer

linear program (ILP) with time discretisations (TDs). This method was initially

devised purely to obtain benchmark solutions as close to optimality as possible.

However, when combined with heuristics devised for this problem, it will be a prac-

tical alternative for smaller instances, possibly up to 80 requests. Two heuristics are

developed in Chapter 7 for this problem. They are designed to reduce the number

of variables in the problem by aggregation of customer groups and by eliminating

cost-ineffective routes.

Another approach to the problem is to combine exact ILP methods with construc-

tion heuristics, by using heuristics to construct feasible route sections and use those

as variables in ILP formulations (as done by Ronen [137] and Armacost et al. [136]).

This way, more information is captured in each variable than a typical exact formu-

lation, and fewer variables will result. It is these ideas which motivate the following

methods which are proposed in this research:

1. MCNFP with time discretisations (TDs): Chapters 6 and 7 - A group

aggregation heuristic and a geographically-inspired heuristic are designed to
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reduce the number of variables associated with the passenger group networks

in the standard MCNFP of Chapter 6. Although this method was initally

included to obtain a lower bound for the problem, it will be useful for smaller

problem instances.

2. Variable construction using agent routing information combined with

MCNFP : Chapter 8 - This method is similar to that described in method

1, except it only uses well-placed nodes and arcs in the networks. This infor-

mation is provided by the use of agents.

3. Composite variable MCNFP: Chapter 9 - This method creates variables

where each variable inherently contains more information than the variables in

methods 1 and 2. Specifically, the variables are created such that no passenger

networks are required, greatly reducing the size of the problem, particularly

for the problem described here.

In order to evaluate whether these methods may be useful in other VRPs, the

composite variable MCNF method (method 3) was applied to an additional VRP,

namely the MVCVRP. The agent route variable generation method (method 2) was

applied to the CVRPTW.

All models except those in Chapter 5 were generated and solved on a Mecer PC with

Intel i7 8 core processor, 8 GB RAM, Windows 7, and with Matlab 7.11, Excel 2010

and CPLEX 12.1 software packages. Chapter 5 models were solved using GUROBI

solver provided by NEOS [146].

4.2 Small-Scale Benchmark Airline Taxi Problem

For the pure airline taxi problem, a small problem was compiled in addition to the

given, relaxed and full-sized problem, such that various techniques could be tested

and for benchmark comparison purposes. The problem was formulated from the real

data such that it was suitable in terms of size and solution speed for the evaluation

of the heuristics and for comparing results from different models. It also had to

be representative geographically of the spread of landing strips (or locations) in the

full-size (large) problem.

In order to ensure the small problem was representative of real data which may

actually occur, the problem was compiled by using Monte Carlo random sampling

from the full table of 158 bookings. In doing this, the locations which appear
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in the smaller problem should be nearly as scattered and widespread as in the

larger problem. If this is not the case, the heuristics devised may not work in the

same manner on both problems, particularly if those heuristics are related to the

geography of the locations.

The first seven locations in the full city list (see Figure 5.3 and Appendix A, Table

A.4) were chosen to be included in the smaller schedule, since they included the

hub at Maun and satisfied the requirements with regard to geographic spread. A

sampling table was assembled consisting of all bookings from the full list which only

included these seven locations.

Individual bookings were randomly sampled using a uniform distribution with re-

placement from this sampling table. Replacement is done to ensure samples are

independent. In this case, many samples are in any case similar and obtaining more

than one of the same sample does not affect the obtained sample or the solution

process in an adverse manner. The sampling process continued until 40 bookings

had been compiled.

4.3 Sefofane Air Solution

One of the solutions obtained for the full-sized model was used to demonstrate how

Sefofane Air would use this solution method in practice. The solution is compared

with the actual solution used on the day in question.

4.4 Application to Other VRPs

The composite variable MCNF method was applied to a real-world MVCVRP to

evaluate whether it may be useful for different types of VRP problems. The MVCVRP

was inspired by a real-life logistics problem for a food distributor in Pretoria, South

Africa, and as such the problem specifications match the operations of the company

in question. Two reduced-size problems were created, a small and medium size

version, in order to compare solutions with their exact solution counterparts found

using a standard ILP. A large-size problem instance provided by the company was

solved. Problems addressed represented a range of customer daily deliveries from

10 to 128 from a single depot. The presence of a single depot means that this type

of problem differs significantly from the PDP-type problems and the airline taxi

problem.
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Another type of problem which shares commonality in terms of having a single depot

with the MVCVRP is the VRPTW. Standard, benchmark instances for this type

of problem have been artificially generated and are available on the Internet, and

such a problem, provided by Solomon [147], was obtained. For this problem, the

agent routing method developed for the airline taxi problem was applied. To achieve

this, the problem is modelled using a time-space network. A best known solution

available on the Internet was used for comparison purposes.
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5 The Sefofane Air Scheduling Problem

Description

5.1 Sefofane Air Operations

Sefofane Air is the largest airline operating in the Okavango Swamps, Botswana,

and that is where the bulk of their operations occur. Their primary target market is

tourist groups. Their operations also include airline services in Namibia, Zimbabwe,

Zambia and South Africa.

Tourists book to stay at any of more than 100 tourist safari camps in the Okavango

and surrounding area. When booking, they will also book flights between locations

in the area.

Tourists may enter Botswana by road or on flights from South Africa or other in-

ternational locations. Typically a road trip or an international flight will bring

tourists to Victoria Falls in Zimbabwe, Livingstone in Zambia or, most likely, Maun

in Botswana, which is also where the Sefofane Air head office is located. This can be

considered the hub of their operations, since more of their flights arrive and depart

from there than anywhere else. Air Botswana international flights land and depart

from Maun.

From Maun or other point of access, Sefofane Air transports the tourist groups to

their prebooked safari camps. Most safari camps have an airstrip, and most are

an untarred (dust) landing strip. Main centres such as Victoria Falls have tarred

landing strips or airports. Often, tourists will stay in a series of different safari

camps, in which case Sefofane Air will transport them between these camps, as

required.

Sefofane Air uses relatively small aircraft designed to operate to and from such

locations. These include the Cessna C206, a 5-seater aircraft (i.e. 5 passenger seats)
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often described as the “workhorse of the bush” (Figure 5.1), and the Cessna C208

Grand Caravan, a larger, 12-seater aircraft (Figure 5.2). Both aircraft can be flown

by a single pilot. However, if carrying passengers and luggage, the C208 needs a

loadmaster, which is an extra crew member required to balance the aircraft load

before takeoff, particularly if the aircraft is full or heavily loaded.

Figure 5.1: Cessna C206 [148]

Currently, Sefofane Air employs two experienced schedulers who make up the flight

schedule and route the aircraft a few days in advance of the day in question. The

schedulers are considered to produce good, low cost schedules. However, since the

job they do is dependent on their experience, there is a risk to the airline that, if

they should not be available, at best schedule costs would increase, and at worst the

airline would not be able to operate effectively.

Because schedules are assembled in advance for a known booking list, the problem

can be classified as a static DAFP [122].

5.2 Problem Specifications

Sefofane Air’s fleet and aircraft specifications, as used in the Okavango Swamps, are

shown in Table 5.1.
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Figure 5.2: Cessna C208 Grand Caravan [149]

Table 5.1: Fleet Characteristics [150], [151]
Aircraft Number Passenger Seat Cruising Operating

Type Available Capacity Speed (km/hr) Cost (R/hr)

Cessna 206 9 5 210 1385

Cessna 208 5 11 260 3910

The costs in Table 5.1 are given in South African currency, Rands. The exchange

rate at the time of this work was approximately 8.50 Rands (R8.50) to the US Dollar.

The C208 cost given includes the loadmaster (R255/hr). In the case of the C208,

the seating excludes the 2 crew members (pilot and loadmaster). The operating cost

includes crew, maintenance costs and fuel.

Sefofane Air supplied a list of bookings for a particularly busy day (18 June 2008)

and this list included 21 safari camps. The booking list supplied is included in

Appendix A, Table A.1. Note the use of the term“pax” which refers to the number

of passengers in the booking group, or the number of passengers being transported

on a flight.

A map of the camps which were included in the booking list on that day, and the

area of operations is shown in Figure 5.3.
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In this research, each safari camp (or location) was arbitrarily assigned a number

from 1 to 21 for the purposes of modelling, and these numbers are shown on the

map. The safari camp names and numbers are listed in Appendix A, Table A.4.

The distances between safari camps is included in Appendix A, Table A.2.

55



F
ig

u
re

5.
3:

M
ap

of
th

e
O

ka
va

n
go

D
el

ta
A

re
a

[1
5
2]

56



Sefofane Air supplied the manual schedule that was compiled and actually used for

the day in question, and this is included in Appendix B. This schedule shows that

the schedulers use a turnaround time of 10 minutes.

Sefofane Air have 3 different types of passengers:

1. Tourists - Usually travelling in groups of mostly 2 but also more.

2. Sefofane and safari camp staff - Usually travelling as a single person.

3. Boxes - A box consists of provisions for the camps and takes up one seat on

an aircraft.

It is desirable not to have tourists sitting next to boxes, hence in the schedule shown,

the boxes were grouped either in 5s or in 12s such that they would alone take up

their own aircraft.

For the C208, no loadmaster is required for “box only” flights. Examination of the

manual schedule (Appendix B) reveals an instance where a C208 had no loadmaster,

and had to fly to a certain destination to collect one. Also, all the “box only” trips

were specifically scheduled without a load master. Presumably this saves costs and

allows one extra box to be transported.

Crew may overnight at any safari camp, since the aircraft is merely parked on the

airstrip and the crew accommodated in available accommodation. However, it may

be advantageous to ensure they are at some specific destination, for example, to start

the next day’s flights. In fact, examining the manual schedule, it is apparent that

the schedulers did schedule aircraft to fly empty to overnight at specific destinations.

Note that both aircraft have relatively long ranges so refueling during a day’s flying

is unlikely to be necessary, and this was actually the case in this work. If necessary,

fuel is available at the main hub (Maun) and various other stops such as Victoria

Falls and Livingstone.

Pilots and loadmasters are paid per hour of flying time. The loadmaster’s cost is

relatively small compared to the C208 operation cost (R255 vs R3610). This, coupled

with the fact that the flights requiring a loadmaster far outnumber the flights which

do not, suggest the airline should consider always including a loadmaster in every

flight. This is because the operational complications of not having a loadmaster on

certain flights is likely to outweigh the small cost benefit.

Examination of the manual schedule revealed a special request. This involved a
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large tourist group which wanted to be flown in their own aircraft and without any

other passengers. Since the group consisted of 13 people, they requested two C208s

for this purpose.
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6 Multi-Commodity Network Flow ILP with

Time Discretisations

6.1 Description

As suggested by Cordeau [5], Yan and Tseng [128] and Espinoza [7], the DAFP can

be formulated as an ILP with the use of time steps or discretisations (TDs). In this

case, the time-space diagram is discretised in the time dimension using 10 minute

time steps. A node is placed at each destination at each time step, and all possible

flight arcs are included, as shown in Figure 3.7. Nodes are also placed at each

passenger origin at the earliest departure time (EDT) and destination at the latest

arrival time (LAT). These nodes are used to ensure ground arcs can be included that

will allow demand to be met as required by the time windows. Multiple networks

are superimposed and solved in the formulation, one network for each fleet type and

one for each passenger group.

The formulation is as follows:

Define the following decision variables:

• Set of aircraft flight variables X, consisting of elements xijf , each correspond-

ing to a possible flight leg. Each such leg is associated with a fleet type f in

the set of fleet types F , a starting node iut in the set of nodes N with an origin

u from the set of locations C, and a departure time t, and an ending node jvt

in the set of nodes N with a destination v ∈ C and an arrival time t. These

variables are referred to as “flight legs” and are integer.

• Set of fleet ground variables S, consisting of elements sijf , each corresponding

to a fleet type f in the set of fleet types F , a start node iut and end node

jut, both in set of nodes N . A ground variable has an associated location u
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and represents the number of aircraft of a particular fleet type on the ground.

These variables are referred to as “ground arcs” and are integer.

• Set of passenger flight variables Y , consisting of elements yxg, each correspond-

ing to a possible flight leg x and a passenger group g in the set of passenger

groups G. These variables are binary and indicate whether the associated pas-

senger group is undertaking that flight leg (i.e. on-board the aircraft for that

flight leg). They are referred to as “passenger flight legs”.

• Set of passenger ground variables T , consisting of elements tijg, each corre-

sponding to a passenger group g in the set of passenger groups G. Each

passenger ground arc connects two nodes iut and jut at a location u ∈ C and

indicates whether the associated passenger group is on the ground. They are

referred to as “passenger ground arcs”.

The objective is to minimize costs:

minimize
∑
x∈X

Cxxijf , (6.1)

where Cx is the cost associated with the flight variable x, i.e. the cost of executing

the flight leg. It is calculated as the aircraft type hourly cost in Rands times the

flight distance in kilometers divided by the aircraft type flight speed in km/hr.

Constraints must ensure conservation of fleet flow and passenger group flow at every

node. For fleets,

(incoming aircraft) = (outgoing aircraft) .

Therefore

(∑
i∈N

xinf + s(n−1)nf

)
−

∑
j∈N

xnjf + sn(n+1)f

 = 0, ∀n ∈ N, ∀f ∈ F, (6.2)

where nodes n are numbered sequentially at each location. Therefore s(n−1)nf refers

to the ground arc leading from the preceding node (n − 1) to the subsequent node

n, and, likewise, sn(n+1)f refers to the ground arc leading from the preceding node

n to the subsequent node n+ 1.
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For passengers,

(∑
i∈N

yxinfg + t(n−1)ng

)
−

∑
j∈N

yxnjfg + tn(n+1)g

 = 0, ∀n ∈ N, ∀g ∈ G. (6.3)

The passenger networks and the fleet networks are bound by the aircraft capacity

constraints as follows:

∑
y∈Y

yxg GrpSizeg ≤ x Capx, ∀x ∈ X, (6.4)

where GrpSizeg is the number of people making up group g. Capx is the passenger

capacity of the aircraft type associated with x.

Additional constraints are needed to ensure the number of aircraft of each fleet type

are correct at each location at day start and day end, and that the number available

is not exceeded. Therefore at the starting node for each location u in set of all

locations C, the ground arc s for each fleet f must be set equal to the number of

aircraft of that fleet type positioned there at day start:

snif = vuf , ∀f ∈ F,∀u ∈ C, (6.5)

where snif is the ground arc for fleet type f going into the first node (i.e. earliest

time) of location u. vuf is the number of aircraft of fleet type f at location u at the

start of the day.

Note that this constraint must be used for all locations where there are no aircraft

of some fleet type, in which case vuf = 0. This is to ensure the correct number of

aircraft are used in the model.

In the case where the aircraft need to be at certain locations at day end, the ground

arc s for each fleet type f leaving the final node at each location u must be set to

the required number of aircraft of the appropriate fleet type:

snof = vuf , ∀f ∈ F,∀u ∈ C, (6.6)

where snof is the ground arc for fleet type f going out of the last node (i.e. latest
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time) of location u. vuf is the number of aircraft of fleet type f at location u at the

end of the day. This constraint could be used only for locations where aircraft are

required at the end of the day if necessary, and not all locations.

A similar constraint is required to ensure the correct number of each passenger

group in the problem. This can be done by setting the passenger ground arc into

the earliest node at each location (i.e. at day start) to either one if that location

matches the group origin, or zero otherwise. This is achieved as follows:

tnig = bug, ∀g ∈ G, ∀u ∈ C, (6.7)

where tnig is the passenger group ground arc with end node corresponding to the

first node at location u and bug is either 1 or zero, depending on whether u is the

origin for g.

Constraints must be included to ensure passenger groups are at the correct locations

at the group EDT and LAT of each day to ensure that demand is met and time

windows enforced. For the EDT, the passenger ground arcs t for every passenger

group g into the correct node of each location u must be set to a value of 1:

tneg = 1, ∀g ∈ G, (6.8)

where tneg is the passenger group ground arc with end node corresponding to EDT

and origin location for passenger group g.

Similarly, the passenger ground arcs out of the LAT nodes at each location must be

set to 1 for each passenger group:

tnlg = 1, ∀g ∈ G, (6.9)

where tnlg is the passenger group ground arc with start node corresponding to LAT

and destination location for passenger group g.

Note that this formulation allows passenger groups to swap aircraft during multi-leg

journeys. Preventing this effect would require additional variables to be introduced

into the problem, adding complexity and slowing computational times. In practice,

it was found that in addition to aircraft swapping by passenger groups, certain

passenger groups also had to endure long waiting times during journeys. A constraint
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was introduced to constrain this intra-journey waiting time. This constraint was

formulated to limit the amount of ground arc time endured when the group was not

at either their origin or their destination, as follows:

∑
t∈{T :gcod}

t ≤ 4, ∀g ∈ G. (6.10)

In equation (6.10), set {T : gcod} is a subset of passenger ground arcs T which includes

only ground arcs which are not situated at either the passenger group g origin or

destination. This will cause every group to only need to endure ground waiting times

of a maximum of 10 minutes at each stop, plus 4 x 10 = 40 minutes, i.e. 50 minutes

(10 minutes being the size of the time discretisations, TDs). Replacing the 4 by a

0 causes the passenger groups to only have ground waiting times of 10 minutes per

stop during a journey.

In practice it was found that passenger leg and ground arc variables were being

used unnecessarily since they do not have a cost associated with them. Therefore

a nominal cost was applied to all the variables except the flight leg variables to

prevent them being used in a solution. A value of 20 was found to be sufficient for

this purpose.

The number of variables produced by this formulation for the full-sized problem

under consideration in this work was found to be 7.8 million. This is too many to

create and manipulate on a personal computer. Therefore, problem size reduction

heuristics are described in the next chapter.
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7 Heuristics for Problem Size Reduction

7.1 Motivation

The exact formulation MCNFP ILP with time discretisations (TDs) is difficult to

solve largely because of the number of passenger groups in the problem. This is

because each commodity in the problem requires a separate network, and each pas-

senger group and each fleet effectively represents a different commodity. Since for

this problem there are 2 fleet types and 158 passenger groups, the formulation results

in 7.8 million variables, which is too many to allow a solution to be obtained. The

main problem is the number of passenger groups. Therefore, heuristics are aimed

specifically at reducing:

1. The size of the passenger networks,

2. The number of passenger networks required.

In this work, two heuristics were devised to reduce the number of passenger network

variables. The first, a passenger group aggregation heuristic, effectively reduced the

number of passenger groups in the problem by half. Thus the number of passenger

networks required was reduced proportionately. The second, a heuristic based on

geographic considerations, reduced the passenger network sizes, such that, in the

large instance (full schedule) the remaining problem variables were reduced to a half

of their original number. These two heuristics were used together for the standard

MCNF described in Chapter 6 and also for the method described in Chapter 8. Only

the passenger aggregation heuristic was used in the method described in Chapter 9.
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7.2 Group Aggregation Heuristic

7.2.1 Description

Since many bookings involve only one person (staff), the number of items to be

scheduled could effectively be reduced using a heuristic to combine smaller groups

into larger groups. For this problem, this was the case. This heuristic was devised

as follows:

1. Begin with the first booking in the list.

2. Search from the second booking onwards for any other booking which satisfies

the following:

• Has the same origin and destination as the first booking

• Has an earliest departure time (start of time window, EDT) and latest

arrival time (end of time window, LAT) closely matching that of the first

booking

• When the number of passengers in the booking is added to that of the

first booking, the aircraft capacity for the largest aircraft (C208) is not

exceeded.

3. If found, that booking is combined with the first booking and the EDT and

LAT for the combined booking is set to the later of the two in the case of

EDT, and the earlier in the case of the LAT.

4. If the plane (the largest) has additional space available, the search is continued

to the end of the booking list.

5. Move to the next booking in the list and return to step 2. Repeat until every

item in the booking list has been considered for combination with every other

item.

Note that item 2 specifies that two groups can be aggregated if their EDTs and LATs

closely match. The time within which two group times could be considered “close”

can be varied. A larger tolerance would cause more groups to be aggregated and

a smaller resultant aggregated schedule. The value used in this work is 15 minutes

and was found to produce good results.

Note that groups were simply assembled into as large groups as possible to fit in the

largest available aircraft (i.e. maximum group size of 11).
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7.2.2 Aggregation Validation

This heuristic was validated by randomly shuffling the full set of booking data, then

observing whether different aggregated groups resulted when the heuristic was ap-

plied. The data was thus shuffled and the heuristic applied five times, and the result

was identical each time, that is, the same groups were aggregated together and the

same number of combined groups resulted. It was concluded that, in this instance,

the grouping mechanism would always produce repeatable resultant bookings.

The result for the large schedule (158 bookings/passenger groups, 21 locations) was

79 combined groups. These groups consisted of 3 combined groups that had been

assembled from 11 of the original groups, 1 combined group from 10 original groups,

1 combined group from 6 original groups, 1 combined group from 5 original groups, 2

combined groups from 4 original groups, 5 combined groups from 3 original groups,

and 15 combined groups from 2 original groups. The balance of the groups could

not be combined. The aggregated groups are shown in Appendix C. The effective

number of bookings was reduced by half for the full-sized schedule. The application

of this heuristic to the small-sized problem (40 bookings, 7 locations) resulted in 26

aggregated passenger groups.

It should be noted that, although this heuristic was effective in this instance, some

problem parameters could differ in other instances and cause the heuristic to be less

effective. For example, for this work the largest aircraft size was 11 passengers in

comparison with 5 passengers for the smaller aircraft type. There were 5 of the

larger aircraft type available. In a similar case, but where there is only one of the

larger aircraft available, the problem may become infeasible due to this heuristic, or

give much lower quality results. This is because there could be too many aggregated

groups larger than the smaller aircraft capacity of 5 passengers for the single larger

aircraft to transport in a day. In such a case, the heuristic would be executed to

only allow a limited number of large groups for the large aircraft, and the rest of

the groups of sizes up to a maximum of the size of the smaller aircraft.

7.3 Geographic Heuristic

7.3.1 Description

A heuristic based on geographical considerations was devised which limited the

generation of passenger legs in the MCNFP formulations. The heuristic is based
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on the fact that a passenger group (booking) is most likely only going to travel

within a certain geographical region based on its origin and destination, therefore

any passenger leg or ground arc not within this geographical region can be left out

of the problem. This makes practical sense since a passenger group is likely to

be dissatisfied if flown in a direction away from or beyond their destination. This

heuristic is advantageous for this particular problem since it specifically reduces the

number of passenger legs in the problem.

A geographical area is defined based on the origin and the destination of each pas-

senger group in the booking list. In no case would it be advantageous to transport a

passenger group in a direction opposite to their destination. Also, passengers would

not need to be flown very far to either side of the line joining the origin and the

destination.

Therefore, the geographical area is defined using an angle α and a distance d as shown

in Figure 7.1. Only destinations (shown as round dots) within the polygon ABCDEF

are included in the passenger group geographic network under consideration. By

varying α and d the geographical area can be varied for any particular problem,

allowing more or less variables in the problem. The effect of the heuristic on the

solution quality can be evaluated by adjusting the geographic control parameters

(α, d) for the problem and judging when the solution quality begins to be adversely

affected.

Many passenger origin-destination (O-D) pairs are close together, and in these cases,

many variables would be removed from the problem. The heuristic will be much less

effective in variable generation reduction for those groups flying longer distances.

Figure 7.1: Geographic Heuristic

Also of note is the fact that this concept can be applied to the time dimension. To do
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this, all passenger leg and passenger ground arc variables falling outside a passenger

group EDT and LAT should be excluded from the problem. This results in a set of

valid inequalities for the problem.

7.3.2 Evaluation of Geographic Heuristic Effect

The geographic heuristic was applied to the small-size schedule and the model sub-

sequently solved using the MCNF described in Chapter 6, in order to evaluate the

effect of the heuristic on the solution. The version of the problem with constrained

end-of-day aircraft locations was used (equations (6.1) to (6.9)). Note that the aggre-

gation heuristic was applied first to these problems. The results are shown in Table

7.1. Note that objective value (Z) result for the problem without the geographic

heuristic is 40388.

Note that “gap” refers to the integrality gap (ILP gap) provided by typical ILP

solvers during the branch-and-bound solving process, and before the optimal solution

is found. The solver starts from a relaxed solution and progressively adds constraints

to encourage variables to resolve to integers. After some time an integer feasible

solution is found. At any point in time, the current, best integer solution is retained

while the search for better integer solutions proceeds. This solution provides an

upper bound (in a minimisation problem). The search process involves finding many

solutions which may have a certain number of variables integer, but not all. The

best solution obtained from these “unresolved branches” represents a lower bound,

or “best bound” to the problem. The gap refers to the percentage gap between these

upper and lower bounds. When this gap is zero, optimality has been achieved [153].

Table 7.1: Cost and Computation Times for Different Geographic Heuristic Param-

eters, Small Schedule
α (degrees) d (km) min Z (Rands) time (s) No. of Variables

110 100 40388 453 44852

45 50 40388 52 34153

45 40 42564 (0.75% gap) 3695 32351

45 30 43640 (2.84% gap) 380 32351

40 50 41405 307 32355

40 40 44334 61 31113

35 50 44334 59 31113

35 40 44334 307 31113

From Table 7.1, it is evident that the solution begins to degrade for α values below

45◦ and d below 50km. Therefore those values were used in subsequent problems.

In Table 7.1 the solution times are often unpredictable in relation to the number
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of variables in the problem. Most of the problems were solved to optimality in a

reasonable time. However, the problem for d=40km and α=45o took much longer to

solve, such that the solver had to be stopped prior to optimality. For this problem, it

was observed that the ILP gap was less than 3% after 6 minutes. Therefore the solver

could have been stopped at that point and a good solution obtained. Accordingly,

the solution for d=30km and α=45o, was stopped after about 6 minutes. The

reason for these slow solution times is not apparent, but since acceptable results

were achieved, this was not further investigated.

The geographic heuristic was applied to the full size schedule to evaluate the effect

of the heuristic on the number of variables in the problem. Note that the effect

of the heuristic on the solution quality was not evaluated. The results are shown

in Table 7.2. Without the heuristic, the number of variables is approximately 3.84

million. Therefore the problem size has been significantly reduced. However, for an

α value of 45◦ and a d of 50km, the number of variables is still a substantial 235428.

Table 7.2: Effect of Geographic Heuristic on Number of Variables for Large Schedule
α (degrees) d (km) No. of Variables

110 100 523615

45 50 235428

45 40 233474

45 30 220567

35 50 179208

35 40 177718

35 30 176483

7.4 MCNFP Solutions

7.4.1 Small Schedule

Solutions were obtained for the MCNFP described in Chapter 6 for the small and

large schedules. Both the aggregation and geographic heuristics were applied.

For the case where the end-of-day locations of aircraft and passenger group ground

arc waiting times (or intra-journey waiting times) are not constrained (equations

(6.1) to (6.5), (6.7) to (6.9)), and using geographic heuristic values d=50km and

α=45o, a best cost of R37906 was achieved in 1882s and with 34153 variables.

The small-size schedule was solved for the case where the end-of-day locations of

aircraft are constrained (equations (6.1) to (6.9)) and the results are shown in Table

7.1. The resultant schedule for the chosen geographic heuristic values (d=50km and

69



α=45o) is shown in Table 7.3. Note that the passenger groups referred to in the

table are aggregated groups, hence there are 26 groups listed.

The passenger groups which experience multiple flight legs and those which are

required to swap aircraft during their journey are shown in Table 7.4. The schedule

cost was R40388.

Note that the groups listed in column 1 of Table 7.4 are the only groups that ex-

perienced a journey which consisted of more than one flight leg. For example, row

1 shows that passenger group 7 consists of two passengers, and their journey from

origin to destination involved 3 aircraft flights. The last column shows that the

aircraft on which they were placed was a C206, and they started at location 2, went

to location 6, then location 4, then ended their journey at location 3.

Four passenger groups (15, 14, 21 and 19) needed to change aircraft and one group

changed aircraft twice and endured a total of 390 minutes (6.5 hours) of ground

waiting time en-route. Another group had to endure a wait of 580 minutes (9.7

hours) between flight legs.

The amount of intra-journey ground waiting time on multi-leg journeys was then

limited to turn around time only (i.e. 10 minutes per stop) by adding the constraint

shown in equation (6.10) to the problem. The result (using d=50km, α=45o) was a

schedule cost of R41338, using 34135 variables and 1462s solution time. Allowing 40

minutes of en-route ground waiting time (excluding 10 minutes turn around time per

stop) produced a schedule cost of R41300. With this constraint restricting ground

waiting times to the minimum (turn around times only), 5 passenger groups needed

to change aircraft en-route (Table 7.5). One group needed to change aircraft twice.

A summary of these results is included in Table 7.6. It was found that the problems

with both the end-of-day aircraft position constraints and the ground time limiting

constraints took excessively long and therefore impractical times to solve, hence

those results are not included in the table.

The effect of the aggregation heuristic was evaluated by solving the problem without

using this heuristic, and limiting the ground arc waiting time for passenger groups

to the minimum (using d=50km, α=45o, equations (6.1) to (6.10)). The result

was a schedule with a cost of R41907 with a 2.5% gap after 69329s (19.3hrs) of

processing time, and using 77089 variables. This is similar to R41338 obtained for

the aggregated instance (taking into account the 2.5% ILP gap).

When the non-aggregated model was executed with unlimited passenger ground
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time, a schedule cost of R40388 resulted (0.7% ILP gap) after 56324s (15.6 hours)

processing using 77089 variables. This is identical to the R40388 obtained for the

aggregated instance. The large-size schedule could not be solved in non-aggregated

form due to the number of variables involved.

Table 7.3: Small Schedule Solution
Origin Departure Destination Arrival Passenger Groups

Fleet Type Location Time∗ Location Time∗ on Board∗∗

C206 3 370 4 420 19

4 420 7 470 3

7 530 2 570 0

2 610 6 640 7

6 670 4 700 7, 14, 15

4 700 3 750 7

3 760 5 820 6

5 820 6 860 5

6 860 2 890 21

2 950 7 990 0

C206 7 380 6 410 0

6 480 3 560 4

3 610 1 650 0

1 660 3 700 21

3 810 4 860 22

4 860 3 910 2, 14

C206 7 460 2 500 11

2 500 7 540 10

7 870 2 910 20

2 950 7 990 0

7 950 4 1000 9, 18

4 1000 7 1050 16, 19

C208 7 370 6 390 15

6 420 3 480 23

3 720 4 760 1, 21

4 830 6 860 8, 17, 21

6 860 7 880 8, 13, 17

C208 7 420 6 440 12, 14

6 440 3 500 26

3 720 5 770 25

5 830 6 860 24

∗ Times are given in minutes in the day, i.e. 370 = 6h10, 420 = 7h00 ∗∗ 0 indicates empty aircraft flight

Table 7.4: Multi-Leg Trips - Unlimited Ground Waiting Time, Small Schedule
Passenger No. of

Groups Passengers No. of Legs Fleet Type and Journey Sequence

7 2 3 C206: 2 - 6 - 4 - 3

15 1 2 C208: 7 - 6, wait: 480min, C206: 6 - 4

14 1 3 C208: 7 - 6, wait: 230min, C206: 6 - 4, wait: 160min, C206: 4 - 3

21 3 4 C206: 1 - 3, wait: 20min, C208: 3 - 4 - 6, C206: 6 - 2

19 2 2 C206: 3 - 4, wait: 580min, C206: 4 - 7

8 2 2 C208: 4 - 6 - 7

17 1 2 C208: 4 - 6 - 7
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Table 7.5: Multi-Leg Trips - Minimum Ground Waiting Time, Small Schedule
Passenger No. of No. of Legs

Groups Passengers No. of Legs Fleet Type and Journey Sequence

14 1 3 C206:7 - 6, C206: 6 - 4 - 3

15 1 2 C206: 7 - 6, C206: 6 - 4

21 3 4 C206: 1 - 3 C208: 3 - 4 - 6, C206: 6 - 2

8 2 2 C208: 4 - 6, C206: 6 - 7

17 1 2 C208: 4 - 6, C206: 6 - 7

Table 7.6: Schedule Cost Results Summary for Small Schedule
Waiting Time ∗ With Aircraft End-of-Day Without Aircraft End-of-Day

Allowed (min) Location Constraints (Rands) Location Constraints (Rands)

unlimited 40388 37906

40 - 41300

0 - 41338

∗ Excluding TATs

7.4.2 Full Schedule

Both the aggregation and geographic heuristic were applied to the full-sized schedule.

For the version of the problem with unconstrained end-of-day aircraft locations

(equations (6.1) to (6.5), (6.7) to (6.9)), a schedule cost of R79087 (7.02% ILP gap)

was obtained, after 104160s (28.9 hours) processing time and using 235428 variables.

For the problem with constrained end-of-day aircraft locations (equations (6.1) to

(6.9)), the resultant schedule cost was R85927 (15.4% ILP gap) after 22046s (6.1

hours) processing time. Passenger intra-journey ground time was not constrained.

All passenger trips that required swapping of aircraft are shown in Table 7.7. The

most en-route flight legs is 3 and a waiting time of more than 10 hours was required

for one group. Seven passenger groups needed to swap aircraft out of a total of 79

groups, or 9% of booked passengers.

In order to further reduce the problem size and for the case with constrained end-of-

day aircraft locations (equations (6.1) to (6.9)), the geographic heuristic parameters

were set to d=40km and α=35o. The passenger intra-journey waiting time on the

ground was limited to 40 minutes (excluding TATs) and a schedule with cost of

R88108 (16.8% ILP gap) resulted after 52746s processing time and using 177718

variables. When the allowed passenger ground time was reduced to the minimum,

the resultant schedule cost was R90819 (19.4% ILP gap) after 12930s of processing

time and using 177718 variables.

A summary of results is included in Table 7.8.
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Table 7.7: Multiple Leg Trips for Large Schedule
Passenger Groups No. of Passengers No. of Legs Fleet Type and Journey Sequence

30, 31, 32 3 4 C206:1 - 3, C208: 3 - 4 - 6 C206: 6 - 2

8 3 3 C206: 2 - 6 - 4 - 3

19 1 3 C208: 7 - 6 C206: 6 - 4 - 3

25, 27 2 2 C206: 3 - 4 wait: 610 minutes C206: 4 - 7

21 1 2 C208: 7 - 6 C206: 6 - 4

9 2 2 C208: 4 - 6 - 7

23 1 2 C208: 4 - 6 - 7

Table 7.8: Schedule Cost Results Summary for Large Schedule
Heuristic Waiting Time With Aircraft End-of-Day Without Aircraft End-of-Day

Values Allowed (min) Location Constraints (Rands) Location Constraints (Rands)

d=50, α=45 unlimited 85927 (15.4% gap) 79087 (7.02% gap)

d=40, α=35 40 88108 (16.8% gap) -

d=40, α=35 0 90819 (19.4% gap) -

7.5 Discussion

From Table 7.1, the problem solution begins to degrade for values of d between

20 and 50, and values of α of between 25o and 45o. Therefore suitable values are

d=50km and α=45o and these values are used in further computations. Notable

is the fact that a substantially reduced problem size (31%) can be achieved with

tighter geographic heuristic parameters with only a 9.8% reduction in optimality

when comparing the worst case calculated in Table 7.1 (schedule cost R44334) with

the best case (R40388).

The full schedule models produced numbers of variables exceeding 150 000 and as

such could not be solved to optimality in a reasonable time. It was found that the

ILP solver slowed down substantially as the ILP gap reduced, requiring many hours

of processing time to reduce the ILP gap to between 12% and 20%.

The full schedule solution with constrained end-of-day locations could be found to

a 15.4% gap after just over 6 hours, and produced a cost of R85927.

Although good solutions can be achieved using this method, the number of variables

generated is still too many for practical purposes for the full-size schedule, unless

specialised solution methods and/or processing hardware are developed. However,

the method will be practical for moderate size instances (up to 80 requests) of the

airline taxi problem.

It should be noted that this formulation (equations (6.1) to (6.9)) allows swapping of

groups between different aircraft. Adding constraints to prevent this would require

73



additional variables and constraints, increasing the problem size significantly and

increasing the solution computation time accordingly. Table 7.4 shows the groups

that experienced aircraft swapping and ground waits en-route for the small schedule,

including some unreasonably long waiting times. Therefore the additional constraint

(6.10) was added to limit passenger waiting times on the ground, and this raised

the cost of the schedules accordingly. The small schedule went from costing R37906

with unlimited passenger ground waiting time en-route, to R41338 with passenger

ground waiting time limited to the minimum. The passenger ground time limiting

constraints were observed to have a detrimental effect on processing times.

The constraints on passenger waiting times caused the schedule cost to increase. This

means the airline can save further costs by allowing increased sized time windows.

This might be possible with boxes and possibly with staff as well, but is unlikely to

be acceptable for many tourist groups.

For the small schedule, limiting the passenger group ground time to the minimum

reduced the number of groups that experienced multi-leg trips from 7 (27%) to 5

(19%) out of 26 total groups (Table 7.5). However, for unlimited passenger ground

time, 4 groups swapped aircraft (15%) vs 5 groups (19%) for the case where ground

time was limited to the minimum. For the full-sized schedule, only 11% of passengers

needed to swap aircraft.

There are various options open to the airline in terms of quality of service and using

this modelling technique. The easiest way to control quality of service provided will

be to limit the EDT and LAT (time windows) of all passenger groups which need

a higher quality of service than others, e.g. tourist groups vs employees and boxes.

Providing tight time windows will reduce multi-leg journeys and aircraft swapping.

A further option is to provide passengers with a two-tier pricing structure, where

the lower tier has flexible pick-up and delivery times and may be subject to long

ground waiting times. This would remove the need for some of the passenger ground

time limiting constraints which slow the processing time down.

The small schedule was used to evaluate the effect of the aggregation heuristic. The

version of the problem without aggregated groups and with zero passenger ground

waiting time produced a cost of R41907 but could only be solved with a 2.5% ILP

gap in a reasonable processing time. This compares favourably with the aggregated

version of the problem, which produced a schedule cost of R41338, and suggests the

aggregation heuristic has a marginal, if any, effect on the quality of the solutions.

Even though the number of variables in the non-aggregated model is not excessive
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(77089), the solution times are long. This is due to there being substantially fewer

solutions in close proximity in the feasible region in the case of the aggregated model,

therefore the branch-and-bound process is far more efficient in pruning.

Although the number of variables was high and processing time long for the full

schedule using the MCNF with TD method, good solutions can be obtained. The

process speed can be increased by making the TDs longer, by shortening the day,

or by tightening the geographic heuristic. The method would be appropriate for

smaller instances of this problem.

In terms of portability of the heuristics, both could be applied to certain PDP type

VRPs. It is reasonable to assume the geographic heuristic will be applicable to the

DARP and other paired PDPs, and can be combined with other construction and

improvement methods.
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8 Agent Routing Variable Generation

8.1 Description

The ILP with time discretisations is theoretically limited in terms of optimality of

solution by the use of time steps, since aircraft are limited to taking off and arriving

only at the nodes associated with a time step. Continuous variable node times would

be preferable to the use of time steps, but the formulation becomes too complicated,

with a substantial number of constraints, and is unwieldy for problems of the size

considered in this work.

An alternative method of obtaining nodes which may be better placed in time for

improved solutions is by using simulation-type agents to generate routes and thereby

also generate node times. Ant colony optimisation (ACO) also utilises agents which

use random search to generate routes, but generally is used for simpler, less con-

strained problems ([154], [61], [60]).

A method related to random search, but without the learning capability of ACO,

was devised for this problem. Effectively agents are allowed to search for feasible

or partially-feasible solutions. The solutions obtained are used to generate well-

positioned nodes and good legs for a mixed integer linear programming (MILP)

formulation. The quality of the solution will then depend on how long the agents

are given to search. If no good solution is found, an iterative improvement procedure

is proposed.

The method described here involves allowing agents (effectively aircraft) to start

at the beginning of the day and route themselves through to the end of the day,

collecting and delivering as many groups as possible. At the start of each leg, the

aircraft must decide where it should fly to, or whether it should stay at its current

location. The aircraft considers flying to each possible destination in turn and

assigns an attraction measure to each of these possible locations. A filter ensures

that locations which have no reason to be visited by the aircraft are assigned a zero
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attractiveness value and therefore cannot be selected. The attractiveness of any

location is based on eight factors:

• The distance to the location.

• The available seats in the aircraft.

• Whether there are any groups waiting at the location and whether there is

space in the aircraft to accommodate them.

• How close the arrival time of the aircraft would be to the waiting groups’ EDT.

• Whether those waiting groups have similar destinations to any groups which

are already on board the aircraft.

• If there are any on-board groups, whether their destination is the location

under consideration.

• Whether the aircraft could fly to the location under consideration, then still

deliver all of the on-board groups on time.

• The size of the waiting group.

If a location has no waiting groups, and if there are no passengers on board with des-

tinations matching that location, the attractiveness of that location is automatically

set to zero.

After an attractiveness is assigned to every possible location, a Monte Carlo sampling

procedure is used to randomly select a location to fly to.

The aircraft is then moved to the new location and must decide which waiting groups

to collect there. If all waiting passengers cannot fit on board the aircraft, another

Monte Carlo selection process is used to choose which passenger groups should be

taken on board. The aircraft must then again decide which new location to fly to, or

whether it should wait on the ground for other passenger groups to become available

for collection.

This procedure was written in MATLAB and is included in Appendix D.

Nine parameters were included in the model to be used to adjust how attractive

each factor is (or to weigh the importance of the factor). These parameters were:

1. Difference between current time and LAT of on-board groups.
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2. Number of on-board groups who have a destination matching the candidate

groups’ location (where candidate groups are groups waiting at the candidate

location to be picked up).

3. For the candidate groups, the difference between arrival time and EDT.

4. The geographical distance.

5. The number of on-board groups with destinations matching those of waiting

groups.

6. A parameter to increase the attractiveness of a location which is the destination

of a group taken on board, when considering taking another group on board

at the same location.

7. When at a location and having picked up at least one group, a parameter to

add attractiveness to take off without taking on any more waiting groups at

that location.

8. The time difference between the arrival time at the candidate location and the

time at which the aircraft will be forced to prioritise on-board groups which

must be delivered before their LAT.

9. The sizes of the candidate groups.

These parameters can be used to strictly enforce feasibility, or to allow some flexi-

bility in terms of group EDTs and LATs. More flexibility would widen the search.

Parameters to provide values for the attractiveness of the geographical distance and

the times were based on an exponential distribution. For example, the geographic

distance attractiveness was calculated as 1/ed/F1 , where d is the distance in kilome-

ters and F1 is the factor giving weight to the overall attractiveness. The exponential

distribution was used since it allows for a maximum upper limit and decays rapidly

initially. It is often used in other applications such as neural networks where weights

are required. In this application it proved to work adequately. However, in future

work, Gaussian and linear functions could also be investigated.

A penalty cost is given to undelivered schedule items such that the agent routing

function can be optimised with regards to cost. This was set at 10000.

Initially, the agent scheduling procedure is executed with no randomness, i.e. the

agent is always routed to the most attractive destination. The attractiveness param-

eters are then adjusted to obtain the best schedule result under these conditions. In
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this process, an optimisation method can be used. For this work, the pattern search

optimisation method as supplied with MATLAB Global Optimization Toolbox was

applied [155]. The MATLAB pattern search algorithm is effectively a multi-variable

hill climbing technique, and as such, may return results from local optima.

Significantly, the best results were achieved when higher relative weighting was given

to the waiting group sizes than the other factors. The chosen factor values are shown

in Appendix D.

The procedure was then executed using randomness, ie, using Monte Carlo sampling

to select a destination at each decision point with weights based on the calculated

attractiveness of the possible locations.

The method was used to generate a number of schedules with unconstrained end-

of-day fleet locations. Most of the schedules thus generated were not feasible, since

the aircraft were all used up without all of the groups on the schedule having been

delivered. The routes generated by the schedule were used to create the nodes and

legs in the same type of formulation as described previously in Chapter 6, but with

some modifications. Because all of the flight leg variables thus introduced already

had times associated with them, there was no need for time discretisations. Also,

the constraint ensuring all groups were delivered to their respective destinations

was softened by removing it from the constraints and including it in the objective

function. This was done by adding a number to the objective function for every

group correctly delivered (on time and at the correct destination), then maximising

the objective. This number is subsequently referred to as the group delivery benefit

parameter.

This number, which can be interpreted as the maximum cost allowable for a passen-

ger leg, is used as the revenue (negative cost) coefficient for each passenger ground

arc which represents a passenger group reaching their destination on time. An al-

ternative is to use the maximum cost allowable for delivery of a single passenger,

in which case larger passenger groups (and hence tourist groups) would be favoured

for delivery over single passengers.

Since the objective of this model is to maximise the number of groups delivered, the

problem objective function is now maximised. The cost of each leg is still included

in the objective function.

This technique ensured that, in the case that insufficient variables were available

to obtain a good solution, the model could leave out the most expensive groups to
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be delivered. Then, new legs could be introduced to the model in order to reduce

the cost of those deliveries, and the problem solved again. This process could be

repeated as many times as required until a suitably low-cost solution was found.

For this work, in the case that a suitably low-cost schedule could not be found which

delivered all of the groups in the first iteration, additional legs were added to the

problem in subsequent iterations as follows:

1. Consider each of the undelivered groups sequentially.

2. Add a leg from the origin of the group at EDT to the destination for all feasible

aircraft types.

3. Add the associated legs from each location in the geographic network of the

group to the origin at EDT.

4. Add the associated legs from the destination at arrival time to every other

location in the geographic network of the group.

5. Repeat the above process (2-4) for:

• A leg from the groups’ latest possible departure from the origin to the

destination.

• Legs placed at intervals of 20 minutes (or less) in between the origin at

EDT and the latest possible departure from the origin to the destination.

The effectiveness of this iterative process is dependent on the above-described method

of adding additional legs to the problem to aid a lower cost solution. It therefore

makes sense, as is done above, to supply legs to and from the origin and destination

of undelivered (i.e. expensive to deliver) passenger groups. If, after an iteration,

an improved solution is not obtained, the legs described can be added at shorter

intervals, or legs can be added from and to other locations and times.

Clearly, the problem will grow in magnitude after each iteration, so carrying out

the above procedure for more than four unscheduled groups was found to cause the

problem solution process to slow significantly. This is apparently not due to the

number of variables, since the number of variables never exceeded 60 000. Since the

solution suffers from slow ILP gap reduction as the gap becomes small, the effect is

most likely due to more solutions being introduced to the problem near the optimum

which are difficult to prune in the branch and bound process. One resolution is to

simply stop the solver at a small enough ILP gap.
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Note that the heuristics developed in Chapter 7 are applicable here and were used

with similar setup parameters as was used for the MCNFP in Chapter 6.

A reasonable measure of the solution quality would be the load factor. This was

calculated by taking the load factors for each flight leg (number of occupied seats

divided by aircraft capacity) and multiplying them by the flying time for the leg.

These load factors are added for all the legs in a schedule, and divided by the total

schedule flying time. However, for this work and for the problem instance under

consideration, the minimum cost per group delivery was known to be just over

R1000 per group. Therefore this number (cost per group delivery) was used as a

performance measure and target. A similar value could most likely be used for other

instances of the problem.

The number to be deducted from the objective function for each delivered group

(group delivery benefit parameter) can be adjusted to encourage more or less groups

to be delivered in any iteration, thus ensuring only the most expensive groups are

excluded from the solution.

The problem solution was found to produce a number of incidents of aircraft swap-

ping, as well as some wait times which may be considered too long. To counter

this effect, the objective function was modified with a cost per minute of time for

each passenger group. This was achieved by calculating the time taken for each leg

(Ry) and including it as the cost coefficient for each passenger leg variable yxg (see

equation (8.1)), and similarly, adding the time taken (Rt) for each passenger ground

arc t to the cost in the objective function. The resultant MCNF model is as follows:

The objective is to maximize the number of groups delivered while deducting costs:

maximise
∑
g∈G

BEN tnlg −
∑
y∈Y

Ryy −
∑
t∈T

Rtt−
∑
x∈X

Cxx (8.1)

where tnlg is the passenger group ground arc with start node corresponding to LAT

and destination for passenger group g. There will be one tnl
g for each group. BEN

is the group delivery benefit parameter (or maximum cost per group delivered).

Note that one could easily make this parameter the maximum cost per passenger

delivered if required, by multiplying the size of the group to this term. Ry and Rt are

the times associated with passenger leg y and passenger ground arc t respectively.

As before, Cx is the cost associated with the flight variable x.

The aircraft node conservation of flow constraints are as follows:
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∑
i∈N

xinf −
∑
j∈N

xnjf + s(n−1)nf − sn(n+1)f = 0, ∀n ∈ N, ∀f ∈ F. (8.2)

For passengers,

∑
i∈N

yxinfg −
∑
j∈N

yxnjfg + t(n−1)ng − tn(n+1)g = 0, ∀n ∈ N, ∀g ∈ G, (8.3)

where t(n−1)ng refers to the passenger ground arc leading into node n and tn(n+1)g

refers to the passenger ground arc leading out of node n.

The passenger networks and the fleet networks are bound by the aircraft capacity

constraints as follows:

∑
y∈Y

yxg GrpSizeg ≤ x Capx, ∀x ∈ X, (8.4)

where GrpSizeg is the number of people making up group g. Capx is the passenger

capacity of the aircraft type associated with x.

Constraints are needed to ensure the number of aircraft of each fleet type are correct

at each location at day start and that the number available is not exceeded. There-

fore at the starting node for each location u in set of all locations C, the ground arc

s for each fleet f must be set equal to the number of fleets positioned there at day

start:

snif = vuf , ∀f ∈ F,∀u ∈ C, (8.5)

where snif is the ground arc for fleet type f going into the first node (i.e. earliest

time) of location u. vuf is the number of aircraft of fleet type f at location u at the

start of the day.

Note that this constraint must be used for all locations where there are no aircraft

of some fleet type, in which case vuf = 0. This is to ensure the correct number of

aircraft are used in the model.

The following constraints ensure the correct number of each passenger group in the

problem:
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tnig = bug, ∀g ∈ G, ∀u ∈ C, (8.6)

where tnig is the passenger group ground arc with end node corresponding to the

first node at location u and bug is either 1 or zero, depending on whether u is the

origin for g.

The following constraints ensure passenger groups are at the correct locations at the

passenger group EDT :

tneg = 1, ∀g ∈ G, (8.7)

where tneg is the passenger group ground arc with end node corresponding to EDT

and origin for passenger group g.

The modelling process is shown schematically in a flowchart in Figure 8.1. The

process begins with application of the aggregation heuristic, which, in this case, ef-

fectively halves the booking list size. Thereafter the reduced booking list is presented

to the agents which intelligently and randomly produce a number of schedules. Vari-

able information is extracted from these schedules for the problem. The geographic

heuristic is then applied, and the model assembled and solved. If some groups are

not delivered, more variables must be added to the problem and the problem re-

assembled and resolved (an iteration). The delivery benefit parameter can also be

increased to encourage more group deliveries, but at an increased cost per group.

This process is repeated until all groups are delivered at an acceptable cost.

8.2 Observations and Results

Ten schedules were randomly generated using the agent scheduling technique de-

scribed. The parameters relating to the legs were extracted from these schedules

and were used to generate variables to describe the MCNFP (nodes, arcs, etc). The

variables were then used in the ILP. This was done using three different values for

the group delivery benefit parameter in the objective function, in three different

solution schedules, as follows:

1. 2000, two iterations.

2. 1500, two iterations.
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Figure 8.1: Agent Routing Method Modelling Process
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3. 1000 for two iterations, followed by 1100 for a third iteration.

It was noted that the best solution achievable for this problem is expected to be

around R80000 for the full sized schedule. Therefore using a fixed group delivery

benefit parameter of just over 1000 is likely to achieve the best solution (solution

schedule number 3 above). In practice it was found that for the first iteration, four

groups were not delivered. Thereafter, in the second iteration, one group could

not be delivered using this value of group delivery benefit parameter, hence the

parameter was increased to 1100 for the final iteration, and all groups were delivered.

The method is dependent on the quality of the ten randomly-generated schedules,

and on the method of generating additional legs at every iteration. Future work to

improve the method could focus on these two aspects.

The ILP solver used was Gurobi provided by NEOS [146]. The NEOS server sends

the model for execution to any one of a number of participating computers at educa-

tional institutions in the USA. It limits the number of threads used for any particular

job to 4.

The results are shown in Table 8.1. In the table, the full schedule was solved using the

three different solution schedules with various delivery benefit parameters (column

2), resulting in different numbers of iterations and cost achieved per group delivered.

The best result was achieved from solution scheme 3, where three iterations were

used to arrive at a final result of R85266 with all groups delivered.

Table 8.1: Full Schedule Solutions
Prob. Del.Ben. Opt.Cst No. of Process. Iter. Undel. Cost per

No. Parameter (R) Vars Time(s) No. Grps Grp (R)

1 5000 83940 50364 232 1 1 1076

5000 86028 50413 1167 2 0 1089

2 1500 83940 50364 342 1 1 1076

1500 86028 51574 1609 2 0 1089

3 1000 72870 50364 161 1 4 972

1000 83887 51574 4189 2 1 1075

1100 85266 52615 7240 3 0 1079

From Table 8.1, the best schedule for problem 7 is included in Appendix E. Groups

that needed to swap aircraft are shown in Table 8.2. Twelve groups needed to

swap aircraft, and one of those needed to swap twice. Waiting times varied from 19

minutes, and in three cases exceeded 1 hour.

Using cost penalties of R1 for each minute a customer group spends on a flight

leg, and R10/minute for each minute they spend waiting on the ground in-transit,
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Table 8.2: Aircraft Changes and Ground Waiting Times
No. Of Longest Waiting

Group No. Aircraft Changes No. of Legs Time (Min)

5 1 2 21

13 1 2 166

15 1 2 113

20 1 2 69

31 1 2 19

36 1 2 19

41 1 2 22

44 1 2 25

48 1 2 117

53 1 2 21

70 1 2 30

73 2 4 46

Table 8.3: Aircraft Changes and Ground Waiting Times with Passenger Group Time

Cost Modified Objective Function
No. Of Longest Waiting No. Passengers

Group No. Aircraft Changes No. of Legs Time (Min) Affected

27 1 2 21 2

31 1 2 12 2

48 1 2 27 1

69 1 2 27 2

70 1 2 30 2

Table 8.4: Aircraft Changes and Ground Waiting Times with Individual Passenger

Time Cost Modified Objective Function
No. Of Longest Waiting No. Passengers

Group No. Aircraft Changes No. of Legs Time (Min) Affected

27 1 2 21 2

36 1 2 24 2

44 1 2 26 2

70 1 2 30 2

a single iteration schedule with a cost of R93621 was obtained. This schedule is

included in Appendix E. For this schedule, only 5 groups (9 passengers) had to

swap aircraft and the maximum intra-journey ground waiting time was 30 minutes

(see Table 8.3).

Instead of applying cost penalties to passenger groups, cost penalties can be applied

to individual passengers, thus providing increased incentive to deliver larger tourist

groups relative to individual staff passengers.

The individual passenger cost was set to R1/passenger per minute for flight legs, and

to R10/passenger per minute for intra-journey ground waiting time. This resulted

in a schedule with cost R95905 but only 4 groups of 8 people in total required to
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swap aircraft and a longest waiting time of 20 minutes (see Table 8.4). Using more

randomly-generated schedules (20 in total), 2 iterations were required to reduce this

cost to R87471 (R1107 per passenger group).

8.3 Discussion

Compared to the MCNF model from Chapter 6, the fewer variables generated by this

method make it more practical in that it solves faster while still providing acceptable

solutions. The use of a similar MCNF ILP formulation to that used in Chapter 6

means that swapping of aircraft may occur in the final solution. In this case, 12

groups (15%) needed to swap aircraft. Note that, in terms of service quality, the

same options are open to the airline for this method as for the previously described

method (Chapters 6 and 7).

If a cost is given to intra-journey waiting times for passengers and passenger legs,

the swapping of aircraft and length of ground times are positively affected. Options

are to apply a cost per passenger, per passenger group, or to apply a higher cost for

tourists and lower costs for boxes and staff. A cost could be added to the objective

function to encourage aircraft end-of-day locations, as opposed to using constraints.

The explanation of Tables 8.3 and 8.4 include demonstrations of how the costs can be

applied to the objective function to change operational characteristics of the solution.

In this case, when costs are applied to passenger time on an individual passenger

basis, slightly fewer passengers had to swap aircraft and wait, but the schedule cost

was higher. This cost was reduced by adding an additional 10 randomly generated

schedules and resolving.

This method provides flexibility, in that it could easily be applied to all kinds of

routing problems. The only application consideration is how large the search area

is, as a smaller area (more tightly constrained problem) will be advantageous in

terms of solution quality.
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9 Composite Variable Formulation

9.1 Description

An alternative method of solving the problem involves constructing composite vari-

ables as Ronen [137] describes. For this problem, the aircraft flight variables can be

combined with each other and with passenger flight variables, such that the resul-

tant variables provide feasible chains of flight legs which can be included as part of

a route in a schedule. The advantage of such a formulation is that it removes the

need to have separate passenger variables completely, vastly reducing the size of the

problem, since the passenger flight variables and passenger ground arc variables are

the largest component of the problem.

The procedure begins by applying the aggregation heuristic. Thereafter, the proce-

dure for creating the composite variables is as follows:

1. Create single flight variables: For every booking and every fleet type,

create a flight variable which can satisfy that booking. This means the aircraft

type capacity will be large enough to carry the passenger group, and the length

of the flight in terms of time will match the aircraft speed and the distance to

be flown.

2. Dual linking: For every single flight variable, search for other single flight

variables which can be joined on to it. This means the fleet types are similar,

the destination of the first variable matches the origin of the second variable

and the EDT and LAT for both variables will still be met. However, this is

only done in cases where at least one more booking could be satisfied by the

linked variable, in other words, at least a third passenger group can fit in the

aircraft (sufficient capacity) and will fly on both legs.

The process is shown graphically in Figure 9.1 in which three locations are

depicted. Two single flight variables have been found which can be joined,
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since flight variable 1 has a destination (ABU) which coincides with the origin

of flight variable 2. Flight variable 1 transports passenger groups 3 and 5 from

HND to ABU. Flight variable 2 transports passenger groups 2 and 7 from ABU

to JAO. Both flight variable 1 and 2 have spare seats available. Therefore they

are linked together as shown to form a new, 2-leg flight variable. Then a search

is done to find other passenger groups that can be assigned to this new variable.

Any groups that have an origin HND and destination JAO and can fit in the

aircraft as it flies on the existing two legs will be considered. If no groups can

be found, the new variable is discarded. In the Figure, group 1 has been found

and assigned to the new variable. Therefore the new flight variable is added to

the problem. The existing single flight variables are retained in the problem.

flight 1

flight 2

Note: Numbers in parentheses refer to 
passenger groups

Figure 9.1: Linking of Two Flight Variables (Dual Linking)

3. Further linking: For every 2-link variable, search for single variables which

could be joined on to create 3 leg and more linked variables. Again, only

create such a variable if some other group or groups could also be assigned

to the resultant variable. This linking process can be repeated as many times

as required to create longer chains of flight variables. However, the problem

can quickly become large and unwieldy, and in such cases the process can be

stopped after 3 or 4 link variables have been created.
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4. Replicate variables over time windows: Each variable has a time window

over which it can feasibly take off and land, and still all associated groups’

EDTs and LATs are met. To allow the problem to make use of this time

window, the time window is discretised into small time steps of a suitable

resolution such as 10 minutes. Nodes are placed at each time step at the

departure location. The variable is then replicated within the time window

as many times as possible, such that all replicated variables are feasible with

regards to time, and each variable starts at a time step node. Nodes are also

placed at the ending points of variables at the end location, as calculated using

their associated flight times.

5. Introduce aircraft delivery variables: Additional flight legs are required

to deliver empty aircraft from their locations to where they may be needed

for a flight variable. Without these empty flight legs, the problem firstly may

not be feasible, and secondly, many cost-effective chain variables might not be

used due to unavailability of aircraft. For every flight variable, a flight variable

from every other location to the origin of the flight variable and of matching

fleet type is generated. These variables do not satisfy any bookings so they

are effectively empty aircraft flight legs. Unfortunately, this process causes the

number of flight variables in the problem to grow by a multiple of the number

of locations.

6. Introduce end-of-day aircraft delivery variables (optional): For this

problem, in many cases, the model will not require specific empty flight vari-

ables added from variable end locations to desired ending locations of aircraft

at the end of the day since, if the locations have sufficient flight bookings, the

method generates enough variables to ensure aircraft are correctly placed at

the end of the day. However, for the 40 booking 7 city problem, it was found

necessary to add these empty flights to enable feasibility.

7. Construct flow network: Ground arcs are introduced between nodes for the

purpose of generating fleet flow conservation constraints at the nodes. These

ground arcs are variables representing the number of each fleet type waiting

on the ground. Each flight variable is replicated within the time window such

that the new variables are each assigned feasible starting and ending times

associated with nodes and such that their EDTs and LATs will be satisfied.

The modelling procedure is shown in Figure 9.2.

In practice, this produced approximately 52000 variables for the full-size schedule

and for the case where linked variables with a maximum of 3 individual flight legs
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Figure 9.2: Composite Variable Modelling Method
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were included in the problem. This included all variables, single and linked. Note

that if linked variables with a maximum of 4 individual flight legs are added to the

problem, the number of variables simply increases by the number of those new, 4

link variables that are generated.

It was unnecessary to apply the geographic heuristic, since the full-sized schedule

could easily be solved without it. The geographic heuristic (with d=50km and

α=45o) could be used for other, larger problem instances such as multi-day problem

instances.

The multi-commodity network flow model was formulated with two commodites,

these being the two aircraft types/fleets, f in F . The model was created to select

flight variables at a minimum cost and to ensure every booking is satisfied at least

once. If X is the set of all flight variables x, each with cost Cx, the objective is:

minimize
∑
x∈X

Cxx. (9.1)

A subset of flight variables was created for each booking xb ∈ {X : b}), this set

including only the flight variables which could satisfy the booking in question. Con-

straints can then be derived to ensure that each booking b in set of all bookings B

is satisfied at least once:

∑
i∈N

∑
j∈N

∑
f∈F

xbijf ≥ 1, ∀b ∈ B. (9.2)

Constraints are required to maintain conservation of fleet flow. This is done by

generating an aircraft flow conservation constraint for each fleet at each node. The

flow constraints are as follows for each node n in the set of all nodes N :

(∑
i∈N

xinf + s(n−1)nf

)
−

∑
j∈N

xnjf + sn(n+1)f

 = 0, ∀n ∈ N, ∀f ∈ F (9.3)

where variables s(n−1)nf and sn(n+1)f refer to the ground arc into and out of node

n respectively. Note that, as before (Chapter 6), ground arcs are fleet specific, so

s(n−1)nf and sn(n+1)f are associated with a fleet type f .

Since the inclusion of a variable in a solution now feasibly satisfies the origin and
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destination requirements, as well as time window requirements, for all of the asso-

ciated passenger groups, no nodal conservation of passenger group flow constraints

are required.

Since each node has an associated location and time, the ground arc leading to the

first node at any location (i.e. with the earliest time) should be set to the number

of aircraft of that fleet type at that location at the start of the day:

snif = vuif , ∀u ∈ C,∀f ∈ F, (9.4)

where vuif is the number of aircraft starting at location u, and snif is the ground

arc for fleet type f going into the first node (earliest time) at location u.

Similarly, the ground arc leading from the last node of the day will represent the

number of aircraft at a particular destination at the end of the day, and can be

constrained if required:

snof = vuof , ∀u ∈ C,∀f ∈ F, (9.5)

where vuof is the number of aircraft ending at location u, and snof is the ground arc

for fleet type f going out of the last node (latest time) at location u.

9.2 Observations and Results

9.2.1 Small Schedule

The problem was executed with constrained end-of-day aircraft locations (i.e. in-

cluding equation (9.5)) and the maximum number of linked variables included in the

problem was varied from 3 to 5. The results are shown in Table 9.1. It was found

that no further linking occurred after variables with 4 links had been produced.

The best solution achieved (cost R44200) was 6.9% from the best solution using the

MCNF ILP with limited passenger group waiting time in Chapter 7 (cost R41338).

The resultant schedule is shown in Table 9.2. In this table, the group numbers refer

to the original, un-aggregated group numbers. Groups that appear on two different

aircraft have a choice of more than one leg. Thirty flights in total are used for the

schedule.
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Table 9.1: Small Schedule Costs Using Composite Variables
No of Links Min Z (Rands)

3 44200

4 44200

5 44200

Table 9.2: Small Schedule Using Composite Variables
Origin Departure Destination Arrival

Fleet Type Location Time Location Time Passenger Groups on Board

C206 7 370 6 400 14, 15, 20

6 450 3 530 5

3 680 1 720 0

1 720 2 850 30, 31, 32

2 920 7 960 0

7 970 4 1020 10

4 1020 7 1070 22, 26, 40

C206 7 380 4 430 24

4 430 7 480 3, 4

7 480 4 530 21

4 670 3 720 2, 29

3 910 4 970 33, 34, 25, 27

4 970 7 1020 23, 25, 27

C206 7 450 2 490 12, 13, 19

2 490 3 590 8, 19

3 690 5 750 7

5 870 6 910 6

6 970 7 1000 0

C206 7 460 2 500 12, 13

2 500 7 540 11

7 860 2 900 28

2 960 7 1000 0

C208 7 390 6 420 14, 15, 20

6 480 3 540 35

3 620 5 670 37

5 720 6 750 36

6 810 7 830 16, 17, 18, 39

C208 6 480 3 540 38

3 710 4 770 1, 25, 27

4 770 7 820 9, 25, 27
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9.2.2 Full Schedule

The full schedule was solved with constrained end-of-day aircraft locations (i.e. in-

cluding equation (9.5)) and the results are shown in Table 9.3. Column 1 in the

table refers to the maximum number of legs that were linked together to form a

variable. As longer linked variables are constructed and inserted into the problem,

the number of variables in the problem (column 2) increases accordingly. This is

because each time longer linked variables are generated, these additional variables

are simply added to all of the existing variables. The processing time (column 4)

also increases and the schedule cost decreases (column 3, “Min Z”).

Note that if a schedule is produced from variables that have a maximum number of

three links, no passenger group will have a trip of more than three aircraft legs.

Table 9.3: Full Schedule Costs Using Composite Variables with Constrained End-

Of-Day Aircraft Locations
Max. No. of Links No. of Variables Min Z (Rands) Processing Time (s)

2 42522 88230 18.1

3 52404 87756 32.9

4 61728 86787 251.9

5 82262 86787 665.4

The problem was solved with unconstrained end-of-day aircraft locations. This ver-

sion produced a schedule cost of R87683 for the problem including a maximum size

of 3 link variables (9.8s solution time). This solution cost is similar to that obtained

using the method described in Chapter 8 for the equivalent problem (R87471), but

has the advantage of no aircraft changes for passengers and is faster to solve (32.9s

vs more than 1 hour).

9.3 Discussion

From Table 9.3, the processing time increases and the schedule cost decreases as the

maximum allowable number of links increases.

The method solves quickly if the number of variables in the problem is limited.

The method can not accommodate swapping of aircraft and limits the amount of

passenger ground time en-route. This makes it ideal for this particular problem,

since a high quality of service can be maintained. The method retains flexibility

in allowing end-of-day aircraft positions to be constrained. Even without providing
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empty flights to deliver aircraft to their end-of-day locations, the version with un-

constrained locations did not differ considerably from the constrained version (0.6%

difference). Quality of service can also be adjusted by allowing variables with fewer

linked legs in the problem for tourist groups, and allowing more links in journeys

for boxes and staff.

A closer look at the small schedule produced using this method in Table 9.2 shows

the schedule uses 30 flights (i.e. the table has 30 rows) in total. Extensive use is

made of the C206 (22 flights), and the longest chain of flights any passenger had to

endure on one journey was, as expected, three legs.

The composite full-size schedule produces a schedule of similar cost to the agent

variable generation method (R87756 vs R87471). For the constrained end-of-day

version, the MCNF ILP method suggests the problem lower bound is R76318 with

passenger groups swapping aircraft and with limited passenger intra-journey ground

waiting time. The best composite schedule cost is therefore 13.7% or less from

optimality.

Table 9.4 shows a comparison of all of the methods and results from them. The

composite variable method outperforms the others in terms of speed of processing

for the airline taxi problem considered, yet still provides a comparable schedule cost.

Since processing speed is important in practice, this method is the preferred method

for implementation at the airline.

Table 9.4: Comparison Solutions - Unconstrained End-of-Day Aircraft Positions
Method Min Z (Rands) No. of Variables Processing Time (s)

Standard MCNF ILP 90819 (19.4% gap) 177718 12930

Agent routing 87471 (1.84% gap) 52172 3630

Composite variable 87756 52404 32.9
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10 The Sefofane Air Scheduling Problem

10.1 Constrained Problem

The results obtained for various methods considered in this work are adequate in

comparison to the manual schedule in terms of cost and schedule quality for the

problem at hand. This is because they provide comparatively lower cost, practical

and usable solutions. However, the composite variable method is superior in terms of

speed of processing. In addition, the method produces a schedule directly compara-

ble to the manual schedule since it does not allow passenger groups to swap aircraft

en-route. The process of problem setup offers reasonable flexibility in terms of tak-

ing further constraints into account, as will be discussed in this section. Therefore

it was used to solve the actual problem supplied.

The actual problem faced by Sefofane Air has additional considerations which need

to be accounted for before the value of these solution methods can be evaluated for

their specific case:

Fuel, range and maintenance: The first consideration is fuel use. Sefofane Air

uses the C206 with a range of 1352km and the C208 Grand Caravan with a range

of 1700km [150], both of which can comfortably cover all the routes proposed by all

of the models in one day. Additionally, fuel is available at the most visited airstrip

(Maun) and a number of other larger airstrips (Victoria Falls, Vumbura and others),

so refueling could be done during the execution of almost any routing, particularly

since invariably either the day start or day end is at Maun for most, if not all,

routings. Time to refuel could be gained by extending the turnaround times, but

this is unlikely to be necessary. Sefofane Air schedules 10 minutes for turnaround

times. Maintenance is currently done by leaving the aircraft out of the schedule

and booking it for maintenance, therefore in this work maintenance did not need

to be taken specifically into account. A shortage of aircraft must be handled by

hiring additional aircraft and pilots, or refusing bookings. The airline schedule is
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only finalized at most two or three days in advance, often only one day prior to the

day in question.

Multiple day scheduling and end-of-day aircraft location considerations:

Since the model solves quickly it may be possible to solve for multiple days, especially

if fewer bookings are made, as will often be the case. The geographic heuristic can

be applied if the number of variables grows too large. However, as discussed above,

the schedule may often only be finalized the day before the day in question, so this

is not likely to be needed in practice. It may be useful to ensure an aircraft is at a

certain location or choice of locations at the end of the day. This could be the case

when the aircraft will need refueling or maintenance, or when it is undesirable to

leave it in a certain location overnight (As an example, some airstrips have a high

concentration of elephants in the area). Examination of the manual schedule reveals

that of the 13 aircraft used on the day, 5 were transported empty at the end of their

days’ routing, indicating that they were specifically being positioned for the next

day’s flights. The aircraft that were flown with passengers for the last flight of the

day may or may not have been specifically positioned.

In practice, as could be expected and similarly to the manual schedule, the schedules

generated by the model make extensive use of the hub destination, Maun (7, this

number refers to the unique number assigned to this location for modelling purposes,

see Figure 5.3). This is because more bookings have either an origin or a destination

there than any other location. Many daily routings start and end at Maun. In

fact, it was found that when the composite model was solved without constraining

the aircraft end-of-day locations, the locations selected by the model were similar

to those of the manual schedule for most (9) of the 15 aircraft. Therefore the

two versions of the schedule (constrained and not constrained end-of-day aircraft

positions) do not differ by a large cost margin.

Passenger classes - boxes, staff, customers: Sefofane Air has three different

types of passengers, these being the actual tourists or customers, staff of the airline

or more likely staff working for the companies that operate safari camps, or boxes.

Most of the single person bookings are staff, and Sefofane Air could consider treating

them differently from tourist groups by allowing them to swap aircraft or have longer

flights with more legs. However, this would require careful consideration as it would

raise the cost to the employer of the staff. Note that the composite schedule could

easily be set up to allow boxes and staff to have more linked legs in their journeys

than the tourist groups.
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From the manual schedule, it is clear that Sefofane Air schedulers try to group boxes

together that can be taken in a full plane load. This automatically prevents tourists

being ferried with boxes and allows special “cargo” delivery flights to be undertaken.

From an operational perspective, safari camps could be encouraged to book an entire

airplane flight when they require cargo.

Loadmasters and co-pilots for the C208: In general, the C208 requires a load-

master for passenger flights. Therefore there must either be a loadmaster available

where the C208 is located, a loadmaster must be flown in, or the C208 must fly a

leg to collect a loadmaster. In the manual schedule, two of four loadmasters used

were collected at Linyanti (4)(one who had stayed with the aircraft overnight) and

one was left with the aircraft to overnight at River Club (18) at the day end. The

simple way to deal with this in the case of the automated schedule is to always only

allow 11 passengers to be ferried in the C208. The schedule must then be manually

adjusted to ensure all the loadmasters are picked up from their relevant locations

before embarking on the day’s schedule. Since most loadmasters are collected at the

hub (Maun) and mostly accompany the C208, the adjustments will be minor, if any.

In many airline scheduling problems, the amount of flying time a pilot is allowed to

undertake in a day is a constraint on the problem. However, in this problem the

longest pilot scheduled flying time was 7h40 min, with all of the other flying times

being less than 5 hours. Even if a flying time of longer than 8 hours (the maximum

allowed as specified by the Federal Aviation Authority [156]) were to be generated,

there are almost always stopovers at the main hub at Maun to allow a change of

pilot.

Special requests: From the data supplied, one large passenger group had a special

request, this being that their group alone be ferried in an aircraft, with no other

passengers on board. This particular group consisted of 13 passengers, meaning that

at least two aircraft were needed to be used to ferry them. Since each C206 carries

only 5 passengers, at least one C208 is required. However, since the manual schedule

used two equally loaded C208s for this purpose, we must assume that the tourists

in question requested C208 transport specifically. The simple way to deal with this

problem was to artificially resize the group into two groups of passenger size 11 each,

forcing them to be ferried in two C208s, as was done in the manual schedule.
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10.2 Results and Discussion

Minor adjustments needed to be made to the automated schedule before it could

be compared to the manual schedule. These related to the loadmasters, certain

of which were not at the same location as a C208 at the start of the day, and the

boxes, which needed to be transported without a loadmaster. Two loadmasters were

situated at Linyanti (4) and not at Maun where most C208s started the day, and

these loadmasters had to be collected for use. Fortunately, for this particular day, no

schedule adjustments were needed to pick up the two loadmasters (see Appendix F).

This is because one C208 started the day at Linyanti and therefore could collect the

loadmaster there. The other loadmaster could be collected by one of the scheduled

C206s en-route and dropped at Maun in time to be used by another C208. This

can be seen on the schedule provided by the composite method before adjustments

shown in Appendix F, where the 3rd C206 in the schedule has one seat available for

the loadmaster from locations 7 to 4.

The airline had assembled boxes into groups of 5 and 12, ensuring a C206 or a C208

with no loadmaster was required for delivery thereof. Fortunately, the automated

schedule fitted the trips with boxes into the schedule in much the same way as the

manual scheduler had done. For example, the 2nd C208 in the schedule carries

the boxes, therefore it can drop the loadmaster at location 20 (Victoria Falls) and

collect the loadmaster after having delivered the boxes. Therefore there were no

cost adjustments to be made, and in this case, the composite schedule can be com-

pared directly with the manual schedule. The manual schedule cost was R99633,

while the composite variable automated schedule cost was R87756 , thus a saving of

12% (R11877) for the day was achievable. The automated schedule is included in

Appendix F.

The booking list supplied was for a particularly busy day for the airline, and most

booking lists consist of about 80 bookings. Therefore, if the average number of

bookings per day is assumed to be 80, the annual savings of using the scheduling

method proposed here is approximately R2.2m.

The composite method is flexible in that it can be applied to problems in various

ways. It can be adjusted for optimal performance for a specific problem type. In

this problem, possible adjusting mechanisms include:

1. Longer linked chains for specific passenger classes
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2. Modifying the heuristics involved in the linking process, e.g. geographic heuris-

tic in Chapter 7.

3. Different linking mechanism according to aircraft type

In the composite variable method, linked variables represent preferred, high load

factor routes for an aircraft. In the larger problem instances, it is clear that more

linking is advantageous. However, if longer chains with more legs are allowed then

the problem grows in size and becomes slower to solve.

The composite formulation method works well in this specific case because the prob-

lem is highly constrained, thus it is advantageous to remove the many unreasonable

routes. One might therefore consider applying this technique or similar to other

difficult-to-solve highly-constrained vehicle routing problems.

This problem would have been easier to solve if the C208 only had 10 passenger

seats, since then groups could be aggregated in groups of up to five, each representing

either an aircraft load in the case of the C206, or half an aircraft load in the case of

the C208. Even for this problem as it stands, it might be advantageous to solve it

as such, then, afterwards, make modifications and rearrange any single passengers

to take advantage of the empty seat in the C208, possibly using a cost-savings,

improvement type of heuristic.

In the solutions proposed in this report, the option of load splitting has not been

included due to quality of service considerations. Tourist groups can obviously

not be split, and staff normally travel alone. However, box loads could be split

with a relatively minor effect on service quality. Therefore, an improved solution

might be obtainable by allowing splitting of boxes. This could be combined with

allowing boxes to endure any amount of journey time, giving further improvements.

These options should only be considered if it is found that certain days deal with

relatively more transport of goods (boxes) than occurred on the day considered

in this work. These options could easily be included in an agent routing variable

generation method.

It should be noted that the airline could use these models to optimise their fleet.

To do this, they would run models (or simulations) for the previous six months of

their operations using different numbers of aircraft of various aircraft types, taking

into account the capital cost and running cost of the aircraft, and thereby predict

the cost of different fleet make-ups.
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11 Other VRPs

11.1 Introduction

The methods introduced in this work may be applicable to other VRPs, particularly

PDPs, but possibly other problems with time windows. Real-world problems are

often highly constrained and require flexibility in the modelling process, which is

where these methods should be most useful. For these reasons, the methods are

demonstrated on two VRPs, one a real-world MVCVRP, and the other a CVRPTW

obtained from the Internet. Note that these methods are merely to demonstrate that

the techniques devised in this work can be used to approach other VRP problems.

11.2 Multi Vehicle CVRP (MVCVRP)

11.2.1 Problem Description

Real-world vehicle routing problems are often highly constrained. An example of

such a problem is a MVCVRP. In such a problem, different vehicles will have different

speeds of travel and different costs, traffic jams are present during certain times of

the day, daily travel time is limited, staff may take the lunch hour off and may not

receive goods during that time, etc. It is under such conditions that the composite

technique is advantageous, since it can deal with many of these constraints in the

formulation process.

The MVCVRP is a practical problem experienced by companies in the field of whole-

sale food distribution, and a typical such company is Hoxies in Pretoria [157]. Hoxies

need to carry out up to 128 order deliveries of food per day using their fleet of 30

trucks of 8 different types and capacities, and from their single depot. Each vehicle

has a different cost of usage per kilometer and average travelling speed. For this
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work, cost of use per kilometer was artificially derived from various sources includ-

ing rental [158], trucking [159] and AA rates [160]. Travelling speed was estimated.

The data is included in Appendix G. Since this MVCVRP is to demonstrate the

technique only, the accuracy of these figures is considered adequate.

Although Hoxies could not supply the geographical positioning of their customers,

the approximate area within which the customers were situated was known. The

number of trucks of each size was supplied, as well as three delivery lists from busy

days (Appendix G, section G.2). Trucks can make multiple deliveries in a day.

To make test schedules, the positioning of customers for each schedule item was

uniformly generated from the size of the delivery area. A day duration of 7 hours

and turnaround time of 15 minutes were used. The three schedules used are included

in Appendix G.

Note that no information was available regarding when customers would like their

deliveries scheduled, but it was known that certain customers did not want deliveries

when staff were taking a lunch break. Also, information regarding traffic and times

when traffic is slow was not available. Therefore these constraints were ignored.

They could easily be incorporated in our formulation and would make the solution

process faster.

A small and medium sized schedule were also produced. For these schedules, the

customer positions were generated as before, and the order sizes were obtained

by randomly sampling Monte Carlo style with replacement from a list. This list

consisted of all of the orders obtained for all of the three days supplied. As previously,

sampling with replacement ensures samples are independent and having the same

sample more than once in a schedule is acceptable. This is because geographic

positions for all samples were randomly generated anyway. One large-size (128

customer, as supplied by Hoxies) schedule was also solved.

11.2.2 Exact ILP Formulation

An exact ILP was devised to solve the various problem instances, particularly the

smaller instances, for comparison purposes. This MCNF ILP is as follows:

Define the following decision variables:

1. Set of binary leg variables xijf , each corresponding to a trip or leg. Each such

leg is associated with a vehicle type f in F , a starting node i in node set N
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and an ending node j in node set N .

2. Set of load variables yx, each corresponding to a leg x. This is the load carried

by a vehicle on a leg.

3. Set of auxiliary binary variables bnf , each corresponding to a location or node

n and vehicle type f .

The objective is to minimize costs:

minimize
∑
x∈X

Cxx, (11.1)

where Cx is the cost or distance of leg x.

Constraints must ensure conservation of vehicle and load flow at every network node

n in N .

For vehicles:

∑
i∈N

xinf −
∑
j∈N

xnjf = 0, ∀n ∈ N, ∀f ∈ F. (11.2)

Constraints are needed to enforce conservation of load flow at the nodes. This is

done using constraints 11.3 and 11.4, together, but only if auxiliary variable bnf is

set to 1:

∑
i∈N

yxinf
−
∑
j∈N

yxnjf
+M bnf ≤M − Ln, ∀n ∈ N, ∀f ∈ F, (11.3)

∑
j∈N

yxnjf
−
∑
i∈N

yxinf
+M bnf ≤M + Ln, ∀n ∈ N, ∀f ∈ F. (11.4)

M is the “BigM” commonly used in LP formulations, and in this case, set to be

10000. Ln is the load to be delivered to location/node n.

If an auxiliary variable bnf is set to 0, no leg xijf connected to the associated node

n may be set to 1. The following constraint enforces this, both for legs entering and

legs leaving the node:

∑
i∈N

xinf +
∑
j∈N

xnjf −M bnf ≤ 0, ∀n ∈ N, ∀f ∈ F, (11.5)
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Similarly, if an auxiliary variable bnf is set to 0, the load associated with legs xnjf

leaving that node must be 0:

∑
j∈N

yxnjf
−M bnf ≤ 0, ∀n ∈ N, ∀f ∈ F. (11.6)

If an auxiliary variable bnf is set to 1, at least one associated leg xinf into the node

must be set to 1:

−
∑
i∈N

xinf +M bnf ≤M − 1, ∀n ∈ N, ∀f ∈ F. (11.7)

Vehicle capacity constraints:

yx − Capx ≤ 0, ∀x ∈ X, (11.8)

where Capx is the load capacity of the vehicle type associated with x.

If leg x is unused, route load yx = 0:

−Mx+ yx ≤ 0, ∀x ∈ X. (11.9)

Demand constraints are required to ensure each location is visited once:

∑
i∈N

xinf ≥ 1, ∀n ∈ N, f ∈ F. (11.10)

Note that this formulation does not constrain working day time, i.e. vehicles could

work more than the usual working day time of 7 hours. This is because the for-

mulation becomes too complicated and the solution too slow. The formulation also

ignores truck speed and has distance minimizing as the objective. Therefore it can

be considered to produce a lower bound for the problem being addressed.
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11.2.3 Composite Variable Formulation

Formulation Methodology

In order to simplify the formulation, this problem can be set up with composite

variables. An outline of the variable construction procedure is as follows:

• Create variables consisting of trips or legs, with the origin being the depot and

the customers being the locations, and vice versa.

• Create variables consisting of legs from one customer to another (“single vari-

ables”).

• Create chains of variables:

1. Take selected single variables (for example, the three with origins closest

to the depot) and search for other single variables which can be linked to

them. Various heuristics can be included in this process.

2. Repeat step 1, but use each linked variable and search for single variables

to link to, to create longer chains, until no more linking is possible. This

occurs when no more single variables can be found which can feasibly be

connected to the end of the chain, taking into account the duration of

the chain trip including the return trip to the depot, which must be less

than 7 hours, and the total load the vehicle can carry on one trip.

It should be noted that all variables thus created can be added to a

solution and the load capacity and time available constraints will not be

violated.

Composite Variable Construction Process

For this problem, a heuristic was necessary to reduce the number of variables pro-

duced to a reasonable level. This was simply to only include the shortest arcs in

the problem, as proposed by Garcia et al. [48]. The complete and detailed heuristic

variable generation process used was as follows:

1. Generate single legs from the depot to selected locations and back

for all fleets: For each fleet and each customer, a variable from the depot to

the customer, and a variable from the customer to the depot, was generated.

As proposed by Garcia et al. [48], the customers were selected as the closest
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customers only. In this case, the closest three customers were used, since

this number ensured the number of variables created was not too large to be

manipulated.

2. Generate single legs between every location (excluding the depot)

and the closest other locations: In this work, the closest three locations

were used.

3. Link the single variables created in step 2 to other single leg vari-

ables created in step 2, and repeat this process: Generate as long chains

of single legs as possible, ensuring that the capacity of the vehicle is never ex-

ceeded. Each trip was also limited to the length of a working day (7 hours).

All of the variables produced in steps 1, 2 and 3 are then included in a simple,

cost-minimising ILP which has three constraints. Two of these are to ensure flow

conservation of vehicles, and the third to ensure every customer is visited. The

formulation is as follows:

The objective is:

minimize
∑
x∈X

Cxx (11.11)

where the set X contains all of the variables xijf , where index i refers to the starting

node for variable x, and j the ending node, both from the set of all nodes N . Cx is

the cost associated with variable or leg xijf , and is calculated as Cx = Dx × cpkf .

Here, Dx is the distance of variable x and cpkf is the cost per kilometer of using

vehicle type f .

There are two types of flow constraints. The first is to connect depot-location

variables to linked variables, and the second to connect linked variables to location-

depot variables:

xdnf −
∑
j∈N

xnjf = 0, ∀n ∈ N, f ∈ F, (11.12)

and ∑
i∈N

xinf − xndf = 0, ∀n ∈ N, f ∈ F, (11.13)

where d refers to the depot location/node.

The demand constraints enforce the requirement that all locations must be visited

at least once:
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∑
i∈N

∑
f∈F

xinf ≥ 1, ∀n ∈ N. (11.14)

11.2.4 Methodology

Three problems were solved, a small, medium and large version, and by both tech-

niques (composite variable formulation (11.11) - (11.14) and exact ILP formulation

(11.1)-(11.10)). The geographic positioning of customers was uniformly generated

between horizontal and vertical coordinate values of 0 and 80. In all cases, the depot

was placed at a horizontal position of 50, and vertical position of 20.

All problems were inspired by the real problem experienced by Hoxies. However, all

small and medium instances were generated randomly by sampling from the three

actual daily schedules supplied.

The problem has one depot and a number of customers and fleets. The small version

has 10 customers (Table 11.1) and 3 fleets (Table 11.2). The medium sized (20

customers) and actual (large sized, 128 customers) data is included in Appendix G.

Table 11.1: Customers for Small Version
Customer No. Horizontal (X, km) Vertical (Y, km) Load (kg)

1 73.7 27.0 207

2 59.6 20.8 311

3 10.1 32.6 975

4 50.2 68.9 173

5 55.2 5.0 459

6 32.8 42.1 2737

7 42.5 60.3 278

8 19.7 3.7 597

9 34.1 43.9 10

10 26.2 7.7 195

Table 11.2: Fleet Description
Fleet No. Maximum Load (kg)

1 1000

2 2000

3 6500
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11.2.5 Observations and Results

The solution costs and computation times for each problem solved are shown in

Table 11.3. The problem instances, except for those indicated, were solved using

CPLEX 12.1 solver.

109



Table 11.3: MVCVRP Solutions
Problem Computation No. of

Size Method Cost (R) Time (s) Variables

10 ILP 267.4 0.4 578

10 Composite 286.8 0.03 1001

20 ILP 616.9 87.1 4888

20 Composite 647.0 0.03 8801

128 ILP 1221 (15.1% gap) 7098 133533

128 Composite 1672.0 3.2 17676

11.2.6 Discussion

For both the small and medium problems, the composite variable technique produces

a solution within 7.5% of the exact solution. The composite variable model solution

for the large instance is comparably poor. This is due to the exact solution not

having a limitation on the time of day for deliveries to be made. The exact ILP

solution produced routes with around 15 customers on them which would be too

many to do in a 7 hour day.

Without the daytime limitation, the composite variable method produces too many

variables to be practically useful. Having restrictions on lunch time deliveries and

traffic would further enhance the relative performance of the method for this prob-

lem. The method is therefore most appropriate for highly constrained problems.

11.3 Capacitated Vehicle Routing Problem with Time

Windows (CVRPTW)

11.3.1 Problem Description

Data describing a CVRPTW was obtained from Solomon via the Internet [147]. The

particular instance used is the “RC101” instance, a 100 customer problem with an

optimal solution (shortest distance) of 1620. The data is described by Solomon as

geographically “a mix of random and clustered structures”, with “a short scheduling

horizon and only a few customers per route (approximately 5 to 10)”. The maximum

vehicle capacity is 200 and the turnaround time is 10 units. The problem data is

included in Appendix I.

Only one instance of a reasonable size was obtained and used, since the intention

is to show how the method would be applied to such a problem and to obtain a
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comparative result. The problem is not a real world problem, and as such, not

sufficiently constrained to suit the method. One would expect little difference in

performance for the other instances of this problem.

The problem is modelled using a time-space network for each fleet. The agent

routing method of variable generation is used with a MCNF formulation, followed

by solution using an ILP solver.

Note that, in this context, EAT refers to the start of the time window for the

location, and LDT refers to the end of the time window. Vehicles could, of course,

arrive at the location before the EAT and wait, or wait at the location and leave

after the LDT.

Note that, for the CVRPTW, vehicles could equally be considered to leave the depot

empty and collect loads at customers, or to leave the depot fully loaded, drop loads

off at customers, and return empty. In the formulations which follow, the vehicle

leaves the depot empty and collects loads at customer premises.

11.3.2 Variable Generation

The first stage of the process is to generate agent routes. In this case, for agent

decision making when choosing the next location to move to, three attraction factors

are used:

1. The geographical distance

2. The distance in time from current time until the earliest arrival time (EAT)

3. The size of the load to be collected

As before, the routing code (Appendix H) is run with no randomness in order to

select the best attractiveness weightings. In this case, the agent always chooses the

most attractive next location to route to. The MATLAB optimisation procedure

“Pattern Search” was used [155]. Thereafter the agents are routed 20 times and

the nodes and legs extracted from these randomly-generated routes and used in

an MCNF formulation. Because a time-space network is used, each node has an

associated geographical position and time. Ground arc variables s in set S connect

all nodes n at each location.
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Each route is given a benefit in the objective function if it is visited in a solution,

less the cost (distance) to get there. The function is then maximised.

The MCNF formulation is based on a time-space network, as follows:

Decision variables

• Arc variables xijf in set X (binary) - These represent a trip or leg between

two locations (nodes i and j).

• Ground arc variables s in set S (binary) - These represent a period spent

waiting at some location between two nodes with different times.

• Arc load variables l in set L - These represent the total load on a vehicle when

traversing an arc. Note that this variable represents the sum of loads from all

locations visited up to that point on a journey.

• Ground arc load variables p in set P - These represent the load on a vehicle

during waiting associated with a ground arc s. Again, this is the sum of the

loads from all of the customers previously visited on the journey.

Objective function

maximize
∑
x∈X

Bx−
∑
x∈X

Dxx (11.15)

where Dx is the distance associated with variable x, and B is a parameter repre-

senting the benefit of visiting a location.

Constraints

(11.16)

Network flow constraints are required for the vehicles:∑
i∈N

xinf −
∑
j∈N

xnjf + s(n−1)nf − sn(n+1)f = 0, ∀n ∈ N, ∀f ∈ F, (11.17)

where s(n−1)nf refers to the ground arc which ends at node n, sn(n+1)f refers to the

ground arc which starts from node n (and ends at node n+ 1).

Load flow constraints ensure the load is always conserved and added correctly at

each location over a multi-leg journey:
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∑
i∈N

lxinf
−
∑
j∈N

lxnjf
+ ps(n−1)nf

− psn(n+1)f
+ qn = 0, ∀n ∈ N, ∀f ∈ F,

(11.18)

where lxinf
refers to load variables associated with arc variables (legs or ground arcs)

which end at node n, lxnjf
refers to load variables which start from node n. f refers

to fleets in set F . ps(n−1)nf
and psn(n+1)f

are the loads associated with the ground

variable s entering and leaving node n respectively. qn is the load collected at node

n.

Load constraints ensure the vehicle maximum load is not exceeded. This is done by

requiring that the loads for all non-depot variables be less than the vehicle maximum

load, in this case, 200:

lx ≤ 200 x, ∀x ∈ X. (11.19)

The departure loads from the depot must be set to zero:

lxdjf = 0, ∀j ∈ N, ∀f ∈ F, ∀d ∈ Do, (11.20)

where Do is the set of all nodes at the depot.

The demand constraints must ensure all locations u are visited once only:

∑
u∈C, u6=d

∑
f∈F

xiujmf = 1, ∀m ∈ C,m 6= d, (11.21)

where C is the set of locations and d refers to the depot location.

Timing constraints must ensure the time windows are complied with, that is, the

LDT and EAT are met. Therefore the arrival legs need to be constrained by the

LDTs as follows:

Tn ≤ LDTu xinf ∀i ∈ N, ∀u ∈ C,∀f ∈ F, (11.22)

where Tn is the time associated with the end node n for variable x, and LDTu is the

time window start for location u.
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The departure legs need to be constrained by the EATs as follows:

Tn ≥ EATu xnjf + TAT, ∀u ∈ C, j ∈ N, f ∈ F, (11.23)

where Tn is the time associated with the start node n for variable xu, and EATu is

the time window end for the location u. The turnaround time is TAT (10 for this

instance).

Constraints are required to ensure vehicles start at the depot:

sd1(d1+1)f = 1, ∀f ∈ F, (11.24)

where sd1(d1+1)f refers to the ground arc for fleet f at the start of the day at the

depot.

No vehicles should start at any other location:

siu1jf = 0, ∀f ∈ F,∀u ∈ C, u 6= d,∀j ∈ N, (11.25)

where siu1jf refers to the ground arc for fleet f at the start of the day at location

u, and d is the depot location.

Similarly, all vehicles must end the day at the depot:

s(d2−1)d2f = 1, ∀u ∈ C, u 6= d,∀j ∈ N, ∀f ∈ F, (11.26)

where s(d2−1)d2f refers to the ground arc for fleet f at the end of the day at the

depot.

No vehicles should end the day at any other location:

siju2f = 0, ∀f ∈ F,∀u ∈ C, u 6= d,∀i ∈ N (11.27)

where siju2f refers to the ground arc for fleet f at the end of the day at location u.
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If an arc is not used, the load should be set to zero:

lx ≤Mx, ∀x ∈ X, (11.28)

where M is “BigM” (10000).

Similarly, for ground arcs:

ps ≤Ms ∀s ∈ S. (11.29)

Initially, the problem was set up and solved without any load-related variables or

constraints. It was noted that this produced feasible solutions. Therefore, it can be

assumed that the variables generated and supplied to the problem already encour-

aged load feasibility. This is because they were generated from feasible routes. Also,

the maximum vehicle load constraints were found to be relatively easy to satisfy for

the instance at hand.

Therefore the extra variables and constraints which were designed to ensure max-

imum vehicle load feasibility were left out of the problem, resulting in a smaller

formulation. The decision variables l and p, as well as constraints (11.18), (11.19),

(11.20), (11.28) and (11.29) were omitted during solving. If other instances of the

problem are obtained and solved using this method, these constraints may need to

be included, depending on the specific problem characteristics.

In the case that not all locations are visited for any benefit parameter used (i.e. the

per location cost of the solution is too high), additional variables (legs or routes)

must be added to the problem. This was done by including additional legs for every

location not visited as follows:

• From the depot to the location, to arrive at EAT.

• From the location to the depot, to depart at LDT.

• To and from the ncl closest locations, including both the earliest possible and

latest possible trips. ncl was varied as iterations progressed, between 10 (first

iteration) and 30 (fifth iteration).

• To and from each of the other locations which were not visited in the previous

iteration.
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11.3.3 Observations, Results and Discussion

The best solution achieved was 1849 (14% from optimum solution =1620). The

problem used 104970 variables and took 1145s to solve.

The problem is not constrained sufficiently to benefit substantially from this tech-

nique. A more traditional solution method will outperform this method.

It should also be noted that this method is less suitable for problems involving

a single depot than it is for PDP types of problems. This is because the agent-

generated routes are “greedy” in nature, and no mechanism considers the holistic

situation at any point in time.

However, the method is still a useful and practical method for solving this problem.

The performance could be improved by improving the agent routing code, and by

improving the heuristics to insert additional legs between iterations. One idea to be

considered would be to incorporate insertion heuristic logic such as that provided

by Solomon [25] between iterations.

The technique holds the potential to perform as an adequate routing method for a

wide range of difficult-to-solve, highly constrained vehicle routing problems.
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12 Conclusions

1. Three methods of solving the airline taxi problem have been developed. Some

of the most significant results are summarised in Table 9.4. These methods,

which are enabled by the use of a number of innovative heuristics, are as

follows:

(a) MCNFP with TDs: This is an exact method. However, since the model

as developed created large numbers of variables, heuristics were designed

to reduce the problem size. The aggregation and geographic heuristics

designed reduced the number of variables to less than 200000 in some

cases, making the model solvable.

(b) Agent variable generation with MCNFP: Here it was demonstrated that

use of the aggregation heuristic, the geographic heuristic and the use of

“agents” and random search can be used to create good variables to be

used in an MCNFP model. Time discretisations were not used in the

resulting MCNFP model.

(c) Composite variable generation and MCNFP with TDs: A significantly

smaller multi-commodity network formulation was developed by firstly

using the aggregation heuristic, then, secondly, by creating variables each

of which inherently combines passenger network information with the

fleet networks, leaving only fleet networks in the model.

2. Each modelling technique was found to have strengths and weaknesses. These

will need to be considered by the airline when choosing the most appropriate

modelling technique:

• MCNFP with TDs

– Produces many variables and therefore has slow convergence.

– Allows for passenger groups to swap aircraft.

– Cannot disallow passenger aircraft swapping.
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– Allows the maximum amount of intra-journey ground waiting time

to be adjusted as required, but with a significant processing time

penalty.

– Produces good solutions; longer processing times equates to better

solutions.

• Agent variable generation and MCNFP

– Allows for passenger groups to swap aircraft.

– Cannot disallow passenger aircraft swapping.

– Allows the maximum amount of intra-journey ground waiting time

to be adjusted as required.

• Composite variable generation and MCNFP

– Does not allow for passenger groups to swap aircraft.

– Cannot adjust intra-journey waiting time.

– Can control the maximum number of legs any passenger group is

subjected to.

– Fast solution time.

3. A good solution to the Sefofane Air problem instance has been produced using

the composite variable technique. The proposed method offers a 12% cost

improvement over the manual schedule which was actually used on the day.

The estimated saving over a year is R2.2m excluding scheduler manpower

savings.

4. The composite variable construction technique has been shown to produce fast

solutions to medium to large instances of another highly-constrained VRP,

namely a real-world MVCVRP. In addition, the use of such variables greatly

simplifies the ILP formulation.

5. There is much opportunity to apply both composite variable generation meth-

ods and agent-based variable generation methods to many other highly con-

strained routing problems.

6. The addition of learning to the agent routing generation method by using, for

example, neural network techniques, may speed up the process and improve the

quality of solutions. Such trained agents would not need retraining when faced

with future scheduling for any specific company, and could be programmed to

learn continuously.

7. The method of generating more intelligent variables for a MVCVRP formula-

tion is essentially about transferring processing from the solver to the model
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preparation stage. This process gives the user much more control and flex-

ibility over the setup of the model and makes it a simple matter to apply

heuristics.

8. The agent routing method may provide the basis for a viable method for

producing a solver capable of solving a wide range of VRPs, particularly highly

constrained, real-world VRPs.

9. The agent routing method and the composite variable method could be com-

bined for improved overall performance.

10. It is likely that some of the numerous construction and improvement heuristics

that have been proposed over the years, such as those of Alfa [93], Potvin and

Rousseau [38] or Diana and Dessouky [103], would be usable for this problem.

Therefore future work could include investigating how these heuristics can be

combined with the work presented here.
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13 Recommendations

• The aggregation heuristic is applicable to airline taxi problems and other prob-

lems where there are terminals for pickup and delivery, e.g. shipping.

• The geographic heuristic is applicable to PDP problems in general. The anal-

ogous heuristic for traditional VRPs (with depots) is the shortest-route only

heuristic, i.e. where only the shortest inter-customer trips are included in the

problem formulation.

• The MCNF formulation can be used in combination with the aggregation and

geographic heuristic to obtain high quality solutions for airline taxi problems

of about 80 requests or less, and where customer vehicle swapping is allowable.

Similarly, it should be applicable to general PDP problems.

• The agent routing method is a useful framework to apply in combination with

heuristics to a wide range of vehicle routing problems. However, it is preferable

that problems be highly constrained (e.g. real-world).

• The composite variable method is best applied to highly constrained problems

and in combination with other heuristics. It will also perform well for larger

problems, such as greater than 100 requests. It is a fast and effective method

for the airline taxi problem where aircraft swapping is undesirable and quality

of service must be high, i.e. few connecting flight legs.
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Table A.1: Booking List
Booking No. Name From To Pax EDT LAT

1 Auster 7nt JAO MUB 3 480 540

2 Bartenev CBE VUM 2 660 930

3 Bartenev Extra Seat CBE VUM 1 660 930

4 Beckerman BBK CBE 4 660 930

5 Beckerman LVI BBK 4 600 865

6 Bell VUM MUB 2 770 840

7 Bethoney 7nt CBE BBK 2 660 930

8 Bethoney 7nt BBK LVI 2 750 930

9 Boehmke/1 CBE MUB 3 420 480

10 Boehmke/2 CBE MUB 1 420 480

11 BOX#69(08)/2 SWI BBK 5 420 560

12 BOX#71(08)/2 KWD SWI 5 660 900

13 BOX#73(08)/2 BBK KWD 2 600 900

14 Carthy CBE SLI 2 660 930

15 Christenson CBE OMD 2 660 930

16 Davis LVI BBK 2 600 930

17 Davis BBK ABU 2 660 930

18 Farley MUB TSO 2 770 930

19 Farley Extra Seat Luggage MUB TSO 1 770 925

20 Freeman Kalm MUB CTB 2 770 930

21 Gilels 7nt MOM MUB 2 770 840

22 Harris XIG BBK 2 610 750

23 Higbee Stacy JAO CTB 4 660 930

24 Holden CTB VUM 2 660 930

25 Keshavjee Party SOLE 208/1 ABU MUB 6 540 930

26 Keshavjee Party SOLE 208/2 ABU MUB 7 540 930

27 Kirby 7nt CTB JAO 3 660 930

28 Koeppel CBE MUB 2 790 880

29 Levinson 7nt BBK LVI 2 790 930

30 Levinson 7nt MOM BBK 2 660 930

31 Levy MUB MOM 2 770 930

32 Long MUB CBE 2 950 1070

33 Luecke CBE TSO 2 660 930

34 Mahul Shah MUB OMD 2 770 930

35 Marrero XIG MUB 2 485 540

36 McLachlan VUM MUB 3 470 540

37 Merrill 7nt MUB JAO 4 765 930

38 Michaela SHN MOM 2 660 930

39 MILLER 7nt MUB VUM 2 770 930

40 NAS-Staff-Isaac JAO MUB 1 360 1080

41 NAS-Staff-Joanne JAO MUB 1 360 1080

42 NAS-Staff-July HND MUB 1 360 1080
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Booking No. Name From To Pax EDT LAT

43 nas-staff-keowetse JAO MUB 1 360 1080

44 NAS-Staff-Lebo HND MUB 1 360 1080

45 NAS-Staff-Mike JAO MUB 1 360 1080

46 NAS-Staff-Nelly JAO MUB 1 360 1080

47 Nas-Staff-Sam JAO MUB 1 360 1080

48 Pawliczek VUM MOM 2 660 930

49 Pradere SLI XIG 2 660 930

50 Rifkin JAO CBE 2 660 930

51 Saff-Ows-Agatha MUB VUM 1 360 1080

52 Shappell 7nt MOM CBE 2 660 930

53 Shields MUB HND 2 750 930

54 Sollek & McNally MUB CTB 2 770 930

55 Spilsbury CTB MUB 2 770 840

56 Staff-Flamingo-Lebopo CTB MUB 1 360 1080

57 Staff-Flamingo-Simon CTB MUB 1 360 1080

58 Staff-GREAT Explo-Goweditswe MUB XIG 1 360 1080

59 Staff-Great Explo-OT MUB XIG 1 360 1080

60 Staff-Linyanti Explo-Foster BBK SLI 1 360 1080

61 Staff-Nas-Clara JAO MUB 1 360 1080

62 STAFF-NAS-CLINT JAO MUB 1 360 1080

63 Staff-Nas-Dona JAO MUB 1 360 1080

64 Staff-Nas-Graeme JAO MUB 1 360 1080

65 Staff-OWS-Baeti VUM SRA 1 360 1080

66 Staff-OWS-Bashie OMD SRA 1 360 1080

67 Staff-OWS-Bob VUM SRA 1 360 1080

68 Staff-Ows-Boitumelo OMD SRA 1 360 1080

69 Staff-Ows-Bole SRA VUM 1 360 1080

70 Staff-Ows-Bole MUB VUM 1 360 1080

71 Staff-Ows-Bonolo MUB VUM 1 360 1080

72 Staff-OWS-Camilla VUM MOM 1 660 1080

73 Staff-OWS-Celia OMD SRA 1 360 1080

74 Staff-OWS-Changi VUM SRA 1 360 1080

75 Staff-Ows-Disho VUM MUB 1 360 1080

76 Staff-ows-Dolly VUM MUB 1 360 1080

77 Staff-Ows-Felicia VUM SRA 1 360 1080

78 Staff-OWS-Gaba VUM SRA 1 360 1080

79 Staff-OWS-Gale SRA OMD 1 360 1080

80 Staff-OWS-Glorius SRA VUM 1 360 1080

81 Staff-OWS-Joel MUB VUM 1 360 1080

82 Staff-OWS-Johannes VUM SRA 1 360 1080

83 Staff-OWS-John VUM SRA 1 360 1080

84 Staff-OWS-John VUM SRA 1 360 1080
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Booking No. Name From To Pax EDT LAT

85 Staff-OWS-Keleemetse SRA VUM 1 360 1080

86 Staff-OWS-Keleemetse MUB VUM 1 360 1080

87 Staff-OWS-Kelly SRA OMD 1 360 930

88 Staff-Ows-Keolebogile MUB VUM 1 360 1080

89 Staff-OWS-KG MUB SWI 1 360 1080

90 Staff-Ows-Kgakgamatso MUB VUM 1 360 1080

91 Staff-OWS-KK SRA VUM 1 360 1080

92 Staff-OWS-KK MUB SWI 1 360 1080

93 Staff-OWS-Koi VUM SRA 1 360 1080

94 Staff-OWS-KP SWI MUB 1 360 1080

95 Staff-OWS-Lalu MUB VUM 1 360 1080

96 Staff-OWS-Landi MUB MOM 1 360 1080

97 Staff-Ows-Lebasho SRA VUM 1 360 1080

98 Staff-Ows-Lebasho VUM MUB 1 360 1080

99 Staff-Ows-Lesego MUB VUM 1 360 1080

100 Staff-OWS-Letty SRA OMD 1 360 930

101 Staff-OWS-Lindi SWI MUB 1 360 1080

102 Staff-OWS-Marriam SRA VUM 1 360 1080

103 Staff-OWS-Martha MUB VUM 1 360 1080

104 Staff-OWS-Martha MUB VUM 1 360 1080

105 Staff-OWS-Mokopi OMD SRA 1 360 1080

106 Staff-OWS-Mokopi SRA OMD 1 360 1080

107 Staff-OWS-Motsumi SRA VUM 1 360 1080

108 Staff-OWS-Motty SRA VUM 1 360 1080

109 Staff-Ows-Nana VUM SRA 1 360 1080

110 Staff-OWS-OB SRA VUM 1 360 1080

111 Staff-Ows-Olatotswe OMD SRA 1 360 1080

112 Staff-Ows-Ortell MUB VUM 1 360 1080

113 Staff-OWS-Phetso SRA OMD 1 360 1080

114 Staff-OWS-Rob MUB MOM 1 360 1080

115 Staff-OWS-Russel JAO MUB 1 360 1080

116 Staff-OWS-Russel MOM JAO 1 360 1080

117 Staff-OWS-Sadek SRA VUM 1 360 1080

118 Staff-OWS-Sam SWI MUB 1 360 1080

119 Staff-OWS-Smiley OMD SRA 1 360 1080

120 Staff-Ows-Sylvia MUB VUM 1 360 1080

121 Staff-OWS-Taps MUB MOM 1 360 1080

122 Staff-OWS-Thuto MUB BBK 1 360 1080

123 Staff-Ows-Tirelo MUB SWI 1 360 1080

124 Staff-OWS-TK MUB MOM 1 360 1080

125 Staff-OWS-Tshenyego M SRA VUM 1 360 1080

126 Staff-OWS-Tshotlego SRA OMD 1 360 1080
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127 Staff-Ows-Tshubugo MUB VUM 1 360 1080

128 Staff-Sable-Cathy MUB CBE 1 360 930

129 Staff-Sable-Lee CBE MUB 1 360 1080

130 Staff-Sable-Raymond CBE MUB 1 660 1080

131 Staff-Sable-Rocky MUB CBE 1 360 1080

132 Staff-Sefofane-Lekani BBK MUB 1 360 1080

133 Staff-Sefofane-Modiri CBE MUB 1 360 1080

134 Staff-Sefofane-Ollie MUB VUM 1 360 1080

135 Staff-Sefofane-Tumo BBK MUB 1 360 1080

136 Staff-Sefofane-Witness MUB VUM 1 360 1080

137 Stahl SLI BBK 4 660 930

138 Steel MOM MUB 2 780 840

139 Stewart 7nt VUM CBE 2 660 930

140 Thomas LVI BBK 2 600 865

141 Thomas BBK SLI 2 660 930

142 Thomas & Lorenz CTB JAO 2 660 930

143 Trimble 7nt VUM TSO 2 660 930

144 Word MOM MUB 2 780 840

145 World Jouney Edu/1 HND VUM 4 660 930

146 World Jouneys Edu/2 HND VUM 4 660 930

147 Wright MUB XIG 4 830 930

148 Yoshimoto 7nt CBE BBK 2 660 930

149 Z1-11(08)Guide-Francis XOR XIG 1 660 900

150 Z1-11(08)Macgregor XOR XIG 1 660 900

151 Z1-11(08)McLean XOR XIG 1 660 900

152 Z3-10(08)Guide Richard BBK CBE 1 810 895

153 Z3-10(08)Kauth BBK CBE 2 810 895

154 BOX#67(05/20)2008 MLO VFA 12 815 870

155 BOX#69(05/20)08 VFA MLO 12 735 795

156 BOX#69(08)/1 SWI BBK 12 420 560

157 BOX#71(08)/1 KWD SWI 12 660 900

158 BOX#73(08)/1 BBK KWD 12 600 900

Table A.2: Distance Matrix (kilometres)
XOR XIG BBK CBE KWD SWI MUB VUM JAO CTB MOM TSO SRA OMD SHN SLI HND LVI ABU VFA MLO

XOR 0 431 114 284 311 351 391 404 459 373 413 342 429 414 357 312 471 65 457 50 164

XIG 431 0 324 154 154 82 106 44 38 79 22 290 62 48 74 128 49 366 27 382 271

BBK 114 324 0 173 197 247 299 294 349 274 305 301 317 303 250 200 361 52 349 72 81

CBE 284 154 173 0 47 88 164 121 177 125 134 270 145 130 85 28 189 219 178 236 137

KWD 311 154 197 47 0 110 191 113 167 149 132 315 125 117 99 42 177 247 172 266 176

SWI 351 82 247 88 110 0 82 72 116 39 70 234 108 87 18 70 128 286 110 301 189

MUB 391 106 299 164 191 82 0 128 143 44 111 186 161 141 95 151 152 330 128 341 228

VUM 404 44 294 121 113 72 128 0 56 89 23 302 36 15 56 94 68 339 59 355 249

JAO 459 38 349 177 167 116 143 56 0 117 47 328 48 49 105 149 12 394 18 410 302

CTB 373 79 274 125 149 39 44 89 117 0 76 214 124 103 51 109 128 310 105 324 210

MOM 413 22 305 134 132 70 111 23 47 76 0 290 51 32 58 108 59 349 43 364 255

TSO 342 290 301 270 315 234 186 302 328 214 290 0 338 316 252 276 338 302 314 303 222

SRA 429 62 317 145 125 108 161 36 48 124 51 338 0 22 92 117 56 364 62 381 278

OMD 414 48 303 130 117 87 141 15 49 103 32 316 22 0 71 103 60 349 57 366 260

SHN 357 74 250 85 99 18 95 56 105 51 58 252 92 71 0 62 117 292 100 307 197

SLI 312 128 200 28 42 70 151 94 149 109 108 276 117 103 62 0 161 247 151 264 162

HND 471 49 361 189 177 128 152 68 12 128 59 338 56 60 117 161 0 406 24 422 314

LVI 65 366 52 219 247 286 330 339 394 310 349 302 364 349 292 247 406 0 392 20 102

ABU 457 27 349 178 172 110 128 59 18 105 43 314 62 57 100 151 24 392 0 407 298

VFA 50 382 72 236 266 301 341 355 410 324 364 303 381 366 307 264 422 20 407 0 114

MLO 164 271 81 137 176 189 228 249 302 210 255 222 278 260 197 162 314 102 298 114 0
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Table A.3: Aircraft and Loadmaster Day Start and End Positions
Position/Destination No. of C206 No. of C206 No. of C208 No. of C208 No. of Loadmasters No. of Loadmasters

Position/Destination at Day Start at Day End at Day Start at Day End at Day Start at Day End

MUB 5 4 3 3 2 3

BBK 1 2 0 1 0 0

VUM 1 0 0 0 0 0

HND 1 1 0 1 0 1

CBE 0 0 1 0 2 0

TSO 0 1 0 0 0 0

SLI 0 1 0 0 0 0

ABU 1 0 0 0 0 0

LVI 0 0 1 0 0 0

Table A.4: Airport Codes and Assigned Numbers
Safari Camp Name Airport Code Assigned Number

Lechwe Island Camp XOR 1

Xigera XIG 2

Chobe/Kasane BBK 3

Linyanti CBE 4

Lianshulu KWD 5

Moremi Tented Camp SWI 6

Maun MUB 7

Vumbura South VUM 8

Jacana JAO 9

Chitabe Trails CTB 10

Little Mombo MOM 11

Jack’s Camp TSO 12

Seronga SRA 13

Duba Plains OMD 14

Shinde Camp SHN 15

Selinda SLI 16

Tubu Tree Camp HND 17

River Club LVI 18

Abu ABU 19

Victoria Falls VFA 20

Matetsi MLO 21
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APPENDIX C Aggregation Heuristic Result
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Table C.1: Aggregated Groups for Full Schedule
Aggregated Number of Original Booking

Group No. Passengers List Numbers Booking Names

1 3 1 Auster 7nt

2 3 2, 3 Bartenev, Bartenev Extra Seat

3 4 4 Beckerman1

4 6 5,140 Beckerman2

5 2 6 Bell

6 4 7, 148 Bethoney 7nt1, Yoshimoto 7nt

7 2 8 Bethoney 7nt2

8 4 9, 10 Boehmke/1, Boehmke/2

9 5 11 BOX69(08)/2

10 5 12 BOX71(08)/2

11 2 13 BOX73(08)/2

12 2 14 Carthy

13 2 15 Christenson

14 2 16 Davis

15 2 17 Davis

16 3 18,19 Farley, Farley Extra Seat Luggage

17 4 20,54 Freeman Kalm, Sollek, McNally

18 6 21,138,21,144 Gilels 7nt, Steel, Word

19 2 22 Harris

20 4 23 Higbee Stacy

21 2 24 Holden

22 6 25 Keshavjee Party SOLE 208/1

23 7 26 Keshavjee Party SOLE 208/2

24 5 27,142 Kirby 7ntm Thomas, Lorenz

25 2 28 Koeppel

26 2 29 Levinson 7nt

27 2 30 Levinson 7nt

28 2 31 Levy

29 2 32 Long

30 2 33 Luecke

31 2 34 Mahul Shah

32 2 35 Marrero

33 3 36 McLachlan

34 4 37 Merrill 7nt

35 2 38 Michaela

36 2 39 MILLER 7nt

37 11 40,41,40,43,40, NAS-Staff-Isaac, NAS-Staff-Joanne, nas-staff-keowetse,

45,40,46,40,47, NAS-Staff-Mike, NAS-Staff-Nelly, Nas-Staff-Sam,

40,61,40,62,40, Staff-Nas-Clara, STAFF-NAS-CLINT, Staff-Nas-Dona,

63,40,64,40,115 Staff-Nas-Graeme, Staff-OWS-Russel

38 2 42,44 NAS-Staff-July, NAS-Staff-Lebo

39 2 48 Pawliczek

40 2 49 Pradere

41 2 50 Rifkin

42 11 51,70,51,71,51, Saff-Ows-Agatha, Staff-Ows-Bole, Staff-Ows-Bonolo,

81,51,86,51,88, Staff-OWS-Joel, Staff-OWS-Keleemetse, Staff-Ows-Keolebogile ,

51,90,51,95,51, Staff-Ows-Kgakgamatso, Staff-OWS-Lalu,Staff-Ows-Lesego,

99,51,103,51,104 Staff-OWS-Martha, Staff-OWS-Martha

43 2 52 Shappell 7nt

44 2 53 Shields
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Aggregated Number of Original Booking

Group No. Passengers List Numbers Booking Names

45 2 55 Spilsbury

46 2 56,57 Staff-Flamingo-Lebopo, Staff-Flamingo-Simon

47 2 58,59 Staff-GREAT Explo-Goweditswe, Staff-Great Explo-OT

48 1 60 Staff-Linyanti Explo-Foster

49 10 65,67,65,74,65, Staff-OWS-Baeti, Staff-OWS-Bob, Staff-OWS-Changi,

77,65,78,65,82, Staff-Ows-Felicia, Staff-OWS-Gaba, Staff-OWS-Johannes,

65,83,65,84,65, Staff-OWS-John, Staff-OWS-John, Staff-OWS-Koi,

93,65,109 Staff-Ows-Nana

50 6 66,68,66,73,66, Staff-OWS-Bashie, Staff-Ows-Boitumelo, Staff-OWS-Celia,

105,66,111,66,119 Staff-OWS-Mokopi, Staff-Ows-Olatotswe, Staff-OWS-Smiley

51 11 69,80,69,85,69, Staff-Ows-Bole, Staff-OWS-Glorius, Staff-OWS-Keleemetse,

91,69,97,69,102, Staff-OWS-KK, Staff-Ows-Lebasho, Staff-OWS-Marriam,

69,107,69,108,69, Staff-OWS-Motsumi, Staff-OWS-Motty, Staff-OWS-OB,

110,69,117,69,125 Staff-OWS-Sadek, Staff-OWS-Tshenyego M

52 1 72 Staff-OWS-Camilla

53 3 75,76,75,98 Staff-Ows-Disho, Staff-ows-Dolly, Staff-Ows-Lebasho

54 4 79,106,79,113,79, Staff-OWS-Gale, Staff-OWS-Mokopi, Staff-OWS-Phetso,

126 Staff-OWS-Tshotlego

55 2 87,100 Staff-OWS-Kelly, Staff-OWS-Letty

56 3 89,92,89,123 Staff-OWS-KG, Staff-OWS-KK, Staff-Ows-Tirelo

57 3 94,101,94,118 Staff-OWS-KP, Staff-OWS-Lindi, Staff-OWS-Sam

58 4 96,114,96,121,96, Staff-OWS-Landi, Staff-OWS-Rob, Staff-OWS-Taps,

124 Staff-OWS-TK

59 5 112,120,112,127,112, Staff-Ows-Ortell, Staff-Ows-Sylvia, Staff-Ows-Tshubugo,

134,112,136 Staff-Sefofane-Ollie, Staff-Sefofane-Witness

60 1 116 Staff-OWS-Russel

61 1 122 Staff-OWS-Thuto

62 1 128 Staff-Sable-Cathy

63 2 129,133 ,129,133

64 1 130 Staff-Sable-Raymond

65 1 131 Staff-Sable-Rocky

66 2 132,135 Staff-Sefofane-Lekani, Staff-Sefofane-Tumo

67 4 137 Stahl

68 2 139 Stewart 7nt

69 2 141 Thomas

70 2 143 Trimble 7nt

71 8 145,146 World Jouney Edu/1, World Jouneys Edu/2

72 4 147 Wright

73 3 149,150,149,151 Z1-11(08)Guide-Francis, Z1-11(08)Macgregor, Z1-11(08)McLean

74 3 152,153 Z3-10(08)Guide Richard, Z3-10(08)Kauth

75 12 154 BOX67(05/20)2008

76 12 155 BOX69(05/20)08

77 12 156 BOX69(08)/1

78 12 157 BOX71(08)/1

79 12 158 BOX73(08)/1
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APPENDIX D Agent Routing MATLAB

Code - Airline Taxi Problem

D.1 Attractiveness Parameters

Fac1(1,1)=30; % time urgency factor 1

Fac1(2,1)=4; % number of on board groups with destinations matching candidate location

Fac1(3,1)=30; % time closeness

Fac1(4,1)=50; % geographic closeness

Fac1(5,1)=4; % on-board group destinations match awaiting group destinations

Fac1(6,1)=0.5; % if subsequent collected groups have the same destination as previously collected groups from same location (selection of groups to collect)

Fac1(7,1)=15; % take off and leave any other waiting groups (selection of groups to collect)

Fac1(8,1)=20; % time urgency factor 2 - for on-board groups

Fac1(9,1)=1/20; % awaiting group size

D.2 Agent Routing Function

function [f u]=Fn_Agent_Fixed_V2(Fac1)

%Fac1 is a vector of attractiveness factors

global sch

global fleet

global fleetType

global dest

Fix1=1; % make best decisions only

NIters=1;

Penalty=10000; %cost for every undelivered item

Fac1=Fac1’;

u=0;

148



[r1 c1]=size(Fac1);

for it=1:r1

if Fac1(it,1)<0.01

Fac1(it,1)=0.01;

end

end

DayStart=360;

TAT=10;

NCities=21;

[NItems c1]=size(sch);

[NFleets c1]=size(fleet);

fleet=[fleet(:,1:4) zeros(NFleets,1)];

AvgSum=0;

CloseArr=zeros(1,6);

CACnt=0;

for ppn=1:NIters

NAnt=1;

Route=zeros(1,20);

Routing=Route;

sch=sch(:,1:5);

sch=[sch zeros(NItems,2)];

fleet=[fleet(:,1:4) zeros(NFleets,1)];

StickCnt=0;

SSCn =0;

NRemFleets=NFleets;

CompleteItems=0;

%start schedule

SOut=0;

while SOut==0

%choose fleet - Choose with uniform random Monte Carlo sampling, more weighting to larger aircraft

out1=0;

i=0;

Rnd1=rand(1,1);

sum1=0;

Max1=0;

for k=1:NFleets

if fleet(k,5)==0
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sum1=sum1+fleetType(fleet(k,2),3);

if fleetType(fleet(k,2),3)>Max1

Max1=fleetType(fleet(k,2),3);

end

end

end

cum1=0;

while out1==0

i=i+1;

if fleet(i,5)==0

if Fix1==0

cum1=cum1+fleetType(fleet(i,2),3)*(1-fleet(i,5));

if Rnd1<=cum1/sum1

out1=1;

end

else

if Max1==fleetType(fleet(i,2),3)

out1=1;

end

end

end

end

ant(1,1)=i;

Flt1=i;

NRemFleets=NRemFleets-1;

fleet(i,5)=1;

CurrCity=fleet(ant(1,1),3);

CurrTime=DayStart;

FltSpd=fleetType(fleet(ant(1,1),2),2);

EmptySeats=fleetType(fleet(ant(1,1),2),3);

NOnBrd=0;

OnBrd=[];

%record route

Route(1,1)=CurrCity;

Route(1,2)=DayStart;

Route(1,3)=EmptySeats;

Route(1,5)=NOnBrd;

Route(1,4)=Flt1;

for pp=1:NOnBrd
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Route(1,5+pp)=OnBrd(pp,6);

end

%step ant through day

NOut=0;

StepCnt=1;

while NOut==0

%choose next destination

Att=zeros(NCities,2);

Choose1=zeros(NCities,1);

ArrivalTime=Choose1;

CanPick=zeros(NCities,50); % grp number is j,1

CanPickAttr=CanPick;

MustGo=zeros(NCities,1);

for j=1:NCities

%Attractiveness:

%distance

Dist1=distance2(dest,CurrCity,j);

FlTime=Dist1/FltSpd*60;

ArrivalTime(j,1)=CurrTime+FlTime;

% Geographic closeness

Close3= 1 / exp(Dist1 / Fac1(4,1));

%On-board grps

ReasonFlag=0;

NOnBrdDests=0;

TimeClose=0;

for i=1:NOnBrd

if OnBrd(i,4)==j

ReasonFlag=1;

Att(j,1)=1;

NOnBrdDests=NOnBrdDests+1;

%how soon must they arrive at dest?

t1=ArrivalTime(j,1);

t2=OnBrd(i,2);

TU=1 / exp((abs(t2 - t1) / Fac1(1,1)));

% TU=TimeUrgency(Sch(OnBrd(i,1),2),ArrivalTime(j,1);

TimeClose=TimeClose+TU;

if (t2-t1)<TU*Fac1(8,1)

MustGo(j,1)=1;

end

end
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end

Close1=NOnBrdDests/Fac1(2,1);

if Close1>1

Close1=1;

end

%Are there waiting grps?

out2=0;

cnt2=0;

Close5=0;

Close2s=0;

Close4s=0;

Close6s=0;

% CanPick=[]; % attractiveness is j,2

CP=1;

SumAttr=0;

for i=1:NItems

if EmptySeats>0 && sch(i,6)==0 && NOnBrd>0

stop1=1;

end

if sch(i,6)==0 && sch(i,3)==j && EmptySeats>=sch(i,5) % not already picked up, correct city, enough space

%time to collect

if ArrivalTime(j,1)>= sch(i,1) % arrive after EAT

CollectTime=ArrivalTime(j,1);

else

CollectTime=sch(i,1);

end

%can this awaiting group and all on-brd grps be delivered on time?

CanDo=CheckD2(CollectTime,j,i,Flt1, TAT, sch, fleetType, fleet, NOnBrd, OnBrd, dest);%TimeToCollect, CollectionCity, GrpToCollect, fleet, TATime

if CanDo==1 %feasible

ReasonFlag=1;

Att(j,2)=1;

CP=CP+1;

CanPick(j,1)=CanPick(j,1)+1;

CanPick(j,CP)=i;

% how attractive?

% Time closeness

t1=ArrivalTime(j,1);

t2=CollectTime;
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TU=1 / exp((abs(t2 - t1) / Fac1(3,1)));

Close2=TU;

% dest. of waiting grp = on brd grp destinations

OBDMatchCnt=0;

cnt9=0;

out9=0;

for k=1:NOnBrd

if OnBrd(k,4)==sch(i,4)

OBDMatchCnt=OBDMatchCnt+1;

end

end

Close4=OBDMatchCnt/Fac1(5,1);

if Close4>1

Close4=1;

end

%size - make larger groups more attractive

Close6=sch(i,5)*Fac1(9,1);

xx=Close2+Close4+Close6;

Close5=Close5+xx;

CanPickAttr(j,CP)=xx;

SumAttr=SumAttr+xx;

Close2s=Close2s+Close2;

Close4s=Close4s+Close4;

Close6s=Close6s+Close6;

end

end

end

if ReasonFlag==1

Choose1(j,1)=Close1+Close3+Close5+TimeClose;

else

Choose1(j,1)=0;

end

CACnt=CACnt+1;

CloseArr(CACnt,1)=Close1;

CloseArr(CACnt,2)=Close3;

CloseArr(CACnt,3)=TimeClose;

CloseArr(CACnt,4)=Close2s;

CloseArr(CACnt,5)=Close4s;

CloseArr(CACnt,6)=Close6s;

CloseArr(CACnt,7)=Close5;
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end

%if urgent matter:

Filter11=0;

for j=1:NCities

if MustGo(j,1)==1

NextCity=j;

Filter11=1;

end

end

%Filter11;

if Filter11==0

AllZeros=1;

for k=1:NCities

if Choose1(k,1)>0.01

AllZeros=0;

end

end

end

if AllZeros==0

%Monte Carlo - sample next city to go to

Rnd1=rand(1,1);

sum1=0;

Max1=0;

for j=1:NCities

sum1=sum1+Choose1(j,1);

if Choose1(j,1)>Max1

Max1=Choose1(j,1);

end

end

out2=0;

cnt2=0;

cum2=0;

while out2==0

cnt2=cnt2+1;

if Fix1==0

cum2=cum2+Choose1(cnt2,1);

if Rnd1<=cum2/sum1

NextCity=cnt2;
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out2=1;

%cnt2=cnt2+1;

if cnt2>NCities

out2=1;

end

end

else

if Choose1(cnt2,1)==Max1

NextCity=cnt2;

out2=1;

end

end

end

end

if AllZeros==0 || Filter11==1 %there is somewhere to go

%move to next city

StepCnt=StepCnt+1;

%record route

Route(StepCnt,1)=NextCity;

Route(StepCnt,2)=ArrivalTime(NextCity,1);

Route(StepCnt,3)=EmptySeats;

Route(StepCnt,5)=NOnBrd;

Route(StepCnt,4)=Flt1;

for pp=1:NOnBrd

Route(StepCnt,5+pp)=OnBrd(pp,6);

end

if CurrCity~=NextCity

CurrTime=ArrivalTime(NextCity,1)+TAT;

end

CurrCity=NextCity;

%are grps dropped off?

Dropped=0;

if Att(CurrCity,1)==1 %yes

Dropped=1;

DelCnt=0;

for i=1:NOnBrd

if OnBrd(i,4)==CurrCity

%remove group

DelCnt=DelCnt+1;

DelGrp=OnBrd(i,6);

DelItem(DelCnt,1)=i;

sch(DelGrp,7)=1;
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end

end

for ij=1:DelCnt

OnBrd(DelItem(ij,1),8)=1;

%update schedule

%update empty seats

EmptySeats=EmptySeats+sch(DelGrp,5);

end

Dum1=[];

cnt111=0;

for ij=1:NOnBrd

if OnBrd(ij,8)==0

cnt111=cnt111+1;

Dum1(cnt111,:)=OnBrd(ij,:);

end

end

OnBrd=Dum1;

NOnBrd=NOnBrd-DelCnt;

CompleteItems=CompleteItems+DelCnt;

end

%are grps picked up?

TOAttr=0;

if Att(CurrCity,2)==1 % yes

%randomly select grps to collect from CanPick list until plane

%is full

%then move time forward till then

TimeL=zeros(11,1);

AddG=0;

AttrBoost=zeros(NCities,1);

TList=[];

GList=[];

out6=0;

while out6==0

NPick=CanPick(CurrCity,1);

%boost attr for same destinations of grps put on previously

for g=1:NPick

for k=1:NItems

if CanPick(CurrCity,g+1)==k

if k==sch(CanPick(CurrCity,g+1),4)

CanPickAttr(CurrCity,1+g)=CanPickAttr(CurrCity,1+g)+AttrBoost(k,1)*Fac1(6,1);
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AttrBoost(k,1)=0;

end

%remove attractiveness of grps that can’t fit

if sch(CanPick(CurrCity,g+1),5)>EmptySeats

CanPickAttr(CurrCity,1+g)=0;

end

end

end

end

%add attractiveness to just take off - only if grps were

%dropped off

if Dropped==1

%min waiting time for grps to collect

Nt1=CurrTime;

if AddG>0

for k=1:AddG

if TList(k,1)>Nt1

Nt1=TList(k,1);

end

end

end

MinTOTime=2000;

for g=1:NPick

if sch(CanPick(CurrCity,g+1),1)<MinTOTime

MinTOTime=sch(CanPick(CurrCity,g+1),1);

end

end

TWait=MinTOTime-Nt1;

if TWait<0

TWait=0;

end

TOAttr=1-1/exp(TWait/Fac1(7,1));

if TOAttr<=0.01

TOAttr=0.01;

end

end

Max1=0;

sum1=0; %Monte Carlo sample waiting grps

for g=1:NPick

sum1=sum1+CanPickAttr(CurrCity,1+g);

if CanPickAttr(CurrCity,1+g)>Max1

Max1=CanPickAttr(CurrCity,1+g);

end

end
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% if sum1<0.01

% TOAttr=1;

% end

if sum1>0.01 %there are grps to collect that can fit

sum1=sum1+TOAttr;

SSCn=SSCn+1;

if SSCn>500

stop1=1;

end

out8=0;

cnt8=0;

cum1=0;

Rnd1=rand(1,1);

while out8==0

cnt8=cnt8+1;

if Fix1==0

if cnt8<=NPick

cum1=cum1+CanPickAttr(CurrCity,cnt8+1);

else

cum1=cum1+TOAttr;

out8=1;

end

if Rnd1<=cum1/sum1

out8=1;

end

else

if Max1==CanPickAttr(CurrCity,1+cnt8)

out8=1;

end

end

end

if cnt8<=NPick %going to pick up a group

PGrp=CanPick(CurrCity,cnt8+1);

%check that dupl grp not being put on brd

find1=0;

for i=1:NOnBrd

if PGrp==OnBrd(i,6)

find1=1;

%***
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%remove grp from CanPick list

CanPick(CurrCity,1)=CanPick(CurrCity,1)-1;

NPick=CanPick(CurrCity,1);

out8=0;

cnt8=1;

while out8==0

cnt8=cnt8+1;

if CanPick(CurrCity,cnt8)==PGrp

CanPick(CurrCity, cnt8)=0;

for i=cnt8:NPick+1

CanPick(CurrCity,i)=CanPick(CurrCity,i+1);

CanPickAttr(CurrCity,i)=CanPickAttr(CurrCity,i+1);

end

out8=1;

end

end

CanPick(CurrCity,i+1)=0;

CanPickAttr(CurrCity,i+1)=0;

NPick=CanPick(CurrCity,1);

%***

end

end

%check that all grps can still be delivered on time

TimeToCollect=sch(PGrp,1);

CanDo=CheckD2(TimeToCollect, CurrCity, PGrp, Flt1, TAT,sch,fleetType,fleet,NOnBrd,OnBrd,dest);

%TToCollect, City1, GrpToGo, flt1, TATime, sch1, fleetType1, fleet1, NOnBrd1, OnBrd1, dest1

if CanDo==0

find1=1;

%remove grp from CanPick list

CanPick(CurrCity,1)=CanPick(CurrCity,1)-1;

NPick=CanPick(CurrCity,1);

out8=0;

cnt8=1;

while out8==0

cnt8=cnt8+1;

if cnt8>30

stop1=1;

end

if CanPick(CurrCity,cnt8)==PGrp

CanPick(CurrCity, cnt8)=0;

for i=cnt8:NPick+2

CanPick(CurrCity,i)=CanPick(CurrCity,i+1);
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CanPickAttr(CurrCity,i)=CanPickAttr(CurrCity,i+1);

end

out8=1;

end

end

NPick=CanPick(CurrCity,1);

end

if find1==0 % put grp on board

EmptySeats=EmptySeats-sch(PGrp,5);

NOnBrd=NOnBrd+1;

OnBrd=[OnBrd; sch(PGrp,1:5) PGrp 0 0];

sch(PGrp,6)=1;

AddG=AddG+1;

TList(AddG,1)=sch(PGrp,1); % save EDT

GList(AddG,1)=PGrp;

%boost attractiveness for grps going to same dest as this

%one:

AttrBoost(sch(PGrp,4),1)=AttrBoost(sch(PGrp,4),1)+1;

%remove grp from CanPick list

CanPick(CurrCity,1)=CanPick(CurrCity,1)-1;

NPick=CanPick(CurrCity,1);

out8=0;

cnt8=1;

while out8==0

cnt8=cnt8+1;

if CanPick(CurrCity,cnt8)==PGrp

CanPick(CurrCity, cnt8)=0;

for i=cnt8:NPick+1

CanPick(CurrCity,i)=CanPick(CurrCity,i+1);

CanPickAttr(CurrCity,i)=CanPickAttr(CurrCity,i+1);

end

out8=1;

end

end

CanPick(CurrCity,i+1)=0;

CanPickAttr(CurrCity,i+1)=0;

NPick=CanPick(CurrCity,1);

%add attractiveness to just take off

Dropped=1;

end %putting grp on brd
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else

%have selected to just take off

out6=1;

end

else %no more grps to take on brd

out6=1;

end

end

%move time forward

TOTime=CurrTime;

for k=1:AddG

if sch(GList(AddG,1),1)>TOTime

TOTime=sch(GList(AddG,1),1);

end

end

CurrTime=TOTime;

end %picking up grps

StepCnt=StepCnt+1;

Route(StepCnt,3)=EmptySeats;

Route(StepCnt,1)=CurrCity;

Route(StepCnt,2)=CurrTime;

Route(StepCnt,5)=NOnBrd;

Route(StepCnt,4)=Flt1;

for pp=1:NOnBrd

Route(StepCnt,5+pp)=OnBrd(pp,6);

end

else

%nowhere to go - all cities zero attractiveness

%new ant

NOut=1;

[r1 c1]=size(Routing);

[r2 c2]=size(Route);

cntn=0;

for kj=r1+1:r1+r2

cntn=cntn+1;

Routing(kj,:)=Route(cntn,:);

end

Route=zeros(1,20);

NAnt=NAnt+1;

%check if schedule is complete

if CompleteItems>=NItems
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SOut=1;

end

%any remaining agents/planes?

if NRemFleets<=0 %No - finish off

SOut=1;

end

end % end - there is nowhere to go

StickCnt=StickCnt+1;

if StickCnt>1000

stop1=1;

end

end %while NOut - ant out

% set new ant and new time

CurrTime=DayStart;

%SOut=1; %schedule complete

end %schedule complete - SOut

%calculate route cost

[r1 c1]=size(Routing);

TotCost=0;

for i=2:r1

Flt1=Routing(i,4);

NOnBrd=Routing(i,5);

Des1=Routing(i,1);

Tim1=Routing(i,2);

EmptyS=Routing(i,3);

FltCost=fleetType(fleet(Flt1,2),4);

if i>2

Or1=Routing(i-1,1);

TimO=Routing(i-1,2);

if Des1~=Or1

if Tim1>TimO

FlTime=Tim1-TimO;

162



Cost1=FltCost*FlTime/60;

if Cost1<0

stop1=1;

end

TotCost=TotCost+Cost1;

end

end

end

end

%xlswrite(’routing.xlsx’,Routing);

TotCost;

Penal=(NItems-CompleteItems)*Penalty;

TotCost=TotCost+Penal;

u=u+NItems-CompleteItems;

CompleteItems;

AvgSum=AvgSum+TotCost;

end

f=AvgSum/NIters;

%xlswrite(’CloseArr.xlsx’,CloseArr);

end

function z=CheckD2(TToCollect, City1, GrpToGo, flt1, TATime, sch1, fleetType1, fleet1, NOnBrd1, OnBrd1, dest1)

%function to check whether feasibility can be maintained if a certain city is visited

%city1, TTCollect =where we currently are in space-time

GrpNo=GrpToGo;

Time1=TToCollect;

NDests=2;

DestList=[City1 Time1 0]; %dest. city, time to collect (current time)

DestList=[DestList; sch1(GrpNo,4) sch1(GrpNo,2) 0] ; % grp dest , LAT

fltSpd=fleetType1(fleet1(flt1,2),2);

if NOnBrd1>0

for p=1:NOnBrd1

NotIn=0;

for q=1:NDests

%is dest already in dest list?
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if OnBrd1(p,4)==DestList(q,1)

NotIn=1; %dest. already on list

if OnBrd1(p,2)<DestList(q,2)

DestList(q,2)=OnBrd1(p,2);

end

end

end

if NotIn==0

%add dest to list

NDests=NDests+1;

DestList=[DestList; OnBrd1(p,4) OnBrd1(p,2) 0];

end

end

end

%Travel times table

TTable=zeros(NDests,NDests);

for p=1:NDests

for q=1:NDests

dist1=distance2(dest1,DestList(p,1),DestList(q,1));

flTime=dist1/fltSpd*60;

TTable(DestList(p,1),DestList(q,1))=flTime;

TTable(DestList(q,1),DestList(p,1))=flTime;

end

end

%feasible route search

feasible=1;

outt1=0;

cntt1=2;

CCity=City1;

CTime=Time1;

Ind1=2;

oldCnt(Ind1,1)=1;

DestList(1,3)=1;

StrtPt=zeros(NDests,1);

for i=1:2

StrtPt(i,1)=i;

%DestList(i,3)=0;

end

IndexM=zeros(NDests,2); %prev node index and time

IndexM(1,1)=1;

IndexM(1,2)=CTime;

IndexM(1,3)=CCity;

RowInd=StrtPt;

ReOrder=1;
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OrigPt=StrtPt;

while outt1==0

if ReOrder==1

%reorder lower levels and strtPts

StrtPt=RowInd;

for kk=Ind1+1:NDests

outp=0;

while outp==0

StrtPt(kk,1)= StrtPt(kk,1)+1;

if StrtPt(kk,1)>NDests

StrtPt(kk,1)=1;

end

OrigPt(kk,1)=StrtPt(kk,1);

fnd1=0;

for kkk=1:kk-1

if StrtPt(kk,1)==RowInd(kkk,1)

fnd1=1;

end

end

if fnd1==0

outp=1;

RowInd(kk,1)=StrtPt(kk,1);

end

end

end

ReOrder=0;

end

if DestList(RowInd(Ind1,1), 1) ~= CCity && DestList(RowInd(Ind1,1), 3) ~= 1 % not curr city AND haven’t already been there

NCity = DestList(RowInd(Ind1,1), 1);

NTime = CTime + TTable(CCity, NCity);

DestList(RowInd(Ind1,1), 3) = 1;

IndexM(Ind1,1)=RowInd(cntt1,1);

IndexM(Ind1,2)=NTime;

IndexM(Ind1,3)=NCity;

if NTime > DestList(RowInd(Ind1,1), 2)

%infeasible

%move sideways
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DestList(RowInd(Ind1,1), 3) = 0;

Back1=1;

while Back1==1

outp=0;

while outp==0

RowInd(Ind1,1)=RowInd(Ind1,1)+1;

if RowInd(Ind1,1)>NDests

RowInd(Ind1,1)=1;

end

fnd1=0;

for ii=1:Ind1-1

if RowInd(ii,1)==RowInd(Ind1,1)

fnd1=1;

end

end

if fnd1==0

outp=1;

end

%check if RowInd has gone all the way - from StrtPt to

%StrtPt - if yes, move up a level and reset StrtPt.

if RowInd(Ind1,1)==OrigPt(Ind1,1)

Back1=1;

else

Back1=0;

end

ReOrder=1;

end

%else

%5- backtrack to previous level

% DestList(RowInd(Ind1,1), 3) = 0;

%change previous level city

if Back1==1

Ind1 = Ind1 - 1;

DestList(RowInd(Ind1,1), 3) = 0;

First1=0;

if Ind1>2

CTime = IndexM(Ind1-1,2)+TATime;

else

if Ind1~=1
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CTime=IndexM(Ind1-1,2);

else

CTime=IndexM(Ind1,2);

First1=1;

outt1=1;

feasible=0;

Back1=0;

end

end

if outt1==0

if Ind1~=1

CCity=IndexM(Ind1-1,3);

else

CCity=IndexM(Ind1,3);

end

end

if outt1==0

%DestList(RowInd(Ind1,1), 3) = 0;

outp=0;

OutCnt=0;

while outp==0

OutCnt=OutCnt+1;

RowInd(Ind1,1)=RowInd(Ind1,1)+1;

if RowInd(Ind1,1)>NDests

RowInd(Ind1,1)=1;

end

fnd1=0;

for ii=1:Ind1-1

if RowInd(ii,1)==RowInd(Ind1,1)

fnd1=1;

end

end

if fnd1==0 || OutCnt>NDests

outp=1;

end

%check if RowInd has gone all the way - from StrtPt to

%StrtPt - if yes, move up a level and reset StrtPt.

if RowInd(Ind1,1)==OrigPt(Ind1,1)

Back1=1;

Ind1=Ind1-1;

DestList(RowInd(Ind1,1), 3) = 0;
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if First1==1

outt1=1;

end

else

Back1=0;

end

end

ReOrder=1;

end

end

end

else %move on

CTime = NTime + TATime;

CCity = NCity;

Ind1 = Ind1 + 1;

oldCnt(Ind1, 1) = 0;

cntt1 = 1;

end

else

cntt1 = cntt1 + 1;

if cntt1>6

outt1=1;

end

end

ROu=1;

for tt = 1:NDests

if DestList(tt, 3) <= 0.1

ROu = 0;

end

end

if ROu==1

outt1=1;

end

z = feasible; %0 no feasible route, 1 feasible

end

end
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APPENDIX E Agent-Generated Variable

Schedule
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Table E.1: Agent Routing Method Automated Full Schedule
Aircraft Type Origin Departure Time Destination Arrival Time Pax Groups Onboard

Aircraft Type Origin Departure Time Destination Arrival Time Pax Group Numbers

C206 3 360 7 445 2 66,

C206 7 477 3 562 2 61,

C206 3 778 5 834 2 11,

C206 7 360 4 407 2 65,

C206 4 424 7 471 5 8,

C206 7 517 4 563 5 62,

C206 4 660 8 695 2 2,

C206 8 742 4 776 0 68,

C206 4 790 16 798 0 48, 69,

C206 16 887 2 923 5 40,

C206 7 360 2 390 0

C206 2 485 7 515 6 32,

C206 7 531 2 561 3

C206 2 610 3 703 9 19,

C206 3 790 18 805 0 7, 26,

C206 18 815 3 830 5

C206 3 832 4 881 10 74,

C206 7 360 11 392 0 58,

C206 11 660 4 698 2 27, 43,

C206 4 708 12 785 6 30,

C206 7 360 6 383 3

C206 6 420 3 490 11 9,

C206 3 500 1 533 0

C206 1 660 2 783 2 73,

C206 2 870 11 876 2

C206 11 1039 9 1053 2 60,

C206 7 360 10 373 0

C206 10 660 9 693 0 24,

C206 9 703 4 754 2 41,

C206 4 790 7 837 4 25, 63, 64,

C206 7 848 11 880 2 28, 44,

C206 11 883 17 900 4 44,

C206 17 991 7 1034 4 38,

C206 8 360 9 376 4

C206 9 480 7 521 5 1,

C206 7 531 5 586 0

C206 5 660 6 691 2 10,

C206 6 701 7 725 8 57,

C206 7 793 12 843 0 16,

C206 17 360 13 376 0

C206 13 386 14 392 0 55,

C206 14 402 8 406 11

C206 8 470 7 507 5 33,

C206 7 517 4 563 5 62,

C206 4 678 14 715 1 13,

C206 14 720 15 740 2

C206 15 757 11 774 11 35,

C206 11 812 12 894 2 70,
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Aircraft Type Origin Departure Time Destination Arrival Time Pax Groups Onboard

C206 19 360 9 365 4

C206 9 660 10 693 2 20,

C206 10 770 7 783 3 45, 46,

C206 7 823 10 835 2 17,

C206 10 849 8 875 2 21,

C206 8 885 14 889 0 31,

C206 14 918 8 922 3

C206 8 923 7 959 0 53,

C206 7 1016 4 1062 5 29,

C208 4 676 16 683 2 12,

C208 16 693 4 699 10 67,

C208 4 709 3 749 4 6, 27, 67,

C208 3 749 5 794 9 79,

C208 5 804 6 830 5 78,

C208 6 840 17 869 4

C208 17 884 8 899 3 71,

C208 8 982 13 990 0 49,

C208 13 1000 14 1005 11 54,

C208 14 1012 13 1017 3 50,

C208 13 1027 8 1035 3 51,

C208 7 360 6 379 6 56,

C208 6 440 3 497 0 77,

C208 3 650 18 660 0

C208 18 730 20 735 0

C208 20 735 21 775 0 76,

C208 21 815 20 855 0 75,

C208 7 465 8 495 0 42,

C208 8 787 11 792 0 5, 39, 52, 70,

C208 11 801 7 826 0 5, 18,

C208 7 849 2 873 0 34, 47, 72,

C208 2 883 9 892 0 34,

C208 9 1017 7 1050 0 37,

C208 7 617 19 646 0

C208 19 731 7 760 0 22,

C208 7 853 8 883 0 31, 36, 59,

C208 18 620 3 632 0 4, 14,

C208 3 733 4 773 0 3, 15, 48, 69,

C208 4 783 19 824 0 15,

C208 19 893 7 923 0 23,
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APPENDIX F Automated Composite

Schedule
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Table F.1: Composite Variable Method Automated Full Schedule
Aircraft Type Origin Departure Time Destination Arrival Time Pax Groups Onboard

C208 7 370 8 400 11 42,

C208 8 400 13 410 10 49,

C208 13 410 14 420 2 55,

C208 14 450 13 460 6 50,

C208 13 530 8 540 11 51,

C208 8 670 17 690 11

C208 17 690 8 710 8 71,

C208 8 770 11 790 7 52, 18,

C208 11 790 7 820 7

C208 7 860 2 890 4 72,

C208 2 900 19 910 4

C208 19 910 7 940 6 22,

C206 7 380 6 410 3 56,

C206 6 450 3 530 5 9,

C206 3 610 5 670 2 11,

C206 5 670 6 710 5 10,

C206 6 710 16 740 5

C206 16 740 3 800 4 67,

C206 3 860 4 920 5 74, 12,

C206 4 920 16 930 5

C206 7 380 11 420 4 58,

C206 11 490 2 500 4

C206 2 500 7 540 2 32,

C206 7 560 1 680 2

C206 1 690 2 820 3 73,

C206 2 860 9 880 3

C206 9 900 10 940 4 20,

C206 10 1060 7 1080 2 46,

C206 7 390 4 440 1 62,

C206 4 440 7 490 4 8,

C206 7 500 3 640 4 47, 19,

C206 3 670 19 770 2 15,

C206 19 770 9 780 2

C206 9 780 4 840 2 41,

C206 4 840 14 940 4 25, 31,

C206 14 950 13 960 4

C206 13 970 14 980 4 54,

C206 14 980 17 1000 4

C208 7 420 6 440 4

C208 6 480 3 540 11 77,

C208 3 760 18 780 2 7,

C208 18 780 3 800 6 4,

C208 3 800 5 850 11 79,

C208 5 850 6 880 11 78,

C208 6 900 15 910 11

C208 15 910 11 930 2 35,

C208 11 930 9 950 1 60,

C208 9 970 7 1010 11 37,

C206 8 490 7 530 3 33,

C206 7 590 8 630 5 59,

C206 8 670 12 800 4 68, 30,

C206 12 800 3 890 4

C206 3 890 18 910 2 26,

C206 18 910 3 930 2 14,
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Aircraft Type Origin Departure Time Destination Arrival Time Pax Groups Onboard

C206 17 490 9 500 2

C206 9 500 7 550 3 1,

C206 7 760 10 780 3

C206 10 780 8 840 4 45, 36,

C206 8 840 11 850 2 39,

C206 11 850 3 940 2 27,

C208 4 660 16 670 2

C208 16 670 2 700 2 40,

C208 2 700 19 710 2

C208 19 790 7 820 7 23,

C208 7 870 9 920 9 17, 24,

C208 9 920 17 930 9

C206 3 710 4 760 4 3,

C206 4 760 7 850 5 2, 5,

C206 7 850 17 900 2 44,

C206 17 900 7 950 2 38,

C206 7 960 4 1010 2 29,

C206 4 1010 6 1040 2

C206 6 1040 7 1070 3 57,

C208 18 740 20 750 3

C208 20 750 21 800 11 76,

C208 21 830 20 880 11 75,

C208 20 980 3 1000 11

C206 7 780 12 840 3 16,

C206 7 780 4 860 4 28, 43,

C206 4 920 7 1070 5 6, 66,
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APPENDIX G MVCVRP Data

G.1 Problem Data
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Table G.1: Large Instance
x position (km) y position (km) load (kg)

39.5 27.2 519

22.3 36.4 415

56.3 38.3 1137

3.4 19.5 446

58.5 17.6 207

64.5 2.6 395

26.9 24.7 1595

4.0 27.8 3562

22.1 29.3 176

19.5 13.1 860

61.0 27.7 149

67.4 10.7 84

72.5 11.5 839

7.9 47.0 57

1.2 27.0 62

7.6 37.5 443

3.4 13.9 401

22.3 44.6 654

29.7 13.1 191

12.0 30.4 830

30.5 33.5 278

46.9 9.8 121

43.2 3.8 628

67.0 12.3 214

28.0 13.6 1695

46.7 29.5 2136

7.3 26.4 83

67.6 39.2 21

40.2 43.1 399

50.2 23.6 217

34.3 16.6 469

20.0 2.6 278

72.5 2.9 86

27.0 23.0 979

35.1 12.1 79

40.1 7.3 66

48.4 23.8 913

7.9 36.8 586

55.8 28.0 108

1.4 9.9 1249

7.8 15.6 614

0.0 25.2 1897

40.3 38.9 692

14.2 31.9 100

26.4 7.0 423

68.7 24.9 601

56.1 18.9 56

176



x position (km) y position (km) load (kg)

36.4 9.8 1051

7.1 27.7 588

68.6 4.6 987

20.2 41.0 100

20.2 31.7 217

6.7 1.5 1

58.5 14.0 202

35.6 12.0 1

3.3 22.7 1801

64.0 27.7 790

68.7 15.6 1136

6.0 29.8 514

71.1 5.4 105

45.9 16.3 134

35.5 10.3 425

9.7 1.4 1087

40.5 43.4 85

30.1 39.8 1036

49.8 33.9 716

25.1 23.3 358

51.5 8.4 69

40.2 38.3 375

31.6 23.9 99

45.8 23.0 478

65.6 17.4 834

21.7 7.1 162

16.5 27.5 473

64.8 22.5 43

50.6 35.1 826

57.9 7.6 471

15.0 45.0 2370

4.6 37.3 123

34.3 5.6 1037

12.9 2.3 140

39.4 26.4 520

34.6 35.1 82

29.5 42.4 507

6.6 29.8 1031

1.2 20.3 89

20.4 46.3 171

51.5 19.6 98

20.5 16.8 44

69.9 5.7 797

25.7 4.9 180

5.7 20.3 77
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x position (km) y position (km) load (kg)

40.1 23.2 1054

16.1 17.8 6500

16.1 17.8 648

20.8 23.7 38

38.3 45.4 338

67.3 30.9 648

51.3 3.0 22

51.8 23.4 220

16.6 15.3 526

3.7 24.3 300

59.2 15.3 388

59.5 31.7 6190

64.8 19.6 421

70.6 37.5 1

29.7 0.8 2

12.2 24.0 104

7.9 13.0 426

62.8 23.4 205

66.3 17.5 21

57.0 10.2 198

17.5 41.3 150

27.7 18.3 173

43.4 43.8 360

24.4 40.8 1

19.2 8.4 135

0.2 34.9 139

20.6 33.0 297

60.1 34.9 65

5.8 19.3 6148

52.6 14.7 717

11.2 27.9 1010

18.0 44.2 82

72.8 29.7 50

66.8 27.0 906

63.7 3.5 117

56.2 11.5 636

Table G.2: Large Instance - Vehicles
Vehicle No. Max. Load (kg) Average Speed (km/hr) Cost (R)

1 850 50 2.5

2 1000 50 2.6

3 2000 45 3.7

4 3000 45 4.2

5 3500 40 4.5

6 4000 40 4.7

7 5500 35 5.8

8 6500 35 6.6
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Table G.3: Medium Instance - Customers
x position (km) y position (km) load (kg)

22.0 28.5 527

23.2 4.4 686

70.8 34.5 56

34.0 21.6 1401

30.4 33.2 6500

28.6 11.1 1037

5.2 37.1 637

24.6 19.7 6421

51.7 23.1 6500

25.2 7.2 6421

37.8 37.1 6500

25.6 45.2 2617

22.5 10.3 1036

66.1 5.3 6148

46.0 41.8 6500

24.3 25.3 5120

11.3 37.3 6421

40.2 3.4 1401

61.8 46.3 222

48.6 44.8 123

Table G.4: Medium Instance - Vehicles
Vehicle No. Max. Load (kg) Average Speed (km/hr) Cost (R)

1 850 50 2.5

2 2000 45 3.7

3 4000 40 4.7

4 6500 35 6.6
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G.2 Supplied Delivery Lists

G.2.1 List for Day 1

nazareth house 207

garden village 311

meat good cash & carry 975

tacoma spur 173

warmbad rusoord maatskappy inc 459

supreme chicken centre 2737

bronco spar 278

stone craddle rietvlei 597

silverton sandwich bar 10

les marais spar 195

emperor’s palace 523

ciao baby cucina 47

cullinan sorg- en 1659

willow haven 250

tembisa hospital 1253

gerotek test facilities a 324

makhado correctional service 3943

fruit stop silverton 1080

multi meat & chicken wholesale 806

oasis lodge cc 693

rtt 462

dpt of correctional middelburg 1427

fringes 244

pax convenience stores 975

waterberg ouetehuis 349

medina meats 41

netcare optiklin hospital 154

fish 563

summit on site cc 444

f.h odendaal hospital 876

bergies take aways 87

mark slaghuis 161

goldreef city casino 392

arwyp medical centre 1611
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liberty life 929

constantia restaurant 146

automotive supplier park 439

adams takeaways 217

pride of india 115

tara hospital 34

rayton rite value-chip & dip 546

the friendly butchery (pty)ltd 61

warmbath hospital 1731

fairleads old age home 239

makro-struben valley 170

a manjee id 6601315307180 229

kevin poto’ father funeral 113

hunter slaghuis 682

fruit & veg city louis trich 680

clearview rehabilitation centr 329

home style fish & chips 419

herfsland old age home 86

meat mecca 3904

holy cross home 426

waltloo meat & chicken 1324

fire fly foods 817

warmbaths koelkamers 1440

denab 73

s.a army 544

kevin poto - funeral 453

meat city 854

ekklesia park 337

naboom fruit & veg 240

mars africa rosslyn 40

catering school 145

salmas light gm & hardware 87

san salvador 157

ac nielsen marketing & media 50

central kitchen 671

ons herberg npo 001/671 1456

big save supermarket 569

allan woodrow 269

m.d.r 848
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putco mamelodi sbu 30

j.r. de abrco t/a blou bull 773

wimpy hatfield 53

tambo memorial hospital 3483

boston deli hazelwood 164

gerbera mess 339

main kitchen 982

mr munchies 776

a mess 5120

polokwane correctional service 7651

africafe 22

180 degrees done to perfection 572

national ceremonial gaurd 206

putco roseville 175

o’hagans 547

mario’s cash & carry 6529

crossroads recovery centre 96

sportlight gourmet foods 313

abedare cable edenvale 216

plot 32 173

4 sai 1362

bolivai lodge 686

engeneering formation 218

queens haven 237

ingwe single quarters 222

meat & veg chicken 283

peters supermarket foodzone 1447

sandfi aventis 478

roodepoort chicken wholesalers 762

kokanje aftree oord 1532

summit college 121

seafood delight 129

G.2.2 List for Day 2

forest farm 285
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chatter box coffee cafe 173

magalies park 141

siemens wadeville 161

crawdaddys 96

centurion sub acute 44

s.a.bank note co. (pty)ltd 2021

samro 311

pineslopes spar 274

stone craddle rietvlei 1832

brpm hostel raasimone 29

tiberius fish shop 268

vibe catering 705

randjes park spar 234

promise grill restaurant 478

gallagher gourmet & catering c 1031

panarottis menlyn 141

prime co meat 2376

chamara trading cc (bosman) 2789

les marais spar 236

lafarge 157

la scala 692

big daddys 147

bondi distributors cc 2506

ann harding 125

bj’s the bridge 535

azinaz trading cc 9726

clicks distribution centre 102

millenium 189

clover sa 301

s.a.reserve bank 912

meat empire cc ck96/15394/23 265

gerotek test facilities 306

sizwe tropical disease hosp. 1104

banjaara 448

masakhane cookfreeze 9020

weskoppies hospital main kitch 3870

tumela hostel 3389

sandton foods 466

snoopy snacks 147
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goldreef city casino 2352

arwyp medical centre 308

osalito centurion 65

npc staff restaurant 506

the raj indian restaurant 2617

mr salad 118

makro woodmead 224

p v b brits 836

tara hospital 186

dishaba hostel 1462

m s fernandes t/a target foods 1899

tip top meat products 1500

hernic ferrochrome mine 1690

platter xpress cc 222

quality meal services 276

emily hobhousetehuis 458

the friendly butchery (pty)ltd 101

health emporium & produce 1401

j.r. de abrco t/a blou bull 668

pretoria academic hospital 103

the sheiks palace 160

coco bonco 80

scrooge diner 410

baglios cc 506

sahil curry den 483

emperor foods 32

amandelbult hospital 75

papachinos clearwater 149

mars africa rosslyn 594

harry’s fast food centre cc 99

st martins school 305

frontline cash & carry 1557

mlanje hostel 1825

laudium meat supply 1000

bonnies fast foods 58

masonic haven 250

tuscan bbq groenkloof 1094

ons huis 103

lathyser fish and chips 418
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central kitchen 216

tshwane university of technolo 278

matador w/salers 3211

clicks upd (roodeplaat) 385

ok value 6421

cosmic gold trd 368 579

pick n pay 422

boston deli hazelwood 637

ciao baby cucina 139

clayton house 121

africafe 579

serene park retirement village 510

kashif’s fusion food restaurant 88

ghazal bryanston 262

nathis catering 297

p.p.m training centre 195

nedbank selby ext 233

s.a.p college winkel 2163

nestle s.a 503

wolhuterskop trading 61

wimpy 1 4538

eugene marais creche 247

unisa florida campus 270

citadela 231

caternet pty ltd 7302

queens haven 289

barneys den supermarket 294

akeso parktown 310

ghazal north indain rest cc 49

king pie 852

casa bella guest 5

montina investment 728

meat net cc 285

parrots kolonade 229

germiston hospital 527

r p m rustenburg 176

desmondi campus catering 156

nampak rosslyn 285

bread basket franchise 135
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jafta el kero old age 362

sanca horizon clinic 240

G.2.3 List for Day 3

nazareth house 519

huis vergendeg 415

ons tuis riveria 1137

fego student centre (main camp 446

north indian tansoor rest 207

setaria spar 395

the classic india restaurant 1595

s.a.p. hondeskool menasie 3562

gallegher gourmet catering 176

pretoria west hospital 860

ct fish market silverlakes 149

putco selby 84

vibe catering 839

the bread basket eastgate 57

panarottis menlyn 62

wang thai - sandton 443

masonic haven 401

chamara trading cc (bosman) 654

serenity aged home 191

les marais spar 830

clicks upd (roodeplaat) 278

deliver to ezulwini 121

detective academy 628

jaffa 214

azani caterers ck995487523 1695

tembisa hospital 2136

avalon 83

thava restaurant 21

gerotek test facilities a 399

oyo-restaurant 217

varsity bakery 469

bj’s the bridge 278

welkom mutchery 86
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ghazal sunninghill 979

clicks distribution centre 79

mugg & bean 66

neptunes fishmonger 913

orient restaurant 586

librety life 108

gallagher gourmet & catering 1249

fish 614

igbal meat and deli 1897

a taste of punjab 692

nedbank 100 main 324

dawn 423

amor spyseniers 601

heidelburg graphics 56

goldreef city casino 1051

arwyp medical centre 588

retire@ midstream 987

crescent clinic 100

ebg sherwood trust (pty) ltd 217

wimpy no 1 548

liberty life 202

boom street no 1 1360

the raj indian restaurant 1801

mamelodi hospital 790

m s fernandes t/a target foods 1136

cape town fish market s/down 514

nedbank 105 west 263

excellent meat &chicken 134

platter xpress cc 425

ad-eed super market 1087

lorraine rautenback 85

engeneering formation 1036

staff hostel 716

east lynne spar 358

makro-struben valley 69

chazal bryanston 375

vetkoekden 99

norma & vilma caterers 478

emperor foods 834
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rens butchery 162

so yum restaurant 473

papachinos clearwater 43

emperor’s palace 826

alberton meat market 471

bulk pack butchery 2370

a.g gooliman sons 123

fordsburg meat & supermarket c 1037

ekklesia park 140

klerksdorp tehuis vir bejaarde 520

d.c.l foods (pty) ltd 82

stabilis treatment centre 507

vista medi clinic 1031

del to ezulwini 89

van rensburg old age home 171

gafa huis protea home 98

fego lynwood 44

mf seafood distributors 797

js tikka & kebab 180

golden valley chineese rest 77

tambo memorial hospital 1054

a mess 7148

clayton house 38

five star caterers 338

africafe 648

sita 22

serene park retirement village 220

the sheiks palace 526

nathis catering 300

circle catering and 388

anglo platinum amandelbuilt 6190

akeso alberton 421

keg no 1 113

keg no 2 89

chazal north indain rest cc 104

desmondi campus catering 426

john dory’s fish & grill 205

21 signal mess 3952

skill moters 198
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meat & veg chicken 150

akeso parktown 173

sandfi aventis 360

mc synty’s no 1 202

charles tiganis food enterpris 135

jubilee wits 139

ogalito centurion 297

armadillo’s coffee shop 65

swartklip mine 6148

the food factor 717

summit college 1010

bpr management services cc 82

ann harding 50

officer commanding 906

bread basket franchise 117

site park build (cafeteria) 636
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APPENDIX H Agent Routing MATLAB

Code - CVRPTW

function z=fn_agentV2(Fac,num1);

global A

Fix=0; %don’t sample randomly - choose most attractive city

Fix2=0; %also randomize attr factors

VCap=200;

[r1 c1]=size(Fac);

if c1>1 && r1>1

Fac=Fac(:,1);

elseif c1>1

Fac=Fac’;

end

ZCnt=0;

DayEnd=240;

TAT=10;

CurrentCity=1;

CurrentTime=0;

CurrentLoad=0;

cnt1=1;

Route1=[];

Route1(cnt1,1)=CurrentCity;

BiggestLoad=max(A(:,4));

BiggestX=max(A(:,2));

BiggestY=max(A(:,3));
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[NCities NCols]=size(A);

A=[A zeros(NCities,1)];

SumDis1=0;

if Fac(1,1)<0.5

Fac(1,1)=0.5;

end

if Fac(2,1)<0.5

Fac(2,1)=0.5;

end

if Fac(3,1)<5

Fac(3,1)=5;

end

if Fac(4,1)<0.5

Fac(4,1)=0.5;

end

if Fac(5,1)<5

Fac(5,1)=5;

end

out2=0;

while out2==0

Attr=zeros(NCities,1);

EDT=zeros(NCities,1);

DisArr=EDT;

for j=1:NCities

if j~=CurrentCity

%calc attractiveness

x=A(j,1);

y=A(j,2);

Ld1=A(j,3);

T1=A(j,4);

T2=A(j,5);

Dist1=sqrt((x-A(CurrentCity,1))^2+(y-A(CurrentCity,2))^2);

DisArr(j,1)=Dist1;

TDist1=T1-CurrentTime;

if TDist1<0

TDist1=0;

end

TTime=Dist1;
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DDist1=sqrt((x-A(1,1))^2+(y-A(1,2))^2);

DTime=DDist1;

%can we get there on time?

%is load OK?

%can we get back to depot on time?

ArrTime=CurrentTime+TTime;

if ArrTime<T1

ArrTime=T1;

end

EDT(j,1)=ArrTime+TAT;

RetTime=EDT(j,1)+DTime;

if EDT(j,1)<T2 && CurrentLoad+Ld1<=VCap && RetTime<=DayEnd && (A(j,7)==0 || j==1)

%Bigger loads - more attractive

Close1=Ld1/BiggestLoad*Fac(1,1); % Fac(1) 1

if Close1<0.000001

stop1=1;

end

%closer - more attractive

Close2=Fac(2,1)*exp(-DDist1/Fac(3,1)); %Fac(2)~1.5 Fac(3)~10

%closer in time - more attractive

TDiff=EDT(j,1)-CurrentTime;

Close3=Fac(4,1)*exp(-TDiff/Fac(5,1)); %Fac(4)~1.5 Fac(5)~10

Attr(j,1)=Close1+Close2+Close3;

if j==1

Attr(j,1)=0;

end

end

end

end

AllZero=1;

for j=1:NCities

if Attr(j,1)>0.00000001

AllZero=0;

end

end

if AllZero==1

ZCnt=ZCnt+1;
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Attr(1,1)=0.1;

AllZero=0;

end

if AllZero==0

%choose city

if Fix==0

ZCnt=0;

Sum1=0;

for j=1:NCities

Sum1=Sum1+Attr(j,1);

end

R1=rand();

out1=0;

j=0;

Cum1=0;

while out1==0

j=j+1;

Cum1=Cum1+Attr(j,1)/Sum1;

if R1<=Cum1

out1=1;

end

if j>=NCities

out1=1;

end

end

else %Fix=1 - choose most attractive location

Max1=0.00000001;

Best1=1;

for kk=1:NCities

if Attr(kk,1)>Max1

Max1=Attr(kk,1);

Best1=kk;

end

end

j=Best1;

end

else

j=1;
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end

NextCity=j;

%Move to next city

CurrentCity=NextCity;

cnt1=cnt1+1;

Route1(cnt1,1)=CurrentCity;

SumDis1=SumDis1+DisArr(j,1);

Route1(cnt1,2)=DisArr(j,1);

Route1(cnt1,4)=SumDis1;

if CurrentCity~=1

CurrentLoad=CurrentLoad+A(CurrentCity,3);

CurrentTime=EDT(j,1);

Route1(cnt1,3)=CurrentTime;

else

CurrentLoad=0;

CurrentTime=0;

SumDis1=0;

Route1(cnt1,1)=CurrentCity;

Route1(cnt1,2)=DisArr(j,1);

Route1(cnt1,4)=SumDis1;

Route1(cnt1,3)=CurrentTime;

if A(1,7)==1

A(1,7)=0;

%out2=1;

end

end

A(CurrentCity,7)=1;

AllDone=1;

for j=1:NCities

if A(j,7)==0

AllDone=0;

end

end

if AllDone==1

out2=1;
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end

if ZCnt>100

out2=1;

end

end

[r1 c1]=size(Route1);

SumDist=0;

for i=2:r1

Dist1=sqrt((A(Route1(i-1,1),1)-A(Route1(i,1),1))^2+(A(Route1(i-1,1),2)-A(Route1(i,1),2))^2);

SumDist=SumDist+Dist1;

end

if ZCnt>100

SumDist=100000;

end

A(:,7)=[];

%fn_agent=SumDist;

z=SumDist;

tf=isnumeric(z);

if tf==0

z=[];

z=100001;

end

[r1 c1]=size(z);

if r1>1 || c1>1

z=[];

z=100002;

end

xlswrite(strcat(’routing’,num2str(num1),’.xlsx’),Route1);
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APPENDIX I CVRPTW Data
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Table I.1: Solomon Data RC101 [147]
starting ending turnaround

x position y position load time window time window time

40 50 0 0 240 0

25 85 20 145 175 10

22 75 30 50 80 10

22 85 10 109 139 10

20 80 40 141 171 10

20 85 20 41 71 10

18 75 20 95 125 10

15 75 20 79 109 10

15 80 10 91 121 10

10 35 20 91 121 10

10 40 30 119 149 10

8 40 40 59 89 10

8 45 20 64 94 10

5 35 10 142 172 10

5 45 10 35 65 10

2 40 20 58 88 10

0 40 20 72 102 10

0 45 20 149 179 10

44 5 20 87 117 10

42 10 40 72 102 10

42 15 10 122 152 10

40 5 10 67 97 10

40 15 40 92 122 10

38 5 30 65 95 10

38 15 10 148 178 10

35 5 20 154 184 10

95 30 30 115 145 10

95 35 20 62 92 10

92 30 10 62 92 10

90 35 10 67 97 10

88 30 10 74 104 10

88 35 20 61 91 10

87 30 10 131 161 10

85 25 10 51 81 10

85 35 30 111 141 10

67 85 20 139 169 10

65 85 40 43 73 10

65 82 10 124 154 10

62 80 30 75 105 10

60 80 10 37 67 10

60 85 30 85 115 10

58 75 20 92 122 10

55 80 10 33 63 10

55 85 20 128 158 10

55 82 10 64 94 10

20 82 10 37 67 10

18 80 10 113 143 10
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starting ending turnaround

x position y position load time window time window time

2 45 10 45 75 10

42 5 10 151 181 10

42 12 10 104 134 10

72 35 30 116 146 10

55 20 19 83 113 10

25 30 3 52 82 10

20 50 5 91 121 10

55 60 16 139 169 10

30 60 16 140 170 10

50 35 19 130 160 10

30 25 23 96 126 10

15 10 20 152 182 10

10 20 19 42 72 10

15 60 17 155 185 10

45 65 9 66 96 10

65 35 3 52 82 10

65 20 6 39 69 10

45 30 17 53 83 10

35 40 16 11 41 10

41 37 16 133 163 10

64 42 9 70 100 10

40 60 21 144 174 10

31 52 27 41 71 10

35 69 23 180 210 10

65 55 14 65 95 10

63 65 8 30 60 10

2 60 5 77 107 10

20 20 8 141 171 10

5 5 16 74 104 10

60 12 31 75 105 10

23 3 7 150 180 10

8 56 27 90 120 10

6 68 30 89 119 10

47 47 13 192 222 10

49 58 10 86 116 10

27 43 9 42 72 10

37 31 14 35 65 10

57 29 18 96 126 10

63 23 2 87 117 10

21 24 28 87 117 10

12 24 13 90 120 10

24 58 19 67 97 10

67 5 25 144 174 10

37 47 6 86 116 10

49 42 13 167 197 10

53 43 14 14 44 10

61 52 3 178 208 10
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