
A Study of Monoidal t-norm based
Logic

by

Ellen Mohau Toloane

A dissertation submitted in fulfillment of the

academic requirements for the degree of

Master of Science,

in the

School of Mathematics,

University of the Witwatersrand,

Johannesburg, 2013



To my late mother ’Matsekeli, my late father Ratsuonyana, my husband Motlalepule

and my son Thuto



Abstract

The logical system MTL (for Monoidal t-norm Logic) is a formalism of the logic

of left-continuous t-norms, which are operations that arise in the study of fuzzy

sets and fuzzy logic. The objective is to investigate the important results on MTL

and collect them together in a coherent form. The main results considered will be

the completeness results for the logic with respect to MTL-algebras, MTL-chains

(linearly ordered MTL-algebras) and standard MTL-algebras (left-continuous t-norm

algebras). Completeness of MTL with respect to standard MTL-algebras means that

MTL is indeed the logic of left-continuous t-norms. The logical system BL (for Basic

Logic) is an axiomatic extension of MTL; we will consider the same completeness

results for BL; that is we will show that BL is complete with respect to BL-algebras,

BL-chains and standard BL-algebras (continuous t-norm algebras). Completeness of

BL with respect to standard BL-algebras means that BL is the logic of continuous

t-norms.
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CHAPTER 1

Introduction

T-norms were introduced by Menger in [23]. The name t-norm originates from ‘tri-

angular norm’ which is a generalized type of metric. Since their introduction t-norms

have been applied in various other mathematical disciplines including game theory, the

theory of non-additive measures and integrals, the theory of measure-free condition-

ing, fuzzy set theory, preference modeling, decision analysis and artificial intelligence

[20]. More details on t-norms can be found in [21].

Recently t-norms have been widely used in the formal study of fuzzy logic. Whereas

in classical logic there are only two truth values {0, 1} in fuzzy logic the set of truth-

values is the whole unit interval [0, 1], which allows one to speak of degrees of truth. In

this context, a t-norm is a binary operation on [0, 1] representing a form of conjunction

which is different to the classical one and serves as a model of the ‘AND’ connective in

a typical fuzzy if-then rule. Typically t-norms are assumed to be continuous or, more

generally, left-continuous operations. A left-continuous t-norm ◦ has an associated

operation →, called its residuum, which is a form of implication and models the

logical consequence of an if-then rule.
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Monoidal t-norm Logic, or MTL for short, was introduced in [5] as a formalization of

the logic of left-continuous t-norms. This logic has as its class of algebraic semantics

the class of MTL-algebras. These algebras are bounded lattice-ordered algebras with

additional operations ◦ and→ which model the t-norm and its residuum, respectively.

Fuzzy logic and fuzzy sets have been used successfully as tools for mathematical

applications since their introduction in the 1960’s. Since then the connection between

fuzzy logic and formal mathematical logic has been explored. The connection with the

existing theory of many-valued logic was established as well as with certain classes of

ordered algebraic structures. The logic MTL extends this general area of study. While

the continuous t-norms on [0, 1] have been completely classified, the study of left-

continuous t-norms is relatively new and there is good scope for future investigations.

The objective is to gain a complete understanding of the methodology and tech-

niques used in the study of MTL as well as in the study of algebraic systems related

to this logic. This thesis intends to bring together in a single framework a coherent

collection of important results related to MTL and MTL-algebras. The main math-

ematical results that will be considered are the completeness of the logic MTL. The

Completeness Theorem states that a formula ϕ is provable in a logic L if and only if

the identity ϕ = 1 holds in some class of algebraic models. The completeness results

that will be investigated are with respect to the classes of MTL-algebras, MTL-chains

and standard MTL-algebras.

Basic Logic (BL for short) was introduced by Hájek in [14] as a formalization of

the logic of continuous t-norms. Since BL is closely related to MTL, we are also

going to investigate the same completeness results for BL. Completeness is the key

requirement of any logic. The significance of completeness was first realized by Hilbert

and Ackermann, who posed it as an open question in their book [16]; the question

asks whether there are axioms of a formal system sufficient to derive every statement

that is true in all models of the system. An English translation of the second edition

of this book can be found in [17]. The first proof of a the Completeness Theorem

for classical first order logic was given by Gödel in his doctoral thesis, and it was

published in [11]. An English translation of it can be found in [12].

The work in this thesis is organised as follows. Chapter 3 deals with t-norms. In this
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chapter we give examples of left and right continuous t-norms and their properties.

We use these properties to prove a Decomposition Theorem of continuous t-norms,

which says any continuous t-norm is isomorphic to an ordinal sum of Lukasiewicz,

Product and Gödel t-norms. Most of the material in this chapter comes from Hájek’s

book [14].

Chapter 4 is about the logic MTL. We list some of the formulas provable in MTL

and give proofs for some formulas. Again we discuss the corresponding algebraic

structures, namely MTL-algebras. In particular, we prove some important properties

of MTL-algebras. We also prove that the class of all MTL-algebras forms a variety

of algebras. The material in this chapter is taken from the work done by Esteva and

Godo in [5].

In chapter 5, we prove completeness of MTL with respect to MTL-algebras and MTL-

chains (linearly ordered MTL-algebras), that is we prove that a formula ϕ is a theorem

of MTL if and only if the identity ϕ = 1 holds in all MTL-algebras. We show that

every MTL-algebra is a subdirect product of MTL-chains and use this result to show

that MTL is complete with respect to MTL-chains. The results in this chapter are

from the work of Esteva and Godo [5] and Hájek [14].

In chapter 6, we present a proof of completenesss of MTL with respect to standard

MTL-algebras (left-continuous t-norm algebras), which shows that a formula ϕ is a

theorem of MTL if and only if the identity ϕ = 1 holds in all standard MTL-algebras.

To achieve this we use the completeness result from chapter 5 and prove that every

finitely generated MTL-chain can be embedded into a standard MTL-algebra. The

material in this chapter comes from the work of Jenei and Montagna [20].

Chapter 7 is devoted to a standard completeness proof of BL. We only prove stan-

dard completeness of BL with respect to standard BL-algebras since the proof of

completeness of BL with respect to BL-algebras and BL-chains is similar to that of

MTL. The standard completeness of BL was first proved by Gignoli, Esteva, Godo

and Torrens in [4]. It was later also proved by Angliano, Ferreirim and Montagna in

[1]. We prove this completeness using the approach in [1]. We also discuss Wajsberg

hoops and the characterization theorem of subdirectly irreducible BL-algebras which

play a significant role in proving the results leading to the completeness theorem. We
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also give an example to show that the proof of completeness for MTL with respect to

standard MTL-algebras does not extend to BL. Lastly, we present our conclusions in

chapter 8.
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CHAPTER 2

Preliminaries

We assume familiarity with basic concepts from mathematical analysis and universal

algebra. In this section we give the definitions of the main concepts we shall use. For

more background on universal algebra we refer the reader to [3].

We use N to denote the set of natural numbers, Q to denote the set of rational

numbers and R to denote the set of real numbers.

Definition 2.0.1. Let f : R → R be a function with domain D ⊆ R and a ∈ D.

We say f is continuous at a if for every ε > 0, there is a δ > 0 such that

|f (x)− f (a) | < ε whenever x ∈ D and |x− a| < δ.

f is said to be left-continuous at a if for every ε > 0, there is a δ > 0 such that

|f (x)− f (a) | < ε whenever x ∈ D and a− δ < x < a.

We can also define continuity and left-continuity equivalently in terms of sequences

and it is this definition we are mainly going to use. The definition is as follows:

Definition 2.0.2. Let f : R → R be a function with domain D ⊆ R and a ∈ D.
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Then f is continuous at a iff whenever {xn} is a sequence in D which converges Rto

a, then the sequence {f (xn)} converges to f (a). f is left-continuous at a iff for all

increasing sequences {xn} converging to a, {f (xn)} converges to f (a).

Definition 2.0.3. For a non-empty set A and a non-negative integer n, we define

A0 = ∅, and for n > 0, An is the set of n-tuples of elements from A.

Definition 2.0.4. An n-ary operation is any function f from An to A.

Definition 2.0.5. A type (or language) of algebras is a set F of function symbols

such that a non-negative integer n is assigned to each member f of F . This integer

is called the arity of f .

Definition 2.0.6. An algebra A of type F is an ordered pair (A,F ), where A is a

non-empty set and F is a family of operations on A indexed by the type F such that

corresponding to each function symbol f , of arity n, in F there is an n-ary operation

fA on A. The set A is called the universe of A.

Definition 2.0.7. An embedding of an algebra A into an algebra B (of the same

type) is a 1-1 map e : A → B that preserves all existing operations; i.e., for each

(k-ary) operation symbol f and b1, . . . , bk ∈ A we have that e(fA(b1, . . . , bk)) =

fB(e(b1), . . . , e(bk)).

Definition 2.0.8. Let K be a class of algebras of the same type. Then

I (K) is the class of all algebras which are isomorphic to some member of K.

H (K) is the class of homomorphic images of algebras in K.

S (K) is the class of subalgebras of algebras in K.

P (K) is the class of direct products of non-empty families of algebras in K.

The class K is said to be closed under a class operator O if O (K) is contained in K.

Definition 2.0.9. A non-empty class K of algebras of the same type is called a

variety if it is closed under subalgebras, homomorphic images and direct products.

Definition 2.0.10. For a class K of algebras of the same type, let V (K) denote the

smallest variety containing K. We say that V (K) is the variety generated by K. A

variety V is finitely generated if V = V (K) for some finite set K of finite algebras.
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Theorem 2.0.1 (Tarski). For any class K of algebras of the same type, V (K) =

HSP (K) .

Definition 2.0.11. An algebra A is a subdirect product of algebras Bi, i ∈ I, if A

is embeddable into a direct product of Bi’s in such a way that the projection of the

image of B to each factor algebra Ai is onto.

Definition 2.0.12. Let A be an algebra of type F , p, q terms of type F with variables

x1, x2, ..., xn and p ≈ q an identity of type F . Then A satisfies p ≈ q, if for all

a1, a2, ..., an ∈ A,

pA (a1, a2, ..., an) = qA (a1, a2, ..., an)

where pA (a1, a2, ..., an) is the evaluation of the term p in A under the assignment

xi 7→ ai. Let K be a class of algebras of type F . Then K satisfies p ≈ q, if for all

A ∈ K, A satisfies p ≈ q.

Definition 2.0.13. Let X be a set of identities of type F and define M (X) to be the

class of all algebras of type F that satisfy every identity in X. A class K of algebras

is an equational class if there is a set of identities X such that K = M (X). In this

case we say K is axiomatized by X.

Theorem 2.0.2 (Birkoff). Let K be a class of algebras of the same type. Then K is

an equational class iff K is a variety.

Definition 2.0.14. A binary relation ∼ on a set A is said to be an equivalence

relation if for all a, b, c ∈ A:

(1) a ∼ a (reflexivity)

(2) if a ∼ b then b ∼ a (symmetry)

(3) if a ∼ b and b ∼ c then a ∼ c. (transitivity)

The equivalence class of a under ∼, denoted [a]∼ or a/ ∼, is defined as a/∼=

{b ∈ A : a ∼ b}. The set {a/∼ : a ∈ A} is denoted by A/∼.
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Definition 2.0.15. If A is an algebra and ∼ is a binary relation on A, then ∼ is a

congruence if it is an equivalence relation and is compatible with the operations of

A in the sense that: if fA is an n-ary operation of A and a1 ∼ b1, a2 ∼ b2, ..., an ∼
bn, then fA (a1, a2, ..., an) ∼ fA (b1, b2, ..., bn). The sets A × A and {(a, a) : a ∈ A}
are congruences on A; {(a, a) : a ∈ A} is called the trivial congruence. A proper

congruence is one not equal to A× A.

Definition 2.0.16. Let ∼ be a congruence on an algebra A. Then the quotient al-

gebra of A by ∼, denoted by A/∼ is the algebra whose universe is A/∼ and whose

fundamental operations are defined by:

fA/∼ (a1/∼, a2/∼, ..., an/∼) = fA (a1, a2, ..., an) /∼

where a1, a2, ..., an ∈ A and f is an n-ary function symbol. Note that the quotient

algebras of A are of the same type as A.

Definition 2.0.17. An algebra A is said to be simple if it has no proper non-trivial

congruences.

Definition 2.0.18. A monoid is an algebra (A, ∗, e), where ∗ is a binary operation

and e is a constant such that ∗ is associative and e is an identity element for ∗.
(A, ∗, e) is called a commutative monoid if, in addition, ∗ is commutative.

Definition 2.0.19. Given a set X, an ultrafilter on X is a set U consisting of subsets

of X such that

(i) ∅ /∈ U .

(ii) If A,B ⊆ X,A ⊆ B and A ∈ U , then B ∈ U .

(iii) If A,B ∈ U , then A ∩B ∈ U .

(iv) If A ⊆ X, then either A ∈ U or X \ A ∈ U .

Definition 2.0.20. Let {Ai∈I} be a family of algebras of the given type and let U

be an ultrafilter on I. Define θU on
∏

i∈I Ai as follows:

(a, b) ∈ θU iff {i ∈ I : ai = bi} ∈ U.
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Then an ultraproduct denoted by
∏

i∈I Ai/U is defined to be
∏

i∈I Ai/θU .

We denote by Pu (K) the class of ultraproducts of non-empty families of algebras in K.

Theorem 2.0.3. Any algebra L is a subalgebra of an ultraproduct of finitely generated

subalgebras of L.

Definition 2.0.21. A quasivariety is a class of algebras closed under I, S, P and

Pu and contains a trivial algebra (one-element algebra).

Definition 2.0.22. A partially ordered set (or poset) is a set S together with a binary

relation � on S called a partial order such that the following axioms are satisfied:

(1) x � x (reflexivity)

(2) x � y and y � x implies x = y (antisymmetry)

(3) x � y and y � z implies x � z. (transitivity)

In a poset we use the expression x ≺ y to mean x � y but x 6= y.

Definition 2.0.23. If � is a partial order on a set S such that x � y or y � x for

all x, y ∈ S, then (S,�) is a totally ordered set or a linearly odered set or simply a

chain.

Definition 2.0.24. A linearly ordered set (S,�) is densely ordered if for all x, y ∈ S
for which x ≺ y, there is a z in S such that x ≺ z ≺ y.

Definition 2.0.25. Let (S,�) be a poset and A ⊆ S. An element u in S is said to

be an upper bound for A if x � u for each x ∈ A. The element u is the least upper

bound (l.u.b) for A or supremum for A if it is an upper bound for A and u � v for

each upper bound v for A. An element u in S is said to be a lower bound for A if

u � x for each x ∈ A. The element u is the greatest lower bound (g.l.b) for A or

infimum for A if it is a lower bound for A and v � u for each lower bound v for A.

We can define a lattice in two different ways. Lattices can be characterized as algebras

and also as partially ordered sets.

Lattices as partially ordered sets:
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Definition 2.0.26. A lattice is a poset in which each pair of elements has a least

upper bound and a greatest lower bound. The l.u.b of elements a and b in a lattice

will be denoted by a∨ b. The g.l.b of elements a and b will be denoted by a∧ b. The

operations ∨ and ∧ are called join and meet respectively. Note that every chain is a

lattice.

Lattices as algebras:

Definition 2.0.27. An algebra (L,∨,∧) with binary operations ∨ and ∧ (read join

and meet respectively) is called a lattice if it satisfies the following identities:

L1: (a) x ∨ y = y ∨ x
(b) x ∧ y = y ∧ x (commutative laws)

L2: (a) x ∨ (y ∨ z) = (x ∨ y) ∨ z
(b) x ∧ (y ∧ z) = (x ∧ y) ∨ z (associative laws)

L3: (a) x ∨ x = x

(b) x ∧ x = x (idempotent laws)

L4: (a) x = x ∨ (x ∧ y)

(b) x = x ∧ (x ∨ y) (absorption laws)

Connection between the two definitions:

If (L,∨,∧) is a lattice as an algebra, we can define � on L by a � b iff a = a ∧ b or

a � b iff b = a ∨ b. First we show that the conditions a ∨ b = b and a ∧ b = a are

equivalent.

Assume a ∨ b = b. Then

a ∧ b = a ∧ (a ∨ b) (since a ∨ b = b)

= a (by an absorption law)

The proof of the other implication is similar.

We now show that (L,�) is a poset.

� is reflexive:

Let a ∈ L. Then a ∧ a = a by an idempotent law. Thus a � a.
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� is antisymmetric:

Suppose a � b and b � a. Then a = a∨b and b = b∨a. Hence a = b by a commutative

law.

� is transitive:

Suppose a � b and b � c. Then a ∧ b = a and b ∧ c = b. Hence

a ∧ c = (a ∧ b) ∧ c (since a ∧ b = a)

= a ∧ (b ∧ c) (by an associative law)

= a ∧ b (since b ∧ c = b)

= a.

Lastly we show that for each pair of elements {a, b}, the l.u.b is a ∨ b and the g.l.b.

is a ∧ b.
a � a ∨ b since a ∧ (a ∨ b) = a. Similarly, b � a ∨ b. Hence a ∨ b is an upper bound

of a and b.

Now assume that a � u and b � u. Then a ∨ u = u and b ∨ u = u. Thus

(a ∨ b) ∨ u = a ∨ (b ∨ u) (by associative law )

= a ∨ u (since b ∨ u = u)

= u.

Thus a∨ b � u. Hence a∨ b is the l.u.b of {a, b}. Similarly, a∧ b is the g.l.b of {a, b}.

If (L,�) is a lattice as a poset, then it can be easily verified that the operations

∨ and ∧ satisfy L1 to L4.
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CHAPTER 3

T-norms and their residua

In this chapter we introduce the notion of a t-norm which is the fundamental object

of study in this thesis. We also define the subclasses of t-norms that we shall mainly

be concerned with, namely, left-continuous and continuous t-norms. We give some

examples of such t-norms and derive a number of basic properties. The main result

of this chapter is the Decomposition Theorem of continuous t-norms, which shows

that every continuous t-norm can be decomposed as an ordinal sum of the three basic

t-norms: Lukasiewicz, Product and Gödel. Most of the material in this chapter comes

from Hájek’s book [14].

3.1 Left-continuous t-norms

Definition 3.1.1. A t-norm is a binary operation ◦ on the unit interval [0, 1] satis-

fying the following conditions.
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(1) ◦ is commutative and associative.

(2) ◦ is order preserving in both arguments (i.e., x ≤ y implies x ◦ z ≤ y ◦ z and

z ◦ x ≤ z ◦ y).

(3) 1 ◦ a = a and 0 ◦ a = 0, for all a ∈ [0, 1].

Definition 3.1.2. A t-norm is left-continuous if it is left-continuous as a function

from [0, 1]2 to [0, 1]. Equivalently, for each a ∈ [0, 1], the function fa(x) := a ◦ x is

left-continuous on [0, 1], i.e., for every increasing sequence {yi} in [0, 1],

a ◦ sup {yi : i ∈ N} = sup {a ◦ yi : i ∈ N} .

(Recall that the limit of an increasing sequence in [0, 1] is its supremum.)

It follows that ◦ is left-continuous if, for every set Y ⊆ [0, 1] and a ∈ [0, 1],

a ◦ supY = sup {a ◦ y : y ∈ Y } .

Example 1. A nilpotent minimum is a standard example of a t-norm which is left-

continuous but not continuuous. It was introduced by Fodor in [9], where it is claimed

as the first example of a left-continuous t-norm which is not continuous. It is defined

as:

x ◦ y =

{
min {x, y} if x+ y > 1

0 otherwise.

Every t-norm ◦ has a corresponding binary operation → on [0, 1] called its residuum,

defined as follows:

x→ y = sup {z : x ◦ z ≤ y} .

The residuum of a nilpotent minimum is:

x→ y =

{
max {1− x, y} if x > y

1 otherwise.

Definition 3.1.3. The residuation property for a t-norm ◦ is as follows: For all

x, y, z ∈ [0, 1],

x ◦ y ≤ z iff x ≤ y → z.

13



Lemma 3.1.1. A t-norm ◦ is left-continuous if and only if the residuation property

holds.

Proof. Let x, y, z ∈ [0, 1]. Assume ◦ is left-continuous. This means that for every set

Y ⊆ [0, 1],

x ◦ supY = sup {x ◦ t : t ∈ Y } .

Assume x ≤ y → z, i.e., x ≤ sup {t : y ◦ t ≤ z}. Then x ◦ y = y ◦ x ≤ y ◦
sup {t : y ◦ t ≤ z} = sup {y ◦ t : y ◦ t ≤ z} ≤ z. Conversely, suppose x ◦ y ≤ z. From

y → z = sup {t : y ◦ t ≤ z}, we get x ≤ y → z since x ∈ {t : y ◦ t ≤ z}.

We now show that ◦ is left-continuous whenever the residuation property is satisfied.

Let {yi : i ∈ N} be an increasing sequence in [0, 1]. Also let S = {x ◦ yi : i ∈ N}
and z ∈ S. Then z = x ◦ yk for some k ∈ N. But yk ≤ sup {yi : i ∈ N}, so

x ◦ yk ≤ x ◦ sup {yi : i ∈ N}. Suppose there exists w such that z ≤ w for every z ∈ S.

Then x ◦ yi ≤ w for all i ∈ N. Thus yi ≤ x → w for all i ∈ N, by residuation.

Hence x → w is an upper bound of {yi : i ∈ N}. Thus sup {yi : i ∈ N} ≤ x → w.

Hence x ◦ sup {yi : i ∈ N} ≤ w, by residuation. Therefore x ◦ sup {yi : i ∈ N} =

sup {x ◦ yi : i ∈ N}.

Note the following: If ◦ is left-continuous, then for x, y ∈ [0, 1],

x ◦ (x→ y) = x ◦ sup {z : x ◦ z ≤ y} = sup {x ◦ z : x ◦ z ≤ y} ≤ y.

Thus the supremum of {z : x ◦ z ≤ y}, i.e., x → y, belongs to the set, so it is a

maximum. Hence x→ y = max {z : x ◦ z ≤ y}.

Lemma 3.1.2. The following hold for each left-continuous t-norm ◦ and its residuum

→:

(1) x ≤ y if and only if x→ y = 1

(2) x ◦ (x→ y) ≤ y

(3) x ◦ y ≤ y

14



(4) 1→ x = x.

Proof.

(1)

x ≤ y ⇔ 1 ◦ x ≤ y

⇔ 1 ≤ x→ y (by residuation)

⇔ 1 = x→ y.

(2) From x→ y ≤ x→ y we get x ◦ (x→ y) ≤ y by residuation.

(3) From x ≤ 1 we get x ◦ y ≤ 1 ◦ y = y, since ◦ is order preserving.

(4) From (2), if we let x be 1 and y be x, then 1 ◦ (1→ x) ≤ x. Thus 1 → x ≤ x.

Also 1 ◦ x ≤ x. Hence x ≤ 1→ x by residuation. Therefore 1→ x = x.

In the lemma that will follow, we shall consider a left-continuous t-norm algebra L =

([0, 1] , ◦,→,∧,∨, 0, 1), where ◦ is a fixed left-continuous t-norm and→ its residuum,

∧ and ∨ denote min and max respectively, with respect to the standard ordering ≤
on [0, 1].

Lemma 3.1.3. The following are true in L = ([0, 1] , ◦,→,∧,∨, 0, 1):

(1) x ◦ (x→ y) ≤ x ∧ y

(2) x ∨ y = ((x→ y)→ y) ∧ ((y → x)→ x)

Proof.

(1) By Lemma 3.1.2(2), x ◦ (x→ y) ≤ y. Also x ◦ (x→ y) ≤ x by Lemma 3.1.2(3),

hence x ◦ (x→ y) ≤ x ∧ y.
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(2) For any x, y ∈ [0, 1], either x ≤ y or y ≤ x. Suppose x ≤ y. Then x→ y = 1 by

Lemma 3.1.2(1). Hence (x→ y) → y = 1 → y = y by Lemma 3.1.2(4). Also

y ◦ (y → x) ≤ x by Lemma 3.1.2(2). Thus y ≤ (y → x) → x by residuation.

Therefore ((x→ y)→ y) ∧ ((y → x)→ x) = y = x ∨ y. The proof of the case

y ≤ x is similar.

3.2 Continuous t-norms

Definition 3.2.1. A t-norm is continuous if it is continuous as a function on [0, 1]2.

Equivalently, for each a ∈ [0, 1], the function fa(x) := a ◦ x is continuous on [0, 1],

i.e., for every convergent sequence {yi} in [0, 1],

a ◦ lim {yi : i ∈ N} = lim {a ◦ yi : i ∈ N} .

The definition of the residuum of a continuous t-norm is the same as that of a left-

continuous t-norm: x→ y = sup {z : x ◦ z ≤ y} = max {z : x ◦ z ≤ y}.

Example 2. The following are the main examples of continuous t-norms:

(1) Lukasiewicz t-norm: x ◦L y = max{0, x+ y − 1} = 0 ∨ (x+ y − 1)

(2) Gödel t-norm: x ◦G y = min{x, y} = x ∧ y

(3) Product t-norm: x ◦Π y = x · y.

They are the most prominent examples of continuous t-norms because it is possible to

describe all continuous t-norms in terms of these three by using the notion of ordinal

sum (see Theorem 3.3.1 where we prove the result). Their residua are, respectively,

the following: For x ≤ y, x→ y = 1 and for x > y,

(1) x→L y = 1− x+ y
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(2) x→G y = y

(3) x→Π y = y/x.

All properties that are satisfied by left-continuous t-norms are also satisfied by con-

tinuous t-norms.

Definition 3.2.2. An element a of [0, 1] is an idempotent of a t-norm ◦ if a ◦ a = a.

Lemma 3.2.1. The following are properties of continuous t-norms:

(1) If x ≤ y, then x = y ◦ (y → x).

(2) If x ≤ u ≤ y and u is an idempotent, then x ◦ y = x.

Proof.

(1) Let y ∈ [0, 1] and let f be the function on [0, 1] defined by: f(z) = z ◦ y.

Then f is continuous on [0, 1]. Also f(0) = 0 and f(1) = y. Thus for some z

with 0 ≤ z ≤ 1, f(z) = x by the Intermediate Value Theorem. Hence for the

maximum z satisfying f(z) = x, i.e., z ◦ y = x, we have z = y → x by the

definition of →.

(2) Assume x ≤ u in [0, 1] and u is an idempotent of ◦. Then x = u ◦ (u→ x) by

(1). Thus x ◦ u = u ◦ (u→ x) ◦ u = u ◦ u ◦ (u→ x) = u ◦ (u→ x) = x. Let

u ≤ y in [0, 1]. Then x ◦ y ≥ x ◦ u = x and also x ◦ y ≤ x by Lemma 3.1.2(3).

Therefore x ◦ y = x.

Lemma 3.2.2. Let ◦ be a continuous t-norm and L = ([0, 1] , ◦,→,∧,∨, 0, 1). Then

the following is true in L:

x ∧ y = x ◦ (x→ y) .

Proof. For any x, y ∈ [0, 1], either x ≤ y or y ≤ x. If x ≤ y, then x → y = 1 by

Lemma 3.1.2(1). Hence x◦(x→ y) = x = x∧y. If x > y, then x◦(x→ y) = y = x∧y
by Lemma 3.2.1(1).
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We can see from Lemma 3.2.2, that if ◦ is continuous, then ∧ is definable in terms of

◦ and → and this is not the case for left-continuous t-norms.

3.3 Decomposition of continuous t-norms in terms

of Product, Lukasiewicz and Gödel t-norms

Definition 3.3.1.

(1) A t-norm is called Archimedean if it is continuous and has no idempotents

except 0 and 1. (Recall that a ∈ [0, 1] is an idempotent of ◦ if a ◦ a = a.)

(2) An element a ∈ [0, 1] is called a nilpotent of a t-norm ◦ if there is a natural

number n such that a◦a◦ ...◦a (n times) = 0. We shall write an for a◦a◦ ...◦a
with n factors, and a0 for 1.

(3) An Archimedean t-norm is called strict if it has no nilpotent elements except

0; otherwise it is called nilpotent.

Lemma 3.3.1. If ◦ is an Archimedean t-norm, then for each x ∈ [0, 1):

(1) lim
n→∞

xn = 0.

(2) If ◦ is nilpotent, then x is nilpotent.

(3) If 0 < x < 1, n < m and xn > 0,then xm < xn.

Proof.

(1) The sequence {xn} is non-increasing and bounded by zero from below, so lim
n→∞

xn

exists and we denote it by b. We note that:

b ◦ b = lim
n→∞

xn ◦ lim
n→∞

xn

= lim
n→∞

xn ◦ xn ( by continuity of ◦)

= lim
n→∞

xn+n

= b.
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Hence b is an idempotent. Thus we must have b = 0 since ◦ is Archimedean.

(2) Suppose y > 0 is nilpotent and 0 < x < y. Then for some natural number n,

yn = 0. Hence xn ≤ yn = 0. Thus xn must equal zero. If 0 < y < x < 1

such that y is nilpotent, then for some m, xm < y since lim
m→∞

xm = 0. Thus

(xm)n ≤ yn = 0. Hence (xm)n must equal zero. Therefore every x < 1 is

nilpotent.

(3) Suppose n < m and xn = xm. Then xn+1 = xm+1. But then xn+1 = xm, since

n < n+1 ≤ m and xm+1 ≤ xm ≤ xn+1 ≤ xn . Thus xm+1 = xm. Hence xk = xm

for all k ≥ m, so lim
k→∞

xk = 0 = xm, whence xn = xm, a contradiction.

Lemma 3.3.2. If ◦ is an Archimedean t-norm, then for each x ∈ (0, 1] and each

n ∈ N with n ≥ 1, there is a unique y ∈ [0, 1] such that yn = x.

Proof. Let n ∈ N such that n ≥ 1. If x = 1 then we may take y = 1. If x < 1 then,

by the Intermediate Value Theorem, there exists y ∈ [0, 1] such that yn = x since

f (y) = yn is continuous and we also have that f (0) = 0 and f (1) = 1. We now show

that y is unique.

If yn = x, then 0 < x < y < 1. Let x < z < y and zn = yn. Then z = y ◦ t for some

t ∈ (0, 1) by Lemma 3.2.1(1). Hence yn = zn = yn ◦ tn = yn ◦ t(kn) for every k > 0.

But limk t
(kn) = 0 by Lemma 3.3.1(1) and x = yn = yn ◦ 0 = 0 by continuity and

hence we have a contradiction.

Definition 3.3.2. For an Archimedean t-norm ◦, x ∈ (0, 1] and n ∈ N with n ≥ 1,

let x
1
n denote the unique y ∈ [0, 1] with yn = x. For any rational number r = m

n
, let

xr =
(
x

1
n

)m
.

Lemma 3.3.3. Let ◦ be an Archimedean t-norm.

(1) If m
n

and m′

n′
are positive rational numbers such that m

n
= m′

n′
,

then x
m
n = x

m′
n′ .

(2) xr ◦ xs = xr+s for all x ∈ [0, 1] and positive rational numbers r and s.
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(3) If x > 0, then lim
n→∞

x
1
n = 1.

Proof.

(1) Suppose m
n

= m′

n′
. Then m′ = km, n′ = kn for some k ∈ N.

Hence x
m′
n′ =

(
x

1
kn

)km
=

((
x

1
kn

)k)m
=
(
x

1
n

)m
= x

m
n .

(2) Let r = m
n
, s = k

n
, where m,n and k are positive integers. Then

xr ◦ xs =
(
x

1
n

)m
◦
(
x

1
n

)k
=
(
x

1
n

)m+k

= xr+s.

(3) If x > 0, then the sequence
{
x

1
n

}
is increasing and bounded from above by 1,

so its limit exists. Let the limit of this sequence be a. We have that:

a ◦ a = lim
n→∞

x
1
n ◦ lim

n→∞
x

1
n

= lim
n→∞

x
1
n ◦ x

1
n ( by continuity of ◦)

= lim
n→∞

x
1
n

+ 1
n ( by (2) )

= a.

Thus a is an idempotent. Therefore lim
n→∞

xnx
1
n = 1, since ◦ is Archimedean.

Lemma 3.3.4. Let ◦ be an Archimedean t-norm.

(1) If ◦ is strict, then ([0, 1] , ◦) is isomorphic to ([0, 1] , ◦Π),

where x ◦Π y = x · y(product).

(2) If ◦ is nilpotent, then ([0, 1] , ◦) is isomorphic to
([

1
4
, 1
]
, ◦CP

)
, where x ◦CP y =

max
{

1
4
, x · y

}
.

Proof.

(1) Let C =
{
cr = 1

2r
: r ∈ Q, 0 ≤ r <∞

}
andD =

{
dr =

(
1
2

)r
: r ∈ Q, 0 ≤ r <∞

}
,

where
(

1
2

)r
denotes 1

2
◦ 1

2
◦ · · · ◦ 1

2
(r times) and define f : C → D by f (cr) = dr.

We take the following steps:
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(i) We show that C and D are dense in [0, 1] and f is an isomorphism from

(C, ◦Π) to (D, ◦).

(ii) We show that there exists an isomorphism g : [0, 1]→ [0, 1] defined by

g (x) =

 f (x) if x ∈ C∨
i

f (ci) if x ∈ [0, 1] \ C

where x =
∨
i

ci and {ci} is an increasing sequence in C.

We first prove (i). We start by showing that C and D are dense subsets of [0, 1].

Density of C in [0, 1]:

Let x ∈ (0, 1] and y = log2
1
x
. Then y ∈ R and y ≥ 0. By the density of Q in

R, there exists a sequence {qn} in Q, qn ≥ 0, such that lim
n→∞

qn = y. It follows

that:

lim
n→∞

1

2qn
=

1

2y
=

1

2log2
1
x

= x.

But 1
2qn
∈ C, so

{
1

2qn

}
is a sequence in C converging to x ∈ (0, 1]. Also

{
1

2n

}
is

a sequence in C converging to 0. Therefore C is dense in [0, 1].

Density of D in [0, 1]:

Let x ∈ (0, 1). We shall approximate x from above by the elements dr =
(

1
2

)r
,

where r has the form m
2n

. If m2 ≥ m1, then m2

2n
≥ m1

2n
and

(
1
2

)m2
2n =

((
1
2

) 1
2n

)m2

≤
((

1
2

) 1
2n

)m1

=
(

1
2

)m1
2n (by Lemma 3.3.1(3)) .

Hence, for a fixed n,
{(

1
2

) m
2n : m ∈ N

}
is a decreasing sequence and its limit is

0.

Since lim
n→∞

xn
(

1

2

) 1
2n

= 1 by Lemma 3.3.3(3) there exists n0 such that
(

1
2

) 1
2n0 ≥

x. For n ≥ n0, let m (n) be the largest m such that
(

1
2

) m
2n ≥ x. Since

lim
m→∞

xn
(

1

2

) m
2n

= 0 the largest such m exists. We have that

(
1
2

)m(n)+1
2n =

(
1
2

)m(n)
2n ◦

(
1
2

) 1
2n (by Lemma 3.3.3(2)).
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Thus

lim
n→∞

(
1
2

)m(n)+1
2n = lim

n→∞

(
1
2

)m(n)
2n ◦

(
1
2

) 1
2n

= lim
n→∞

(
1
2

)m(n)
2n ◦ lim

n→∞

(
1
2

) 1
2n (since ◦ is continuous)

= lim
n→∞

(
1
2

)m(n)
2n ◦ 1 (by Lemma 3.3.3(3))

= lim
n→∞

(
1
2

)m(n)
2n .

We have that for any n ≥ n0,
(

1
2

)(m(n)
2n ) ≥ x, so lim

n→∞
xn
(

1

2

)(m(n)
2n )

≥ x.

Also for any n ≥ n0,
(

1
2

)(m(n)+1
2n ) ≤ x, so lim

n→∞
xn
(

1

2

)(m(n)+1
2n )

≤ x. But

lim
n→∞

xn
(

1

2

)(m(n)+1
2n )

= lim
n→∞

xn
(

1

2

)(m(n)
2n )

, therefore the limits of these two se-

quences must equal x. Thus, D is dense in [0, 1]. Also, (1
2
)0 = 1 ∈ D and {(1

2
)n}

converges to 0.

f is 1-1 and strict order-preserving:

Assume cs > cr. Then s < r. Let m1,m2, n be such that r = m1

n
and s = m2

n
.

Since s < r this means that m2 < m1.

Now, dr =
(

1
2

)r
=
(

1
2

)m1
n =

(
1
2

1
n

)m1

, ds =
(

1
2

)s
=
(

1
2

)m2
n =

(
1
2

1
n

)m2

.

Letting
(

1
2

) 1
n = x, we have dr = xm1 and ds = xm2 . But 0 < x < 1, m2 < m1

and xm2 > 0, so xm1 < xm2 by Lemma 3.3.1(3). It follows that f is strictly

order preserving.

f is onto:

Given dr ∈ D, there exists cr ∈ C such that f (cr) = dr since both elements of

D and C depend on r, where 0 ≤ r <∞.
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f is operation preserving:

f (cr ◦Π cs) = f (cr · cs)
= f

((
1
2r

)
·
(

1
2s

))
= f

(
1

2r+s

)
= f (cr+s)

= dr+s,

f (cr) ◦ f (cs) = dr ◦ ds
=
(

1
2

)r ◦ (1
2

)s
=
(

1
2

)(r+s)

= dr+s.

Therefore f (cr ◦Π cs) = f (cr) ◦ f (cr).

We now prove (ii). We first show that g is well-defined; that is, we show that

if {ci} and {dj} are increasing sequences in C converging to x, then
∨
i

f (ci) =∨
j

f (dj).

Suppose {ci} and {dj} are increasing sequences converging to x. Then for any

ci there exists dj such that ci ≤ dj. Thus f (ci) ≤ f (dj). Similarly, for any

dj there exists ci such that dj ≤ ci. Hence f (dj) ≤ f (ci). Thus {f (ci)} and

{f (dj)} have the same upper bounds. Therefore
∨
i

f (ci) =
∨
j

f (dj).

g is 1-1 and strict order preserving:

Assume x1, x2 ∈ [0, 1] such that x1 < x2. Then x1 =
∨
i

ci and x2 =
∨
j

bj, for

increasing sequences {bj}, {ci} in C. Thus there exists bj > x1. Hence bj > ci

for all i. Thus:

f (bj) > f (ci) for all i (since f is strict order-preserving)

⇒
∨
i

f (ci) ≤ f (bj)

⇒
∨
i

f (ci) ≤ f (bj) < f (bj+1) (since bj < bj+1, for bj+1 ∈ C)

⇒
∨
i

f (ci) <
∨
j

f (bj)

⇒ g (x1) < g (x2) .
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g is onto:

Let y ∈ [0, 1]. Since D is dense in [0, 1] and f is onto, y =
∨
i

f (ci) for some

{ci} in C. Therefore there exists a corresponding x ∈ [0, 1] such that g (x) = y,

where x =
∨
i

ci.

g is operation preserving:

Let x, y ∈ [0, 1]. Then x =
∨
i

ci and y =
∨
j

bj for increasing sequences {bj}, {ci}

in C. Thus

g (x ◦Π y) = g (x · y)

= g

(∨
i

ci ·
∨
j

bj

)

= g

(∨
i,j

(ci · bj)

)
(since · is continuous)

=
∨
i,j

f (ci · bj)

=
∨
i,j

(f (ci) ◦ f (bj)) (since f is operation preserving)

=
∨
i

f (ci) ◦
∨
j

f (bj) (since ◦ is continuous)

= g (x) ◦ g (y) .

Therefore g is an isomorphism, which completes the proof of (ii) and also (1).

(2) Let d = max {x : x ◦ x = 0}; the maximum exists since ◦ is continuous. Let C ={
cr = 1

2r
: r ∈ Q, 0 ≤ r ≤ 2

}
andD = {dr = dr : r ∈ Q, 0 ≤ r ≤ 2, dr > 0}. Also

define f : C → D by f (cr) = dr. We follow the same steps as in (1). The proof

of density of C and D is similar to that of (1). Note that in this case C is dense

in
[

1
4
, 1
]
.

We want to show that f is an isomorphism from (C, ◦CP ) to (D, ◦).

f is 1-1 and strict order-preserving:

Assume cs > cr, where 0 ≤]r, s ≤ 2. Then s < r. Let m1,m2, n be such

that r = m1

n
and s = m2

n
. Since s < r this means that m2 < m1. Now,

dr = dr = d
m1
n =

(
d

1
n

)m1

, ds = ds = d
m2
n =

(
d

1
n

)m2

. Letting d
1
n = x, we

have dr = xm1 and ds = xm2 . But 0 < x < 1 and m2 < m1, so xm1 < xm2 by
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Lemma 3.3.1(3).

f is onto:

For any dr ∈ D such that 0 ≤ r ≤ 2, there exists cr ∈ C such that f (cr) = dr.

f is operation preserving:

]

f (cr ◦CP cs) = f
(
max

{
1
4
, cr · cs

})
= f

(
max

{
1
4
, 1

2r
· 1

2s

})
= f

(
max

{
1
4
, 1

2r+s

})
.

If r + s ≤ 2, then f (cr ◦CP cs) = 1
2r+s

= dr+s. In this case,

f (cr) ◦ f (cr) = dr ◦ ds
= dr ◦ ds

= d(r+s)

= dr+s.

If r + s > 2, then f (cr ◦CP cs) = 1
4
. In this case, d(r+s) ≤ d2 = d ◦ d = 0.

Therefore f (cr ◦CP cs) = f (cr) ◦ f (cr).

The extension of f to an isomorphism g from ([1
4
, 1], ◦CP ) to ([0, 1], ◦) is as in (1).

Lemma 3.3.5.
([

1
4
, 1
]
, ◦CP

)
, where x ◦CP y = max

{
1
4
, x · y

}
, is isomorphic to

([0, 1] , ◦L), where ◦L is the Lukasiewicz t-norm defined by x◦Ly = max {0, x+ y − 1}.

Proof. Let f : [0, 1] →
[

1
4
, 1
]

be defined by f (x) = 22(x−1). We shall show that f is

an isomorphism from ([0, 1] , ◦L) to
([

1
4
, 1
]
, ◦CP

)
.

f is 1-1:

Suppose f (x1) = f (x2). Then:

22(x1−1) = 22(x2−1)

⇒ 2 (x1 − 1) = 2 (x2 − 1)

⇒ x1 = x2.

Thus f is 1-1.
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f is onto:

Let y ∈
[

1
4
, 1
]

and x = 1
2

log2 y + 1. Then x ∈ [0, 1] and

f (x) = 22( 1
2

log2 y+1−1)

= 2log2 y

= y.

Hence f is onto.

f is operation preserving:

f (x ◦L y) = f (max {x+ y − 1, 0})
= 22(max{x+y−1,0}−1)

(3.1)

f (x) ◦CP f (y) = max
{

1
4
, f (x) · f (y)

}
= max

{
1
4
, 22(x−1) · 22(y−1)

}
= max

{
1
4
, 22(x+y−2)

}
.

(3.2)

If max{x+ y − 1, 0} = 0, then (3.1) becomes f (x ◦L y) = 2−2 = 1
4

and (3.2) becomes

f (x) ◦CP f (y) = 1
4

since x+ y− 2 < −1. If max{x+ y − 1, 0} = x+ y− 1, then (3.1)

becomes f (x ◦L y) = 22(x+y−2) and (3.2) becomes f (x) ◦CP f (y) = 22(x+y−2) since

x+ y − 2 > −1. Therefore f (x ◦L y) = f (x) ◦CP f (y).

Lemma 3.3.6. Let ◦ be a continuous t-norm and let E = {a ∈ [0, 1] : a ◦ a = a}.
Then E is a closed subset of [0, 1] (in the usual topology).

Proof. Let b be a limit point of E. Then there exists a sequence {an} in E such that

lim
n→∞

an = b. Hence,

b ◦ b = lim
n→∞

an ◦ lim
n→∞

an

= lim
n→∞

an ◦ an (by continuity of ◦)

= lim
n→∞

an (since an ◦ an = an)

= b.

Thus b ∈ E, so E is closed.
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Note that since E = {a ∈ [0, 1] : a ◦ a = a} is a closed subset of the set of [0, 1], it

is a countable union of singletons and closed intervals. Thus its complement is a

countable union of non-overlapping open intervals. Also 1 and 0 are in E.

Theorem 3.3.1 (Decomposition). Let ◦ be a continuous t-norm and E its set of

idempotents, E = {a ∈ [0, 1] : a ◦ a = a}, and denote the set of open intervals in its

complement by Iopen (E). Also let [a, b] ∈ I (E) iff (a, b) ∈ Iopen (E). For a closed

interval I = [a, b] ⊆ [0, 1], let (◦|I) be the restriction of ◦ to [a, b]2. Then:

(1) For each I ∈ I (E), (I, (◦|I)) is isomorphic either to ([0, 1] , ◦Π) (Product t-

norm) or ([0, 1], ◦L) (Lukasiewicz t-norm).

(2) If I = [a, b] is a closed interval in E with a < b, then (I, (◦|I)) is isomorphic to

([0, 1], ◦G) (Gödel t-norm).

(3) If x, y ∈ [0, 1] are such that there is no I ∈ I (E) with x, y ∈ I, then x◦y = x∧y.

Proof.

(1) Let I = [a, b] ∈ I (E). There are no idempotents in I except a, b. If x, y ∈ [a, b],

then a ≤ x ≤ b and a ≤ y ≤ b, so a◦a ≤ x◦y ≤ b◦b. Thus a ≤ x◦y ≤ b. Hence

x(◦|I)y = x ◦ y ∈ [a, b]. Again, for a ≤ x ≤ b, we have a ◦ x = a and b ◦ x = x

by Lemma 3.2.1(2). Thus a is a zero element on [a, b] and b is an identity on

[a, b]. Let f : [a, b] → [0, 1] be defined by f (x) = x−a
b−a . Define an operation

∗ on [0, 1] by x ∗ y = f (f−1 (x) (◦|I) f−1 (y)). Since f is an order-preserving

isomorphism, it follows that ∗ is a continuous t-norm on [0, 1] whose only idem-

potents are 0 and 1. Therefore (I, (◦|I)) is isomorphic to an Archimedean

t-norm. An Archimedian t-norm is either nilpotent or strict, so since we have

shown in Lemma 3.3.4 and Lemma 3.3.5 that each strict Archimedean t-norm

is isomorphic to the product t-norm and each nilpotent Archimedean t-norm is

isomorphic to the Lukasiewicz t-norm, the result follows.

(2) Let I = [a, b] be a closed interval in the set E. Hence I is a closed interval of

idempotents. If x, y ∈ I, then x ◦ y = x∧ y by Lemma 3.2.1(2). Thus (I, (I|◦))
is isomorphic to the Gödel t-norm on [0, 1].
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(3) Suppose x, y ∈ [0, 1] such that x and y are not from the same interval I ∈ I (E).

If x < y, then there exists an idempotent e such that x ≤ e ≤ y. Thus

x ◦ y = x = x ∧ y by Lemma 3.2.1(2).

Definition 3.3.3. Let {[ai, bi] : i ∈ I} be a countable family of closed subintervals of

[0, 1] such that their interiors are pairwise disjoint and their union is [0, 1]. For every

i ∈ I, let ◦i be a t-norm defined on [ai, bi]
2. Then the ordinal sum of this family of

t-norms is defined as:

x ◦ y =

{
x ◦k y if ∃k ∈ I such that x, y ∈ [ak, bk]

x ∧ y otherwise.

Starting with a continuous t-norm ◦ on [0, 1], we have shown that its set of idem-

potents E = {a ∈ [0, 1] : a ◦ a = a} is a closed subset of [0, 1] and hence is a disjoint

union of singletons and closed intervals. Therefore its complement is a countable

union of non-overlapping open intervals. We decomposed the interval [0, 1] into closed

intervals [a, b] containing no idempotents other than a, b and the closed intervals con-

sisting entirely of idempotents. In the first case, we have seen that the restriction

of ◦ to [a, b]2 is isomorphic to an Archimedean t-norm. An Archimedean t-norm is

either nilpotent or strict and we have shown that each strict Archimedean t-norm is

isomorphic to the product t-norm and each nilpotent Archimedean t-norm is isomor-

phic to the Lukasiewicz t-norm. Hence any interval [a, b] containing no idempotents

except a, b together with (◦|I) is isomorphic to either the product or the Lukasiewicz

t-norm. We have further shown that any interval of idempotents together with (◦|I)

is isomorphic to the Gödel t-norm and that if x, y are not from the same interval,

then x ◦ y = x ∧ y. It follows from the definition of an ordinal sum that we can

equivalently state the Decomposition Theorem as follows: Any continuous t-norm is

isomorphic to an ordinal sum of Lukasiewicz, Product and Gödel t-norms.
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CHAPTER 4

The logic MTL and MTL-algebras

In this chapter we define, in section 4.1, the logic MTL by stating its language,

derivation rule and axioms. We list some of the formulas provable in MTL and give

proofs for some of the listed formulas. In section 4.2, we give the definition of an

MTL-algebra. We prove some properties of MTL-algebras. We also prove that the

class of all MTL-algebras forms a variety of algebras. The results in this chapter will

play a significant role in some chapters that will follow. The material in this chapter

is taken from work done by Esteva and Godo in [5].

4.1 The logic MTL

Monoidal t-norm based logic or MTL for short is the logic of left-continuous t-norms.

A left-continuous t-norm is used to represent a conjunction in MTL and its residuum

operation represents an implication.
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A Hilbert-style deductive system for MTL has been introduced in [5]. The language

of the propositional calculus is defined from a countable set of propositional variables

p1, p2, p3, . . ., three binary connectives ◦,→,∧ and the truth constant 0̄. Formulas

are defined inductively as follows: all propositional variables and the truth constant

0̄ are formulas; if ϕ and ψ are formulas, then so are ϕ ◦ ψ, ϕ→ ψ and ϕ ∧ ψ. Other

connectives are defined in terms of the primitive connectives as follows:

(1) ¬ϕ := ϕ→ 0̄

(2) ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)

(3) ϕ↔ ψ := (ϕ→ ψ) ◦ (ψ → ϕ)

(4) 1̄ := ¬0̄.

The Hilbert-style derivation rule for MTL is modus ponens: ϕ, ϕ→ ψ ` ψ.

The following are the axioms of MTL:

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(A2) (ϕ ◦ ψ)→ ϕ

(A3) (ϕ ◦ ψ)→ (ψ ◦ ϕ)

(A4) (ϕ ∧ ψ)→ ϕ

(A5) (ϕ ∧ ψ)→ (ψ ∧ ϕ)

(A6) (ϕ ◦ (ϕ→ ψ))→ (ϕ ∧ ψ)

(A7a) (ϕ→ (ψ → χ))→ ((ϕ ◦ ψ)→ χ)

(A7b) ((ϕ ◦ ψ)→ χ)→ (ϕ→ (ψ → χ))

(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

(A9) 0̄→ ϕ.

Definition 4.1.1. A proof of ϕn in MTL is a sequence ϕ1, ϕ2, . . . , ϕn such that

for each i (1 ≤ i ≤ n) either ϕi is an axiom of MTL or ϕi follows from two previous

members of the sequence, say ϕj and ϕk (j < i, k < i) as a direct consequence of using

the rule of modus ponens. In this situation, we say that ϕn is a theorem of MTL, or

that ϕn is provable in MTL, and denote this by `MTL ϕ. More generally, if Γ is a set

of formulas in MTL and a proof sequence ϕ1, ϕ2, . . . , ϕn as above exists but with the
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additional option for each i that ϕi ∈ Γ, then we say that ϕn is provable from Γ in

MTL, denoted by Γ `MTL ϕn.

In the following lemma we give proofs of a number of theorems of MTL that will be

used later in the study as well as some that we feel are of special interest.

Lemma 4.1.1. The following formulas are provable in MTL:

(1) ϕ→ (ψ → ϕ)

(2) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

(3) ϕ→ ϕ

(4) (ϕ ◦ (ϕ→ ψ))→ ψ

(5) ϕ→ (ψ → (ϕ ◦ ψ))

(6) (ϕ→ ψ)→ ((ϕ ◦ χ)→ (ψ ◦ χ))

(7) ((ϕ1 → ψ1) ◦ (ϕ2 → ψ2))→ ((ϕ1 ◦ ϕ2)→ (ψ1 ◦ ψ2))

(8) ((ϕ ◦ ψ) ◦ χ)→ (ϕ ◦ (ψ ◦ χ)) , (ϕ ◦ (ψ ◦ χ))→ ((ϕ ◦ ψ) ◦ χ)

(9) (ϕ ◦ ψ)→ (ϕ ∧ ψ)

(10) (ϕ→ ψ)→ (ϕ→ (ϕ ∧ ψ))

(11) (ϕ→ (ϕ ∧ χ))→ (((ψ → ϕ) ∧ (ψ → χ))→ (ψ → (ϕ ∧ χ)))

(12) ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ))

(13) ϕ→ (ϕ ∧ ϕ)

(14) ϕ→ (ϕ ∨ ψ) , ψ → (ϕ ∨ ψ) , (ϕ ∨ ψ)→ (ψ ∨ ϕ)

(15) (ϕ→ ψ)→ ((ϕ ∨ ψ)→ ψ)

(16) (ϕ→ ψ) ∨ (ψ → ϕ)

(17) (ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ))
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(18) ((ϕ ∨ ψ)→ ψ)→ (((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ))

(19) ((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)

(20) (ϕ ∨ ϕ)→ ϕ

(21) ((ϕ→ ψ) ◦ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ))

(22) ((ϕ→ χ) ◦ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)

(23) ϕ→ (¬ϕ→ ψ) , ϕ→ ¬¬ϕ, (ϕ ◦ ¬ϕ)→ 0̄

(24) (ϕ→ (ψ ◦ ¬ϕ))→ ¬ϕ

(25) (ϕ→ ψ)→ (¬ψ → ¬ϕ)

(26) (ϕ→ ¬ψ)→ (ψ → ¬ϕ)

(27) 1̄

(28) ϕ→ (1̄ ◦ ϕ)

(29) (1̄→ ϕ)→ ϕ

(30) (ϕ ∧ (ψ ∧ χ))→ ((ϕ ∧ ψ) ∧ χ) , ((ϕ ∧ ψ) ∧ χ)→ (ϕ ∧ (ψ ∧ χ))

(31) (ϕ ∨ (ψ ∨ χ))→ ((ϕ ∨ ψ) ∨ χ) , ((ϕ ∨ ψ) ∨ χ)→ (ϕ ∨ (ψ ∨ χ))

(32) ϕ→ (ϕ ∧ (ϕ ∨ ψ)) , (ϕ ∨ (ϕ ∧ ψ))→ ϕ

(33) ϕ↔ ϕ, (ϕ↔ ψ)→ (ψ ↔ ϕ) , ((ϕ↔ ψ) ◦ (ϕ↔ χ))→ (ψ ↔ χ)

(34) (ϕ↔ ψ)→ (ϕ→ ψ) , (ϕ↔ ψ)→ (ψ → ϕ)

(35) (ϕ↔ ψ)→ ((ϕ ◦ χ)↔ (ψ ◦ χ))

(36) (ϕ↔ ψ)→ ((ϕ→ χ)↔ (ψ → χ))

(37) (ϕ↔ ψ)→ ((χ→ ϕ)↔ (χ→ ψ))

(38) (ϕ↔ ψ)→ ((ϕ→ ψ) ∧ (ψ → ϕ))

(39) (ϕ ◦ (ψ ∨ χ))↔ ((ϕ ◦ ψ) ∨ (ϕ ◦ χ)) , (ϕ ◦ (ψ ∧ χ))↔ ((ϕ ◦ ψ) ∧ (ϕ ◦ χ))
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(40) (ϕ ∧ (ψ ∨ χ))↔ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) , (ϕ ∨ (ψ ∧ χ))↔ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))

(41) ((ϕ ∨ ψ) ◦ (ϕ ∨ ψ))→ ((ϕ ◦ ϕ) ∨ (ψ ◦ ψ)) , ((ϕ ∧ ψ) ◦ (ϕ ∧ ψ))→ ((ϕ ◦ ϕ) ∧ (ψ ◦ ψ))

(42) (ϕ→ ψ)n ∨ (ψ → ϕ)n, for each n ∈ N where (ϕ→ ψ)n means

(ϕ→ ψ) ◦ (ϕ→ ψ) ◦ . . . ◦ (ϕ→ ψ) (n times)

(43) (¬ϕ ∧ ¬ψ)↔ ¬ (ϕ ∨ ψ)

(44) (¬ϕ ∨ ¬ψ)↔ ¬ (ϕ ∧ ψ)

Proof. We shall prove the formulas we are going to use:

(1) `MTL ϕ→ (ψ → ϕ):

(a) `MTL (ϕ ◦ ψ)→ ϕ by (A2)

(b) `MTL ((ϕ ◦ ψ)→ ϕ)→ (ϕ→ (ψ → ϕ)) by (A7b)

(c) `MTL ϕ→ (ψ → ϕ) by (a),(b) and modus ponens

(2) `MTL (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)):

(a) `MTL (ϕ→ (ψ → χ))→ ((ϕ ◦ ψ)→ χ) by (A7a)

(b) `MTL ψ ◦ ϕ→ ϕ ◦ ψ by (A3)

(c) `MTL ((ψ ◦ ϕ)→ (ϕ ◦ ψ))→ (((ϕ ◦ ψ)→ χ)→ ((ψ ◦ ϕ)→ χ)) by (A1)

(d) `MTL ((ϕ ◦ ψ)→ χ)→ ((ψ ◦ ϕ)→ χ) by (b),(c) and modus ponens

(e) `MTL ((ψ ◦ ϕ)→ χ)→ (ψ → (ϕ→ χ)) by (A7b)

(f) `MTL ((ϕ ◦ ψ)→ χ)→ (ψ → (ϕ→ χ)) by (d),(e) and (A1)

(g) `MTL ((ϕ→ (ψ → χ))→ ((ϕ ◦ ψ)→ χ))→
((((ϕ ◦ ψ)→ χ)→ (ψ → (ϕ→ χ)))→ ((ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))))

by (A1)

(h) `MTL (((ϕ ◦ ψ)→ χ)→ (ψ → (ϕ→ χ)))→ ((ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)))

by (a),(g) and modus ponens

(i) `MTL ((ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))) by (f),(h) and modus ponens
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(3) `MTL ϕ→ ϕ:

(a) `MTL (ϕ→ (ψ → ϕ))→ (ψ → (ϕ→ ϕ)) by (2)

(b) `MTL ψ → (ϕ→ ϕ) by (1),(a) and modus ponens

(c) `MTL ψ for any axiom ψ

(d) `MTL ϕ→ ϕ by (b),(c) and modus ponens

(4) `MTL (ϕ ◦ (ϕ→ ψ))→ ψ:

(a) `MTL (ϕ→ ψ)→ (ϕ→ ψ) by (3)

(b) `MTL ((ϕ→ ψ)→ (ϕ→ ψ))→ (ϕ→ ((ϕ→ ψ)→ ψ)) by (2)

(c) `MTL ϕ→ ((ϕ→ ψ)→ ψ) by (a),(b) and modus ponens

(d) `MTL (ϕ→ ((ϕ→ ψ)→ ψ))→ ((ϕ ◦ (ϕ→ ψ))→ ψ) by (A7b)

(e) `MTL ((ϕ ◦ (ϕ→ ψ))→ ψ) by (c),(d) and modus ponens

(5) `MTL ϕ→ (ψ → (ϕ ◦ ψ)):

(a) `MTL (ϕ ◦ ψ)→ (ϕ ◦ ψ) by (3)

(b) `MTL ((ϕ ◦ ψ)→ (ϕ ◦ ψ))→ (ϕ→ (ψ → (ϕ ◦ ψ))) by (A7b)

(c) `MTL ϕ→ (ψ → (ϕ ◦ ψ)) by (a),(b) and modus ponens

(6) `MTL (ϕ→ ψ)→ ((ϕ ◦ χ)→ (ψ ◦ χ)):

(a) `MTL (ϕ ◦ (ϕ→ ψ))→ ψ by (4)

(b) `MTL ψ → (χ→ (ψ ◦ χ)) by (5)

(c) `MTL (ϕ ◦ (ϕ→ ψ))→ (χ→ (ψ ◦ χ)) by (a),(b) and (A1)

(d) `MTL ((ϕ ◦ (ϕ→ ψ))→ (χ→ (ψ ◦ χ)))→ (ϕ→ ((ϕ→ ψ)→ (χ→ (ψ ◦ χ))))

by (A7b)

(e) `MTL ϕ→ ((ϕ→ ψ)→ (χ→ (ψ ◦ χ))) by (c),(d) and modus ponens

(f) `MTL ((ϕ→ ψ)→ (χ→ (ψ ◦ χ)))→ (χ→ ((ϕ→ ψ)→ (ψ ◦ χ))) by (2)

(g) `MTL ϕ→ (χ→ ((ϕ→ ψ)→ (ψ ◦ χ))) by (e),(f) and (A1)
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(h) `MTL (ϕ→ (χ→ ((ϕ→ ψ)→ (ψ ◦ χ))))→ ((ϕ ◦ χ)→ ((ϕ→ ψ)→ (ψ ◦ χ)))

by (A7a)

(i) `MTL (ϕ ◦ χ)→ ((ϕ→ ψ)→ (ψ ◦ χ)) by (g),(h) and modus ponens

(j) `MTL ((ϕ ◦ χ)→ ((ϕ→ ψ)→ (ψ ◦ χ)))→ ((ϕ→ ψ)→ ((ϕ ◦ χ)→ (ψ ◦ χ)))

by (2)

(k) `MTL (ϕ→ ψ)→ ((ϕ ◦ χ)→ (ψ ◦ χ)) by (i),(j) and modus ponens

(8) `MTL (i) (ϕ ◦ (ψ ◦ χ))→ ((ϕ ◦ ψ) ◦ χ) , (ii) ((ϕ ◦ ψ) ◦ χ)→ (ϕ ◦ (ψ ◦ χ)):

(a) `MTL (((ϕ ◦ ψ) ◦ χ)→ δ)→ ((ϕ ◦ ψ)→ (χ→ δ)) by (A7b)

(b) `MTL ((ϕ ◦ ψ)→ (χ→ δ))→ (ϕ→ (ψ → (χ→ δ))) by (A7b)

(c) `MTL (((ϕ ◦ ψ) ◦ χ)→ δ)→ (ϕ→ (ψ → (χ→ δ))) by (a),(b) and (A1)

(d) `MTL (ϕ→ (ψ → (χ→ δ)))→ (ϕ→ ((ψ ◦ χ)→ δ)) by (A7a)

(e) `MTL (((ϕ ◦ ψ) ◦ χ)→ δ)→ (ϕ→ ((ψ ◦ χ)→ δ)) by (c),(d) and (A1)

(f) `MTL (ϕ→ ((ψ ◦ χ)→ δ))→ ((ϕ ◦ (ψ ◦ χ)→ δ)) by (A7a)

(g) `MTL (((ϕ ◦ ψ) ◦ χ)→ δ)→ ((ϕ ◦ (ψ ◦ χ)→ δ)) by (e),(f) and (A1)

(h) `MTL (ϕ ◦ (ψ ◦ χ))→ ((ϕ ◦ ψ) ◦ χ) (if we set δ = (ϕ ◦ ψ) ◦ χ)

Similarly, `MTL ((ϕ ◦ ψ) ◦ χ)→ (ϕ ◦ (ψ ◦ χ))

(9) `MTL (ϕ ◦ ψ)→ (ϕ ∧ ψ):

(a) `MTL ψ → (ϕ→ ψ) by (1)

(b) `MTL (ψ → (ϕ→ ψ))→ ((ϕ ◦ ψ)→ (ϕ ◦ (ϕ→ ψ))) by (6)

(c) `MTL (ϕ ◦ ψ)→ (ϕ ◦ (ϕ→ ψ)) by (a),(b) and modus ponens

(d) `MTL (ϕ ◦ (ϕ→ ψ))→ (ϕ ∧ ψ) by (A6)

(e) `MTL (ϕ ◦ ψ)→ (ϕ ∧ ψ) by (c),(d) and (A1)

(10) `MTL (ϕ→ ψ)→ (ϕ→ (ϕ ∧ ψ)):

(a) `MTL ((ϕ→ ψ) ◦ ϕ)→ (ϕ ◦ (ϕ→ ψ)) by (A3)

(b) `MTL (ϕ ◦ (ϕ→ ψ))→ (ϕ ∧ ψ) by (A6)
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(c) `MTL ((ϕ→ ψ) ◦ ϕ)→ (ϕ ∧ ψ) by (A1)

(d) `MTL (((ϕ→ ψ) ◦ ϕ)→ (ϕ ∧ ψ))→ ((ϕ→ ψ)→ (ϕ→ (ϕ ∧ ψ))) by (A7b)

(d) `MTL (ϕ→ ψ)→ (ϕ→ (ϕ ∧ ψ)) by (c),(d) and modus ponens

(11) `MTL (ϕ→ (ϕ ∧ χ))→ (((ψ → ϕ) ∧ (ψ → χ))→ (ψ → (ϕ ∧ χ))):

(a) `MTL ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ψ → ϕ) by (A4)

(b) `MTL (ψ → ϕ)→ ((ϕ→ (ϕ ∧ χ))→ (ψ → (ϕ ∧ χ))) by (A1)

(c) `MTL ((ϕ→ ψ) ∧ (ϕ→ χ))→ ((ϕ→ (ϕ ∧ χ))→ (ψ → (ϕ ∧ χ))) by (a),(b)

and (A1)

(d) `MTL (((ϕ→ ψ) ∧ (ϕ→ χ))→ ((ϕ→ (ϕ ∧ χ))→ (ψ → (ϕ ∧ χ))))→
((ϕ→ (ϕ ∧ χ))→ (((ϕ→ ψ) ∧ (ϕ→ χ))→ (ψ → (ϕ ∧ χ)))) by (2)

(e) `MTL (ϕ→ (ϕ ∧ χ))→ (((ϕ→ ψ) ∧ (ϕ→ χ))→ (ψ → (ϕ ∧ χ))) by (c),(d)

and modus ponens

(12) `MTL ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ)):

(a) `MTL (ψ → χ)→ (ψ → (ψ ∧ χ)) by (10)

(b) `MTL (ψ → (ψ ∧ χ))→ (((ϕ→ ψ) ∧ (ψ → ϕ))→ (ϕ→ (ψ ∧ χ))) by (11)

(c) `MTL (ψ → χ) → (((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ))) by (a),(b)

and (A1);

Similarly

(d) `MTL (χ→ ψ)→ (((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ)))

(e) `MTL ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ)) by (c),(d) and (A8)

(13) `MTL ϕ→ (ϕ ∧ ϕ):

(a) `MTL ϕ→ ϕ by (3)

(b) `MTL (ϕ→ ϕ)→ (ϕ→ (ϕ ∧ ϕ)) by (10)

(c) `MTL ϕ→ (ϕ ∧ ϕ) by (a),(b) and modus ponens

(14) `MTL (i) ϕ→ (ϕ ∨ ψ) , (ii) ψ → (ϕ ∨ ψ) , (iii) (ϕ ∨ ψ)→ (ψ ∨ ϕ):

(i) :
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(a) `MTL (ϕ ◦ (ϕ→ ψ))→ ψ by (4)

(b) `MTL ((ϕ ◦ (ϕ→ ψ))→ ψ)→ (ϕ→ ((ϕ→ ψ)→ ψ)) by (A7b)

(c) `MTL ϕ→ ((ϕ→ ψ)→ ψ) by (a),(b) and modus ponens

(d) `MTL ϕ→ ((ψ → ϕ)→ ϕ) by (1)

(e) `MTL ϕ→ (((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)) by (c),(d) and (12)

(f) `MTL ϕ→ (ϕ ∨ ψ) by (e) and the definition of ∨

(ii) :

`MTL (ϕ ∨ ψ)→ (ψ ∨ ϕ) by the definition of ∨ and (A5)

(iii) :

(a) `MTL ψ → (ψ ∨ ϕ) by (i)

(b) `MTL (ψ ∨ ϕ)→ (ϕ ∨ ψ) by (ii)

(c) `MTL ψ → (ϕ ∨ ψ) by (a),(b) and (A1)

(15) `MTL (ϕ→ ψ)→ ((ϕ ∨ ψ)→ ψ):

(a) `MTL (ϕ ∨ ψ)→ (((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)) by the definition of

∨

(b) `MTL (((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ))→ ((ϕ→ ψ)→ ψ) by (A4)

(c) `MTL (ϕ ∨ ψ)→ ((ϕ→ ψ)→ ψ) by (a),(b) and (A1)

(d) `MTL ((ϕ ∨ ψ)→ ((ϕ→ ψ)→ ψ)) → ((ϕ→ ψ)→ ((ϕ ∨ ψ)→ ψ)) by

(2)

(e) `MTL (ϕ→ ψ)→ ((ϕ ∨ ψ)→ ψ) by (c),(d) and modus ponens

(16) `MTL (ϕ→ ψ) ∨ (ψ → ϕ):

(a) `MTL (ϕ→ ψ)→ ((ϕ→ ψ) ∨ (ψ → ϕ)) by (14)

(b) `MTL (ψ → ϕ)→ ((ϕ→ ψ) ∨ (ψ → ϕ)) by (14)

(c) `MTL (ϕ→ ψ) ∨ (ψ → ϕ) by (a),(b) and (A8)

(17) `MTL (ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ)):

(a) `MTL (χ→ ϕ)→ ((ϕ→ ψ)→ (χ→ ψ)) by (A1)
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(b) `MTL ((χ→ ϕ)→ ((ϕ→ ψ)→ (χ→ ψ)))→ ((ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ)))

by (2)

(c) `MTL (ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ)) by (a),(b) and modus ponens.

(18) `MTL ((ϕ ∨ ψ)→ ψ)→ (((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)):

(a) `MTL ((ϕ→ χ) ∧ (ψ → χ))→ (ψ → χ) by (A4)

(b) `MTL (ψ → χ)→ (((ϕ ∨ ψ)→ ψ)→ ((ϕ ∨ ψ)→ χ)) by (17)

(c) `MTL ((ϕ→ χ) ∧ (ψ → χ))→ (((ϕ ∨ ψ)→ ψ)→ ((ϕ ∨ ψ)→ χ)) by (a),(b)

and (A1)

(d) `MTL (((ϕ→ χ) ∧ (ψ → χ))→ (((ϕ ∨ ψ)→ ψ)→ ((ϕ ∨ ψ)→ χ)))→
(((ϕ ∨ ψ)→ ψ)→ (((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ))) by (2)

(e) `MTL ((ϕ ∨ ψ)→ ψ)→ (((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)) by (c),(d)

and modus ponens

(19) `MTL ((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ):

(a) `MTL (ϕ→ ψ)→ ((ϕ ∨ ψ)→ ψ) by (15)

(b) `MTL ((ϕ ∨ ψ)→ ψ)→ (((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)) by (18)

(c) `MTL (ϕ→ ψ) → (((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)) by (a),(b)

and (A1); Similarly

(d) `MTL (ψ → ϕ)→ (((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ))

(e) `MTL ((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ) by (c),(d) and (A8)

(20) `MTL (ϕ ∨ ϕ)→ ϕ:

(a) `MTL ϕ→ ϕ by (3)

(b) `MTL (ϕ→ ϕ)→ ((ϕ ∨ ϕ)→ ϕ) by (15)

(c) `MTL (ϕ ∨ ϕ)→ ϕ by (a),(b) and modus ponens

(21) `MTL ((ϕ→ ψ) ◦ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ)):

(a) `MTL ((ϕ→ ψ) ◦ (ϕ→ χ))→ ((ϕ→ ψ) ∧ (ϕ→ χ)) by (9)

(b) `MTL ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ)) by (12)
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(c) `MTL ((ϕ→ ψ) ◦ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ)) by (a),(b) and (A1)

(22) `MTL ((ϕ→ χ) ◦ (ψ → χ))→ ((ϕ ∨ ψ)→ χ):

(a) `MTL ((ϕ→ ψ) ◦ (ϕ→ χ))→ ((ϕ→ ψ) ∧ (ϕ→ χ)) by (9)

(b) `MTL ((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ) by (19)

(c) `MTL ((ϕ→ χ) ◦ (ψ → χ)) → ((ϕ ∨ ψ)→ χ) by (a),(b) and modus po-

nens

(27) `MTL 1̄:

(a) `MTL 0̄→ 0̄ by (3)

(b) `MTL 1̄ by (a) and the definition of 1̄

(28) `MTL ϕ→ (1̄ ◦ ϕ):

(a) `MTL (1̄ ◦ ϕ)→ (1̄ ◦ ϕ) by (3)

(b) `MTL ((1̄ ◦ ϕ)→ (1̄ ◦ ϕ))→ (1̄→ (ϕ→ (1̄ ◦ ϕ))) by (A7b)

(c) `MTL ϕ→ (1̄ ◦ ϕ) by (a),(b) and modus ponens

(30) (ϕ ∧ (ψ ∧ χ))→ ((ϕ ∧ ψ) ∧ χ) , ((ϕ ∧ ψ) ∧ χ)→ (ϕ ∧ (ψ ∧ χ)):

(a) `MTL (ϕ ∧ (ψ ∧ χ))→ δ for δ being ϕ, ψ∧χ, ψ, χ, ϕ∧ψ, ((ϕ ∧ ψ) ∧ χ) by

(A4),(A1) and (21); Similarly

`MTL ((ϕ ∧ ψ) ∧ χ)→ (ϕ ∧ (ψ ∧ χ))

(31) `MTL (ϕ ∨ (ψ ∨ χ))→ ((ϕ ∨ ψ) ∨ χ) , ((ϕ ∨ ψ) ∨ χ)→ (ϕ ∨ (ψ ∨ χ)):

(a) `MTL δ → (ϕ ∨ (ψ ∨ χ)) for δ being ϕ, ψ∨χ, ψ, χ, ϕ∨ψ, ((ϕ ∨ ψ) ∨ χ) by

(14),(A1) and (22); Similarly

`MTL ((ϕ ∨ ψ) ∨ χ)→ (ϕ ∨ (ψ ∨ χ))

(32) `MTL (i) ϕ→ (ϕ ∧ (ϕ ∨ ψ)) , (ii) (ϕ ∨ (ϕ ∧ ψ))→ ϕ:

(i) :

(a) `MTL ϕ→ (ϕ ∨ ψ) by (14)

(b) `MTL ϕ→ ϕ by (3)
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(c) `MTL (ϕ→ ϕ)→ ((ϕ→ (ϕ ∨ ψ))→ ((ϕ→ ϕ) ◦ (ϕ→ (ϕ ∨ ψ)))) by (5)

(d) `MTL (ϕ→ (ϕ ∨ ψ))→ ((ϕ→ ϕ) ◦ (ϕ→ (ϕ ∨ ψ))) by (b),(c) and modus

ponens

(e) `MTL (ϕ→ ϕ) ◦ (ϕ→ (ϕ ∨ ψ)) by (a),(d) and modus ponens

(f) `MTL ((ϕ→ ϕ) ◦ (ϕ→ (ϕ ∨ ψ)))→ (ϕ→ (ϕ ∧ (ϕ ∨ ψ))) by (21)

(g) `MTL ϕ→ (ϕ ∧ (ϕ ∨ ψ)) by (e),(f) and modus ponens

(ii) :

(a) `MTL ϕ→ ϕ by (3)

(b) `MTL (ϕ ∧ ψ)→ ϕ by (A4)

(c) `MTL (ϕ→ ϕ)→ (((ϕ ∧ ψ)→ ϕ)→ ((ϕ→ ϕ) ◦ ((ϕ ∧ ψ)→ ϕ))) by (5)

(d) `MTL ((ϕ ∧ ψ)→ ϕ)→ ((ϕ→ ϕ) ◦ ((ϕ ∧ ψ)→ ϕ)) by (a),(c) and modus

ponens

(e) `MTL (ϕ→ ϕ) ◦ ((ϕ ∧ ψ)→ ϕ) by (b),(d) and modus ponens

(f) `MTL ((ϕ→ ϕ) ◦ ((ϕ ∧ ψ)→ ϕ))→ ((ϕ ∨ (ϕ ∧ ψ))→ ϕ) by (22)

(g) `MTL (ϕ ∨ (ϕ ∧ ψ))→ ϕ by (e),(f) and modus ponens.

4.2 MTL-algebras

Definition 4.2.1. A residuated lattice is an algebra (L, ◦,→,∧,∨, 0, 1) satisfying the

following conditions.

(1) (L,∧,∨, 0, 1) is a lattice with largest element 1 and least element 0

(w.r.t. the lattice ordering ≤).

(2) (L, ◦, 1) is a commutative monoid with identity element 1.

(3) → is the residuum of ◦, that is, the residuation property holds: for all x, y, z ∈ L,

x ◦ z ≤ y iff z ≤ x→ y.
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Definition 4.2.2. An MTL-algebra is a residuated lattice (L, ◦,→,∧,∨, 0, 1) such

that the following prelinearity property holds for all x, y ∈ L:

(x→ y) ∨ (y → x) = 1.

Observe that any algebra of the form ([0, 1], ◦,→,∧,∨, 0, 1) in which ◦ is a left-

continuous t-norm,→ its residuum and ∧ and ∨ are min and max, respectively, is an

MTL-algebra. The prelinearity property is easy to see in this case since the order is

linear: either x ≤ y and then x→ y = 1, or y ≤ x and then y → x = 1.

Lemma 4.2.1. In each residuated lattice, the following hold:

(1) x ◦ (x→ y) ≤ y and x ≤ y → (x ◦ y)

(2) x ≤ y implies x ◦ z ≤ y ◦ z, z → x ≤ z → y and y → z ≤ x→ z

(3) x ≤ y iff x→ y = 1

(4) (x ∨ y) ◦ z = (x ◦ z) ∨ (y ◦ z)

(5) x ◦ y ≤ y

(6) (x→ y) ≤ (z → x)→ (z → y) and (x→ y) ≤ (y → z)→ (x→ z)

(7) (x→ y) ≤ (x ◦ z)→ (y ◦ z)

(8) x ◦ y ≤ x ∧ y

(9) x→ (x ∧ y) = x→ y

(10) (x→ y) ◦ (x ∨ z) ≤ y ∨ z

(11) (x ∧ z) ◦ (x→ y) ≤ y ∧ z

(12) x→ 1 = 1

(13) 1→ x = x

(14) x→ (y → z) = (x ◦ y)→ z
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(15) x→ (y → z) = y → (x→ z)

(16) x ≤ (x→ y)→ y

(17) x ≤ y → x

(18) (x→ y)n ≤ xn → yn, for all n ∈ N

Proof.

(1) The proof of the firt part is similar to that of Lemma 3.1.2(2). For the second

part, we have that (x ◦ y) ≤ (x ◦ y). Thus x ≤ y → (x ◦ y) by residuation.

(2) Suppose x ≤ y. Then by (1), y ≤ (z → (y ◦ z)). Thus x ≤ (z → (y ◦ z)). Hence

x◦z ≤ y◦z by residuation. Again, letting x ≤ y, we have z◦(z → x) ≤ x ≤ y by

(1). Hence (z → x) ≤ (z → y) by residuation. Also x◦ (y → z) ≤ y ◦ (y → z) ≤
z. Therefore (y → z) ≤ (x→ z).

(3) The proof is similar to that of Lemma 3.1.2(1).

(4) Since x ≤ x ∨ y, x ◦ z ≤ (x ∨ y) ◦ z by (2). Similarly, y ◦ z ≤ (x ∨ y) ◦ z. Thus

(x ◦ z) ∨ (y ◦ z) ≤ (x ∨ y) ◦ z. Also x ◦ z ≤ (x ◦ z) ∨ (y ◦ z). Hence x ≤ z →
((x ◦ z) ∨ (y ◦ z)) by residuation. Similarly, y ≤ z → ((x ◦ z) ∨ (y ◦ z)). Thus

(x ∨ y) ≤ z → ((x ◦ z) ∨ (y ◦ z)). Therefore (x ∨ y) ◦ z ≤ ((x ◦ z) ∨ (y ◦ z)).

(5) The proof is similar to that of Lemma 3.1.2(3).

(6) z ◦ (z → x) ≤ x. Hence z ◦ (z → x) ◦ (x→ y) ≤ x ◦ (x→ y) ≤ y by (2). Thus

(z → x) ◦ (x→ y) ≤ (z → y) by residuation. Therefore (x→ y) ≤ (z → x) →
(z → y) by residuation.

The proof of the second part is similar.

(7) By (1) and (2), x ◦ (x→ y) ◦ z ≤ y ◦ z. Thus (x→ y) ◦ (x ◦ z) ≤ y ◦ z by

commutativity and associativity of ◦. Therefore (x→ y) ≤ (x ◦ z)→ (y ◦ z) by

residuation.

(8) By (5) and commutativity, x ◦ y ≤ y and x ◦ y ≤ x. Therefore x ◦ y ≤ x ∧ y.
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(9) By (2), x → (x ∧ y) ≤ (x→ y). Again we have that x ◦ (x→ y) ≤ y and

x ◦ (x→ y) ≤ x by (1) and (5). Hence x ◦ (x→ y) ≤ (x ∧ y). Therefore

(x→ y) ≤ (x→ (x ∧ y)) by residuation.

(10) (x→ y) ◦ (x ∨ z) = (x ◦ (x→ y)) ∨ ((x→ y) ◦ z) ≤ y ∨ z by (4),(1) and (5).

(11) Since x ∧ z ≤ x and x ∧ z ≤ z, (x ∧ z) ◦ (x→ y) ≤ (x ◦ (x→ y)) ≤ y and

(x ∧ z) ◦ (x→ y) ≤ (z ◦ (x→ y)) ≤ z by (2), (1) and (5). Therefore (x ∧ z) ◦
(x→ y) ≤ y ∧ z.

(12) By (3), x→ 1 = 1 since x ≤ 1, for all x.

(13) The proof is similar to that of Lemma 3.1.2(4).

(14)

x ◦ (x→ (y → z)) ≤ (y → z)

⇔ y ◦ x ◦ (x→ (y → z)) ≤ z (by residuation)

⇔ (x→ (y → z)) ≤ ((x ◦ y)→ z) (by residuation).

(4.1)

Also,

(x ◦ y) ◦ ((x ◦ y)→ z) ≤ z

⇔ x ◦ ((x ◦ y)→ z) ≤ y → z (by residuation)

⇔ ((x ◦ y)→ z) ≤ (x→ (y → z)) (by residuation).

(4.2)

Therefore, x→ (y → z) = (x ◦ y)→ z by (4.1) and (4.2).

(15)

x→ (y → z) = (x ◦ y)→ z (by (14))

= (y ◦ x)→ z

= y → (x→ z) .

(16) By (1), x ◦ (x→ y) ≤ y. Therefore x ≤ (x→ y)→ y by residuation.

(17) By (5), x ◦ y ≤ x. Therefore x ≤ y → x by residuation.

(18) By associativity and commutativity of ◦, xn ◦ (x→ y)n = (x ◦ (x→ y))n ≤ yn.

Therefore (x→ y)n ≤ xn → yn by residuation.
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Lemma 4.2.2. In each MTL-algebra, the following hold:

(1) x ∨ y = ((x→ y)→ y) ∧ ((y → x)→ x)

(2) (x→ y)n ∨ (y → x)n = 1, for all n ∈ N.

Proof.

(1) ((x→ y)→ y) ∧ ((y → x)→ x)

= [((x→ y)→ y) ∧ ((y → x)→ x)] ◦ ((x→ y) ∨ (y → x))

(since (x→ y) ∨ (y → x) = 1)

= ([((x→ y)→ y) ∧ ((y → x)→ x)] ◦ (x→ y))

∨ ([((x→ y)→ y) ∧ ((y → x)→ x)] ◦ (y → x)) (by Lemma 4.2.1(4)).

≤ (((x→ y)→ y) ◦ (x→ y)) ∨ (((y → x)→ x) ◦ (y → x))

(since a ∧ b ≤ a and by Lemma 4.2.1(2))

≤ y ∨ x = x ∨ y (by Lemma 4.2.1(1)).

Also (x→ y)◦(x ∨ y) = (x ◦ (x→ y))∨(y ◦ (x→ y)) ≤ y∨y = y by Lemma 4.2.1(4),(1)

and (5). Hence x ∨ y ≤ (x→ y) → y by residuation. Similarly, x ∨ y ≤
(y → x)→ x. Therefore x ∨ y = ((x→ y)→ y) ∧ ((y → x)→ x).

(2) For n = 1, the identity (x→ y) ∨ (y → x) = 1 holds, by the definition of an

MTL-algebra. Assume, inductively, that MTL-algebras satisfy the identity

(x→ y)m ∨ (y → x)m = 1. (4.3)

We need to prove that (x→ y)m+1 ∨ (y → x)m+1 = 1. We first show that

xk ◦ ym+1−k ≤ xm+1 ∨ ym+1 for 0 ≤ k ≤ m+ 1. (4.4)

We know that xk ◦ ym+1−k ◦
(
ym+1−k → xm+1−k) ≤ xk ◦ xm+1−k = xm+1 and

xk ◦ ym+1−k ◦
(
xk → yk

)
≤ yk ◦ ym+1−k = ym+1. Hence

xk ◦ ym+1−k ◦
((
ym+1−k → xm+1−k) ∨ (xk → yk

))
≤ xm+1 ∨ ym+1.
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For (4.4) to hold, we must have

(
ym+1−k → xm+1−k) ∨ (xk → yk

)
= 1. (4.5)

To prove (4.5), we prove that (y → x)m+1−k ∨ (x→ y)k = 1 and then use

Lemma 4.2.1(18).

Now, for any k such that 1 ≤ k ≤ m,

(y → x)m+1−k ∨ (x→ y)k

≥ (y → x)m ∨ (x→ y)m (since k ≤ m and m+ 1− k ≤ m)

= 1 by (4.3).

Thus
(
ym+1−k → xm+1−k) ∨ (xk → yk

)
= 1 by Lemma 4.2.1(18). Thus

xk ◦ ym+1−k = xk ◦ ym+1−k ◦
((
ym+1−k → xm+1−k) ∨ (xk → yk

))
≤ xm+1 ∨ ym+1.

(4.6)

Now,

(x ∨ y)m+1 =
∨m+1
k=0 x

k ◦ ym+1−k

= xm+1 ∨ ym+1 ∨
∨m
k=1 x

k ◦ ym+1−k.

By (4.6), for 1 ≤ k ≤ m, each of xk ◦ ym+1−k is less or equal to xm+1 ∨ ym+1.

Hence the identity (x ∨ y)m+1 = xm+1 ∨ ym+1 holds, so

(x→ y)m+1 ∨ (y → x)m+1

= ((x→ y) ∨ (y → x))m+1

= 1m+1

= 1.

Therefore MTL-algebras satisfy (x→ y)n ∨ (y → x)n = 1, for all n ∈ N.

Theorem 4.2.1. The class of all residuated lattices is a variety, hence the class of

all MTL-algebras is a variety.

Proof. The class of all lattices forms a variety from the definition of a lattice in
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the preliminary section. The conditions on 0 and 1 can be expressed by identities

x ∨ 1 = 1, x ∧ 0 = 0. Also commutativity and associativity of ◦, 1 ◦ x = x and

(x→ y) ∨ (y → x) = 1 are identities. We verify that the residuation property is

expressed by the following identities:

(1) ((x→ y) ◦ x) ∨ y = y,

(2) x→ (x ∨ y) = 1,

(3) x→ (y → z) = (x ◦ y)→ z.

We first show that the above identities hold in each residuated lattice. By Lemma 4.2.1(1),

(x→ y) ◦ x ≤ y, and (x→ y) ◦ x ≤ y iff ((x→ y) ◦ x) ∨ y = y, so (1) holds. By

Lemma 4.2.1(3), x → (x ∨ y) = 1, so (2) holds. By Lemma 4.2.1(14), (3) holds. We

now prove that the residuation property can be derived from (1), (2), (3) and the

other identities of MTL-algebras. We first prove the following property:

x ≤ y iff x→ y = 1.

If x ≤ y, then x ∨ y = y. Thus x→ y = 1 by (2). If x→ y = 1, then

((x→ y) ◦ x) ∨ y = x ∨ y = y by (1). Hence x ≤ y.

We now prove the residuation property (x ◦ y ≤ z iff x ≤ y → z).

Suppose x ◦ y ≤ z. Then (x ◦ y)→ z = 1. But (x ◦ y)→ z = x→ (y → z) by (3), so

x→ (y → z) = 1. Thus x ≤ y → z. Conversely, if x ≤ y → z, then x→ (y → z) = 1.

Thus (x ◦ y)→ z = 1. Therefore x ◦ y ≤ z.

In this chapter, we started by proving some of the formulas provable in MTL with

an intension of making use of them. We have proved some of the properties of MTL-

algebras which we will use in the subsequent chapters. Most importantly, we have

shown that a class of MTL-algebras forms a variety of algebras. We will use this

result in proving Lemma 5.1.2, which in turn will be used in proving completeness of

MTL with respect to MTL-algebras and MTL-chains.
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CHAPTER 5

Completeness of MTL with respect to MTL-algebras and

MTL-chains

In this chapter we clarify the connection between the logic MTL, MTL-algebras and

MTL-chains. As we shall show, MTL is complete with respect to the variety of

MTL-algebras, in the sense that a formula ϕ is a theorem of MTL if and only if the

identity ϕ = 1 holds in all MTL-algebras. In addition we show that every MTL-

algebra is a subdirect product of MTL-chains, that is linearly ordered MTL-algebras.

Consequently, the variety of MTL-algebras is generated by the class of MTL-chains,

and hence MTL is also complete with respect to the class of MTL-chains. The material

in this chapter is taken from the work done by Esteva and Godo [5] and Hájek [14].
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5.1 MTL completeness with respect to MTL-algebras

and MTL-chains

Definition 5.1.1. Let Fm be the set of all MTL formulas and let ∼ be a relation

on Fm defined by ϕ ∼ ψ iff `MTL ϕ ↔ ψ. Then ∼ is an equivalence relation by

Lemma 4.1.1(33). Let Fm/∼ be the set of equivalence classes [ϕ]∼ of ∼. We define

on Fm/∼ the following operations:

(1) 0 = [0̄]∼

(2) 1 = [1̄]∼

(3) [ϕ]∼ ∧ [ψ]∼ = [ϕ ∧ ψ]∼

(4) [ϕ]∼ → [ψ]∼ = [ϕ→ ψ]∼

(5) [ϕ]∼ ◦ [ψ]∼ = [ϕ ◦ ψ]∼

(6) [ϕ]∼ ∨ [ψ]∼ = [ϕ ∨ ψ]∼.

These operations are well-defined by Lemma 4.1.1(35-37).

Lemma 5.1.1. With the above definitions Fm/∼ = (Fm/∼, ◦,→,∧,∨, 0, 1) is an

MTL-algebra.

Proof.

(Fm/∼,∧,∨) is a lattice:

(1) [ϕ]∼∧[ϕ]∼ = [ϕ ∧ ϕ]∼ = [ϕ]∼ , [ϕ]∼∨[ϕ]∼ = [ϕ ∨ ϕ]∼ = [ϕ]∼ by Lemma 4.1.1(13),(A4),

Lemma 4.1.1(14) and (20).

(2) [ϕ]∼ ∧ [ψ]∼ = [ϕ ∧ ψ]∼ = [ψ ∧ ϕ]∼ = [ψ]∼ ∧ [ϕ]∼ , [ϕ]∼ ∨ [ψ]∼ = [ϕ ∨ ψ]∼ =

[ψ ∨ ϕ]∼ = [ψ]∼ ∨ [ϕ]∼ by (A5) and Lemma 4.1.1(14).

(3) [ϕ]∼ ∧ ([ψ]∼ ∧ [χ]∼) = [ϕ ∧ (ψ ∧ χ)]∼ = [(ψ ∧ ϕ) ∧ χ]∼ = ([ψ]∼ ∧ [ϕ]∼) ∧ [χ]∼ ,

[ϕ]∼ ∨ ([ψ]∼ ∨ [χ]∼) = [ϕ ∨ (ψ ∨ χ)]∼ = [(ψ ∨ ϕ) ∨ χ]∼ = ([ψ]∼ ∨ [ϕ]∼) ∨ [χ]∼
by (A5) Lemma 4.1.1(30),(31).
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(4) [ϕ]∼∧([ϕ]∼ ∨ [ψ]∼) = [ϕ ∧ (ϕ ∨ ψ)]∼ = [ϕ]∼ , [ϕ]∼∨([ϕ]∼ ∧ [ψ]∼) = [ϕ ∨ (ϕ ∧ ψ)]∼ =

[ϕ]∼ by (A5) Lemma 4.1.1(32),(A4) and Lemma 4.1.1(14).

(Fm/∼, ◦, 1) is a commutative monoid:

(1) [ϕ]∼ ◦ ([ψ]∼ ◦ [χ]∼) = [ϕ ◦ (ψ ◦ χ)]∼ = [(ψ ◦ ϕ) ◦ χ]∼ = ([ψ]∼ ◦ [ϕ]∼) ◦ [χ]∼ by

Lemma 4.1.1(8).

(2) [ϕ]∼ ◦ [ψ]∼ = [ϕ ◦ ψ]∼ = [ψ ◦ ϕ]∼ = [ψ]∼ ◦ [ϕ]∼ by (A3).

(3) [ϕ]∼ ◦ [1̄]∼ = [ϕ ◦ 1̄]∼ = [ϕ]∼ by (A4) and Lemma 4.1.1(28).

[χ]∼ ≤ [ϕ]∼ → [ψ]∼ iff [χ]∼ ◦ [ϕ]∼ ≤ [ψ]∼ :

We first show that [ϕ]∼ ≤ [ψ]∼ iff `MTL ϕ→ ψ.

[ϕ]∼ ≤ [ψ]∼ ⇔ [ϕ]∼ ∧ [ψ]∼ = [ϕ]∼
⇔ [ϕ ∧ ψ]∼ = [ϕ]∼
⇔ `MTL (ϕ ∧ ψ)↔ ϕ

⇔ `MTL ((ϕ ∧ ψ)→ ϕ) ◦ (ϕ→ (ϕ ∧ ψ))

⇔ `MTL (ϕ→ (ϕ ∧ ψ)) (by (A4))

⇔ `MTL ϕ→ ψ (by (A4),(A1), and Lemma 4.1.1(10)).

(5.1)

We now prove the residuation property.

[χ]∼ ≤ [ϕ]∼ → [ψ]∼ ⇔ `MTL χ→ (ϕ→ ψ) (by (5.1))

⇔ `MTL (χ ◦ ϕ)→ ψ (by (A7a))

⇔ [χ ◦ ϕ]∼ ≤ [ψ]∼ (by (5.1))

⇔ [χ]∼ ◦ [ϕ]∼ ≤ [ψ]∼ .

The prelinearity condition follows from Lemma 4.1.1(16).

Therefore Fm/∼ is an MTL-algebra.

Throughout the remainder of this section, let L = (L, ◦,→,∧,∨, 0, 1) be an MTL-

algebra.
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Definition 5.1.2. A filter F of L is a non-empty subset of L satisfying, for all

a, b ∈ L,

(1) a ∈ F and b ∈ F implies a ◦ b ∈ F ,

(2) a ∈ F and a ≤ b implies b ∈ F .

A filter F of L is called a prime filter iff for all a, b ∈ L, a→ b ∈ F or b→ a ∈ F.

Lemma 5.1.2. Let F be a filter of L and define a binary relation ∼F on L by:

x ∼F y iff x→ y ∈ F and y → x ∈ F.

Then

(1) ∼F is a congruence of L and the quotient algebra L/∼F is an MTL-algebra.

(2) L/∼F is linearly ordered iff F is a prime filter.

Proof. We first prove (1).

Reflexivity:

We have 1 ∈ F since F is nonempty. But x → x = 1 so x → x ∈ F . Hence ∼F is

reflexive.

Symmetry:

Suppose x ∼F y. Then x → y ∈ F and y → x ∈ F . Hence y → x ∈ F and

x→ y ∈ F , i.e., y ∼F x, hence ∼F is symmetric.

Transitivity:

Assume x ∼F y and y ∼F z. Then x → y ∈ F , y → x ∈ F , y → z ∈ F and

z → y ∈ F . By Lemma 4.2.1(6) and residuation, (x→ y) ◦ (y → z) ≤ x → z and

(z → y) ◦ (y → x) ≤ z → x. Since F is a filter and x → y, y → x, y → z and

z → y are elements of F , (x→ y) ◦ (y → z) ∈ F and (z → y) ◦ (y → x) ∈ F . Hence

x→ z ∈ F and z → x ∈ F . Thus x ∼F z, hence ∼F is transitive.

Therefore ∼F is an equivalence relation.

∼F is operation preserving:

Assume x ∼F y. Then x → y ∈ F and y → x ∈ F . By Lemma 4.2.1(7), x → y ≤
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(x ◦ z)→ (y ◦ z) and y → x ≤ (y ◦ z)→ (x ◦ z). This implies (x ◦ z)→ (y ◦ z) ∈ F
and (y ◦ z)→ (x ◦ z) ∈ F since x→ y ∈ F and y → x ∈ F .

Thus

x ◦ z ∼F y ◦ z. (5.2)

As for (5.2), if z ∼F w, then z ◦ y ∼F w ◦ y. Hence by commutativity of ◦ we have

y ◦ z ∼F y ◦ w. (5.3)

By (5.2) and (5.3) and transitivity of ∼F we have that

x ◦ z ∼F y ◦ w.

Therefore ∼F preserves ◦.
We now show that ∼F preserves →.

Suppose x ∼F y. Then x → y ∈ F and y → x ∈ F . By Lemma 4.2.1(6), x → y ≤
(z → x)→ (z → y) and y → x ≤ (z → y)→ (z → x), hence (z → x)→ (z → y) ∈ F
and (z → y)→ (z → x) ∈ F . Thus

z → x ∼F z → y. (5.4)

Suppose w ∼F z. Then w → z ∈ F and z → w ∈ F . By Lemma 4.2.1(6),

w → z ≤ (z → x)→ (w → x) and z → w ≤ (w → x)→ (z → x). Hence (z → x)→
(w → x) ∈ F and (w → x)→ (z → x) ∈ F . Thus, by (5.4), symmetry and transitiv-

ity of ∼F , we get

w → x ∼F z → y.

Therefore ∼F preserves →.

We show that ∼F preserves ∨.

Assume x ∼F y. Then x → y ∈ F and y → x ∈ F . By Lemma 4.2.1(10) and

residuation, x→ y ≤ (x ∨ z)→ (y ∨ z) and y → x ≤ (y ∨ z)→ (x ∨ z). This implies

(x ∨ z)→ (y ∨ z) ∈ F and (y ∨ z)→ (x ∨ z) ∈ F since x→ y ∈ F and y → x ∈ F .

Thus

x ∨ z ∼F y ∨ z. (5.5)
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Assume z ∼F w. As above, z ∨ y ∼F w ∨ y. Thus, by commutativity of ∨, we have

y ∨ z ∼F y ∨ w. (5.6)

By (5.5) and (5.6) and transitivity of ∼F we have

x ∨ z ∼F y ∨ w.

Therefore ∼F preserves ∨.

Lastly, we show that ∼F preserves ∧.

Assume x ∼F y. Then x → y ∈ F and y → x ∈ F . By Lemma 4.2.1(11) and

residuation, x→ y ≤ (x ∧ z)→ (y ∧ z) and y → x ≤ (y ∧ z)→ (x ∧ z). This implies

(x ∧ z) → (y ∧ z) ∈ F and (y ∧ z) → (x ∧ z) ∈ F since x → y ∈ F and y → x ∈ F .

Thus

x ∧ z ∼F y ∧ z. (5.7)

Assume z ∼F w. As above, z ∧ y ∼F w ∧ y, hence by commutativity of ∧, we get

y ∧ z ∼F y ∧ w. (5.8)

By (5.7) and (5.8) and transitivity of ∼F we have

x ∧ z ∼F y ∧ w.

Hence ∼F is a congruence of L. Also MTL-algebras form a variety of algebras by

Theorem 4.2.1. Therefore L/∼F is an MTL-algebra.

We now prove (2).

Assume F is a prime filter and x, y ∈ L. Then x → y ∈ F or y → x ∈ F . If

x → y ∈ F , then x → (x ∧ y) ∈ F , by Lemma 4.2.1(9). Thus x → (x ∧ y) ∈ F and

(x ∧ y)→ x ∈ F since x ∧ y ≤ x, hence x ∧ y ∼F x. Thus,

[x ∧ y]∼F = [x]∼F
⇒ [x]∼F ∧ [y]∼F = [x]∼F
⇒ [x]∼F ≤ [y]∼F .
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Similarly, if y → x ∈ F , then [y]∼F ≤ [x]∼F . Hence L/∼F is linearly ordered.

Conversely, let F be a filter such that L/∼F is linearly ordered. Then [x]∼F ≤ [y]∼F
or [y]∼F ≤ [x]∼F . In the first case,

[x]∼F ∧ [y]∼F = [x]∼F
⇒ [x ∧ y]∼F = [x]∼F
⇒ x ∧ y ∼F x
⇒ x→ (x ∧ y) ∈ F and (x ∧ y)→ x ∈ F
⇒ x→ y ∈ F by Lemma 4.2.1(9) .

Similarly if [y]∼F ≤ [x]∼F , then y → x ∈ F . Therefore F is a prime filter.

Lemma 5.1.3. If θ is a congruence of L, then [1]θ is a filter.

Proof. Since θ is reflexive, 1 ∈ [1]θ. Let a, b ∈ [1]θ, i.e., aθ1 and bθ1. Hence

(a ◦ b) θ (1 ◦ 1). Thus (a ◦ b) θ1. Hence a ◦ b ∈ [1]θ.

Let a ∈ [1]θ and a ≤ b. Then aθ1. Thus (a ∧ b) θ (1 ∧ b). This implies aθb. By

symmetry and transitivity of θ, we get bθ1. Hence b ∈ [1]θ.

Lemma 5.1.4.

(1) For any congruence θ, ∼[1]θ
= θ.

(2) For any filter F , [1]∼F = F .

Proof.

(1) Suppose a ∼[1]θ
b. Then a→ b, b→ a ∈ [1]θ. Since θ is a congruence, the factor

algebra L/θ is an MTL-algebra by Lemma 5.1.2(1) and in this algebra [a]θ and

[b]θ are two elements such that [a]θ → [b]θ = [a→ b]θ = [1]θ. Thus [a]θ ≤ [b]θ in

L/θ. Similarly, [b]θ ≤ [a]θ. Thus [a]θ = [b]θ. Hence aθb.

Conversely, assume aθb. Then [a]θ = [b]θ. Thus [1]θ = [a]θ → [b]θ = [a→ b]θ.

Hence a→ b ∈ [1]θ. Similarly, b→ a ∈ [1]θ. Therefore a ∼[1]θ
b.

(2) [1]∼F = {x ∈ F : x→ 1 ∈ F and 1→ x ∈ F}. But x → 1 = 1 ∈ F and 1 →
x = x ∈ F for all x ∈ F , so [1]∼F = {x : x ∈ F} = F .
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Lemma 5.1.5. The congruence lattice of L is isomorphic to the filter lattice of L.

Proof. It follows from Lemma 5.1.4 that the map θ 7→ [1]θ is an isomorphism between

the congruence lattice of L and the filter lattice of L.

Lemma 5.1.6. Let {Fi : i ∈ I} be a collection of filters of L. Then
⋂
i∈I
Fi is a filter

of L.

Proof. For every i ∈ I, 1 ∈ Fi hence 1 ∈
⋂
i∈I
Fi. Let a, b ∈

⋂
i∈I
Fi. Then a, b ∈ Fi for

every i ∈ I. Hence a ◦ b ∈ Fi for every i ∈ I. Thus a ◦ b ∈
⋂
i∈I
Fi. Also let a ∈

⋂
i∈I
Fi

and a ≤ b. Then a ∈ Fi for every i ∈ I. Hence b ∈ Fi for every i ∈ I. Thus b ∈
⋂
i∈I
Fi.

Therefore
⋂
i∈I
Fi is a filter.

Definition 5.1.3. Let X ⊆ L. Then 〈X〉 =
⋂
{F : F is a filter of L and X ⊆ F} is

the filter generated by X. That is, 〈X〉 is the smallest filter of L containing X.

Lemma 5.1.7. 〈X〉 = {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}.

Proof. Suppose a ∈ {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}. Then

for some b1, b2, ..., bn ∈ X, b1 ◦ b2 ◦ ... ◦ bn ≤ a. Since X ⊆ 〈X〉 and 〈X〉 is a filter,

b1 ◦ b2 ◦ ... ◦ bn ∈ 〈X〉, so a ∈ 〈X〉.
Thus {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a} ⊆ 〈X〉.
Next we show that 〈X〉 ⊆ {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}.
Let a ∈ X. Then a ∈ {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}.
Hence X ⊆ {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}.
Suppose a, c ∈ {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}. Then for

some b1, b2, ..., bn ∈ X, b1 ◦ b2 ◦ ... ◦ bn ≤ a and for some d1, d2, ..., dm ∈ X, d1 ◦
d2 ◦ ... ◦ dm ≤ c. Thus (b1 ◦ b2 ◦ ... ◦ bn) ◦ (d1 ◦ d2 ◦ ... ◦ dm) ≤ a ◦ c. Thus a ◦ c ∈
{a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}.
Assume a ∈ {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a} and a ≤ c.

Then for some b1, b2, ..., bn ∈ X, b1 ◦ b2 ◦ ... ◦ bn ≤ a. By transitivity of ≤, b1 ◦ b2 ◦
... ◦ bn ≤ c, so c ∈ {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}. Thus,
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{a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a} is a filter containing X and

hence 〈X〉 ⊆ {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}.
Therefore 〈X〉 = {a ∈ L : (∃n ∈ N) (∃b1, b2, ..., bn ∈ X) b1 ◦ b2 ◦ ... ◦ bn ≤ a}.

Lemma 5.1.8. Let a ∈ L and a 6= 1. Then there is a prime filter F of L, not

containing a.

Proof. Note that {1} is a filter of L not containing a. Assume 〈Fi〉i∈I is a chain of

filters not containing a. Then
⋃
Fi does not contain a since each of the Fis does not

contain a. We want to show that
⋃
Fi is a filter.

If b ∈
⋃
Fi and b ≤ c, then c ∈

⋃
Fi since for some Fi, b ∈ Fi and b ≤ c implies

c ∈ Fi. Let b, c ∈
⋃
Fi. Then b ∈ Fk and c ∈ Fj for some k and j. We have that

either Fk ⊆ Fj or Fj ⊆ Fk. If Fk ⊆ Fj, then b ∈ Fj. Hence b ◦ c ∈ Fj since Fj is

a filter. Thus b ◦ c ∈
⋃
Fi. Similarly, if Fj ⊆ Fk, we have that b ◦ c ∈ Fk. Hence

b ◦ c ∈
⋃
Fi. Therefore

⋃
Fi is a filter not containing a.

We have shown that whenever 〈Fi〉i∈I is a chain of filters not containing a, then
⋃
Fi

is also a filter not containing a. Hence by Zorn’s lemma, there exists a maximal filter

not containing a, say F . Suppose F is not prime. Then there exist x, y ∈ L such that

x→ y 6∈ F and y → x 6∈ F . Let Fj and Fk be filters generated by F ∪ {y → x} and

F ∪ {x→ y} respectively. By Lemma 5.1.7,

〈F ∪ {x→ y}〉 = Fj = {u ∈ L : (∃v ∈ F ) (∃n ∈ N) v ◦ (x→ y)n ≤ u} and

〈F ∪ {y → x}〉 = Fk = {u ∈ L : (∃v ∈ F ) (∃n ∈ N) v ◦ (y → x)n ≤ u}.
Now F ⊆ Fj, so a ∈ Fj. Similarly a ∈ Fk. This means that (∃v1 ∈ F ) (∃n1 ∈ N) such

that v1 ◦ (x→ y)n1 ≤ a and (∃v2 ∈ F ) (∃n2 ∈ N) such that v2 ◦ (y → x)n2 ≤ a.

Let v = v1 ◦ v2. Then v ∈ F since v1, v2 ∈ F . Also let n = max {n1, n2}.
Then v ◦ (x→ y)n ≤ v1 ◦ (x→ y)n1 ≤ a and v ◦ (y → x)n ≤ v2 ◦ (y → x)n2 ≤ a. This

implies that (v ◦ (x→ y)n) ∨ (v ◦ (y → x)n) ≤ a. It follows that

v ◦ ((x→ y)n ∨ (y → x)n) ≤ a. Thus v ◦ 1 ≤ a by Lemma 4.2.2(2). But v ∈ F hence

a ∈ F , a contradiction. Therefore F is prime.

Let U be the set of all prime filters of L and let f : L →
∏

F∈U LF be defined by

f (x) =
{

[x]∼F : F ∈ U
}

. Then f is a homomorphism. For F ∈ U , L/∼F is an MTL-

algebra. Also L/∼F is linearly ordered since F is prime. For F ∈ U , let LF = L/∼F
and L∗ =

∏
F∈U LF . Then L∗ is an MTL-algebra since each LF is an MTL-algebra.
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Theorem 5.1.1. Each MTL-algebra is a subdirect product of linearly ordered MTL-

algebras.

Proof. Following the above discussion, we need only show that L is isomorphic to a

subalgebra of L∗. In particular, we want to show that f is 1− 1, which is equivalent

to showing that
⋂
U = {1}. If a ∈ U and a 6= 1, then by Lemma 5.1.8, there is a

prime filter F ∈ U such that a /∈ F , hence a /∈
⋂
U . Thus,

⋂
U = {1} and so f is an

embedding of L into L∗.

Definition 5.1.4. Let L be an MTL-algebra. An L-evaluation of propositional vari-

ables is any mapping e assigning to each propositional variable p an element e (p) of

L. An evaluation e extends to arbitrary formulas of MTL as follows:

(1) e (ϕ ∧ ψ) = e (ϕ) ∧ e (ψ)

(2) e (ϕ→ ψ) = e (ϕ)→ e (ψ)

(3) e (ϕ ◦ ψ) = e (ϕ) ◦ e (ψ)

(4) e (0̄) = 0.

Definition 5.1.5. Let L be an MTL-algebra. An (MTL) formula ϕ is an L-tautology

if e (ϕ) = 1 for each L-evaluation e. That is, ϕ is an L-tautology iff L satisfies the

identity ϕ = 1.

Theorem 5.1.2 (Completeness). MTL is complete with respect to MTL-algebras and

MTL-chains, that is, for each formula ϕ the following are equivalent.

(1) ϕ is provable in MTL.

(2) For each linearly ordered MTL-algebra L, ϕ is an L-tautology.

(3) For each MTL-algebra L, ϕ is an L-tautology.

Proof.

(1)⇒(2):

Suppose that ϕ is provable in MTL. We use induction on the number of steps in the
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proof of ϕ. For the base step, assume that the proof of ϕ has only one step in it.

Then ϕ must be an axiom of MTL. We have to prove that all axioms of MTL are

L-tautologies. (A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) :

It suffices to show that: 1 ≤ (x→ y)→ ((y → z)→ (x→ z)) .

Using the residuation three times on the above, we get

(x→ y) ◦ (y → z) ◦ x ≤ z.

This is true in L since x ◦ (x→ y) ≤ y and similarly y ◦ (y → z) ≤ z.

(A2) (ϕ ◦ ψ)→ ϕ :

Since x ◦ y ≤ x, (x ◦ y)→ x = 1.

(A3) (ϕ ◦ ψ)→ (ψ ◦ ϕ) :

Since x ◦ y = y ◦ x, (x ◦ y)→ (y ◦ x) = 1.

The proof of (A4) is similar to that of (A2).

The proof of (A5) is similar to that of (A3).

(A6) (ϕ ◦ (ϕ→ ψ))→ (ϕ ∧ ψ) :

We have x ◦ (x→ y) ≤ y and x ◦ (x→ y) ≤ x, so x ◦ (x→ y) ≤ x ∧ y.

(A7a) and (A7b):

The proof follows from Lemma 4.2.1(14).

(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ) :

((x→ y)→ z) ◦ ((y → x)→ z)

= [((x→ y)→ z) ◦ ((y → x)→ z)] ◦ ((x→ y) ∨ (y → x))

(since (x→ y) ∨ (y → x) = 1)

= ([((x→ y)→ z) ◦ ((y → x)→ z)] ◦ (x→ y))

∨ ([((x→ y)→ z) ◦ ((y → x)→ z)] ◦ (y → x)) (by Lemma 4.2.1(4))

≤ (((x→ y)→ z) ◦ (x→ y)) ∨ (((y → x)→ z) ◦ (y → x)) (by Lemma 4.2.1(5))

≤ z ∨ z = z (by Lemma 4.2.1(1)).

(A9) 0̄→ ϕ :

This follows from 0 ≤ x.

Now suppose that the proof of ϕ contains n steps, where n > 1 and suppose as

induction hypothesis that all theorems of MTL which have proofs less than n steps

are L-tautologies. Either ϕ is an axiom of MTL in which case ϕ is an L-tautology,

or ϕ follows from previous formulas by modus ponens. These formulas must have

the forms ψ and ψ → ϕ. But ψ and ψ → ϕ are theorems of L with proof sequences

containing less than n steps. Hence e (ψ) = 1 and e (ψ → ϕ) = e (ψ)→ e (ϕ) = 1, so
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e (ϕ) = 1. Therefore, by the Principle of Mathematical induction, every theorem of

MTL is an L-tautology.

(2)⇒(3):

By Theorem 5.1.1, every MTL-algebra L is isomorphic to a subdirect product of

linearly ordered MTL-algebras. If ϕ = 1 holds in every linearly ordered MTL-algebra,

then it also holds in L.

(3)⇒(1):

Suppose that for every MTL-algebra L, ϕ = 1 holds. Consider the MTL-algebra

Fm/∼ in Definition 5.1.1. In this MTL-algebra we have that [ϕ] = [1̄], hence

`MTL ϕ↔ 1̄

⇒ `MTL (ϕ→ 1̄) ◦ (1̄→ ϕ)

⇒ `MTL (1̄→ ϕ)

⇒ `MTL ϕ.

We have established the connection between the logic MTL and the variety of MTL-

algebras: that MTL is complete with respect to the variety of MTL-algebras. In

addition, we have shown that MTL is complete with respect to the class of MTL-

chains. In particular, we have that the variety of MTL-algebras is generated by the

class of MTL-chains. The fact that MTL is complete with respect to MTL-chains

will contribute towards proving completeness of MTL with respect to standard MTL-

algebras.
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CHAPTER 6

Compeleteness of MTL with respect to standard MTL-algebras

We present in this chapter a proof of completeness of MTL with respect to ‘standard

MTL-algebras’, where a standard MTL-algebra is a left-continuous t-norm algebra.

The proof of the Completeness Theorem of MTL with respect to standard MTL-

algebras shows that a formula ϕ is a theorem of MTL if and only if the identity ϕ = 1

holds in all standard MTL-algebras. To prove this Completeness Theorem we use the

fact that MTL is complete with respect to linearly ordered MTL-algebras and show

that every finitely generated linearly ordered MTL-algebra can be embedded into a

standard MTL-algebra. It will be enough to use finitely generated MTL-algebras since

any algebra is a subalgebra of an ultraproduct of its finitely generated subalgebras,

by [3, Theorem 2.14]. The results discussed in this chapter come from the work of

Jenei and Montagna [20].
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6.1 Standard completeness of MTL

Theorem 6.1.1. If L = (L, ◦L,→L,∧L,∨L, 0L, 1L) is a countable linearly ordered

MTL-algebra, then there exists a countable densely linearly ordered MTL-algebra

X = (X, ∗,→∗,∧X ,∨X , 0X , 1X) and an embedding φ from L into X.

Proof.

We first construct X = (X, ∗,→∗,∧X ,∨X , 0X , 1X) that is a densely and linearly or-

dered MTL-algebra.

Let X = {(s, q) : s ∈ L, s 6= 0L, q ∈ Q ∩ (0, 1]}∪{(0L, 1)}. Then X is countable since

L and Q are. For (s, q) , (t, r) ∈ X, we define:

(s, q) � (t, r) iff either s <L t, or s = t and q ≤ r.

(Note that this is a lexicographical ordering.)

� is a partial order:

Suppose (s, q) ∈ X. Then (s, q) � (s, q) since s = s and q = q so that q ≤ q.

Hence � is reflexive.

Suppose (s, q) � (t, r) and (t, r) � (s, q). Then we have the following cases.

case (i): s <L t and t <L s. This case is impossible.

case (ii): s <L t and (s = t and r ≤ q). The case is impossible.

case (iii): (s = t and q ≤ r) and t <L s. The case is impossible.

case (iv): (s = t and q ≤ r) and (s = t and r ≤ q). Then s = t and q = r since ≤ is

antisymmetric. Hence (s, q) = (t, r). Thus � is antisymmetric.

Suppose (s, q) � (t, r) and (t, r) � (u, p). Then we have the following cases.

case (i): s <L t and t <L u. Then s <L u since ≤L is transitive. Hence (s, q) �
(u, p).

case (ii): s <L t and (t = u and r ≤ p). Then s <L u. Hence (s, q) � (u, p).

case (iii): (s = t and q ≤ r) and t <L u. Then s <L u. Hence (s, q) � (u, p).

case (iv): (s = t and q ≤ r) and (t = u and r ≤ p). Then s = u and q ≤ p since =

and ≤ are transitive. Hence (s, q) � (u, p). Therefore � is transitive.

� is a linear order:

This follows from the fact that L and Q are linearly ordered.

(X,�) is densely ordered:

Assume (s, q) ≺ (t, r). Then either s <L t or s = t and q < r. If s <L t, then
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(s, q) ≺
(
t, r

2

)
≺ (t, r). If s = t and q < r, then (s, q) ≺

(
s, q+r

2

)
≺ (t, r).

(1L, 1) is the maximum of (X,�):

Let (s, q) ∈ X. Then s ≤L 1L, since 1L is the maximum of L. If s <L 1L, then

(s, q) � (1L, 1). If s = 1L, then (s, q) � (1L, 1) as q ≤ 1.

(0L, 1) is the minimum of (X,�):

Let (s, q) ∈ X. Then 0L ≤L s, since 0L is the minimum of L. If 0L <L s, then

(0L, 1) � (s, q). If 0L = s, the only element in X with 0L as the first co-ordinate is

(0L, 1), so (0L, 1) � (s, q).

For (s, q) , (t, r) ∈ X, we define ∗ as follows:

(s, q) ∗ (t, r) =

{
(s, q) ∧X (t, r) if s ◦L t = s ∧L t
(s ◦L t, 1) otherwise

where (s, q) ∧X (t, r) is the minimum of (s, q) and (t, r) with respect to � and s ∧L t
is the minimum of s and t with respect to ≤L.

∗ is commutative:

(s, q) ∗ (t, r) =

{
(s, q) ∧X (t, r) if s ◦L t = s ∧L t
(s ◦L t, 1) otherwise

=

{
(t, r) ∧X (s, q) if t ◦L s = t ∧L s
(t ◦L s, 1) otherwise

= (t, r) ∗ (s, q)

61



∗ is associative:

(s, q) ∗ ((t, r) ∗ (u, p)) =

{
(s, q) ∗ ((t, r) ∧X (u, p)) if t ◦L u = t ∧L u
(s, q) ∗ (t ◦L u, 1) otherwise

=




(s, q) ∧X ((t, r) ∧X (u, p)) if s ◦L (t ◦L u) = s ∧L (t ◦L u)

and t ◦L u = t ∧L u
(s ◦L (t ◦L u) , 1) otherwise


(s, q) ∧X (t ◦L u, 1) if s ◦L (t ◦L u) = s ∧L (t ◦L u)

and t ◦L u < t ∧L u
(s ◦L (t ◦L u) , 1) otherwise

=



(s, q) ∧X ((t, r) ∧X (u, p)) if s ◦L (t ◦L u) = s ∧L (t ◦L u)

and t ◦L u = t ∧L u
(s ◦L (t ◦L u) , 1) if s ◦L (t ◦L u) <L s ∧L (t ◦L u)

and t ◦L u = t ∧L u
(s, q) ∧X (t ◦L u, 1) if s ◦L (t ◦L u) = s ∧L (t ◦L u)

and t ◦L u <L t ∧L u
(s ◦L (t ◦L u) , 1) if s ◦L (t ◦L u) <L s ∧L (t ◦L u)

and t ◦L u <L t ∧L u
(6.1)

Note that (t, r) ∧X (u, p) is either (t, r) or (u, p) and the first co-ordinate is t ∧L u =

t ◦L u.
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We also have that:

((s, q) ∗ (t, r)) ∗ (u, p) =

{
((s, q) ∧X (t, r)) ∗ (u, p) if s ◦L t = s ∧L t
(s ◦L t, 1) ∗ (u, p) otherwise

=




((s, q) ∧X (t, r)) ∧X (u, p) if (s ◦L t) ◦L u = (s ◦L t) ∧L u

and s ◦L t = s ∧L t
((s ◦L t) ◦L u, 1) otherwise


(s ◦L t, 1) ∧X (u, p) if (s ◦L t) ◦L u = (s ◦L t) ∧L u

and s ◦L t < s ∧L t
((s ◦L t) ◦L u, 1) otherwise

=



((s, q) ∧X (t, r)) ∧X (u, p) if (s ◦L t) ◦L u = (s ◦L t) ∧L u
and s ◦L t = s ∧L t

((s ◦L t) ◦L u, 1) if (s ◦L t) ◦L u <L (s ◦L t) ∧L u
and s ◦L t = s ∧L t

(s ◦L t, 1) ∧X (u, p) if (s ◦L t) ◦L u = (s ◦L t) ∧L u
and s ◦L t <L s ∧L t

((s ◦L t) ◦L u, 1) if (s ◦L t) ◦L u <L (s ◦L t) ∧L u
and s ◦L t <L s ∧L t

(6.2)

We are now comparing (6.1) and (6.2):

Case (i): If s◦L(t ◦L u) = s∧L(t ◦L u) and t◦Lu = t∧Lu, then s◦L(t ◦L u) = s∧Lt∧Lu.

Thus

(s, q) ∗ ((t, r) ∗ (u, p)) = (s, q) ∧X (t, r) ∧X (u, p)

((s, q) ∗ (t, r)) ∗ (u, p) = (s, q) ∧X (t, r) ∧X (u, p) .

Therefore (s, q) ∗ ((t, r) ∗ (u, p)) = ((s, q) ∗ (t, r)) ∗ (u, p).

Case (ii): If s ◦L (t ◦L u) <L s ∧L (t ◦L u) and t ◦L u = t ∧L u, then we have:

(s, q) ∗ ((t, r) ∗ (u, p)) = (s ◦L (t ◦L u) , 1)

((s, q) ∗ (t, r)) ∗ (u, p) = ((s ◦L t) ◦L u, 1)
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But (s ◦L (t ◦L u) , 1) = ((s ◦L t) ◦L u, 1) since ◦L is associative.

Therefore (s, q) ∗ ((t, r) ∗ (u, p)) = ((s, q) ∗ (t, r)) ∗ (u, p) .

Case (iii): s ◦L (t ◦L u) = s ∧L (t ◦L u) and t ◦L u <L t ∧L u.

If (t ◦L u) <L s, then s ◦L (t ◦L u) = t ◦L u.

Thus

(s, q) ∗ ((t, r) ∗ (u, p)) = (t ◦L u, 1) .

If (s ◦L t) <L u, then (s ◦L t) ◦L u = s ◦L t.
Hence

((s, q) ∗ (t, r)) ∗ (u, p) = (s ◦L t, 1)

= (t ◦L u, 1) since s ◦L (t ◦L u) = t ◦L u = s ◦L t.

If s <L t ◦L u, then s ∧L (t ◦L u) = s. Thus s ◦L (t ◦L u) = s. But s ◦L (t ◦L u) ≤L t
and s ◦L (t ◦L u) ≤L u, so s = s ∧L t ∧L u. Hence s ◦L (t ◦L u) = s ∧L t ∧L u and we

fall into case (i).

Therefore (s, q) ∗ ((t, r) ∗ (u, p)) = ((s, q) ∗ (t, r)) ∗ (u, p) .

Case (iv): s ◦L (t ◦L u) = s∧L (t ◦L u), t ◦L u <L t∧L u and s ◦L t <L u. The proof of

this case is similar to that of case (iii).

Case (v): If s ◦L (t ◦L u) <L s ∧L (t ◦L u) and t ◦L u <L t ∧L u, then:

(s, q) ∗ ((t, r) ∗ (u, p)) = (s ◦L (t ◦L u) , 1)

((s, q) ∗ (t, r)) ∗ (u, p) = ((s ◦L t) ◦L u, 1) .

But (s ◦L (t ◦L u) , 1) = ((s ◦L t) ◦L u, 1) since ◦L is associative.

Therefore (s, q) ∗ ((t, r) ∗ (u, p)) = ((s, q) ∗ (t, r)) ∗ (u, p) .

∗ is order-preserving:

Since ∗ is commutative, it is enough to show that if (s, q) � (t, r), then for all

(u, p) ∈ X, (u, p) ∗ (s, q) � (u, p) ∗ (t, r).

(u, p) ∗ (s, q) =

{
(u, p) ∧X (s, q) if u ◦L s = u ∧L s
(u ◦L s, 1) if u ◦L s < t ∧L s

(6.3)

(u, p) ∗ (t, r) =

{
(u, p) ∧X (t, r) if u ◦L t = u ∧L t
(u ◦L t, 1) if u ◦L t < u ∧X s.

(6.4)
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We compare (6.3) and (6.4):

If u ◦L s = u ∧L s and u ◦L t = u ∧L t, then

(u, p) ∗ (s, q) = (u, p) ∧X (s, q)

(u, p) ∗ (t, r) = (u, p) ∧X (t, r) .

Therefore (u, p) ∗ (s, q) � (u, p) ∗ (t, r) since (s, q) � (t, r). If u ◦L s = u ∧L s and

u ◦L t <L u ∧L t, then

(u, p) ∗ (s, q) = (u, p) ∧X (s, q)

(u, p) ∗ (t, r) = (u ◦L t, 1) .

But u ◦L s ≤L u ◦L t and the first component of (u, p) ∧X (s, q) is u ◦L s, so

(u, p) ∗ (s, q) � (u, p) ∗ (t, r).

If u ◦L s <L u ∧L s and u ◦L t <L u ∧L t, then

(u, p) ∗ (s, q) = (u ◦L s, 1)

(u, p) ∗ (t, r) = (u ◦L t, 1) .

But u ◦L s ≤L u ◦L t, so (u, p) ∗ (s, q) � (u, p) ∗ (t, r).

If u ◦L s <L u ∧L s and u ◦L t = u ∧L t, then

(u, p) ∗ (s, q) = (u ◦L s, 1)

(u, p) ∗ (t, r) = (u, p) ∧X (t, r) .

But u ◦L s ≤L u ◦L t = u ∧L t and the first component of (u, p) ∧X (t, r) is u ◦L t, so

(u, p) ∗ (s, q) � (u, p) ∗ (t, r).

∗ is left-continuous:

∗ is order-preserving and commutative so it will be enough to show that if {(si, qi) : i ∈ N}
is any increasing sequence of elements of X such that sup{(si, qi) : i ∈ N} = (s, q),

then for all (t, r) ∈ X, sup{(si, qi) ∗ (t, r) : i ∈ N} = (s, q)∗(t, r). We note that for al-

most every i we must have si = s since if si ≺ s for every i then (si, qi) ≺
(
s, q

2

)
≺ (s, q)

for every i. This contradicts the fact that (s, q) is the supremum of the sequence.

After deleting a finite number of elements of the sequence, we can suppose, without
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loss of generality that for every i, si = s and sup{qi : i ∈ N} = q. Thus we must show

that sup{(s, qi) ∗ (t, r) : i ∈ N} = (s, q) ∗ (t, r).

(s, q) ∗ (t, r) =

{
(s, q) ∧X (t, r) if s ◦L t = s ∧L t
(s ◦L t, 1) if s ◦L t <L s ∧L t.

If s ◦L t = s ∧L t, then

(s, q) ∗ (t, r) = (s, q) ∧X (t, r)

and

(s, qi) ∗ (t, r) = (s, qi) ∧X (t, r) .

We now show that sup{(s, qi) ∧X (t, r) : i ∈ N} = (s, q) ∧X (t, r).

If (s, q) � (t, r), then

sup {(s, qi) ∧X (t, r) : i ∈ N} = sup {(s, qi) : i ∈ N} = (s, q) = (s, q) ∧X (t, r) .

If (t, r) ≺ (s, q), then there exists j such that (t, r) � (s, qj), so

sup {(s, qi) ∧X (t, r) : i ∈ N} = (t, r) = (s, q) ∧X (t, r) (∀i ≥ j) .

If s ◦L t <L s ∧L t, then

(s, q) ∗ (t, r) = (s ◦L t, 1)

and

(s, qi) ∗ (t, r) = (s ◦L t, 1) .

Therefore sup{(s, qi) ∧X (t, r) : i ∈ I} = (s, q) ∗ (t, r).

φ is an embedding of the structure (L, ◦L,∧L,∨L, 0L, 1L) into (X, ∗,∧X ,∨X , 0X , 1X):

Define, for every s ∈ S, φ (s) = (s, 1). Hence if s <L t, then (s, 1) ≺ (t, 1). Thus φ is

increasing and therefore one-to-one. Also φ (1L) = (1L, 1) is the greatest element of

(X,�) and the neutral element with respect to ∗. Again φ (0L) = (0L, 1) is the least

element of (X,�).

We now show that φ (s) ∗ φ (t) = (s, 1) ∗ (t, 1) = (s ◦L t, 1) = φ (s ◦L t) .
If s ◦L t = s ∧L t, then (s, 1) ∗ (t, 1) = (s, 1) ∧X (t, 1). If s ≤L t, then s ◦L t = s and

(s, 1) ∧X (t, 1) = (s, 1). But (s, 1) = (s ◦L t, 1), so (s, 1) ∗ (t, 1) = (s, 1) = (s ◦L t, 1).
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If t ≤L s the proof is similar. If s ◦L t <L s ∧L t, then (s, 1) ∗ (t, 1) = (s ◦L t, 1).

Therefore φ (s) ∗ φ (t) = φ (s ◦L t).
For all s, t ∈ L, the residuum φ (s)→∗ φ (t) of φ (s) and φ (t) exists in X, and

φ (s→L t) = φ (s)→∗ φ (t), where

φ (s)→∗ φ (t) = max {(u, p) : φ (s) ∗ (u, p) � φ (t)}
= max {(u, p) : (s, 1) ∗ (u, p) � (t, 1)} .

We first show that φ (s→L t) = (s→L t, 1) ∈ {(u, p) : (s, 1) ∗ (u, p) � (t, 1)} .
(s, 1) ∗ (s→L t, 1) = (s ◦L (s→L t) , 1) � (t, 1) since s ◦L (s→L t) ≤L t.
Thus (s→L t, 1) ∈ {(u, p) : (s, 1) ∗ (u, p) � (t, 1)}.
Lastly we show that (s→L t, 1) is the maximum element of the set

{(u, p) : (s, 1) ∗ (u, p) � (t, 1)}. Suppose (s→L t, 1) is not the maximum element of

the set {(u, p) : (s, 1) ∗ (u, p) � (t, 1)}. This means there exists (u, p) > (s→L t, 1)

such that (s, 1) ∗ (u, p) � (t, 1). But p ≤L 1, so we must have s →L t <L u. This

implies s ◦L u �L t. Hence t < s ◦L u. Thus (t, 1) ≺ (s, 1) ∗ (u, p), since the first

component of (s, 1) ∗ (u, p) is s ◦L u in each case. This contradicts the fact that

(s, 1) ∗ (u, p) � (t, 1).

Theorem 6.1.2. Every countable linearly ordered MTL-algebra can be embedded into

a standard MTL-algebra.

Proof. Let L and X be as in Theorem 6.1.1. Then (X,�) is a countable, dense,

linearly-ordered set with maximum and minimum elements, hence it is order isomor-

phic to (Q ∩ [0, 1] ,≤). Let ψ be an isomorphism from (X,�) to (Q ∩ [0, 1] ,≤). Also

let α, β ∈ Q∩[0, 1] and define α∗′β = ψ (ψ−1 (α) ∗ ψ−1 (β)). Then (Q ∩ [0, 1] , ∗′,∧,∨, 0, 1)

is isomorphic to X by ψ. Also define, for all s ∈ L, φ′ (s) = ψ (φ (s)). Thus L is em-

beddable into (Q ∩ [0, 1] , ∗′,∧,∨, 0, 1) by φ′ and φ′ (s→∗ t) = φ′ (s)→∗′ φ′ (t) for all

s, t ∈ X, where →∗′ is the residuum in (Q ∩ [0, 1] , ∗′,∧,∨, 0, 1).

Now define for α, β ∈ [0, 1],

α∗̂β = sup {x ∗′ y : x, y ∈ Q ∩ [0, 1] , x ≤ α, y ≤ β} .

We need to show that ([0, 1] , ∗̂,→∗̂,∧,∨, 0, 1) is an MTL-algebra, where →∗̂ is the
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residuum of ∗̂ in [0, 1].

∗̂ is a t-norm:

∗̂ is commutative since it is defined in terms of ∗′ which is commutative. Also ∗̂ is

associative from associativity of ∗′. The fact that ∗̂ is order preserving and has 1 as

a neutral element is also a consequence of the definition.

∗̂ is left continuous:

Let {αn : n ∈ N} and {βn : n ∈ N} be increasing sequences of reals in [0, 1] such that

sup{αn : n ∈ N} = α and sup{βn : n ∈ N} = β. Now αn ≤ α and βn ≤ β for every

n, so αn∗̂βn ≤ α∗̂β. Hence sup{αn∗̂βn : n ∈ N} ≤ α∗̂β.

Since the restriction of ∗̂ to Q ∩ [0, 1] is left continuous, we have:

α∗̂β = sup {x ∗′ y : x, y ∈ Q ∩ [0, 1] , x ≤ α, y ≤ β}
= sup {x ∗′ y : x, y ∈ Q ∩ [0, 1] , x < α, y < β} .

We have that for every q < α and for every r < β there is n such that q < αn and

r < βn.

Therefore α∗̂β = sup {x ∗′ y : x, y ∈ Q ∩ [0, 1] , x < α, y < β} ≤ sup {αn∗̂βn : n ∈ N}.
The prelinearity property is satisfied since ([0, 1] ,≤) is linearly ordered.

Hence ([0, 1] , ∗̂,→∗̂,∧,∨, 0, 1) is an MTL-algebra.

∗̂ is an extension of ∗′ to [0, 1]:

For x, y ∈ Q ∩ [0, 1], we have

x∗̂y = sup {p ∗′ q : p, q ∈ Q, p ≤ x, q ≤ y} .

Since x ≤ x and y ≤ y, x ∗′ y ∈ {p ∗′ q : p, q ∈ Q, p ≤ x, q ≤ y}.
If p ≤ x and q ≤ y then p ∗′ q ≤ x ∗′ y.

Thus x∗̂y = sup {p ∗′ q : p, q ∈ Q, p ≤ x, q ≤ y} = x ∗′ y.

ϕ defined by ϕ (x) = x is an embedding of (Q ∩ [0, 1] , ∗′,∧,∨, 0, 1) into ([0, 1] , ∗̂,∧,∨, 0, 1):

ϕ is clearly 1-1. Also ϕ is operation preserving since ∗̂ is an extension of ∗′.
We also show that if s→∗′ t exists in Q ∩ [0, 1], then ϕ (s→∗′ t) = ϕ (s)→∗̂ ϕ (t) for

s, t ∈ Q ∩ [0, 1]. This is equivalent to showing that

s→∗′ t = s→∗̂ t = max {r ∈ [0, 1] : r∗̂s ≤ t} .
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Suppose there exists u ∈ R such that u∗̂s ≤ t and u > s →∗′ t. Then there ex-

ists q ∈ Q such that s →∗′ t < q ≤ u, since Q ∩ [0, 1] is dense in [0, 1]. Thus,

q∗̂s = q ∗′ s � t. Hence q ∗′ s > t. Hence u∗̂s ≥ q∗̂s > t. This contradicts the fact

that u∗̂s ≤ t.

Let ρ : L→ [0, 1] be the composition of the maps ϕ and φ′. Since each of the maps is

an embedding, ρ is an embedding from (L, ◦L,→L,∧L,∨L, 0L, 1L) to ([0, 1] , ∗̂,→∗̂,∧,∨, 0, 1).

Theorem 6.1.3. The variety of all MTL-algebras is generated by the class of all

standard MTL-algebras.

Proof. We know the following:

(1) The class of all MTL-algebras forms a variety by Theorem 4.2.1.

(2) Any MTL-algebra is a subdirect product of linearly ordered MTL-algebras by

Theorem 5.1.1.

(3) Any algebra L is a subalgebra of an ultraproduct of finitely generated subalge-

bras of L by Theorem 2.0.3.

Combining (1) and (2) we have that the variety of MTL-algebras is the variety gen-

erated by a class of linearly ordered MTL-algebras. It follows from (3) that the

variety of MTL-algebras is generated by a class of finitely generated subalgebras of

linearly ordered MTL-algebras. Since a finitely generated subalgebra of linearly or-

dered MTL-algebra is countable and linearly ordered, we have that the variety of

MTL-algebras is generated by a class of countable, linearly ordered MTL-algebras.

From Theorem 6.1.2, we get that the variety of all MTL-algebras is generated by the

class of all standard MTL-algebras.

Theorem 6.1.4 (completeness). MTL is complete with respect to the class of all

standard MTL-algebras.

Proof. The result follows immediately from Theorem 6.1.3.
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In this chapter, we showed that MTL is complete with respect to the class of all

standard MTL-algebras. This establishes one of the main goals of this study which

was to investigate the connection between MTL and left-continuous t-norms. Similar

completeness results will be investigated for BL and continuous t-norms; these will

be carried out in the next chapter. This chapter marks the end of discussions of

completeness results pertaining to MTL.
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CHAPTER 7

The logic BL and its compeleteness

Basic logic or BL for short has been introduced by Hájek in [14] as a formaliza-

tion of the logic of continuous t-norms. BL is MTL with axiom (A6) replaced by

(ϕ ◦ (ϕ→ ψ)) ↔ (ϕ ∧ ψ) (see page 30). Therefore BL is an axiomatic extension of

MTL. In this chapter we give a proof of completeness of BL with respect to BL-

algebras, BL-chains (linearly ordered BL-algebras) and standard BL-algebras (con-

tinuous t-norm algebras), that is we show that a formula ϕ is a theorem of BL if and

only if ϕ = 1 holds in any of these classes of BL-algebras. In section 7.1 we define

BL-algebras as a subclass of MTL-algebras. We further prove some extra identities

that hold in BL-algebras. In section 7.2 we prove a Characterization Theorem of

subdirectly irreducible BL-algebras. This Characterization Theorem plays a major

role in proving the results leading to the Completeness Theorem of BL with respect

to standard BL-algebras. In section 7.3 we prove completeness of BL with respect to

BL-algebras and BL-chains. To prove standard completeness of BL we first show that

each finite subdirectly irreducible BL-algebra is isomorphic to an ordinal sum of finite

Wajsberg algebras. Next we show that the class of linearly ordered BL-algebras has
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the finite embeddability property. Combining these facts and [8, Theorem 4], we get

that the variety of BL-algebras is generated as a quasivariety by its finite members.

Since each finite BL-algebra is a subdirect product of subdirectly irreducible finite

BL-algebras that are homomorphic images of itself by [3, Theorem 8.6] and each sub-

directly irreducible finite BL-algebra is an ordinal sum of Wajsberg algebras, to get

the completeness result it will be enough to show that an ordinal sum of finite Wa-

jsberg algebras is isomorphic to a subalgebra of a standard BL-algebra. The results

we present in this chapter come from the journal papers [2] and [1].

7.1 Basic logic(BL), BL-algebras and Hoops

Definition 7.1.1. Basic Logic, or BL for short, is the axiomatic extension of MTL

obtained by adding the axiom: (ϕ ∧ ψ)→ (ϕ ◦ (ϕ→ ψ)).

Equivalently, BL is obtained by replacing axiom (A6): (ϕ ◦ (ϕ→ ψ)) → (ϕ ∧ ψ) in

the definition of MTL by (ϕ ◦ (ϕ→ ψ))↔ (ϕ ∧ ψ).

All formulas provable in MTL are also provable in BL. Hence BL proves all formulas

listed in Lemma 4.1.1.

Definition 7.1.2. A BL-algebra is an MTL-algebra satisfying the identity:

x ∧ y = x ◦ (x→ y) .

Since BL-algebras are an axiomatic extension of MTL-algebras, and the class of MTL-

algebras is a variety, the class of BL-algebras is also a variety.

Recall that any algebra L = ([0, 1], ◦,→,∧,∨, 0, 1), in which ◦ is a left-continuous

t-norm and → its residuum, is an MTL-algebra. Any such algebra in which ◦ is

a continuous t-norm is a BL-algebra, by Lemma 3.2.2. In particular, if ◦ is the

Lukasiewicz, Product or Gödel t-norm, then L is a BL-algebra.

Lemma 7.1.1. All identities of MTL-algebras also hold in BL-algebras. The following
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identity holds in BL-algebras:

(x→ y) ◦ x = (y → x) ◦ y.

Proof.

(x→ y) ◦ x = x ∧ y = y ∧ x = (y → x) ◦ y.

Lemma 7.1.2. The following identity holds in BL-algebras and also in MTL-algebras.

(x→ y)→ (y → x) = (y → x) .

Proof. By Lemma 4.2.1(15),

(x→ y)→ (y → x) = y → ((x→ y)→ x) . (7.1)

Letting (x→ y)→ x = z, (7.1) becomes

(x→ y)→ (y → x) = y → z. (7.2)

By Lemma 4.2.1(17), x ≤ z. This implies z → y ≤ x → y by Lemma 4.2.1(2). Also

x → y ≤ z → x by Lemma 4.2.1(16). Hence z → y ≤ z → x by transitivity. Thus

(z → y) ◦ z ≤ (z → x) ◦ z ≤ x. By Lemma 7.1.1, (y → z) ◦ y = (z → y) ◦ z ≤ x.

Hence

y → z ≤ y → x. (7.3)

Thus (x→ y) → (y → x) ≤ y → x by (7.2) and (7.3). Also y → x ≤ (x→ y) →
(y → x) by Lemma 4.2.1(17). Therefore (x→ y)→ (y → x) = y → x.

Definition 7.1.3. A hoop is an algebra L = (L, ◦,→, 1) such that the following hold.

(1) (L, ◦, 1) is a commutative monoid.

(2) x→ x = 1

(3) x→ (y → z) = (x ◦ y)→ z
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(4) x ◦ (x→ y) = y ◦ (y → x).

Definition 7.1.4. A bounded hoop is an algebra L = (L, ◦,→, 0, 1) such that (L, ◦,→, 1)

is a hoop and L satisfies 0→ x = 1.

Definition 7.1.5. A Wajsberg hoop is a hoop satisfying the following identity:

(x→ y)→ y = (y → x)→ x.

We shall refer to a bounded Wajsberg hoop as a Wajsberg algebra. This term is used

for a slightly different type of algebra in [10], however these algebras are termwise

equivalent to bounded Wajsberg hoops.

Note that every hoop is partially ordered by the relation:

x ≤ y ⇔ x→ y = 1.

Definition 7.1.6. For each n ∈ N, let Cn = (Cn, ◦,→, 1) denote the finite Wajsberg

hoop with universe Cn = {1 = a0, a, a2, ..., an}, operations ak ◦ am = amin{k+m,n} and

ak → am = amax{m−k,0} for 0 ≤ k,m ≤ n. Let Wan denote the finite Wajsberg

algebra (Cn, ◦,→, an, 1). Note that Cn and Wan are linearly ordered by the relation

x ≤ y ⇔ x→ y = 1. Thus Cn and Wan are lattice-ordered.

Lemma 7.1.3. Let L = ([0, 1] , ◦L,→L, 0, 1), where ◦L is the Lukasiewicz t-norm and

→L its residuum. Then:

(1) L is a Wajsberg algebra.

(2) If a, b ∈ R and a < b, then we can define ◦ and → on [a, b] in such a way that

([a, b] , ◦,→, a, b) is isomorphic to L.

(3) Each Wan can be embedded into L.

Proof.

(1) Since ([0, 1] , ◦L,→L,∧L,∨L, 0, 1) is a BL-algebra conditions (2)-(4) in the defi-

nition of a hoop are satisfied, by Lemma 4.2.1(3),(14) and Lemma 7.1.1. Hence
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([0, 1] , ◦L,→L, 0, 1) is a bounded hoop. We now show that ([0, 1] , ◦L,→L, 0, 1)

is a Wajsberg hoop. Let x, y ∈ [0, 1].

If x ≤ y, then

(x→L y)→L y = 1→L y = y

(y →L x)→L x = x− x+ y − 1 + 1 = y.

If y < x, then

(x→L y)→L y = y − y + x− 1 + 1 = x

(y →L x)→L x = 1→L x = x.

Thus (x→L y) →L y = (y →L x) →L x, so ([0, 1] , ◦L,→L, 0, 1) is a Wajsberg

algebra.

(2) Define for all u, v ∈ [a, b], u◦v = max {u+ v − b, a}, u→ v = min {b− u+ v, b}.
Also define the functions f and g by f (u) = a + (b− a)u for all u ∈ [0, 1],

g (u) =
u− a
b− a

for all u ∈ [a, b]. Clearly, f and g are order-preserving maps. We

show that g and f are mutually inverse isomorphisms between [0, 1] and [a, b].

g (a) =
a− a
b− a

= 0, g (b) =
b− a
b− a

= 1, f (0) = a and f (1) = a+ (b− a) = b.

g is operation preserving:

Let u, v ∈ [a, b]. Then

g (u ◦ v) = g (max {u+ v − a− b})

=
max {u+ v − b, a} − a

b− a
,

(7.4)
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g (u) ◦L g (v) =
u− a
b− a

◦L
v − a
b− a

= max

{
u− a
b− a

+
v − a
b− a

− 1, 0

}

= max

{
u+ v − 2a− (b− a)

b− a
, 0

}

= max

{
u+ v − a− b

b− a
, 0

}
.

(7.5)

If u+v−a− b < 0, then u+v− b < a. Hence max{u+ v − a− b, a} = a. Thus

(7.4) becomes g (u ◦ v) =
a− a
b− a

= 0 and (7.5) becomes g (u) ◦L g (v) = 0.

If u+v−a− b ≥ 0, then u+v− b ≥ a. Thus max{u+ v − a− b, a} = u+v− b.
Hence (7.4) and (7.5) become, respectively:

g (u ◦ v) =
u+ v − b− a

b− a
and g (u) ◦L g (v) =

u+ v − b− a
b− a

.

Therefore in both cases g (u ◦ v) = g (u) ◦L g (v).

g (u→ v) = g (min {b− u+ v, b})

=
min {b− u+ v, b} − a

b− a

= min

{
b− u+ v − a

b− a
,
b− a
b− a

}

= min

{
b− u+ v − a

b− a
, 1

}
,
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g (u)→L g (v) =
u− a
b− a

→L
v − a
b− a

= min

{
v − a
b− a

− u− a
b− a

+ 1, 1

}

= min

{
v − u+ b− a

b− a
, 1

}
.

Therefore g (u→ v) = g (u)→L g (v).

f is operation preserving:

Let u, v ∈ [0, 1]. Then

f (u ◦L v) = f (max {u+ v − 1, 0})
= max {a+ (b− a) (u+ v − 1) , a}
= max {a+ bu+ bv − b− au− av + a, a}
= max {2a+ bu+ bv − b− au− av, a} ,

f (u) ◦ f (v) = (a+ (b− a)u) ◦ (a+ (b− a) v)

= max {a+ (b− a)u+ a+ (b− a) v − b, a}
= max {a+ bu− au+ a+ bv − av − b, a}
= max {2a+ bu+ bv − b− au− av, a} .

Therefore f (u ◦L v) = f (u) ◦ f (v).

f (u→L v) = f (min {v − u+ 1, 1})
= a+ (b− a) (min {v − u+ 1, 1})
= min {a+ (b− a) (v − u+ 1) , a+ (b− a)}
= min {a+ bv − bu+ b− av + au− a, b}
= min {b+ bv − bu− av + au, b} ,

f (u)→ f (v) = a+ (b− a)u→ a+ (b− a) v

= min {b− (a+ (b− a)u) + a+ (b− a) v, b}
= min {b− a− bu+ au+ a+ bv − av, b}
= min {b+ bv − bu− av + au, b} .

Therefore f (u→L v) = f (u)→ f (v).

77



f is the inverse of g:

f (g (u)) = f

(
u− a
b− a

)
= a+ (b− a)

(
u− a
b− a

)
= a+ u− a
= u.

Also,

g (f (u)) = g (a+ (b− a)u)

=
a+ (b− a)u− a

b− a

=
a+ (b− a)u− a

b− a

=
(b− a)u

b− a
= u.

Therefore f and g are inverses of each other.

f and g are 1-1 and onto:

Since f and g are inverses to each other, it follows that they are 1-1 and onto.

(3) Let f : Cn → [0, 1] be defined by f
(
ak
)

=
n− k
n

, for k ≤ n.

We will show that f is an embedding of Cn into ([0, 1] , ◦L,→L, 0, 1).

f (an) =
n− n
n

= 0, f (a0) =
n

n
= 1.

f is 1-1:

Let ak, am ∈ Cn such that f
(
ak
)

= f (am). Then
n− k
n

=
n−m
n

. Thus k = m.
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f is operation preserving:

f
(
ak ◦ am

)
= f

(
amin{k+m,n})

= max

{
n− (k +m)

n
, 0

}

= max

{
n− k −m

n
, 0

}
,

f
(
ak
)
◦L f (am) = max

{
n− k
n

+
n−m
n
− 1, 0

}

= max

{
n− k −m

n
, 0

}
.

Therefore f
(
ak ◦ am

)
= f

(
ak
)
◦L f (am).

f
(
ak → am

)
= f

(
amax{m−k,0})

= min

{
n− (m− k)

n
, 1

}

= min

{
n−m+ k

n
, 1

}
,

f
(
ak
)
→L f (am) = min

{
n−m
n
−
(
n− k
n

)
+ 1, 1

}

= min

{
n−m+ k

n
, 1

}
.

Therefore f
(
ak → am

)
= f

(
ak
)
→L f (am).
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7.2 Subdirectly irreducible BL-algebras

Definition 7.2.1. An algebra L is subdirectly irreducible if L has a non-trivial con-

gruence that is contained in every non-trivial congruence of L. If L is a BL-algebra

then, equivalently, L is subdirectly irreducible if it has a non-trivial filter that is

contained in every non-trivial filter of L by Lemma 5.1.5.

We are going to describe the structure of subdirectly irreducible BL-algebras.

Definition 7.2.2. An algebra A has the congruence extension property if for any

subalgebra B of A, and any congruence relation θ on B, there exists a congruence

relation σ on A such that σ ∩ (B ×B) = θ.

Lemma 7.2.1. Every BL-algebra has the congruence extension property.

Proof. Let A be a BL-algebra and B a subalgebra of A . By Lemma 5.1.5 it is enough

to show that for every filter F of B there exists a filter F ′ of A such that F ′∩B = F .

Let F the filter of B and F ′ be a filter of A generated by F . Since F is contained

in F ′, F ⊆ F ′ ∩ B. To show that F ′ ∩ B ⊆ F , let a ∈ F ′ ∩ B. Then there exist

b1, b2, ..., bn ∈ F such that b1 ◦ b2 ◦ ...◦ bn ≤ a. But a ∈ B and F is a filter of B, Hence

b1 ◦ b2 ◦ ... ◦ bn ∈ F and consequently a ∈ F .

Lemma 7.2.2. If L is a BL-algebra, define x0 = 1, x
0→ y = y and x

n+1→ y = x →
(x

n→ y) and xn+1 = x ◦ xn for all n ∈ N. Then x
n→ y = xn → y for all n ∈ N.

Proof. If n = 1, then x
1→ y = x → (x

0→ y) = x → y. Assume x
k→ y = xk → y.

Then x
k+1→ y = x → (x

k→ y) = x → (xk → y) = (x ◦ xk) → y = xk+1 → y by

Lemma 4.2.1(14). The result follows from Induction.

Definition 7.2.3. An algebra is said to be simple if it has no proper non-trivial

congruences. Thus, a BL-algebra is simple if it has only two filters, the trivial filter

{1} and the universe of the algebra.

Lemma 7.2.3. Let L be a BL-algebra. Then

(1) L is simple iff for all a, b ∈ L, a 6= 1, there exists n ∈ N such that a
n→ b = 1.
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(2) If L is simple and a, b ∈ L, then b→ a = a implies a = 1 or b = 1.

Proof.

(1) ⇒: Suppose L is simple and a ∈ L such that a 6= 1. Then 〈a〉 = L, where

〈a〉 is the filter generated by a (filters are covered in chapter 5). But 〈a〉 =

{b ∈ L : an ≤ b, for some n ∈ N} =
{
b ∈ L : a

n→ b = 1, for some n ∈ N
}

.

⇐: Suppose for all a, b ∈ L, a 6= 1, there exists n ∈ N such that a
n→ b = 1.

This implies that b ∈ 〈a〉 for all b ∈ L. Thus L is simple.

(2) Suppose L is simple and a, b ∈ L such that b → a = a. Then for all n ∈ N,

b
n→ a = a. By (1), if b 6= 1 then there exists m such that b

m→ a = 1. Thus

a = 1.

Lemma 7.2.4. Let L be a BL-algebra such that for all a, b ∈ L, b → a = a implies

a = 1 or b = 1. Then L is linearly ordered and satisfies

(x→ y)→ y = (y → x)→ x. (7.6)

Proof. We first show that L is linearly ordered. We have that (a→ b) → (b→ a) =

b → a for all a, b ∈ L, by Lemma 7.1.2. Hence a → b = 1 or b → a = 1. Thus a ≤ b

or b ≤ a.

We now prove (7.6).

Let a, b ∈ L and assume a < b. Then (a→ b) → b = 1 → b = b. Hence it is enough

to show that b = (b→ a)→ a. Now,
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(((b→ a)→ a)→ b)→ (b→ a) = (((b→ a)→ a)→ b)→ (((b→ a)→ a)→ a)

(since b→ a = ((b→ a)→ a)→ a

by Lemma 4.2.1(2) and (16))

= ((((b→ a)→ a)→ b) ◦ (((b→ a)→ a)))→ a

(by Lemma 4.2.1(14))

= ((b→ ((b→ a)→ a)) ◦ b)→ a

(by Lemma 7.1.1)

= (b→ ((b→ a)→ a))→ (b→ a)

(by Lemma 4.2.1(14))

= 1→ (b→ a) (by Lemma 4.2.1(16))

= b→ a.

Thus, ((b→ a)→ a) → b = 1 or b → a = 1. But b → a 6= 1 since a < b. Hence

we must have ((b→ a)→ a) → b = 1. It follows that (b→ a) → a ≤ b. Also,

b ≤ (b→ a) → a by Lemma 4.2.1(16), so (b→ a) → a = b. If b < a the proof is

similar. If a = b the proof is immediate.

Lemma 7.2.5. Every simple BL-algebra is linearly ordered and satisfies (7.6).

Proof. The result follows immediately from Lemmas 7.2.3(2) and 7.2.4.

Definition 7.2.4. Let L be a subdirectly irreducible BL-algebra with least non-trivial

filter U . An element a ∈ L is said to be fixed if for all u ∈ U , u→ a = a. The set of

fixed elements of L is denoted by F . The set S = (L \ F ) ∪ {1} is called the support

of U .

Definition 7.2.5. A 0-free BL-algebra is any BL-algebra without 0 in its language.

Hence it does not satisfy the property 0 ≤ x and consequently does not necessarily

have a smallest element.

Lemma 7.2.6. Let L be a subdirectly irreducible BL-algebra. Then the least non-

trivial filter U is a subuniverse of L on the language {◦,→,∧,∨, 1} and (U, ◦,→,∧,∨, 1)

is a linearly ordered, 0-free BL-algebra satisfying (7.6).
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Proof. U is a subuniverse of L on the language {◦,→,∧,∨, 1} since it is a filter

and every filter of L is closed under ◦, contains 1 and is also closed under → by

Lemma 4.2.1(17). Every filter is also closed under ∨ and ∧ since x ◦ y ≤ x ∧ y ≤
x ∨ y. U is generated as a filter by any a ∈ U \ {1} since U is the least filter of

L different from {1}. Thus U =
{
b ∈ L : a

n→ b = 1 for some n ∈ N
}

. Hence U is

simple by Lemma 7.2.3(1). Therefore U is linearly ordered and satisfies (7.6), by

Lemma 7.2.5.

Lemma 7.2.7. Let L be a subdirectly irreducible BL-algebra with least non-trivial

filter U and set of fixed elements F . Then

(1) For all a ∈ L, a 6= 1, there exists u ∈ U , u 6= 1 such that a ≤ u.

(2) U ∩ F = {1}.

(3) An element a ∈ L is fixed if and only if for some b ∈ U \ {1}, b→ a = a.

Proof.

(1) Let a ∈ L, a 6= 1. Then 〈a〉 =
{
b ∈ L : a

n→ b = 1 for some n ∈ N
}

and 〈a〉 6=
{1}, and U ⊆ 〈a〉 since U is contained in every non-trivial filter of L. Let

b ∈ U \ {1}. Then a
n→ b = 1 for some n ∈ N. Let’s choose the smallest n

such that a
n→ b = 1. Let u = a

n−1→ b. Then u 6= 1 and b ≤ an−1 → b = u

by Lemma 4.2.1(17). Thus u ∈ U \ {1} since b ∈ U and U is a filter. Also

a→ u = a→
(
a
n−1→ b

)
= a

n→ b = 1. Therefore a ≤ u.

(2) Let a ∈ U ∩F and u ∈ U \{1}. Then u→ a = a, since a ∈ F . By Lemma 7.2.6,

U is the universe of a simple 0-free BL-algebra, so a = 1 by Lemma 7.2.3(2).

(3) The implication from left to right is clear since U 6= {1}. For the converse,

assume a 6= 1 and b→ a = a for some b ∈ U 6= {1}. To show that a is fixed we

have to verify that u→ a = a for every u ∈ U . We have that u ≤ (u→ a)→ a,

by Lemma 4.2.1(16). Hence (u→ a)→ a ∈ U since U is a filter. Since U is the

universe of a simple 0-free BL-algebra and b 6= 1, there exists m ∈ N such that
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b
m→ ((u→ a)→ a) = 1. But

b
m→ ((u→ a)→ a) = (u→ a)→ (b

m→ a) (by Lemma 4.2.1(15))

= (u→ a)→ a (since b
n→ a = a for every n ∈ N).

Thus (u→ a) → a = 1. This implies u → a ≤ a. Also, a ≤ u → a by

Lemma 4.2.1(17). Therefore u→ a = a.

Lemma 7.2.8. Let L be a subdirectly irreducible BL-algebra with least non-trivial

filter U , F its set of fixed elements and S the support of U . Let a ∈ F , a 6= 1. Then

(1) for all u ∈ U , a ≤ u,

(2) for all u ∈ U , u ◦ a = a,

(3) for all b ∈ L, if b ≤ a then b ∈ F ,

(4) for all b ∈ L, a→ b, b→ a ∈ F ,

(5) for all b ∈ S, a ≤ b, b→ a = a and a ◦ b = a.

Proof.

(1) U ⊆ 〈a〉 since a 6= 1 and U is the least filter different from {1}. Hence for every

u ∈ U , there exists m ∈ N such that a
m→ u = 1. We have that

a→ u = (u→ a)→ (a→ u) (by Lemma 7.1.2)

= a→ (a→ u) (since a is fixed)

= a
2→ u.

By induction, one gets a
n→ u = a → u, for every n ∈ N. If n = m, then

1 = a
m→ u = a→ u. Hence a ≤ u.

(2) Let u ∈ U . Then u◦a = u◦(u→ a) since a is fixed. But u◦(u→ a) = u∧a = a

by (1), so u ◦ a = a.
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(3) Let b ∈ L such that b ≤ a. Also let u ∈ U . We want to show that u→ b = b.

Now,

(u→ b)→ b = 1→ (u→ b)→ b (by Lemma 4.2.1(13))

= ((u→ b)→ a)→ ((u→ b)→ b)

(b ≤ a implies u→ b ≤ u→ a = a) (by Lemma 4.2.1(2))

= (((u→ b)→ a) ◦ (u→ b))→ b (by Lemma 4.2.1(14))

= ((a→ (u→ b)) ◦ a)→ b (by Lemma 7.1.1)

= ((a ◦ u→ b) ◦ a ◦ u)→ b (by (2) and Lemma 4.2.1(14))

= 1 (since (a ◦ u→ b) ◦ a ◦ u ≤ b) .

Thus u→ b ≤ b ≤ u→ b. Hence u→ b = b. Therefore b ∈ F .

(4) Let b ∈ L and u ∈ U . Then

u→ (a→ b) = u ◦ a→ b (by Lemma 4.2.1(14))

= a→ b (by (2)) ,

Hence a→ b ∈ F .

We now show that b→ a ∈ F .

u→ (b→ a) = b→ (u→ a) (by Lemma 4.2.1(15))

= b→ a (since a is fixed) .

Thus b→ a ∈ F .

(5) We first show that a ≤ b.

Let b ∈ S. Then b ∈ (L \ F ) ∪ {1}. If b = 1, then all statements are true. If

b 6= 1, then a→ b ∈ F by (4). But b ≤ a→ b (Lemma 4.2.1(17) and b /∈ F , so

a→ b = 1, by (3). Hence a ≤ b.

We now show that b→ a = a.

Let u ∈ U , u 6= 1. Then

u→ ((b→ a)→ a) = (b→ a)→ (u→ a) (by Lemma 4.2.1(15))

= (b→ a)→ a (since a is fixed) .

Thus (b→ a)→ a is fixed. But b ≤ (b→ a)→ a (Lemma 4.2.1(16)) and b /∈ F ,
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so (b→ a)→ a = 1, by (3). Hence b→ a ≤ a ≤ b→ a. Hence b→ a = a.

Lastly we show that a ◦ b = a:

a ◦ b = (b→ a) ◦ b (since b→ a = a)

= a ∧ b
= a (since a ≤ b) .

Definition 7.2.6. Let Li = (Li,∧i,∨i, ◦i,→i, 0i, 1i), i = 1, 2, be BL-algebras and

assume 11 = 02 and (L1 \ {11})∩ (L2 \ {02}) = ∅, for the sake of simplicity. The ordi-

nal sum L1 ⊕ L2 = (L1 ∪ L2,∧,∨, ◦,→, 01, 12) is a new BL-algebra whose operations

∧,∨, ◦ coincide with those of Li when applied to pairs of elements from the same Li.

For x ∈ L1 and y ∈ L2:

(1) x ∧ y = y ∧ x = x

(2) x ∨ y = y ∨ x = y

(3) x ◦ y = y ◦ x = x.

→ is defined by:

x→ y =


12 if x ≤ y

x→i y if x > y and x, y ∈ Li
y if x > y and x ∈ L2, y ∈ L1.

Note that every element of L1 is below every element of L2.

Theorem 7.2.1. Let L be a subdirectly irreducible BL-algebra, U its least non-trivial

filter, F its set of fixed elements and S the support of U . Then

(1) F is a subuniverse of L and S is a subuniverse of L on the language (◦,→,∧,∨, 1).

Also S is a filter of L.
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(2) U ⊆ S and S = (S, ◦,→,∧,∨, 1) is a subdirectly irreducible 0-free BL-algebra

satisfying (7.6) and it is linearly ordered. In particular, (S, ◦,→, 1) is a subdi-

rectly irreducible Wajsberg hoop.

(3) L = F⊕ S.

Proof.

(1) We first show that F is a subuniverse of L.

F is closed under ◦:
1 ∈ F since u → 1 = 1, for every u ∈ U . Let a, b ∈ F . If a = 1, then

a ◦ b = 1 ◦ b = b ∈ F . If a 6= 1, then a ◦ b ≤ b. Hence a ◦ b ∈ F , by

Lemma 7.2.8(3).

F is closed under →:

Let a, b ∈ F . If a = 1, then a → b = 1 → b = b ∈ F . If a 6= 1, then

a→ b, b→ a ∈ F , by Lemma 7.2.8(4).

0 is in F :

Let a ∈ F, a 6= 1. Then 0 ≤ a. Thus 0 ∈ F by Lemma 7.2.8(3).

Hence F is a subuniverse of L.

Next we show that S is a subuniverse of L on the language (◦,→,∧,∨, 1).

S is closed under ◦:
Let a, b ∈ S such that a, b 6= 1 and assume a ◦ b 6∈ S. Then a ◦ b 6= 1, a ◦ b ∈ F ,

a 6∈ F and b 6∈ F . By residuation, a ◦ b ≤ a ◦ b implies a ≤ b → (a ◦ b). Hence

a ≤ b → (a ◦ b) and a 6∈ F implies b → (a ◦ b) = 1, by Lemma 7.2.8(3). Thus

b ≤ a ◦ b ≤ b. Hence b = a ◦ b. But a ◦ b ∈ S since b ∈ S, so this contradicts the

fact that a ◦ b /∈ S.

S is closed under →:

Let a, b ∈ S such that a, b 6= 1. Since b ≤ a→ b (Lemma 4.2.1(17)) and b /∈ F ,

a→ b /∈ F , by Lemma 7.2.8(3). Hence a→ b ∈ S.

Since any filter is closed under ∧ and ∨, S is closed under ∧ and ∨.

1 is in S:

1 ∈ S from the definition of S.

Hence S is a subuniverse of L on the language (◦,→,∧,∨, 1).
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S is a filter of L:

1 ∈ S and we have already shown that S is closed under ◦. It remains for us to

show that S is upward closed. Let a ∈ S such that a ≤ b. Then a /∈ F . Hence

a /∈ F and a ≤ b implies b /∈ F , by (3). Thus b ∈ S.

(2) S is subdirectly irreducible:

U ⊆ S, by Lemma 7.2.7(2) and the definition of S. Since U is the least filter

of L distinct from {1}, U is also the least filter of S distinct from {1}, by

the congruence extension property (Lemma 7.2.1). Therefore S is subdirectly

irreducible.

S is linearly ordered:

To prove that S is linearly ordered, it is enough to show that for all a, b ∈ S,

b → a = a implies a = 1 or b = 1, by Lemma 7.2.4. Let a, b ∈ S such that

b 6= 1 and b → a = a. Then there exists u ∈ U such that u 6= 1 and b ≤ u, by

Lemma 7.2.7(1). Thus u→ a ≤ b→ a = a, by Lemma 4.2.1(2). Also a ≤ u→ a

by Lemma 4.2.1(17), so u→ a = a. Hence a ∈ F by Lemma 7.2.7(3). Therefore

a ∈ F ∩ S and it follows from Lemma 7.2.7(2) that a = 1.

(3) The result follows immediately from (1) and Lemma 7.2.8(5).

7.3 Completeness Theorems for BL

Theorem 7.3.1. Every BL-algebra is a subdirect product of linearly ordered BL-

algebras.

Proof. Every BL-algebra L is an MTL-algebra and hence can be embedded into a

product of linearly ordered MTL-algebras of the form L/ ∼F , where F is a prime

filter of L by Theorem 5.1.1. But since ∼F is a congruence and BL is a variety, each

L/∼F is a BL-algebra. Thus the direct product of BL-algebras of the form L/∼F is

a BL-algebra. Therefore every BL-algebra is a subdirect product of linearly ordered

BL-algebras.
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Theorem 7.3.2 (completeness). BL is complete with respect to BL-algebras and BL-

chains, that is for each formula ϕ the following are equivalent:

(1) ϕ is provable in BL;

(2) for each linearly ordered BL-algebra L, ϕ is an L-tautology;

(3) for each BL-algebra L, ϕ is an L-tautology.

Proof. The proof of the completeness theorem of BL with respect to BL-algebras and

BL-chains is entirely similar to that of MTL-algebras and MTL-chains (see Theo-

rem 5.1.2).

Next we shall deal with completeness of BL with respect to standard BL-algebras.

Lemma 7.3.1. Let L be an MTL-algebra and a, b ∈ L. Then 〈a ∨ b〉 = 〈a〉 ∩ 〈b〉,
where 〈c〉 denotes the filter generated by c.

Proof. We first show that MTL-algebras satisfy: (x ∨ y)n = xn ∨ yn. In a linearly

ordered MTL-algebra, either x ≤ y or y ≤ x. If x ≤ y, then (x ∨ y)n = yn and

xn ≤ yn so xn ∨ yn = yn. If y ≤ x, the proof is similar. Since every MTL-algebra is

a subdirect product of linearly ordered MTL-algebras (Theorem 5.1.1), the identity

must hold in all MTL-algebras.

Recall that 〈a〉 =
{
c ∈ L : a

n→ c = 1 for some n ∈ N
}

, so c ∈ 〈a〉 iff an ≤ c for some

n ∈ N. Let c ∈ 〈a ∨ b〉, so (a ∨ b)n ≤ c for some n ∈ N, hence an ∨ bn ≤ c. Therefore

an ≤ c and bn ≤ c, so c ∈ 〈a〉 ∩ 〈b〉. Also, if c ∈ 〈a〉 ∩ 〈b〉, then an ≤ c for some n ∈ N

and bm ≤ c for some m ∈ N. Then (a ∨ b)max{n,m} ≤ c, so c ∈ 〈a ∨ b〉.

Lemma 7.3.2. A finite BL-algebra is subdirectly irreducible if and only if it is linearly

ordered.

Proof. Let L be a finite subdirectly irreducible BL-algebra.

⇒:

Then (a→ b) ∨ (b→ a) = 1. Now, 〈1〉 = {1}, but 〈(a→ b) ∨ (b→ a)〉 = 〈a→ b〉 ∩
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〈b→ a〉 by Lemma 7.3.1. Thus 〈a→ b〉 = {1} or 〈b→ a〉 = {1} since L is subdirectly

irreducible. Hence a→ b = 1 or b→ a = 1. Therefore, a ≤ b or b ≤ a.

⇐:

Since L is finite and linearly ordered the set {x ∈ L} has a largest element, say b.

Thus 〈b〉 is the least nontrivial filter.

Recall the algebras Wan from Definition 7.1.6.

Theorem 7.3.3. L is a finite subdirectly irreducible BL-algebra if and only if there

are k, n1, n2, ..., nk ∈ N such that

L ∼= Wan1 ⊕Wan2 ⊕ · · · ⊕Wank .

Proof. Suppose L is a finite subdirectly irreducible BL-algebra. The proof is by

induction on |L|, the cardinality of L. If |L| = 1, then we are done. Assume |L| = r

and that L′ ∼= Wan1 ⊕Wan2 ⊕ · · · ⊕Wank−1
for some k, n1, n2, ..., nk−1 ∈ N for all

L′ with |L′| < r. Then by Theorem 7.2.1(3), there is a BL-algebra F and a linearly

ordered Wajsberg hoop S such that L ∼= F⊕ S and |S| > 1. Note that F is linearly

ordered since L is linearly ordered by Lemma 7.3.2. Hence by Lemma 7.3.2, F is finite

and subdirectly irreducible. We have that |F | < r, so by the induction hypothesis

F ∼= Wan1 ⊕Wan2 ⊕ · · · ⊕Wank−1
for some k, n1, n2, ..., nk−1 ∈ N. Also S is a finite

linearly ordered Wajsberg hoop, so it is isomorphic to Wank for some nk ∈ N, by [22,

Theorem 3.13]. Therefore L ∼= Wan1 ⊕Wan2 ⊕ · · · ⊕Wank . For the converse, note

that Wan1 ⊕Wan2 ⊕ · · · ⊕Wank−1
is a finite and linearly ordered, hence subdirectly

irreducible, BL-algebra.

Definition 7.3.1. Given an algebra A (of any type) and any A′ ⊆ A, the partial

subalgebra A′ of A is the partial algebra with universe A′ and for each operation f

of A (say k-ary) and b1, . . . , bk ∈ A′,

fA′(b1, . . . , bk) =

{
fA(b1, . . . , bk) if fA(b1, . . . , bk) ∈ A′,
undefined if fA(b1, . . . , bk) 6∈ A′.

A class K of algebras has the finite embeddability property (FEP, for short) if every

finite partial subalgebra of any given member of K can be embedded into some finite
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member of K.

By [2] (and also [8]) if a variety K of algebras has the FEP, then it is generated as a

quasivariety by its finite members. That is,

K = ISPPu({finite members in K}).

We use the following result from [2, Theorem 3.9] without proof:

Theorem 7.3.4. The class of subdirectly irreducible Wajsberg hoops has the FEP.

Theorem 7.3.5. The class of linearly ordered BL-algebras has the finite embeddability

property.

Proof. Let L be a linearly ordered BL-algebra and L′ a finite partial subalgebra of

L such that L′ = {l1, l2, ..., ln}, where l1 > l2 > ... > ln. We prove the theorem

by induction on n, the cardinality of L′. If n = 1, then L′ embeds into the trivial

BL-algebra. If n > 1, then the set {li → lj : 1 ≤ i < j ≤ n} has a largest element

say lk → lm. We want to show that any maximal congruence θ of L not containing

(lk, lm) as an element cannot contain (li, lj) with i 6= j. Suppose on the contrary

that (li, lj) ∈ θ. Then (li → lj, lj → lj) ∈ θ. But lj → lj = 1, so (li → lj, 1) ∈ θ.

Since F = 1/θ is a filter and li → lj ≤ lk → lm, we have lk → lm ∈ F . Also

lm → lk = 1 ∈ F , so (lk, lm) ∈ θ, contradicting our assumption. Hence (li, lj) /∈ θ for

all i 6= j and so L′ embeds into L/θ by the map li 7→ li/θ.

Now, L/θ is a linearly ordered BL-algebra (since L is). Also, L/θ is subdirectly

irreducible since the congruence generated by ([lk]θ , [lm]θ) is the least nontrivial con-

gruence: recall that θ is the maximal congruence not containing (lk, lm) so any non-

trivial congruence of L/θ contains ([lk]θ , [lm]θ) by the correspondence theorem (see

[3, Theorem 6.20]). Thus, 〈[lk → lm]θ〉 is the least nontrivial filter of L/θ. By The-

orem 7.2.1(3), L/θ = F ⊕ S, where F is a linearly ordered subalgebra of L/θ and S

a linearly ordered subalgebra of L/θ that is also a filter and hence [lk → lm]θ ∈ S.

Hence we cannot have both [lk]θ , [lm]θ ∈ F otherwise [lk → lm]θ ∈ F . Thus (L′/θ)∩F
has fewer elements than L′. Hence by the induction hypothesis, there exists a finite
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linearly ordered BL-algebra F1 such that the partial algebra L′/θ ∩ F embeds into

F1. Also L′/θ ∩ S is a partial subalgebra of a subdirectly irreducible Wajsberg hoop,

so it can be embedded into a finite subdirectly irreducible Wajsberg hoop S1 by

Theorem 7.3.4. Consequently, L′/θ embeds into F1 ⊕ S1 which is a linearly ordered

BL-algebra. Thus, L′ embeds into a linearly ordered BL-algebra, hence the class of

linearly ordered BL-algebras has the FEP.

Theorem 7.3.6. The variety BL of BL-algebras is generated as a quasivariety by its

finite members. In fact

BL = SPPu (Wan1 ⊕Wan2 ⊕ · · · ⊕Wank : k, n1, n2, ..., nk ∈ N)

Proof. By Theorem 7.3.1, every BL-algebra is a subdirect product of linearly ordered

BL-algebras. By the FEP for linearly ordered BL-algebras (Theorem 7.3.5), the class

of linearly ordered BL-algebras is generated as a quasivariety by the finite linearly

ordered BL-algebras. By Theorem 7.3.3, every finite linearly ordered BL-algebra is

of the form Wan1 ⊕Wan2 ⊕ · · · ⊕Wank and so the result follows.

Theorem 7.3.7. The variety of BL-algebras is generated as a quasivariety by all

standard BL-algebras, that is, by all algebras of the form ([0, 1] , ◦,→,∧,∨, 1), where

◦ is a continuous t-norm and → its residual.

Proof. By Theorem 7.3.6 it suffices to show that every algebra of type Wan1⊕Wan2⊕
· · · ⊕Wank for some k, n1, n2, ..., nk ∈ N can be embedded into a standard BL-

algebra. Each Wani is embeddable in ([0, 1] , ◦L,→L,∧L,∨L, 1), by Lemma 7.1.3(3).

Let Bi be a copy of ([0, 1] , ◦L,→L,∧L,∨L, 1) in which Wani is embedded. Then by

Lemma 7.1.3(1), Bi is isomorphic to Di = ([ai, bi] , ·i,→i, 1), where ai = i−1
k

, bi = i
k

and the operations are defined accordingly. Thus Wan1 ⊕Wan2 ⊕ · · · ⊕Wank can

be embedded into D = D1 ⊕ D2 ⊕ · · · ⊕ Dk and the universe of D is [0, 1]. The

binary operation ◦ defined on D is obviously a continuous t-norm. Thus the algebra

Wan1 ⊕Wan2 ⊕ · · · ⊕Wank is isomorphic to a subalgebra of a standard BL-algebra,

so the class of all BL-algebras is generated by the standard BL-algebras.

Theorem 7.3.8. BL is complete with respect to the class of standard BL-algebras.
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Proof. The result follows immediately from Theorem 7.3.7.

Below is a justification of why the proof of standard completeness for MTL does not

work for BL and hence why a different proof for BL was needed.

Consider the algebra L = (Q ∩ [0, 1] , ◦,→,∧,∨, 0, 1), where ◦ is the Lukasiewicz t-

norm: x ◦ y = (x+ y− 1)∨ 0, and its residuum: x→ y = (1−x+ y)∧ 1. Note that L

is a subalgebra of ([0, 1] , ◦,→,∧,∨, 0, 1) which is a BL-algebra, so L is a BL-algebra.

Let X = (X, ∗,→∗,∧,∨, 0, 1) be as in Theorem 6.1.1, so

X = {(s, t) : s ∈ Q ∩ [0, 1] , s 6= 0, t ∈ Q ∩ (0, 1]} ∪ {(0, 1)}.
We show that there exist a, b ∈ X such that a � b but b ∗ (b→∗ a) ≺ a. This implies

that the standard MTL-algebra constructed from X as in Chapter 6 cannot be a

BL-algebra as the identity x ◦ (x→ y) = x ∧ y fails.

Let a =
(

1
2
, q1

)
∈ X and b =

(
1
2
, q2

)
∈ X such that q1 < q2 < 1. Then a � b.

We claim that:

{(s, t) : b ∗ (s, t) � a, s, t ∈ Q ∩ (0, 1] or (s, t) = (0, 1)}
=

{
(s, t) :

(
1
2
, q2

)
∗ (s, t) �

(
1
2
, q1

)
, s, t ∈ Q ∩ (0, 1] or (s, t) = (0, 1)

}
= {(s, t) : s, t ∈ Q ∩ (0, 1] and s < 1} .

To see the above, note that: If s = 1 and t ∈ (0, 1], then

(1
2
, q2) ∗ (1, t) = (1

2
, q2) � (1

2
, q1) since q1 < q2.

If 0 < s < 1 and t ∈ (0, 1], then

s ◦L 1
2

=
(

1
2

+ s− 1
)
∨ 0

=
(
s− 1

2

)
∨ 0

=

{
0 if 0 < s ≤ 1

2

s− 1
2

if 1
2
< s < 1

< s ∧ 1
2
.

Therefore in this case,
(

1
2
, q2

)
∗ (s, t) =

(
s ◦L 1

2
, 1
)
≺
(

1
2
, q1

)
. Thus the above claim

holds. The supremum of {(s, t) : s, t ∈ Q ∩ (0, 1] and s < 1} does not exist in X since

the upper bounds of this set are {(1, t) : t ∈ (0, 1]} which has no infimum in X. In the
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completion of X, the set {(s, t) : s, t ∈ Q ∩ (0, 1] and s < 1} has a supremum, which

is b→∗ a.

b ∗ (b→∗ a) = b ∗ sup {(s, t) : s, t ∈ Q ∩ (0, 1] and s < 1}
= sup {b ∗ (s, t) : s, t ∈ Q ∩ (0, 1] and s < 1} (by left-continuity)

= sup
{(

1
2
, q2

)
∗ (s, t) : s, t ∈ Q ∩ (0, 1] and s < 1

}
= sup

{(
1
2
◦L s, 1

)
: s, t ∈ Q ∩ (0, 1] and s < 1

}
≺
(

1
2
, q1

)
= a.

Our key objective of this chapter was to show that BL is complete with respect

to standard BL-algebras. The following lemmas contributed towards proving this

Completeness Theorem:

(1) Every BL-algebra is a subdirect product of linearly ordered BL-algebras.

(2) A finite BL-algebra is subdirectly irreducible if and only if it is linearly ordered.

(3) L is a finite subdirectly irreducible BL-algebra if and only if there are

k, n1, n2, ..., nk ∈ N such that

L ∼= Wan1 ⊕Wan2 ⊕ · · · ⊕Wank .

(4) The class of linearly ordered BL-algebras has the finite embeddability property.

(5) BL = SPPu (Wan1 ⊕Wan2 ⊕ · · · ⊕Wank : k, n1, n2, ..., nk ∈ N).

(6) The variety of BL-algebras is generated as a quasivariety by the class of standard

BL-algebras.

Below we explain how these lemmas were used to give the Completeness Theorem.

Lemmas (1) and (4) imply that the variety of BL-algebras is generated as a quasi-

variety by its finite linearly ordered members. From (2) each finite linearly ordered

BL-algebra is subdirectly irreducible, so it is an ordinal sum of Wn-algebras, by (3).

To show that (6) holds, it was sufficient to show that each ordinal sum of Wn-algebras
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can be embedded into a standard BL-algebra since by (5), the variety of BL-algebras

is generated as a quasivariety by the class of ordinal sums of Wn-algebras. As a

consequence of (6) and the fact that BL is complete with respect to BL-algebras, BL

is complete with respect to standard BL-algebras. We have also provided an example

to show that the proof technique used to establish standard completeness of MTL

does not apply to BL.
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CHAPTER 8

Conclusion

We started by considering t-norms on the unit interval [0, 1], which are associative,

commutative, order-preserving binary operations with identity 1. In particular, we

considered t-norms that are continuous or left-continuous in the sense of classical

analysis. The left-continuity property means that there exists an associated binary

operation called the residuum of the t-norm and acts like an implication operation.

In addition, the meet and join operations on [0, 1] act like logical conjunction and

disjunction and 1, 0 as logical constants. Thus, the classes of continuous and left-

continuous t-norms have a natural connection with logic. What we did in this thesis

was to clarify this connection by collecting a number of related results together in

one place. The logic MTL was defined and shown to be the logic of left-continuous

t-norms. What this means is that MTL is complete with respect to left-continuous

t-norms. The way we showed this was by proving that MTL is complete with respect

to MTL-algebras and, in fact, with respect to linearly ordered MTL-algebras. Every

finitely generated linearly ordered MTL-algebra was shown to be embeddable into a

standard MTL-algebra, which is a left-continuous t-norm algebra. It was sufficient to
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use finitely generated algebras since any algebra is a subalgebra of an ultraproduct of

its finitely generated subalgebras. Another way of expressing this is to say that the

variety of MTL-algebras is generated by the standard MTL-algebras.

We also showed that the logic BL is the logic of continuous t-norms, that is, we showed

that BL is complete with respect to standard BL-algebras, which are continuous t-

norm algebras. To achieve this we first showed that, as for MTL-algebras, every

BL-algebra is a subdirect product of linearly ordered BL-algebras. Then we showed

that the class of linearly ordered BL-algebras has the finite embeddability property

and consequently the variety of BL-algebras is generated as a quasivariety by its

finite linearly ordered members. Since each finite linearly ordered BL-algebra is a

subdirectly irreducible Wajsberg algebra, it is an ordinal sum of Wn-algebras, and

we showed that each such ordinal sum can be embedded into a standard BL-algebra.

Thus, the variety of BL-algebras is generated as a quasivariety by the standard BL-

algebras. Hence BL is complete with respect to the class of standard BL-algebras.

Since the variety of BL-algebras is a subvariety of the variety of MTL-algebras, it

may seem that the proof of completeness for MTL with respect to standard MTL-

algebras can be extended to a proof of completeness for BL with respect to standard

BL-algebras. We gave an example which showed that this approach would not work.

We further proved the theorem that characterizes all continuous t-norms, namely

that each continuous t-norm can be decomposed as an ordinal sum of Lukasiewicz,

Product and Gödel t-norms. Unlike the situation pertaining to continuous t-norms,

knowledge of left-continuous t-norms is limited, so there is no structural theorem that

would allow us to classify them in a similar way [6].
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