INTRODUCTION

When Andrew Geddes Bain first comprehensively described the rock sequences of the southern Cape Colony, he used the presence of fossil reptiles as a defining character for the younger division of sedimentary rocks, which he named the ‘Karoo or Reptiliferous Series’ (Bain 1856). The fossil content of these rocks was soon recognized by subsequent geologists to vary between different strata. At first this was limited to simply the relative abundance of various fossils (Wyley 1859) but, as early as 1867, Ralph Tate and Thomas Rupert Jones produced a descriptive list of fossil forms attributed to the ‘Beaufort Beds’ and the overlying ‘Stormberg Beds’ (Tate 1867). Initially, invertebrate and plant fossils appear to have been of equal or greater interest than those of vertebrates; however, by the 1870s, when Richard Owen published his extensive description of the fossil reptiles from South Africa (Owen 1876), vertebrate fossils became sufficiently understood and sufficiently numerous to become useful stratigraphic tools.

EARLY TETRAPOD BIOSTRATIGRAPHY OF THE BEAUFORT GROUP

The first vertebrate palaeontologist to officially propose a stratigraphic division of faunas from what would become the Karoo Supergroup was Seeley (1892). Seeley divided the fossiliferous rocks of South Africa into five ‘zones’, the middle three of which are included in what now the Beaufort Group:

5. Zone of zanclodonts
4. Zone of highly specialized theriodonts
3. Zone of dicynodonts
2. Zone of pareiasaurians
1. Mesosaurian zone

The second zone was that of pareiasaurians, which he recorded to ‘extend from south of Fraserburg Road Station [now Leeu-Gamka] to the foot of the Nieuwveldt [sic] Mountains, covering a breadth of about 50 miles of country, without evidence of a physical break at the bottom of the series’ (Seeley 1892: 312). Such a description corresponds to the northern part of the Great Karoo region of the Western Cape Province, to the west of Beaufort West. As well as through his own collecting, the distribution of Seeley’s ‘zone of pareiasaurians’ was influenced by the geological map drawn by Dunn (1887), whereby it corresponded to the lower part of Dunn’s ‘Upper Karoo Beds’.

This biostratigraphic organization of fossil occurrences was subsequently used by palaeontologists and geologists to supplement the lithostratigraphy. Rogers (1903) and Rogers & Schwartz (1903) grouped the middle three zones (i.e. pareiasaurians, dicynodonts and highly specialized theriodonts) into a division they called the ‘Beaufort Series’, also based upon Dunn’s ‘Upper Karoo Beds’ (Dunn 1887). Du Toit (1905) further recognized that within these three zones, the upper ‘zone of specialized theriodonts’ corresponded to a lithologically distinct interval of red beds he called the ‘Burghersdorps [sic] Beds’. This tripartite biostratigraphic division of the Beaufort Series was thus adopted by the two landmark textbooks on South African geology that were published that year (Hatch & Corstorphine 1905; Rogers 1905).

Shortly thereafter, a new subdivision of the Beaufort Series was introduced by Broom (1906a,b) that was based on his extensive collecting efforts in the Karoo. This proved innovative and still forms the basis of the biostratigraphic system used today. In Broom’s view, there were six biozones in the Beaufort Series, which could be grouped into three broader divisions:
Upper Beaufort Beds
6. Cynognathus Beds
5. Procolophon Beds

Middle Beaufort Beds
4. Lystrosaurus Beds

Lower Beaufort Beds
3. Kistecephalus Beds
2. Endothiodon Beds
1. Pareiasaurus Beds

The youngest division, the ‘Upper Beaufort Beds’, were likely equivalent to the ‘Burghersdorp Beds’ of du Toit (1905). Below this the ‘zone of dicynodonts’ had been broken down into the ‘Lystrosaurus Beds’, which comprised the middle subdivision, and the ‘Endothiodon and Kistecephalus [sic]’ beds, which followed the ‘Pareiasaurus Beds’ in the Lower Beaufort. The ‘Pareiasaurus Beds’ themselves, however, were essentially unchanged from the designation of Seeley (1892).

Until this point, the lithostratigraphic subdivision of the Beaufort Series below the ‘Burghersdorp Beds’ of du Toit (1905) had been hampered by the homogeneity of the fluvial strata. Broom’s fossil zones therefore became the predominant method of subdividing the Lower Beaufort strata, and as such were readily adopted in the second edition of Rogers’ book on the geology of the Cape Colony (Rogers & du Toit 1909). Little alteration was made to Broom’s scheme until the 1970s, but several important works appeared in the intervening years. The first came when D.M.S. Watson, who had visited the Karoo and found Broom’s (1906a,b) biozone designations to be correct but inadequate in detail, published a thorough description of each division (Watson 1914a). In this he clarified the definition of the ‘zones’ (reverting to Seeley’s terminology) through the suite of reptiles found in each, as well as the geographical extent of the exposures and the personalities involved in collecting each level. Watson’s (1914a: 203) account of the ‘Pareiasaurus Zone’ was remarkably accurate, stating that it contained:

…several species of pareiasaurs,…[which] have only a few small scutes round the neural spines of the dorsal region. Less common are the remains of Deinocephalia [sic], both Tapinocephaloids and Titanosuchia and many diverse forms of Therocephalia. Dicynodonts [sic] occur in considerable numbers, but no large forms of Anomodont have ever been found, and the beds have been so thoroughly searched that their absence or excessive rarity is assured.

Watson (1914a: 203) also mentioned the exposure of the ‘Pareiasaurus zone’ in the ‘great expanse of rolling country, the Gouph’, to the south of Beaufort West and below the level of the town, which he describes as being situated on the ‘Endothiodon zone’. Furthermore, Watson was the first to depict the extent of the biozones on a map, which indicates that he was aware that the ‘Pareiasaurus zone’ curved round the Nuweveld Mountains towards Victoria West (Fig. 1).

Another of the bountiful observations made by Watson concerned the validity of the name ‘Pareiasaurus zone’. He noticed that, while the presence of the type locality of ‘Pareiasaurus’ at Blinkwater in the Eastern Cape Province would suggest the presence there of the eponymous zone, ‘specimens in the British Museum which I have strong reasons for believing to belong to that type-specimen are of a type which would now be called Propappus, a typical Cistecephalus [sic] zone form’ (Watson 1914a: 207). The observation that the most armoured species of pareiasaur, such as the type specimen of ‘Pareiasaurus’, were found only in the ‘Cistecephalus zone’ therefore posed a problem. This was quickly developed and, after re-examining the British Museum’s pareiasaur material, Watson (1914b) decided that the name ‘Pareiasaurus zone’ was misleading, as that genus was indeed a ‘Cistecephalus zone’ form; in any case, pareiasaurs were known from both zones. He therefore proposed the name ‘Tapinocephalus zone’, as this genus was one of the more common variants of the Dinocephalia, which were unique to this stratigraphic interval.

Broom (1915), in an article detailing the type specimens acquired by the American Museum of Natural History from him, soon followed Watson’s example and produced a map of his biozones. He did not, however, heed the recommendations of Watson (1914b) and continued to use the name ‘Pareiasaurus zone’. Perhaps more pertinent is that Broom considered the ornamented pareiasaur Propappus to occur in the ‘Endothiodon zone’, which Watson (1914a), on the contrary, believed to be devoid of pareiasaurs. Broom (1915: 107) continued to describe two patterns of fossil distribution within the existing biozones: the first of these was within the ‘Endothiodon zone’, where he stated that ‘small species of Dicynodon are numerous and large anomodonts called Endothiodon are common in the lower part of the zone’; the second was within the ‘Cistecephalus zone’, where he simply recorded that ‘the lower beds are characterized by the presence of a peculiar small anomodont [sic] Cistecephalus.’ Despite the seemingly restricted ranges for his original indicator taxa, he felt no need to rename his biozones. Broom (1915) also provided thicknesses for each biozone but these are, in several cases, quite unspecific and in the case of the upper zones appear to be gross overestimations. For the ‘Pareiasaurus zone’ he gives a thickness of around 1000 feet and for the ‘Endothiodon zone’ a thickness of around 1500 to 2000 feet.

In a slightly later review of the Karoo, Von Huene (1925) was the first author to adopt Watson’s (1914b) redesignation of the ‘Tapinocephalus zone’. Other than this there was little deviation from the existing scheme, although he does provide another map. Thereafter, little work was undertaken until 1942, when Watson (1942) wrote a summary of Permian and Triassic tetrapods. While retaining the existing biozones, he recognized several patterns regarding the distribution of fossil taxa within them and proposed subdivisions thereof. About half of these built upon the brief observations of Broom (1915). Firstly, Watson regarded the ‘Endothiodon zone’ as being distinguishable into an A and B zone, with the A zone conforming to the usual definition in containing abundant large endothiodonts.
Figure 1. Changes in the perceived distribution of Beaufort Group tetrapod biozones. A, The first Beaufort Group biozone map produced by Watson (1914a) showing the distribution of Broom’s (1906a,b) biozones. This was produced shortly before Watson (1914b) suggested the name ‘Tapinocephalus Zone’ in lieu of ‘Pareiasaurus Zone’. B, The most recent Beaufort Group biozone map, taken from Van der Walt et al. (2010). Several biozones have been added throughout the 20th century but most of the older biozones are still used.
and only small toothless dicynodonts. The B zone in his view ‘probably contain[s] only small endothiodonts of different genera and yield[s] also Dicynodonts of medium size’ (Watson 1942: 111). He also found a similar pattern in the Cistecephalus zone, describing a lower A zone that contained Cistecephalus itself and a B zone which was dominated by ‘large Dicynodonts … and advanced Gorgonopsids.’ He even postulated the existence of a C zone containing diverse therocephalians, but did not include this on his diagram (Watson 1942: 115). The ‘Tapinocephalus zone’ again remained unchanged, with the apparent disappearance in pareiasaurs and dinocephalians apparently providing a very natural boundary.

EARLY SUBDIVISION OF THE TAPINOCEPHALUS ZONE

The first observed differences in the ranges of fossil tetrapod taxa within the ‘Tapinocephalus Zone’ were only made a decade later, during the production of a geological map of the Merweville area (Rossouw & de Villiers 1953). This map covered the area cited by all previous authors as the primary outcrop area for the Tapinocephalus Zone and Rossouw & de Villiers made extensive lists of the fossil specimens found in the region. They then used their understanding of the regional stratigraphy and the distribution of fossil taxa therein, supported by the presence of ‘chert’ bands, to suggest a three-fold biostratigraphic subdivision of the Lower Beaufort rocks around Merweville.

The lower zone was situated below and immediately above what they termed the Droëfontein ‘chert’, while the upper zone surrounded the ‘Green chert’ and Poortjie sandstone (Rossouw & de Villiers 1953: 59). Between these two they loosely designated an intermediate zone. It is astonishing that, from the relative abundance of fossil taxa within each of these zones, these authors then drew several enduring conclusions about faunal change through the Tapinocephalus Zone. Firstly, they describe a decrease in pareiasaurs up to the vicinity of the green ‘chert’ and Poortjie sandstone, as well as a similar if less dramatic decrease in dinocephalians. They also record a ‘phenomenal’ increase in dicynodont abundance from the lower to upper zones. Rossouw & de Villiers’ (1953) zonation, with a brief description based on their original numbers, is as follows:

3. Zone of the green ‘chert’ and Poortjie sandstone
 Dicynodonts dominant and pareiasaurs rare.

2. Intermediate zone
 Dicynodonts and dinocephalians dominant and subequal in abundance, pareiasaurs half as common.

1. Zone of the Droëfontein ‘chert’
 Pareiasaurs and dinocephalians dominant and subequal in abundance, dicynodonts moderately abundant.

Such a division was expanded, if not directly acknowledged, by Boonstra (1969), who had worked on the Tapinocephalus Zone since the late 1920s. Boonstra did not question the name of the zone itself but he did record in this publication some opinions on its integrity. Like Rossouw & de Villiers (1953), Boonstra determined there to be three subdivisions within the Tapinocephalus Zone but did not make mention of lithological constraints. In Boonstra’s breakdown, the lower division contained the greatest abundance of dinocephalians, pareiasaurs, endothiodont dicynodonts and pristerognathid therocephalians. All these taxa decreased distinctly in abundance into his middle division, with only dicynodonts becoming more common. In contrast to Rossouw & de Villiers (1953), Boonstra (1969) considered pristerognathid therocephalians to decline in abundance into the middle division.

Most radically, Boonstra’s upper division is characterized by the disappearance of most families and the severely reduced abundance of those that remained. The only groups he records within this division are dicynodonts, hipposaurs, galesuchids, pristerognathid therocephalians and the parareptile Eunotosaurus, representing a 63% loss of families. Boonstra’s work therefore provided the first comprehensive account of the loss of dinocephalian therapsids at the family level.

LOWER BEAUFORT GROUP BIOSTRATIGRAPHY AFTER 1970

After collecting throughout the Beaufort Group for 25 years, Kitching (1970) became the first palaeontologist to challenge the Broomian paradigm. The biozone nomenclature was in the most part retained but the extent of several zones was modified and both the Endothiodon and Procolophon zones were discarded. The former became absorbed into the ‘Cistecephalus zone’ on the basis that, despite the thickness of 1500 to 2000 feet suggested for the zone by Broom (1915), the appearance of Cistecephalus occurred only a couple of hundred feet above the ‘Endothiodon beds’ at Beaufort West; in addition, the two genera were known to occur in close association in several places.

Above this, the upper boundary of the ‘Cistecephalus zone’ was lowered to a level just above the horizon in which this genus reached its maximum abundance, and above which no specimens of it had been found. This understanding that Cistecephalus was rare or absent in the upper portion of its eponymous biozone had, of course, been made three decades earlier by Watson (1942). However, while Watson was conservative, Kitching (1970: 310) proposed the name Daptocephalus or Whaitsia zone for the vacant space between the Cistecephalus acme horizon and the base of the Lystrosaurus zone, reasoning that within this interval ‘[Daptocephalus] is fairly evenly distributed and completely confined to these beds.’

Kitching referred matters of the Tapinocephalus zone to Boonstra (1969) and did not implement any further subdivision of that biozone. In terms of its geographic distribution, Kitching (1970) now confined the Tapinocephalus zone to the very southwest of the basin, not considering it to extend any further north than Fraserburg. He therefore situated Victoria West well within his Cistecephalus Zone, contrary to the earlier work of Watson (1914a). Kitching’s (1970) subdivision of the Lower Beaufort was as follows:

5. Cynognathus zone
4. Lystrosaurus zone
Kitching (1972, 1977) described these zones in further detail, and included extensive lists of all the fossil localities he had collected. Each also included a map of these localities which were represented symbolically by biozone.

Soon after Kitching’s (1977) publication, Keyser & Smith (1977) published another biostratigraphic subdivision of the Beaufort Group, which for the first time was closely integrated with their proposed lithostratigraphic units. This was primarily aimed at the southwest of the Karoo basin but earlier mapping in the east by Keyser (1973) had already revealed a link between the lowest appearance of *Cistecephalus* and a unit called the Oudeberg sandstone in the region of Graaff-Reinet. In the Lower Beaufort, this scheme differed from that of Kitching (1977) in several important areas, especially in nomenclature. The ‘Daptocephalus Zone’, while maintaining its integrity, was renamed the *Dicynodon Assemblage Zone* (AZ) because the former genus was in the process of being synonymized with the latter (Clover & Hotton 1981). The name ‘*Cistecephalus Zone*’ was discarded due to its confusing history of use, as well as its uneven occurrence; instead, Keyser & Smith (1977) considered *Aulacephalodon bainii* to be a far superior index fossil and so adopted the name without much change in the stratigraphic extent of the biozone.

They also resurrected the former ‘*Endothiodon zone*’ but dropped that genus as an index fossil in favour of the dicynodont *Tropidostoma*; this was justified on the basis that *Endothiodon* was relatively rare and its stratigraphic range was not exclusive of other index taxa. Conversely, *Tropidostoma* had a short range and was restricted to this new biozone. They also supported this designation with lithological characteristics.

Keyser & Smith (1977) also formally subdivided the *Tapinocephalus AZ* for the first time, based partly on the work of Rossouw & de Villiers (1953) and of Boonstra (1969). The upper division of Boonstra (1969) was now considered separate and renamed the *Pristerognathus/Dictodon Assemblage Zone*, defined by the abundance of these genera there in the absence of dinocephalians. Keyser & Smith (1977: 17) noted that, while a disparity between the lower and middle divisions of the *Tapinocephalus AZ* may be genuine, ‘these subdivisions were not created as a workable biostratigraphy … [and so] it is proposed that the lower and middle divisions of the *Tapinocephalus Zone* be grouped to form the Dinocephalian Assemblage Zone, based on the total stratigraphic range of the dinocephalian group of mammal-like reptiles.’ When considering the abundance of fossil taxa through the Dinocephalian Assemblage Zone, Keyser & Smith (1977: 18) only acknowledged some change for *Enembithalosaurus*, which was noticed to become less abundant in its upper division. Keyser & Smith’s (1977) biozone designations for the Beaufort Group were as follows:

7. Kannemeyeria Assemblage Zone
6. Lystrosaurus Assemblage Zone
5. *Dicynodon lacerticeps* Assemblage Zone

RECENT SUBDIVISION OF THE *TAPINOCEPHALUS ASSEMBLAGE ZONE*

Loock *et al.* (1994) were the first to link proposed lithostratigraphic members to the stratigraphic ranges of fossil taxa within the *Tapinocephalus AZ*, thereby creating...
the first union of litho- and biostratigraphy within the Tapinocephalus AZ. These authors found strong support for the idea of Rossouw & de Villiers (1953) and Boonstra (1969) that dinocephalians were more common lower in the stratigraphy, while dicynodonts became more common in the upper part of the zone. Loock et al. (1994) also observed decreases in abundance within other taxa. Unlike Rossouw & de Villiers (1953), Boonstra (1969) or Keyser & Smith (1977), they found pareiasaurs to be equally common in the upper and lower divisions of their field area.

This change in abundance coincided with the boundary of the Koornplaats and Wilgerbos members of the Abrahamskraal Formation. Unfortunately, these authors did not collect thoroughly in the uppermost part of the Tapinocephalus AZ in their field area, north of Laingsburg, which limits the significance of their results. The primary merit of the study lies in its association of lithostratigraphy with fossil occurrence and in that it has remained unique for the Tapinocephalus AZ.

Most recently, the Tapinocephalus AZ has been subject to scrutiny in reference to its constituent dicynodonts. The description of several new genera (e.g. Angielczyk & Rubidge 2010; Modesto et al. 2002; Modesto et al. 2003) as well as the morphological and stratigraphic review of existing ones (e.g. Angielczyk & Rubidge 2009, 2012) has contributed to a subdivision of the Tapinocephalus AZ based on the appearance of small dicynodonts (Angielczyk & Rubidge, 2012, Rubidge & Angielczyk 2009). Rubidge & Angielczyk (2009) suggested that Eodicynodon occurs up to 1100 m above the base of the Beaufort Group, while Diictodon only appears at 1900 m. In between, they suggested that Robertia first appears above the range of Eodicynodon but below that of Diictodon. The genus Colobodectes was also recognized to only occur north of the Great Escarpment, thereby indicating provincialism in dicynodonts. Angielczyk & Rubidge (2010) provided a stratigraphic ordering for the first appearances of the small dicynodonts within the Eodicynodon and Tapinocephalus assemblage zones:

4. Diictodon and Pristerodon
3. Lanthanostegus, Robertia, Prostictodon
2. Colobodectes
1. Eodicynodon

These ranges have so far not been linked to lithostratigraphic units within the Abrahamskraal Formation, which incorporates the vast majority of the Tapinocephalus AZ, but a disparity in the appearances of the different genera is evident.

CONCLUSION

The biostratigraphy of the Lower Beaufort Group today forms one of the most dynamic areas of research in the South African Karoo. Intensive collecting efforts in a lithostratigraphic context, combined with the taxonomic reassessment of most constituent tetrapod groups, are revealing patterns of occurrence that greatly improve the scientific understanding of terrestrial ecosystem change in the later Permian and early Triassic. The discovery of new taxa and the refinement of the stratigraphic ranges of more common genera are allowing the further subdivision of the Lower Beaufort Group and the quantification of extinction events. The following decade is likely to see many more changes to the existing biostratigraphic scheme.

I am grateful to the Palaeontological Scientific Trust (PAST) and its Scatterings of Africa programmes, as well as the NRF and DST for financial aid during my PhD, when this research was conducted.

REFERENCES

DUNN, E.J. 1887. Geological sketch map of South Africa; 1 inch = 33 miles. Melbourne, Sands and McDougal.

ISSN 0078-8554 Palaeont. afr. (December 2013) 48: 41–47
Urban, Bernard Price Institute for Palaeontological research, University of the Witwatersrand.

WYLEY, A. 1859. Notes of a journey in two directions across the Colony, made in the years 1857–8, with a view to determine the character and order of the various geological formations. *Appendix to Cape of Good Hope Parliamentary Report*. Cape Town, Cape of Good Hope Parliament.