THE FOLLOW-UP OF BABIES IN THE PMTCT PROGRAMME IN THE WEST RAND

Faith Mathabo Makhanya

A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Public Health.

Johannesburg, April 2012
DECLARATION

I, Faith Mathabo Makhanya, declare that this research report is my own work. It is being submitted for the degree of Master of Public Health at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

This __________ day of ________________ 2012
DEDICATION

For all their patience, understanding and support, I dedicate this work to my husband, Peter, my daughter, Akullo, and son, Onweng.
ABSTRACT

Introduction

Routine PMTCT programmes are highly effective in reducing the mother-to-child transmission (MTCT) rate of HIV, but generally fail in follow-up of HIV-exposed children. Loss to follow-up in the PMTCT programme translates into failure in primary prevention of new infections in HIV-exposed infants, failure to identify HIV disease early in children, and a missed opportunity for early referral of HIV-positive children to ARV sites. An assessment of what happens to babies born of HIV-positive mothers in the West Rand district of Gauteng province, South Africa has never been done, and neither has the extent to which these babies are followed up for the first 12 months, and the extent of loss to follow-up been documented.

Aim

The purpose of this study is to describe the referral and follow-up of babies born to HIV-positive women during July to December 2005 in the PMTCT programme in the West Rand district of Gauteng.

Method

This was a descriptive study involving a retrospective review of records for a cohort of babies born to HIV-positive mothers in the PMTCT programme in the West Rand during July 2005 to December 2005. All records of HIV-positive mothers seen over the six-month period at Leratong hospital and the two midwife obstetric units (MOUs) that refer patients to Leratong hospital were reviewed, as were records of their babies. A total of 887 Mother-infant pairs were consecutively enrolled in the study.
Results

Referral linkages within the PMTCT programme were found to be weak. Only 34% of babies enrolled in the PMTCT programme were successfully registered with PMTCT follow-up services.

HIV PCR testing of babies enrolled in the PMTCT programme was relatively low. Overall only 41% of enrolled babies were tested for HIV infection. Of those babies who had a HIV PCR test, 16% were tested before or at six weeks with the majority of babies (84%) having a HIV PCR after six weeks. HIV PCR testing coverage at six weeks was 8.4%. Referral of confirmed HIV-positive babies to ARV sites was poor. Only 25% of all HIV PCR-positive infants were successfully referred to ARV sites.

There was a high loss to follow-up in the PMTCT follow-up programme. The probability of an infant remaining in the PMTCT programme decreased from 0.5 at six weeks to 0.04 beyond 20 weeks.

Conclusion

Despite a high enrolment of babies in the PMTCT programme in the West Rand, referral linkages within the PMTCT programme are weak and there is a high loss to follow-up of infants in the PMTCT follow-up programme. HIV PCR coverage at six weeks is significantly low, and referral of confirmed HIV PCR-positive babies to ARV sites is also significantly low.

Further research is needed to assess whether there has been an improvement in the follow-up of babies in the PMTCT programme in the West Rand since the time of this study.
ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Mary Kawonga, for her invaluable advice, assistance and support for the duration of this research project. I extend my sincere thanks to Ronell Brits of the dietetics department at Leratong hospital for her assistance with tracing of records. I thank the staff at Bekkersdal and Mohlakeng MOUs for their cooperation during my visits to their facilities. Thanks to my husband, Peter, for his support and encouragement during this project. Thanks to my parents Edward and Tlhaku, for all their support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
1.1 Background
1.2 Problem statement
1.3 Justification of the study
1.4 Literature review
1.5 Aim and objectives of the study

2. **METHODOLOGY**
2.1 Study design
2.2 Study setting
2.3 Study population and sampling
2.4 Measurement
2.5 Data processing and analysis
2.6 Ethics

3. RESULTS
3.1 Description of study participants
3.2 Registration at PMTCT follow-up services
3.3 HIV PCR testing
3.4 PMTCT follow-up visits

4. DISCUSSION

5. CONCLUSIONS AND RECOMMENDATIONS

LIST OF REFERENCES

APPENDICES
APPENDIX A – Data sheet 1
APPENDIX B – Data sheet 2
APPENDIX C – Ethics Clearance Certificate
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Flow diagram to describe flow of study participants in the PMTCT follow-up schedule.</td>
<td>24</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Compliance of babies with PMTCT follow-up visits.</td>
<td>31</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Probability of babies remaining in the PMTCT programme over time.</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Registration of babies at PMTCT follow-up services.</td>
<td>25</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Testing of babies to confirm HIV status.</td>
<td>26</td>
</tr>
<tr>
<td>3.3.2</td>
<td>HIV PCR testing at six weeks of age.</td>
<td>26</td>
</tr>
<tr>
<td>3.3.3</td>
<td>HIV PCR testing coverage at six-week follow-up visit.</td>
<td>27</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Age at which HIV PCR test was done by infant feeding.</td>
<td>28</td>
</tr>
<tr>
<td>3.3.5</td>
<td>HIV PCR test results of babies tested for HIV infection.</td>
<td>29</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Attendance of babies at PMTCT follow-up visits.</td>
<td>30</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Referral of HIV PCR-positive babies to ARV site.</td>
<td>32</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AIDS – Acquired Immunodeficiency Syndrome
ANC – Antenatal clinic
ARV – Antiretroviral
ART – Antiretroviral therapy
AZT – Zidovudine
DNA – Deoxyribonucleic acid
DOH – Department of Health
ELISA – Enzyme-linked Immunosorbent Assay
HAART – Highly Active Antiretroviral Therapy
HIV – Human Immunodeficiency Virus
IMCI – Integrated Management of Childhood Illnesses
MOU – Midwife Obstetric Unit
MTCT – Mother-to-Child transmission
NDOH – National Department of Health
NVP – Nevirapine
PCP – Pneumocystis carinii pneumonia
PCR – Polymerase chain reaction
PHC – Primary Health Care
PMTCT – Prevention of Mother-to-Child transmission
POPD – Paediatric Out-patient Department
TLC – Total Lymphocyte Count
UNAID – United Nations Agency for International Development
VCT – Voluntary counselling and testing
WHO – World Health Organisation