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Abstract

The aim of the thesis is to derive group invariant, exactyexamate analytical and numerical
solutions for a two-dimensional laminar, non-Newtonia@-pkisting hydraulic fracture prop-
agating in impermeable and permeable elastic media. Th&ufis driven by the injection
of an incompressible, viscous non-Newtonian fluid of poveer theology in which the fluid
viscosity depends on the magnitude of the shear rate andegootier law index: > 0. By
the application of lubrication theory, a nonlinear difiusiequation relating the half-width of
the fracture to the fluid pressure is obtained.

When the interface is permeable the nonlinear diffusioragqn has a leak-off velocity
sink term. The half-width of the fracture and the net fluidgstere are linearly related through
the PKN approximation. A condition, in the form of a first orgavrtial differential equation
for the leak-off velocity, is obtained for the nonlinearfdgion equation to have Lie point sym-
metries. The general form of the leak-off velocity is dedv&sing the Lie point symmetries
the problem is reduced to a boundary value problem for a seoater ordinary differential
equation. The leak-off velocity is further specified by amsg that it is proportional to the
fracture half-width. Only fluid injection at the fracturetgnis considered. This is the case of
practical importance in industry.

Two exact analytical solutions are derived. In the first 8otuthere is no fluid injection
at the fracture entry while in the second solution the fluidory averaged over the width of
the fracture is constant along the length of the fracture. ddeer working conditions at the
fracture entry the problem is solved numerically by transiiog the boundary value problem
to a pair of initial value problems. The numerical solutisrmatched to the asymptotic so-

lution at the fracture tip. Since the fracture is thin thedluelocity averaged over the width



of the fracture is considered. For the two analytical sohdithe ratio of the averaged fluid
velocity to the velocity of the fracture tip varies lineadiong the fracture. For other working
conditions the variation is approximately linear. Usingtbbservation approximate analyti-
cal solutions are derived for the fracture half-width. Tip@@ximate analytical solutions are
compared with the numerical solutions and found to be ateurzer a wide range of values
of the power-law index. and leak-off parametet.

The conservation laws for the nonlinear diffusion equato®m investigated. When there
is fluid leak-off conservation laws of two kinds are found afhdepend in which component
of the conserved vector the leak-off term is included. Foeatdnian fluid two conservation
laws of each kind are found. For a non-Newtonian fluid the sdamnservation law does
not exist. The behaviour of the solutions for shear thinniewtonian and shear thickening
fluids are qualitatively similar. The characteristic timepénds on the properties of the fluid
which gives quantitative differences in the solution foeahthinning, Newtonian and shear

thickening fluids.
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Chapter 1

Introduction

1.1 Introduction

Hydraulic fracturing is a process by which fractures in rack& propagated by the injection
of ultra high pressure viscous fluid into the fracture. Thkishinique is a core technology in
petroleum production and in the fast growing areas of theaetibn of gas and the generation
of geothermal energy. Itis also a cornerstone of innovatexe methods in mining. It occurs
naturally in the formation of intrusive dykes and sills ietharth’s crust [1]. Hydraulic fractur-
ing is generated by viscous incompressible fluid injectido the fracture under a sufficiently
high pressure, such that the tensile strength of the rockeofracture toughness and the far-
field compressive stress are overcome. The fracture théwesva the direction perpendicular
to the far-field compressive stress.

Modelling the hydraulic fracture process has been an aat®a of research over the past
sixty years and it has attracted numerous contribution3,[2, 5, 6, 7, 8, 9]. A major research
effort has been the development of numerical algorithmd tspredict the propagation of hy-
draulic fractures in the complex and variable geologicaldibons under which oil extracting
operations take place[10]. Despite the significant pragneade, the numerical simulation of
fluid driven fractures remains a particularly challengingputational problem [11, 12]. The
challenges encountered are discussed briefly in [13]. Dilest@omplexity of the hydraulic

fracture process which is shown in Figure 1.1.1, theork#inalysis of the problem through
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Figure 1.1.1: An overview of Hydraulic Fracturing. Reteev28 Nov, 2011, from ProPub-
licaWeb http://www.ProPublica.org/special/hydrautiaeturing-national. Reproduced with

permission from Pro Publica inc.



idealized or simplified fracture geometry models has madgrafieant contribution. These
models which serve as fracture prototypes for analysingnfiueence of the problem parame-
ters give insights into the hydraulic fracture process. Gfrthe first fracture geometry models
is called the PKN model [4, 6]. The model assumes that théuradength is much greater
than the fracture width, that its width slowly varies alohg tength of the fracture and that the
fracture evolves under plane strain within any verticabsreection perpendicular to the length
of the fracture. The model proposes an elasticity equatiomhich the net fluid pressure in
the fracture is linearly proportional to the width of thednare. The proportionality constant
depends on the material properties of the rock. In this shésionsider a two-dimensional
fracture driven by ultra high pressure fluid and propagatingder plane strain conditions in a
homogenous permeable rock. The deformation of the rock detter using the PKN formu-
lation and the fluid flow in the fracture is modelled using thbrication equations. Because
the PKN model is used the width of the fracture satisfies aineat diffusion equation.

Fitt et al [14] were the first to apply the powerful method ofrsyetry analysis of dif-
ferential equations to hydraulic fracturing. They solvild problem of a two-dimensional
hydraulic fracture with the PKN model and for a fracture wiitn-zero initial length. Fareo
and Mason [15] extended the work of Fitt et al to include pexide rock with fluid leak-off
into the rock formation. Fitt et al [14] and Fareo and Masdhsi [donsidered the special case
in which the fracturing fluid is Newtonian.

A new feature of this thesis is that the fracturing fluid is idewtonian. A two-dimensional
fracture with non-zero initial length driven by an incomgsile, non-Newtonian fluid of
power-law rheology will be considered. The fluid flow in thadture is considered laminar
and with negligible inertia. The extension to non-Newtorflaids is motivated by the recog-
niton that most fluids used in hydraulic fracture operatigisplay non-Newtonian behaviour.

They can be modelled as power-law fluids [16, 17].

1.2 Objectives and outline of the thesis

In this thesis, the objective is to study the problem of a tirmensional fracture driven by a

power-law fluid in both permeable and impermeable rock. TIKN hodel, which assumes
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a linear relationship between the excess fluid pressureeirirtitcture and the fracture half-
width will be used. The mathematical method employed fovisglthe mathematical models
derived in this thesis is Lie group analysis which avails uthwsystematic techniques for
obtaining exact analytical solutions. Numerical methogswesed on the nonlinear ordinary
differential equations derived in this thesis when furttegtuction is not possible due to insuf-
ficient symmetries.

In Chapter 2, a brief discussion is made on Newtonian and\hemtonian fluids and their
classification. The various constitutive models char&iteg these fluids are briefly outlined
and the shortcomings of some of these constitutive modelsesiewed. Eact time, such
shortcomings pave the way for a more robust constitutiveehod

In Chapter 3, we give a concise introduction to Lie group gsialof differential equation.
We focus on the theory of the Lie point symmetry method forrg@uction of differential e-
quations, which is used in this thesis. Finally, we dischespplication of invariance criterion
in the formulation of a boundary value problem as a pair dfahvalue problems.

In Chapter 4, we study the problem of modelling a two-dimenal power-law fluid-
driven fracture in impermeable rock. The chapter begin$ whe derivation of the two-
dimensional thin film equations in dimensionless form. ddtrcing dimensionless quantities
allows the simplification of the Navier-Stokes and contipwgquations for a thin fracture.
With the aid of boundary conditions, the evolution equati@scribing the half-width of the
fracture is derived. Lie group analysis is used to reduceetimdution equation, which is a
nonlinear partial differential equation, to a nonlineadioary differential equation. Fitt et al
[14] were the first to use this approach. Numerical solutioihthe nonlinear ordinary dif-
ferential equations are also investigated. A new featutleesnvestigation of the streamlines
and the fluid velocity averaged across the fracture. Thidséa an approximate solution for
the fracture profile which is accurate even for a shear thopfiuid with small values for the
power-law exponent.

Chapter 5 considers the problem of modelling a two-dimeraipower-law fluid-driven
fracture in permeable rock. The velocity of the flow in thecftae is taken to be the width-
averaged fluid velocity. The thin film equations derived ina@ter 5 are similar to those

derived in Chapter 4. The main difference is the leak-ofbegl which is introduced in the
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evolution equation through the boundary condition at thieftock interface. Exact analytical
solutions and numerical solutions are obtained and andlyldee average fluid velocity in the
fracture is investigated.

In Chapter 6, conservation laws for a power-law fluid-drivieacture are considered us-
ing three different approaches, the direct method, theacharistic method and the partial
Noether approach. The generation of new conserved vectmsknown conserved vectors is
considered. The association of a Lie point symmetry with@seoved vector is investigated
to determine the physical significance of the conservaton A new feature of the leak-off
velocity as a term in the partial differential equation is #xistence two kinds of conservation
law depending on which component of the conserved vectdetieoff velocity is included.

Finally, conclusions are summarised in Chapter 7.



Chapter 2

Non-Newtonian fluids and their

constitutive models

2.1 Introduction

This chapter reviews the literature on non-Newtonian flaidd the various constitutive mod-
els characterizing their behaviour which are applicablénéostudy of fluid-driven fracturing
of rock. We first recall the very basic and widely acceptednitdins of such terms as a
fluid and viscosity. The definitions provide a valuable imgigto the very essence of the
non-Newtonian characteristics of certain fluids.

A fluid is a substance that deforms continously under theiegdn of a shear stress,
while viscosity is the immediate resistance produced bylthe to such a rate of deformation.
For certain fluids, the rate of deformation that they expexgehas no effect on their viscos-
ity. Such fluids are called Newtonian fluids and the relatp®etween the shear stress,

applied on them and the deformation ratds described as [18, 19]
T = €, (2.1.1)

wherey, called the dynamic viscosity, is constant. Examples ofifiuhat fall into this cat-
egory include water, air, certain motor oils, honey, gasglkerosene and most mineral oils.
The Newtonian fluid is the basis for classical fluid mechan@a the other hand, some flu-

ids have a viscosity which changes as they are being deforiitad class of fluids is called
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non-Newtonian fluids. The relationship between the sheasstand shear deformation rate
for such fluids cannot be described by the simple relatiorgueé&on (2.1.1), since, their
dynamic viscosity, depends on the magnitude of the rate edrsht can also depend on time
for some materials that behave in different ways dependmigasv long the stress is applied
for.

Non-Newtonian fluids arise in virtually every environmenvand us. They are encoun-
tered in the chemical and plastic industry as polymeric #§ii®]. Paints, quicksand, slurries,
drilling mud, lubricants, nylon, and colloids all exhibibn-Newtonian behaviour. They are
found in our homes, for example, a mix of cornstarch and watelted chocolate, eggwhites,
tomato ketchup, toothpaste, body paste, mayonaise, aatirgelin the human body, for
example, mucus, whole blood (composed of plasma, red antewhiod cells, platelets);
and they occur naturally as molten magma and mud slurriedortuimately, due to the di-
verse manner in which these non-Newtonian fluids respondgarsleformation rate, there is
not a single model that can describe the behaviour of allMewtonian fluids. As a result,
much theory has been developed and non-Newtonian fluids eatalssified into different
categories depending on how the shear stress is related gh#ar rate. Many models have
been proposed for the constitutive relationship betweenstiear stress and the shear rate
for non-Newtonian fluids. The aim in this chapter is to act agi@me through some of the
developments and to elaborate on how and where the modelseassed, as well as the short-
comings of some of the models. A brief discussion on a mosea@dale is first given on how
the macroscopic flow of fluid and flow deformation rate aretegldo the configuration and
motion of the individual molecules, and how, in turn, thecaigs resistance is related to the

intermolecular and interparticle forces in the fluid.

2.2 Microstructure and macroscopic fluid phenomena

Flow or deformation involves the relative motion of adjaicelements of the material. As
a consequence such processes are sensitive to interaiateitnolecular and interparticle
forces. The macroscopic behaviour displayed by most nomtdiean fluids is primarily a

reflection of an underlying microstructure. For exampleadeaty of non-Newtonian fluids



are colloidal suspensions. These fluids are Newtonian stdweich as water containing a dis-

persion phase of small particles, ranging in size from 1 negter (0~°m) to 1 micrometer

(10~°m). Table (2.2.1) displays some important types of collbgyatems [20]. Interparticle

forces, which are attributed to the aggregate interacti@tseen individual molecules, elec-

trostatic forces, effect of the intervening solvent mediane all factors ensuring the stability

of such colloidal dispersions and that the particles do atitesout by gravity. For these col-

loidal suspensions, the microstructure that developsim frarticle-particle or particle-solvent

interactions which are often of electrostatic or chemicggin. In the case of polymeric fluids,

the microstucture is their molecular chemical composiéind structure [19].

Disperse systems

Disperse phase

Disperse medium

Milk, butter, mayonnaise, pharmaceutical creams, asg
Clay slurries, toothpaste, muds, polymer latices
Blood

Fog, mist, tobacco smoke,aerosol sprays

Inorganic colloids (gold, silver iodide, sulphur

metallic hydroxides), paints

Jellies, glue

Ratjuid
Solid
Corpuscles

Liquid

Solid

Macromoleculeg

Liquid
Liquid
Serum

Gas

Liquid

Solvent

Table 2.2.1: Some typical colloidal systems.

The deviation from the Newtonian fluid behaviour given by apn (2.1.1) occurs when

we do not have a linear relationship between the shear siressd the shear rate,or when

ther — e graph does not pass through the origin. As shown in Figu&1R.non-Newtonian

fluids can be classified into the following three categorisd:[

e Fluids for which the value of the shear stressjepend on the current value of the shear

rate,e. These fluids are variously known as purely viscous, inggsine-independent
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Time Independent Behaviour
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Purely viscous

Y
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Y
Thixotropics Rheopetics Viscoelastics
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Figure 2.2.1: Classification of non-Newtonian fluids.




or generalized Newtonian fluids,

e Fluids for which the shear stress, depends on the shear rateas well as on the
kinematic history and the duration of shear, t. These aravkras time-dependent or

memory fluids,

e Fluids that exhibit both a blend of viscous fluid behavioud a elastic solid-like be-

haviour. These are called visco-elastic fluids or elastisgous fluids.

The above classification is quite arbitrary since most floitisn display a combination of two
or all of these properties. We will now discuss each of théassdications in turn and also

present the constitutive equations characterizing them.

2.3 Constitutive equations for purely viscous fluids

By a purely viscous fluid, we mean a fluid for which the stresarst given material point

and time is a function of the velocity gradient evaluatedhatgoint and time of interest. This
class of fluid has no memory and hence does not depend on tiroe #ie fluid response
is characterized solely by motion at the present time. Theysametimes referred to as

"generalized Newtonian fluids” [19] and are described bydimpirical relation
T =ne (2.3.1)
wheren is a function of the magnitude of the rate of shear or by
e=" (2.3.2)
n

wheren is a function of the shear stress.
Depending upon the form of equation (2.3.1) or (2.3.2) dlz@e three possible behaviours
that these fluids display:

e Shear thinning of pseudoplastic behaviour,
e Viscoplastic behaviour with or without shear thinning

e Shear thickening or dilatant behaviour

10



shear stress

shear rate

Figure 2.3.1

In Figure (2.3.1), the qualitative behaviour of these trozategories of fluids is shown. The

curve having a straight line through the origin represemigwatonian fluid.

2.3.1 Shear thinning fluids

These are the most widely encountered time-independeriearionian fluids in engineering
practice. Most of the fracturing fluids used in the mining gedroleum industry are shear
thinning [22]. These fluids have viscosity which gradualBcrbases with increasing shear
rate. According to [19, 21], almost all polymer solutionglanelts that exhibit a shear rate
dependent viscosity are shear thinning. However, at lowlagd shear rates, most shear
thinning polymer solutions and melts have limiting vis¢pghat remains constant in some
range of shear rate and they are said to display Newtoniaavimir. This is observable in
Figures (2.3.1) and (2.3.2). The limiting viscosity of sh#banning fluids at low shear rate is
called zero-shear viscosity, denoted/gywhile that at high shear rate is called infinite-shear
viscosity, denoted by... Thus, the viscosity of shear thinning fluids decreases fpto 7.
with increasing shear rate and is therefore bounded beloyy gnd above byj,.

In mathematically representing the shear thinning beheobfluids, many mathematical

11
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Figure 2.3.2

models of varying complexity and forms have been reportdtierliterature. Some of these
are attempts at curve fitting of the experimental data to givempirical relationship for the
shear stress - shear rate curves or the viscosity - sheacuate, while others have some
theoretical basis in statistical mechanics [23]. An extenfisting of viscosity models can
be found in several textbooks [19, 23]. Some of the widelydugscosity models for shear
thinning fluids are now discussed.
(i) The power-law model of Ostwald and De Waele

The standard power-law model with two parameteasidn expresses viscosity as a func-
tion of shear rate by the relation

n=rkle" ", (2.3.3)

wherek is the consistency coefficient amdis the power-law exponent. The parameters
andn are temperature dependent. Fok n < 1, % < 0 which means that decreases
with increasing shear rate. For> 1, d—’z > 0 which means thay increases with increasing
shear rate. The case= 1 represents Newtonian behaviour. The power-law model3RiSa
relatively simple equation which models to a reasonableamation those features of shear
thinning fluid viscosity which are important over an intdrgashear rate. It is this simplicity
that makes the power-law model the most well-known and widsked empirical formula in
engineering work [19]. However, this model has its weakesssd shorcomings. As seen in

Figure (2.3.1) and (2.3.2), one of these weaknesses ligmifatt that the power-law model

12



is incapable of predicting the lower and upper Newtoniantgala in the limitss« — oo and

e — 0. It therefore applies to a limited range of shear rates aaddfues of the parameteirs
andn will depend only on the range of shear rates considered. Motde shorcomings can
be found in [19, 21].

In order to rectify and overcome some of the shortcomingdhefgower-law model in
describing shear thinning fluid behaviour, the price of ddal empirical constants is paid.
Cross [24] and Carreau [25] presented empirical formutatiovhich take into account the
viscosity of shear thinning fluids in the limits - oc ande — 0, while the Ellis model
[26, 27, 28] takes into account the fluid viscosity of sheariing fluids in the limite — 0.

(if) The Cross model

The cross model is typically written in terms of four paraenst

0= 1 + 0" Tlec (2.3.4)

wherern, andrn,, are the zero-shear-rate and infinite-shear-rate visesgiispectively ani
andn are as defined in the power-law equation (2.3.3).(Farn < 1, (2.3.4) describes shear
thinning fluid behaviour. In the limi¢ — 0, n = 7y and fore — oo, n = 7n,. Therefore the
Cross model correctly predicts the lower and the upper ilmgiviscosities. The Newtonian
limit is fully recovered wherk = 0.

(i) The Carreau-Yasuda model

The Carreau-Yasuda model, comprising five parameters éngis

n—1

M= 1o + (10 — 1) (L+ (X)) = (2.3.5)

The parameterg, andn,, are as defined in the Cross modglis a time constanty is the
power law exponent and is a dimensionless parameter that describes the transégan
between the zero-shear-rate region and the power-lawrregiiena = 2, (2.3.5) reduces to

the Carreau model with four parameters

n—1

N= N+ (M0 — o) (L+ (Ne)?) = . (2.3.6)

13



(iv) The Ellis model
The Ellis model takes the form (2.3.2) and the viscosityyegped in terms of shear stress

IS given as
11 o
= 1 +
n Mo

T

TL
2

: (2.3.7)

wherer, is the viscosity at zero shear amg is the value of the shear stress at which the
fluid viscosity,n, drops torn,/2. At a very low value of shear stress, (and hence shear rate),
Newtonian behaviour with viscosity, is approached. As the shear stresshecomes large
with respect to-%, such thaﬁ'/T% >> 1, we havey = 7071 /71 and substituting into (2.3.3)
gives

1-1) 1 .

T=10 e,
2

(1-

1) 1
which is a power-law model with = 7, “)ng andn = 1/a. The Ellis model does not
2

predict the upper Newtonian regime, the viscosity at irdisitear rate.

2.3.2 Viscoplastic fluids

Non-Newtonian fluids include those that will not flow or defoexcept if acted on by some
finite threshold stress called yield stress. These fluidsalled yield-stress fluids. Yield stress
Is that stress below which the substance behaves like aticesadid and above which the
substance behaves like a liquid with a plastic viscogityThe simplest yield-stress material

is called the Bingham plastic fluid which obeys the constitutelation

T =Tyt e [T > |7

e=0, || < |7y - (2.3.8)
Model (2.3.8) describes the Newtonian behaviour of visasiit fluids for|r| > |7,|. Flu-
ids exhibiting Bingham plastic behaviour include highlyncentrated suspensions of solid
particles [29]. Viscoplastic materials exhibiting shelainhing behaviour are referred to as
Herschel-Bulkley materials [29] and are described by theseteel-Bulkley model

T=T1,+ke", || > |7l

e=0, || < |7yl (2.3.9)
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Another model which has its origin in blood modelling, bushmeeen widely found useful for

modelling some other viscoplastic substances is the Camsdel given as

VT = VTy + \/"lp lel, [7] > |7]
e=0, || < |7yl (2.3.10)

Despite these fascinating models describing viscopléstetbehaviour, it is worth observing
that Barnes et al [30, 31] have challenged the existenceeoyitid stress. They argued that
“yield stress is a mere idealisation, and that given aceuna¢asurements, no yield stress
exists”. They continued in their arguement by stating thaitlf the aid of new generation
rheometers, accurate measurements at low enough sheawtath nullifies the yield stress

theory can be made”.

2.3.3 Shear thickening fluids

Shear thickening fluids are also called dilatant fluids. Thaye the property that their vis-
cosity increases with increasing shear rate. Examplesidfdikhibiting shear thickening are
concentrated suspensions of china clay, titanium dioxieaamix of corn starch and water
[19, 21]. Of the time-independent fluids, dilatant fluids @@enerated very little attention
since most fluids do not display dilatant behaviour. The fl@ldviour of shear thickening

fluids is described by the power law model of equation (2.&13ren > 1.

2.4 Constitutive equations for time dependent fluids

This class of fluids have viscosities that depend not onlyherrate of shear, but also on the
time for which the fluid has been subjected to shearing. Tih&arnal structures undergo re-
arrangements during deformations at a rate quite slow tateaaiequilibrium configurations.

This results in the shear stress changing with the durafishear. Time dependent fluids can

be classified into two kinds: Thixotropic fluid and Rheopéiieds.
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2.4.1 Thixotropic fluids

These fluids exhibit behaviour called thixotropy and hageesities which decrease with time
of shearing when sheared at a constant rate. Examples éclag suspension, emulsions,
drilling fluids, protein solutions, certain paints, inksdacoating greases [29, 32]. A detailed

literature review and models describing thixotropic baetavis found in [32].

2.4.2 Rheopetic fluids

The behaviour exhibited by these fluids is called rheopexy,itis the opposite of thixotropy.
Rheopetic fluids are fluids whose viscosities increase wiitle tof shearing when sheared
at a constant rate. Examples include bentonite solutiarikidal suspension of vanadium
pentoxide at moderate shear rates and coal-water slu2ie29].

Much effort has been invested in the development of constuelations describing
thixotropic behaviour, stemming from its wide and frequetturrence in industrial process-
es [32, 33]. However, many of the models used to describ@tfugy involve alterations of
the existing constitutive equations-the generalized Navain fluid model, Herschel-Bulkley
model, Bingham model, in such a way as to incorporate timew@pnce into the fluid vis-

cosity and yield stress.

2.4.3 Viscoelastic fluids

Viscoelastic fluids are fluids having both viscous and elgstoperties. These fluids, when
deformed and upon removal of the stress causing deformiasiea the ability to recover and
regain their original shape in an elastic manner. Polymiwids are dominant among the
different classes of fluids exhibiting viscoelasticity [2®d they are indeed sometimes refered
to as viscoelastic fluids [19]. Some non-polymeric matsmahibiting viscoelasticity are gels,
soap solutions, emulsions, synovial fluids and foams [21].

An important effect of viscoelasticity is that shear flowgagrise to normal stresses which
act in the direction normal to that of shear. The effects eséhnormal stresses are manifest-

ed in physical phenomena such as rod climbimg (Weissenliect)e die swell and tubeless
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syphon [19, 34]. Viscoelastic fluids can be classified into knds depending on their dis-
placement behaviour in response to applied stress. Thdynaee viscoelastic fluids-with a
very small displacement gradient response and nonlinsaoglastic fluids- with large dis-
placement gradients response. A thorough coverage of matieal models describing linear
and nonlinear viscoelastic fluids is found in [19, 21, 34].

A class of fluid called the Rivlin-Ericksen fluid of order twahich is a member of a
general category of fluids called fluids of differential typeinformally as Rivlin-Ericksen
fluids [35] can describe the normal stress effects encoediiarphenomena like die swell and

the Weissenberg effect. It is described by the constit@mueation
T = —pl + pA; + a1 Ay + aAj (2.4.1)

whereu, a; anda are material constantg, being the viscosity. The tensors, which is

twice the rate of strain tensor anfj are the Rivlin-Ericksen tensors defined by

A =VV 4+ VYV (2.4.2)
dA
Ay = d—tl + A VV +VVT A4, (2.4.3)

A detailed account of the characteristics of second - graudlésfis well documented in [35].

2.5 Conclusions

In this chapter, a review of non-Newtonian fluids and the oausiconstitutive models char-
acterizing them has been made. The power-law constitutademwhich is the model used
in the remainder of this thesis has been discussed. The tagdyenthat the power-law model
has over the other constitutive models for non-Newtoniaidgltnave been highlighted. The

shortcomings of the model have also been discussed.
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Chapter 3

Mathematical preliminaries

3.1 Introduction

In Chapter 2, we described non-Newtonian fluids by their thuisve models. The equations
derived using these models are often highly nonlinear affidwli to solve analytically. Nu-
merical computations have been used in an attempt at obgasalutions to these nonlinear
equations. Without underestimating the importance of moaky solving these equations
for the problem under investigation, analytical solutioesiain more profound because they
help us see how variables are related to one another as wetidesstanding the effect of
parameters that are present in the differential equatidrbanndary conditions.

There are many problems in non-Newtonian and Newtonian fhigdhanics where closed
form solutions are not easily obtainable by the standarchaust of integration due to the
nonlinearity of the differential equations encounterethiese problems. An approach devel-
oped by the 19th century Norwegian mathematician, Sopheig1842-1899) enables exact
analytical solutions to linear and nonlinear differenégliations to be derived in a systematic
manner. We begin this chapter by outlining the essentiailifea of Lie’s classical approach
to solving partial differential equations. A non-classiapproach to solving differential e-
guations, which is a generalisation of Lie’s method for firgdgroup invariant solutions, was
proposed by Bluman and Cole in [36]. In Section 3.2, we dis¢he theory of Lie group

analysis of partial differential equations, an approachlé@mented in this thesis to reduce a
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second order partial differential equation to a secondrandelinear ordinary differential e-
quation. Finally in Section 3.3, we describe briefly a mettmtransform a boundary value
problem into a pair of initial value problems, an approachmkeuse in this research to derive

numerical solutions.

3.2 Lie’s classical symmetry method for partial differential
equations

We will briefly describe the theory of Lie group analysis oft differential equations which
is required in this thesis.
For simplicity and without loss of generality, consider #tle-order ¢ > 1) partial differ-

ential equation in one dependent variablendn independent variables= (2!, 22, ..., 2"):
F(x,u,uqy, ... uw)) =0, (3.2.1)

whereu ), ue) up tou) are the collection of all distinct first-, second- up to kitdker partial
derivatives with respect to the independent variables:
ou 0*u 0Fu
vy = ik e = g b0 = g )
with 1 <, 4,4y, ...,0 < n.
By a classical symmetry group of (3.2.1), we mean a contirgpaap of invertible point

transformations in a plane that depends on the group paganeét,

u=g(zr,u,a), (3.2.2)

which acts on the space of independent and dependent \&mjdbhving equation (3.2.1)
form invariant and converting any classical solution o2(B8) into another classical solution
of (3.2.1). The transformations (3.2.2) satisfy all founjperties of a group which are closure,
inverse, identity and associativity and are said to formeparameter symmetry group.

The solutions of (3.2.1) which are invariant under (3.212) @lled group invariant solu-

tions, and are found by solving a differential equation wathas fewer independent variables
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than (3.2.1). The transformations (3.2.2) which leave.(3.thvariant provide symmetries
which are used in the reduction of the number of independamies in (3.2.1). The proce-
dure leading to the derivation of the symmetries used ingdeaction process is now outlined.
We first note that for sufficiently small, the finite transformations (3.2.2) candxpanded in

a Taylor series about = 0 to obtain the infinitesimal transformation

T =a2"+al'(z,u), i=1,...,n
u=u+ an(x,u), (3.2.3)
where
, , , of(z,u,a) dg(x, u, a)
7 0 — et 0 — 7 _ < N’ 7 7 - = ' = 7 .
filau,0) =", g(z,u,0) = u, &(z,u) da |, " da g

To recover the one parameter finite group of transformai{@r&s?2) from the infinitesimal

transformations, we solve the Lie equations

o dxt . du
subject to the initial conditions
7’ =2’ @ = u, (3.2.5)
a=0 a=0
wherez = (z!,...,z"). The infinitesimal transformation (3.2.3) can be convetiyerepre-
sented by the linear differential operator
0 0 0 0

ox! 0x? o™ ou’

called the symbol of the infinitesimal transformation. Euipa(3.2.6) is also referred to as
the infinitesimal operator or Lie symmetry generator.

The infinitesimal point transformation (3.2.3) can be egtahto include the partial deriva-
tives of the dependent variable Since the point transformation (3.2.3) form a one-paramet
group, their extension to the partial derivatives.af any order is also a one-parameter group

and is called an extended point transformation group.
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3.2.1 Lie point symmetries of differential equations

The partial differential equation (3.2.1) is solved by derg their group invariant solution.
The first step towards obtaining a group invariant solutimoives the derivation of the Lie
point symmetry generators of (3.2.1).

The Lie point symmetry generators

0 0 0 0
_ 1 n . .
X =& (w, )al+§(x u)82+ .+ & (x,u)aanrn(x,u)au (3.2.7)
of equation (3.2.1) are derived by solving the determiniggagion
X[k"}F(a:, U, Uy - - - 5 Uk)) =0, (3.2.8)

F=0

for ¢X(z,u), &(z,u), ..., £"(x,u) andn(x, u), whereX*], called the kth prolongation of,

is given by
k]—X—i—Zngz +ZZCW - +Z Zc” g (3.2.9)
i=1 j=1 i1=1  ip=1 zh.zth
fori < jandi; <i, < ... <1, Where
C:ci:cj - :c] C:c Zu$ g;ngc] ,
Coitaie = D lk zil . gtk— 1 Zu lpit . pik— 1D i (él) (3.2.10)

The total derivatives with respect to the independent bégia’ in (3.2.10) is

0 0 Z 0
D;i=D, = — i — plpie—— . 3.2.11
ozt o ou * — Hat Oy * ( )
The unknown functiong! (z!, ... z" u), &(2', ... 2" ), ..., (2, ... 2", u) and
n(x!,... 2™ u) in the Lie point symmetry do not depend on the derivatives.dfhe deriva-

tives ofu in the determining equation (3.2.8) are independent. Hetheecoefficients of the
powers and products of the partial derivativesiah the determining equation (3.2.8) must

each be zero.
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The determining equation is then separated according tpdthwers and products of the
partial derivatives ofu and the coefficient of each power and product of derivatiet4s
zero. One then obtains an overdetermined system of lineaogenous partial differential
equations for the: + 1 coefficient functiong® andr. Solving this overdetermined system of
equations produces expressions for ghandr. These solutions contain a finite number of
arbitrary constants and may contain undetermined funstdrthe variables . Setting all the
constants and undetermined functions to zero except ongnnwe obtain all the Lie point
symmetry generators admitted by the differential equatibthe partial differential equation
(3.2.1) contains an arbitrary function of some of the indejemt variables!, 22, ..., 2", a
partial differential equation for the arbitrary functiomhich must be satisfied for the Lie point

symmetries to exist, is obtained.

3.2.2 Group invariant solutions

The symmetries obtained are of the form

0

Xo = €l w) oy + €20 0) g 4 € )+ ()

ol 52 e (3.2.12)
fori =1,2,...r, wherer is the number of admitted Lie point symmetries. Since a @orist
multiple of a Lie point symmetry is also a Lie point symmetgy linear combination of Lie
point symmetries is also a Lie point symmetry. Denoting timear combination byX ., we
obtain

XC = Cle —|—CQX2 —|—C3X3—|— ...+CTXT, (3213)

wherec;, i = 1,2, ...r, are constants.

The group invariant solutiony = (2!, 22, ..., 2"), of the nonlinear partial differential
equation (3.2.1) is obtained by solving the first order dueesar partial differential equation
for 1,

Xe (u—1o(xt,2?,...,2") =0. (3.2.14)

u=tp(al @2,...,o")

The group invariant solution is then substituted back irfoation (3.2.1). One then obtains

a partial differential equation in — 1 independent variables. The number of independent
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variables is thus reduced by one. This technique when repenay eventually reduce the

partial differential equation to an ordinary differenteguation in one independent variable.

3.3 Formulation of a boundary value problem as a pair of
initial value problems

In solving numerically a two-point linear or nonlinear baany value problem several tech-
niques have been developed. These techniques involvaveenaethods such as the shooting
method, finite difference methods, integral methods, anditevative methods such as the
method of superposition, method of adjoint operators,riavéembedding and the method of
transforming the boundary value problem to a pair of inNellue problems.

The method of transformation is employed to solve the boyne#ue problems encoun-
tered in this research. The applicability of this methodgles on invariance principles and
it involves the formulation of the boundary value problemagsair of initial value problem-
s. This method proves useful for a class of differential éiqua or systems of differential
equations that are invariant under certain groups of hommgglinear transformations. This
invariance condition then ensures the convertibility a&f Houndary value problem into two
initial value problems. The first initial value problem ishged to obtain an initial condition
for the second initial value problem. The solution of theosetinitial value problem is the
solution of the original boundary value problem. Numerieghniques like the Runge-Kutta
method can be used to solve the initial value problems iftes@lations cannot be obtained.

The method was used to solve the Blasius boundary valuegobler a semi-infinite
domain for steady two-dimensional flow of an incompressthl& past a flat plate placed
edgewise to the stream [37]. Several extensions of the rdéthee been made. The connec-
tion of the method to group theory was first discovered by Keni37]. He extended the
idea to a broader class of ordinary differential equatior ®ystems of differential equations
invariant under a linear transformation, with boundaryditians specified at the origin and at
infinity. The boundary condition at the origin was homogenolhe extensions to boundary

value problems over a finite domain, with boundary condgispecified at both ends, and to
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some equations that are not invariant under the linear gtmutpare invariant under the spiral
group, was made by Tsung Yen Na [38, 39]. The homogeneityitondat the initial point
was later replaced by a mix condition by Klamkin [40]. Furthéormation on this method is

givenin [41, 42].

3.4 Conclusions

In this chapter, we have discussed the theory of the matheshatethods that will be used to
solve the mathematical models derived in this thesis. Theyawerful methods which can

be applied to nonlinear problems.
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Chapter 4

Modelling two dimensional power-law

fluid driven fracture in impermeable rock

This chapter considers a two-dimensional PKN fracture rhfmdempermeable rock. A re-
view of hydraulic fracture modelling has been given by Mdadken [43]. The fracture model

under consideration is driven by non-Newtonian fluid of poleev rheology.

4.1 Derivation of the thin fluid film equations

In this section, we will derive the two-dimensional thin fikeguations for the flow of the
injected power-law incompressible fluid in the fracture.n€ider a two-dimensional fluid-
driven fracture propagating in an isotropic, homogenoogermeable and linearly elastic
medium. The medium is characterized by its Youngs’ modfusnd Poisson ratio. The
two-dimensional model was first developed by Khristian@nd Zheltov [2]. The nomencla-
ture and coordinate system used are illustrated in Figuré 4.

The fluid flow which is laminar is independent pfand obeys the two-dimensional mo-

mentum balance equation and conservation of mass equatian incompressible fluid,

p(%ﬂy-@y) =V

wherev = (v,(z, 2,t),0,v.(x, z,t)) denotes the fluid velocityy, the density of the fluid

1T

+F, V-v=0, (4.1.1)

which is a constantf’, the body force per unit mass aid the Cauchy stress tensor, which
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Figure 4.1.1: A hydraulic fracture propagating in an etastipermeable medium. The coor-

dinate direction y points into the page amglis the far field compressive stress.

can be decomposed into the isotropic part and the tracedé@atoric part as follows:
Sij = —poi; + Tij,  Ti =0. (4.1.2)

We consider the constitutive rheological relation for acoimpressible power-law fluid of the

form
Tij = K ‘€|n—1 €ij, (413)

where the parametel (with units of Pas™) is called the consistency index and(dimen-
sionless) is the power-law exponent, also called the fluidhbi®ur index. In (4.1.3)j¢|, the

magnitude of the rate of shear, is defined by

le| = \/%ZZQ]’@U = % (tre2). (4.1.4)

By definition,

e=Vu+ Vol

is the first Rivlin-Ericksen tensor wheRév is an outer product defined by

Fle

<vx,0,vz). (4.1.5)

S
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Also

Ovg Ovy Ovg
2% 0 ox + 0z

€= 0 0 0 (4.1.6)

Ovg % %
0z + ox 0 2 0z

and
A(%e)’ 4 (G 9m) 0 2(% 4 %) (G 4+ 22)
€ = 0 0 0 . (4.1.7)
(%) (B +92) 0 (Z42m) +4(%)

But since the fluid is incompressible, from (4.1.1)

ov, Ov,
+

- 4.1.
ox 0z 0 ( 8)

and therefore the tenset is diagonal. Hence

1 0, 2 ov, 2 ov, Ov, 2
Srwer= o (2) o (22) s (B2 22Y

Using (4.1.4) and (4.1.9), equation (4.1.3) becomes

v, \ 2 ov.\> [ 0Ov, aZQ%
Tij:K<2<81;) +2(62)+(a’;+81;)> s (4.1.10)

The body forceF’ due to gravity is neglected. The momentum balance equati¢hl.l) is,

in component form,
0 (3% +o % Y %) — _@ + g <KHn—12aUx)

ot * Ox * 0z
0 ov ov
— [ K1 ! z i 4111
+02( <8x+8z))’ ( )

ov, ov, dv.,\  Op 0 o1 [OVs  Ovy
p(@t +U$%+Uz(92)_ az+8x<KH (8x+az))
+ 9 (KH“—lz%) . (4.1.12)

0z 0z

and the conservation of mass equation in (4.1.1) is givedliy§). In (4.1.11) and (4.1.12),

v, 2 ov, 2 ov, Ovu, 2] 2
2((8x)+(az>)+(ax+8z)] . (4.1.13)
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For a Newtonian fluid<TI"~! reduces to the viscosity. We can therefore regaid "' as
an effective viscosity.
The fluid is incompressible and there is no leak-off into thekrmass. Hence, per unit

length in they—direction:

rate of change of the tota rate of flow of fluid into the fracture
= . (4119

volume of the fracture at the fracture entry

Let V'(¢) denote the total volume of the fracture per unit length inthelirection. Then
L(t)
V(t) = 2/ h(z,t)dz, (4.1.15)
0

whereL(t) is the length of the fracture at tinte Denote byQ(z, t) the total volume flux of

fluid in thex—direction along the fracture. Then

h(z,t)
Qz,t) = 2/ vz (x, 2,t) dz (4.1.16)
0
and the balance law (4.1.14) becomes
d h(0,t)
d—‘t/ =Q(0,t) = 2/ v.(0, 2, t) dz. (4.1.17)
0

In order to simplify (4.1.11) and (4.1.12) for a thin fracwre introduce the dimensionless
variables of lubrication theory [18]. Since the length of finacture is much greater than its
width, two length scales are used, = L(0), the initial fracture length and& = A(0,0), the
initial fracture half-width at the fracture entry. LEtbe a typical fluid speed in the fracture in
the z—direction which will be specified later. Therefore, from ttentinuity equation (4.1.8),

the typical fluid speed in the fracture in the-direction isUH/L,. Then

et g n—1
K" =0 (K (H) ) (4.1.18)

U n—1
g = K <E) : (4.1.19)

wherey, is the order of magnitude of the effective viscosit§i1" !, of the power-law fluid

and we define

in the fracture. For the power-law fluid in the fracture they®R&ds number Re is defined by

L 2—nL Hn—l
_PUL _ pU ot (4.1.20)
Lhe

Re
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We will make the thin film approximation of lubrication thgdi 8] which is

H H\”

The characteristic fluid pressur®, of the power-law fluid in the fracture is derived by
balancing the pressure gradient along the fracture withvigeous stress. Consider the-
component of the momentum balance equation (4.1.11) wheghacing the terms by their
order of magnitude, is

p(L]—z ~ _L% + ue% + Ue <L% + %) . (4.1.22)
By the lubrication approximation the viscous terms can bgragmated byu. U/H? and
(4.1.22) becomes
U? P U

P S 4.1.23
"I I + le s ( )

The inertia term in (4.1.23) is neglected since by the | approximation

. . U2
inertiaterm  5— H
=0 — Re (

2
" = — ] << 1L 4.1.24
viscous term .1 Lo) ( )

Equation (4.1.23) therefore reduces to

 ULop,  U'LoK

P = T = e (4.1.25)
which is the characteristic fluid pressure.
The dimensionless variables are defined by
7 Ut _ r oz Uy v, L
= — xr= — Zz = — /UI = -, /UZ = s
0 Ly’ H’ U UH
_ pH? pH™ _  h L(t) V(t)
= = =—, L(t)= —= = —=. 4.1.2
D= UL~ KLyom "= 1 0 =7 V) =gp (4126

With these scalings, (4.1.11), (4.1.12) and (4.1.8) become

H\? (v v v op H\?> 0 [~ _ 0
o _a: — x — x __ v 2 o e anl x
he (L0> (at Ty T 82) oz * (L0> (%( af)

O (on o (H\ 00, 07,
(e ()2 ),
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Re E ! @+@@+@%z —_@4_ E 2& K E 2%24_8@’”
Lo o oz Coz) oz Ly) 0z Ly) 0 0%

H\? 0 (., _ 00,
o, O0v,
ot =0, (4.1.29)

where

1=

()6 (@5%)]

and the Reynolds number Re is as defined in (4.1.20). We inthegain film approximation

of lubrication theory given in (4.1.21). Expressed in disienless variables and by dropping

the overhead bars the momentum balance and conservatioassfequations reduce to

op 0 (|0v. """ v,
i 4.1.
or 0z ( 0z 8z> ’ (4.1.30)
@ =0, (4.1.31)
0z
ov ov

i £ =0. 4.1.32
ox + 0z 0 ( 32)

The fluid flows through a two-dimensional fracture channeicivhs symmetrical about
the z—axis. We will consider the upper half of the fracture and diyd injection into the
fracture. We assume that there is no backflow in the fracitenv,.(x, z, t) has a maximum
value atz = 0 and decreases to zerozat h(x,t) because of the no-slip boundary condition

at the fluid-rock interface. Thus in the upper half of the fuae

v,

< 4.1.
% <0, 0<z<h(zt) (4.1.33)

and (4.1.30) can be written as

op 0 ov, " ov,
5 =5 ((— o ) 82) . (4.1.34)
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4.2 Initial and boundary conditions

Consider now the boundary conditions. Away from the fraettp, + = L(t), the width
of the fracture varies slowly along its length and the tatigéand normal components of the
fluid velocity at the fluid-rock interface are approximatelyz, h(z, t),t) andv,(z, h(z,t),t).
The boundary conditions at the solid boundary= h(x,t) of the fracture are the no-slip
condition for a viscous fluid and no fluid leak-off because ek is impermeable and no

cavity formation:

z = h(x,t): vz (x, h(z,t),t) =0, (4.2.1)
_ Dh _oh

= h(z,t) S, h(z, ), ) = =— =
z = h(z,1) vx(z, h(z,1),t) Dt | s 01

(4.2.2)

The above boundary conditions are applicable under thefltinoh film approximation [44].
From symmetry of the two-dimensional fracture aboutthexis, v, (z, z,t) vanishes on the

r—axis andv,(z, z, t) attains a maximum value on the-axis. Thus

v,

=0: L(2,0,1) =0,
z v,(x,0,1) P

(2,0,t) = 0. (4.2.3)
At the fracture tip;z = L(t), the width of the fracture vanishes:
h(L(t),t) = 0. (4.2.4)
The initial conditions are

t=0: L(0)=1,  h(0,0)=1. (4.2.5)

We impose the conditions(0) = 1 andh(0,0) = 1 because the characteristic length in the
x—direction is the initial length of the fracture and the cluaeaistic length in the—direction

is the initial half-width at the fracture entry. A pre-exisj fracture exists in the rock mass:
t=0: h(0,z) = ho(x), ho(0) =1, 0 <z < L(t). (4.2.6)

The initial fracture profiléi () and hence the initial volumig, cannot be specified arbitrarily.

They are determined from the group invariant solution.
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The partial differential equation fén(x, ¢) is obtained from the boundary condition (4.2.2).
From (4.1.31)p = p(z, ). Integrating (4.1.34) once with respecttand imposing the second

boundary condition in (4.2.3) gives

vy \" Op
— = <z < . 2.
( Gz) zax(w,t), 0<z<h(z,t) (4.2.7)
Thus
dp
x

Integrating (4.2.7) with respect toand imposing the no slip boundary condition (4.2.1) yields

n —(9]) % n+1 n+l
vz (T, 2, 1) TR ( . ) <h (r,t) — 2 ) , 0<z<h(z,t) (4.2.9)

In order to obtain, (z, h, t), we integrate (4.1.32) with respectddrom z = 0to z = h(x,t)
and use the first boundary condition in (4.2.3) and the foanfai differentiation under the
integral sign [45] with boundary condition (4.2.1). Thives

o h(z,t)

v (x, h,t) = e vz (x, 2, 1) dz. (4.2.10)

Using (4.2.10), the boundary condition (4.2.2) at the faiee> = h(x,t) becomes
on 9 [MY
R = 0. 4.2.11
BT + (%/0 vp(z,2,t)dz =0 ( )
Substituting (4.2.9) into (4.2.11) yields the nonlinedatien betweerh(z, t) andp(z, t)

Oh n 0 2nt1 dp . _
o + @i )or (h n (—%) ) = 0. (4.2.12)

On substituting (4.2.9) into the total volume flux of fluid hretz—direction,Q(x, t), given
by (4.1.16), we obtain

2n 8]7 % 2n+1

The balance law for fluid volume, (4.1.17), becomes

2n+1

(0, 1). (4.2.14)

av 2n dp "
At (2n+1) (_a_x(o’t>) h
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The total fluxQ(x, t) given by (4.2.13) must vanish at the fractureip= L(t¢) which gives
the condition

B3 (L), 1) <—g—i(L(t),t)) "o (4.2.15)

In order to close the system of equations and boundary dondia relation between the
internal fluid pressure(z,t) and the half-widtha(z, t) is required. We will use the PKN
theory [4, 6, 46, 47] for which, in the original dimensionariables,

p(z,t) — o9 = Ah(x,t), (4.2.16)

wherep(z, t) is the internal fluid pressurey is the far field compressive stress perpendicular
to the fracture and [4]
E

The constant\ is calculated from the material properties of the rock mhs§4.2.17),E and
v are the Young's modulus and Poisson ratio of the rock &nd the breadth of the fracture
in the y—direction. In the framework of the PKN model, it is assumeat:ti{1l) the fracture
length is much greater than its half-width and (2) that tHéWwalth of the fracture varies only
slightly along its length, with maximum variation occuginear the tip. Therefore in planes
normal to the direction of propagation of the fracture, dest# plane strain holds and the
stress states in any two cross-sections perpendiculaetditbction of fracture propagation
are independent. There has been renewed interest in the Ri{NInmAdachi and Peirce [46]
have shown that the PKN approximation is applicable in aeroepansion region away from
the fracture tip. The PKN model has been re-examined rgceyntKovalyshen and Detournay
[47] using new approaches for moving boundary problems.

The characteristic velocity/ has still to be specified. We choosgby balancing the

pressure gradiergg with A%. This gives the alternative expression for the charadteris

pressure,
P=AH, (4.2.18)
and using (4.1.25) foP we obtain
AHn+2 % EHn+2 %
= = ) 4.2.19
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When the far field compressive stregsis scaled byP and expressed in dimensionless form,
(4.2.16) becomes
p =09+ h(x,t). (4.2.20)

The dimensionless time in (4.1.26) is rescaled by defining

« n
e T (4.2.21)

Equation (4.2.12) becomes the nonlinear diffusion eqodtoh(z, t*),

8h+g j 2kl _%
ot* Oz ox

The balance law for fluid volume (4.2.14) and the boundanddam (4.2.4) become

3=

) ~ 0. (4.2.22)

% Oh, N\ o,
— _2(_3_95(0’t )) R0, 1), (4.2.23)
h(L(t*),t*) = 0. (4.2.24)

Condition (4.2.15) becomes

R (L), 1) <—%(L(t*),t*))" ~0. (4.2.25)

The problem is to solve the nonlinear diffusion equatio2 @) for the fracture half-width
h(z,t*) subject to the boundary conditions (4.2.23) and (4.2.24g Jolution obtained must
satisfy condition (4.2.25) that the flux of fluid vanishestad fracture tip.

The fluid velocity and the flux (4.1.16) are rescaled accardin

2 1 2 1 2 1
v, = (2n + )vx, v = (2n + )vz, Q= (2n + )Q. (4.2.26)
n n n
Equation (4.2.9) for, becomes
Ux(x’z’t)_(n—l—l)(@x) <h (x,t") — 2 ) (4.2.27)

The timet is scaled by the characteristic tirfiedefined by

2n+1)Le  (2n+1) ((1 — %) BKLBLH))% (4.2.28)

T f— R p—
n U n EHn+2
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and is highly dependent on the power-law exponentt can be used when comparing the
evolution of the fracture for different working conditioas the fracture entry with the same
value ofn. It cannot be used to compare the same working conditiondiffarent n; the
results would then have to be expressed in terms of the wtstaiet.

The timet* will be used in the remainder of the chapter but to keep thatimot simple
the star on the time and on the fluid variables will be supgess being understood that the

scaled time is used unless otherwise stated.

4.3 Lie point symmetry generators and general properties
of the group invariant solution

The group invariant solution of the partial differentialuagion (4.2.22) is the solution left

invariant under a continous symmetry group. The Lie poimisyetry generators

9, 9, 0
X = ﬁ(ta:h)a +§(txh)a (ta:h)ah

of equation (4.2.22) are derived by solving fdr £2 andn the determining equation [42, 48]

(4.3.1)

XElp =, (4.3.2)
F=0
where
2 1 n+1 n+1 1 2n+1 1—n
F(h7 ht7h$7h$$> = + ( nt )h%(_h$>T - _hT-‘—(_hz)Thww (433)

and subscripts denote partial differentiation. The segootbngationX ? of X is

0 0 0 0 0
X =X+ G+ Gy

oh. + C11 + Clom— ohn, + CQQWM, (4.3.4)
where
G = Dy(n) — hiDs(£9), i=1,2, (4.3.5)
Gj = Di(G) — haD;(€), 4,5 =1,2, (4.3.6)
with summation over the repeated indekom 1 to 2 and
Dy =D, = gt + htaah + h“a?zt + h“ﬁihr + .., (4.3.7)
Dy =D, = %Jrhxa%jthm%Jrhmaimjt.... . (4.3.8)
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SinceF = F'(h, hy, hy, hy,) only (1, (o and(ys have to be calculated. The partial derivatiye
which occurs in;, ¢; and(,; as well as in (4.2.22), is eliminated from (4.3.2) by evahmt
(4.3.2) onF’ = 0. Itis found that for) < n < oo,

0 0 1 0
pu— —_— _— 1 —_— JE—
X (c1 + CQt)at + (cq + C3x)6:1: + n+2) ((n+1)cs — ney) h@h’
= 01X1 + CQXQ + 03X3 + C4X4, (439)

wherec;, ¢z, c3 andey are arbitrary constants and

Y=g %= ()
n
5 TN o ) (4.3.10)
n
X?’:x%*(nw)h% Xi= 50

The values: = 1 for a Newtonian fluid andi = % had to be treated separately but the final
result is given by (4.3.9). Equation (4.3.9) for= 1 agrees with the Lie point symmetry
derived for a Newtonian fluid fracture [15]. Only the ratiotbe constants; to ¢, can be
determined because a Lie point symmetry is not changed bystamt factor. The complete
derivation of the Lie point symmetries of equation (4.2.B83)resented in Appendix A.
Now, h = ®(x, t) is a group invariant solution of (4.2.22) provided
X (h—®(z,t)| =0, (4.3.11)
h=>o

that is, provided

(0 + t>a<1>+( N )8(19 1
C C —_— C Cal)— =
LYo LT or T nt2

((n+ 1)cz — neg) . (4.3.12)

The system of first order differential equations of the cbimastic curves of (4.3.12) are

dt d 2)do
__dr (42 . (4.3.13)
g+t ctcer (n+1)es—ney)®
It is equivalently rewritten as
dt d dt 2)dd
4 ___(n+2) . (4.3.14)
1+ et eyt csx cit+cet  ((n+1)cg—ney) ®

On integrating each of the differential equations in (443, bne arrives at the following two

first integrals:

Cq + C3x 0]
I'=—————7F, [y

(Cl + Cglf)5 (Cl + CQt)(:_-&-é):_;_nLﬁ

(4.3.15)

36



The general form of the solution of the quasi-linear padifierential equation (4.3.12) is

Iy = f(Ty), (4.3.16)
wheref is an arbitrary function. Hence
Bz, 1) = (e1 + cpt) (PG f(), (4.3.17)
where
_Cat et (4.3.18)
(1 + cat) =
Since®(z,t) = h, it follows that

B, 1) = (&1 + et) PR T ~w £ ), (4.3.19)
where f(£) is an arbitrary function of. Equation (4.3.19) will now be used to reduce the

partial differential equation (4.2.22) to an ordinary ditntial equation.

Consider the partial differential equation (4.2.22). Sibsng (4.3.19) into (4.2.22) re-
duces (4.2.22) to the second order nonlinear ordinaryréifigal equation

Ld | g1 af " d n c (2n+3) B
e [f h <_d_§) ] - d_é(ff) (n+2) (g B )f(é) =0. (4.3.20)

Equation (4.3.20) does not depend@nWe therefore take, = 0 to give¢ = 0 whenz = 0.
From the boundary condition (4.2.24)

f(w)=0 where w(t)= _esl(t)

- (4.3.21)
(Cl + Czt)3
Differentiate (4.3.21) with respect to Then

df dw

— =0
dw dt

(4.3.22)
and therefore, assuming thaftw) is not constant, it follows thai(¢) is constant. Since

L(0) = 1 we obtain
L(t) = (1 n ?t) ” (4.3.23)
1

For sufficiently large time[(¢) becomes approximately the power la#, wherea = 5—33
andb = 2.
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The total volume of the fracture per unit length in the direction, V'(¢), is given by

(4.1.15). Rewriting (4.1.15) using (4.3.19) and (4.3.28%g

3

€2

2(01+62t)(2;:£d)%_%“/31 f(€)dg,
0

C3

V(t)

which may be rewritten as

(n+2 c n+2
V(t):%(1+9t) N

2n+3 ) c3 n
C1

whereV}, the initial volume of the fracture, is

<3
c2

2 ()25 (49
VE]:—CE W) 2 / f(&)de.
0

(4.3.24)

(4.3.25)

(4.3.26)

The balance law for total volume is given by (4.2.23). Substig (4.3.24) into (4.2.23) and

rewriting the right hand side of (4.2.23) using (4.3.19)sahe balance law in the form

_c3

cff(o)%% ( ﬁ(o))% =1 n (2n+3 _ 2) /00361 sz(g) de.

de n+ 2) n 3

Finally, condition (4.2.25) that the fluid flux vanish at tmadture tip becomes

We make the change of variables

U= 773 520361 C2u7 f(é)zcngQCl B CQF(”)?

The ratioZ* is obtained from (4.3.26) which gives

n+2
G _ (o)
Cl_Vc

and therefore

(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)

(4.3.31)

(4.3.32)



The quantities, andc are specified. The problem is to solve the ordinary diffeatetjuation

d [ o ( dF\"]| d no [T (2n+3)] .
du [F < du) du (uF) n+2 [c n F=0, (4.333)
subject to the boundary conditions
F(1) =0, (4.3.34)
1 dF " n 2n+3 1 !
R _ L
(F(0) < - (0)) - < - C) /0 Flu)du.  (4.3.35)

Once F'(u) has been calculated;(t), L(t) andh(z,t) are obtained from (4.3.25), (4.3.23)
and (4.3.19) which take the form

2 2n+23 c— s
vy - [ (55T 4339
- 0 c ch 5 ..
1/ ]

L) = |14+ == 4.3.37
(0 %(vc) t], (4.3.37)
vz 7 (55)e s

Vo L (Vo) "
— |1+ = F 4.3.
h(z,t) v —l—c <Vc) t] (u), (4.3.38)
and the fluid pressure is given by
p(z,t) = oo + h(z,1). (4.3.39)

Since H, the characteristic distance in thalirection, is the initial half-width at the entry to

the fracture(0,0) = 1 and therefore from (4.3.38)

Vo 1
Hence using (4.3.30)
Vo = 2 1F d 4.3.41

The initial half-width at the fracture entry/, and the initial length of the fracturd,,, are
specified. However, the initial volume of the fractuiig, in the group invariant solution

cannot be specified. It is determined from (4.3.41). The:ré;ti which occurs in (4.3.36)
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to (4.3.39) is given simply by (4.3.40). The solutions (86.to (4.3.38) forV/(t), L(t) and
h(z,t) can be written entirely in terms df (u) as follows:

2n+3

" ( n+2 )CinLJr?
V)=V, |1+ W] : (4.3.42)
t 4
L(t)= |1+ cF(?] : (4.3.43)
h(z,t) = |1+ i e Flu) (4.3.44)
T cF(0)5 F(0)’ l

wherelj is given by (4.3.41).
The solution forF'(u) must satisfy condition (4.3.28) that the flux of fluid vanighte

fracture tip,u = 1:

Cdu
The value ofc is determined from the operating conditions at the entraadbe fracture.

(F(1))2+ < dF(1))" ~0. (4.3.45)

A range of operating conditions with the corresponding &alafc, which depend om, are
presented in Table 4.3.1. The results in Table 4.3.1 aralyedekived by considering the
exponentsin (4.3.42) to (4.3.44) foi(t), L(t), h(z,t) and equation (4.3.39) for(z, t). From
(4.3.43), for large values of timé,(¢) grows approximately lik¢*. Except for the case= 1,
c Is an increasing function of. The wayc increases as increases frond < n < 1 for shear
thinning fluids, ton = 1 for a Newtonian fluid, tax > 1 for shear thickening fluids, is shown in
Fig 4.3.1. The evolution of the fracture has stronger depeoé on the working conditions for
shear thinning than shear thickening fluids. Except whervttheme of the fracture remains
constant, for shear thickening fluids c rapidly approaches/wasn increases and for large
values ofn the evolution of the fracture does not depend strongly omvibriiing conditions at
the fracture entry. The curves in Figure 4.3.1 do not int#raad therefore the relative effect
of the working conditions on the evolution of the fractureedmot depend on.

A general asymptotic result can be derived which holds fovallies ofc and alln > 0.

We look for an asymptotic solution of (4.3.33) of the ford{u) ~ A (1 —u)” asu — 1.
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Values ofc(n)
n=0|n=05|n=1|n=2|n
Length of fracture is constant| 0 0 0 0 0 0
Total volume of fluid in fracture

Operating conditions c(n)

I
g

s 0 0.125 0.2 | 0.286| 0.5
is constant

Pressure at fracture entry is

Pl 0 0.333 | 0.5 | 0.667 1
constant

Rate of change of the total

volume of the fracture is

. 2(n+1)
constant. Equivalently, rate of 5= | 0.66 | 0.75 0.8 | 0.857 1

fluid injection at the fracture

entry is constant
Speed of propagation of the

fracture is constant

Table 4.3.1: Physical significance of values:of

T T T T T T T T T
(@iv)
1

Figure 4.3.1: Variation of the exponenwith n for (i) ¢ = 5.2, (i) ¢ = 25, (i) ¢ = 55

and (iv)c=1.
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When this form is substituted into (4.3.33), we obtain

47 (M) (L—w)" T Ap (-
n

n 2n+3 1
n c

+ﬂp+n—n+2 —~)}AU—UV~Q (4.3.46)

asu — 1. The dominant terms balance each other in (4.3.46) provided

(2p—1)(n+1)

=p—1, (4.3.47)

which implies thap = #2 Substituting this expression fprinto (4.3.46) yields

n+1

A%( 1 )" (1_u)*(%§)_ A (l—u)f(%)

n+2
+(71)A(1—Qu—ﬂwhwa (4.3.48)

asu — 1, and therefore

n+1
2n+2 1 T A n 1
AT - Al==1)(1—u)~ 4.3.4
(n—l—Q) n+2+(n+2) (c )( u)~0 (4.3.49)

asu — 1. Hence, setting = 1 in (4.3.49), we obtain

A= (n+2)m. (4.3.50)

Thus, the asymptotic solution of (4.3.33)«@as~ 1, which is true for all values af andn > 0
IS

F(u) ~ (n+2)72 (1 —u)"2 as u— L. (4.3.51)
This result is used in Section 4.5 when deriving the numesiglaution by a shooting method.

Using (4.3.51) it can be shown that

F(u)”% <_%(u))z = (n+ Q)n%z (1-— u)ﬁz =F(u)—0 as u—1. (4.3.52)

Condition (4.3.45) that the flux of fluid vanish at the fraetap, « = 1, is therefore satisfied

for all n > 0. The lubrication approximation, however, breaks down afftacture tip. For

F n+1
fl— ~—[(n+2)(1- u)]_("_iﬂ as u—1 (4.3.53)
u
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and hence from (4.3.38)

? — —o0 as z — L(t). (4.3.54)
T

The conditionLi0 << 1istherefore no longer satisfied near the tip. Also, the baandondi-
tions (4.2.1) and (4.2.2) are no longer a good approximdiemause,, iS not approximately

tangential and, is not approximately normal to the interface neae L(t).

4.4 Exact analytical solutions

There are two special cases for which exact analytical moisitan be derived. The first case

Is when
n
= . 4.4.1
“Tont3 (4.4.1)
Equation (4.3.33) reduces to
d L[ dF\"| d
B — — — (uF) = 4.4.2
du[ ( du) du (uF) =0, ( )
subject to the boundary conditions
F(1) =0, (4.4.3)
dr
~(0)=0. 4.4.4
(0) =0 (4.4.4)

The differential equation (4.4.2) can be integrated andatsition subject to the boundary

conditions (4.4.3) and (4.4.4) is

Fu) = (Z 1 f) gy (4.4.5)
Since from (4.4.5),
Fu)™ (—‘fZ—F) "t = uF(w), (4.4.6)
u

we can again verify that the zero flux condition (4.3.45) attip, « = 1, is satisfied. From

(4.4.6) we see that the flux also vanishes at the fracturamcen, = 0. Equations (4.3.42) to
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(4.3.44) give

V(it)y=Vy=2 /1(1 - u”“)"+r2 du, (4.4.7)
L(t) = 1+(”Zj3)(zi;)”4 H‘, (4.4.8)
(1) = g5 1= =3 (4.4.9)

From (4.4.7) we see that the physical significance of thisigpsolution is that the total
volume of the fracture remains constant. The influx of fluithatfracture entry vanishes but
the length of the fracture increases as the fracture evolMes half-width decreases to keep
the total volume of the fracture constant. In Figure 4.4€ldwolution of the half-width of the
fracture for various values of the power-law indexjs shown.

The second analytical solution is obtained by looking foolaison of (4.3.33) of the form
F(u) = A(1 —u)?, (4.4.10)
whereA andp are constants. Substituting (4.4.10) into (4.3.33), waiobt

A%p% <2p (77, + 1) — 1) (1 B u) (2p717)l(n+1) B Ap (1 B u)pil
n

n (2n+3 1

n+2 - —)} A(l—u)f =0. (4.4.11)

+{(p+1)— - .

Equation (4.4.11) will be satisfied provided

n 1 2 1 —1 2p—1)(n+1
AR (%) (1—u) " —Ap—wP =0 (4.4.12)
and
n 2n+3 1
1 — —Z)=o. 4.4.13
pr1- ( - ) 0 (4.4.13)

Equating the powers ofl (— ) in (4.4.12) yieldp = #2 and when this expression fpris
substituted into (4.4.12) and (4.4.13), we obtain

A= (n+2)m (4.4.14)

and

c=1. (4.4.15)
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Figure 4.4.1: Fracture propagating with constant volunmactere half-width.(z, ¢t) given by
(4.4.9) plotted against at timest = 0, 50, 100, 200 for (i) a shear thinning fluid witm = %
(i) Newtonian fluid for whichn =1 and (iii) shear thickening fluid with = 2. The timet is

scaled according to (4.2.28).
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Hence, the solution to (4.3.33) of the form (4.4.10) is
Flu) = (n+2)77 (1 — u)™ (4.4.16)

providedc = 1. The boundary condition (4.3.34) is also satisfied. With.) given by (4.4.16)

it can be shown that

du
Using these results it can be checked that the boundary tammd#.3.35) is satisfied. It

F(u)*s ( dF)% = F(u). (4.4.17)

follows also that the flux condition (4.3.45) is satisfied ugtions (4.3.42) to (4.3.44) give

V(t) =2 <ZI§) [1+(n+2)’%t % (4.4.18)
L(t) =1+ (n+2)7"t, (4.4.19)
h(z,t) = L(t)#2 (1 — u)™7 | (4.4.20)

The special feature of this exact solution is that the spépdopagation of the fracturéft%, 5
constant. In Figure 4.4.2, the evolution of the half-width& range of values of the exponent
n is shown.

The exact analytical solutions will be investigated furtimeeSection 4.6. They are useful

for checking the accuracy of numerical methods.

4.5 Numerical solution

In general the differential equation (4.3.33) cannot begrdited completely analytically be-
cause it admits only one Lie point symmetry generator,
X=(n+ 2)u3 + (n+ 1)Fi (4.5.1)
ou oOF
It is therefore integrated numerically. The transformagenerated by (4.5.1) is used to trans-
form the boundary value problem, (4.3.33) to (4.3.35), enfmair of initial value problems as
was done for a Newtonian fluid by Fitt et al. [14] for a hydradtacture in impermeable rock

and by Fareo and Mason [15] for a hydraulic fracture in pefrteseock.
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n=0.5

(ii)

(iii)

1 1 1 1
(o] 20 40 60 80 100 120

Figure 4.4.2: Fracture propagating with constant speeakctére half-width.(z, t) given by
(4.4.20) plotted againstat timest = 0, 50, 100, 200 for (i) a shear thinning fluid witm = %
(i) Newtonian fluid for whichn = 1 and (iii) shear thickening fluid with, = 2. The timet is

scaled according to (4.2.28).
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Using Lie’s equations [42] it can be verified that the Lie g@ypmmetry (4.5.1) generates

the scaling transformation

=X,  F(a)=A\+2F(u), (4.5.2)
where\ is a parameter. The transformation (4.5.2) leaves the fdtimeadifferential equation

(4.3.33) invariant. We choos€(0) = 1 and therefore
F(0) = A~ (i), (4.5.3)

The parametek is determined from the conditiafi(A) = 0 which is derived from the bound-
ary condition (4.3.34).

The boundary value problem, (4.3.33) to (4.3.35), is tramséd to the following pair of
initial value problems:

Initial Value Problem |

d [ g ( dFN*] d, . n [1 2m+3] .

@F(—@) ~ )—m{z— " ]F—Ov (#54)

F(0) =1, (4.5.5)
dF " n 2n+3 1 A

where0 < < \ and )\ satisfies

F(X\) =0. (4.5.7)

Initial Value Problem Il

} F=0, (45.8)

F(0) = A~ (i), (4.5.9)
dF 1 dF
%(0) = )\n+2%(0)’ (4.5.10)

where0 < u < 1 and the parametérand‘é—g(o) are obtained from Problem I.
Problem 1 is used only to calculate and %(O). The solution of Problem Il gives the

required functionF'(v). The remainder of the solution is obtained from (4.3.36)4t3.39).
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For the special case (4.4.1),

1

_ n+2\ " [n+1 =) n+ 1\ dF
F(a) = _ gt A= T oy=0. (4511
(@) <n—|—1) {n+2 Y ] ’ (n—i—Q) g0 =0« )

while for the special case= 1,

dF
du

F(a) = (n+2) 0706 [\ — )™, A= (n+2) @, (0) = —A".  (4.5.12)

Problem | is not a pure initial value problem becausa the initial condition (4.5.6) is ob-
tained from the boundary condition (4.5.7). Problems | dnddre solved numerically using
the IVP solver ODEA45 of Matlab which is a variable step-sizdedded Runge-Kutta scheme.

Problem | was transformed to the coupled system of first alfffrential equations

iF

— =y 4.5.13
dy n 2n+1) - (141 __ n I (n+1)\ -

Y _ Fg) 't - F| (45.14
di PR ()it n (Fo) =t ) <c (4:5.14)

subject to the initial and boundary conditions
F)=1, g0)=A, F(X) =0, (4.5.15)

where A is to be determined. The right hand side of (4.5.14) has autanty ata = \
because”(\) = 0. The difficulty was overcome with the aid of the asymptotitution of
F(u) asu — \. The method was used in numerical solutions by Acton et@|$# viscous
gravity currents and by Fareo and Mason[15] of hydraulictireang of permeable rock by
a Newtonian fluid. The asymptotic solution of (4.5.4)ias» \ may be obtained from the
asymptotic solution (4.3.51) using the scaling transfdroma(4.5.2):

— 1

F(@) ~ A7 (n+2)72 (A —@)72  as @ — A, (4.5.16)

and therefore

n+1 n+1

(@) ~ A7z (n+2) ) o — ) GB)  as @ ), (4.5.17)

;i_y ~ (DA (n+2)" ) () — ) (52)

- as u— A (4.5.18)

The degree of the singularity igg at u = X\ increases monotonically asincreases and it

is therefore more singular for shear thickening fluids thanshear thinning fluids; fon =
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0, 1 andoo, & behaves likgA — a)_%, (A — a)_% and (\ — ) * respectively, asi — .
Backward integration was commenced ateameighbourhood of the point = \ with the
asymptotic representation (4.5.17) and (4.5.18) as imitiaditions. In order to obtain a rapid
convergence of the solutioR(w), iteration based on the bisection algorithm was used until
the condition/'(0) = 1 was met. The bisection algorithm was then used again on étroh!

starting the integration with(0) obtained from the initial iteration until converged to

A= {(n Z 5 <2"; 5 %) /OAF(u) dur. (4.5.19)

Problem Il was then solved. The differential equation @).Bas transformed to the same

coupled first order system, (4.5.13) and (4.5.14), but witlbe overhead bars. The initial
conditions are

FO)=xR), y(0) = Axa2g(0), (4.5.20)

where\ andy(0) are obtained from the solution of Problem I. The solution fgx) is the
required solution of the boundary value problem (4.3.33}8.35).

The two exact analytical solutions, (4.4.5) and (4.4.1@&renwsed to test the accuracy of
the numerical method. In the Initial Value Problem | the omfehe singularity infl—g atu = A
increased witln. We therefore choose = 2 to test the accuracy of the numerical method. In
Figure 4.5.1 the numerical solution fé@(t) is compared with the analytical solutions (4.4.8)
and (4.4.19). The graphs for the numerical and analyticlaitisms overlap. Since the two
analytical solutions are extreme cases we conclude thatutmerical method is reliable.

In Figure 4.5.2 the fracture lengft(¢) given by (4.3.43) is plotted againstith a range of
working conditions as outlined in Table 4.3.1 for a sheamrinig fluid (» = 1), a Newtonian
fluid (n=1) and a shear thickening fluia. & 2). The ordering of the curves remains invariant
in the three diagrams which shows that the relative effeass of the different working
conditions is the same for shear thinning, Newtonian andrstifieckening fluids. For the four
cases considerefl(t) grows most slowly for the fracture propagating with constariume
and most rapidly for the fracture propagating with constgpged. Keeping the rate of fluid
injection constant at the fracture entry grows the lengttheffracture faster than keeping the

pressure constant at the fracture entry.
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Numerical solution

60 - — — — Exact solution

. . . . . )
0 20 40 60 80 100 120

Figure 4.5.1: Comparison of the numerical solution (—)wakact solutions ¢----) for
L(t) with n = 2: (i) numerical solution and exact solution (4.4.8) for ecftae with constant
volume, (ii) numerical solution and exact solution (4.4.1& a fracture propagating with

constant speed.

From (4.3.44), the half-width at the fracture enfr{), ¢), decreases, is constant , increases

with time depending on whether

n n n

= . 4.5.21
c<n+1, c T C>n+1 (4.5.21)
In Figure 4.3.1, the curve (ii) defined by
S (4.5.22)
n+1

divides the (n,c) plane into two parts. Below the curké),t) decreases with time while
above it,h(0, t) increases with time. On the curvie(0, ¢) is constant. The physical signifi-
cance of the curve (4.5.22) is that the pressure is constéme &racture entry which follows
from the PKN approximation (4.2.16). When the rate of fluigeation into the fracture is
constant:(0, ¢) will increase and the half-width of the fracture will incezawhile if the fluid

pressure at the fracture entry is constaftt, ¢) will remain constant. When fluid injection
stops the fracture will continue to evolve but with constasitime and (0, ¢) will decrease.

For this reason propants such as sand and glass beads adetadde fracturing fluid and

transported along the length of the fracture. The propastgapped in the fracture and resist
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Figure 4.5.2: Fracture length(t) plotted against for a range of working conditions at the
fracture entry: (i) total volume of the fracture is constdn} pressure at the fracture entry is
constant, (iii) rate of fluid injection into fracture is cdast, (iv) speed of propagation of the
fracture is constant. The corresponding valuesfof each value of, are given in Table 4.3.1.

The timet is scaled according to (4.2.28).
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the relaxation of the half-width after injection of fradtuy fluid has been halted. These are
ilustrated in Figure 4.5.3 whergz, t) is plotted against for a range of values of time for
a shear thinning fluid witm = 5. Propants will also be required if the working conditions
at the fracture entry are such thatc 5 for then the fracture half-width decreases as fluid
is injected into the fracture. When the total volume of thecture remains constant we see
that initially the half-width decreases rapidly and theg#émincreases rapidly, consistent with
Figure 4.4.1 forL(t). For larger values of time the rate of decrease of the halfiwand the
rate of increase of the length is much smaller.

From (4.2.8), which is a consequence of the assumption lilea¢ tis no fluid extraction

from the fracture and the PKN approximation,

gg<q 0<z <L) (4.5.23)

Figure 4.5.3 clearly shows that (4.5.23) is satisfied. lighthat (4.3.54) is also satisfied and
therefore that the lubrication approximation (4.1.21)aksedown at the fracture tip. When
comparing hydraulic fracturing using shear thinning, Na@w&n and shear thickening fluids
it is essential to consider the same working conditions atfthcture entry. Consider the
important case in which the rate of fluid injection into thadture is constant. Expressed in
terms of the dimensional timeand using the characteristic time (4.2.28), the length ef th

fracture (4.3.43) becomes
2(n+1)

2n+3
4 . (4.5.24)

1

n(2n + 3) < EH"?2 ) n

MO =1 st e+ 1) \ T =2 BRIy (02

For large values of time we have approximately

2(n+1)

L(t) o t 25 . (4.5.25)

The exponent of in (4.5.25) is an increasing function af For example, forn=0.5, 1 and 2,
L(t) grows at a rate approximately proportionatioﬁ andt?, respectively. For small values
of time the rate of growth of.(¢) depends critically on the physical properties of the fren
fluid throughK (n) and F'(0) and on the surrounding rock mass througlandv. To make a

reliable estimate of.(¢) accurate values of the physical parameters need to be given.
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Figure 4.5.3: Fracture half-width(z, ) given by (4.3.44) plotted againstfor a shear thin-
ning fluid withn = 1: (i) rate of fluid injection into the fracture is constant £ 0.75),
(i) pressure at the fracture entry is constant= 0.333), (iii) total volume of the fracture is

constant{c = 0.125). The timet is scaled according to (4.2.28).
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4.6 Streamlines and average fluid velocity

The fluid velocity vector is tangent to the streamlines ahgqamint in the fluid at any instant.
The stream functiony(z, z, t) which is constant along a streamline satisfies

P o

— -, 46.1
0z’ ox (4.6.1)

’Ux(l',Z,t) = /Uz(x7zat) =

The velocity component, (z, z, t) is given by (4.2.27). The componentx, z, t) is obtained
by integrating the continuity equation (4.1.8) with redpecz from z = 0 to h(z,¢) and
imposing the symmetry conditian (z,0,¢) = 0. We obtain
1 ah %71 th (2n+ 1) 1+L 2+l
1+1
N (2n+1) <_8h) h

3=

- B (x,t)z. (4.6.2)

It is readily verified that the compatibility condition

0% B 0%
0rdz 020w

(4.6.3)

is satisfied. The solution of system (4.6.1) faz, z,t) is

__n _%%(anLl) 141 24
¢(a:,z,t)—(n+1)< 01’) [ . 2hM T (m,t) — 22T |+ f(1), (4.6.4)

wheref (t) is an arbitrary function of time. The streamlines at titvage the curves

W(z, 2, t) =k, (4.6.5)

wheref is a constant parameter. By using (4.3.44)Kqr, t) and (4.3.43) forL(t), equation

(4.6.5) can be written as

A(u)z”i — B(u,t)z = C(t), (4.6.6)
where
dF\ " Ak [ dF\*
Au) = (—@) . B(u,t) = (2n7;t D [L(t)zg] F(u)'t= (—@) (4.6.7)

andC'(¢) is an arbitrary function of. For a Newtonian fluidp=1 and (4.6.6) reduces to a

cubic equation fok.
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In Figure 4.6.1 the streamlines are drawn at tirael for constant rate of fluid injection
into the fracture witm =0.5, n=1 andn =2. The fluid flow is approximately parallel to the
axis of the fracture for most of the cross-section but nearflihid-rock interface the stream-
lines curve to become perpendicular to the interface inrameatisfy the no-slip boundary
condition. Since diw = 0 the perpendicular distance between neighbouring streamte-
creases in regions of high velocity and increases in regibt@wv velocity. The streamlines
move apart near the fluid-rock interface indicating a regibtower velocity at the fracture
boundary consistent with no leak-off into the surroundiocke

Consider now the fluid velocity on the axis of the fractureorn(4.2.27)

2n + 1 8h % 141
= —— v (2, ). 4.6.
vz (2,0,t) (n—i—l ) ( 8x) h'"n(x,t) (4.6.8)
But using (4.3.44) foh(x, t) and (4.3.43) fod.(¢), it can be verified that
1 On\ " i [ dF\ " dL
45 —_ = === ] =
h'™n(x,t) ( (9x) F(u) ( o ) pr (4.6.9)
and therefore )
2n+1 ntl dF'\ " dL
vz (x,0,t) = ( o ) F(u) = <—@) e (4.6.10)

Consider the fluid velocity on the axis at the fracture tip.ingsthe asymptotic solution

(4.3.51), it can be shown that
nt1 dF\"
F(u)™ <——) —~1, as u—1 (4.6.11)

and therefore

o+ 1\ dlL
nt ) (4.6.12)

v, (L(t),0,t) = ( R

The factor(2n + 1) / (n 4 1) increases steadily with. It takes the value 1 for = 0, 3/2 for
n = 1 and tends to 2 as tends to infinity. In this model the fluid velocity at the frags tip
exceeds the speed of propagation of the fracture tip.

To investigate this result further consider the averagel fuglocity across the fracture
defined by

7 L d 4.6.13
vx(x,t)—m/o vz (x, 2, 1) dz. (4.6.13)
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Figure 4.6.1: Streamlines in the fracture at titne 1 for constant rate of fluid injection into
the fracture: (i) shear thinning fluid with = 0.5 (¢ = 0.75), (ii) Newtonian fluid withn = 1
(c = 0.8), (iii) shear thickening fluid withh = 2 (¢ = 0.857). The direction of flow is from
left to right.
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Using (4.2.27) it can be verified that

n+1 8h %

v =hn - 4.6.14

Ug(x,t) = h = (2,t) ( 01’) (4.6.14)
and therefore from (4.6.8),

_ n+1

Ug(x,t) = (Qn n 1) vz (2,0,1). (4.6.15)
Hence with (4.6.12), at the fracture tip

_dL

(L (1), t) (4.6.16)

S dt

and the average velocity of the fluid across the fractureséodhe velocity of the fracture
tip asz tends toL(t). Since the fracture is thin it is more practical to work witte taverage
fluid velocity at each value af than with the fluid velocity at each value ofandz. The
significance of the average fluid velocity can be seen by densig the total flux of fluid
along the fracture defined in (4.2.26). It can be expresseztmns of the average fluid velocity
as

Q(z,t) = 2h(x, t)v,(x, 1). (4.6.17)

The velocity of propagation of the flux is therefargz, ¢) and since (4.6.16) is satisfied there
is no fluid lag in the fracture.
We now investigate the way, (x, t) varies withz along the fracture fod < = < L(t) or

equivalently) < u < 1. From (4.6.9) and (4.6.14)

F\ " dL
d) b gy <1, (4.6.18)

, n+1
Ugp(z,t) = F(u) <—% =

When the total volume of the fracture remains const&lift,) is given by (4.4.5) and

n+1 dF %
Fu) [-=—) =u 4.6.19
W (<) = (4.6.19)
Thus
dL
Up(z,t) = UE, 0<u<l. (4.6.20)

We see from (4.6.20) that the average fluid velocity vanishése fracture entry. To maintain
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Figure 4.6.2: Velocity rati@, ‘fi—f plotted against. = x/L(t) forn = 0.5, 1,2 and for a range
of working conditions at the fracture entry: (i) total volerof the fracture is constant, (ii)
fluid pressure constant at fracture entry, (iii) rate of fluipbction is constant, (iv) speed of

propagation of the fracture is constant.
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constant volume there can be no net input of fluid at the fracémtry. When the rate of

propagation of the fracture is constahAtu) is given by (4.4.16). Hence

it [ dF\"
F(u) (—Z—u) =1 (4.6.21)
and from (4.6.18)
Ug(x,t) = Cfl—f (4.6.22)

From (4.6.22) we see that the average fluid velocity is constidng the whole length of the

fracture and equals the constant rate of propagation of#eéuire. The velocity ratio

Doz, t) o wm [ dF\T
T = P (_@) (4.6.23)

is independent of and depends only om and the working conditions, In Figure 4.6.2, the
velocity ratio is compared for the same valueroWith different working conditions at the
fracture entry. For the three cases considened.5, 1 and 2, the curves are bounded below
by the straight line for a fracture evolving with constantuwoe and above by the horizontal
line for a fracture propagating with constant speed. Thermnd of the curves according
to working conditions at the fracture entry is the same faashthinning, Newtonian and
shear thickening fluids. Except when the speed of propagafithe fracture is constant, the
average fluid velocity increases steadily along the fracturd attains its maximum value at

the fracture tip which equals the velocity of propagatiothaf fracture.

4.7 Approximate analytical solution

In Figure 4.6.2 the graphs for the two limiting cases, thestam volume fracture and the
fracture propagating with constant speed, are straightsliWWe see that the curves between
the two limiting graphs are approximately straight linegenbte the point of intersection of the
curve on the velocity ratio axis as (@), where A depends om and on the working condition

c. Then the gradient of the straight line joining the pointsd{0and (1,1) is 1A. When the
pressure is constant at the fracture entry and 0.5 thenA = 0.724 and1 — A = 0.276.

The gradient of the numerical curve joining 4),and (1,1) varies from 0.266 to 0.285 with
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a maximum departure frommh — A of 3.113%. We approximate the curve joining the points

(0,4) and(1, 1) by a straight line as shown in Figure 4.7.1. Then from (4.5.23

P(1,1)

Figure 4.7.1: The straight line joining the poini& A) and (1, 1) which approximates the

curve joining the points.

Flu)™ (_dflfj‘)) " (1—Au+ A (4.7.1)

The analytical solution fod = 1 is known and given by (4.4.16). We therefore consider
A # 1 although later we will investigate the limid — 1 in the solution. We solve the
first order ordinary differential equation (4.7.1) féi(«), subject to the boundary condition
F(1) =0, to obtain

n -+ 2
n+1)(1-—

F(u) = {( A)} [1—[A+ (1= A", (4.7.2)

For a specific value af and working conditior: the numerical value oft can be used. In
order to obtain a general expression fowhich is approximately valid for a range of values

of n andc, consider the second boundary condition (4.3.35) which is

(F(0))*+ (—%(0))’1‘ n (2”’*3 —1) /0 ) du (4.7.3)

:n+2 n c

When (4.7.2) is substituted into (4.7.3), the left hand sitigl.7.3) gives
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The integral on the right hand side of (4.7.3) is evaluatedipanding in powers af(1 — A):

/OlF(u)du:{ n+2 A)]%ﬁ/ol[l—[A—l—(l—A)u]nH]nigdu

(n+1)(1—
B n+2 e T ()1 -4)
‘Lnﬂ)(l—AJ /[1 4 (“ A
ot DA A s 0D D= Yz

For working conditions of interest lies in the rang#.75 < A < 1. Retaining only terms

that are first order iil — A), we make the approximation
1= [A+ (1= A" = [(1— A™Y) — A"(n+ 11— Aj] ™ (4.7.6)

so that (4.7.5) becomes

[rwa= o) AR [l T

(4.7.7)

In the integrand in (4.7.7) we make the approximatibe- 1 and use

_AM1-4) 1
T (479

Hence (4.7.7) becomes approximately

/olF(“) = (i55) [omo=m Thoanpt arg

From (4.7.4) and (4.7.9), the boundary condition (4.7.8)ds the approximate value

(4.7.10)

ool

n C
Due to the truncation o (((1 — A)u)Q) in (4.7.5), the integral in (4.7.9) is slightly over-
overestimated.

Finally we check that (4.7.2) and (4.7.10) approximatelysbathe differential equation
(4.3.33). Substituting (4.7.2) into (4.3.33) and afterification, we have

[2n+3 1]
n —_—
n ¢

M+ DMA+A=Au]" +D[A+(1- AT
[1 - (A + (1 — A)u)n+1] [1 _ (A + (1 o A)u)n—l—l]

(4.7.11)

(n+2)+
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The denominator in (4.7.11) can be further simplified so thatexpression fod becomes

n 2n+3 1
T (2n+3) = (n+ DA(w A) { n E} ’ (4.7.12)
where
Au A) = 2—AF A=A (4.7.13)

C1—[A4+ (1= A
The functionA(u; A) must be approximated by a constant value which could depend o
In the same way as when considering the second boundarytimmadve evaluate\(u; A) at

A=1:

n

/lllfnﬂ)‘(U;A) =T

With (4.7.14), equation (4.7.12) agrees with (4.7.10).

(4.7.14)

We now verify that (4.7.2) fof"(u) reduces to the asymptotic solution (4.3.51)as 1.

The approximate solution (4.7.2) can be written in the form

n—+2
(n+1)(1—

F(u) = { A)] [1-[1—-(1—A) 1 —w]""]". (4.7.15)

Now,

I-AQ-AQ-u]" ' =1-n+1)1-A)1-u)+0((1-A)(1-u))* asu — 1.
(4.7.16)
Substituting (4.7.16) into (4.7.15) yields

F(u) ~ (n+2)72 (1 —u)™? asu — 1. (4.7.17)

Hence the approximate solution tends to the asymptotidisal(4.3.51) as: — 1.

As A — 0, (4.7.2) reduces to (4.4.5) and (4.7.10) gives conditioA.{3 for a fracture
evolving with constant volume. It can be verified thatas— 1, (4.7.2) reduces to the exact
solution (4.4.16) and wheA = 1, (4.7.10) gives: = 1. The approximate solution given by
(4.7.2) and (4.7.10) should be useful for small values olose ton = 0 where the numerical

solution may have difficulty in converging. Taking the limit— 0 in (4.7.2) gives formally

Flu)=v2(1—u)?. (4.7.18)
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Figure 4.7.2: Velocity ratio at fracture entry, plotted against for a range of working condi-
tions at the fracture entry: (——) approximate solution (40}, ( - - - - ) numerical solution.
(i) Pressure is constant, (i) rate of fluid injection is ctamd , (iii) speed of propagation of the

fracture is constant.

The solution of the fracture problem, of course, is not validhe limit n — 0 because the
powerl/n is introduced in equation (4.2.9) leading to the exporéntin the characteristic
time (4.2.28).

To check the accuracy of the approximation fblet A; and A, be the approximate values
given by (4.7.10) when, at the fracture entry, the presssi@nstant and the rate of fluid

injection is constant, respectively. Then, usirfgom Table 4.3.1,

=nt2y _(n+2)@n+3) (4.7.19)
n+3 2(n+1)(n+ 3)
The minimum values ofl; and A, occur atn = 0 andn = /3, respectively and
2
3 <A <1, 0933<A,<]1. (4.7.20)

The approximate solutions (4.7.19) fdf and A, are compared with the numerical solutions
in Figure 4.7.2. When the pressure is constant at the fraetuiry,A steadily increases with
but interestingly when the rate of fluid injection is constahfirst decreases from unity as
increases, reaches a minimum value which occurs for a shieehing fluid before starting

to increase and returning tb= 1 asn — oo. For the numerical solution the minimum values
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for A, occur forn = 1.557 which gives an error of about % in the approximate values. The
numerical values for the minima of; and A, are 0.667 and 0.939 which gives an error of
less thanl % in the approximate values. Since the minimum valueAeroccurs forn = 0,
which cannot be achieved numerically, extrapolation wasezh out to obtain the minimum
value forA;. From Figure 4.7.2 we see that the errordinncreases as increases. Itis least
accurate when the pressure at the fracture entry is coristaatise the approximatioh= 1

was used in the derivation of (4.7.10).

Operating conditions _ _ _ _ _ _
at fracture entry n=0.1 n=0.25 n=0.5 n=0.75 n=1 n=2
A=0677| A=0692| A=0.714 | A=0.733 | A=0.750 | A= 0.800
Pressure constant
c=34 An =0.679|Ay = 0.697| Ay = 0.723| Ay = 0.745| Ay = 0.764| Ay = 0.817
A=t
n+
NE = 0.360%E = 0.795\%E = 1.303|%E = 1.629%E = 1.838/%E = 2.122
Rate of fluid A=0985| A=0969 | A=0952| A=0942 | A=0.937 | A=0.933
injection constant
2(nt1) An =0.985|Ay = 0.969| Ay = 0.954| Ay = 0.945| Ay = 0.941| Ay = 0.939
c= 2n+3
A= m% %E = 0.012/%FE = 0.068/%E = 0.194|%FE = 0.318 % F = 0.427|%E = 0.682

Table 4.7.1: Comparison of the numerical valig with the analytical valuel.

In Figures 4.7.3 and 4.7.4 the approximate and numericatisak forh(x,t) are com-
pared. Two modes of working at the fracture entry are comstle When the pressure at
the fracture entry is constant, the expressionsA@ndc are given in Table 4.7.1 and the

approximate solution, using (4.3.44) is

_ Fu)
Mt = ey (4.7.21)
where
_[(n+2)(n+3)]7 2\ N
= { (n+1) } [1 - (n+3) (1 " (n—|—2)) ] (4.7.22)
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and

n

n+1

(n+1)  0<u<l (4.7.23)

1+ ——t
nF(0) =

When the rate of fluid injection into the fracture is constietapproximate solution is

r=uL(t) =u

B (2n + 3) s F(u)
h(z,t) = [1 + S+ DFOE t ) (4.7.24)
where
200+ 2)(n+3)]7 (n+2)(2n +3)\""
o = |22 [1 ~(Srnore)
n n+1 %4'2

X (1 R e s u) ] (4.7.25)

and o)
r=ulL(t)=u |1+ (2n +3) —t o , 0<u<l. (4.7.26)

2(n+1)F(0) =

Both approximate solutions slightly overestimate the tvidhd length of the fracture.
They are useful approximations gz, t) for shear thinning, Newtonian and shear thickening
fluids over a large range of time. The approximate solutioy tma particularly useful for
shear thinning fluids for which numerical solutions can stimes be difficult to obtain as

approaches zero.
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Figure 4.7.3: Comparison of the approximate solution(- - ) with the numerical solution

(—) for h(x,t) when pressure is constant at the fracture entryfer0.5,» = 1 andn = 2.
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Figure 4.7.4: Comparison of the approximate solution(-- ) with the numerical solution

(—) for h(z, t) when the rate of fluid injection is constant for= 0.5, n = 1 andn = 2.
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4.8 Conclusions

In this chapter, we have considered a two-dimensional pistheg fracture propagating in
impermeable rock. The propagation is induced when fraogufluid of power-law rheolo-
gy, under high pressure, is injected into the two-dimerdidracture. The fluid flow in the
fracture is governed by momentum balance equation whichsimaglified using lubrication
theory. The ratio of the half-width to the length of the fiaet must be sufficiently small that
the lubrication approximation (4.1.21) is satisfied. Witle faid of boundary conditions a d-
iffusion equation which describes the evolution of the twaldth of the fracture was derived.
The physical mechanism for the propagation of the fractutbe rock is therefore diffusion.
Using Lie symmetry analysis, the diffusion equation wasucedl to a nonlinear second
order ordinary differential equation. The boundary caoditould also be expressed in terms
of the transformed variables. The problem contained onanpeterc which is determined
by the working conditions at the fracture entry. The Lie paymmetry which generated the

solution is of the form

¢l 9, 9, 1 9,
X=(2 — S 1)e — n] h— 4.8.1
(62+t) 8t+cx8x+(n—|—2)[(n+ )c n]hﬁh’ (4.8.1)
where
S cR(0) (4.8.2)
Co

It is not a scaling symmetry sineg # 0 and this is because the initial length of the fracture
is non-zero. The simpler methods described by Dresner [G@iog a scaling transformation
to derive a similarity solution could therefore not be apgland the full theory of Lie point
symmetries is required.

Initial value problems are easier to solve numerically thanndary value problems. The
transformation of the boundary value problem into a paimdtial value problems, together
with the application of the asymptotic solution at the fraettip, gave satisfactory numerical
results. When compared with the two analytical solutioey thiere found to be very accurate.

In the literature the main emphasis has been on the growtlslhage of the hydraulic
fracture and comparatively little work has been done on #ieaity of the fluid in the fracture.

The streamlines obtained were as expected but that the Blodity at the fracture tip exceeds
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the tip velocity was unexpected. The mean fluid velocity aged over the width of the
fracture equals the velocity at the fracture tip and it candrecluded that in a thin fracture the
mean velocity is more physically significant and the velptit consider. It was unexpected
that the mean velocity would increase approximately lilyealong the fracture and exactly
linearly when the total volume of the fracture is constantthe case for which the speed of
propagation of the fracture is constant, the mean velosigonstant along the fracture. The
approximation based on this observation gave a matheriatstaple analytical result for
the half-width which was very accurate and may be useful@alhefor shear thinning fluids
for values ofn close ton = 0.

The results depend on the PKN approximation in which the flaggsure is linearly related
to the half-width of the fracture. The PKN approximationsgd the system of equations and
leads to the definition of a characteristic velocity alongfitacture. It is the simplest physical
approximation that can be made. It can be expected that shéisebtained will be modified

in more physically realistic models especially near thetfree tip.
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Chapter 5

Modelling two dimensional power-law

fluid driven fracture in permeable rock

5.1 Introduction

In Chapter 4 we considered the problem of modelling a twoetisronal power-law fluid-
driven fracture in impermeable rock. We saw that the conogpin average fluid velocity
field in the x—direction is relevant to the problem of fluid-flow in a thin dtare. This is
because for a thin fracture, quantities such as fluid pressud velocity vary only slightly in
the direction normal to the direction of flow. This is a consence of the half-width of the
fracture being much less than its length.

In this Chapter, the problem of a two-dimensional fluid-dnvracture in permeable rock
is considered. We begin by outlining the dimensionless ggpusof the thin film approxima-
tion of the equations of motion for the flow of a non-Newtonfand in a two-dimensional
fracture. These equations form a system of partial diffieméaquations and were used in the
derivation of the evolution equation for the fracture haiéith in impermeable rock in Chap-
ter 4. The assumptions made in the problem are the same to sketted in Chapter 4 except
that the surrounding rock mass is permeable. The assursgrerthat the fracturing fluid is
incompressible, non-Newtonian and of power-law rheolagy that the fluid flow in the frac-

ture is laminar. Also, it is assumed that the rock is a lineatastic material which assumes
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small displacement gradients and, as shown in Figure S2ifracture which is one-sided

propagates in the positive-direction.

5.2 Mathematical model

The distinguishing feature of this Chapter is that the fatsr between the fluid and the rock
is permeable and that fracturing fluid leaks off at the fladkrinterface in the direction of the
unit vectorn, normal to the fluid/rock interface, with velocity(z, t) relative to the interface.

The hydraulic fracture is illustrated in Figure 5.2.1.

A l/UO\L

] z = h(z,t)
v2(0, 2, 1)
- h(z,t)
O x
v(0,2,t) _ ’/X\ L(t)
z = —h(x,t)

P

Figure 5.2.1: A hydraulic fracture propagating in an etapermeable medium. The coordi-

nate direction y points into the page amglis the far field compressive stress.

The fluid flow is symmetrical about the-axis. As in Chapter 4 we will consider the upper
half of the fracture and only fluid injection into the fracurThe no-slip boundary condition
still applies at the fluid-rock interface and thereforgz, z,¢) decreases from a maximum
value atz = 0 to zero atz = h(x,t). Thus in the upper half of the fracture

v

5 (x,2,t) <0, 0 <z <h(x,t).
z

The two-dimensional momentum balance and continuity egosiin dimensionless form
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Uy

Dh
Dt

U

I3

Figure 5.2.2: Tangent plane at a point on the surface,h(z,t).

were derived in Chapter 4 for< z < h(z,t) and are given by

op 0 ov, """ O,
oz~ 0z ((— ) % ) , 621
dp
g 2.2
ov ov

v 2 0. 2.
o 5 =0 (5.2.3)

The boundary conditions for integrating (5.2.1) to (5.2a®) obtained from the analysis based
on Figure 5.2.2.

From Figure 5.2.2, we obtain the following boundary comdisi atz = h(x, t).
No slip condition:

Tangential component of the fluid velocity at the boundayaéxithe tangential compo-

nent of the velocity of the boundary:

Dh .
z=h(x,t): vz (x, h,t)COSY — v, (x, h,t)sina = —Fizsmoz, (5.2.4)

Where§ denotes the material time derivative.
Leak-off condition:
Normal component of the fluid velocity at the boundary eqtisnormal component

of the velocity of the boundary + normal component of the aigtoof fluid relative to the
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boundary:
. Dh
z = h(z,t) : Uy (2, h,t)sin o + v,(x, h, t)cOSy = Ty co + v(x,t), (5.2.5)

wherev;, = Q'Q’ z=h(z,t)"

Now

oh H

and in the thin film approximatio# << 1. Thusa is small and
H . H
tany = O(«a) = O <f) , Sila=0(a)=0 <f) , cosy=0O(1) (5.2.7)

and the boundary conditions (5.2.4) and (5.2.5) reducegdditowing conditions.

No-slip condition

z = h(x,t): ve(z, h,t) =0, (5.2.8)
Leak-off condition
Dh
z = h(x,t): v,(z, h,t) = T + vz, t), (5.2.9)

The thin film approximation% << 1 is a good approximation except near the tip of the
fracture. The boundary conditions (5.2.8) to (5.2.9) wikitefore be valid except near the
fracture tip where the thin film approximation breaks dowgué&tions (5.2.8) and (5.2.9) are
expressed in dimensionless form. The leak-off velogjthas been made dimensionless by
division by the characteristic velocity in thedirection%U. By expanding the material time

derivative, (5.2.9) becomes

oh oh
Uz(x>h>t) = a—i—vx(l’,h,t)%—%?}l(l’,t}
oh
= E—i—vl(x,t), (5210)

sincev,(x, h,t) = 0 from the no slip boundary condition (5.2.8). From the symmnef the

fracture,
ov,
v,(x,0,t) =0, g(x, 0,t) =0, (5.2.11)
and at the tip of the fracture,= L(t),
h(L(t),t) = 0. (5.2.12)
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The initial conditions are
t=0: L(O)=1,  h(0,0)=1. (5.2.13)
A pre-existing fracture exists in the rock mass:
t=0: h0,z) = ho(z), ho(0)=1  0<a<L(¢). (5.2.14)

The initial volumel, and the initial fracture profilé,(z) cannot be specified arbitrarily. They
are determined from the group invariant solution.

We make the PKN approximation in which the fluid pressurenisdrly related to the half-
width of the fracture. Expressed in dimensionless form tk&l Rpproximation is given by
(4.2.20):

p =00+ h(x,t), (5.2.15)

whereo, is the far field compressive stress.
Integrating (5.2.3) over the upper half of the fracture, aisthg boundary condition-
s (5.2.8), (5.2.10) and (5.2.11), the continuity equatigpressed in terms aof,.(z,t) , the

x—component of the fluid velocity averaged over the upper Hati@fracture, is

oh 9,
o 5 (he) +u =0, (5.2.16)

where

1 [h
Uz (x,t) = ﬁ/vx(a:,z,t) dz. (5.2.17)
0

The x—component of the fluid velocity, obtained by integrating2(%), and using the PKN
approximation, is given by (4.2.27):

mA+1\ [—0h\ " / wir -
vz, 2,t) = ( :_:_1 ) < £Ch) (h%(w,t) — z%> ;o 0<z < h(x,t). (5.2.18)

When (5.2.18) is substituted into (5.2.17), the averagéd flelocity becomes

Up(z,t) = (—%) " (5.2.19)

Substituting (5.2.19) into (5.2.16) yields

Oh 0 [(_OW\F sn
ot Ox ox
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Equation (5.2.20) is a nonlinear diffusion equation/i¢r, t) and differs from (4.2.22) by the
leak-off termu;(z, t).

The total volume flux of fluid in the—direction along the fracture), (z, ), is

h(wt) 2n41 8h
Or(w.t) = 2 / vy, 2, t)dz = 2h(z, )5, (2, 1) — 207 ( )
0

Y
1
n

2.21
e (5.2.21)

At the fracture tip

ox

Qu(L(t),t) = 2n"% < 8h)i

) (5.2.22)
x=L(t)
Because there is fluid leak-off into the rock mass the tothlme flux may not vanish at the

fracture tip. It may depend on the model used for fluid ledk-of

Consider now the volume balance equation. The fluid is incesgible and there is leak-
off into the rock mass. Hence, per unit length in thedirection:

rate of change of the tota

rate of flow of fluid into the

volume of the fracture fracture at the fracture entr

rate of flow of leaked-off

(5.2.23)
fluid at the fluid-rock interface
That is,
dV
— = Q1 — Qo (5.2.24)
where
L(t)
Vit) = 2 / Bz, 1) du, (5.2.25)
0
h(0,t)
Q1(0,t) = / v.(0, z,t) dz = 2h(0, )0, (0, 1), (5.2.26)
0
and

L(t)
Q2(t) = 2/ u(z,t) dz. (5.2.27)
0

When (5.2.19), evaluated at= 0, is substituted into (5.2.26), the balance law (5.2.24) be-
comes

dv oh " o L(®)
gy (—a—x(o,t)) B (O,t)—Q/O (e, 1) dz. (5.2.28)
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The leak-off velocityv,(x,t) is not prescribed at the start of the analysis. It is partly
determined from the condition that the partial differehéiquation (5.2.20) admits Lie point
symmetries. The remaining freedom in the functional form,¢f, ¢) is then determined in
the modelling process.

The problem is to solve the nonlinear diffusion equatior2 @0) for the fracture half-
width h(x,t) subject to the boundary condition, (5.2.12), at the fractiyy and the balance
law for fluid volume, (5.2.28), at the entry to the fracturaldhe initial conditions (5.2.13).

The leak-off velocity is obtained as the solution progresse

5.3 Group invariant solution

Following the procedure outlined in Appendix A, it can beifted that for0 < n < oo, the

Lie point symmetry generator of (5.2.20) is of the form

0 0 1 0
X = (a+ 02t>a + (ca + 0396)% + ) ((n+1)cz — ney) h%,
= Cle -+ CQXQ -+ 63X3 -+ C4X4, (531)

wherecy, ¢y, c3 andce, are arbitrary constants and

0 0 n 0

T X?Z’E—(Hz)’ﬁ’
0 n+1 0 0
X3—xa—x+(n+z)h% X4= 5y

provided that the leak-off velocity;(x, t) satisfies the first order quasi-linear partial differen-

tial equation

(%l

ov n+1
(c1+ cat) =% + (c4 + c32) =— = (

n -+ 2

ot or
The valuesi=1 andn=1/2 had to be treated separately in the derivation of the Lie sgmm

) (c3 —2¢9) vy (5.3.2)

tries but the general result obtained in (5.3.1) to (5.3%2jue for all values of the power-law
exponent.
Now, h = ®(x, t) is a group invariant solution of (5.2.20) provided
X (h — ®(x,t)) =0, (5.3.3)
h=o
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that is, provided

od 0P 1
(1 + Cgt)a + (cq4 + 0355)% = ((n+4 1)cg — neg) P. (5.3.4)

Equation (5.3.4) was solved in Section 4.3 and the genehaticio that was obtained is
Wz, t) = (e + et) )BT pe),  g= ATBT (5.3.5)
(c1 + cot)e2
wheref (&) is an arbitrary function of.
Consider now the fluid leak-off velocity(z, ). For (5.3.5) to be a group invariant solution
of (5.2.20), the leak-off velocity, has to satisfy (5.3.2). The differential equations of the
characteristic curves of (5.3.2) are

dt dx du,

= = , 5.3.6
c1 + Cgt Ccy + Cc3x (z—j;%) (63 — 202) (i ( )
which is equivalently written as
dt dx dt du;
= , = . (5.3.7)
c1 + Czt Cq4 + C37 c1 + Cgt (n—-ﬂ) (03 — 202) (¥

We integrate each of the two differential equations in (5.8 obtain the two first integrals

Ccy + 37 (i

A U I (5.3.8)
(c1 + cot) z (1 + CQt)(n_iz)(ﬁ_Q)

The general solution is therefore of the form

3

v = (1 + Czt)(z_g)(a_2> g9(&), (5.3.9)

whereg (&) is an arbitrary function of.
The problem will now be expressed in terms of the similarayiable and the functions
f(&) andg(¢). Substituting (5.3.5) and (5.3.9) fé(x, t) andv,(z, t) into (5.2.20) reduces the

partial differential equation to the second order nonlireedinary differential equation

i [f(éf"—f (—ﬁ) ] - ey - {— s 3] f+g(e)=0. (5:310)

dg 3
Since (5.3.10) does not depend@nwe choose, = 0 so thatt = 0 whenz = 0.
From (5.3.5) and (5.2.12), the boundary conditions become
c3L(t)

f(s)=0 where s(t) = ————, (5.3.11)
(Cl + Cgt)3
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so that

df ds
——— =0 t>0.
ds dt ’ -

(5.3.12)
Assuming thatf (s) is not constant, it follows that(¢) is constant. Sincé&(0) = 1 we obtain

€3

L(t) = (1 + %t) ° (5.3.13)

Equation (5.3.13) has the same form as (4.3.23fbutill be different due to leak-off. When
(5.3.13) is substituted into (5.3.11), the boundary coodi(5.3.11) becomes

c3

flese, ?) = 0. (5.3.14)
Consider next the balance law (5.2.28). Substituting $.8nd (5.3.9) forh(x,t) and
v(z, t) into (5.2.28) and using (5.3.13) fdr(t) puts (5.2.28) in the form
dV

c3
1 Y
2nt3 ¢z 2(nt1) 1 n d 0 n 2
E:(Cl_'_CQt)(n-‘_Q co n+2 ) |:2C§lf(0)2:1 ( f( ))

-2 -2 / e df} |

dg
(5.3.15)
The total volume of the fracture per unit length in thedirection is derived in (4.3.24) and is

c3

2 2n43\e3 _ _n_ caey 2
V(t) == (e BEE [T e ag (53.16)
3 0
Differentiating (5.3.16) with respect toand putting the resulting expression on the left hand

side of (5.3.15) yields, after simplification

1 2n+1 d % CSC;%
10 (-F0) = () 52 -2) [ neoa

C3

_&
€3¢y 2
+— g(€)d¢. (5.3.17)
€3 Jo
In order to simplify these equations, we make the change ridbies:
e _ s —(R)E _ 20m) G
§=c3c, %u, f(§)=c37¢ F(u), ¢(§) =c; 1 G(u), (5.3.18)
whereu = % such that) < u < 1. Also, as in Chapter 4, let= z—; Expressed in terms

of the similarity variablesg'(u) and G(u), and using (4.3.30) and (4.3.32), the problem is
therefore to solve the ordinary differential equation

1
d 2n+1 dF n
— | F | ——
du [ () ( du )

d n 2n+3 1
— ~ (uF _
du(u )+n—i—2[

- c} F(u)+ G(u) =0, (5.3.19)
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subject to the boundary conditions

F(1) =0, (5.3.20)
F(0)* (—%(0))” - {2”; 5 ﬂ /0 Flu)du + /0 Cldu,  (5321)

Using (4.3.30) to (4.3.32), the expressions ¥o(t), L(t), h(x,t) andv(x,t) are obtained
from (5.3.16), (5.3.13), (5.3.5) and (5.3.9) and are of trenf

iz 7 (34 e
Vi) = v 12 (D) "y (5.3.22)
- 0 c ‘/C 5 ..
WA
L(t) = HE(VC) t] : (5.3.23)
ez 1 (3)ewh
Vo L (Vo)™
=—|14+--— F .3.24
h(z,t) v +C(VC) t] (u), (5.3.24)
n+1),._ofntl
o t) = (2 25 A nTHt = 2(n+2)G(u) (5.3.25)
ACS] - ‘/c c ‘/C y ..
and the dimensionless fluid pressure from (5.2.15) is giyven b
p(z,t) = oo + h(z,t). (5.3.26)

Since the characteristic distangeis the initial half-width,~(0,0) = 1, equations (5.3.22) to

(5.3.25) written in terms of'(u), become

(55—
t
V() =V |1+ W] ; (5.3.27)
t C
L(t) = HW] : (5.3.28)
- t (Zi%)c o F(u) £ 39
M RS F(O) 5329
1 R
vz, t) = F(O)Z(nTl) 1+ F(0)2 G(u), (5.3.30)
where
92 1
Vo = W/OF(U) du. (5.3.31)



5.4 Invariant solutions when leak-off velocity is proportion-
al to half-width of fracture

To solve the boundary value problem (5.3.19) to (5.3.21i} fequired that a form of7(u)
is specified or a relation betweéf(u) andG(u) is known. The functiorG(u) describes the
spatial distribution of the leak-off fluid across the flumek interface.

Consider now a relation betweéH{w) and F'(u) which is of the form
G(u) = BF(u), pBeR. (5.4.1)
It follows from (5.3.29) and (5.3.30) that

(5.4.2)

This implies that the leak-off velocity is proportional teethalf-width,i(t, z), of the fracture

at any timet. In most practical situations in hydraulic fracturing,> 0. The case3 > 0
represents fluid leak-off into the surrounding rock formatiand wherg = 0, which was
considered in Chapter 4, the rock mass is impermeable andibldlaks off into the sur-
rounding rock formation. The leak-off velocity,(¢, =), which is maximum at the fracture
entry whereh(¢, z) is maximum, decreases asncreases along the fracture and vanishes at
the tip of the fracturey = L(¢).

The problem is therefore to solve the ordinary differergigliation

d s [ dF\7| d n [(2n+3 1

subject to the boundary conditions

F(1) =0, (5.4.4)
ey [ dF, \" no (243 1 !
F(0)™n (—%(0)) = [n 2 ( —— E) + ﬁ} /OF(u) du. (5.4.5)
Since we are considering no fluid extraction at the fractateyefrom (5.4.5),
2n+3 n
> — 4.
b= (n+2)+(n+2)c’ (5:4.6)
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with equality in (5.4.6) when there is no fluid injection ortiction at the fracture entry. We
will consider0 < ¢ < oo because the working conditions of practical interest atkigrange.

Equation (5.3.30) for the leak-off velocity becomes

’Ul(t, l’) = BW

andV (t), L(t) andh(z,t) are given by (5.3.27) to (5.3.29) apdz, ¢) is given by (5.3.26).

(5.4.7)

_i_i
cF(0

In form, these equations are the same as (4.3.42) to (4.8mt1§4.3.39). Hence, the results
in Table 4.3.1 for the working conditions at the fracturergmtpply whens # 0. However,
since the differential equations (4.3.33) and (5.4.3)A¢u) are not the same because (5.4.3)
depends on an extra parametethe quantitative behavior of the solutions will be diffiete

By looking for a solution of the forn#’(u) = A (1 — «)?, the asymptotic solution faF'(u)

asu — 1 which holds for all values of andc and alln > 0 is derived as

F(u) ~ (n+2)77 (1 —u)™2 as u— L (5.4.8)
The asymptotic solution near the fracture tip is unaffettgthe fluid leak-off since equation
(5.4.8) is the same as the asymptotic solution (4.3.51yeéeérin Chapter 4. The numerical
solution to the boundary value problem (5.4.3) subject t4.& and (5.4.5) will require the
asymptotic result (5.4.8) in order to overcome the diffigydbsed by the singularity of the
differential equation (5.4.3) at the tip of the fractureoifr(5.4.8), the fluid flux at the fracture

tip therefore vanishes since

Fu)*= (—%(u)) St (- W) = Fw) >0 as u— 1. (5.4.9)
As with a fluid-driven fracture in an impermeable rock massated in Chapter 4, the lubrica-
tion approximation breaks down at the fracture tip si0b¢dr — —oo asz — L(t).

The integration of the differential equation (5.4.3) sebj the boundary conditions
(5.4.4) and (5.4.5) to obtain an exact analytical solutidmnch is valid for all values of the
parameters and s and for alln > 0 is not feasible. However, approximate solutions which
are valid for all3, c andn > 0 will be investigated in Section 5.7. We will now discuss the

two cases that yield exact analytical solutions.
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5.4.1 Exact analytical solution for zero fluid injection at the fracture en-
try

When

e i ) (2”; 5 %) 1 B=0, (5.4.10)

or equivalently
n

T nBr2) 126+3
the differential equation (5.4.3) and the boundary coodgi(5.4.4) and (5.4.5) reduce to

(5.4.11)

equation (4.4.2) and boundary conditions (4.4.3) and44.Z'he condition (5.4.6) is satisfied
with the equal sign. The physical significance of (5.4.1@h& there is no net fluid injection
or extraction at the fracture entry.

The solution of the boundary value problem is given by (4:4.5

n+2) " L
F(u) = 1 — ez 5.4.12
= (2)" =) (5412

From (5.3.27) to (5.3.29), (5.3.31) and (5.4.7) the invatrsolutions are

L(t) = [1+ (n+2) (n+1)5 (ﬁ+ 2n+3) t] <n+2>(ﬂ+i”—ﬁ), (5.4.13)

n n—+ 2 n—+ 2
Vo
Vt) = —— 5414
B t) = — (1= a7 (5.4.15)
’ L(t)f+1 ’ o
n+1 " 1 a1\
alet) =7 (n + 2) L(t)A("+l)(2/3+3) (1=, (5.4.16)
where
1 1
Vo= 2/ (1 —w"t1) "2 du. (5.4.17)
0

The flux of fluid along the fracture at time @ (z, t), is proportional to the expression

2041 dF\ "
s (-5)

where withF'(u) given by (5.4.12),

Fu) % (—d—F) " uF(u). (5.4.18)



We see again that the flux of fluid into the fracture at the treeentry is zero which is the
physical property that characterises the solution. Thedfuuid at the fracture tipy = 1,
also vanishes sincB(1) = 0. Wheng = 0, (5.4.10) reduces to condition (4.4.1) discussed in
Section 4.4.

From (5.4.16),5 > 0 describes leak-off and < 0 describes inflow at the fluid-rock
interface. For the present solution we see from (5.4.13)ftvas > 0 the fracture length
always increases even although there is leak-off at the-foll interface and from (5.4.14)

the total volume of the fractur€(¢) decreases steadily. For

_ 2n+3
n—+2

) < B <0, (5.4.19)

the exponent and coefficient ofn (5.4.13) forL(t) are positive and the fracture length will

increase steadily with time such thatt) — co ast — oo. For

f<— (2::23) ; (5.4.20)

which describes strong inflow at the fluid-rock interfacendition (5.4.6) is not satisfied for
anyc > 0 and there is net fluid extraction at the fracture entry forchtthe present formu-
lation does not apply. From (5.4.14)(t) is constant whem = 0 because then there is no
net inflow of fluid at the fracture entry and there is no leakabthe fluid-rock interface. Also
from (5.4.15),h(0,¢) is constant wher$ = —1. Therefore, from the PKN approximation
the pressure at the fracture entwyf), ¢), is a constant whefi = —1 or whenc = 5. For

g > —1, h(0,t) is a decreasing function of time while for < —1, h(0,t¢) increases with
time. The velocity of leak-offy;(x,t), remains constant for all time wheh = —1.5. In
Figures 5.4.1(i)-(iii), the half-width of the fracturigz, t) given by (5.4.15) is plotted against
x for the same value of, namelys = 1, but for different values of the power-law exponent
n. The time scale (4.2.28) which dependsrois used and is therefore different in the three
parts of Figure 5.4.1. In all three graphs, as the half-wadttne fracture decreases with time,
the fracture length increases with time. The fracture lemgtreases even although there is
fluid leak-off at the fluid-rock interface and the total volerof the fracture is decreasing.
This phenomenon has already been observed in Chapter 4 Wwhemni$ no leak-off and the

total volume of the fracture remains constant. In Figurds2gi)-(iii), the half-widthh(x,t)

84



is plotted forg = +1, —1 and—1.2, keeping the power-law exponenfixed. The time scale
is the same in the three parts of Figure 5.4.2 sim¢e the same and therefore the evolution
of the fracture half-width with time can be compared. Fortlatee cases the fracture length
continues to increase with time. The graphs show that flaik-tf (5 > 0) decreases the rate
of growth of the length of the fracture while fluid inflow at taid-rock interface(5 < 0)
increases the rate of growth of the fracture length. TheWwalth decreases with time when
B = +1 for which there is fluid leak-off at the fluid-rock interfadeor 5 = —1 the half-width

at the fracture entry remains constant in time. Fluid inflotoithe fracture at the fluid-rock
interface wher = —1 keeps the half-width at the fracture entry constant, thepebventing

it from relaxing, while the fracture length grows. Whgn= —2, fluid inflow at the fluid-rock

interface causes the half-width to increase with time.

5.4.2 Exact analytical solution for constant average fluid glocity along

the fracture

By looking for a solution of (5.4.3) of the forrfi(u) = A(1 —u)?, whereA andp are positive

constants, a second exact analytical solution is obtaised a
Fu) = (n+2)77 (1 — u)7 (5.4.21)

provided

n
TR+ 128
It is easily verified that (5.4.21) satisfies (5.4.4) and titegral boundary condition (5.4.5).

(5.4.22)

We will see in Section 5.6 that the physical property whichrelsterises this analytical solu-
tion is that the fluid velocity averaged across the width ef fitacture is constant along the
fracture and equal to the velocity of the fracture tip.

When ¢ given by (5.4.22) is substituted into (5.4.6) it is readilgritied that condition
(5.4.6) for fluid injection at the fracture entry is satisfi€dom (5.4.22), for: > 0,

n

L (5.4.23)

B> -
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Figure 5.4.1: Flux of fluid into the fracture at the fracturdrg is zero. Fracture half-width
h(z,t) given by (5.4.15) plotted againstat times t= 0, 50, 100, 200 for (i) Shear thinning
fluid with n = 0.5, (if) Newtonian fluid withn = 1 and (iii) Shear thickening fluid with = 2.
The leak-off paramete? = 1. Time is scaled by’ defined by (4.2.28) which depends on
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n=0.5

(iii)

Figure 5.4.2: Flux of fluid into the fracture at the fracturdrg is zero. Fracture half-width
h(z,t) given by (5.4.15) plotted againstat times t= 0, 50, 100, 200 for shear thinning fluid
with n = 0.5. The leak-off parametes = +1, —1,—1.2. Time is scaled by’ defined by
(4.2.28).
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The flux of fluid along the fracture at tinteQ, (z, t), is proportional to, using (5.4.21),

- dF\ "
Fn il = F(u). 5.4.24
(w) ( du) (w) (5.4.24)
SinceF'(1) = 0 the flux of fluid vanishes at the fracture tip= 1.

The invariant solutions (5.3.27) to (5.3.29), (5.3.31) é&nd.7) are given by

2)" o (5121
L(t) = [1 L2 (6 + ) | ) , (5.4.25)
n n+2
mn + 2 n+3
£) =2 L(t)(73) 7 5.4.26
vio =2 (252 ) ) (5.4.26
h(z,t) = L(t)w2 (1 — u)7 (5.4.27)
15} —2(n+1) (5+ n ) 1
vz, t) = ——L(t) = 2D ) (1 — w)nt2. (5.4.28)
(n+2)n
For — 25 < 8 < oo the lengthL(¢) of the fracture will increase with time even although

there is fluid leak-off for5 > 0. From (5.4.27), wherg = n%? h(0,t) is constant , and
hence from the PKN approximation the pressure at the fra@ntry is constant. For stronger
leak-off with 5 > #2 h(0,t) is a decreasing function of time while for weaker leak-oftwi

b < n+r2 h(0,t) increases with time. The critical value = n+r2 is a decreasing function af
For example, when = 0.5, 1 and 2, the fracture half-width at the enthyp, t), increases with
time provideds < 0.4, 0.33 and0.25 respectively. The width of a shear thinning fluid-driven
fracture will grow for values of the leak-off parameter fonieh the width will decrease for a
shear thickening fluid-driven fracture. If the objectivaasncrease the width of the fracture
then this particular solution illustrates that shear tmgrfluids are to be preferred to drive the
fracture when there is leak-off. In Figure 5.4.3 the haléihiof the fracturel(z, t), given by
(5.4.27) is plotted against for a range of values of time fof = 0.33. We see from Figure
5.4.3 that for this strength of leak-off the width of the shignning fluid-driven fracture will
increase while the width of the shear thickening fluid-dnifeacture will decrease.

The fracture volumé/ (t) is constant whey = Z—j:;’ For this value of3 the volume flux
of fluid injected at the fracture entry balances the volume difluid lost due to leak-off at
the fluid-rock interface. Whep > Z—fg fluid leak-off is stronger than fluid injection at the

. n 3 - -
entry and the total volum¥ (¢) decreases while wheh < n—jQ the opposite is the case.
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Figure 5.4.3: Average fluid velocity constant along the tinee. Fracture half-width(x, t)
given by (5.4.27) plotted againstat times t= 0, 50, 100, 200 for (i) Shear thinning fluid with
n = 0.5, (i) Newtonian fluid withn = 1 and (iii) Shear thickening fluid witlhh = 2. The
leak-off parametef = 0.33. Time is scaled by’ defined by (4.2.28) which depends on
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From (5.4.25) the speed of propagation of the fracture is

R

r ol e (5.4.29)

4L decreases with time while

When there is no leak-off; = 0 andcfi—f is constant. Fop > 0, &

for fluid inflow at the rock interface? < 0 and% increases with time. For the limiting case

n+2"?
L(t) = exp % (5.4.30)
(n+2)»
and the fracture length increases exponentially with tiftem (5.4.26)
av _ 2 1 n+ 2 n+3 8) Lt 2ntl) (o -8). (5.4.31)
dt (n+2)» \n+2 n—+ 2

The rate of change of volume of the fracture is constant when

6:2m+&xn+® (54.32)

and increases for values gfless than this value and decreases for values greater.

From (5.4.28) the leak-off velocity is proportional #oand is constant in time when

B=— . (5.4.33)

For

<P < - (5.4.34)

(n+2) 2(n+1)
there is inflow at the fluid-rock interface and the magnitutihe inflow velocity increases as

time increases. For

n
2+ 1) <p <0 (5.4.35)

the magnitude of the inflow velocity decreases as time isgeand fod > 0 the leak-off
velocity decreases as time increases. The results are susecthim Table 5.4.1.

In Figures 5.4.4,5.4.5 and 5.4.6 the working conditionsthedcurves in théc, 5) plane
on which the two analytical solutions exist are plotted. #gdhe curve

(2043 o — o
ﬁ—(n+2) p— (5.4.36)
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derived in (5.4.10), there is no fluid injection or extraotet the fracture entry. In the region
of the (¢, 5) plane above the curve there is fluid injection and this is &ggon considered in

this thesis. In the region below the curve there is fluid etioa at the fracture entry. The line

2n+ 3
6:—(n+2)7 (5.4.37)

is the limit of (5.4.36) ag: — oo and is the limiting value of for which there is a solution

with ¢ > 0 with no fluid injection or extraction at the fracture entryloAg the curve

g=—" <1_C), (5.4.38)

n+2 c

derived from (5.4.22), the second analytical solutiontsxik lies above the curve (5.4.36) in

the (¢, B) plane and therefore is in the region of fluid injection at ttaefure entry.

Values ofg3(n)

Operating conditions B(n)
n=05n=1\n=2

Total volume of fluid in fractur

11%

n+3 1.4 | 1.33| 1.25
is constant

Half-width and pressure at| | 0.4 | 0.33] 0.25

fracture entry is constant

Rate of change of the total

n

volume of the fracture is  |sm71ym7g)| 0-066|0.08330.0833

constant

Speed of propagation of the

fracture is constant

Leak-off velocity is constant| —s55y | -0-166| -0.25| -0.33

Table 5.4.1: Values of the leak-off parametefor the second exact analytical solution for

which the average fluid velocity is constant along the freetu
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dL /dt = constan

1.2

p(0, t) = constan

constan

V =

0.333

(c=

0.125

No fluid injection or extraction at fracture ent
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Figure 5.4.4: Curves in the, 3) plane for the two analytical solutions for a shear thinningdfiwith »



- _
@
8
(%2}
C
o}
o
Il —~
—
a|B
(&)
o
C
©
8
2
Q )
© o
[ |
Z|8 &
< (@]
m _70
—
m N —
Ca | ™
Il o 1l
= Q
Q &L
o
c
8
n «
5 o
o

(c

Vv

No fluid injection or extraction at fracture en

93

Figure 5.4.5: Curves in thi, ) plane for the two analytical solutions for a Newtonian fluidhwv = 1.
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Figure 5.4.6: Curves in thi, ) plane for the two analytical solutions for a shear thickgrflaid with n = 2.



5.5 Numerical solution when leak-off velocity is proportian-
al to half-width of fracture

The differential equation (5.4.3) is not in general comgleintegrable analytically since it
admits only one Lie point symmetry generator

X:(n+2)u3+(n+1)

o (5.5.1)

Fa—F.
It is integrated numerically in a similar way to the methodcéed in Section 4.5 for a
hydraulic fracture in impermeable rock. Using the transfation generated by (5.5.1), the
boundary value problem (5.4.3) to (5.4.5) is transformed &pair of initial value problems.

The scaling transformation generated by the Lie point sytnn{b.5.1) is obtained as

=M,  F(a)=\2F(u), (5.5.2)

where) is a parameter. We choo$g0) = 1 and therefore[’(0) = A(GH2). The parameter
\ is determined from the conditiofi(\) = 0, derived from the boundary condition (5.4.4).

The boundary value problem (5.4.3) to (5.4.5) is transfatoehe following pair of initial
value problems:

Initial Value Problem |

F(a)™ (—‘fi—g)

subject to the boundary condition

3=

n+ 2 n c

]—%(wn[ n (2"+3—1)+6]F<u>=0 (5.5.3)

F(0) =1, (5.5.4)

(_diio))i B {n Z 2 (%; - %) + 5} /OAF(U)du, (5.5.5)

where0 < u < A\ and) satisfies

F(\) =0. (5.5.6)

Initial Value Problem Il

1
d 2n+1 dF n
Pt (=4
(u) ( du)

du

_ _) 4 5} Fu)=0 (55.7)




subject to the boundary condition

F(0) = A~ (i), (5.5.8)
dF(0) nﬁdﬁ(o)
L = A (5.5.9)

where0 < u < 1 and the parametex and% are obtained from the Initial Value Problem
I. Problem 1 is used to obtain and ‘fi—i The solutionF'(u) to Problem Il is the required
solution to the boundary value problem (5.4.3) to (5.4.9r thRe two special cases (5.4.11)
and (5.4.22), it can be verified that solutions obtained f(6rf.3) to (5.5.9) agree with those
obtained in (5.4.12) and (5.4.21). Problems | and Il wer@esbhumerically using the IVP
solver ODE45 of matlab. Problem | was transformed to the smlipystem of first order
differential equations B
dF

I 5.5.10
I v, ( )

dy (2n +1) (Fp)—ag (( n (1 (n+1))

2n+1 1 77,+2) -

subject to the initial and boundary conditions
F0)=1, 50)=A, F(\) =0, (5.5.12)

where A is to be determined. Equation (5.5.11) has a singularithattip, « = ), since
F()\) = 0. The asymptotic behaviour @f(u) near the tipzi = ), obtained from the asymp-

totic solution (5.4.8) and the scaling transformation (B)5

— 1

F(@) ~ A7 (n+2)72 (A —@)72  as @ — A, (5.5.13)

is plotted in thee— neighbourhood of the tip, and is used as an initial condifiwribackward
integration. Problem Il was solved by first transformings(3) to the same coupled first order
system (5.5.10) and (5.5.11), but without the overhead [drs system is then solved subject

to the initial conditions

F)= 0R), y(0) = Ax#25(0), (5.5.14)
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where\ andy(0) are obtained from the solution of Problem I. The solution fgx) is the
required solution of the boundary value problem (5.4.35td4.56).

In order for equation (4.2.7) to be satisfied, all solutibfs, ¢) must be such thath /0x <
0 across the entire fracture. The initial fracture profile;, 0) at timet = 0 for any value of
n, c andg is obtained from the similarity solution and is unspecifigatiari. In Figure 5.5.1,
c=mn = 1landf =-1,0, 2 and 4. It is seen that the initial profile(z,0), varies with
varying values of3, except at the fracture entry,= 0, and at the fracture tip; = 1, where

h(0,0) = 1 andh(L(0),0) = 0. Wheng = 4, which represents the highest leak-off rate in

0.9
0.8
h(x,t)o'7 | B= -1
0.6
05¢ =4
0.4}
0.3

0.2}

0.1}

Figure 5.5.1: Initial profile of the fracture half-width(z, ¢), at timet = 0 for c = n = 1 and

8 =-1,0,2and4.

Figure 5.5.1, the initial profilé(x, 0) is the thinnest and whefi = —1, representing fluid
injection into the fracture, the initial profile(z, 0) is the widest. The effect of varying any
one of the parameters ¢ and g at any time, while keeping the remaining two parameters
constant, is best understood at the points which were ligitzd « = 0 andu = 1 since
conditions are the same for any choice of parametér-at). Betweenu = 0 andu = 1,

fracture profiles vary with varying choice of parameter.
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In Figure 5.5.2 (i-iii), graphs ok (z, t) plotted against at timet = 50 for a shear thinning
fluid with n = 0.5 are given. In each of the three parts of Figure 5.5.2; 0.5 for a shear
thinning fluid whileg is varied. In Figure 5.5.2 (i), the pressure at the fractateyds constant
by the PKN approximation and we see that at time 50, the fracture half-width evolves the
greatest wher = —1 and the least whed = 10. The fracture half-width also evolves
greatest whew = —1 and least whew = 10 in Figure 5.5.2 (ii) for which the rate of fluid
injection into the fracture at the entry is constant and guie 5.5.2 (iii) for which the speed
of propagation of the fracture is constant. Figure 5.5.3afd&tewtonian fluid ¢ = 1) and
Figure 5.5.4 for a shear thickening fluid with= 2 are structured in the same way as Figure
5.5.2 and the results for the dependence of the graplisava the same. Singeis the same
in the three parts of each Figure the characteristic fihgefined in (4.2.28) is the same for all
graphs in that Figure and the evolution in time of the fraetwan be compared in that Figure.
As the parameterincreases in each of the Figures 5.5.2, 5.5.3 and 5.5.4tinatrevhich both
the width and length of the fracture evolve increases. Taetdire half-width always evolves
the least extent whefi = 10, for which the leak-off is highest and evolves the greatdstmnw
8 = —1, for which there is fluid inflow at the fluid-rock interface.

In order to grow the fracture the operating condition in vhilce speed of propagation of
the fracture is constant is better than when the rate of fhjection at the fracture entry is
constant which in turn is better than when the pressure drdlcture entry is kept constant.
This is satisfied for the range of leak-off considered fromdflunjection at the fluid-rock

interface to pure leak-off and for shear thinning, Newtoraad shear thickening fluids.
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(i)

(ii)

(iii)

Figure 5.5.2: Numerical solution of the fracture half-widt(z, ¢) plotted against: at time
t=50 for a shear thinning fluid with = 0.5 when (i) pressure at the fracture entry is constant
(c = 0.33), (ii) rate of fluid injection at the fracture entry is constan= 0.75) and (iii) speed
of propagation of the fracture is constdnt= 1). The leak-off paramete$ = -1, 0, 5, 10.

Time is scaled by defined in (4.2.28) which is the same in (i), (ii) and (iii).

99



(i)

(ii)

(iii)

Figure 5.5.3: Numerical solution of the fracture half-widt(z, ¢) plotted against: at time
t=50 for a Newtonian fluid withn = 1 when (i) pressure at the fracture entry is constant
(¢ = 0.5), (i) rate of fluid injection at the fracture entry is constéan = 0.8) and (iii) speed
of propagation of the fracture is constdnt= 1). The leak-off parametet = -1, 0, 5 and 10.

Time is scaled by defined in (4.2.28) which is the same in (i), (ii) and (iii).
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(i)

1.4
h(x,t)

(ii)

-0 3
17
PN

(iii)

Figure 5.5.4: Numerical solution of the fracture half-widt(z, ¢) plotted against: at time
t=50 for a shear thickening fluid with = 2 when (i) pressure at the fracture entry is constant
(c = 0.667), (ii) rate of fluid injection at the fracture entry is constén = 0.857) and (iii)
speed of propagation of the fracture is constant 1). The leak-off parametet = -1, 0, 5
and 10. Time is scaled b¥ defined in (4.2.28) which is the same in (i), (ii) and (iii).
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5.6 Width-averaged fluid velocity

The variation of the width-averaged fluid velocity,(z, t), along a permeable fracture,<

x < L(t), or equivalentlyp < « < 1, is now investigated. From (5.2.19),

ah % n+1
0] = (- T 6.1
Uz (2, 1) < &E) h (5.6.1)
But using (5.3.29) fok(x, t) and (5.3.28) fod.(¢), it can be verified that
it [ dF\" dL
y —Fw) (-—) =, 0<u<l. 6.2
niet) = P (<50) 5 0<us 562)

Equation (5.6.2) has the same form as equation (4.6.18)dmaratls o through the solution
of the ordinary differential equation (5.4.3) fél(«). The velocity ratio

D@, t) o wm [ dF\T
= (—@) (5.6.3)

does not depend explicitly on time, It depends on the dimensionless spatial variabdad
throughF'(u) on the power law index;, leak-off parametef and the working condition.
When the rate of fluid injection into the fracture is zero, #act solution forF'(u) is

given by (5.4.12) and

. dF\ "
Fa)S (222 ) — o 5.6.4
W (-5) = (5.6.4)
Therefore
B dL
Uz (x,t) = U= 0<u<l. (5.6.5)

At the entry to the fracture, the average fluid velocity vaesand therefore the fluid injection

rate at the entry also vanishes. For the second exact solétia) is given by (5.4.21) and

Flu)™ s (—d—F) to (5.6.6)
du
Hence,
dL

The average fluid velocity equals the speed of propagatitimediracture tip at each positian
along the fracture. This is the physical condition whichreleterises the second exact solution

which is defined by (5.4.22).
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In each of the graphs in Figure 5.6.1, the velocity ratio glthe fracture, given in equation
(5.6.3) is plotted for a fracturing fluid with power-law inde and leak-off parametet, but
different working conditiong. For the cases considereds 0.5, 1 and 2. In Figure 5.6.1,
the ordering of the curves according to working conditiontha fracture entry, is the same
for shear thinning, Newtonian and shear thickening fluias.iforking conditions (iv) to (vi)
the average fluid velocity decreases along the fracturedaltieidl leak-off. The average fluid
velocity injected at the fracture entry must be greater tienspeed of propagation of the
fracture,‘fi—f. For working conditions (i) and (ii) when there is either naidlinjection at the
fracture entry or the total volume of the fracture remainsstant, the average fluid velocity

increases td;l% along the fracture. The average fluid veloaifyincreases té¢x

3, even although

there is fluid leak-off along the fracture, due to the deaaaghe width along the fracture.
For working conditions (iii) the decrease in the averageae#y along the fracture due to leak-
off is exactly balanced by the increase due to the decreake imidth along the fracture. The
average fluid velocity therefore remains constant alondréieture and equalg:. In Figure
5.6.2, the behaviour af, % when = —0.1 is plotted along the fracture. The curves are
bounded above by the exact solution (5.6.4) and below by xhetesolution (5.6.6). Since
B = —0.1, there is fluid inflow at the fluid-rock interface and when cledgpwith the inflow at
the fracture entry the ratio, % increases for working conditions (i) to (iii). For the wonlkj
condition (iv) the increase in the average velocity due &dbacrease in width of the fracture
and due to fluid inflow at the fracture entry and at the intexfaombine such that the ratio

Uy % remains constant along the fracture.
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Figure 5.6.1: Velocity ratias, /%= plotted against. = z/L(t) for n

u

0.5,1,2 and for a

range of working conditions at the fracture entry: (i) zewsdlinjection rate at fracture entry,
(i) total volume of the fracture is constant, (iii) averaihy@d velocity is constant along the
fracture and equals the propagation speed of the fractwmecdnstant pressure at fracture
entry, (v) constant rate of fluid injection at entry , (vi) ggeof propagation of the fracture is

constant.
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Figure 5.6.2: Velocity ratia, % plotted against. = z/L(t) for n = 0.5,1,2 and for a

range of working conditions at the fracture entry: (i) zetadlinjection rate at fracture en-
try/pressure constant at fracture entry, (ii) rate of fluigection is constant, (iii) speed of
propagation of the fracture is constant (iv) average fluidaigy is constant along the fracture

and equals the propagation speed of the fracture.

105



5.7 Approximate analytical solution

Figure 5.7.1: The straight line joining the poini& A) and (1, 1) which approximates the

curve joining the points.

The curves for the two cases leading to exact analyticaltisolsl are straight lines in
Figures 5.6.1 and 5.6.2. The other curves shown are appateiynstraight lines and will be
approximated by a straight line equation. In Figure 5.7€ldghadient of the line joining the
points(0, A) and(1,1) is (1 —A). Wheng = 1, n = 0.5 and the pressure at the fracture entry
is constantA = 1.4079 and(1 — A) = —0.4079. The gradient of the numerical curve varies
from -0.391 to -0.426 with a maximum departure fram A of 4.46%. We approximate the
curve joining the point$0, A) and(1, 1) by a straight line of the form

Flu)™ (_d];i“)) D _(A-1u+ A (5.7.1)

The solution of (5.7.1) subject to the boundary conditiofi) = 0 yields

1

n+2 )}M HA_ (A 1)u]n+1 _ 1]7?2‘ (5.7.2)

n+1)(A_1

F(u) = [

The exact analytical solutions fdr(u) when A = 0 and A = 1 are known and given by
(5.4.12) and (5.4.21). In (5.7.2), we will considér> 1 for F'(u) € R. ForA < 1, (5.7.2) will
be rewritten in the form in equation (4.7.2). For a specificigaf the power-law exponent
working conditionc and leak-off parametet, the numerical value oft can be used. However,

in order to obtain a general expression fowhich is approximately valid for a range of values
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of n, c andg, consider the boundary condition (5.4.5) given as

F0)™ (_@)% _ [ n (27”3 - %) +5} /OlF(u) du. (5.7.3)

du n+2 n

With (5.7.2) substituted into (5.7.3), the left hand sid¢%¥.3) gives

ro () <A () T 6

. . A—1 . . .
By expanding in powers d:f(A—) the integral on the right hand side becomes

/OIF(U) du = {(nJr?)jEj— 1>]ni2 /O1 [[A— (A= 1)u"" — 1]#2 du

- [eras 1)]7.12 [l (o™ ie?

L (n+ D (U(A—n)?_ (n+Dn(n —1) (u(A—l))3+ ''''' ) _1]"_“ .

2! A 3!
(5.7.5)

For working conditions of interest, the range of valuesiafiepends on the leak-off param-

eterpg andn. Forl < A < 2, we retain only first order terms iﬁ(ﬁ;l) and we make the

approximation
[[A = (A= Duf™ 1] & [(A™ — 1) — (n+ DAY(A — 1)u] 72 (5.7.6)

and therefore (5.7.5) becomes

/OlF(U) du = [(n+71‘)+(j_ 1)}#2 (AmH! - 1)ﬁ /01 {1 (n +2;41"(_A1— 1)4#2 "

Tl - (-]

Antl — 1
We assume that the values 4fin the range considered,< A < 2, are close tcA = 1 and

(AnJrl _ 1)2_1—3
(n+1)A"(A—1)

(5.7.7)

we therefore make the approximation

_AMA-1) 1
lm = = (5.7.8)
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Equation (5.7.7) becomes approximately

! n+2 n—+2 w2 1
= A — 1] 7.
froa=(5) [l o
The boundary condition (5.7.3) yields, using (5.7.4) and.@, an approximate value fot
given as
n 2n+3 1 n+2
A_n+3< - _E)+(n+3)6‘ (5.7.10)

Although (5.7.10) was derived fdr< A < 2 it also applies fod < A < 1.

25

n=0.5

20
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G

Figure 5.7.2: Velocity ratio at fracture entry, plotted againsts for a range of working

conditions: (i) Total volume of the fracture is constént= 0.125), (ii) pressure at the fracture

entry is constantc = 0.333) and (i) constant rate of fluid injection at the enfey= 0.75).

In (5.7.10) the approximate expression for the velocitiprat the entryA, is obtained as a

linear function of the leak-off parametét, In a graph of4 against3, the slope of the graph is

wt2 and the intercept on thé-axis is;'t; <(2”n+3) — %) Putting3 = 0 in (5.7.10), equation
(4.7.10) for the approximate expression for A when thereoidluid leak-off is recovered.
In Figure 5.7.2, an investigation of the numerical relasioip betweerd and/ for the three

operating conditions considered shows tHataries almost linearly witts. In Figure 5.7.3
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Figure 5.7.3: Velocity ratio at fracture entryt, plotted againsti when the total volume of

fracture is constant: The numerical solution is (——) andapproximate solution (5.7.10) is

the case in which the total volume of the fracture is consiscbnsidered. It is seen that
the approximate solution fad deviates from the numerical solution and that the deviation
increases ag increases. Since the slopﬂg—?, Is an increasing function of, the deviation
also increases with increase in The approximate expression fer given by (5.7.10) is

therefore most accurate for small valuesgidfatisfying

n 1 2n+3 n 1 3
- — <p< -+ = 5.7.11
n+2(c n ) p n+2(c+n)’ ( )

for which0 < A < 2, for any working conditiorr and power-law index.
Finally we now check that (5.7.2) and (5.7.10) approximesatisfy the differential equa-
tion (5.4.3). Substituting (5.7.2) into (5.4.3), and afsenplifying we find that (5.7.2) is a

solution of the differential equation provided

B n 2n+3 1 (n+2)
T e amA) | e ) (5.7.12)
where
Aus A)= A A D=1 (5.7.13)
[A—(A-1Du]"" —1
By using the approximation
. n
}11211 Mu; A) = T (5.7.14)
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it is readily verified that (5.7.12) agrees with (5.7.10).
In Figures 5.7.4 and 5.7.5 a comparison is made of the appedgi and numerical solu-
tions forh(z, t) for two modes of working conditions. When the pressure afrtéeture entry

is constant, thenand A given by (5.7.10), are

n n—+2
The approximate solution, using (5.3.29), is
_ F(u)
h(z,t) = F0)’ (5.7.16)

where from (5.7.2)

1

((n+2)(1 +ﬁ))n+1 (1 C(n+2)8- 1)u)”+1 ki

Plu) = (n+3)(n+2) )}n_ﬁ

m+1)((n+2)8—1 (n+3) (B+1)(n+2)
(5.7.17)
and from (5.3.28)
v =uL(t) = u 1+Lﬂg Hl, 0<u<l. (5.7.18)
nF(0)

When the rate of fluid injection into the fracture is constaand A, given by (5.7.10), are:

_ 2(n+1) _(n+2\ [ 2n+3
‘T ony3 A_(n+3) {2(n+1)+ﬁ] (5.7.19)
The approximate solution, using (5.3.29), is
(2n 4+ 3) B ()
h(z,t) = |1+ — 1 —, 5.7.20
(@.1) [ 2(n+ 1)F(0)"" £(0) ( )

where from (5.7.2)

1

o] () @)

n B 2(n + 1) . e w2
{1 - <(n T (@0 13) 128+ 1) ((2n+3)+28(nt 1))ﬁ) } 1] |
(5.7.21)

F(u) =
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h(x,t)

(ii)

(iii)

t=0

t=200
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t=0
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t=0

.
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.
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Figure 5.7.4: Comparison of the approximate solution(-- ) with the numerical solution

(—) for h(z, t) when pressure is constant at the fracture entryfer 1 andn = 0.5, n = 1

andn = 2.
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n=1

(ii)

h(x,t)

(iii)

Figure 5.7.5: Comparison of the approximate solution(- - ) with the numerical solution
(—) for h(x,t) when the rate of fluid injection is constant at the fracturgyefor 5 = 1

andn = 0.5, n = 1 andn = 2.
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and from (5.3.28)

2(n+1)
2 3 2n+3
r=ulL(t)=u |1+ (2n + )nHt ) 0<u<l. (5.7.22)
2(n+ 1)F(0)

The approximate solution slightly underestimates the wadtd length of the fracture, un-
like in Figures 4.7.3 and 4.7.4 for no leak-off & 0) where the approximate solution slightly
overestimated the width and length of the fracture. The lggaghow that the approximate
solution is more accurate for shear thinning fluids than feras thickening fluids. In Figures
5.7.2 and 5.7.3 we see thdtincreases linearly witlt and since the assumption was made
that0 < A < 2 the approximate solution will be applicable for small vawés which satisfy
the inequality (5.7.11).

In general the approximate solution is a useful approxiometd /2(x, t) for shear thinning,
Newtonian and shear thickening fluids over a large rangenté and for small values of the

leak-off parametes.

5.8 Conclusions

In this chapter, we have considered a two-dimensional pistheg fracture propagating in
a permeable rock when fracturing fluid of power-law rheologiyder high pressure, is in-
jected into the fracture. As with Chapter 4, the governingagigpns for the flow of the non-
Newtonian fluid in the fracture are the continuity and momemnbalance equations, simplified
with the aid of lubrication theory and PKN theory. Lubricatitheory holds provided the ra-
tio of the fracture half-width to the fracture length is scifintly small. The distinguishing
feature in Chapter 5 is that the interface between the flutderfracture and the rock mass is
permeable and fluid leaks off into the surrounding rock mass welocity v;(z, ). The leak-
off condition was incorporated into the mathematical mdtdebugh the interface boundary
condition. With the aid of the relevant boundary conditioagliffusion equation with a sink
term, which describes the evolution of the half-width of treeture, was derived.

In order to solve the diffusion equation, Lie symmetry asaywas first used to obtain
the Lie point symmetries admitted by the nonlinear partigi¢cential equation, with the sink

term,v;(z, t), taken to be an arbitrary function of the spatial co-ordinaand time coordinate
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t. The nonlinear partial differential equation was reduaed honlinear second order ordinary
differential equation by considering a linear combinatbthe admitted Lie point symmetries.
The leak-off velocity, taken arbitrary during the symmednalysis, had to satisfy a first order
linear partial differential equation for the diffusion exjion to admit Lie point symmetries.
The leak-off velocity was therefore determined from a syrmyneequirement

As with Chapter 4, the boundary value problem was solved Bytfiansforming it into a
pair of initial value problems, which together with the apation of asymptotic results at the
fracture tip gave good numerical solutions.

An approximate analytical solution was derived for smallea of the leak-off parameter
B. It was found that when there is leak-off at the fluid-roclenfiece, the approximate solution
always underestimates the width and the length of the fractttwas found that the approx-
imate solution was more accurate for shear thinning fluida fior shear thickening fluids. It
may be a useful approximation for small valuesno€lose ton = 0. This is the region in

which numerical methods for shear thinning fluids sometibreak down.
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Chapter 6

Conservation laws

6.1 Introduction

This chapter investigates the existence of conservatigs far the problem of a pre-existing
fracture which evolves by being driven by a non-Newtoniardflo both permeable and im-
permeable rock.

Conservation laws play an important role in the study ofedéhtial equations arising
in many physical processes, where physical quantities as@nergy, mass and momentum
are conserved. A general approach for obtaining conservédws is given by Noether’'s
theorem[48]. However, in order to use Noether’s theorerm@wkedge of a Lagrangian for-
mulation corresponding to the differential equation isuieed. This brings in a limitation to
the applicability of Noether’'s theorem since there are mdiffgrential equations which do
not admit a Lagrangian, for example, the partial differ@ngiquations derived for the evolu-
tion of the fracture half-width in this thesis. There arepewger, several methods for obtaining
conservation laws which do not need the formulation of a aagian. These approaches are
discussed with examples by R. Naz et al. [51]

In Sections 6.2, 6.3 and 6.4, we will consider three appresitb deriving conservation
laws which are the direct method, the characteristic me#imatthe partial Noether approach.
Section 6.5 deals with conserved quantities for fluid flow ifnagture. Finally, we will es-

tablish a connection between conserved vectors for theapdifferential equation describing
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the evolution of the fracture half-width and the correspogd.ie point symmetry associated
with these conserved vectors. This approach is due to Katavehomed[52] and can be
used to obtain group invariant solutions correspondingttserved vectors. We will focus on
the diffusion equation with the sink term(¢, ) obtained from modelling the non-Newtonian

fluid driven fracture in permeable rock, given by

Oh 9 [ amn [ OR\*
a7 + B <h n (—%) ) + v (t,z) =0. (6.1.1)

When v, (t,z) = 0, equation (6.1.1) reduces to (4.2.22) for a non-Newtoniaia ftiriven
fracture in impermeable rock.
The equation

DT + D, T* =0 (6.1.2)

IS a conservation law for the differential equation (6.1flif is satisfied for all solutions
h(t,x) of (6.1.1). In (6.1.2) the quantiti€s’ (¢, x, h, h,, hs, .. .), wherei = 1 and2, are the
components of the conserved vecior= (T, 7?) and D, and D, are the operators of total

differentiation defined by

0 0 0 0
Dl_Dt_a_'_ht%—i_htta—ht—i_hxta—hx_'_“" (613)
0 0 0 0

There are two forms for the elementary conserved vectorlamdlementary conservation

law. Equation (6.1.1) can be written in the form of a consgovelaw as

oh 0 2n41 Oh " §
54-% [h n (—%) —i—/ovl(t,x)d)(] =0. (6.1.5)

By replacing the partial derivative operators on the lefachaide of (6.1.5) with the total
derivative operators (6.1.3) and (6.1.4) and treating h and its higher derivatives as inde-

pendent variables, we obtain

s [ OB\ (7
Dﬂh%+D$<n%L(_5—) +:/vmtxwx>
&€ 0

2 ]_ n+1 n+1 2n+1 1
(2n + >h%(—h$)% +

1 .
— —h7n (=hg) ™ haw +u(t,x). (6.1.6)
n




Substituting the expression féy in (6.1.1) into (6.1.6), we obtain

D, (h) + D, <h+ (—hg)" +/0$vl(t,x)dx) —0. (6.1.7)
The components
T = h, (6.1.8)
T = K (—hm)h/i}l(t,x)dx, (6.1.9)
0

are the components of the elementary conserved vector dirgiekind and (6.1.7) is the
elementary conservation law of the first kind.

Equation (6.1.1) can also be written in the form

) t O [ 2w [ OR\"
which can be expressed as
t o
D, [h+/ u(r, [L’)dT} + D, | W <—@) ] = 0. (6.1.11)
0 Ox
The components
t
T = h+/ v (7, x)dr, (6.1.12)
0
T2 — B (—@) " (6.1.13)
ox

are the components of the elementary conserved vector cfeibend kind and (6.1.11) is
the elementary conservation law of the second kind. Whena 0 the elementary conserved
vector for a non-Newtonian fluid-driven fracture in impeabé&e rock is recovered from both

the first and second kind conserved vectors:

2n+1

T =h, T?=h"" (—hy)". (6.1.14)

6.2 Direct method

The direct method uses (6.1.2), subject to (6.1.1) beingfeat, yielding a determining equa-

tion for the conserved vectors. We will look for conservedtees of the formir™ (¢, z, h, h,.),
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¢ = 1,2, which satisfy the determining equation

D,T* + D,T? = 0. (6.2.1)
(6.1.1)

Using (6.1.3) and (6.1.4) and by substitutitagwith its expression in (6.1.1), (6.2.1) becomes

OT' 1 2nn 1n OTY (2n+ 1), nn nt1 9T
o Tt el T e e (ha)
or'  or' 9T 9T OT?
- g —0. (622
U L T L Tar T )

SinceT"! and7T? are independent df,, andh,.,, (6.2.2) is separated with respect/tg and

h.. to give
b O Lyme gy T (6.2.3)
T 0hy n ’ on o
oT!
hig =0, 6.2.4
: o (6.2.4)
and the remaining expression in equation (6.2.2) is
oT! (2n+1) nt1 nt1 0T oT! oT? oT?
(= n — — + — — =0. 2.
% T hn (—hy) 5 vi(t, x) T o + hy o 0 (6.2.5)

From (6.2.4),'" = T'(t, x, h) and therefore (6.2.3) is integrated with respedt tdo obtain

1 oT?
oh

2n+1
n

T2 = h™ (—hy) + A(t, 2, h), (6.2.6)

whereA(t, z, h) is an arbitrary function. Substituting (6.2.6) into (6.Rytelds

8T1 8T1 2n+1 1 82T1 aA
2n41 ni1 02T 0A
—h T (— n - =0. 2.7

Equation (6.2.7) can be separated according to poweks.oHowever, some powers @,

are the same for certain valuesaf For example, when = 1, hj andh, have the same
powers and their coefficients should be grouped togethesrthierefore necessary to look for
conserved vectors for two different cases, the first of wisciwhen the fluid is Newtonian,

with n = 1, and the second case is for generab £ 1, for which the fluid is non-Newtonian.
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6.2.1 Caser=1

Equation (6.2.7) is separated thus

h2 a;z: =0, (6.2.8)
hy : g—’: - h3§i:g; =0, (6.2.9)
Remainder 88—7: —uy(t, ;1:)((2—7; + g—i = 0. (6.2.10)
Integrating (6.2.8) twice gives
T' = B(t,x)h + O(t, z). (6.2.11)

Using (6.2.11), (6.2.9) is integrated with respech tim obtain

A(t,z, h) = %h4g—f(t,x) + D(t, ). (6.2.12)

In (6.2.11) and (6.2.12)B(t, z), C(t,z) and D(t, z) are as yet undetermined. Substituting
(6.2.11) and (6.2.12) into (6.2.10) and then separatingrdatg to powers of, yields

Rt ‘227? =0, (6.2.13)
hoo %—f =0, (6.2.14)
remainder %—? —u(t,z)B(t,x) + g—f = 0. (6.2.15)
From (6.2.13) and (6.2.14), we have
B(z) = 1z + ¢, (6.2.16)

wherec; andc, are constants. Using (6.2.16), equation (6.2.15) becomes

oC oD
E(t, z) — (ax + c2)v(t, z) + 8—a:(t’ z)=0. (6.2.17)
From (6.2.11) and (6.2.16),
T'(t,x,h) = (17 + c2)h + C(t, x), (6.2.18)
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and from (6.2.6), (6.2.12) and (6.2.16),
T%@mmg:—@x+wﬁm+%M+D@m. (6.2.19)

There are two ways of proceeding which lead to the two eleamgmionserved vectors found
in Section 6.1. We can use (6.2.17) to replace eitligrz) or D(¢, x) in (6.2.18) and (6.2.19).
Consider first replacin@ (¢, x). Integrating (6.2.17) with respect tofrom 0 tox gives

aE X X
D(tv I’) = D(t7 0) - E(u ‘T) +a / :L‘Ul(t, X) dX + 62/ Ul(t7 X) dXv (6220)
0 0
where
r oF
E(t,z) = / C(t, x) dx, T C(t,x). (6.2.21)
0

Then (6.2.18) and (6.2.19) become

T'(t,z,h) = (1w + co)h + T7, (6.2.22)

T2(t7 z, h7 h:t) - _(Clx + 62)h3h$ + 2h4 + ¢ / le(t7 X) dX + co / Ul(tv X) dX + Tfa
0 0

4
(6.2.23)
where
1 9 )
T, =C(t,x), T7=D(t,0)— E(t’ x). (6.2.24)
Now, it is readily verified that
D!+ D, T? =0 (6.2.25)

without imposing (6.1.1). Thug! and7? are the components of a trivial conserved vector
and can be set equal to zero. By puttin@ndc, equal to zero in turn we obtain from (6.2.22)
and (6.2.23) the following two conserved vectors for a Newdo fluid-driven fracture in

permeable rock:

" — b, W:-M@+/w@m@3 (6.2.26)
0
1 x
T = zh, T? = —xh3h, + Zh4 + / xui(t, x) dy. (6.2.27)
0

Equation (6.2.26) is the elementary conserved vector diitstekind.
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We next replacé€’(¢, z). Integrating (6.2.17) with respect tofrom O tot gives

F t
C(t,z) = C(0,z) — 2—x(t, z)+ (a1 + ¢2) /Ul(T, x)dr, (6.2.28)
0
where
! OF
F(t.a) = | D(r.a)dr, —-=D(t,2) (6.2.29)
0
Then (6.2.18) and (6.2.19) become
t
T'(t,z,h) = (c1w + co)h + (c17 + ¢») /’UZ(T, r)dr + T}, (6.2.30)
0
T2t 2, by hy) = — (12 + c2)BPhy + %h‘* + T2 (6.2.31)
where
1 8F 2
T, =C(0,z) — a—(t,x), T: = D(t,x) (6.2.32)
X

But it is readily verified that (6.2.25) is identically sdiexl without imposing (6.1.1) and
thereforeT’! andT? are the components of a trivial conserved vector. Equati@2s30) and
(6.2.31) give the following two conserved vectors for a Nawan fluid-driven fracture in

permeable rock:

t
T =h+ /UZ(T, r)dr, T?= —h3h,, (6.2.33)
0

t

1
T' = zh + x/vl(T, x)dr, T?= —xh’h, + Zh4 (6.2.34)
0

Equation (6.2.33) is the elementary conserved vector ad¢leend kind.

6.2.2 Generalcase > 0,n # 1

Equation (6.2.7) is separated by powersg.pfs follows
nt1 0?T!

ha™ : =0, 6.2.35
oz =~V ( )
1 82T1
hi o =0, (6.2.36)
0A
ha 1o =0, (6.2.37)

oT'  OT'  09A

remainder T vla—h + pr

0. (6.2.38)
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From (6.2.35) and (6.2.36),
T' = B(t)h+ C(t, 1), (6.2.39)

whereB(t) andC/(t, z) are arbitrary functions. From (6.2.37,= A(t, x) and by substituting
(6.2.38) into (6.2.39), we obtain

h— + = —yB(t) + =— =0, (6.2.40)

from which we have by separating in powershof

B(t) = ¢, c; = constant (6.2.41)
and
oC 0A
E(t, x) —cu(t, z) + %(t, z)=0. (6.2.42)

From (6.2.6) and (6.2.39), the conserved vector comporzseats

T' = cih + C(t, z), (6.2.43)

2n+1

W (—h,)T + At ). (6.2.44)

T2 = Clh

Equation (6.2.42) corresponds to (6.2.17) for a Newtoniaid flAgain, there are two ways of
proceeding. We can use (6.2.42) to replace eiferz) or A(¢, z) in (6.2.43) and (6.2.44).
We first replaceA(t, x). Integrating (6.2.42) with respect tdrom 0 toz gives

A) = a0 - LD ey [ ax (6.2.45)
0
where
r oF
E(t,z) = / C(t, x) dx, = C(t,x). (6.2.46)
0

Equations (6.2.43) and (6.2.44) become

T' =ch+ T}, (6.2.47)
T2 = b5 (—hy)™ + ¢ / w(t, x) dy + T2, (6.2.48)
0
where
. ) OFE
Tl =C(tx), T!=A(t,0) = (). (6.2.49)
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It is easily shown thaf’! andT? satisfy (6.2.25) identically without (6.1.1) being impdse
and are therefore the components of a trivial conservedredte therefore sef! and7? to

zero. We obtain only one conserved vector
T =h,  T2=h"" (—hy)" + / ul(t, ) dx, (6.2.50)
0

which is the elementary conserved vector of the first kind.

We next replac€’(¢, z). Integrating (6.2.42) with respect tofrom 0 tot gives

t
F
C(t,z) =C(0,2) + ¢ /’UZ(T, x)dr — g—x(t,w), (6.2.51)
0
where
K oF
F(t,z) = /A(T, x)dr, o= A(t, ). (6.2.52)
0
The components (6.2.43) and (6.2.44) become
t
T'=cih+ ¢ /vl(T, r)dr + T, (6.2.53)
0
T2 = et h ™5 (—hy)" + T2, (6.2.54)
where
oF
1 e P —
T, =C(0,2) e (t,x),, (6.2.55)
T? = A(t, ). (6.2.56)

The components (6.2.55) and (6.2.56) satisfy the conservatjuation (6.2.25) identically
and therefore form a trivial conserved vector and are setldquzero. We again obtain only

one conserved vector

3=

t
T'=h+ /vl(T, 2)dr, T?=h""" (—hy) (6.2.57)
0

which is the elementary conserved vector of the second kind.

The conserved vectors which we have found for the partiémihtial equation (6.1.1) are
summarised in Table 6.2.1. The leak-off velocityt, z) occurs in eithefl™ or T2, It does
not occur in both componentd and7™? in the same conserved vector. For a Newtonian fluid
with leak-off, we found a second conserved vector that de¢acur in a non-Newtonian

fluid. The results reduce to those of Chapter 4 whéh =) = 0.
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n Conserved vector

1 T =h, T?=—h3h, + [jul(t,x)dx

T'=xh, T?=—xh3h,+ 1h*+ [[xu(t, x)dx

1 T =h+ [ju(r,z)dr, T?=-h’h,

T'=xh+x fotvl(T, x)dr, T?—zh3h, + 3h*

2n+1

n>0| T'=h, T?=h" (=hy)n £ [Tt x)dy

n#1

2n+41 1
n

n>0 T'=h+ fOtUl(T, r)dr, T?*=h""n (—hy)

n#1

Table 6.2.1: Conserved vector for the partial differerg@liation (6.1.1)
6.3 Conservation law via the multiplier approach

Here, we will look for conserved vectors with componé€ftsi = 1, 2 whose dependence on
x,t,h,hy, hy, ... 1S UNspecified aprori.

A multiplier A for the partial differential equation (6.1.1) has the prypéhat

oh 0 [ s [ OR\"
A[E—F%(h n (—a—x) )"‘Ul(t,x)

for all function h(t, z) whereD, and D, are as given in (6.1.3) and (6.1.4). The right hand

=D, '+ D,T?, (6.3.1)

side of (6.3.1) is a divergence expression.
Consider now a multiplier of the form(¢, z, h, hy, h,.). The multiplier has the determining

equation given by

]_ 2n+1 1—n 2 1 n+1 n+1
E, {A(t,x,h,ht,hx) <ht——hT+ (—hg) ™ Dy — (2n + )h% (—hI)Tﬂl)] =0,
mn mn
(6.3.2)
where
) 0 0 0 0 0 0
EL=—=——-D,— — D,— + D? D,D,— +D*— — ... 3.
nEsn T on Pron, T Pton T o TP van, TP an, (6.3.3)
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is the standard Euler operator which annihilates the demcg on the right hand side of

(6.3.1). Expanding (6.3.2), we have

1 2n+1 -n 2 1 n+1 n 2 1 -n n+1
[ht N AR N C Ut e S vl]Ah +A [—( nE J (Ch)'® g n
n n n
2 1 1 n 1 2 —n 2 1) = n
—( nt )2(n + ) (—hx)%l h%:| - |:ht__h27;r1 (_hx)lT hxx_( nt )h% (_hx)%l"i_vl Dx(Ahz)
n n n
1 n -n 2 1 n n 1 - n —2n
“An.D, [ht__hgn“ (—hy) ™ h:c:c_( ntl), e (—hy) " H}l} - {( 2n)h% (=he) ™ Dy
n n n
2n+1)(n+1). anr 1 1—n), 2001 1-2n
—i—( 732( )h n (—hx)"} D,.(A)—AD, {( . )h n (=hg) ™ R
2 ]_ 1 n 1 1 n 1-n 2 1 n n+1
n n n
1 n 1—n 2 1 n n+1
D) =8 D [he = 5 () T o= EERE ) ] - D)
1. 2n 1-n
+D? {A (——h%“ (—hx)Tﬂ = 0. (6.3.4)
n

Since (6.3.4) must be satisfied for any functibft, «), the sum of the coefficients of like
derivatives ofi (¢, ) in (6.3.4) must vanish. We will now discuss the Newtoniaregas- 1

for the reason stated in Section 6.2.

6.3.1 Caser=1
Equation (6.3.4) reduces to
[he = BPhgy — 30°h2 +v;| Ap 4+ A [=3h%hgy — 6hR2] — [hy — BPhey — 3h7R2 + v
XDy (Ap,) — A, Dy [he — BPhyy — 30°h2 + v;] + 6h%h, Dy (A)
+AD, [6h°h,| — [hy — hPhyy — 307R2 + 0] Dy(Ap,) — A, Dy [he — B hyy — 3022 + vy

—Dy(A) + D2(—=h*A) = 0. (6.3.5)

The coefficients of the highest order derivative terfmg,. andh,.;, cancel out to give zero

and from (6.3.5) the coefficients 0f;h;, hy, hat, ha, and the terms independent of derivatives

125



of h yield

hyshy Ahtht =0, (6-3-6)

htt : Aht == O7 (637)

hgt : Ap, =0, (6.3.8)

hew:  Ap =0, (6.3.9)

terms independent of Ay + Ay h? = 0. (6.3.10)

derivatives ofh

From (6.3.6) to (6.3.9), we obtain
A=At z), (6.3.11)

and therefore from (6.3.10), we have, separating by poweks o
R Ay, =0, (6.3.12)
1: A =0. (6.3.13)

Equation (6.3.13) yieldd = A(z) and integrating (6.3.12) gives
A =cix+ e, (6.3.14)

wherec; andc, are constants. The multiplier is independent of the leékdbcity v, (¢, ).
As with the direct method there are two ways of proceedinggtllyj equation (6.3.1) with

n = 1 and (6.3.14) give, by doing elementary manipulations,
(c1z + ) [y — hPhyy — 3W°K2 + v] = Dy [erzh + coh]

+ D, [cl (—xh‘q’hx + ih‘l + / xvi(t, x) dx) + ¢ (—h‘q’hx + / uy(t, X)dx)] (6.3.15)
0 0

for all functionsh(t, z). Thus, wherh(¢, z) is a solution of the diffusion equation (6.1.1) with

n=1,

1 X X
Dy [cixh + eoh| +D, {cl (—a:h?’hx + Zh4 + / xvi(t, x) dx) + ¢ (—h?’hx + / uy(t, X)dx)} = 0.
0 0
(6.3.16)
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By puttingc; andc; equal to zero in turn, we obtain again the two conserved vedbthe
first kind, (6.2.26) and (6.2.27).
Secondly, equation (6.3.1) with= 1 and (6.3.14) may be written in the form

t
(12 + ¢2) [ — hPhgy — 307H + v] = D, {cl (xh + l’/’l}l(T, ) dT)
0

+co (h + /t’l)l(T, ) dT)} + D, {cl (—a:h?’hx + ih‘l) + ¢ (—h3hx)} (6.3.17)
0

for all functionsh(t, ). Thus whem(t, x) is a solution of the diffusion equation (6.1.1) with

n=1,

D, [cl (xh+a:/0tvl(7, x) dT) + ¢y (h+ /Otvz(T, z) dT)}

1
+D, [cl <—xh3h$ + Zh“) + o (—h3h$)] —0 (6.3.18)

By puttingc; andc, equal to zero in turn we obtain the two conserved vectorsetdtond
kind, (6.2.33) and (6.2.34).

6.3.2 Generalcase > 0,n # 1

1=2n 1 1-n
Equating to zero the coefficients 8f,.h. " , hoohi, hythe, hy, heehe™ and the remaining
terms in (6.3.4) which are independent of derivatives ahd simplifying, we have

1-2n

hooha® © Ay =0, (6.3.19)
hoohd © A =0, (6.3.20)
huhe s A, =0, (6.3.21)

hu o An =0, (6.3.22)
hashs™ + Ay =0, (6.3.23)
remainder A, =0. (6.3.24)

From (6.3.19) to (6.3.24), we obtain
A=c (6.3.25)



There are two ways of proceeding. Firstly, from (6.3.1) &h@.25),

n+1

n 1—-n 2 ]_ n
2n+1 (n+ )h#(—hx)” +Ul:|

1
¢ |he— =h5 (=hy) ™ By —
n

n

= D, [ch] + D, {c (hQnﬁH (—hy)" + /xvl(t, X) dx)} (6.3.26)

for all functionsh(t, x). Whenh(t, ) is a solution of the diffusion equation (6.1.1), it follows

that
D, [ch] + D, {c (h%n“ (—hy)™ + /Oxvl(t, X) dx)} = 0. (6.3.27)
By lettingc = 1, we obtain the elementary conserved vector of the first Kine; (7, 7?),
where
T =h, T2=h""(—h)" + /Oxvl(t,x) dy. (6.3.28)
Secondly, we also obtain from (6.3.1) and (6.3.25)
e | = 2 () = B )

— D, [c (h + /Otvl(f, z) df)} 4D, [c (h”‘n“ (—hx)%)] (6.3.29)

for all functionsh(t, z). Whenh(t, ) is a solution of (6.1.1), then

D, [c (h + /Otvl(T, ) dT)} +D, [c (h”‘n“ (—hx)%)} —0. (6.3.30)

Settingec = 1 we obtain the elementary conserved vector of the secondiithccomponents

3=

t
T'=h+ /vl(T, 2)dr, T2 =h""" (—hy)" . (6.3.31)
0

The results obtained using the multiplier method startini \& multiplier of the form
A(t, x, h, hy, h,) agree with those obtained by the direct method starting edthponents of
the formT (¢, z, h, h,) andT?(t, z, h, h,). The results are presented in Table 6.2.1.

6.4 Partial Lagrangian method

A Lagrangian for (6.1.1) does not exist since we cannot fingnation L.(¢, x, h, hy, h,.) such

5L 0h O (wmn [ OR\F
E_E—i_%(h n (_(9_x) >+vl(t,x), (6.4.1)
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Where% is the Euler operator defined by (6.3.3). However, we carvderpartial Lagrangian
for equation (6.1.1). Using the partial Lagrangian, covsgon laws are obtained via the
partial Noether approach [51].
Now, suppose the second order partial differential equd6dl.1),E(t, z, h, he, by, , hey) =
0, can be written as
E=E"4+E'=0. (6.4.2)
A function L(t, x, h, hy, h,) is called a partial Lagrangian of equation (6.4.2) if (6)&&n be

expressed a% = fE* for some non-zero functiofi, providedE* +# 0.

Equation (6.1.1) when expanded is

8h (2n+ 1) n+1 8h 1 2nta 8h o 82h

The separation of in the form (6.4.2) is not unique. A separation of (6.4.3)vdrich we

can find a simple partial Lagrangian is

2 ]_ n+1 n+1 1 2n+1 1—n
go— _2ntl),en (—he) ™ = =B (—hy) ™ g, (6.4.4)
n(n+1) n
2n _'_ 1 n+1 n+1
E'=h t,x) — how (—=hg) ™ 6.4.5
) - (2 ) h 6.45)
whereE! depends in a simple way dn. Consider
L= ) p™ (—h)™ —u(t2) (6.4.6)
= ntl T v\, ). A

It follows from the definition (6.3.3) of the Euler operatardausing the partial differential
equation (6.4.3) to eliminate,, that

(5_L_ 2n+1
oh  \mn+1

nt1

) W (k) — by — u(t,x) = fE, (6.4.7)

where f = —1. It follows that L defined by (6.4.6) is a partial Lagrangian for the partial
differential equation (6.4.3).
The partial Noether symmetry determining equation is

XL+ LD+ D&% = DyB' + D, B>+ (n— &'hy — € ) 5L (6.4.8)

where

0 0 0 0
X = €—+§—+U%+C1 +C2 ah (649)
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is the Lie-Backlund operator arg, : = 1, 2, are defined as
Gi = Di(n) — hDy(&). (6.4.10)

We will require(, = ¢, which when expanded is

_On  (Oon 0¢ o¢! o, O
—%+( he = he = o = b, (6.4.11)

The functionsB! and B? are gauge functions. In the partial Lagrangian approaclther

G2

oh Oz

operator is usually denoted l:-g%f while in the multiplier method it is denoted ;.
We consider gauge functions of the forBi = Bi(t,z,h), i = 1,2. When expanded
(6.4.8) becomes

ov ov 2n + 1 nt1 n+1 2n+1 1 2n+1 nt1

1 l 2 l ntl

a2l R (—hy) 5 — B (—hy) ™y 4 B (—hy)

&5 §0x+(n+1)n (—hs) (=he)m e + (=ha) ™ 1
2n+1 1 2n+1 n+1 2n+1 n+1 2n+1 2n+1

m\ R ey () AR ) a4 () HER e
b () 1 P g () ™ g+ () 1 ) e

2n+1

n 2n41
_ (n - 1) R (k) n 2 —ul) — oyl — 0€2 = vh€2 = Bl + hB) + B

2n+1 n+1 ntl 2n +1 n+1 nt1
hoB: —h hn (=hg) » n— Rt — how (—=hg) ™ h&!
et =+ (2 )0 ) e = (2 R () g

2 1 n+1 n
+mwé+hw¢”+<n:i)h%w—mfi%?+mwf. (6.4.12)
n

We separate equation (6.4.12) by powers and products ofdheatives ofh (¢, x). Two
general results can be derived before we have to consideaie=s: = 1 andn > 0, n # 1,

separately. Consider first the coefficientgf

h?: =0, n>0. (6.4.13)
Puté! = 0in (6.4.12) and then consider the coefficient:ph,.

hyhy : €2 =0, n>0. (6.4.14)

The determining equation (6.4.12) reduces fomatt 0 to

oB! oB' 0B? 0B*
= +hy + +hy—— —nhi—nu(t, ).

G G ot oh ' ox " Oh
T
(6.4.15)

_ —_h \n 7 \wtl
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The casen = 1 must now be treated separately from the general gasd), n # 1, because

1
hgz andh, have the same power when= 1.

6.4.1 Caser=1

Whenn = 1, equation (6.4.15) reduces to

on on oB!

—h’h, + —h*hZ =

dB'  0B? 0B?

Ox oh ot

thig s T ey

Separate (6.4.16) by partial derivativeshof

remainder

hi: nhzo,
he:  hPn, — B:=0,
hy B}1L_77207

B} + B2 —nu, = 0.

—nhy — nui(t, ).

(6.4.16)

(6.4.17)
(6.4.18)
(6.4.19)

(6.4.20)

From (6.4.17)y = n(t,z) and the expressions fds! and B? are obtained by integrating
(6.4.19) and (6.4.18) with respect/ido obtain

B! =nh+C(t,x),

4

h
B? = Zm + D(t, z),

(6.4.21)

(6.4.22)

whereC(t,z) and D(t,x) are arbitrary functions. Substituting (6.4.21) and (62%.mto

(6.4.20) yields

e+ 28

D ut,z) =0
ax ,r]Ul 7’r - .

It now remains to separate (6.4.23) by powers @fhich gives

Rt

remainder

’n
oz = O
on
o =
oC
ot

0,

(t,x) —n(t,x)v(t, ) + aa—lj
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(6.4.23)

(6.4.24)

(6.4.25)

(6.4.26)



Thus from (6.4.24) and (6.4.25)

n=cx+ c

and (6.4.21), (6.4.22) and (6.4.26) become

B(t,z,h) = (ciz + o) h + C(t, z),

4
B*(t,x,h) = clhz + D(t, ),

oC

ot ox

(t,x) — (ax + c2)u(t, x) + 8—D(t,x) = 0.

(6.4.27)

(6.4.28)

(6.4.29)

(6.4.30)

Since¢! = 0 andg? = 0 andy is given by (6.4.27), the partial Noether symmetry is

0
X = —.
(c1z + ¢2) o
The partial Noether conserved vectors are
oL
leBl_ 1L_ _ 1h—2hx —,
§L = [n—&'he = &ha] 5
OL
T? = B> — &2 — [77 — &'y — £2hx} o

which yield the conserved vectors

T' = [eiz + o) h + C(t, z),

h4
T2 = — [Cl.fll' + CQ] hth + Clz -+ D(t, [L’)

(6.4.31)

(6.4.32)

(6.4.33)

(6.4.34)

(6.4.35)

Equations (6.4.34), (6.4.35) faf! and7? and (6.4.30) relating’ (¢, z) and D(t, x) to
vi(t, z) are exactly the same as (6.2.18), (6.2.19) and (6.2.17edditect method. We there-

fore obtain again the conserved vectors listed in Tabld6d2.n = 1.
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6.4.2 Generalcase > 0,n # 1

We return to (6.4.15) and separate by the partial deriveitwé for n # 1:

hi: By —n=0,
remainder B} + B2 —nu(t,z) = 0.
From (6.4.36) and (6.4.37),= n(t) and from (6.4.38)B? is of the form
B?* = A(t,x).
From (6.4.39),
B(t,z,h) = n(t)h + O(t, z).

Substituting (6.4.41) and (6.4.42) into (6.4.40) gives

dn(t)  oC dA -

We separate (6.4.43) according to powerof

Cdn(t)
h o =0,
remainder: oc (t,x) —nt)v(t,x) + %(t, x) = 0.

ot ox

Thus from (6.4.44),
77(75) = C1,

wherec, is a constant. Equations (6.4.42) and (6.4.45) become

B(t,z,h) = c;h + C(t, 2),

oC 0A
E(u 'T) - Clvl(ta l’) + a—x(ta l’) =0.
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(6.4.40)

(6.4.41)

(6.4.42)

(6.4.43)

(6.4.44)

(6.4.45)

(6.4.46)

(6.4.47)

(6.4.48)



Since¢! = 0 and&? = 0 andn = ¢y, the partial Noether symmetry is

0
X=ag (6.4.49)

The partial Noether conserved vector is given by (6.4.38)(é6v.33) which yields

T' = cih + C(t, z), (6.4.50)

2n+1

T2 = ;™5 (—hy)" + A(t, z). (6.4.51)

Equations (6.4.50) and (6.4.51) for the componéhtsand 7% and (6.4.48) forC'(¢, )
and A(t, z) in terms ofu;(¢, x) are exactly the same as (6.2.43), (6.2.44) and (6.2.42)in th
direct method. We therefore derive again the conserveaxsegiven in Table 6.2.1 far > 0,

n # 1.

The results obtained using the partial Lagrangian with gdugctions of the formB? =
Bi(t,z, h) agree with the results obtained using the multiplier methitd multipliers of the
form A(t, z, h, hy, h,) and with those obtained by the direct method starting withponents
of the formT"(¢t, z, h, h.,).

When the interface between the fluid and the rock is imperteeabsanishes. Therefore,
settingy; = 0 yields conserved vectors for a fluid-driven fracture in immpeable rock. We
have seen that for the general case 0, n # 1, which describes a non-Newtonian fluid driven
fracture, we obtain only the elementary conserved vectmigke in the case of a Newtonian
fluid for whichn = 1 where the elementary conserved vectors and a second cedsastor
of the first and second kind are obtained. This underscoregméisant difference between
Newtonian and non-Newtonian fluid-driven fractures. A @med vector is lost when the
fracturing fluid is non-Newtonian. The conserved vectoisinied for both the Newtonian and
non-Newtonian fluid-driven fractures are non-local cowsdrvectors, because of the integral
term [ v, (¢, x)dx.

The conservation laws derived will now be used, first to itigage the conserved quanti-
ties and balance laws for non-Newtonian fluid driven fraet@and second, to derive the Lie

point symmetries associated with the conserved vectors.
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6.5 Balance law for fluid-driven fracture

The balance law derived in Chapters 4 and 5, solely from tlysiph of the fluid-driven frac-
ture will be re-derived in this section from the integratafra conservation law subject to the
relevant boundary conditions. We note that the consemvéaias in Sections 6.2, 6.3 and 6.4
are derived from the partial differential equation govegithe fluid-driven fracture process.
These conservation laws apply to any physical problem destiby the partial differential
equation. However, conserved quantities and balance lendegived from conservation laws
and boundary conditions.

The conserved vectot§™, 7?) which have been derived depend/ai, z) and can there-

fore be expressed in terms of the independent varialdedx. Thus

oT (t, ) N OT?(t, )

D,T'+ D, T? =
e ot oxr

(6.5.1)

where on the right hand sid&;! andT? are regarded as functions bfandz only. For a
conserved vector the left-hand side of (6.5.1) vanishesdbutions of the partial differential

equation and we have
o1 (t,x) N OT?(t,x)
ot ox

The balance law will first be derived from the elementary eowsd vector of the first kind

~ 0. (6.5.2)

with components given by
T =h, T?=h"" (—h)" + / u(t, x) dy. (6.5.3)
0

Substitute (6.5.3) into (6.5.2) and integrating fram= 0 to = = L(t) keepingt fixed during

the integration, we have
L(t) oh L(t) ) andl 1 z
/0 E(t,x) dz +/O B (h n (—=hg)™ +/0 v(t, x) dx) dr = 0. (6.5.4)
Using the formula for differentiation under the integrajrsi45], with boundary condition
h(t, L(t)) =0, (6.5.5)

equation (6.5.4) becomes after integration
d [t®
dt Jo

2n+1 1 z L(t)
h(t,z) dz + {h W (=hy)n —|—/vl(t,x) dx} = 0. (6.5.6)
0

0
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Now the total volume of the fracture is
L(t)
V() = 2 / h(t, 2)de (6.5.7)
0

and from (5.2.19)

2n+1

1 1
h@x(t> .CL') =h (_h:c)g = in(t,l’), (658)
whereQ) (¢, x) is the flux of fluid along the fracture. Therefore (6.5.6) bees

1dV

L(t)
54 Bt L)Ll L) — b, 0)2:(1,0) + /0 w(t, z) dz = 0. (6.5.9)

At the tip of the fracture, the flux of fluid vanishes and theref

Qu(t, L(t)) = 2h(t, L(t))7,(t, L(t)) = 0. (6.5.10)
Equation (6.5.9) becomes
L(t)

2h(t,0)v,(t,0) — 2/ v (t, z) de, (6.5.11)

0

av _

dt
which states that the rate of change of the volume of thedraawith respect to time equals
the rate of fluid inflow at the fracture entry minus the rate oidflleak-off at the interface
between the fluid and the rock mass. Equation (6.5.11) isakenbe law which was derived
in equation (5.2.28).

The elementary conservation law of the first kind, integtatéh respect ta: fromx = 0

tox = L(t) and simplified subject to the boundary conditions, (6.5tf) €.5.10), therefore
corresponds to the balance law for fluid volume.

We now show that the elementary conserved vector of the sdaod,

3=

t
T' =h+ /vl(T, 2)dr,  T?=h"" (=hy)", (6.5.12)
0

also gives the balance law for fluid volume, (6.5.11). Subistig (6.5.12) into (6.5.2) gives

0 ¢ 0 T, 2011 1
= (h+ /OUI(T, ) dT) + 5 [h* (—hx)n] —0. (6.5.13)
But
% (/0 v (T, ) dT) = u(t, x) (6.5.14)
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and integrating (6.5.13) with respecttdrom =z = 0 to x = L(t) we obtain

L(t) L(t) _— 17 L)
/ %(t, x)dx +/ u(t, x) de + [h G (—hg)™ =0. (6.5.15)
0 at 0 0
Proceeding as before and using the boundary conditionsj&bd (6.5.10), we have
L o 1dV
and
2n+41 1 L(t)
[hT (—hﬁ)n]o = —h(t,0)7,(t,0). (6.5.17)
Equation (6.5.15) becomes
av L)
i 2h(t,0)v,(t,0) — 2/ v (t, x) dz, (6.5.18)
0

which is the same balance law, (6.5.11), derived using t@ehtary conserved vector of the
first kind.
For the Newtonian fluid-driven fracture, two conserved gextwvere derived. The first

corresponds to (6.5.3) with = 1 and the second is

1 x
T =zh, T?= —zh’h, + Zh4 + / xui(t, x) dx. (6.5.19)
0

A balance law will now be derived for this conserved vectoe $Abstitute (6.5.19) into (6.5.2)

and integrate with respect tofrom x = 0 to x = L(¢) to obtain

L(t) L(t) x
/ Azh) dw +/ 9 —zh’hy + lh4 + / xui(t, x)dy ) dz = 0. (6.5.20)

Now, using Leibnitz theorem for differentiation under tiieigral sign[45] and the boundary

condition (6.5.5), we have

L(t) d(zh) d [t®
= . 5.21
/0 T dz i /. zh(t,z) dz (6.5.21)

Also, using (6.5.8) and the boundary condition (6.5.10) tha fluid flux at the fracture tip is

zero, we obtain

L(t) ) X
/O g [—xh hgg} der =0 (6.5.22)
and again by the boundary condition (6.5.5), that
L) 9
——h*(t,x)dz = —h*(t,0). (6.5.23)
o Oz
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Hence (6.5.20) becomes

d Lo L(t) 1
— xhdx + / zy;dz = ~h*(t,0). (6.5.24)
The physical significance of this balance law for a Newtorfiiaid-driven fracture is not im-

mediately clear.

6.6 Relation between Lie point symmetries and the conser-
vation laws

In this section we investigate the relation between the lamtpsymmetries of the partial
differential equation (6.1.1) and the conservation lawdlie partial differential equation.
We first state a theorem due to Kara and Mahomed [53]. Theehew quite general but

it is stated specifically for the partial differential eqioat(6.1.1).

Theorem 6.6.1.1f X is a Lie point symmetry of the partial differential eqigat (6.1.1)and
T = (T',T?) is a conserved vector fd6.1.1) then

TP = X(T%) 4+ T'Dy(&¥) — TFDy(€)), i=1,2 (6.6.1)
are the components of a conserved vector(€ot.1) that is,

D\T! + D, 72|  =0. (6.6.2)
PDE

In (6.6.1) X is prolongated to as many orders as required whédepends on derivatives of

h and there is summation over the values 1 and 2 of the repeadtieci .

Theorem 6.6.1 gives a way of generating new conserved \&ftoithe partial differential
equation (6.1.1) from the Lie point symmetries of (6.1.19l éime conserved vectors already
found. The generated conserved vectors may be trivial Siticeay be a linear combination
of known conserved vectors or a trivial conserved vectomfbich the conservation law is
identically satisfied or it may be zero.

The Lie point symmetryX of (6.1.1) is said to bassociatedvith the conserved vector

T = (T, T?) of the partial differential equation (6.1.1) if [52, 53]
TP = X(T)) +T'Dy(€¥) = TFD(¢5) =0, i=1,2. (6.6.3)
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Equation (6.6.3) consists of the two components

T} = X(T") + T Dy(£2) — T? Dy(£1), (6.6.4)

T? = X(T?) + T?D; (&) — T' Dy (€%). (6.6.5)

We will first investigate using Theorem (6.6.1) if new convael vectors can be generated
from the conserved vectors for the partial differentialaoun (6.1.1) listed in Table 6.2.1. We

will use the linear combination of Lie point symmetries ofl(d) derived in Appendix A:

0 0 n+1 n 0
X = (Cl + Cgt)a + (C4 + C3I’>% + |:<n—_'_2) C3 — m62:| h%, (666)
which exists provided
ov v n+1
(Cl + Cgt)_atl -+ (C4 + Cgl’)—a.; = (n n 2) (Cg — 202) V1. (667)

Because the conserved vectors in Table 6.2.1 depend,are will require the first prolonga-

tion coefficient(, of the Lie point symmetry (6.6.6) which is

2 1 2 1
_@+(an as)hﬁ_ash ogt .  O¢

G oh Oz

— Sp o p2 oS
ox or " Oh * oh "
_ C3 n
_ (n+2)+(n+2)cg h.. (6.6.8)

We will then determine the conditions on the constants,, c; andc, for the Lie point sym-
metry (6.6.6) to be associated with the conserved vectotiseopartial differential equation
(6.1.1).

Consider first the elementary conserved vector of the first ki

T =h,  T2=h"" (—hy)" + / u(t, y) dx. (6.6.9)
0
It is readily shown that
2n+3 n
T = — | TN 6.1
* Kn+2)c3 (n+m@} (6.6.10)

Also,

z 9 x
Tf = (Cl + CQt) / a—tl(tu X) dX + (C4 + C3$)Ul(t7 ‘T) + 2 / Ul(tv X) dX
0

0
2n + 3 n 2nt1
+[(n+2)%_Kn+®Q}h”(_%)
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But integrating (6.6.7) with respect fofrom x = 0 to y = x gives

0
e+ eat) [ S A+ (et ca) it )
0

= cquy(t,0) + {(271:23) c3 — 2 (n_—l—l) cg] /xvl(t, x)dy. (6.6.12)
n 0

n—+ 2

Substituting (6.6.12) into (6.6.11), we obtain

2n + 3 n
= (553 o e 1 aneo N

We can express (6.6.10) and (6.6.13) in vector form as

Ty = {(%) o5 — (R”’TQ)CQ} Tiy + 4P, (6.6.14)
where

Ty = [’% W (—hg) +/Oxvz(t,x) dx] : (6.6.15)

Py =0, u(t0)]. (6.6.16)

The vectorP,y is a trivial conserved vector because
Dy Py + Dy P, = 0. (6.6.17)

ThusT(*l) is not a new conserved vector. The Lie point symmetry astztigith the conserved
vectorT(, satisfies
C3 n

it e SR (6.6.18)

The Lie point symmetry associated with the elementary amesevector of the first kind{,

is therefore

1 0 n 0 n 0
X=—4+t)=+——2—— ———h—. 6.6.19
(cg * ) ot * (2n+3)x0x (2n+3) Oh ( )

From (5.3.27), the Lie point symmetry (6.6.19) generatesstiiution for a fracture with con-
stant volume. The flux of fluid into the fracture at the entryi@g the leak-off flux at the
fluid/rock interface.

We will denote the conserved vector of the second kindsbyConsider the elementary

conserved vector of the second kind
t
St =h+ /UZ(T, x)dr, S =h"n (—hx)% ) (6.6.20)
0
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Now,

t
St = (c1 + cat) it ) + (ca + c37) / %(7—’ ) dr
0

n—+1 n t
N Kn—m) o m@} h+ s (h + /OUZ(T, ) dT) . (6.6.21)

But integrating (6.6.7) with respect tofrom 7 = 0 to 7 = ¢ gives

t
0
(Cl +Cgt> Ul(t,l') + (04 +03I) ﬂ(7’, I) dr
o Or
+1 !
= (0, z) + {(Z——M) c3 — (nnTQ)CQ} /Ovl(T, xz)dr. (6.6.22)
Substituting (6.6.22) into (6.6.21) gives
2n+3 n
1 _ . 1
S, = {( o ) C3 7@ n 2)62] St + cu(0, z). (6.6.23)
Also it is readily shown that
2n +3 n
2 _ . 2
Expressed in vector form, (6.6.23) and (6.6.24) are
N 2n + 3 n
Sy = {( "t 2 ) €3 — m+2) 2)02} Sy + 1@, (6.6.25)
where
t 2n+1 1
Say = {h#—/vl(T, x)dr, h n (—hx)z] : (6.6.26)
0
Q) = [u(0,2), 0]. (6.6.27)

The vectorQ) g is a trivial conserved vector. The vect8f;, is not a new conserved vector.

The Lie point symmetry which is associated with, satisfies

C3 n
- = = 0. 6.6.28
Co 2n + 3’ “ 0 ( )

The Lie point symmetry associated with the elementary ameskevector of the second

kind S(y) is therefore

0 C4 n 0 n 0
o9 (o 9 __n 4,9 6.2
T (02+ (2n+3)”’) or  @n+3) " on (6.6.29)

141



From (5.3.27) the volume of the fracture generated by (8)6t@mains constant. The ele-
mentary conserved vectors of the first and second kind ate dsdociated with Lie point
symmetries which generate the solution for a fracture wathstant volume.

Consider now the special cage= 1 for which second conserved vectors of the first and

second kind exist. Consider the conserved vector of thekiinsit

peo
T = xh, T? = —zh®h, + T + / xui(t, x) dx (6.6.30)
0

It is readily shown that

T! = c,h + % (8cg — o) T (6.6.31)
and that

0
T? = (c1 + cot) / Xa—il(t, X) dx + (ca + c3z) zu(t, x) + cs (—hhy)
0

1 1 h* r
+ 5(803 —C3) (—xh?’hx) + 5(803 — cg)z + co / xu(t, x)dx. (6.6.32)
0

Now, multiplying (6.6.7) byy and integrating with respect fpfrom x = 0 to x = x gives

o
(e +eat) [ X D+ (e + eaa) zut )
0
x 1 x
= 04/ u(t, x) dx + 5(803 —4cy) / xui(t, x) dx. (6.6.33)
0 0
Substituting (6.6.33) into (6.6.32) we obtain

’ 1 peooe
T? = ¢, {—h:ghx + / v (t, x) dx} + 5(803 —¢9) {—xh:ghx + ”y + / xui(t, x) dx} )
0 0

(6.6.34)
Equations (6.6.31) and (6.6.34) when expressed in vector &oe
1
T(*Q) =yl + 5(803 — c2)T(y) (6.6.35)
whereT|,) is given by (6.6.15) witm = 1 and
h4 T
Tio) = |xh, —xh3h, + ” + / xvi(t, x) dx} ) (6.6.36)
0

ThusTp, is a linear combination of the conserved vectors of the firs K/(;) and7(,), and
is therefore not a new conserved vector. The Lie point symnaesisociated witH,) satisfies

1
e =0, 2_3 =3 (6.6.37)
2
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and is
o 1 0 1. 0

X = <Z—; + t) g = Jhe (6.6.38)
Whenn = 1, it follows from (5.3.27) that the Lie point symmetry whichrerates the solution
for a fracture with constant volume satisfiggc, = 1/5. Whenc;/c, = 1/8 the total volume
of the fracture per unit width/ (¢), decreases with time and this valuergfc, could describe
a fracture with fluid extraction at the fracture entry andéak-off at the fluid-rock interface.
When there is no leak-oféz /co = 1/8 is the limiting value for a solution with fluid extraction
at the fracture entry to exist [15]. The conserved vedigy may be related to the limiting

solution for existence.

Finally, consider the second conserved vector of the sekionldvhenn = 1,

t h4
St = xh + I/Ul(T, r)dr, S*=—zh’h, + 1 (6.6.39)
0

Now,

t t
S = (c1 + cat)zvy(t, ) + (cs + c;»,x)x/ %(T, x)dT + ¢y (h + / v(T, x) dT)
0o 0T 0

1 t
+ 3 (8¢s — o) wh + 20337/ v(1,z)dr. (6.6.40)
0

But by multiplying (6.6.7) by, integrating with respect to from = = 0 to 7 = ¢ and also

integrating by parts we obtain

ta 1 t
(c1+cot)zu(t, )+ (cq —i—c;»,x)x/ a—:(T, z)dr = cyzu (0, ) + 3 (2¢3 — ¢2) x/vl (1,2)dr.
0 0
(6.6.41)
Substituting (6.6.41) into (6.6.40) gives

t 1 t
St = cizv(0,2) + ¢4 [h + /vl(T, x) dT:| + 3 (83 — ¢2) {xh + x/vl(T, x) dT} . (6.6.42)
0 0
Also it is readily shown that
2 3 1 h4 3
S =cy [-W°hy| + 5 (Bes =) | —ah’hy | (6.6.43)
Equations (6.6.42) and (6.6.43) can be expressed in vemtords
1
SEFQ) = 045(1) + g (803 — Cg) S(g) + ClR(O), (6.6.44)
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whereS(y) is given by (6.6.26) witm = 1 and

t 4
Se) = [xh—i—x/vl(T, r)dr, —xh*h, + Z (6.6.45)
0

Ry = [zv(0,2), 0]. (6.6.46)

The vectorR ) is a trivial conserved vector. We see i3 is not a new conserved vector be-
cause itis a linear combination of the two conserved vedbtise second kind$(;) andS,)

and the trivial conserved vectdi,. The Lie point symmetry associated wily satisfies

C3
C4:0, — =

Loe=o0 (6.6.47)
Co 8

and is

0 1 0o 1 8

The second conserved vectors of the first and second kind wheih are associated with the
Lie point symmetry withes /co = 1/8.
The results are summarised in Table 6.6.1. When there isakedff the conserved vector

for a Newtonian fluid withn = 1 was derived by Anthonyrajah [54].

Table 6.6.1: Generation of conserved vectors from knowseomed vectors

n>0 T(*l) = [(2:;33) C3 — (n+2) Cz} Ty + caP)
n>0 Sa) - [(?szg) €3 — (n+2 62] Say + c1Qo)

n=1 Ty = 5 [8cs — c2] Tio) + caTiyy

n=1 5(2) = % [863 — CQ] S(Q + C4S(1 + ClR(o

Notation: Conserved vectors

2n+1

1 x
n>0 Th = [h, W (<ha)™ + [Tt x) dx]
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2n+1

+ (—he) ]

n >0 S(l) = [h+f0tvl(7,a:)d7, h

n=1 Tio) = [xf% —xh®h, + hf + fom xui(t, x) dX]

n=1 Se) = [xh—i—xf(f v, z)dr, —xhhy + %4}

Notation: Trivial conserved vectors

Py = [0,v(t,0)], Q) = [vi(0,2),0], R = [zv,(0,2),0].

6.7 Conclusions

A new feature of conservation laws for a hydraulic fractuiitheak-off is the existence of
conservation laws of two kinds. This occurs in the elemgmntanservation law and also in the
second conservation law when= 1. In the conserved vector of the first kind, the component
containing the leak-off velocity is the flux component whitethe conserved vector of the
second kind, it is the density component.

The conservation laws of the first and second kind are closédyed. If trivial conserved
vectors are notincluded they are associated with the saeadint symmetry. The elementary
conservation laws of the first and second kind lead to the smtasmce law for fluid volume.

We were not able to generate new conserved vectors from keongerved vectors. For
the elementary conserved vectors of the first and second #iedcalculation gave a linear
combination of the known elementary conserved vector amvialtconserved vector while
for the second conserved vector wher= 1, it gave a linear combination of the elementary
conserved vector and the second conserved vector.

The conservation laws corresponding to the elementaryeceed vector of the first and
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second kind gave an alternative method for deriving thenzaldaw for fluid volume. Insight
into the physical significance of the conservation laws watsiaed by determining the Lie
point symmetry associated with the corresponding condergetor. The Lie point symmetry
associated with the elementary conserved vectors of theafics second kind generate the
solution for a fluid fracture with constant volume. The Liangesymmetry associated with
the second conserved vector when= 1 describes a fracture that evolves with decreasing
total volume and may be related to the limit of existence d@tsan for the extraction of a

Newtonian fluid from the fracture.
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Chapter 7

Conclusions

The aim of this thesis was to study the propagation of a twoedisional PKN fracture model
which evolves as a result of the injection, under high pressaf a non-Newtonian fracturing
fluid of power-law rheology into the fracture.

The two main assumptions made in the modelling were the PKiMospmation and the
lubrication approximation. The PKN approximation, that fluid pressure is linearly related
to the half-width of the fracture, closed the system of elguatand determined the character-
istic fluid velocity along the fracture. It may be applicabtean outer region away from the
fracture tip [46]. It is the simplest assumption that coudchade but the results obtained may
suggest investigations to make with more robust elastioibglels. The lubrication approxi-
mation lead to the simplification of the momentum balancea&qo describing fluid flow in
the fracture. It also demonstrated the importance of foatmg the theory in terms of the
fluid velocity averaged across the fracture. The mathematiodel resulted in a nonlinear
diffusion equation which showed that nonlinear diffusisrthe physical mechanism for the
growth of the hydraulic fracture.

Pre-existing fractures play a key role in the success of dudr fracturing as a mean-
s of fracturing rock in the mining and petroleum industriéd’e have shown in this work
that invariant solutions can be derived for a power-law fldityen pre-existing fracture in
both permeable and impermeable rock by the adoption of thé &lKsticity hypothesis, lu-
brication theory and by using the Lie point symmetries of iagulting nonlinear diffusion

equation. It was found that the Lie point symmetries whicheagate the solutions are not s-
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caling symmetries and this is because the initial lengtiheffitacture was non-zero. Methods
used to derive similarity solutions for hydraulic fractsievolving from a point source, such
as the scaling transformations described by Dresner [S@jatabe used for a fracture with
initial non-zero length. The leak-off velocity was not peebed a priori in the mathematical
model. It was determined by insisting that the nonlinediudibn equation admits Lie point
symmetries. The Lie symmetry analysis transformed theineai diffusion equation to a
second order differential equation which admits one symyrgenerator, which is insufficient
to completely integrate the second order differential #qnan general. When there is leak-
off the boundary value problem obtained is expressed inderitwo dependent variables F
and G which describe the half-width and leak-off velocigspectively. In order to close the
system of equations some assumption has to be made corgétfin. We have assumed
thatG(u) = BF(u). By the PKN approximation the half-width is proportionalttee fluid
pressure and the assumptiGiu) = S F (u) therefore implies that the leak-off velocity is pro-
portional to the fluid pressure. This is a physically reabtgmassumption. Other relations can
be specified, for examplé; ‘2—5, which also leads to exact analytical solutions for special
cases. The proportionality constant plays a key role in tstdeding flow conditions at the
fluid-rock interface.

For a hydraulic fracture in both impermeable and permeaiak we were able to derive
two exact analytical solutions. The case when there is tékelped to clarify their physical
significance. The first analytical solution describes thawion of a hydraulic fracture with
no fluid injection at the fracture entry. When there is no teffikhe total volume of the fracture
remains constant but it does not remain constant when tedeak-off. The characteristic
property of the solution is therefore not conservation dumee of the fracture but no fluid
input at the fracture entry. The second analytical solufiescribes the evolution of a hydraulic
fracture in which the average fluid velocity is constant gltime fracture and therefore equal
to the velocity of propagation of the fracture tip. When thes no leak-off the velocity of
propagation of the fracture is constant but this is not the2 a@hen there is leak-off and it is
therefore not the characteristic property of the fracture.

It was found that in the numerical solution the reformulated the boundary value prob-

lem as a pair of initial value problems was easier to solve tha original boundary value
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problem. The analytical asymptotic solution at the fraettip played an important part in
imposing the boundary condition at the fracture tip. Congaer with the analytical solutions
showed that the numerical results were valid for a largeearigzalues ofn» and/ covering
shear thinning, Newtonian and shear thickening fluids. Gamepn of the approximate an-
alytical solutions with the numerical solution in turn shexvthat the approximate analytical
solutions were a good approximation.

Comparatively few results have been reported in the liieeadn the velocity of the fluid
in a hydraulic fracture. We investigated the streamlinetheffluid flow in the fracture. The
patterns of flow in the fracture were as expected, but thdtreswa fracture with no leak-off
that the fluid velocity at the fracture tip exceeds the tippedly was unexpected. The difficulty
was resolved by considering the mean fluid velocity averanyed the width of the fracture.
For a fracture with no leak-off this averaged fluid velocitytlae fracture tip equalled the
velocity of the tip as required by the physics. When thereusl fleak-off we found that the
average fluid velocity at the tip also equals to the velodite tip. It can be concluded that in
a thin fracture the mean velocity is more physically sigaificthan the actual velocity and is
the velocity to work with. For the two analytical solutiometaveraged velocity varied linearly
along the fracture. It was a surprise that it varied appraxely linearly for the numerical
solutions for the other working conditions. When there igfinput at the fracture entry and
there is no leak-off, the average fluid velocity increaseshglthe fracture to the velocity of
the tip because the cross-sectional area of the fractureassd along the fracture. When
there is leak-off the average fluid velocity decreased atbedracture to the tip velocity due
to the fluid leak-off along the fracture.

The approximate analytical solutions were derived by aterang the ratio of the average
fluid velocity to the speed of propagation of the fracturedipng the fracture. They were
based on the observation that this ratio varies approxignlbearly along the length of the
fracture. This applies for a hydraulic fracture in both immpeable and permeable rock and
leads to an approximate first order differential equatiorttie half-width function/'(u). The
approximate analytical solutions compared well with theeucal solutions even for a shear
thinning fluid with small values of close to zero. It may be a useful analytical approximation

especially for a shear thinning fluid which can sometime®ace numerical difficulties.
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A new feature of the conservation laws for the nonlineandithn equation of a hydraulic
fracture with leak-off is the existence of conservationda#ithe first and second kind depend-
ing in which component of the conserved vector the leakerfintis included. However, the
conservation laws of the first and second kind are relatelddrsénse that they are associated
with the same Lie point symmetry if trivial conserved vestare not included. The elemen-
tary conserved vectors of the first and second kind genethgedame balance law for fluid
volume. The second conservation law which was found for atibiean fluid fracture did not
exist for a non-Newtonian fluid fracture. Anthonyrajah [5dind, when considering a turbu-
lent fluid fracture, that the second conservation law foldngnar Newtonian fracture did not
exist for a turbulent fluid fracture. We investigated theglosity of obtaining new conserved
vectors from the known conserved vectors and found that moaomserved vectors can be
obtained from the known conserved vectors.

The fluid leak-off did not remove the singularity at the fraettip. The lubrication approx-
imation breaks down in the region close to the fracture tigifference between a hydraulic
fracture with leak-off and one with no leak-off is that whéete is leak-off the fluid velocity
averaged across the fracture decreases along the fragtime tip velocity while for no leak-
off the averaged fluid velocity increases to the tip veloaltyng the fracture. For both leak-off
and no leak-off the averaged fluid velocity along the fraetisrapproximately linear. We have
also seen that leak-off helped to determined the definingiphlcharacteristic of the exact
analytical solutions.

We found that the behaviour of the solutions for shear tmigniNewtonian and shear
thickening fluids were qualitatively very similar. The orohg of the curves in the figures in
general did not depend on whetiie n < 1, n = 1 orn > 1. There were quantitative
differences in the solution for shear thinning, Newtoniad ghear thickening fluids. The
characteristic time depends arand on the properties of the fluid as well as on the properties
of the surrounding rock mass. To investigate the quantéadifferences the values of the
parameters would have to be given.

The study gave an insight into understanding how fractwrelve under varying operating
conditions of interest, when driven by the injection, unidigh pressure, of a power-law fluid.

In our study, we have considered the PKN elasticity theoy @mly fluid injection into the
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fracture at the entry which is the most important case in &wlic fracturing. What we would
like to consider in the future is a more physically realigiasticity model such as the Cauchy

principal value expression for the stress, fluid extractibthe fracture entry and other non-

Newtonian constitutive models for fracturing fluids.
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APPENDIX A

Derivation of the Lie point symmetries of the nonlinear diffu-
sion equation for fluid-driven fracture in permeable rock

In this section we will show in full the derivation of the Li@mt symmetries of the nonlinear

oh 0 [ wmw [ Oh\"
E_'_% (h n (—%) ) + vy (x,t) = 0. (A.1)

The nonlinear diffusion equation (A.1) describes the etiofuof the fracture half-width dur-

diffusion equation

ing hydraulic fracturing by a non-Newtonian fluid in permksaiock. Since the rock is per-
meable, fluid leaks off into the surrounding rock formatidine leak-off velocity relative to
the fluid/rock interface is;(t, x).

Equation (A.1) is rewritten as

F(t,z, h, hy, hyyhyy) =0, (A.2)
where
1 2n+1 1—n 2 1 n+1 n+1
F=h ——h"5 (—hg) ™ hey — (2n + )h%(—hm)% + v (A.3)
n n
The Lie point symmetry generator
0 0 0
_ 1 . 2 . i
X =gt a, b5+ E(tah) o+t h) (A4)

of equation (A.1) is derived by solving the determining egura

XEp =0 (A.5)

F=0
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for the unknown functiong' (¢, z, h), £2(t, , ) andn(t, z, h), whereX!?, the second prolon-
gation of X, is given by

0 0 0 0 0
xP=x — A.
+ Cl + C2 oh. +Cim— Ol + Clom— Ol + (a2 Oho (A.6)

and¢; and(;; are defined by

Gij = Dj(G) — han D;(€"), i,j =12, (A.8)
with summation over the repeated indefrom 1 to 2. The total derivatives with respect to

the independent variabléesandzx are given by

0 0 0 0
Dy =D, = It + ht@h + htt@h + hxt@hx + .y (A.9)
0 0 0 0
Dy=D,=—+hy—+hyg=—+hgpg— +..... A.10
’ or "~ Mean T Megn, T e, (A.10)

The leak-off velocityy,(x, t) is to be treated as an arbitrary function of the independarit v
ablest andx.

The determining equation (A.5) yields

8 19) 2 1 nt1 2 1 1 il 1
- +5ﬂ+n( (nnj ) (—hy) 5 o _(n+n)2(n—|— )(_MTM)
+G1 + G ((171 )h%rjlhm( hx)% + (2n + 22(”4‘ 1)hn:1(—hx)%)

. (A.11)
F=0

We now calculate the expressions or (», and(,; according to equations (A.7) and (A.8):

G1 = Dy(n) — heDy(&') — ha Dy(€2),

(A.12)
G = Dq(n) — htDac(gl) - ha:Dac(fQ)a (A.13)
C22 = Dﬂc(@) - ha:tDﬂc(fl) - hme(gQ)- (A-14)
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Expanding equations (A.12), (A.13) and (A.14) using (A.8)&A.10), we obtain
Go= e+ e — he (& 4 &) — ha (6 4 i&3) (A.15)
G = Mot hamn — he (& + hah) — ha (6 + haki) | (A.16)
G2 = Noa + 2hation + Winan + Paatin — sy — 2hahilyy, — heh2Ep, — hihaof),
2Nty — 2hshaiy, — 2haall — Bhahawlf — holl, — 203635, — hoEH,. (ALT)

The expressions fof;, (> and (s, are substituted into the determining equation (A.11) to

obtain

fl +§28’Ul + (_(Qn—i— 1)(—h ) = hxxhnil B (2n+1)(n—i— 1)(—hx)nilh%)

n? n?

0+ hunn — e (& + e&h) — he (&8 + he&n) + (10 + hamy, — ha&l — W26,

1—n) 2nn1 1—2n 2n+1)(n+1) nna 1
gt = namigt) (0 ) P SR )

+ (nzm + th;nwh + hinhh + ha:a:nh - htf;;c - 2h$ht§;h - hthifllzh
_htha:axgllz - 2h$t§; - Qhacha:tf}lz - thmfi - 3h$h$$§}2l - h$£2$ - théﬁh

—h3¢2,) <__h2"f(_h$)1_7") = 0(A.18)

n+1 n+1
( h) hm—l—Q"'Hh o (—hg) T —u;

hi= lh

We now expand equation (A.18), replacihgby its expression in (A.1). This gives the deter-
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mining equation for the unknown functiog’(t, z, k), £(¢, z, h) andn(t, x, h):

2 1 1—n n+1 2 1 1

n+1

ng (_hI) "
W5 (—ha) S5 — v + (—ha)&
h™w (_h;r) " Sp T (_hif)vlg}% 27;“ (_ha:)l_Tnh;mgtl

2n+1) a1 nt1 An+2 2-2n dn + 2)  snt2 2
( >h " ( ) gt Ulgtl__h " (_h$> " hix }lz_( n2 )h " (—ha:)”hmé}ll

9 1
&= Ul hwn

n2

(_hw)l_Tnha:a:nh +

2n+1

—H?t—i- h

n
2 ) g - Z g g I D g g
P 5 g, ¢ DO it b, = O ) e,
_(2n+ 2)2(n + 1)hnT+1(_hx)nT+1nh N (1- )h2nn+1 (=) 5 ho? + (2n + 2)2(n + 1)hnT+1
K(—hg) ez — Ly <—hx>%hmfi A (—hx>%si
—“n;?,mh“”—ﬁ—hx)%him 1 Got 23(1 — R ) Rl 4 ——nE
c(he) gl - BN D gy g Gt UL S
+(2n+2)2(n+1)hn:1( B el + 1— nh4n:-2(_ DEER gl (2n+2)3(1—n)h%
X (=) — — b gt ¢ O DD )2
+(2n + 1;(7@ + 1)h2n_n+2(_h$)#& ~ (2n+ 1n)2(n +1) B () el
—%h%’#(—hx)lnnnm 2 (<) s — —h%f(—h ) hmnh— _h%’jl(_hx)HTnnhh
B (R R, o (k)R - §h”’“( he)Fhaatl — 5 (—h)
PN () R+ ()l + 2 (bRl
() el - —h“”n* (oh) b, - Qh“f ),
PR (he) e+ —h“"n* (b R Ty 1h3’?f (he) Bt
I () B+ (R Rl s o (—h) e
R (b el + h”n* H(—ha) T hanl gh”n* 5 (—ha) T = 0. (A.19)

Since the functions to be determined do not depend on theatiegs ofh, equation (A.19) is
separated according to powers and products of the parti@atiges of. One then equates

the sum of the coefficients of the partial derivativeshofo zero. In this manner, (A.19)
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decomposes into an overdetermined system of equationsich\liere are more equations

than unknown variables. The case= 1 is a special case because wheg- 1, the pairs of

derivatives

—h, and (—hx)%,

have the same powers and must be treated together. The biesgommetry and the condition

onu(t, x) for n = 1 were derived by Fareo and Mason [15]. Here we will therefaresaer

1 and (—h,) ™ ,

only the general case # 1.

General casen > 0,n # 1

2 n+1

(—hg)» and (—h,) =,

1-n

Equating the coefficients of the partial derivativesdb zero yields

—0,
=0,
-0,
i:c =0,
& =0,
(2’/L + 1)2(7’L + 1) 2n+2 4n —l— 2 3na2
3 n 5 — h™ gxh
(1—-n)(2n+ 1)hM 1 (2n +1)(n+ 1) 3n42 4
- 3 " fgc - 3 " f
n n
dn+2
_'_ h §$h — 0,
2n+1 1 2n+1 1
n
1-— n 1— n
ng”’ S+ —h g =0,
(2n + 1)2 hw 1 (2n + 1) (n + 1) 2n+2
e = i
27’L + 1 3042
h »n =0,
e, =
_57? + Ulfl% = 07
2n+l —n 2n+41 3 2n+1
—nn fh ——h fh - _h 5 0,
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(—hy) " hey and (—hy)

(A.20)
(A.21)
(A.22)
(A.23)
(A.24)

(A.25)

(A.26)
(A.27)

(A.28)

(A.29)
(A.30)

(A.31)

1
n

hiL‘iL‘



277, +1 nq (2n + 1)(n + 1) nt1 1 2n+1

h™=~ 5h n2 h™ 5h 5hh =0, (A.32)
h4n7;|»2 fh h4n7;|»2 fh h4n7j2 fh _ O (A33)
An + 2 snt2 1—n)(2n+ 1) sn42 2n+ 1)(n+1) . snt2
n? n n
2 1 3n n
IR+ b e, = (A.34)
c%l 8vl
: 515 +£28—x + N — Vinh +Ul§t1 - U?fi =0, (A.35)
2 1 =« n n
IR kR - R gl
1— 2n+1 1— 2n+1 1— 2n+1
+ th;ﬁh— nh +§2+ Qn "Ul€h+ h’jﬁh
n n
2n+1 1 2n+1
——h S ST el =0, (A.36)
n

Sincen # 1, equation (A.28) reduces to

which implies that

2n+1 +1 2n+1 an1 2n+1 an1
n SOt Dy g 20 Ly, 20 Ly
n n
+4n +2 =] el (2n + 1)2(71 + 1)hni1 - (2n + 1)2(n + 1)hnI1§2
n n
(2n + 1)(n + 1) nt1 1 2ng1 2 ont1 9
- B hon Ulfh +—=h g — —h &,
n n n
1 2n+41
+—h gl =0, (A.37)
2n+1)(n+ 1) w1 2n+1)n+1) a1
RS RS TP RS ORI o
1 n n
_Eh%“g —h2 gl = 0. (A.38)
€ =gl(t). (A.39)
Ne = 0, (A.40)
n=mn(t,h). (A.41)

157



From (A.30) and (A.31),

& =), (A.42)
Equation (A.20) to (A.38) therefore reduce to
1 0v 50V
1: atl 19 —l +ne — v, + Ulft =0, (A43)
1-n 2n+ 1 nt1 2n+1
(~ha) ™ haw s =3 Ea 4 — h el
1— 2n+1 1 2n+1 2n+41 2n+1
h n*nh— ”h*g —hinh——h =, (A44)
1l 2n+1)(n+1) . 1 2n+1 an1 2n+ 1 ng1 1 1
(=he) ™ —( 722( )hinJr - W, — W5 e+ R
2 1 1) n1 2 1 1) nt1
(2n+ )2n+ )h%nhjt(n—i_ )2(n+ ) ) (A.45)
n n
Simplifying (A.44) and (A.45) gives
—2n+1)n—nh& + (n—Dhn, + (n+ 1)hEE =0 (A.46)

and
—2n+1)(n+1)n—2n+1)hn, —n2n+1)hE + (2n4+1) (n+1)AEE +nh?nu, = 0, (A.47)

respectively. Differentiating (A.46) with respecttaand then with respect tlo, we obtain

£.=0 (A.48)
and
—(n+2)nn — n&l 4+ (n— Dhigpn + (n +1)€2 = 0. (A.49)
From (A.48), we have
& =cy+ csa. (A.50)

Differentiating (A.49) again with respect foand rearranging gives the third order ordinary
differential equation
(n — 1)hnpnn — 30mn = 0, (A.51)

the solution of which is

2n+1

n=A(t)h~—1 4+ B(t)h+ C(t). (A.52)
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Substitute (A.52) into (A.47) to obtain

2n+ 1) (n+ DAL + 2+ 1)(n+ 1)BE)h + (2n+ 1)(n + 1)C(t)

—%A(t)hiﬁl — (2n+ 1)B()h —n(2n + )&
—H%AJXW+UM?+Mn&?ﬁ;+DA@M?T:O. (A.53)
Separate according to the powershdb obtain since: > 0,
h?ﬁ;(n+DA@y_@dpr@y+éii§A@%:Q (A.54)
h: —(n+1)B(t) — B(t) —n& + (n +1)&2 =0, (A.55)
R C(t) = 0. (A.56)
Equations (A.54) and (A.55) give
(n® —2n® +2n+2) A(t) = 0, (A.57)
—(n+2)B(t) —n& + (n+ 1) =0. (A.58)

Since the roots of the cubic equation
n®—2n*+2n+2=0

are

n=—05747, n=12874+1.35, n=1.2874—1.35i

and we are considering> 0, n € R, it follows that

A(t) = 0. (A.59)
Differentiate (A.58) with respect tbto obtain

dB(t)

Using (A.56) and (A.57), it follows that

n = B(t)h. (A.61)



Substitute (A.61) into (A.43) to obtain

gl 52 Oui diit) h—uB(t) + v =0.
Separate (A.62) according to powers of h:
0
51 €5 —uB(l) + ugl =0,
. dB( ) _
h - = 0.

Using (A.64), equation (A.60) reduces to
ftlt =0
and we have
61 == Cgt + .

Using (A.50) and (A.66), (A.58) becomes

1
B:n+2((n+1)03—71€2)

Hence

n:n+2((n+1)cg—ncg)h.

When (A.66) and (A.67) are substituted into (A.63), we abtai
oy oy n+1

(Cl -+ Cgt)a + (C4 + CgZL’) (% (n T 5

The Lie point symmetry generator is therefore of the form

0 1
or n-+2

9]
X = (c1 + cot) 5 + (¢4 + c37)

= 61X1 + CQXQ + C3X3 + C4X4,

where

9

ot’

0 n 0

Xo =g = 5o
0 n+1. 0

Xs =wg+ 5han

9

ox’

X1:

X, =
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) -2

((n+ 1)cg — neg)

(A.62)

(A.63)

(A.64)

(A.65)

(A.66)

(A.67)

(A.68)

(A.69)

(A.70)

(A.71)

(A.72)

(A.73)

(A.74)



provided that the leak-off velocity,(z, ¢) satisfies the first order linear partial differential
equation (A.69).
Special casen = 1

Although the case = 1 must be treated separately the final result derived by Fardo a
Mason [15] for the Lie point symmetry( and for the partial differential equation for(¢, x)
is obtained by putting. = 1 in (A.70) and (A.69). The Lie point symmetry (A.70) and the

partial differential equation fow, (¢, z) in (A.69) are therefore valid for all > 0.
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APPENDIX B

Derivation of the Lie point symmetry of a nonlinear second
order ordinary differential equation
We derive the Lie point symmetry of the second order nonlioedinary differential equation

d mer [ dF\ "
— | F(u)™ | ——
du [ () < du)

where A and B are constants. We will first consider> 0, n # 1 andn # 1/2 and then

d
+A@ (uF) + BF(u) =0, (B.1)

show that the Lie point symmetry derived holds true whea 1 andn = 1/2. The Lie point
symmetry of (B.1) fom = 1 was derived by Fareo [44].

Equation (B.1) can be written in the form

H(u,F,F,, F,) =0, (B.2)
where
1 AF\ = @F [2n+1 dF\""  dF
2n+1 " n "
H= _EF n <—%) Tz —( - ) (—F%) +Au%+(A + B) F. (B.3)

The Lie point symmetry generator,

0 0

of equation (B.1) is derived by solving the determining dmra

X g =0, (B.5)

H=0
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for the unknowns (u, ') andn(u, F') whereX ), the second prolongation of, is

0 0
2] _ i
X X+C1(U7F7Fu)aFu+C2(U7F7Fu7Fuu)aFuu7 (86)
with
G = D(n) — F.D(&), (B.7)
and
d d d
D=—+F—+F,—+---. B.
dujL “dFjL ”“dFujL (8.9)
The expanded form af; and(; is
Cl :nu+Fu (nF_&L)_FSSFv (Blo)

—2F%¢,p — F3€pp — 26,Fyy — 36pFy Fouy. (B.11)

The determining equation (B.5) becomes

(4R +n (2P (n) - PR R R p)

n2

F (_Fu)z +

+<1(Au+(n+1)(2n+l) nt1 1 1—n 2 ﬂFuu)

n2

=0. (B.12)

H=0
We now substitute the expressions (B.10) and (B.11)faand(, into (B.12) to obtain the

determining equation

(2n+1) l=n _nt1 (n+1)(2n+1)

EAR, = = (“R) ™ B R — = e F5 (<F)™ 0+ (A+ B)y + Au,
L+ 1)752271 U et )+ S R (LR B+ AuFune

S DO D pest (g - L RS By - A,

(ot 11522" T pe gyt 4 U ;”)F—+ (—F)™ Puku = AuF2ér

_(n+ 111(22" +1) prs (—F) " €p — (1;2”)F2"n“ (—F.)% Fuubp — %F%”H (=F) 7
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2n+1 1 1 _2ng1 14+n 1 _2ng1 1-n 1 2ngs

1
—Fn _uzu - n _Fu " — —F"n _FuTFuu ——F"n _Fuzuu
o (=Fu)™ nur (=F.) ™ nrr - (—F.) = (=F.)" ¢
n n+1 1 n 2n+1 2 n 1-n
FF (<F) 7 G = —F 0 (<F) T Gppt SF 0 (<F) 7 Fua
3 _2nt1 1
—ZF (=F,)" Fuép =0. (B.13)
n H=0

We will impose the conditiorf = 0 on (B.13) by using equation (B.3) faf which is

2n+1 2n—1 n+1

S (=F)" 4+ n(A+ B F S (—F) . (B.14)

Fou=—02n+1)F'F? —nAuF~

By replacingF;,, in (B.13) by (B.14), the determining equation becomes

eap,~ D pr gy n—@nTmAuF‘lFun—(A +B) (2”; D, (n+ 1)7522” D g
<(~B)F (44 Byt Augt CENCED prt gy 20O g gy,
S g a5 ) R P A CE D D e i,

P U2 D g iy e~ o e — (44 ) T Py Aure,
Lnt 1)7522” Lo A ”)7522” Tz e U aure,
+a+m) U - ") pe,— Aurep— " 1)752271 U pt Cpy e g s n>n(22" D e

(B et Lo gy e, AT DA pp o Lpea pyse,  2pee
n n n
1 I 241 nt1 2n+1) _na1 nt1
X (=F) % up——F "2 (—F,) ™ Wﬂi)Fi (—F,) " np—AuF,np—(A+ B) Fnp

2n+1

1 1 2 ont1 nt1 1 _2ni1 2n41 dn + 2 nn1
——F 0 (~F) G — —F 7 (=F) G — —F % (=F) 7 e — F*
n n n n

(6n + 3) n+1 2n

X (—F,)" € + 2AuF,&, +2(A+ B) F&, + F5 (=F)™ & + 3AuF2¢,

+3(A+ B)FF,tr=0. (B.15)

Since¢ andn are independent of the derivativg, (B.15) can be separated according to the
coefficients of powers of the derivativé,. Equation (B.15) holds provided each of these
coefficients vanishes.

However, the cases = 1 andn = 1/2 need to be considered separately. Wher 1,

ntl 1 l-n
F." , F; andF," becomef?, F, and 1, and since there are terms with derivativgsF,
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and 1 in (B.15) their coefficients have to be grouped togethkso, whenn = 1/2, Fu% and
F;% becomer’? andF;, and their respective coefficients have to be grouped togatheell.

AssumingA # 0, A # —B, n # 1 andn # 1/2, we have

F': n,=0, (B.16)
Fom : =0, (B.18)
2n+1
F.m @ 2n+1)ép — Fépp =0, (B.19)
Fr . 20(2n+ )0 + 20Fnup — nFy = 0, (B.20)
F,: AuF¢, — (1 —n)AuFnp + nAEF — (2n + 1) Aun = 0, (B.21)
1) (A+B on — 1 A+ B A+ B 1
o DA+B), =), AEB) L AFB It b (6.22)
n n n
F:Tl C 2n+1)n— 2n+ 1)Fnp — FPpp + 2F%¢,r = 0. (B.23)

WhenA = — B, the term inF; ! vanishes in (B.15) and by separating (B.15) according to
the coefficients of powers of the derivatiyg, the overdetermined system (B.17) to (B.23) is
obtained, with(A + B) = 0 in (B.22). Equation (B.22) for the casé+ B = 0 yields, since
n # 1/2,n, = 0. Therefore, whem # 0, the casesl + B = 0andA + B # 0in (B.15) give
the same results.

From (B.16) and (B.17),

n=n(F) (B.24)
and
¢ =¢€(u). (B.25)
Equation (B.20) reduces to
Euu = 0, (B.26)
which on integration gives
£ = ciu+ o (B.27)



From (B.21), sinced # 0, we have
cauF + (n — DuFng +n(ciu+ ¢) F — (2n + 1)un = 0. (B.28)
Sincen does not depend an we set the coefficients of the powers of u to zero:

u’ ey =0, (B.29)

u': Fey+ (n—1)Fnp +neiF — (2n+ 1) = 0. (B.30)

Hence, from (B.29)¢, = 0, which implies

£ =cu. (B.31)
From (B.30),
(1—n)Fnp+@2n+1)n=(n+1)cF. (B.32)
From (B.22),
1
=" 1F77F + Fey. (B.33)
Substituting (B.33) into (B.32) gives
n+ 2 dn
(n + 1) dr ~ " (B.34)
which on integration yields
n+1
n= (n—i—Q) al'+ K, (B.35)

whereK is a constant. Finally, substituting (B.35) into (B.23), eldain X’ = 0. Hence

+1
n= <Z n 2) aF and £ =cu (B.36)
and therefore
o C1 a (9

We have shown that ifl # 0, for any B € R and for alln > 0, exceptn=1 andn=1/2, the
Lie point symmetry generator admitted by (B.1) is

LY (B.38)

X:(n+2)uau 57
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Special casen=13

Whenn = 1/2, equation (B.15) is separated according to the coefficigiiewers of the

derivativeF,, to obtain equations (B.16), (B.19), (B.22) and (B.23) witk- 5 which become

F':om, =0, (B.39)
F}: 2p — Fépp =0, (B.40)
1: 3(A+B)n+2(A+ B)Fnp —3(A+ B) F¢, =0, (B.41)
F3: 2n—2Fnp — FPnpp + 2F*,r =0 (B.42)
and
F? . 3Auép + 8F>n, + 4F*n,p — 2F*,, =0, (B.43)

1 1
F,: AFE—2Aun +2(A+ B) F2%p — SAuFnp + AuFg, + F¢,, = 0. (B.44)
Differentiating (B.41) with respect to, and using (B.39), we obtain, singe+ B # 0,

From (B.39),
n=n(F), (B.46)

and from (B.43), using (B.39) and (B.45), and sinte‘ 0,

& =¢&(u). (B.47)
Integrating (B.45) therefore yields
E=cu+c (B.48)
and (B.42) reduces to
FPnpp + 2Fnp — 2n =0, (B.49)
which is solved to obtain
n=kF+kF> (B.50)
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When (B.48) and (B.50) are substituted into (B.44), and aéparating with respect to powers

of ', we obtain

A [(301 — 5l€1) U+ CQ] = O, (851)

Al = 0. (B.52)

For A # 0, k, = 0in (B.52) and setting the coefficients of powers:db zero in (B.51) yields
ki = 2c, andcy = 0. Therefore
§=cu (B.53)

and

n= gch. (B.54)

Equations (B.53) and (B.54) agree with (B.36) wher= 1/2. Therefore fom = 3, the Lie
point symmetry of (B.1) is given by (B.38) with = %

The case: = 1 also has to be treated separately. Fareo [44] found that ferl the Lie
point symmetry of (B.1) is (B.38) with = 1. The Lie point symmetry of (B.1) is therefore
given by (B.38) for alln > 0.
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