Molecular mechanisms of transport and metabolism of vitamin B$_{12}$ in mycobacteria

Atica Moosa

A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy.

April 2012.
"Then which of the favours of your Lord will you deny?"

Quran
Chapter 55, Verse 13
Surah Ar-Rahman (The Beneficent)
I declare that this thesis is my own unaided work. It is being submitted for the degree of Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not been submitted for any degree or examination at any other university.

Moosa

9 Oct 2012
For my parents

Azeeza and Johnny van Silk

And my sister

Ayesha

You fill my life with light and love
Abstract

Mycobacterium tuberculosis (MTB) encodes three enzymes that are dependent on vitamin B\(_{12}\)-derived cofactors for activity, including a B\(_{12}\)-dependent methionine synthase (MetH). Previously, work in the Molecular Mycobacteriology Research Unit (MMRU) demonstrated vitamin B\(_{12}\) auxotrophy in a mutant strain disrupted in the alternative, B\(_{12}\)-independent methionine synthase, MetE. This observation established the ability of MTB to transport corrinoids despite the absence of an identifiable B\(_{12}\)-specific transporter. In addition, it suggested that MTB does not synthesize vitamin B\(_{12}\) *in vitro*. Notably, bioinformatic analyses identified PPE2 as the only B\(_{12}\)-related transport candidate in MTB, though as a putative B\(_{12}\)-regulated cobalt transporter. PPE2 is unusual in possessing directly upstream of its predicted start codon one of only two B\(_{12}\)-dependent riboswitches in the MTB genome, and it lies in a putative operon with B\(_{12}\) biosynthetic genes, *cobU* and *cobQ1*. In this study, the possibility that PPE2 functions in the transport of vitamin B\(_{12}\) or cobalt was investigated. Transcriptional and phenotypic data suggested that PPE2 was not involved in B\(_{12}\) transport. Instead, it was shown that cobalt can supplement the growth of an MTB *metE* mutant in liquid medium, strongly supporting the ability of MTB to synthesize B\(_{12}\) *de novo*. Moreover, the ability to utilise exogenous cobalt was dependent on functional PPE2, thereby establishing a role for a PPE-family member in cobalt assimilation in MTB.

Vitamin B\(_{12}\) comprises a central corrin ring co-ordinated to 5,6-dimethylbenzimidazole (DMB) as α-axial ligand. Substituting DMB with adenine yields the alternate form, pseudo-B\(_{12}\). The ability of mycobacteria to utilize pseudo-B\(_{12}\) precursors (cobinamide and adenine) to support full function of B\(_{12}\)-dependent metabolic pathways was evaluated. Although the pseudo-B\(_{12}\) precursors appeared to complement chemically the mycobacterial B\(_{12}\) auxotrophs, growth of the mutants on cobinamide alone
complicated this interpretation. To address this limitation, DMB synthesis was targeted by disrupting the MTB \textit{bluB} homologue, \textit{Rv0306}. Neither site-directed mutagenesis of key Rv0306 residues, nor full-gene deletion was sufficient to eliminate growth on cobinamide. Instead, this observation highlights the need to establish biochemically the nature of the active B\textsubscript{12} form synthesized and utilized by MTB under different conditions.

In combination, the results presented here support the inferred flexibility of vitamin B\textsubscript{12} biosynthesis in MTB, and reinforce the potential role of B\textsubscript{12}-dependent metabolism in mycobacterial pathogenesis.
Acknowledgements

I am grateful for funding received from the Howard Hughes Medical Institute, SWISS/South Africa Joint Research Programme, the National Research Foundation, the Medical Research Council of South Africa, the National Health Laboratory Service, and the University of the Witwatersrand.

I wish to thank the South African Tuberculosis and AIDS Training (SATBAT) program (National Institutes of Health/Fogarty International Center1U2RTW007373-01A1) for financial support received.

Dr Digby Warner, my supervisor; thank you for your brilliant supervision, guidance and support throughout this study. Not only did you unfold the thrilling world of molecular biology, you patiently showed me the ropes too. Your unwavering encouragement and incredible enthusiasm, no matter what the result, never ceased to motivate me. You have been invaluable to my scientific development, may the Almighty reward you.

Prof Valerie Mizrahi, my co-supervisor; thank you for your scientific insight, support and invaluable advice during the course of the study. Thank you for understanding; your patience and time just to listen. I take with me, your passion for science as an inspiration.

All my colleagues at the MMRU, past and present; your thumbs have marked my piece of clay. I thank you for the assistance and support; your humour kept me sane and made this an extremely rewarding experience.

My family, all the leaves connected but different in their special way. Benazir, thank you for always finding ways to brighten my day. Ayesha, thank you for keeping alive my strength to persevere. Mum and Dad, a
thank you seems not enough for your unflinching support, encouragement and always believing in me.
Publications from this thesis

Table of Contents

Declaration ... i
Dedication ... iv
Abstract .. v
Acknowledgements .. vii
Publications from this thesis .. ix
Table of contents ... x
List of Figures .. xiv
List of Tables ... xvi

1. Introduction .. 1
 1.1 Tuberculosis ... 1
 1.2 Prevention and chemotherapy .. 1
 1.2.1 The inadequacies of BCG ... 1
 1.2.2 Chemotherapy and drug resistance ... 3
 1.3 Survival of MTB within the host ... 6
 1.3.1 Intramacrophage survival ... 6
 1.3.2 Immune evasion and granuloma formation 6
 1.3.3 Latent TB and metabolic adjustments .. 8
 1.4 Carbon metabolism in MTB ... 10
 1.4.1 Lipids as the dominant carbon source ... 11
 1.4.2 Sources of lipids during infection ... 12
 1.4.2.1 Evidence for cholesterol utilization 13
 1.4.3 Toxicity associated with lipid metabolism 15
 1.5 Vitamin B\textsubscript{12} ... 19
 1.5.1 Structure of vitamin B\textsubscript{12} ... 19
 1.6 Vitamin B\textsubscript{12} biosynthesis ... 22
 1.6.1 Synthesis of the lower ligand 5,6- dimethylbenzamidazole (DMB) .. 25
 1.6.2 Mycobacterial B\textsubscript{12} biosynthesis ... 26
2. Material and Methods ..52
 2.1 Bacterial strains and culture conditions52
 2.2 Cloning vectors ..55
 2.3 DNA extractions ...56
 2.3.1 Plasmid extraction and purification from *E. coli*56
 2.3.2 Chromosomal DNA extraction from mycobacteria57
 2.4 Agarose gel electrophoresis ..59
 2.4.1 Recovery of DNA from agarose gels and quantification59
 2.5 DNA manipulations ...60
 2.6 Polymerase Chain Reactions (PCR) ...61
 2.7 Bacterial transformation ...62
 2.7.1 Chemical transformation of *E. coli*62
 2.7.2 Chemical transformation of mycobacteria63
 2.8 Southern blot analysis ..63
 2.9 Sequencing ...66
 2.10 Construction of MTB deletion mutants and complemented
 derivatives ...66
2.11 Validation of B\textsubscript{12} and pseudo-B\textsubscript{12} precursors utilizing \textit{S. enterica}72
2.12 Phenotypic characterization of mycobacterial mutants72
 2.12.1 Characterization of MSM B\textsubscript{12} mutants73
 2.12.2 Characterization of MTB mutants ...74
2.13 Semi-quantitative analysis of gene expression75
 2.13.1 RNA isolation ...75
 2.13.2 Reverse transcription ...76
 2.13.3 PCR ..77

3. Results ..78
3.1 Investigation into mycobacterial B\textsubscript{12} metabolism utilizing MSM as a surrogate for MTB ...79
 3.1.1 Identification of putative homologues of the B\textsubscript{12} biosynthetic pathway and B\textsubscript{12}-dependent enzymes in MSM79
 3.1.2 Complementation of MSM mutants with vitamin B\textsubscript{12} and L-methionine ...80
3.2 Can MSM and MTB synthesize alternate forms of the B\textsubscript{12} cofactors? ...83
 3.2.1 Synthesis of B\textsubscript{12} and pseudo-B\textsubscript{12} by mycobacterial auxotrophs ...83
 3.2.2 Aerobic growth of \textit{S. enterica} supplemented with B\textsubscript{12} and pseudo-B\textsubscript{12} precursors ..85
 3.2.3 MSM utilizes B\textsubscript{12} and pseudo-B\textsubscript{12} precursors87
 3.2.4 Synthesis of B\textsubscript{12} and pseudo-B\textsubscript{12} in MTB92
 3.2.5 Investigation of pseudo-B\textsubscript{12} synthesis in MTB by abrogation of DMB biosynthesis ..98
3.3 Cobalt supplementation enables growth of a MTB B\textsubscript{12} auxotroph .107
 3.3.1 Genetic complementation of late stage (\textit{cobU}) B\textsubscript{12} auxotroph with \textit{PPE2-cobQ1-cobU} ..113
 3.3.2 Inability to supplement the \textit{ΔmetE::hyg} mutant with cobalt on solid medium ...114
3.4 Investigation of the putative role of PPE2 in B\textsubscript{12} or cobalt transport/assimilation ... 117

3.4.1 Assessment of a role for PPE2 in B\textsubscript{12} transport in MTB........... 118

3.4.2 Assessment of the role of PPE2 in cobalt transport/assimilation ... 122

4. Discussion ... 128

4.1 MTB does not synthesize B\textsubscript{12} under standard \textit{in vitro} conditions... 129

4.1.1 Cobalt is a limiting factor in B\textsubscript{12} biosynthesis in MTB.......... 130

4.1.2 Precursor-mediated growth of MTB B\textsubscript{12} auxotrophs – is the B\textsubscript{12} biosynthetic pathway functional in MTB? 131

4.1.3 Why does MSM not require cobalt supplementation to synthesize B\textsubscript{12}? ... 135

4.2 PPE2 is required for cobalt transport/assimilation in MTB 138

4.2.1 What is the function of the PE/PPE protein family?.......... 142

4.3 A role for B\textsubscript{12} or cobalt in MTB pathogenesis? 144

4.4 Can MTB synthesize and utilize pseudo-B\textsubscript{12}? 147

4.4.1 Deletion of \textit{Rv0306} in MTB .. 148

4.5 Concluding remarks ... 150

5. Appendices .. 152

Appendix A: List of abbreviations... 152

Appendix B: Culture media... 156

6. References ... 158
List of Figures

Figure 1.1: Structure of vitamin B₁₂ and derivatives ..21
Figure 1.2: Predicted pathway for adenosylcobalamin biosynthesis in MTB. ..30
Figure 1.3: Diagrammatic representation of the PE and PPE subfamilies in MTB. ..43
Figure 3.1: Growth of MSM B₁₂ and methionine biosynthetic mutants82
Figure 3.2: Schematic illustrating predicted phenotypes in assessment of pseudo-B₁₂ synthesis in mycobacteria ..84
Figure 3.3: Aerobic synthesis of B₁₂ and pseudo-B₁₂ by S. enterica.86
Figure 3.4: Growth kinetics of MSM ΔcobK ΔmetE::hyg mutant when supplemented with B₁₂ and B₁₂ precursors ...89
Figure 3.5: Growth kinetics of MSM ΔcobK ΔmetE::hyg when supplemented with B₁₂ and pseudo-B₁₂ precursors91
Figure 3.6: Growth kinetics of MTB ΔmetE::hyg mutant when supplemented with B₁₂ and pseudo-B₁₂ precursors93
Figure 3.7: Growth kinetics of MTB H37Rv in valerate plus ICL inhibitor, 3-NP and supplemented with B₁₂ and pseudo-B₁₂ precursors95
Figure 3.8: Assessment of pseudo-B₁₂ synthesis by MTB ΔmetE::hyg by adenine titration ..97
Figure 3.9: Putative AdoCbl biosynthetic pathway in MTB and MSM incorporating the proposed pathway for DMB biosynthesis99
Figure 3.10: Sequence alignment of S. meliloti BluB and MTB Rv0306. .101
Figure 3.11: Rv0306 with introduced point mutations ..102
Figure 3.12: Mutation of Asp 32 and Ser 167 does not affect growth of MTB Rv0306^{D32NS167G} ΔmetE::hyg on cobinamide ...104
Figure 3.13: Genotypic analysis of the ΔRv0306 ΔmetE::hyg double mutant ..105
Figure 3.14: Phenotypic analysis of the ΔRv0306 ΔmetE::hyg double mutant ..106
Figure 3.15: Exogenous cobalt supports growth of MTB B$_{12}$ auxotroph. 108
Figure 3.16: Abrogation of predicted early- (CobK) and late- (CobU) stage
B$_{12}$ biosynthetic steps in MTB ΔmetE::hyg suggests the incorporation of
cobalt into vitamin B$_{12}$...110
Figure 3.17: Genotypic confirmation of methionine and B$_{12}$ deletion
mutants ..112
Figure 3.18: Complementation of ΔcobU ΔmetE::hyg mutant with PPE2-
cobQ1-cobU operon restores growth with precursors.114
Figure 3.19: Inability of cobalt to complement growth of the ΔmetE::hyg
mutant on solid medium. ...116
Figure 3.20: RT-PCR analysis of metE expression in a ΔPPE2 mutant in
response to B$_{12}$..119
Figure 3.21: Growth kinetics of the ΔPPE2 mutant in valerate with 3-NP
and B$_{12}$. ...121
Figure 3.22: Genotypic and phenotypic characterization of PPE2 deletion in
H37Rv and the ΔmetE::hyg mutant ..123
Figure 3.23: A role for PPE2 in cobalt transport (assimilation) in MTB... 125
Figure 3.24: Deletion of PPE2 does not affect growth on cobinamide in a
ΔmetE::hyg mutant ..127
List of Tables

Table 2.1: General strains used in this study ..53
Table 2.2: Plasmids used in this study ...55
Table 2.3: Probes used in southern blot analysis ..65
Table 2.4: Oligonucleotides used to synthesize Southern blot probes65
Table 2.5: Oligonucleotides used to construct knockout vectors used in this study ..67
Table 2.6: Oligonucleotides used in screening of *Rv0306* point mutations in this study ...70
Table 2.7: Oligonucleotides used to construct complementation vectors 71
Table 2.8: Oligonucleotides used in RT-PCR ...77
Table 4.1: Growth characteristics in liquid media of MTB mutants utilized in this study ..137
1. Introduction

1.1 Tuberculosis

Mycobacterium tuberculosis (MTB) has long been the scourge of humanity as it causes one of the most devastating diseases, tuberculosis (TB). This air-borne bacterial pathogen claimed a staggering 1.7 million lives in 2009 alone (WHO, 2009). Although statistics indicate that the global incidence and deaths due to TB are decreasing, this is sadly not true for developing countries which continue to shoulder the weight of this burden, accounting for more than 90% of all new cases as well as TB-related deaths (WHO, 2009). In resource-poor settings, poor socio-economic conditions are exacerbated by concurrent infection with human immunodeficiency virus (HIV); in fact, countries with the highest prevalence of HIV are the worst affected by the TB burden (WHO, 2009). Another primary source of concern is the rapid emergence globally of, and alarming increase in, drug resistant MTB strains which further threaten the control and elimination of TB. Despite on-going preventative measures including the administration of the BCG vaccine, the availability of effective chemotherapeutic regimens as well as worldwide support programs, TB continues to be a massive global health crisis.

1.2 Prevention and chemotherapy

1.2.1 The inadequacies of BCG

The current TB pandemic is testament to the critical limitations of the only vaccine used to prevent TB, the live-attenuated bacille Calmette-Guérin (BCG). This vaccine was derived by *in vitro* passage of a *Mycobacterium bovis* isolate over a number of years. Despite the administration of BCG to
more than 3 billion people worldwide (Brosch et al., 2000), its efficacy remains inconsistent: the protective effect in various clinical trials ranged from 80% to nil (Fine, 1989), with several theories offered to explain this variability (Colditz et al., 1994; Fine, 1995; Brewer, 2000; Behr, 2001; Brosch et al., 2007). Whilst there is consensus that BCG is highly effective in protecting against severe childhood forms of TB (Colditz et al., 1995), it offers no protection against the most common form of the disease - that is, adult pulmonary TB which represents the main source of new infections and is the greatest contributor to mortality (WHO, 2009). In addition, there is a higher risk of vaccine-related complications such as disseminated BCG disease in HIV-infected children (Hesseling et al., 2007; Hesseling et al., 2009). This prompted the World Health Organization (WHO) Global Advisory Committee on Vaccine Safety to contraindicate BCG administration in HIV-infected and HIV-exposed children (WHO, 2007). However, not vaccinating an HIV-exposed infant who remains uninfected increases the risk of disseminated TB; therefore, BCG continues to be administered in settings where TB and HIV are highly endemic (WHO, 2007; Hesseling et al., 2009).

These concerns highlight the urgent need for safer and more effective vaccines which will aid in controlling the disease. Amongst the challenges facing new vaccine development is the need to design a vaccine that will not only elicit a strong host immune response to the initial infection (pre-exposure vaccine), but will prevent progression to disease in those previously exposed (post-exposure vaccine) (Brennan, 2005). Perhaps even more challenging is the development of a vaccine that is safe for use in HIV-infected populations. It is encouraging, therefore, that the last few years have seen substantial progress in this area: there are several candidate TB vaccines in the pipeline, in clinical trials or on their way to preclinical development (Grode et al., 2005; Tullius et al., 2008; STOPTB,
2009; Aagaard *et al.*, 2011). Ideally, new vaccines should complement drug regimens as this will significantly aid in the fight against this disease.

1.2.2 Chemotherapy and drug resistance

TB is curable; however, chemotherapy faces its own set of challenges that prevent the universal control of this disease. As part of an internationally recommended strategy to accelerate the control and eradication of TB worldwide, the WHO implemented directly observed therapy, short course (DOTS) in the early 1990’s. The foundation of this control strategy is a short-course treatment comprising a daily dose of a combination of drugs over a period of six months, with administration of each dose supervised by a health care worker. The short-course treatment regimen comprises an intense phase of isoniazid, rifampicin, pyrazinamide and ethambutol for two months, followed by a continuation phase of isoniazid and rifampicin for an additional four months (WHO, 2010). When all five elements (strong government support, effective case detection, standardized treatment with supervision, continued drug supply, and surveillance) are implemented in their entirety, chemotherapy under DOTS has been shown to achieve high cure rates for drug-sensitive TB (Murray, 1996). However, this requires substantial resources and a strong health infrastructure (Espinal and Dye, 2005). Moreover, in the context of high TB prevalance, the DOTS programme is probably inappropriate (Wood *et al.*, 2011).

A combination of inadequate drug regimens as well as the lengthy duration of therapy, results in inconsistent or even incomplete treatment, which in turn promotes the selection and spread of drug resistant strains that are difficult to treat. Multidrug resistant strains (MDR) are resistant to two of the most powerful first-line drugs - isoniazid and rifampicin - and so necessitate treatment with second-line drugs as part of the so-called
“DOTS plus” programme (WHO, 2010). An expansion of DOTS, this programme has been tailored to the management and treatment of MDR-TB, specifically taking into account resource-poor countries with high HIV co-incidence. Treatment of MDR-TB is much more protracted, more expensive, more toxic and is considerably more complicated as some drugs are administered by injection; in combination, these factors result in lower cure rates and increased spread of the disease (Espinal and Dye, 2005; Marahatta, 2010).

Given these complexities in treating MDR, the emergence of extensively drug resistant (XDR) strains of TB, which are resistant to isoniazid, rifampicin, any fluoroquinolone, and at least one of the three injectable second-line drugs (amikacin, kanamycin and capreomycin) seems almost inevitable (CDC, 2006). That said, the rapid lethality observed in an outbreak of XDR-TB among HIV-positive individuals in the town of Tugela Ferry located in the central KwaZulu-Natal province, South Africa, was alarming (Gandhi et al., 2006). The startling report by Gandhi et al. (2006) revealed that, of the 475 confirmed TB cases, 53 individuals (of whom 44 were HIV positive) had XDR-TB. Fifty-two of these died within 16 days of diagnosis. Notably, exogenous re-infection with MDR- or XDR-TB strains was implicated in the development of this outbreak (Andrews et al., 2008), suggesting poor infection control practices, lack of proper diagnostic testing, and ineffective treatment of susceptible and MDR-TB (Jassal and Bishai, 2009). Sadly, XDR-TB is very difficult to treat, requiring extended therapy (18-24 months) with poor outcomes and significantly increased costs (Chan et al., 2008). Even more distressing are the recent reports describing the emergence of totally drug resistant (TDR) strains, and the possible catastrophic implications for treatment and control of this form of TB (Velayati et al., 2009). Another area of concern is the treatment of TB in patients receiving anti-retroviral therapy due to unfavourable drug interactions, overlapping toxicities, high pill burden and
the potential for the development of immune reconstitution inflammatory syndrome (IRIS) (McIlleron et al., 2007).

In combination, these elements are driving the need for new TB drugs. This has mobilized organizations like the WHO and the Global Alliance for TB Drug Development to dedicate enormous efforts and funding towards the control and eradication of TB. The WHO implemented the “Global Plan to STOP TB 2006-2015” which is a program that aims to halve the global TB prevalence by 2015 relative to 1990, and to eliminate TB as a public health problem by 2050 (STOPTB, 2006). Additionally, the TB Alliance aims to reduce the duration of chemotherapy from 6-9 months to 2 months or less, as this will improve patient adherence to therapy and thereby prevent further drug resistance (TBAlliance, 2005). Together, these organizations have been instrumental in stimulating and accelerating the discovery and development of new anti-tuberculosis drugs. Although no new drugs are expected at the dispensary soon, there are some promising candidates in the pipeline which include two nitroimidazole compounds (PA-824 and OPC-67683) and a diarylquinoline compound (R207910, also called TMC207) (Stover et al., 2000; Andries et al., 2005; Matsumoto et al., 2006; Koul et al., 2011). To ensure that this pipeline is populated, basic research is required that is aimed at further understanding TB biology at different stages of infection, as well as this pathogen’s extraordinary ability to subvert host immune responses.
1.3 Survival of MTB within the host

1.3.1 Intramacrophage survival

MTB’s success can be attributed to its ability to blunt the host immune response, and then establish a niche within the host for extended periods despite the hostile environments and continual immune surveillance (Nguyen and Pieters, 2005; Ahmad, 2011). By far the most common route of infection of MTB is through inhalation of aerosolized bacilli, which are subsequently ingested and enclosed within a phagosome within alveolar macrophages in the lower airways (Clark-Curtiss and Haydel, 2003). Entry of MTB into macrophages is facilitated through a variety of receptors including complement receptors (CR3, CR1, CR4), mannose receptors, Fc receptors and toll-like receptor (TLR) (Astarie-Dequeker et al., 1999; Hingley-Wilson et al., 2000; van Crevel et al., 2002; Pieters, 2008). It has been suggested that internalization of MTB through certain receptors is beneficial and may assist in circumventing immediate destruction once inside the macrophage. For example, ingestion through the Fc receptor triggers an inflammatory response, as opposed to entry via the CR3 receptor which appears to avert macrophage activation (Caron and Hall, 1998; Pieters, 2008).

1.3.2 Immune evasion and granuloma formation

Ingestion by activated macrophages results in the gradual acidification of the phagosome which fuses with lysosomes to form a phagolysosome (phagosome maturation) loaded with proteolytic enzymes. This is accompanied by a simultaneous increase in the generation of reactive oxygen and nitrogen intermediates which target multiple cellular structures and biochemical components to bring about the degradation
and death of the bacilli (Smith, 2003; Hestvik et al., 2005; Nguyen and Pieters, 2005). However, in the case of inactivated macrophages, MTB has evolved strategies that avoid destruction as well as allow survival and growth within the phagosome. These include prevention of phagosome-lysosome fusion through a series of complex events that result in the retardation of phagosome maturation (Armstrong and Hart, 1971; Sturgill-Koszycki et al., 1994; Via et al., 1997; Malik et al., 2000; Vergne et al., 2005; Jayachandran et al., 2007), the use of specific receptors that do not trigger an oxidative burst upon entry into the phagosome (Wright and Silverstein, 1983; Schlesinger et al., 1990), resistance to reactive nitrogen intermediates (Miller et al., 2004), down-regulation of host immune modulators (Ting et al., 1999; Noss et al., 2000; Hickman et al., 2002; Nau et al., 2002), and blocking of apoptosis (Sly et al., 2003).

As a result, MTB avoids elimination and continues proliferating intracellularly until phagosomal lysis occurs which releases viable bacilli into the surrounding lung tissue, where they are subsequently ingested by other macrophages (Clark-Curtiss and Haydel, 2003; Grosset, 2003). These immune cells similarly fail to control growth of MTB and are destroyed. Inflammatory cytokines and chemokines released by lysed macrophages stimulate the recruitment of additional monocyte-derived macrophages and dendritic cells to the site of infection where they readily ingest, but do not destroy, mycobacteria (van Crevel et al., 2002). During this time, dendritic cells with engulfed bacilli mature and migrate to lymph nodes where they prime T cells (CD4+ and CD8+) against mycobacterial antigens (Tufariello et al., 2003). Two to eight weeks post infection, a cell-mediated immune response arises whereby primed T-cells migrate back to the site of infection in the lungs and activate defence mechanisms of macrophages containing MTB to destroy the invading bacilli or at least contain their growth (Saunders et al., 1999; Grosset, 2003; Ahmad, 2011). Moreover, T-cells strengthen antibacterial responses by recruiting and
activating additional immune cells, resulting in an influx of monocytes to
the site of infection. The ensuing battle between the host immune system
and MTB leads to the cessation of bacterial growth, and infiltration of
immune cells that aggregate around the infected tissue to form a solid
structure or a granuloma (Bloom and Murray, 1992; Clark-Curtiss and
Haydel, 2003), that is sealed off from surrounding tissues by a fibrotic
capsule (Stewart et al., 2003). Within the barricade-like structure of the
granuloma, bacterial dissemination is prevented, and interactions between
T-cells, macrophages and cytokines are facilitated which result in control
of the infection in most immunocompetent individuals (Saunders et al.,
1999; Tufariello et al., 2003).

1.3.3 Latent TB and metabolic readjustments

In about 10% of infected individuals, bacilli continue to proliferate –
presumably due to ineffective T-cell responses – which results in the
development of TB within 1-2 years (Caruso et al., 1999; Dye et al.,
1999). The remaining 90% successfully control the infection; however, a
residual proportion of bacilli persist for extended periods within the
granuloma (Ducati et al., 2006). The only clinical evidence of a latent TB
infection (LTBI) is a delayed-type hypersensitivity response against
mycobacterial antigens, demonstrated by the tuberculin skin test
(Glickman and Jacobs Jr, 2001). Latently infected individuals are
asymptomatic; however, several factors including HIV, cancer, diabetes,
drug use, and malnutrition are known to favour reactivation and clinical
manifestation of MTB (Parrish et al., 1998; Cosma et al., 2004).

Although poorly understood, during LTBI bacilli within granulomas are
thought to be characterized by decreased metabolic activity and limited or
no replication (Hu et al., 2000; Muñoz-Elias and McKinney, 2005; Gill et
al., 2009). The environment within the granuloma is hostile with reduced availability of oxygen, acidic pH, the presence of toxic fatty acids, nitric oxide stress, and scarce supply of nutrients (Smith, 2003), all of which are thought to drive MTB into a non- or slowly replicating, drug-tolerant state. Several in vitro and in vivo models including the Wayne model (Wayne and Hayes, 1996; Wayne and Sohaskey, 2001), nutrient starvation model (Betts et al., 2002), Cornell mouse model (McCune et al., 1956), and low-dose murine model (Orme, 1988) have been developed to recreate aspects of this state, as latency in the human host can take years to manifest and is not experimentally tractable. Although individually these models do not fully emulate the scenario between the host and bacterium during infection, they have proved very useful in investigating the metabolism and physiology of MTB under multiple conditions and stresses thought to prevail during chronic, persistent infection.

Together with phenotypic, transcriptomic and proteomic analyses utilizing model systems, studies have identified various genes induced under conditions of non-replicating persistence. Overall, these observations indicate that under nutrient starvation, low oxygen, and nitrosative stress, MTB utilizes many mechanisms that allow it to undergo significant metabolic reprogramming to survive during chronic infection. Some of these include the induction of stress-related pathways including the dormancy regulon which is comprised of approximately 50 genes under the control of the dosR/S/T two-component regulatory system and is induced during hypoxia and upon exposure to low-dose nitric oxide or to carbon monoxide (Schnappinger et al., 2003; Voskuil et al., 2003; Kendall et al., 2004; Roberts et al., 2004; Voskuil et al., 2004a). The α-crystallin like protein hspX which is induced in response to stationary phase, low oxygen and nitrosative stress (Yuan et al., 1996); (Cunningham and Spreadbury, 1998; DesJardin et al., 2001) and the RelMtbb-regulated stringent response to nutrient starvation (Primm et al., 2000; Betts et al.,
Additionally, mycobacterial factors involved in cell wall modifications \((pcaA)\) (Glickman \textit{et al.}, 2000), anaerobic energy metabolism \((nar\lambda)\) (Hutter and Dick, 1999; Sherman \textit{et al.}, 2001) and lipid metabolism \((icl)\) (Wayne and Lin, 1982) have also been identified as playing a role in persistence.

1.4 Carbon metabolism in MTB

Seminal experiments by Segal and Bloch (1956) suggested the importance of carbon metabolism to mycobacterial physiology; however, the extent of the role of alternate carbon sources in MTB has only been realized and fully appreciated recently. Like many bacterial species, MTB can metabolize a variety of carbon sources to generate energy during growth in synthetic media (Wheeler and Ratledge, 1994). This is consistent with the presence of enzymes required for glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, the glyoxylate cycle and the methylcitrate pathway in MTB (Cole \textit{et al.}, 1998). One of the main challenges faced by MTB during infection is the need to acquire nutrients from host cells. Even though carbohydrate and lipid metabolism genes have been shown to be transcribed during infection (Talaat \textit{et al.}, 2007), the types of nutrients available to MTB within the host remain unclear. However, emerging evidence has implicated lipids as the dominant carbon source.
1.4.1 Lipids as the dominant carbon source

Early studies by Segal and Bloch (1956) demonstrated that bacteria isolated from mouse lung responded to substrates containing fatty acids, whereas broth-grown bacilli responded to a variety of carbon sources. This was the first indication that MTB obtained its energy from the metabolism of fatty acids as opposed to carbohydrates during infection. Subsequently, Wayne et al. (Wayne, 1977; Wayne and Hayes, 1996) developed the in vitro model of latency based on the idea that MTB adapts to the oxygen-deficient environment within the granuloma. During the metabolic shift that occurs as a result of gradual oxygen depletion, enzymes involved in the glyoxylate shunt are up-regulated (Wayne and Lin, 1982). The glyoxylate shunt is an anaplerotic pathway that consists of two enzymes, isocitrate lyases (ICL) and a malate synthase (GlcB), which facilitate the conversion of fatty acids into carbohydrates by bypassing the two oxidative steps of the TCA cycle (Wayne, 1994). Furthermore, a complex repertoire of more than 250 genes involved in lipid metabolism is present in the MTB genome (Cole et al., 1998). Genes involved in lipid metabolism, together with those encoding glyoxylate cycle enzymes, are up-regulated during infection of macrophages (Schnappinger et al., 2003) and mice (Timm et al., 2003; Dubnau et al., 2005).

Fatty acids can be catabolized via the glyoxylate shunt and the β-oxidation cycle; however, the latter is the dominant pathway utilized in bacteria (McKinney et al., 2000; Muñoz Elías and McKinney, 2006; Marrero et al., 2010). Catabolism of fatty acids and lipids via β-oxidation generates acetyl-CoA that is shunted into the glyoxylate cycle to prevent carbon loss via the TCA cycle; this produces succinate which can be converted into glucose (Manabe and Bishai, 2000; Bentrup and Russell, 2001; Muñoz Elías and McKinney, 2006). Carbon flux into the glyoxylate cycle is mediated by ICL, which catalyzes the conversion of isocitrate to succinate
and glyoxylate and, in MTB Erdman, is encoded by two genes, *icl1* and *icl2*. In contrast, H37Rv has a single ICL, encoded by *icl1* (Muñoz-Elías and McKinney, 2005). When both isoforms, ICL1 and ICL2 were absent, the Erdman strain of MTB was able to grow on carbohydrates but incapable of growth on fatty acids or in macrophages, and was rapidly eliminated from the lungs of infected mice (Muñoz-Elías and McKinney, 2005). These data suggest that the glyoxylate shunt is essential for survival during murine chronic infection. In addition, oxaloacetate (OAA) from the glyxolate cycle can be fed into gluconeogenesis, where it is converted to phosphoenolpyruvate (PEP) by the *pckA*-encoded phosphoenolpyruvate carboxykinase (PEPCK). A *pckA* deletion mutant of MTB was impaired for growth on fatty acids but not glucose *in vitro* (Marrero *et al*., 2010), indicating that this enzyme does not function in the reverse direction in MTB; that is, the conversion of PEP to OAA (Marrero *et al*., 2010). PEPCK was also shown to be required for growth and survival in macrophages and mice (Marrero *et al*., 2010), and was induced by fatty acids *in vitro* (Schnappinger *et al*., 2003; Dubnau *et al*., 2005), and during growth of MTB in mice (Timm *et al*., 2003). Together these data strengthen the idea that MTB subsists on fatty acids *in vivo*.

1.4.2 Sources of lipids during infection

The ability of MTB to shift its metabolism to utilize lipids as a carbon source appears to be a key strategy for persistence and survival during the chronic phase of infection. The types of lipids available to MTB within the varied microenvironments in the host remain undefined; however, possible sources of lipids include lung surfactant internalized by alveolar macrophages that is rich in long chain fatty acids (Muñoz Elías and McKinney, 2006), hydrolysis of lipids from the phagosomal membrane (Kondo *et al*., 1985; Muñoz Elías *et al*., 2006), macrophage triacylglycerol...
(TAG) stores (Mason et al., 1972), or accumulated internal MTB TAG stores (Daniel et al., 2004).

Emerging evidence suggests that cholesterol, a major sterol of the plasma membrane, is abundantly available as an alternate carbon source within the host. Studies have demonstrated that accumulation of cholesterol is necessary at the site mycobacterial entry (Gatfield and Pieters, 2000) and depletion inhibits cellular uptake into phagocytic cells (Nguyen and Pieters, 2005), as well as stimulates phagosomal maturation leading to decreased survival of bacilli (De Chastellier and Thilo, 2006). Pathogenic mycobacteria have been shown to induce the formation of foamy macrophages filled with lipid bodies which are known to accumulate in human and mouse granulomas (Cardona et al., 2000; Peyron et al., 2008; Russell et al., 2009). It was also demonstrated by electron microscopy that bacilli are positioned in proximity to lipid bodies within foamy macrophages and these are hypothesized to serve as a nutrient-rich reservoir during persistence (Peyron et al., 2008). Furthermore, biochemical analysis of the lipid species within the caseum revealed an abundance of cholesterol ester, cholesterol and triglycerol (Kim et al., 2010).

1.4.2.1 Evidence for cholesterol utilization

Although several other lines of evidence have implicated cholesterol as a carbon source for MTB, an important study by Pandey and Sassetti (2008) provided the first genetic evidence that this pathogen mobilizes and catabolizes cholesterol from the host. With the aid of metabolic labelling studies, these authors reported that MTB can catabolize different portions of the cholesterol molecule for energy generation and the synthesis of the virulence factor, phthiocerol dimycocerosate (PDIM) (Pandey and Sassetti,
Deletion of the \textit{mec}4-encoded cholesterol transporter (Mohn \textit{et al.}, 2008) resulted in poor growth in media containing cholesterol as a sole carbon source. More interestingly, a MTB mutant lacking \textit{mcec}4 displayed impaired survival during the chronic phase of infection in mice, and in interferon-gamma activated macrophages (Pandey and Sassetti, 2008). Similar to the phenotype observed for the \textit{∆icl1} mutant of MTB Erdman (McKinney \textit{et al.}, 2000), loss of \textit{mce}4 function had no effect on growth in non-activated macrophages or during the acute phase of murine infection. These data suggest that cholesterol is an important nutrient source during chronic infection when interferon-gamma macrophages are activated. However, it remains unclear what constitutes the major nutrient source for MTB during earlier stages of infection.

Subsequently, a study by Chang and colleagues (2009) found that deletion of the intracellular growth operon (\textit{igr}) inhibited growth of MTB in cholesterol-containing media, whereas growth on short- and long- chain fatty acids was unaffected. Elimination of the Mce4 transporter in the \textit{∆igr} mutant partially reversed this cholesterol-dependent phenotype (Chang \textit{et al.}, 2009). Moreover, the \textit{∆igr} mutant displayed attenuation in mice during the early phase of infection, possibly due to accumulation of toxic intermediates produced by cholesterol catabolism. Conversely, disruption of the cholesterol import system (\textit{mce}4) in the \textit{∆igr} mutant resulted in attenuation during late phase murine infection, reinforcing the importance of cholesterol during infection. Recently, the \textit{igr} operon was shown to be necessary for the degradation of the 2’-propanoate side chain of cholesterol metabolites by MTB (Thomas \textit{et al.}, 2011). These results are consistent with the idea that, in mice (Miner \textit{et al.}, 2009) and guinea pigs (Yang \textit{et al.}, 2011), cholesterol is available throughout infection and only becomes limiting during the chronic phase – after the onset of adaptive immunity has altered the environment. Importantly, infection of guinea pigs with an MTB strain deficient in an iron-dependent extradiol
dioxygenase \((hsaC)\), a key enzyme in cholesterol catabolism (Van der Geize et al., 2007), resulted in slower dissemination, decreased persistence, and reduced pathology in the lungs (Yam et al., 2009). Together, these studies confirm that cholesterol utilization by MTB is important in chronic disease as well as earlier in infection and suggest that this sterol is likely to contribute to the pathogen’s ability to disseminate in the host. This conclusion is supported by the recent identification of an expanded set of genes which are predicted to be essential for cholesterol-dependent growth of MTB (Griffin et al., 2011).

1.4.3 Toxicity associated with lipid metabolism

Beta-oxidation of even-chain fatty acids yields acetyl-CoA, whilst β-oxidation of cholesterol, odd- and branched- chain fatty acids produces propionyl-CoA in addition to acetyl-CoA (Muñoz Elías et al., 2006). Propionyl-CoA can be oxidized to pyruvate via the methylcitrate cycle, whose specific enzymes, methylcitrate synthase and methylocitrate dehydrogenase, are encoded by \(prpC\) and \(prpD\), respectively. Muñoz-Elías and McKinney (2006) observed that a MTB \(prpDC\) mutant was unable to grow on odd-chain fatty acids such as propionate and valerate, but was able to grow on even chain fatty acids. Together with their previous observation that a \(Δicl1 Δicl2\) double mutant of MTB mutant was unable to grow on either odd- or even- chain fatty acids (Muñoz-Elías and McKinney, 2005), this led the authors to conclude that ICL1 could function as methylisocitrate lyase. Together these results also demonstrated the essentiality of the methylcitrate cycle in MTB in detoxifying propionate, and reinforced the notion that, although propionate is a high-energy metabolite, its accumulation is toxic to the bacterial cell. For this reason, it is likely that propionate metabolism fulfils an essential function in
preventing the toxic build-up of propionyl-CoA within the cell. It was surprising, therefore, that a prpDC mutant of MTB Erdman showed no defect in growth or persistence in a mouse model of infection (Muñoz Elías and McKinney, 2006), in contrast to a Δicl1 mutant, which showed a persistence defect (McKinney et al., 2000) and a Δicl1 Δicl2 double mutant, which showed a dramatic phenotype, being unable even to establish an infection (Muñoz-Elías and McKinney, 2005). Besides confirming the critical role of ICL in disease pathogenesis, these findings suggested that propionyl-CoA detoxification in vivo could occur via a route(s) other than through the methylcitrate cycle (Muñoz-Elías and McKinney, 2005). That interpretation has gained greater credence with the recent demonstration that survival of an MTB prpDC mutant in a macrophage model of infection is enhanced by the addition of vitamin B₁₂ to the growth medium (Griffin et al., 2012). In particular, this result suggests that the B₁₂-dependent methylmalonyl pathway might function to alleviate propionate stress in vivo, which in turn implies that MTB might be able to synthesize - or access - vitamin B₁₂ during host infection.

The first step in the methylmalonyl pathway involves the conversion of propionyl-CoA to (S)-methylmalonyl-CoA via the propionyl-CoA carboxylase (PCC) enzyme. This provides intermediates (methylmalonyl-CoA) for the biosynthesis of methyl-branched lipids such as PDIM and sulfolipid (SL)-1 (Yang et al., 2009). These surface exposed lipids form an integral part of MTB’s cell wall as they provide protection against host-induced damage, as well as modulate the immune response (Reed et al., 2004; Rousseau et al., 2004), and so have been implicated in virulence. Recently, it was demonstrated that MTB grown on propionate or odd-chain fatty acids displayed increased mass and abundance of PDIM and SL-1; however, no increase was observed when grown on short- and even-chain fatty acids (Jain et al., 2007). In fact, growth on propionate or odd-chain fatty acids resulted in the extension of PDIM mycocerosic acids
by 3-carbons, which in turn suggests the direct incorporation of the propionyl-CoA intermediate methylmalonyl-CoA. Interestingly, PDIM isolated from wild-type MTB in mouse lungs also displayed increased mass and lengthened mycocerosic acids. This result might indicate comparable propionyl-CoA build up as a result of β-oxidation of host lipids that increased the flux of methylmalonyl-CoA through lipid biosynthetic pathways which in turn increased virulence lipid biosynthesis.

In another recent study, it was reported that MTB responds to redox fluctuations by selectively incorporating C3 compounds such as propionate or propionyl-CoA into cell wall lipids like polyacyltrehaloses (PAT), PDIM, SL-1 and the storage lipid TAG under the control of the DosR/S/T dormancy regulon (Singh et al., 2009). This C3 compound incorporation was observed in murine macrophage infections and was shown to be controlled by the transcriptional regulator WhiB3, which operates via a thiol-disulphide redox switch. Supporting the role of WhiB3 as a regulator of mycobacterial lipids, microarray data indicate up-regulation of WhiB3 together with genes responsible for the production of SL-1, PAT, DAT and TAG in macrophages (Rohde et al., 2007). A MTB WhiB3 deletion mutant was able to grow even on toxic concentrations of propionate; in addition, this mutant was associated with increased levels of PDIM during growth in liquid (7H9/OADC) culture and within macrophages. Therefore, the possibility remains that MTB might differentially incorporate C3 compounds into cell wall lipids as a means of detoxification.

In addition to detoxifying excess intracellular propionate into cell wall lipids via the first steps of the methylmalonyl pathway, the last step of this pathway can be utilized to catabolise propionyl-CoA for energy generation. This step entails the isomerization of (R)-methylmalonyl-CoA to (S)-methylmalonyl-CoA, which is converted to succinyl-CoA (Savvi et al., 2008) in a reaction catalyzed by the mutAB-encoded methylmalonyl-CoA
mutase, a B$_{12}$-dependent enzyme (Savvi et al., 2008). The succinyl-CoA can be fed into the TCA or glyoxylate cycles. Previously, Muñoz-Elías and McKinney (2005) demonstrated that treatment of MTB with the ICL inhibitor, 3-nitropropionate (3-NP), resulted in growth inhibition in media containing fatty acids, and that this phenocopied the Δicl1 Δicl2 deletion mutant. However, in work done in the MMRU, Savvi et al. (2008) subsequently demonstrated that the 3-NP-mediated growth inhibition of MTB on propionate could be alleviated by enabling the methylmalonyl pathway through addition of vitamin B$_{12}$ to the growth medium (Savvi et al., 2008). This result demonstrated the functionality of the methylmalonyl pathway in vitro and so identified a third option available to MTB for the detoxification of propionate. It also reinforced the idea that the dispensability of the methylcitrate pathway observed in vivo (Muñoz Elías et al., 2006) could result from the functioning of the methylmalonyl pathway, and so confirmed the potential relevance of vitamin B$_{12}$ to mycobacterial pathogenesis. The extent to which vitamin B$_{12}$ availability dictates the functioning of this B$_{12}$-dependent pathway remains unclear; however, it does raise important questions pertaining to MTB’s ability to access and/or synthesize the cofactor in vivo. Previous studies have implicated other vitamins including vitamin B$_{5}$ (Sambandamurthy et al., 2002), and vitamin B$_{6}$ (Dick et al., 2010) in MTB pathogenesis. However, the metabolically demanding biosynthesis of a cofactor of the structural complexity of vitamin B$_{12}$ in MTB remains poorly explored by comparison.
1.5 Vitamin B$_{12}$

Vitamin B$_{12}$, also known as cobalamin (Cbl), was first discovered when patients suffering from pernicious anaemia showed clinical as well as haematological improvements when they consumed a diet of raw liver (Whipple and Robscheit-Robbins, 1925; Minot and Murphy, 1926). This discovery earned Minot, Murphy and Whipple the Nobel Prize in Physiology and Medicine in 1934. Twenty years later, the anti-pernicious anaemia factor was independently isolated by Rickes et al. (1948) and Smith (1948) as a red crystalline compound from liver, and was named Vitamin B$_{12}$. Owing to its importance for human health, vitamin B$_{12}$ has been extensively studied ever since.

1.5.1 Structure of vitamin B$_{12}$

In 1956, Dorothy Hodgkin and colleagues elucidated the complex, three-dimensional structure of vitamin B$_{12}$ (Hodgkin et al., 1956) and, together with Lenhert, later revealed the structure of the biologically active form of vitamin B$_{12}$, adenosylcobalamin (AdoCbl) (Lenhert and Hodgkin, 1961). This earned Hodgkin the second Nobel Prize for B$_{12}$-related research in 1964, this time in the field of Chemistry. Cbl belongs to the same structurally complex prosthetic group as chlorophyll, heme, siroheme, and coenzyme F$_{430}$, all of which are derived from the common macrocyclic biosynthetic intermediate, uroporphyrinogen III (Raux et al., 1998a; Rodionov et al., 2003). Structurally, Cbl is composed of a cobalt-centred corrin ring which is attached via an aminopropanol linker to a lower α-ligand - 5,6-dimethylbenzamidazole (DMB) - and to an upper β-ligand comprising a methyl (methylcobalamin; MeCbl), adenosyl group (AdoCbl), or hydroxyl group (OHCbl) (Figure 1.1) (Raux et al., 1999). Naturally occurring analogues of vitamin B$_{12}$ have either an adenosyl or methyl...
group occupying the β-ligand: the adenosyl group is found in analogues involved in rearrangement or reductase reactions, while the methyl group is present in the cofactor that is involved in B₁₂-dependent methionine synthesis (Marsh, 1999). Vitamin B₁₂, or cyanocobalamin (CNCbl), is the industrially produced form that has a cyano group occupying the upper ligand as a result of the extraction procedure of the molecule from bacterial cultures (Martens et al., 2002). This form can be converted to either of the biologically active forms, AdoCbl or MeCbl (Martens et al., 2002). Vitamin B₁₂ and its analogues are often termed corrinoids and therefore, the abbreviation B₁₂, will be utilized to refer to all forms of Cbl throughout this thesis.
cobyric acid
Amino-propanol
Nucleotide loop
DMB
R-group
Adenine
R-group:
5'-deoxyadenosine
adenosylcobalamin
CN – Cyano
cyanocobalamin
OH – Hydroxy
hyroxocobalamin
CH3 – Methyl
methylcobalamin
5'-deoxyadenosine
adenosylcobalamin

R-group:
Figure 1.1: Structure of vitamin B$_{12}$ and derivatives. Vitamin B$_{12}$ (CNCbl) comprises a central corrin ring, a lower dimethylbenzimidazole (DMB) ligand, and an upper ligand containing a cyano group. CNCbl is the industrially produced form; the forms that occur in nature are methylcobalamin (MeCbl), hydroxocobalamin and adenosylcobalamin (AdoCbl; coenzyme B$_{12}$), in which the cyano group is replaced as upper ligand (Martens et al., 2002; Warren et al., 2002).

1.6 Vitamin B$_{12}$ biosynthesis

Vitamin B$_{12}$ is an essential nutrient required by various forms of life; however, the *de novo* biosynthesis of this molecule is restricted to a select group of bacterial and archaeal species (Martens et al., 2002; Rodionov et al., 2003). It has been proposed by Roth and colleagues (1996) that the B$_{12}$ biosynthetic pathway originally evolved to allow anaerobic fermentation of small molecules in the absence of an electron acceptor and, as the pathway continued to evolve, siroheme (allowing use of inorganic electron acceptors), chlorophyll (oxygen production), and heme (aerobic respiration) were produced. As the atmospheric levels of oxygen increased, many organisms lost fermentative functions and metabolic dependency on B$_{12}$ decreased (Roth et al., 1996). However, both aerobic and anaerobic pathways for vitamin B$_{12}$ biosynthesis have been identified in bacteria.

A diverse set of enzymatic reactions involving the products of more than 30 genes (denoted *cob* and *cbi* genes) is required for *de novo* biosynthesis of B$_{12}$ (Roth et al., 1993). Previously, AdoCbl biosynthesis was divided into three discrete steps: *CobI*, which entails the conversion of uroporphyrinogen III to the AdoCbl intermediate cobinamide; *CobII*, which involves the synthesis of DMB from probable flavin precursors; and *CobIII*, in which the covalent joining of cobinamide, DMB, and a phosphoribosyl group completes synthesis of the cofactor (Roth et al., 1993; Lawrence
and Roth, 1996). However, this schematic was rejected when distinct routes for B$_{12}$ biosynthesis were distinguished: an oxygen-dependent pathway characterized in *Pseudomonas denitrificans* (cob genes) (Stamford, 1994) and an oxygen-independent pathway characterized in *Salmonella typhimurium* (cbi genes) (Roth et al., 1993). Instead, the identification of these pathways resulted in the reclassification of the pathway to comprise two major parts (Rodionov et al., 2003). The first step is an energetically demanding process that involves corrin ring synthesis, and differs in the aerobic and anaerobic pathways in terms of cobalt insertion - that is, the two pathways diverge at the precorrin-2 step and merge again at adenosylcobyric acid (Raux et al., 1999; Warren et al., 2002). In oxygen-dependent synthesis, precorrin-2 is methylated to precorrin-3A; in contrast, in oxygen-independent synthesis, precorrin-2 is chelated with cobalt to give cobalt-precorrin-2 (Raux et al., 1999). Therefore, these two pathways are quite distinct in that the oxygen-independent pathway begins with the insertion of cobalt, while in the oxygen-dependent pathway, insertion of cobalt occurs much later - after nine further reactions. In addition, the cobalt-chelatases utilized in these pathways differ: in the oxygen-dependent pathway, CobNST requires ATP, whereas the oxygen-independent chelatase from *S. typhimurium*, CbiK, does not require any high-energy metabolites (Raux et al., 1997; Rodionov et al., 2003). The second part of the synthetic pathway is common to both aerobic and anaerobic routes, and comprises adenosylation, attachment of aminopropanol, and assembly of the nucleotide loop (Warren et al., 2002).

Besides differing in the timing of cobalt insertion and the requirement for molecular oxygen, the aerobic and anaerobic synthetic pathways can be distinguished at the genetic level according to the presence or absence of hallmark genes. For example, aerobic ring contraction requires two enzymes, CobG and CobJ, the former requiring molecular oxygen for
activity. From comparative genetic studies, there seems to be no homologue of this monoxygenase in facultative anaerobes such as *S. typhimurium* (Roth et al., 1993) and *Propionibacterium shermanii* (Santander et al., 1997). Instead, organisms which synthesize B$_{12}$ anaerobically contain two other indispensable enzymes (Raux et al., 1996; Raux et al., 1998b): CbiD, which is involved in C-1 methylation (Roessner et al., 2005), and CbiG, a cobalt-precorrin-5A hydrolase (Kajiwara et al., 2006). The anaerobic CbiD has been suggested to be a homologue of the aerobic methyltransferase CobF (Roper et al., 2000). Additionally, no homologues of *P. denitrificans* genes *cobNST* - which are required for late cobalt insertion - or *cobF, cobE* and *cobW*, were found in *S. typhimurium* (Raux et al., 1996; Warren et al., 2002). Conversely, *S. typhimurium cbiK*, which is required for cobalt chelation of precorrin-2, is not found in *P. denitrificans* (Raux et al., 1997).

Although there appear to be certain hallmark features of the aerobic and anaerobic routes in terms of the presence or absence of specific genes, some bacteria have been shown to synthesize B$_{12}$ under both conditions. Lawrence and Roth (1996) examined the B$_{12}$ biosynthetic capability of enteric bacteria and found that most organisms belonging to this family are able to synthesize B$_{12}$ both aerobically and anaerobically. However, *S. typhimurium* seems to be an exception in that it is only able to synthesize B$_{12}$ de novo under strict anaerobic conditions (Jeter et al., 1984). Perhaps to compensate, this bacterium is able to take up incomplete corrinoids and the α-ligand DMB aerobically to synthesize B$_{12}$ (Escalante-Semerena et al., 1990). Uptake of only cobinamide, an incomplete corrinoid composed of the corrin ring plus aminopropanol side chain, generates only 100 molecules of B$_{12}$, which is apparently insufficient to support growth on ethanolamine; however, uptake of both cobinamide plus DMB markedly increases B$_{12}$ production (Andersson and Roth, 1989; Carkeet et al., 2006). Another enteric bacterium, *E. coli*, lacks the bulk of the genes
required for *de novo* B₁₂ biosynthesis (Lawrence and Roth, 1996). This bacterium appears to possess remnants of the B₁₂ pathway that allow it to synthesize a complete molecule by attaching upper and lower ligands to incomplete corrinoids (Lawrence and Roth, 1995). Therefore, in these organisms, an incomplete set of biosynthetic genes is compensated for by uptake utilizing an elaborate transport system.

1.6.1 Synthesis of the lower ligand 5,6-dimethylbenzimidazole (DMB)

Until recently (Gray and Escalante-Semerena, 2007; Taga *et al.*, 2007), the synthesis of the α-axial ligand, DMB, was the one of the steps of the B₁₂ biosynthetic pathway that remained a mystery. Previous studies demonstrated anaerobic synthesis of DMB in *Eubacterium limosum* from erythrose, glycine, formate, glutamine and methionine (Warren *et al.*, 2002); however, enzymes catalysing these reactions have not yet been identified (Escalante-Semerena, 2007; Taga and Walker, 2008). As with corrin ring synthesis, an aerobic DMB pathway was also elucidated which showed that DMB was derived from flavin mononucleotide (FMN) (Renz, 1970; Höllriegl *et al.*, 1982; Keck *et al.*, 1998). Recent studies on the aerobic pathway in *Rhodospirillum rubrum* and *Sinorhizobium meliloti* found that the *bluB* gene was necessary for the formation of DMB from FMN in an oxygen dependent manner (Campbell *et al.*, 2006; Gray and Escalante-Semerena, 2007; Taga *et al.*, 2007). This was further confirmed in *S. meliloti* by introducing point mutations in two key residues commonly observed in *bluB* homologues (Taga *et al.*, 2007). Mutation of aspartate at position 32 and the glycine at position 167 in the *S. meliloti* BluB, either individually or in combination, abrogated DMB synthesis. Interestingly, *Salmonella enterica* synthesizes the corrin ring anaerobically and derives DMB aerobically from FMN, yet no ortholog of *bluB* appears to exist in its
genome (Keck et al., 1998; Anderson et al., 2008). Bioinformatic analyses have revealed the Rv0306 gene in MTB as a putative homologue of S. meliloti bluB (Rodionov et al., 2003; Taga et al., 2007). A crucial similarity between S. meliloti BluB and Rv0306 is the conservation of the two key residues described above.

1.6.2 Mycobacterial B12 biosynthesis

The genome sequence of the commonly utilized laboratory strain, MTB H37Rv, was published in 1998 (Cole et al., 1998). Subsequent comparative bioinformatic analysis of genes involved in B12 biosynthesis has elucidated putative homologues in MTB (Figure 1.2), revealing that the organism possesses a near-complete B12 biosynthetic pathway (Rodionov et al., 2003; Dawes, unpublished). Key features of the predicted pathway are suggestive of aerobic B12 biosynthesis in MTB: the putative mono-oxygenase, CobG, which contains an iron-sulphur centre and is responsible for converting precorrin-3A into precorrin-3B, is of the type that requires molecular oxygen for activity (Debussche et al., 1993; Spencer et al., 1993a). In addition, MTB possesses an aerobic-type CobN. Moreover, it is predicted that cobalt insertion occurs late in the MTB B12 biosynthetic pathway, and the MTB CobK and CobJ orthologues show conservation of residues commonly found in aerobic bacteria (Shearer et al., 1999; Warren et al., 2002). Interestingly, however, MTB appears to possess some features that are characteristic of anaerobic biosynthesis; for example, Rv0259c exhibits homology to CbiX, a cobalt chelatase (Raux et al., 1998b) that was identified in Bacillus megaterium and shown to chelate Co2+ into sirohydrochlorin - an intermediate of heme biosynthesis that can either be utilized in the synthesis of siroheme or AdoCbl (Leech et al., 2002; Raux et al., 2003). The functionality of this homologue is yet to be proven in MTB. Pseudomonas aeruginosa also possesses hallmarks of
both oxygen-dependent (CobG, CobN) and -independent (CbiD, CbiG) pathways, and is able to synthesize B_{12} aerobically and anaerobically (Raux et al., 2000). Therefore, the presence of these enzymes is consistent with the notion that MTB encounters oxygen-limiting environments in vivo to which it must adapt.

Interestingly, other mycobacteria including Mycobacterium smegmatis (MSM), M. bovis and Mycobacterium avium also appear to have retained either all or parts of this pathway (Dawes, unpublished), with B_{12} biosynthetic genes in MSM (Figure 1.2) indicative of aerobic synthesis (Rodionov et al., 2003; Dawes, unpublished). The predicted mycobacterial B_{12} biosynthetic pathways are consistent with results of a study by Karasseva et al. (1977) which used a microbiological assay to infer vitamin B_{12} biosynthesis by mycobacteria including M. bovis, M. phlei and MSM. This is despite the fact that no homologues of CobST - which in P. denitrificans, forms a complex with CobN and is responsible for cobalt insertion (Debussche et al., 1992) - could be identified by homology searches in mycobacterial genomes. Cobalt chelatase activity is only observed in the presence of the two component system (Warren et al., 2002). It is possible that insertion of cobalt in mycobacteria is mediated by CysG which, in S. typhimurium, has been demonstrated to act as both a ferrochelatase for siroheme synthesis and a cobaltochelatase for B_{12} biosynthesis (Fazzio and Roth, 1996). In E. coli, CysG is a multifunctional enzyme whose N-terminus is similar to that of CobA proteins which are responsible for methyltransferase activity, and whose C-terminus provides cobaltochelatase activity (Spencer et al., 1993b; Warren et al., 1994). MTB CysG exhibits homology to the E.coli protein over the entire length of the gene, including the NAD$^+$ binding site in the N-terminus. In MTB and M. bovis, no homologue was found for CobF, which functions as a deacetylase and a methyltransferase in P. denitrificans (Debussche et al., 1993; Min et al., 1993); however this enzyme is present in MSM
(MSMEG_5548) and *M. avium* (MAV_1065). In *M. bovis*, the 5′ region of *cobL* has been deleted in addition to two upstream genes (Brosch *et al.*, 2002), yet this mycobacterium still appears to be able to synthesize B12 (Karasseva *et al.*, 1977). Based on sequence comparisons, the bifunctional activity of CobL is predicted to be in the N- and C-terminal regions, which encode the methyltransferase and decarboxylase activities, respectively (Roth *et al.*, 1993; Raux *et al.*, 2000). In contrast, the equivalent protein in *S. typhimurium* is encoded by two separate genes, *cbiT* and *cbiE* (Raux *et al.*, 2000; Rodionov *et al.*, 2003). Interestingly, *cbiE* shows homology to *cobI* in addition to *cobL* suggesting that *cobI* may be able to substitute for *cobL* in mycobacteria.

1.6.3 Vitamin B12 biosynthesis in MTB

Putative homologues for most of the B12 biosynthetic genes have been identified in MTB. This near-complete B12 biosynthetic pathway appears not to contain homologues of *cobF* and *cobST*. CobF functions as a methyltransferase (Min *et al.*, 1993) and, in MTB, a nonorthologous displacement of CobF is predicted to be encoded by *Rv2067c*, which houses a C-terminal methyltransferase domain (Figure 1.2) and has been designated as metZ (Rodionov *et al.*, 2003). Late-stage cobalt insertion into hydrogenobyrinic-acid a,c-diamide is catalyzed by three subunits: CobN, CobS and CobT (Debussche *et al.*, 1992). CobS and CobT are thought to form a complex that interacts with CobN to generate cob(II)yrinic acid a,c-diamide (Figure 1.2). The cobalt chelatase subunits CobN, CobS and CobT display significant homology to the magnesium chelatase subunits ChlH, ChlI and ChlD that function in bacteriochlorophyll biosynthesis (Gibson *et al.*, 1995; Schubert *et al.*, 1999). Therefore, it is hypothesized (Rodionov *et al.*, 2003) that ChlD is the missing component of the cobaltochelatase complex which, in MTB, is encoded by *Rv2850c*.
and is annotated as a magnesium chelatase (Figure 1.2). Notably, the gene encoding the cob(II)yrinic acid a,c-diamide reductase in the aerobic B$_{12}$ biosynthetic pathway is yet to be identified in any organism. Although a NADH-dependent flavoprotein exhibiting cob(II)yrinic acid a,c-diamide reductase activity was purified in P. denitrificans (Blanche et al., 1992a). In MTB, Rv0306 was predicted to encode the cobalt reductase function (Rodionov et al., 2003). Despite the presence of the near-complete genetic repertoire for vitamin B$_{12}$ biosynthesis, genetic evidence suggests that this pathway is not functional in vitro in MTB (Warner et al., 2007; Savvi et al., 2008). These observations appear to contradict the findings of Karasseva et al. (1977), and so demand further investigation.
Uroporphyrinogen III

Precorrin 2
- cobI (MSMEG3873)
- Precorrin 3A
- cobG
- Precorrin 3B
- cobI (MSMEG3873)
- Precorrin 4
- cobM (MSMEG3877)
- Precorrin 5
- Rv2067c (MSMEG5548)
- Precorrin 6x
- CobO (MSMEG2616)/ Rv2067c

Precorrin 6y
- CobK (MSMEG3875)
- Precorrin 6y
- CobL (MSMEG3878)
- Precorrin 8x
- cobH (MSMEG3872)

Hydrogenobyrinic acid
- cobB (MSMEG2617)
- CobB (MSMEG3864/2615)

Hydrogenobyrinic acid a,c-diamide
- cobN/Rv2850c

Adenosylcobyrinic acid a,c-diamide
- cobQ1/cobQ2 (MSMEG2588/6277)

Adenosylcobyrinic acid
- cobC (MSMEG4310)

L-threonine-3P
- cobC
- aminopropanol-2P

α-ribazole synthesis (CobII)
- cobT/ Rv1151c
- DMB
- NaMN
- α-ribazole-5'-P
- cobS (MSMEG4305)

α-ribazole
- cobO (MSMEG2616)

Cobinamide
- cobO (MSMEG4274)
- cobU

Adenosylcobinamide
- cobO (MSMEG4277)

Methylcobinamide-GDP
- cobO (MSMEG4305)

Adenosylkobalamin synthesis (CobIII)

Cobalamin
Figure 1.2: Predicted pathway for AdoCbl biosynthesis in MTB.

MTB H37Rv gene designations (http://genolist.pasteur.fr/Tuberculist/) are shown together with predicted *Mycobacterium smegmatis* mc²155 (MSM) homologues in green (all MSM gene names have the underscore removed for simplification). The pathway is adapted from Roth *et al.* (1993), Rodionov *et al.* (2003) and S. Dawes (unpublished); putative MSM homologues were identified by BLAST homology search (Altschul *et al.*, 1990) of the preliminary MSM database (http://tigerblast.tigr.org/cmr.blast/) using MTB query sequence.

1.7 Alternate B₁₂ cofactors: Pseudo-B₁₂

A spectrum of B₁₂ analogues exists in nature whose functions are not yet fully understood. They share structural architecture with ‘orthodox’ B₁₂ in the corrin ring with cobalt at the core and the β-axial ligand consisting of 5'-deoxyadenosine, or a methyl group, but with a different α-axial ligand (Figure 1.1). Substituting DMB with phenolic compounds or, in the most common example, the purine nucleobase, adenine, generates an alternate B₁₂ form known as pseudo-B₁₂ (Figure 1.1). First reported in 1952 by Pfiffer and colleagues, pseudo-B₁₂ was isolated from an organism in the bovine rumen and was shown to be an inadequate substitute for vitamin B₁₂ in small mammals and humans (Berman *et al.*, 1956). However, *E. coli* mutants that responded to either methionine or B₁₂ supplementation demonstrated the same response when supplemented with pseudo-B₁₂ (Davis, 1952). This alternate B₁₂ was later identified by UV and visible (UV-Vis) spectroscopy to be the native cofactor of *Clostridium tetannomorphum* (Barker *et al.*, 1958). Subsequently, this alternate form of vitamin B₁₂ was found to be synthesized by a number of microorganisms such as *Propionibacterium shermanii* (Friedmann and Fyfe, 1969), *Clostridium sticklandii* (Stadtman, 1960), and *Lactobacillus reuteri* (Santos *et al.*, 2007).
1.7.1 Role of alternate B_{12} cofactors

More recently, Anderson and colleagues (2008) demonstrated the ability of $S. enterica$ to synthesize – and utilize – pseudo-B_{12}. Specifically, these authors showed that pseudo-B_{12} could be used by all the B_{12}-dependent enzymes of $S. enterica$ raising the possibility that an “alternate” cofactor like pseudo-B_{12} might represent the preferred form under periods of high demand. Significantly, they also demonstrated that biosynthesis of pseudo-B_{12} from “incomplete” corrinoid precursors requires the same set of enzymes (CobT, CobU, CobS, and CobC) involved in the synthesis of “orthodox”, DMB-containing vitamin B_{12}. This result indicated that nucleotide activation and attachment enzymes accommodate a variety of substrates. In addition, their results established that, $S. enterica$ has the capacity to synthesize “complete” corrinoids aerobically by importing an incomplete corrinoid such as cobinamide and adding appropriate α- and β-axial ligands, but is also able to generate B_{12} or pseudo-B_{12} de novo under anaerobic conditions. Subsequently, it was shown that Cyanobacterium synechocystis is able to synthesize pseudo-B_{12} de novo and this cofactor is utilized by the B_{12}-dependent methionine synthase ($methyl$) in this organism (Tanioka et al., 2009). Together, these observations suggest that the formation and utilization of pseudo-B_{12} is a natural physiological process and, further, that environmental conditions (for example, oxygen availability) might dictate the form of the cofactor synthesized (and utilized).

The potential of pseudo-B_{12} to function in “classic” B_{12}-dependent metabolism holds significant implications for MTB pathogenesis as well as the role of “alternate” B_{12} forms in other mycobacterial pathogens. For example, comparative genomic analyses have identified key B_{12} biosynthetic and B_{12}-dependent genes, as well as active pathways for the biosynthesis and scavenging of purines (including adenine) in $M. leprae$.
(Wheeler, 1987; Dawes and Mizrahi, 2001), a pathogenic mycobacterium that has undergone extensive reductive evolution and is thought to approximate a minimal mycobacterial gene set (Cole et al., 2001). These observations raise questions as to what form of B$_{12}$ might be utilized during host infection by MTB and other mycobacterial pathogens.

1.8 Vitamin B$_{12}$-dependent enzymes

Despite the versatility of the cofactor, the actual number of known B$_{12}$-dependent enzymes remains small (Raux et al., 2000). Three classes of B$_{12}$-dependent enzymes are known: the isomerases, the methyltransferases, and the reductive dehalogenases (Banerjee and Ragsdale, 2003). Members of all three classes of B$_{12}$-dependent enzymes are important in microorganisms, as well as in human and animal metabolism; however, B$_{12}$-dependent processes are yet to be identified in plants, fungi and insects (Croft et al., 2005). While mammals are restricted to two B$_{12}$-dependent enzymes - methionine synthase and methylmalonyl-CoA mutase - prokaryotes harbour a variety enzymes requiring B$_{12}$ cofactors (Roth et al., 1996; Banerjee and Ragsdale, 2003; Zhang and Gladyshev, 2009). For example, even though *E. coli* possesses relatively few B$_{12}$ biosynthetic genes, it possesses four B$_{12}$-dependent enzymes: ethanolamine ammonium lyase, epoxyqueuosine reductase, methylmalonyl-CoA mutase and a B$_{12}$-dependent methionine synthase (Lawrence and Roth, 1996).
1.8.1 \(\text{B}_{12} \)-dependent enzymes in MTB

The MTB genome contains three enzymes which require vitamin \(\text{B}_{12} \) derived cofactors for activity. These enzymes are predicted to participate in different aspects of cellular metabolism. The first, a methylmalonyl-CoA mutase encoded by \textit{mutAB} (Rainwater and Kolattukudy, 1985; Savvi \textit{et al.}, 2008), serves to catalyze the conversion of (\(R \))-methylmalonyl-CoA – generated from \(\beta \)-oxidation of fatty acids – to succinyl-CoA. Intermediates from this pathway contribute to integral cell wall lipids which are thought to play a major role in survival of the bacterium in hostile \textit{in vivo} environments. As described above, this pathway could also potentially present another route for propionyl-CoA detoxification, provided that sufficient \(\text{B}_{12} \) is available to satisfy the requirements of the enzyme. In humans, methylmalonyl-CoA mutase is required for the degradation of odd-chain fatty acids and certain branched-chain amino acids (Ledley, 1990). Deficiency of the enzyme often results in fatal methylmalonic acidemia as a result of the accumulation of propionyl-CoA and methylmalonyl-CoA (Allen \textit{et al.}, 1993; Qureshi \textit{et al.}, 1994).

The second enzyme in MTB that requires a vitamin \(\text{B}_{12} \)-derived cofactor is the \(\text{B}_{12} \)-dependent methionine synthase, encoded by \textit{methH} (Warner \textit{et al.}, 2007). This enzyme has been shown to be functional in certain strains of MTB and comprises four functional units: an N-terminal homocysteine-binding domain, methyltetrahydrofolate-binding domain, Cbl-binding domain and C-terminal S-adenosyl-L-methionine (SAM)-binding domain (Goulding \textit{et al.}, 1997; Warner \textit{et al.}, 2007). Interestingly, MetH in CDC1551 is truncated by 398 amino acids at the C-terminus, partially disrupting the Cbl-binding domain and completely eliminating the SAM-binding domain which renders the enzyme non-functional and the clinical isolate a natural \textit{methH} mutant (Warner \textit{et al.}, 2007). MetH catalyzes the transfer of a methyl group from N\(^5\)-methyl-tetrahydrofolate to the thiolate
of homocysteine, thereby generating the essential amino acid, methionine (Banerjee and Matthews, 1990). The same reaction is also catalyzed by MetE a B₁₂-independent methionine synthase that utilizes a different catalytic mechanism (Gonzalez et al., 1992; Matthews et al., 2003; Pejchal and Ludwig, 2004). Humans encode only the B₁₂-dependent enzyme, while organisms that are unable to transport or synthesize the cofactor, such as yeasts, fungi, and plants, encode only the B₁₂-independent enzyme (Hondorp and Matthews, 2004). However, many bacterial species that do not synthesize B₁₂ de novo and some that synthesize B₁₂ exclusively under anaerobic conditions (e.g. S. typhimurium), encode both methionine synthase enzymes (Pejchal and Ludwig, 2004). In E. coli, these enzymes are differentially expressed; that is, MetH is only expressed in the presence of B₁₂ which also serves to repress MetE while, in the absence of B₁₂, MetE is the sole methionine synthase that is expressed (Greene, 1996). In humans, inhibition of methionine synthase results in the development of megaloblastic anaemia (Banerjee and Matthews, 1990; Allen et al., 1993).

The last of the three vitamin B₁₂-dependent enzymes in MTB is a class II ribonucleotide reductase (RNR), encoded by nrdZ (Dawes et al., 2003). Ribonucleotide reductases are responsible for converting the pool of ribonucleosides to deoxyribonucleosides and therefore play an essential role in DNA repair and replication (Sjöberg and Sahlin, 2001). There are three classes of NRNs: the first can be subdivided into class Ia, Ib and Ic and require oxygen to generate radicals for catalysis; the second class (including NrdZ) does not require oxygen but is dependent on AdoCbl as a cofactor for radical generation; while the third class contains anaerobic enzymes that are inactivated by oxygen and generate a glycyl radical from S-adenosylmethionine and an iron-sulfur cluster (Jordan and Reichard, 1998; Högbom et al., 2004; Nordlund and Reichard, 2006). MTB possesses a class Ib RNR which comprises nrdE-and nrdF2-encoded
subunits and has been shown to be essential under \textit{in vitro} conditions (Dawes \textit{et al.}, 2003). Interestingly, the MTB genome also contains two other putative class Ib RNR small subunits NrdF1 and NrdB, but these are dispensable for growth \textit{in vivo} and \textit{in vitro} under various stresses (Mowa \textit{et al.}, 2009). The class II RNR is encoded by \textit{nrdZ} which is part of the DosR/DevR regulon (Dawes \textit{et al.}, 2003; Voskuil \textit{et al.}, 2004b). In a mouse model of TB infection, a \(\Delta \textit{nrdZ} \) mutant displayed no \textit{in vivo} growth phenotype, suggesting that the putative class II RNR does not play a role during infection, at least in the murine model (Dawes \textit{et al.}, 2003).

Superficially, none of the \textit{B}12-dependent functions in MTB appears to justify \textit{de novo} synthesis of the cofactor. At least in the case of NrdZ and MetH, corresponding \textit{B}12-independent enzymes are predicted to catalyze similar functions: that is, the MTB genome encodes a class Ib RNR encoded by \textit{nrdE} and \textit{nrdF2} (Dawes \textit{et al.}, 2003) and a \textit{B}12-independent methionine synthase encoded by \textit{metE} (Warner \textit{et al.}, 2007). However, it has been shown that, in \textit{E. coli}, the reaction catalyzed by vitamin \textit{B}12-dependent MetH is 100-fold faster than the reaction catalyzed by the vitamin \textit{B}12-independent version, MetE (Greene, 1996). Furthermore, the \textit{B}12-independent enzymes, NrdZ and MetH, have been shown to be non-essential for growth of MTB \textit{in vitro} (Dawes \textit{et al.}, 2003; Warner \textit{et al.}, 2007). In the case of MutAB, dispensability of this enzyme is suggested by the alternate detoxification mechanisms of propionyl-CoA that exist in MTB (as discussed in section 1.4.3). These results are intriguing since they suggest redundancy of all three \textit{B}12-dependent enzymes; however, it is possible that enzyme multiplicity signals the importance of the different pathways to the survival of the bacterium. That is, differential enzyme utilization might be demanded of MTB by the heterogeneous environments encountered during colonization of the human host (Warner and Mizrahi, 2006).
1.9 Bacterial B₁₂ regulation

Vitamin B₁₂ is known to repress the expression of genes required for its own biosynthesis and transport (Vitreschak et al., 2003). For example, the full *cob* operon that encodes the B₁₂ biosynthetic genes of *S. typhimurium*, and the *btuB* genes in *E. coli* and *S. typhimurium* which encode the B₁₂ outer membrane transporter, are all repressed by exogenous B₁₂ via a post-translational regulatory mechanism (Lundrigan et al., 1991; Richter-Dahlfors and Andersson, 1992; Vitreschak et al., 2003). In addition, in bacteria that possess both B₁₂-dependent and B₁₂-independent enzymes, activity of the B₁₂-independent enzyme is often subject to regulation by B₁₂ (Vitreschak et al., 2003). Regulation occurs through the activity of B₁₂ riboswitches - mRNA structural elements (Vitreschak et al., 2003) that serve as ligand-responsive genetic controls to modulate the expression of certain genes in response to changing concentrations of metabolites (Nahvi et al., 2004). Typically, riboswitches are embedded within the 5’-untranslated region of the mRNA sequence and are composed of two functionally distinct domains (Nahvi et al., 2002; Santillán and Mackey, 2005). The aptamer domain provides a ligand binding pocket that binds the target metabolite with high selectivity (Mandal and Breaker, 2004). The other domain is an expression platform which is usually located downstream of the aptamer domain and controls the expression of adjacent genes or operon by harnessing allosteric changes in the RNA structure brought about by the aptamer-metabolite conformation (Nahvi et al., 2002; Barrick and Breaker, 2007). Vitamin B₁₂-sensing riboswitches are among the largest, with aptamer domains of about 200 nucleotides (nt) to accommodate this large metabolite (Gruber et al., 2011). The first direct evidence of riboswitches as regulatory elements was obtained utilizing a technique called in-line probing (Nahvi et al., 2002), which takes advantage of the spontaneous degradation of RNA due to internal transesterifications (Regulski and Breaker, 2008a).
Nahvi and colleagues (2002) demonstrated that the *E. coli btuB* mRNA leader sequence can bind directly to AdoCbl, resulting in conformational changes in the secondary and tertiary structure of the RNA. The possible mechanism of regulation involves the formation of two alternate RNA structures, repressing and anti-pressing, in the presence or absence of B$_{12}$ respectively (Nahvi *et al.*, 2002).

In a recent study, Gallo *et al.* (2008) used in-line probing to demonstrate the interaction of the *E. coli btuB* aptamer with various derivatives of B$_{12}$. The 202 nt riboswitch is situated in the 5′-UTR of the *btuB* gene which encodes an outer membrane protein used for transport of B$_{12}$ derivatives. The riboswitch underwent conformational change upon binding to AdoCbl, CNCbl, adenosyl factor A, and adenosyl-cobinamide (AdoCbi) provided that the ligand concentrations were high enough. This observation suggested that rather than the α- or β- ligands of the B$_{12}$ molecule, the corrin ring was responsible for triggering the structural change of the aptamer domain (Gallo *et al.*, 2008).

The MTB genome contains two putative B$_{12}$ riboswitch motifs which are located immediately upstream of the *metE* and *PPE2* genes, respectively (Rodionov *et al.*, 2003; Vitreschak *et al.*, 2003). The riboswitch upstream of *metE* has been shown to regulate transcription of the B$_{12}$-independent methionine synthase (*metE*) in response to increased B$_{12}$ levels (Warner *et al.*, 2007). Importantly, this study, as well as the related work by Savvi *et al.* (2008) revealed that MTB does not produce B$_{12}$ under standard conditions in vitro. In addition, these publications also provided the first direct evidence of vitamin B$_{12}$ transport in MTB (Warner *et al.*, 2007).
1.10 B$_{12}$ transport in bacteria

Owing to its large size, B$_{12}$ is unable to pass through the outer membrane porins (Nikaido, 1994) and, therefore, is actively transported across the outer and cytoplasmic membranes with the aid of highly effective and elaborate B$_{12}$ uptake systems. The only known transport systems for B$_{12}$ in bacteria are the *btuBFCD* systems in Gram-negative bacteria and the *btuFCD* system in Gram-positive bacteria (Vitreschak *et al.*, 2003). In enteric bacteria including *E. coli*, vitamin B$_{12}$, cobinamide, and other corrinoids are actively transported using the TonB-dependent outer member receptor BtuB which forms a complex with the ABC transport system BtuFCD (Cadieux *et al.*, 2002; Cadieux *et al.*, 2003). BtuFCD belongs to a large superfamily involved in the uptake of iron, siderophores, and heme (Zhang and Gladyshev, 2009). Corrinoids present in femtomolar (fM) concentrations in the environment (Bassford Jr and Kadner, 1977) are taken up by the BtuB protein which is a Ca$_{2+}$-dependent transporter located in the outer membrane (Heller *et al.*, 1985; Bradbeer *et al.*, 1986; Cherezov *et al.*, 2006). Delivery of the corrinoids to the periplasmic space by BtuB requires energy provided through interactions with TonB, which is located in the inner membrane (Ferguson *et al.*, 2007; Postle and Larsen, 2007). Once in the periplasmic space, corrinoids are bound by the BtuF protein (Van Bibber *et al.*, 1999; Cadieux *et al.*, 2002) which facilitates delivery to the ABC transporter BtuCD - itself located in the inner membrane (DeVeaux and Kadner, 1985; Borths *et al.*, 2005) - in an ATP-dependent manner (Gruber *et al.*, 2011).

Based on comparative bioinformatic analysis, there appear to be no homologues of the *E. coli* B$_{12}$ transport system components in MTB. The complete or partial lack of these *btu*-type B$_{12}$-specific transporters in MTB is surprising given the demonstration by Warner *et al.* (2007) that the MTB ΔmetE mutant was able to grow when supplemented with B$_{12}$. For
this reason, and notwithstanding the absence of any supporting evidence, the presence of a B\textsubscript{12} riboswitch directly upstream of \textit{PPE2} is at least strongly suggestive of the involvement of the gene in some aspect of B\textsubscript{12} or B\textsubscript{12}-dependent metabolism. For example, genes possessing B\textsubscript{12} riboswitch motifs in other bacteria include B\textsubscript{12} or cobalt transporters, chelatases, and corrin ring methyltransferases (Rodionov \textit{et al.}, 2003). Interestingly, Rodionov \textit{et al.} (2003) identified \textit{PPE2} as a putative B\textsubscript{12}-regulated cobalt transporter that these authors termed CbtG. Notably, \textit{PPE2} appears to lie in a putative operon with two B\textsubscript{12} biosynthetic genes, consistent with the observation that most B\textsubscript{12}-regulated genes are either found in B\textsubscript{12} gene clusters or are scattered along the chromosome (Vitreschak \textit{et al.}, 2003). Recently, \textit{S. meliloti} was shown to encode an ABC-type transport system possessing a B\textsubscript{12} riboswitch in the 5'UTR that transports cobalt, and not Cbl (Cheng \textit{et al.}, 2011). Similarly, genes of the energy-coupling factor (ECF) cobalt transporter encoded by CbiMNQO in \textit{Rhodobacter capsulatus}, are often co-localized with B\textsubscript{12} biosynthetic genes or under the control of a B\textsubscript{12} riboswitch (Rodionov \textit{et al.}, 2006; Zhang and Gladyshev, 2009).

\section*{1.10.1 Cobalt transporters in bacteria}

Cobalt is utilized at very low concentrations but plays an important role in biological systems where it is predominantly incorporated into the corrin ring of the B\textsubscript{12} molecule and in non-corrin cobalt-dependent enzymes (Komeda \textit{et al.}, 1997). Similar to the transport of B\textsubscript{12}, cobalt ions must be transported across the outer membrane into the periplasmic space, where they can be transported through the inner membrane into the cytosol. As noted above, this process can occur via an ABC transporter like the \textit{S. meliloti} CbtJKL cobalt transporter (Cheng \textit{et al.}, 2011), or the CbiMNQO cobalt transporter found in \textit{Rhodobacter capsulatus} (Rodionov \textit{et al.},
2006). Alternatively, nickel-cobalt (NiCoT) permeases can facilitate transport of cobalt (Komeda et al., 1997). Cobalt can also be taken up via non-specific metal transport systems; for example, CorA proteins are generally associated with transport of magnesium ions but some members of the CorA family have also been shown to transport cobalt and nickel (Niegowski and Eshaghi, 2007; Zhang and Gladyshev, 2009).

1.11 The PE and PPE multigene families

The genome sequence of MTB contains two highly polymorphic sets of genes belonging to the PE and PPE families. These acidic, glycine rich proteins consume 10% of the coding capacity of the MTB genome (Cole et al., 1998) and have attracted considerable interest in the TB research field as their biological functions have not yet been fully elucidated (Sampson, 2011). The PE/PPE genes are abundant in pathogenic mycobacteria such as MTB, M. bovis, M. ulcerans, M. Kansasi, and M. marinum, which is suggestive of a role in pathogenesis (Van Pittius et al., 2006; Bottai and Brosch, 2009). Furthermore, the non-pathogenic MSM - whose genome is considerably larger than MTB (7Mb versus 4Mb) - contains only two pairs of PE and PPE genes (Van Pittius et al., 2006).

The names “PE” and “PPE” are derived from the presence of N-terminal proline-glutamate or proline-proline-glutamate motifs, respectively (Cole et al., 1998). Even though the PE/PPE genes appear to be scattered throughout the genome of MTB, detailed analysis has revealed that they are in fact arranged in organized operons. A total of 40 operons have been identified with 22 of these containing specific PE/PPE gene pairs, in which a PE coupled with a PPE gene (Strong et al., 2006; Tundup et al., 2006). The remaining operons contain either a PE or PPE gene, with other genes including conserved hypotheticals, metabolic genes or ESAT-6
genes. It is notable, therefore, that \textit{PPE2} is located in a putative operon with B$_{12}$ biosynthetic genes namely, \textit{cobU} and \textit{cobQ1}.

The N-terminal domains are conserved within the respective PE and PPE families, whereas the C-terminal domains of both families are of variable size and sequence (Van Pittius \textit{et al.}, 2006). This has enabled the families to be divided into subfamilies based on sequence homology and characteristic motifs in their C-terminal domains. The PE family is composed of 99 members that have \sim 110 amino acids conserved in the N-terminal domains (Cole \textit{et al.}, 1998). The polymorphic GC-rich repetitive sequence (PGRS) subfamily is the largest within the PE family and is composed of 65 members with multiple tandem repeats of glycine-glycine-alanine (Gly-Gly-Ala) or glycine-glycine-asparagine (Gly-Gly-Asn) motifs in the C-terminal domains (Cole \textit{et al.}, 1998; Van Pittius \textit{et al.}, 2006). The remaining subgroups of the PE family consist of proteins with C-terminal domains of low homology.
The PPE family is made up of 68 members that have ~180 amino acids in the N-terminal domains and are divided into four subfamilies. The PPE-SVP subfamily is the largest, with 24 members that are characterized by a conserved Gly-X-X-Ser-Val-Pro-X-X-Trp motif between position 300 and 350 in the amino acid sequence (Adindla and Guruprasad, 2003; Van Pittius et al., 2006). The major polymorphic tandem repeats (MPTR) subfamily is the second largest, and consists of 23 members. The PPE-MPTR subfamily is characterized by multiple repeats of Asn-X-Gly-X-Gly-Asn-X-Gly in the C-terminal and is encoded by a consensus repeat sequence GCCGGTGTTTG that is spaced by 5bp nucleotides (Hermans et al., 1992; Cole and Barrell, 1998). The third PPE subfamily consists of 12 members that display low homology at the C-terminus (Van Pittius et al., 2006). The final subfamily, PPE-PPW, consists of only 10 members and is
characterized by 44 amino acid residues at the C-terminus comprising of highly conserved Gly-Phe-X-Gly-Thr and Pro-X-X-Pro-X-X-Trp motifs (Adindla and Guruprasad, 2003). PPE2 falls within the PPE-PPW subfamily (Figure 1.3).

1.11.1 Localisation and potential function of PE/PPE proteins

Although it has been more than a decade since their discovery, the biological function of the PE/PPE proteins remains elusive (Sampson et al., 2001). Of the 169 PE/PPE genes analysed in one study, 128 were shown to be differentially regulated under 15 different conditions (Voskuil et al., 2004b). In addition, some PE/PPEs have been shown to be required for in vivo survival (Ramakrishnan et al., 2000; Sassetti et al., 2003; Singh et al., 2008) suggesting their importance in infection. In a study by Brennan et al. (2001), it was demonstrated that a transposon mutant of PE-PGRS33 (encoded by Rv1818c) was associated with dispersed growth in liquid medium and impaired ability to enter and survive within macrophages, suggesting a role for this protein in macrophage uptake. Further studies on PE-PGRS33 have implicated this protein in host cell apoptosis (Balaji et al., 2007; Basu et al., 2007) and necrosis of macrophages (Dheenadhayalan et al., 2006). In another study, PPE18 (Rv1196) was shown to interact with TLR2 receptors on macrophages and activate IL-10 production, which has been shown to inhibit the host immune response and thereby promote replication and persistence of MTB inside the host cells (Redpath et al., 2001; Nair et al., 2009). Other PE/PPEs have been implicated in phagosome maturation arrest (Hestvik et al., 2005) and modulation of vacuole acidification (Li et al., 2005; Jha et al., 2010). Therefore, there appears to be growing evidence of a possible role for these proteins in interacting with host immune components, thereby altering and even enabling the bacterium to avoid innate immune
pathways. Consistent with this idea, studies have shown that PE/PPEs are cell wall-associated (Banu et al., 2002; Okkels et al., 2003; Le Moigne et al., 2005) or even partially exposed on the cell surface (Brennan et al., 2001; Sampson et al., 2001) thereby allowing them to be secreted from the bacterium into the host cell. Further evidence of their surface exposure includes the observation that 40 PE/PPE proteins have β-barrel signatures, which are found in surface-exposed proteins having membrane-anchored regions (Pajon et al., 2006). Thus, they appear to be ideally positioned to interact with the host immune system. In fact, many studies have demonstrated that these proteins can elicit an immune response; for example, a humoral immune response was detected in infected mice against the PGRS domain of PE-PGRS33, and a cell-mediated immune response was detected against the PE domain (Delogu and Brennan, 2001). Similarly, mice immunized with the PE25 and PPE41 pair showed increased T-cell proliferation and higher levels of interferon gamma, tumor necrosis factor alpha, and IL-2 cytokines (Tundup et al., 2008). Serology studies carried out by Espitia et al. (1999) and Singh et al. (2001), demonstrated antibodies against PE-PGRS81 (Rv1759c) and the PGRS domain of Rv3367, respectively, in sera of TB infected patients, suggesting that some proteins from this family are present during infection.

M. marinum appears to have the largest number of PE/PPE genes (15 and 106 respectively) (Stinear et al., 2008), of which two PE_PGRS genes were shown to be required for survival and persistence in macrophages, again supporting the idea that these proteins are virulence factors (Ramakrishnan et al., 2000). Other functions in which this family has been implicated include the up-regulation of a PPE37 gene (Rv2123) under low iron conditions, suggesting that this gene may encode a siderophore that is involved in iron uptake (Rodriguez et al., 1999; Rodriguez et al., 2002). Similarly, the PE_PGRS protein encoded by Rv1759c was found to display
fibronectin-binding properties (Espitia et al., 1999). Additionally, PE-PPE11 (LipX) and PE_PGRS63 (LipY) demonstrated lipase activity (Deb et al., 2006; Mishra et al., 2008), while PE_PGRS11 also exhibited phosphoglycerate mutase activity (Chaturvedi et al., 2010).

Owing to the technical difficulties experienced when working with PE/PPE proteins, only one co-crystal structure has been solved thus far, that of the PE25/PPE41 complex (Strong et al., 2006). The structure revealed that the most conserved regions of the PE/PPE pair were responsible for protein-protein interactions, and also identified the presence of a possible docking site, which in turn suggested that other proteins could be recruited to the complex (Strong et al., 2006). Further analysis revealed that the PPE protein of the complex shared some features with a serine chemotaxis receptor; therefore, it was proposed that PE/PPE complexes may be involved in host immune sensing and signalling (Strong et al., 2006). More structural data are clearly necessary in order to understand the function of these proteins. Overall, this intriguing family has been implicated in disease pathogenesis and other non-related areas; however complete understanding of their function remains a research priority.

1.11.2 Association of PE/PPEs with esx regions

Comparative genomic studies have revealed that the evolution and expansion of the PE/PPE gene families are coupled with the esx regions (van Pittius et al., 2001). The MTB genome contains five Esx gene clusters which encode the components of the Type VII or ESX secretion systems (van Pittius et al., 2001). The five ESX systems (ESX-1 to ESX-5) in MTB display a highly conserved gene organization that comprises a pair of esx genes in the centre of the cluster, accompanied by PE/PPE genes upstream and then flanked by membrane proteins and components of an
ATP-powered secretion machine (DiGiuseppe Champion and Cox, 2007; Bottai and Brosch, 2009). The best characterized of these is the ESX-1 system, which is known to secrete the 6-kDa early secreted antigenic target (ESAT-6) and the 10-kDa culture filtrate protein (CFP-10), encoded by esxA and esxB, respectively (Sørensen et al., 1995; Berthet et al., 1998). These highly immunogenic proteins have been shown to modulate TLR2 signalling and cytokine inhibition (Sørensen et al., 1995; Berthet et al., 1998; Skjot et al., 2000; Pathak et al., 2007). The ESX-1 system is located in the region of difference-1 (RD1), which is absent in the attenuated M. bovis BCG vaccine strain (Mahairas et al., 1996). The importance of the RD1 region in virulence has been established experimentally by deleting this region in H37Rv and confirming that it resulted in attenuation of the strain; conversely, incorporation of this region into the attenuated BCG vaccine strain resulted in expression of ESAT-6 and CFP-10 and increased virulence (Pym et al., 2002; Lewis et al., 2003; Pym et al., 2003). A functional ESX-1 system is required for the export of ESAT-6 and CFP-10, which have been demonstrated to be required for mycobacterial spread to uninfected macrophages (Guinn et al., 2004), inhibition of macrophage inflammatory response (Stanley et al., 2003), cell lysis and tissue invasion (Hsu et al., 2003).

In the MTB genome, the ESX-2 locus is located downstream of ESX-1; however, relatively few studies have focused on this system, or on ESX-4 which represents the most ancestral system. As a result, nothing is presently known about their functions (van Pittius et al., 2001; Stinear et al., 2008). Genes in the ESX-3 cluster were shown to be regulated by iron and zinc in MTB (Maciąg et al., 2007), suggesting involvement of this system in homeostasis of these metal ions. The faster growing MSM possesses ESX-1, ESX-4 and ESX-3 only (van Pittius et al., 2001), of which the latter cluster was shown to respond to iron and not zinc (Maciąg et al., 2009). In a study utilizing MSM and M. bovis, it was demonstrated that the
ESX-3 secretion system responds to iron deprivation and is required for infection of macrophages (Siegrist et al., 2009). In addition, the ESX-3 system was shown to be essential for growth in liquid medium using a tetracycline (Tet)-inducible conditional mutant (Serafini et al., 2009). The repression phenotype was reversed by addition of zinc, iron or supernatant from the parental strain, which led the investigators to conclude that ESX-3 might encode a novel metal uptake system.

The final ESX system, ESX-5, has been studied in *M. marinum*. Abdullah et al. (2006) were the first to demonstrate a link between this system and a PPE protein. They showed that an ESX-5 mutant of *M. marinum* was unable to secrete the heterogeneously expressed MTB PPE41 protein; moreover, introduction of the ESX-5 cluster into MSM resulted in the secretion of PPE41 (Abdallah et al., 2006) confirming the involvement of the machinery encoded by this system in the secretion of the PPE protein. In addition, the ESX-5 system was found to be involved in modulating the immune response by suppressing proinflammatory cytokines and inducing 1L-1β production (Abdallah et al., 2008). This PE-PGRS and PE-MPTR secretion pathway was also shown to be involved in suppressing cytokine secretion in a TLR-dependent manner (Abdallah et al., 2008; Abdallah et al., 2009). Although ESX-5 was shown to be a major secretion system for some PE and PPE proteins, the possibility that other PE/PPE proteins might be secreted via other systems including other ESX systems cannot be ruled out. In addition, this information was deduced in *M. marinum*; while these results might apply in MTB, this link is yet to be demonstrated formally.
1.12 Mycobacterial features examined in this thesis

The biosynthesis of B\textsubscript{12} is complex and requires an intricate pathway comprising 30 sequential enzymatic steps. For this reason, it is intriguing that MTB is included in a select group of microorganisms that appear to possess a near-complete biosynthetic pathway. Previous work in the MMRU has characterized B\textsubscript{12}-dependent metabolic processes (Dawes \textit{et al.}, 2003; Warner \textit{et al.}, 2007; Savvi \textit{et al.}, 2008). Amongst other findings, these studies surprisingly indicated that MTB does not synthesize B\textsubscript{12} \textit{de novo} despite possessing a near-complete biosynthetic pathway (Warner \textit{et al.}, 2007; Savvi \textit{et al.}, 2008). In addition, bioinformatic analysis revealed that there is a complete lack of typical B\textsubscript{12} transport systems in the MTB genome, a result that is inconsistent with the ability of exogenous B\textsubscript{12} to complement multiple growth phenotypes in MTB (Warner \textit{et al.}, 2007; Savvi \textit{et al.}, 2008). In addition, the presence of a B\textsubscript{12} riboswitch upstream of \textit{PPE2}, and the suggestion by Rodionov \textit{et al.} (2003) that this gene might be a putative B\textsubscript{12}-regulated cobalt transporter, stimulated our interest in the potential role for \textit{PPE2} in B\textsubscript{12} or cobalt transport in MTB. Furthermore, taking into account the versatility of MTB, we also sought to investigate whether MTB could synthesize and utilize alternate B\textsubscript{12} cofactors such as pseudo-B\textsubscript{12} in B\textsubscript{12}-dependent metabolic processes.
1.13 Aims

This study was initially directed towards investigating a role for PPE2 in B\textsubscript{12} metabolism in MTB, and to ascertaining the capacity of B\textsubscript{12} precursors to function in B\textsubscript{12} biosynthesis in mycobacteria. To this end, the project originally comprised two primary components:

1. An investigation of the role of MTB PPE2 (Rv0256c) in vitamin B\textsubscript{12} or cobalt transport.

2. An analysis of the ability of substrates like vitamin B\textsubscript{12} (CNCbl), the B\textsubscript{12} precursors cobinamide, DMB, adenine and cobalt to complement growth of MTB and MSM vitamin B\textsubscript{12} auxotrophs.

Subsequent observations in this study indicated that PPE2 did not have a role in B\textsubscript{12} transport in MTB; however, its importance in either B\textsubscript{12} synthesis or cobalt transport still existed owing to the tantalising presence of a B\textsubscript{12} riboswitch which indicated the likely B\textsubscript{12}-dependent regulation of PPE2 function. During the course of this project, it also became evident that MTB might be able to synthesize B\textsubscript{12} \textit{de novo} under certain \textit{in vitro} conditions. Moreover, key questions arose pertaining to the precise form of B\textsubscript{12} and B\textsubscript{12}-derived cofactors that mycobacteria utilize. The original aims of the project were therefore updated and expanded to include the following set of major aims that formed the basis of this dissertation:

1. An analysis of the ability of substrates including vitamin B\textsubscript{12} (CNCbl), the B\textsubscript{12} precursors cobinamide, DMB, adenine and cobalt to complement growth of MTB and MSM vitamin B\textsubscript{12} auxotrophs already constructed within the laboratory (Warner \textit{et al.}, 2007; Dawes, unpublished).

2. An investigation of the role of MTB PPE2 (Rv0256c) in cobalt transport or assimilation.

3. An analysis of the ability of mycobacteria to synthesize and utilize pseudo-B\textsubscript{12} as a functional equivalent of vitamin B\textsubscript{12} in key B\textsubscript{12}-dependent metabolic pathways. Abrogation of DMB synthesis by
eliminating the putative \textit{bluB} (Rv0306) formed a core component of this aim as it enabled the genetic differentiation of vitamin B_{12} biosynthesis (and utilisation) from the synthesis of pseudo-B_{12}.
2. Materials and Methods

All general procedures and DNA manipulations were performed according to standard protocols (Sambrook and Russell, 2001).

2.1 Bacterial strains and culture conditions

All bacterial strains utilized in this study were stored at -70°C in 30% (v/v) glycerol and are detailed in Table 2.1.

- *Escherichia coli DH5α*

Escherichia coli was cultured in Luria-Bertani broth (LB) at 37°C overnight with vigorous shaking (Labcon Shaking Incubator) or at 30°C for 48 h (New Brunswick Scientific Innova 400 incubator shaker), supplemented with appropriate antibiotics where necessary. Luria Bertani agar (LA) plates supplemented with appropriate antibiotics where necessary was used to culture *E. coli* containing plasmids, which were incubated at 37°C overnight (Incotherm Labotec Incubator) or at 30°C for 48 h (Heraeus Instrument Incubator). Strains carrying large plasmids (≥8000bp) were incubated at 30°C to minimise the risk of plasmid rearrangements. For selection purposes the following antibiotics were used at the indicated concentrations: ampicillin (Amp), 200µg/ml; hygromycin (Hyg), 100-200 µg/ml; and kanamycin (Km), 50 µg/ml. For negative selection of clones that carry the *sacB* gene, 5% (w/v) sucrose was used. For positive selection of clones and/or to confirm disruption of the *lacZ* for cloning purposes, X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside; 20 mg/ml in deionised dimethyl formamide) was utilized.
Table 2.1: General strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5α</td>
<td>supE44 ΔlacU169 hsdR17 recA1 endA1 gyrA96 thi-1 relA1</td>
<td>Promega</td>
</tr>
<tr>
<td>Mycobacterium smegmatis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mc² 155</td>
<td>High-frequency transformation mutant of M. smegmatis ATCC 607</td>
<td>(Snapper et al., 1990)</td>
</tr>
<tr>
<td>ΔmetE::hyg</td>
<td>metE deletion mutant in mc² 155; Hyg⁶</td>
<td>(Dawes, unpublished)</td>
</tr>
<tr>
<td>ΔcobK</td>
<td>cobK deletion mutant in mc² 155</td>
<td>(Dawes, unpublished)</td>
</tr>
<tr>
<td>ΔcobK ΔmetE::hyg</td>
<td>Double metE/cobK deletion mutant in mc² 155</td>
<td>(Dawes, unpublished)</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H37Rv</td>
<td>Virulent laboratory strain ATCC 25618</td>
<td>Laboratory collection</td>
</tr>
<tr>
<td>ΔPPE2</td>
<td>PPE2 deletion mutant of H37Rv</td>
<td>This study</td>
</tr>
<tr>
<td>ΔmetE::hyg</td>
<td>metE deletion mutant of H37Rv; Hyg⁶</td>
<td>(Warner et al., 2007)</td>
</tr>
<tr>
<td>ΔcobK ΔmetE::hyg</td>
<td>double metEcobK deletion mutant of H37Rv; Hyg⁶</td>
<td>D. F. Warner, unpublished</td>
</tr>
<tr>
<td>ΔPPE2 ΔmetE::hyg</td>
<td>marked double metE/PPE2 deletion mutant of H37Rv; Hyg⁶</td>
<td>This study</td>
</tr>
<tr>
<td>ΔcobU ΔmetE::hyg</td>
<td>marked double metE/cobU deletion mutant of H37Rv; Hyg⁶</td>
<td>D. F. Warner, unpublished</td>
</tr>
<tr>
<td>ΔmetE::hyg</td>
<td>ΔPPE2 complemented with full-length PPE2 at attB site; Hyg⁶, Km⁶</td>
<td>This study</td>
</tr>
<tr>
<td>ΔmetE::hygΔPPE2 attB::PPE2-cobQ1-cobU</td>
<td>ΔPPE2 complemented with entire PPE2-cobQ1-cobU locus; hyg⁶, Km⁶</td>
<td>This study</td>
</tr>
<tr>
<td>ΔmetE::hygΔcobU attB::PPE2-cobQ1-cobU</td>
<td>ΔmetE::hygΔcobU complemented with entire PPE2-cobQ1-cobU locus; Hyg⁶, Km⁶</td>
<td>This study</td>
</tr>
<tr>
<td>ΔRv0306</td>
<td>Rv0306 deletion mutant of H37Rv</td>
<td>This study</td>
</tr>
<tr>
<td>ΔmetE::hyg ΔRv0306</td>
<td>Double metE/Rv0306 deletion mutant of H37Rv; Hyg⁶</td>
<td>This study</td>
</tr>
<tr>
<td>ΔRv0306ΔmetE::hyg</td>
<td>metE with site-directed point mutations in Rv0306; Hyg⁶</td>
<td>This study</td>
</tr>
</tbody>
</table>
Mycobacterium smegmatis

Unless otherwise stated, MSM strains were cultured in Middlebrook 7H9 liquid medium (Difco) supplemented with 0.1% Tween$_{80}$, 0.2% glycerol and a glucose-salt solution (GS; 0.085% NaCl, 0.2% glucose). For growth on solid media, 7H10 Middlebrook (Difco) supplemented with 0.5% glycerol and glucose-salt (GS; 0.085% NaCl, 0.2% glucose) was used. Cultures were grown in Erlenmeyer flasks at 37°C shaking (Incotherm Labotec Incubator). Where necessary, antibiotics were used at the following concentrations: Km, 10 µg/ml or 25 µg/ml; and Hyg, 50 µg/ml. Unless otherwise indicated, the following supplements and co-factor precursors were used at the indicated concentrations: adenine (Sigma), 10 µM; cobinamide (dicyanocobinamide, Sigma), 10 µM; 5,6-dimethylbenzamidazole (Sigma), 10 µM; and vitamin B$_{12}$ (cyanocobalamin, Sigma), 10 µg/ml (8 µM).

Mycobacterium tuberculosis

Unless indicated, MTB strains were grown in Middlebrook 7H9 liquid medium (Difco) supplemented with 0.05% Tween$_{80}$ and 0.2% glycerol, or on 7H10 Middlebrook solid medium (Difco) supplemented with 0.5% glycerol. 100 ml oleic acid-albumin-dextrose-catalase (OADC) enrichment (Difco) was added to both liquid and solid media (10% v/v). Culturing and manipulation of MTB strains was carried out in a biosafety level 3 laboratory in a Class II flow cabinet at negative pressure of at least 160 kPa. Cultures were grown at 37°C in tissue culture flasks that were placed flat or in roller bottles. For negative selection of clones that carry the *sacB* gene, 2% (w/v) sucrose was used. For positive selection of clones harbouring the *lacZ* gene, β-galactosidase activity (blue-white selection) was assessed by adding X-gal (Roche) at a standard concentration of 20 mg/ml in deionised dimethyl sulfoxide (DMSO; Sigma) in 25 ml agar plates. Antibiotics were used at the following concentrations where
necessary: Km, 10 µg/ml or 25 µg/ml; and Hyg, 50 µg/ml. Unless otherwise indicated, the following supplements and cofactor precursors were used at the indicated concentrations: adenine, 10 µM; cobinamide, at 10 µM; 5,6-dimethylbenzamidazole (Sigma), 10 µM; 3-nitropropionate (3-NP; Sigma); 10 µM and Vitamin B₁₂, 10 µg/ml (8 µM).

2.2 Cloning vectors

All plasmids utilized in this study are detailed in Table 2.2.

Table 2.2: Plasmids used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2NIL</td>
<td>E. coli cloning vector and mycobacterial suicide vector; Kn<sup>R</sup></td>
<td>(Parish and Stoker, 2000)</td>
</tr>
<tr>
<td>pGEM3Z(+)f</td>
<td>E. coli cloning vector; Amp<sup>R</sup>, lacZ</td>
<td>Promega</td>
</tr>
<tr>
<td>pGOAL17</td>
<td>Plasmid carrying lacZ and sacB genes as a PacI cassette; Amp<sup>R</sup></td>
<td>(Parish and Stoker, 2000)</td>
</tr>
<tr>
<td>pGOAL19</td>
<td>Plasmid carrying lacZ, hyg and sacB genes as a PacI cassette; Amp<sup>R</sup></td>
<td>(Parish and Stoker, 2000)</td>
</tr>
<tr>
<td>p2ΔcobKU19</td>
<td>cobK knockout vector containing PacI cassette from pGOAL19; Kn<sup>R</sup>, Hyg<sup>R</sup>, suc<sup>S</sup></td>
<td>K. Downing</td>
</tr>
<tr>
<td>p2PPE2</td>
<td>P2NIL containing ΔPPE2 allele; Kn<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>p2PPE2U17</td>
<td>PPE2 knockout vector containing PacI cassette from pGOAL17; Kn<sup>R</sup>, Hyg<sup>R</sup>, suc<sup>S</sup></td>
<td>This study</td>
</tr>
<tr>
<td>p2PPE2U19</td>
<td>PPE2 knockout vector containing PacI cassette from pGOAL19; Kn<sup>R</sup>, suc<sup>S</sup></td>
<td>This study</td>
</tr>
<tr>
<td>p2ΔRv0306</td>
<td>p2NIL containing ΔRv0306 allele; Kn<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>p2ΔRv0306U17</td>
<td>Rv0306 knockout vector containing PacI cassette from pGOAL17; Kn<sup>R</sup>, Hyg<sup>R</sup>, Suc<sup>S</sup></td>
<td>This study</td>
</tr>
<tr>
<td>p2ΔRv0306U19</td>
<td>Rv0306 knockout vector containing PacI cassette from pGOAL19; Kn<sup>R</sup>, suc<sup>S</sup></td>
<td>This study</td>
</tr>
<tr>
<td>p2Rv0306<sup>Δ32NS167G</sup>U17</td>
<td>p2NIL containing Rv0306 with site-directed point mutations; Kn<sup>R</sup>, Hyg<sup>R</sup>, suc<sup>S</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pMP<PPE2>comp</td>
<td>PPE2 complementation vector- pMC1r carrying full length PPE2 ; Kn<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>pMC<PQQ>comp</td>
<td>Complementation vector- pMC1r carrying entire PPE2-cobQ1-cobU locus ; Km<sup>R</sup></td>
<td>This study</td>
</tr>
</tbody>
</table>
2.3 DNA extraction

2.3.1 Plasmid extraction and purification from E.coli

- **Small-scale plasmid DNA isolation**
 Stationary-phase cultures were harvested by centrifugation in an Eppendorf 5415D microcentrifuge (15000 x g for 1 min) at room temperature in 1.5 ml microfuge tubes. The supernatant was discarded and the pellet resuspended in 100 µl of lysis solution I (0.5 M glucose, 50 mM Tris-HCl pH 8.0, 10 mM EDTA); thereafter, 200 µl of solution II (0.2 M NaOH, 1% SDS) was added and the suspension was mixed gently. After 5 min of incubation at room temperature, 150 µl of neutralization solution III (3 M potassium acetate, pH 5.5) was added and gently mixed before centrifuging at 9000 x g for 5 min at room temperature. The supernatant was transferred to fresh microfuge tubes and treated with 1 µl of 10 µg/ml RNase A (Sigma) for 10 min at 37°C. Plasmid DNA was precipitated by adding 350 µl of isopropanol, then incubated for 10 min at room temperature and collected by centrifugation at 15000 x g for 10 min. The pelleted DNA was washed with 70% ice-cold ethanol and dried at 45°C in a vacuum centrifuge (MiVac DNA concentrator, GeneVac). The DNA was resuspended in 20-30 µl of sterile distilled water (sdH2O).

- **Large-scale plasmid DNA extraction**
 Cultures were grown overnight in 50 ml of LB and harvested by centrifugation in a Beckmann J2-21 centrifuge (1100 x g for 10 min). Thereafter the extraction method was exactly as described for the small-scale extraction (above) except that the solution volumes were increased by a factor of 10. Once extracted and washed, the DNA was resuspended in a final volume of 500 µl of sdH2O and precipitated by adding 1/10th volume 5.3 M sodium acetate (pH 5.3). The DNA was purified by adding
equal volumes of phenol:chloroform (1:1; v/v) solution, the suspension was mixed vigorously and then centrifuged at 15000 x g for 10 min at room temperature. The aqueous phase was added to an equal volume of chloroform: isoamyl alcohol (24:1; v/v), mixed vigorously, and centrifuged at 15000 x g for 10 min at room temperature. The aqueous phase was removed and the plasmid DNA was further precipitated by adding 2.5 volumes of 100% ice-cold ethanol and incubating the solution at -20°C for 30 – 45 min. DNA was collected by centrifugation at 15000 x g for 10 min at room temperature, and the pellet was washed with 70% ice cold ethanol, then dried in a vacuum centrifuge and resuspended in 50-200 µl sdH₂O.

2.3.2 Chromosomal DNA extraction from mycobacteria

- *Mycobacterium smegmatis*

Chromosomal DNA was isolated using a modified cetyltrimethylammonium bromide (CTAB; ICN Biomedicals, Aurora, Ohio) method (Larsen, 2000). Briefly, cells were heat-killed in microfuge tubes for 20 min at 65°C, then harvested by centrifugation at 13000 x g for 1 min. After resuspending the pellet in 500 µl TE buffer (10 mM Tris·HCl pH 8.0, and 1 mM EDTA), 50 µl of lysozyme (10 mg/ml) was added and the reaction incubated overnight at 37°C. The following morning, 70 µl of 10% SDS and 6 µl of proteinase K (10 mg/ml) was added and incubated at 37°C for 2 h. Thereafter, 80 µl of pre-warmed CTAB/NaCl mix (10% CTAB made in 0.7 M NaCl) and 100 µl of 5M NaCl was added and the mixture was further incubated for 10 min at 65°C. Subsequent to incubation, an equal volume of chloroform:isoamyl alcohol (24:1 v/v) was added to remove residual proteins. The aqueous phase was added to an equal volume of isopropanol and then put on ice for 30 min. After centrifugation for 20 min
at 9000 x g, the pellet was washed with ice cold 70% ethanol and dried in a vacuum centrifuge before resuspending in 100 µl of sdH₂O.

- **Mycobacterium tuberculosis**

The method used for MTB DNA extraction was similar to that described above except for minor differences and that all procedures prior to the overnight lysozyme step were carried out in a biosafety level 3 laboratory in a class II flow cabinet at negative pressure of 160 kPa. Briefly, cells were heat killed in microfuge tubes for an hour at 80°C, then harvested by centrifugation at 13000 x g for 1 min. After resuspending the pellet in 500 µl of TE buffer (10 mM Tris-HCl pH 8.0, and 1 mM EDTA), 50 µl of lysozyme (10 mg/ml) was added and this was incubated overnight at 37°C. Subsequent to incubation, 70 µl of 10% SDS and 50 µl of proteinase K (10 mg/ml) were added and this was incubated at 60°C for 1 h in a Thermomixer Compact (Eppendorf) set to low shaking mode (300 rpm). One hundred µl of pre-warmed CTAB/NaCl (10% CTAB, 0.7 M NaCl) and 100 µl 5 M NaCl was added, mixed thoroughly and then returned to 60°C for 15 min in the Thermomixer. Thereafter, microfuge tubes were placed at -70°C for 15 min, then removed and allowed to thaw before incubating at 60°C in the Thermomixer for a further 15 min. An equal volume of chloroform:isoamylalcohol (24:1) was added and the mixture was inverted several times to mix, then harvested by centrifugation at 9000 x g for 10 min. The aqueous phase was added to an equal volume of ice-cold isopropanol, mixed by inversion, and then stored at 4°C overnight. The following morning, chromosomal DNA was harvested by centrifugation at 9000 x g for 10 min, the pellet was washed with 70% ice-cold ethanol and dried in a vacuum centrifuge before resuspending in 55 µl of sdH₂O.
DNA extraction from mycobacteria and *E. coli* for PCR screening using the colony boil method

Bacterial colonies were picked from agar plates and resuspended in 200 µl of TE buffer (10 mM Tris·HCl pH 8.0, 0.1 mM EDTA) before being heat-killed at 95°C for 5 min. An equal volume of chloroform was added, and the solution centrifuged at 15000 x g for 5 min. The aqueous phase was carefully extracted into fresh microfuge tubes and 2 µl was used for PCR.

2.4 Agarose gel electrophoresis

Standard electrophoretic techniques were applied when separating DNA fragments (Sambrook *et al.*, 1989; Sambrook and Russell, 2001). High molecular weight DNA fragments were separated on agarose gels of 0.8%-1% or 2%-4% agarose gels for low molecular weight fragments (≤1kb), all made in 1x TAE buffer (40 mM Tris-acetic acid, 1 mM Na₂EDTA pH 8.0). DNA samples were loaded with tracking dye (0.025% bromophenol blue in 30% glycerol) into gels that contained 0.5 µg/ml ethidium bromide. Fragment sizes were assessed using lambda DNA molecular weight markers (BMII-BMVI; Roche). Agarose gels were electrophoresed in a Mini-Sub Cell GT mini gel horizontal submarine unit (Bio-Rad) between 80-100 volts and visualized under UV-light using the Gel Doc 2000 system (Bio-Rad).

2.4.1 Recovery of DNA from agarose gels and quantification

The required DNA fragments were excised from agarose gels and purified using the Nucleospin Extract II Kit (Macherey-Nagel) as per the manufacturer’s instructions. After purification, the eluted DNA was quantified either on an agarose gel by comparison to DNA molecular
weight markers, or on a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific).

2.5 DNA manipulations

All DNA manipulations and molecular biology techniques were carried out according to standard protocols (Sambrook et al., 1989).

- **Restriction enzyme digests**

 All restriction enzymes were obtained from Amersham Pharmacia Biotech, New England Biolabs Inc., or Roche. All restriction enzyme digests were performed at 37°C unless otherwise required by the manufacturer. Plasmid DNA of up to 1 µg was digested between 1-3 h at 37°C (unless otherwise required by the manufacturer) with the appropriate reaction buffer(s). Mycobacterial DNA of up to 5 µg was digested overnight at 37°C (unless otherwise required by the manufacturer) with the buffer(s). Digested DNA fragments were separated and analyzed on agarose gels (as detailed in sections 2.4 & 2.4.1).

- **Dephosphorylation**

 Linearized plasmid DNA was treated with Antarctic Alkaline Phosphatase (New England Biolabs) to ensure removal of the 5’-phosphate and thereby prevent vector re-ligation. Dephosphorylation was performed for 1 h at 37°C after which the enzyme was heat inactivated for 20 min at 65°C (as per the manufacturer’s instructions).
• **Ligation reactions**

Ligation reactions were carried out using either the Fast-link™ ligation kit (Epicentre ® Biotechnologies) or T4 DNA ligase (Roche) as per the manufacturer’s instructions. Ligations were then transformed into *E. coli* DH5α cells as detailed in section 2.7.1.

2.6 Polymerase Chain Reaction (PCR)

Screening and preliminary PCRs were carried out using FastStart Taq (Roche) as per the manufacturer’s instructions. Briefly, 20-50 µl reactions containing between 10-100 ng of plasmid or genomic DNA were set up with 1x reaction buffer, 200 µM of each dNTP, 0.5-1.0 µM of each primer, 1.5 mM MgCl₂, 1x GC-rich solution, and 2U/50 µl of DNA polymerase. Thermal cycler parameters used for DNA amplification were as follows: denature at 95°C for 4 min, followed by 30 cycles of denaturation (95°C for 30 s), annealing (60°C for 30 s), extension (72°C for 60s/kb), and a final extension at 72°C for 7 min. Fragments used for cloning purposes were amplified with Phusion High-Fidelity DNA polymerase (Finnzymes), which has a low error rate of 4.4 x10⁻⁷. As per the manufacturer’s instructions, 20-50 µl reactions contained: 1x reaction buffer, 200 µM of each dNTP, 0.5 µM of each primer, 3% DMSO or 1x GC rich solution, 0.02 U/µl of DNA polymerase and between 10-100 ng of plasmid or genomic DNA. The DNA amplification parameters were: initial denaturation at 98°C for 3 min, followed by 30 cycles of denaturation (98°C for 10 s), annealing (60°C for 30 s), extension (72°C for 30s/kb), and final extension at 72°C for 7 min. All PCR reactions were carried out in the MyCycler™ thermal cycler (Bio-Rad) with oligonucleotide primers (Table 2.4 to 2.8) purchased from Inqaba Biotech Ltd. or Integrated DNA Technologies (IDT).
2.7 Bacterial transformation

2.7.1 Chemical transformation of E. coli

- **Preparation of competent cells**
 All competent cells were prepared using the rubidium chloride method obtained from Dr P. Stolt. Briefly, 1 ml of an overnight culture of *E. coli* DH5α was inoculated into 100 ml LB and grown to an OD₆₀₀ of between 0.48-0.55. The cells were kept on ice for 15 min then harvested by centrifugation at 3901 x g for 5 min at 4°C. The supernatant was discarded and the pellet resuspended in 20 ml transformation buffer (Tfb) I solution (30 mM potassium acetate, 100 mM rubidium chloride, 10 mM calcium chloride, 50 mM manganese chloride, and 15% v/v glycerol – pH 5.8). The suspension was chilled on ice for 15 min, and then harvested by centrifugation at 3901 x g for 5 min at 4°C. The pellet was then resuspended in 2 ml of TfbII solution (10 mM MOPS, 75 mM calcium chloride, 10 mM rubidium chloride and 15 % v/v glycerol – pH 6.5), and 500 µl aliquots were flash-frozen in ice cold ethanol and stored at -80°C until required.

- **Transformation of *E. coli* with plasmid DNA**
 The competent cells were thawed on ice, and 100 µl incubated with up to 1 µg of pre-chilled DNA in microfuge tubes on ice. After 20 min, the cells were heat-shocked at 42°C for 90 s then chilled on ice for 1-2 min; thereafter, 4 volumes of 2TY (Tryptone Yeast broth) was added to rescue the cells at 37°C for 1 h. The cells were plated on LA plates containing appropriate antibiotics and incubated at 37°C overnight (Sambrook *et al.*, 1989) or for two days at 30°C for constructs larger than 8 000 bp.
2.7.2 Transformation of mycobacteria

Mycobacteria were transformed by electroporation, which was performed according to previously published protocols, and as described briefly below (Larsen, 2000; Gordhan and Parish, 2001).

Electroporation into Mycobacterium tuberculosis

Briefly, 1 ml of a log-phase pre-culture was inoculated into 75 ml of 7H9/OADC media and grown to an OD$_{600}$ 0.8-1.0. At least 6 h before competent cells were prepared, glycine (30%; w/v) was added to a final concentration of 1.5% (w/v). Cells were harvested by centrifugation at 1100 x g for 10 min at room temperature and the pellet was resuspended in 10% glycerol (w/v). Thereafter, cells were washed twice in 10% glycerol (w/v) then resuspended in 2-5 ml of 10% glycerol (w/v). Four hundred µl of competent cells were mixed with 2-5 µg of plasmid DNA in electroporation cuvettes (0.2 cm electrode gaps, Bio-Rad) and pulsed once in a GenePulser™ set at 2.5 kV, resistance 1000 Ω, capacitance 25 µF. Subsequent to electroporation, cells were rescued in 1 ml of 7H9/OADC then incubated overnight at 37°C. The following day, cells were spread on 7H10/OADC plates containing appropriate antibiotics and/or supplements where necessary and then incubated at 37°C for 21-28 days.

2.8 Southern blot analysis

Electroblotting

Genomic DNA (2-5 µg) was digested overnight with appropriate restriction enzymes, separated by electrophoresis on a 0.8% agarose gel at 80 V (Section 2.4), and photographed with a ruler using the GelDoc 2000 system (Bio-Rad). The DNA was depurinated by immersing the agarose
gels in 0.25 M HCl for 10-12 min, then denatured by soaking in 1.5 M NaCl/0.5M NaOH solution for 25 min, and then neutralized (1.5 M NaCl, 5 M Tris·HCl, pH 7.5) for 30 min. Thereafter, the agarose gels were overlaid with Hybond™-N+ membrane (Amersham), and sandwiched in a TE 22 Transphor cassette (Hoefer Scientific) between two pre-soaked 3 mm Whatmann (Merck) filter papers and two pre-soaked sponges. The cassette was placed in a TE 22 mini transfer unit (Hoefer Scientific) containing 1x Tris-Borate-EDTA (TBE) buffer (Sigma) and the DNA was transferred for 4 h at 0.4 A at 4°C. Once transferred, the DNA was cross-linked to the membrane by irradiation in a UV Stratalinker 1800 (Stratagene) at 1200 mJ/cm², and membranes were either hybridized immediately or wrapped in saran wrap and stored at 4°C until required.

- **Synthesis and labelling of probes**
The probes (detailed in Table 2.3) utilized for Southern blots were synthesized by PCR using primers detailed in Table 2.4 or by restriction enzyme digests, and then labelled according to the ECL Direct Nucleic Acid Labelling and Detection System protocol (Amersham). Briefly, a maximum of 100 ng of probe DNA in 10 µl of dH₂O was denatured by boiling for 5 min at 95°C, and immediately cooled on ice for 5 min. Subsequently, equivalent volumes of DNA labelling agent (Amersham) and glutaraldehyde solution (Amersham) were added and mixed gently. The resulting mixture was incubated at 37°C for 10 min and then used immediately in hybridization experiments.
Table 2.3: Probes used in southern blot analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Probe description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPE2</td>
<td>860bp PCR product containing 170bp 3’ PPE2 coding sequence, generated using primer pair PPE2Fi/PPE2R1</td>
</tr>
<tr>
<td>metE</td>
<td>1740 bp PCR product containing 562 bp 5’ metE coding sequence, generated using primer pair metEFR2</td>
</tr>
<tr>
<td>cobK</td>
<td>1162 bp XhoI/SalI fragment from p2ΔcobK19</td>
</tr>
<tr>
<td>cobU</td>
<td>1750 bp PCR product containing 113 bp 3’ cobU coding sequence, generated using primer pair cobUFR2</td>
</tr>
<tr>
<td>Rv0306</td>
<td>811bp PCR product containing 224bp 5’ coding sequence, using primer pair Rv0306Fiseq/Riseq</td>
</tr>
</tbody>
</table>

- Hybridization

The hybridization buffer was prepared according to the ECL Direct Nucleic Acid Labelling and Detection System protocol (Amersham). Briefly, to 20 ml of hybridization buffer, 5% w/v blocking agent and 0.5 M NaCl was added and this was stirred at room temperature for 1 h and then at 42°C for 1 h. Subsequent to cross-linking, the membrane was pre-hybridized in roller bottles in the Hybridisation oven/shaker SI3OH (Stuart) for 1 h at 42°C, thereafter the labelled probe was added and this was hybridized overnight at 42°C.

Table 2.4: Oligonucleotides used to synthesize Southern blot probes

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPE2 Fi</td>
<td>CAGGGTGCCGTACACCCCT</td>
</tr>
<tr>
<td>PPE2 R1</td>
<td>AAGGAGCGGGATCCCTGG</td>
</tr>
<tr>
<td>metE F2</td>
<td>GGGGGCCGGATCCAACCTTC TGAG</td>
</tr>
<tr>
<td>metE R2</td>
<td>GC CGCGGGAAGCTTCAACTTCCGGGCA</td>
</tr>
<tr>
<td>cobU F2</td>
<td>GGGGCGGGATCCCATCTTCGGCGGT</td>
</tr>
<tr>
<td>cobU R2</td>
<td>GCCGGCGGTACCAAGGGCGAGCTGAAGT</td>
</tr>
</tbody>
</table>
• **Detection**

Following overnight hybridization, the membrane was washed in 5x SSC for 5 min at 42°C, then in primary wash buffer (6 M Urea, 0.4% SDS, 0.5x SSC) for 20 min at 42°C. The membrane was washed twice for 10 min in primary wash buffer at 42°C, and then twice for 5 min at room temperature in secondary wash buffer (0.5x SSC). Thereafter, detection reagents 1 and 2 (Amersham) mixed in equal quantities were overlaid over the membrane and incubated for 1 min at room temperature. The membrane was then drained, saran wrapped and exposed to X-ray film (Amersham Biosciences) in a cassette for time periods ranging from 1 min to 24 h at room temperature before developing.

2.9 **Sequencing**

All sequencing was performed as a pay-for-service by Inqaba Biotech Ltd, or the Central Analytical Sequencing Facility at Stellenbosch University.

2.10 **Construction of MTB deletion mutants and complemented derivatives**

- **Construction of PPE2 deletion mutant of H37Rv**

The suicide vector used to generate the PPE2 deletion was constructed using primer pairs PPE2F1/PPE2R1 and PPE2F2/PPE2R2 (Table 2.5) that amplified 1400 bp upstream (PPE2FR1) and 1686 bp downstream (PPE2FR2) of PPE2 from H37Rv genomic DNA. Ligation of the resulting PCR products resulted in elimination of 1100 bp of the 1671 bp PPE2 gene sequence when cloned into the Asp718/HindIII-digested p2NIL (Parish and Stoker, 2001), to generate p2ΔPPE2. Thereafter, the 7939 bp PacI marker cassette from pGOAL19 (Parish and Stoker, 2001) containing hyg-
lacZ-sacB genes was cloned into the corresponding sites of p2ΔPPE2 to generate p2ΔPPE2U19. This suicide vector was electroporated into H37Rv and the resulting ΔPPE2 mutant was isolated by a two-step selection method as previously described (Gordhan and Parish, 2001). Genomic DNA from ΔPPE2 was digested with SacI and used in Southern blot analysis with the probe listed in Table 2.3 to confirm the genotype.

Table 2.5: Oligonucleotides used to construct knockout vectors used in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’-3’)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPE2 F1</td>
<td>GCCACATGGTACCGAACA</td>
<td>1400bp sequence with naturally-occurring Asp718 site and introduced BamHI site in reverse primer sequence</td>
</tr>
<tr>
<td>PPE2 R1</td>
<td>AAGGAGCGGGATCCCTGG</td>
<td>1686bp sequence with introduced BamHI site in forward primer sequence</td>
</tr>
<tr>
<td>PPE2 F2</td>
<td>GCCCTGGATCCACATCCG</td>
<td>1686bp sequence with introduced BamHI site in forward primer sequence</td>
</tr>
<tr>
<td>PPE2 R2</td>
<td>CGCCGTTGAAGCTTGATCT</td>
<td>1599bp sequence with introduced PstI site in forward primer sequence</td>
</tr>
<tr>
<td>Rv0306 F1</td>
<td>CTGCCTTGAAGCTGCAGGTT</td>
<td>Contains naturally-occurring EcoRI (after forward primer) and Asp718 restriction sites</td>
</tr>
<tr>
<td>Rv0306 R1</td>
<td>CGAGAATGCCCTCGACCTT</td>
<td></td>
</tr>
<tr>
<td>Rv0306 F2</td>
<td>CCCGCCTTGAAGCTGGAT</td>
<td></td>
</tr>
<tr>
<td>Rv0306 R2</td>
<td>GGTCATCGGTGGTACAA</td>
<td></td>
</tr>
</tbody>
</table>

★The underlined sequence represents incorporated restriction sites
Generation of PPE2 knockout in ΔmetE::hyg mutant background

The 6359-bp PacI marker cassette from pGOAL17 (Parish and Stoker, 2000) containing lacZ-sacB genes was cloned into the corresponding sites of the p2ΔPPE2 vector (described above) to generate p2ΔPPE2U17. This suicide vector was electroporated into the hygromycin-resistant ΔmetE mutant (Warner et al., 2007) and the resulting double ΔPPE2 ΔmetE::hyg was phenotypically isolated by a two-step selection method previously described (Gordhan and Parish, 2001). Genomic DNA from the ΔPPE2 ΔmetE::hyg double mutant was digested with SalI and used in Southern blot analysis with the probe listed in Table 2.3 to confirm the genotype.

Construction of ΔRv0306 knockout in MTB (H37Rv)

Two primer sets, Rv0306F1/Rv0306R1 and Rv0306F2/Rv0306R2 were designed for PCR amplification of the upstream and downstream fragments of the Rv0306 gene. The PCR products resulting from amplification of H37Rv genomic DNA - Rv0306FR1 (1599 bp) and Rv0306FR2 (1404 bp) - eliminated 313 bp of the 672 bp Rv0306 gene sequence. Using a three way cloning strategy, these PCR products were cloned into the relevant sites of suicide vector p2NIL to create the p2ΔRv0306 construct. Thereafter, the 7939 bp PacI marker cassette from pGOAL19 (Parish and Stoker, 2000) containing hyg-lacZ-sacB genes was cloned into the corresponding sites of p2ΔRv0306 to generate p2ΔRv0306U19. The resulting suicide vector was electroporated into H37Rv and the ΔRv0306 mutant isolated by two-step selection as previously described (Gordhan and Parish, 2001). Genomic DNA from the ΔRv0306 was digested with StuI and used in Southern blot analysis with the probe listed in Table 2.3 to confirm the genotype.
• **Construction of Rv0306 knockout in the ΔmetE::hyg mutant background**

The 6359 bp PacI marker cassette from pGOAL17 (Parish and Stoker, 2000) containing lacZ-sacB genes was cloned into the corresponding sites of the p2ΔRv0306 vector (described above) to generate p2ΔRv0306U17. This suicide vector was electroporated into the hygromycin-marked ΔmetE mutant (Warner et al., 2007) and the resulting double mutant, ΔRv0306 ΔmetE::hyg was phenotypically isolated by a two-step selection method previously described (Gordhan and Parish, 2001). Genomic DNA from the ΔPPE2 ΔmetE::hyg was digested with StuI and used in Southern blot analysis with the probe listed in Table 2.3 to confirm the genotype.

• **Introduction of point mutations into Rv0306 by site-directed mutagenesis**

A panel of synthetic genes comprising the entire MTB Rv0306 sequence with specific point mutations was synthesized by Sigma-Aldrich®. The alleles were provided in an ampicillin-resistant vector, pG04v. The engineered mutations in Rv0306 included D32N and G167S; the synthetic sequences were also designed to include FspI and StuI sites, both of which were used for rapid screening of putative transformants by restriction digest (detailed below). The pG04v vector was digested with Asp718 and the synthetic gene plus 336 bp of flanking sequence was cloned into the corresponding Asp718 site of p2NIL to create the p2Rv0306D32NS167GU17. Thereafter, the PacI marker cassette from pGOAL17 (Parish and Stoker, 2000) containing the lacZ-sacB genes was cloned into the corresponding sites of to generate p2Rv0306D32NS167GU17. The resulting suicide vector was electroporated into ΔmetE::hyg. Mutants were screened and confirmed by PCR and restriction enzyme digests (detailed below).
• **Screening of Rv0306 point mutations**

To aid in the screening process, each of the point mutations was engineered so as to introduce an artificial restriction site: the D32N mutation introduced an *FspI* site, and the G167S mutation introduced a *StuI* site. The screening process utilized was therefore two-fold: in the first step, the *Rv0306* gene was amplified using the primer pair *Rv0306Frs/Rv0306Rrs* (Table 2.6), which generated a 854 bp fragment that included 672 bp of the gene together with upstream (190 bp) and downstream (50 bp) sequence. Then, in the second step the PCR product was digested with *FspI* and *StuI*, and positive transformants that harboured the point mutations generated 203 bp and 651 bp from the *FspI* digest; 597 bp and 257 bp from the *StuI* digest.

Table 2.6: Oligonucleotides used in screening of *Rv0306* point mutations in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5′-3′)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv0306 Frs</td>
<td>CTACTCGACTAGCCCGTGA</td>
<td>PCR product includes Rv0306 plus 190bp upstream and 50bp downstream</td>
</tr>
<tr>
<td>Rv0306 Rrs</td>
<td>CGTGCCGGGCCGTAACGT</td>
<td></td>
</tr>
</tbody>
</table>

• **Complementation of ∆PPE2 mutant with the entire PPE2 gene**

The *PPE2* gene was amplified from genomic DNA using the *PPE2compF/PPE2compR* primer pair (Table 2.7). The resulting 2495 bp PCR product, which contained the entire H37Rv *PPE2* plus 600 bp of upstream sequence, was digested with *EcoRV* and cloned into the blunted *XmnI* site of the pMC1r integrating vector (Ahidjo *et al.*, 2011), generating the Km resistant pMC*PPE2comp* complementation vector. The
complementation vector was electroporated into the $\Delta PPE \Delta metE::hyg$ double mutant and transformants selected on 7H10/OADC/B$_{12}$ kanamycin plates. Putative complemented mutants were screened by PCR using $attB$ primers (Barichevy, S., MSc dissertation, University of the Witwatersrand, 2005) to confirm site-specific integration at the $attB$ chromosomal locus.

Table 2.7: Oligonucleotides used to construct complementation vectors

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’-3’)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PPE2_{compF}$</td>
<td>GCAGACCCGATATCCGCT</td>
<td>2495bp with introduced $EcoRv$ site in forward primer; a naturally-occurring $EcoRv$ site is located downstream of the reverse primer</td>
</tr>
<tr>
<td>$PPE2_{compR}$</td>
<td>GCCCGACAATGCAGCGCT</td>
<td></td>
</tr>
<tr>
<td>PQU_{compF}</td>
<td>CGACGATCCGCGCTTTAAAAATGCCGGGTGA</td>
<td>4580bp with $DraI$ introduced in forward and reverse primer</td>
</tr>
<tr>
<td>PQU_{compR}</td>
<td>GGTCGCGGATATTTAATAATGAGTAAGTCCCTA</td>
<td></td>
</tr>
</tbody>
</table>

★The underlined sequence represents a restriction site

- **Complementation utilizing the putative $PPE2$-$cobQ1$-$cobU$ operon**

A second strategy to complement $PPE2$ deletion entailed the introduction of the entire $cobU$-$cobQ1$-$PPE2$ (PQU) operon at the $attB$ locus. The putative operon was amplified using the PQU_{compF}/PQU_{compR} primer pair (Table 2.7) which generated a 4580 bp PCR product that included all three genes and 688 bp of upstream sequence. The PCR product was digested with $DraI$ and cloned into the relevant site of the pMC1r (Ahidjo et al., 2011) integrating vector, generating the Km resistant pMCPQU_{comp} construct. The complementation vector was electroporated into $\Delta PPE2$
\[\Delta \text{met}E::\text{hyg} \text{ and } \Delta \text{cob}U \Delta \text{met}E::\text{hyg}, \text{ then selected on } 7\text{H}10/\text{OAD}C/\text{B}_{12} \text{ Km plates. Transformants were screened for site-specific integration at the } \text{att}B \text{ chromosomal locus with } \text{att}B \text{ primers (Barichievy, S., MSc dissertation, University of the Witwatersrand, 2005).} \]

2.11 Validation of \(\text{B}_{12} \text{ and pseudo-} \text{B}_{12} \) precursors utilizing \(\text{S. enterica} \)

The ability of \(\text{S. enterica} \) to utilize exogenously-supplied cobinamide, adenine and DMB to synthesize \(\text{B}_{12} \) and pseudo-\(\text{B}_{12} \) was assessed according to previously described methods (Anderson et al., 2008). Briefly, a log-phase culture of \(\text{S. enterica} \) was harvested by centrifugation then resuspended in E media (Vogel and Bonner, 1956) that lacked citric acid but possessed ethanolamine (Sigma) as a carbon source hence Non-Citrate Ethanolamine (NCE) media. Cells were inoculated into NCE media (see Appendix B) at an OD\(_{600}\) of 0.1 into the following combinations: 20 nM cobinamide alone, 20 nM cobinamide plus 20 nM adenine, 20 nM cobinamide plus 20 nM DMB, 20 nM \(\text{B}_{12} \) and no supplement. Cultures were incubated at 37°C with shaking and OD\(_{600}\) was measured every 2.5 h.

2.12 Phenotypic characterization of mycobacterial mutants

Mycobacterial mutants were primarily characterized by comparing their growth kinetics in liquid media. The inability to complement growth on solid media with selected supplements (e.g. CoCl\(_2\)) necessitated this. Once optimal precursor concentrations and growth kinetics was established in the fast-growing MSM mutants, this was applied to the panel of MTB.
2.12.1 Characterization of MSM B_{12} mutants

- **Complementation of MSM growth by various**
 MSM B_{12} and methionine biosynthetic mutants; $\Delta metE::hyg$, $\Delta cobK$, $\Delta cobK\Delta metE::hyg$ (Dawes, unpublished) and mc2155 was assessed for their potential to utilize substrates such as vitamin B_{12} (CNCbl), the principal B_{12} component, cobalt, and L-methionine to complement growth. Briefly, 1 ml of a log-phase culture was harvested by centrifugation at 15000 x g for 10 min, then washed twice in 0.05% Tween80 and then resuspended in 7H9/GS liquid media. Two hundred µl of 10-fold serial dilutions were plated on 7H10/GS agar plates containing the desired supplements. After 72 h of incubation at 37°C, CFUs were enumerated. Vitamin B_{12} and L-methionine were utilized at final concentrations of 10 µg/ml (8 µM) and 40 µg/ml (32 µM), respectively. In addition to supplementing growth, a range of cobalt toxicity was established by spotting 10 µl of 10-fold serial dilutions on 7H10/GS agar plates containing either CoCl$_2$ (Sigma-Aldrich) or CoSO$_4$ (Sigma-Aldrich) ranging from 2 µM to 10 mM.

- **Assessment of B_{12} and pseudo-B_{12} synthesis**
 The ability of MSM to utilize precursors to synthesize B_{12} and pseudo-B_{12} was assessed by comparing growth kinetics of the MSM B_{12} auxotroph ($\Delta cobK\Delta metE::hyg$) supplemented with cobinamide, adenine and DMB. Briefly, 50 ml of log-phase culture grown in 7H9/GS plus B_{12} (10 µg/ml), was harvested by centrifugation at 1100 x g for 10 min then washed twice in 0.05% Tween80 and resuspended in Sauton’s minimal liquid medium. Thereafter, cells were inoculated at an OD$_{600}$ of 0.1 in 25 ml of Sauton’s medium in the following combinations: 10 µM cobinamide; 10µM cobinamide plus 10 µM adenine; 10 µM cobinamide plus 10 µM DMB; 10 µg/ml B_{12} and no supplement. Cultures were incubated at 37°C with shaking. Optical density of the cultures was measured every 24 h, and
cultures were subsequently inoculated into fresh media containing the identical supplement. This process was repeated for up to 72 h. After inoculation at 72 h, the optical density of the cultures was measured every 3 h and recorded.

2.12.2 Characterization of MTB mutants

- **Assessment of B\textsubscript{12} and pseudo-B\textsubscript{12} synthesis**
 The ability of a panel of MTB mutants to synthesis B\textsubscript{12} and pseudo-B\textsubscript{12} from precursors was performed in a similar manner to MSM with a few exceptions. Briefly, a 50 ml log-phase culture grown in 7H9/OADC plus B\textsubscript{12} (10 µg/ml), where necessary, was harvested by centrifugation at 1100 x g for 10 min, then washed twice in 0.05% Tween\textsubscript{80} and resuspended in Sauton’s medium. Thereafter, cells were inoculated at an OD\textsubscript{600} of 0.1 in 25 ml of Sauton’s in the following combinations: 10 µM cobinamide; 10 µM cobinamide plus 10 µM adenine; 10 µM cobinamide plus 10 µM DMB; 10 µg/ml B\textsubscript{12} and no supplement. Cultures were incubated flat in tissue culture flasks at 37°C with aeration every second day. Optical density was measured after 8 or 14 days and cultures were then inoculated into exactly the same combinations. Thereafter optical density was measured every second day and recorded.

- **Assessment of putative B\textsubscript{12} transporter in valerate**
 The role of \textit{PPE2} as a putative B\textsubscript{12} transporter was assessed according to the ability of the mutant to transport B\textsubscript{12} when grown on valerate in the presence of the isocitrate lyase inhibitor 3-NP, as previously described (Savvi \textit{et al.}, 2008). Briefly, a 50 ml culture (OD\textsubscript{600} 0.4-0.6) grown in 7H9/OADC plus B\textsubscript{12} (10 µg/ml) where necessary, was harvested by centrifugation at 1100 x g for 10 min then resuspended in valerate
(Appendix B). Cells were inoculated into 25 ml of media containing valerate plus 3-NP (10 µg/ml), valerate plus 3-NP plus B₁₂, or valerate alone, at an OD₆₀₀ of 0.02. Cultures were incubated in tissues culture flasks at 37°C and optical density was measured every 48 h.

2.13 Semi-quantitative analysis of gene expression

The primers used for semi-quantitative RT-PCR were designed using Primer 3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3 www.cgi) and are shown in Table 2.8. All primers were designed to amplify DNA fragments that were internal to the open reading frames of the genes of interest.

2.13.1 RNA isolation

RNA isolation was carried out according to a modified protocol by K. Downing et al. (2004). Briefly, MTB cultures grown to an OD₆₀₀ of 0.4-0.6 were split into two equal aliquots, B₁₂ (10 µg/ml) was added to one and cultures were returned to the incubator. Both cultures were harvested by centrifugation at 1100 x g for 15 min at 0 and 10 h post B₁₂ addition. The pellet was resuspended in 2 ml of TRizol (Sigma, USA), and then transferred to Lysing Matrix B tubes (Qbiogene, USA) and ribolysed three times for 20 s at speed 6 using the Savant Fastprep FP120 with 2 min intervals of cooling on ice between pulses. Samples were centrifuged at 15000 x g for 45 s and supernatants were transferred to Phase Lock gel tubes (Merck) containing 300 µl of chloroform:isoamyl alcohol (24:1). The solution was inverted rapidly for 15 s to mix, then periodically for 2 min thereafter, and centrifuged at 15000 x g for 5 min. The aqueous phase was transferred to microfuge tubes containing an equal volume of
isopropanol and samples were precipitated overnight at 4°C. Nucleic acids were collected by centrifugation at 15000 x g for 20 min, and pellets were washed with 70% ethanol, air-dried and then resuspended in Diethylprocarbonate (DEPC) treated water. Samples were treated with DNase I (Ambion) to eliminate contaminating genomic DNA and then purified with the RNeasy kit (Qiagen) according to the manufacturer’s instructions. The samples were further treated with Turbo DNase I (Ambion) according to the manufacturer’s instructions. The RNA quality was assessed by electrophoresis on a 2% agarose gel containing 0.1% SDS and quantified using the Nanodrop ND-1000 Spectrophotometer.

2.13.2 Reverse transcription

Reverse transcription reactions were carried out using the Enhanced Avian HS RT-PCR kit (Sigma) as per the manufacturer’s instructions. Briefly, primers were annealed to the RNA in a 21 µl reaction consisting of 1 µg of RNA and 0.5 µM of each reverse primer (Table 2.8). The RNA was denatured at 94°C for 90 s, and then annealed at 65°C for 3 min followed by 3 min at 57°C. Thereafter, 10 µl of the annealing mixture was added to the RT reaction which consisted of 1x Avian Myeloblastoma Virus (AMV) RT buffer, 4 mM MgCl₂, 200 µM of each dNTP, 0.6 µl of dimethyl sulphoxide (DMSO), and 2U of Enhanced AMV RT (Sigma). The RNA was reverse transcribed at 60°C for 30 min, denatured at 95°C for 5 min and then cooled to 4°C. Control reactions that lacked the RT enzyme were run in parallel to monitor DNA contamination.
Table 2.8: Oligonucleotides used in RT-PCR

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>metE L</td>
<td>TGGTTCGACACCAACTACCA</td>
</tr>
<tr>
<td>metE R</td>
<td>GCCCTAACGCCCTCTTTGAGT</td>
</tr>
<tr>
<td>sigA L</td>
<td>CCTACGCTACGTGGTGATT</td>
</tr>
<tr>
<td>sigA R</td>
<td>CTGTTGATCACCTCGACCA</td>
</tr>
</tbody>
</table>

2.13.3 PCR

Two µl of the synthesized cDNA (described above) was used as template in a 50 µl PCR reaction that consisted of 1x FastStart PCR buffer without MgCl₂ (Roche), 4 mM MgCl₂ (Roche), 200 µM of each dNTP (Roche), 5 µl of DMSO (Sigma), 0.5 mg/ml Bovine Serum Albumin (BSA, Roche), 0.2 µM of each primer and 2.5 U of FastStart Taq DNA Polymerase (Roche). The reaction was denatured at 94°C for 10 min, followed by 14 cycles of 94°C for 30 s, 65°C for 30 s, 72°C for 30 s and then 24 cycles of 94°C for 30 s, 57°C for 1 min and 72°C for 30 s. PCR products were separated on a 4% agarose gel.
3. Results

The genome sequence of MTB H37Rv (Cole et al., 1998) provided a crucial resource to investigate the biology of this formidable pathogen. Among other previously unknown physiological traits, comparative genomic analysis revealed that MTB possesses a near-complete genetic repertoire for the biosynthesis of B₁₂ (Rodionov et al., 2003). This was intriguing as vitamin B₁₂ biosynthesis represents one of the most complex pathways in nature, and is restricted to certain prokaryotes only. Although consistent with the presence in the genome of three B₁₂-dependent enzymes (Dawes et al., 2003; Warner et al., 2007; Savvi et al., 2008), the inclusion of MTB among the select group of organisms predicted to catalyze de novo B₁₂ biosynthesis suggested that vitamin B₁₂ metabolism might be critical for pathogenesis. Previous studies in the MMRU demonstrated that MTB does not synthesize B₁₂ de novo (Warner et al., 2007; Savvi et al., 2008); however, the possibility exists that transport of the complete cofactor - or salvage and utilization of vitamin B₁₂ precursors from host sources, as well as alternate forms such as pseudo-B₁₂ – might assume increased importance during growth or survival under unfavourable conditions encountered through the course of host infection. Therefore, this study aimed to investigate the functionality of the vitamin B₁₂ biosynthetic pathway in MTB by testing the ability of a panel of mycobacterial mutants to utilize specific B₁₂ precursors and building blocks, including those required for the synthesis of alternate B₁₂ forms. In addition, the presence of a B₁₂-responsive regulatory element – a riboswitch – directly upstream of a putative operon containing PPE2 prompted an investigation of the potential role of the encoded PPE-family protein in B₁₂ homeostasis.
3.1 Investigation into mycobacterial B\(_{12}\) metabolism utilizing MSM as a surrogate for MTB

3.1.1 Identification of putative homologues of the B\(_{12}\) biosynthetic pathway and B\(_{12}\)-dependent enzymes in MSM

Previous studies in the MMRU (Warner and Dawes, unpublished) identified putative homologues of B\(_{12}\) biosynthetic genes in MTB, which enabled the construction of a proposed B\(_{12}\) biosynthetic pathway utilizing a combination of bioinformatics tools (Figure 3.9). In order to establish the appropriateness of MSM as a model for vitamin B\(_{12}\) biosynthesis in MTB, this study was initiated by identifying putative MSM homologues of the predicted MTB B\(_{12}\) biosynthetic genes. To this end, a BLAST homology search (Altschul et al., 1990) of the MSM database (http://tigerblast.tigr.org/cmr.blast/) was performed using MTB query sequences. This analysis revealed minor differences between the B\(_{12}\) biosynthetic gene complements of MSM and MTB. For example, the precorrin-6A synthase encoded by CobF in P. denitrificans (Debussche et al., 1993; Min et al., 1993) is absent in MTB and M. bovis, but there is a putative homologue in MSM that is encoded by MSMEG_5548. In addition, the aminotransferase encoded by CobC in MTB appears to have no homologue in MSM, though it is possible that a non-orthologous protein fulfils this function. Similar to MTB, the MSM B\(_{12}\) biosynthetic pathway contains signatures of aerobic B\(_{12}\) biosynthesis including CobG (MSMEG_3871) which requires molecular oxygen for activity, as well as CobK (MSMEG_3875) and CobJ (MSMEG_3873) which contain conserved residues that are associated with aerobic B\(_{12}\) synthesis (Shearer et al., 1999). In a parallel analysis of B\(_{12}\)-dependent enzymes in the different mycobacteria, it was notable that there appeared to be no homologue of NrdZ in MSM: only MetH and MutAB were found. Furthermore, MSM possesses putative homologues of additional B\(_{12}\)-dependent enzymes that
are not present in MTB: specifically, glutamate mutase (MSMEG_0969), dioldehydratase (MSMEG_6318), small and large subunits of ethanolamine ammonium lyase (MSMEG_1553-1554) and three glycerol dehydratases made up of large and small subunits (MSMEG_1547-1548, MSMEG_6320-6321 and MSMEG_0496-0497). Therefore, while MSM does not possess the same vitamin B\textsubscript{12}-dependent complement that characterizes the MTB genome, this non-pathogenic mycobacterium appears to encode the full machinery required to synthesize B\textsubscript{12} \textit{de novo}.

Based on these genetic similarities, MSM was initially used as a surrogate (1) to investigate the ability of vitamin B\textsubscript{12} (CNCbl) and L-methionine to complement growth of mutants containing disruptions in B\textsubscript{12} and methionine biosynthesis pathways; and (2) to assess the ability of MSM to utilize vitamin B\textsubscript{12} precursors and building blocks including cobinamide, DMB, and adenine to synthesize different forms of B\textsubscript{12}, as well as to optimize the precursor concentrations and experimental conditions before proceeding into MTB.

\textbf{3.1.2 Complementation of MSM mutants with vitamin B\textsubscript{12} and L-methionine}

Mutants of the enteric bacteria, \textit{S. typhimurium} and \textit{E. coli}, which contain disruptions in their B\textsubscript{12}-independent methionine synthases, encoded by \textit{metE} in both cases, are unable to grow unless supplemented with either L-methionine or vitamin B\textsubscript{12} (Davis and Mingioli, 1950; Jeter \textit{et al.}, 1984). This methionine – and, indirectly, vitamin B\textsubscript{12} – auxotrophy established that the alternative, vitamin B\textsubscript{12}-dependent methionine synthase, MetH, was not able to complement loss of the B\textsubscript{12}-independent enzyme in these organisms. In turn, it also suggested that \textit{S. typhimurium} and \textit{E. coli} could not synthesize B\textsubscript{12} \textit{de novo} under standard laboratory conditions. This was
subsequently verified with the demonstration that both organisms synthesize B$_{12}$ under anaerobic conditions only; however, it established an assay – chemical complementation with methionine or vitamin B$_{12}$ – that could be usefully applied to other organisms including MTB (Warner et al., 2007; Savvi et al., 2008).

To investigate the ability of MSM to synthesize vitamin B$_{12}$, a panel of B$_{12}$ and methionine biosynthetic mutants was constructed (Dawes, unpublished) and their ability to utilize B$_{12}$ and L-methionine was assessed in a range of *in vitro* assays. As expected, a ΔcobK mutant grew in the absence of B$_{12}$ supplementation (Figure 3.1), owing to the function of the B$_{12}$-independent methionine synthase, MetE. Unlike the corresponding MTB mutant (Warner et al., 2007), the MSM metE knockout was able to grow with similar kinetics to the parental mc2155 (Figure 3.1). This was surprising and suggested that, in contrast to MTB (as well as *S. typhimurium* and *E. coli*), MSM is capable of *de novo* B$_{12}$ biosynthesis *in vitro* under standard (aerobic) culture conditions. Confirming this interpretation, the double ΔcobK ΔmetE::hyg mutant was unable to grow in the absence of exogenous vitamin B$_{12}$. As a strict B$_{12}$ auxotroph, the MSM ΔcobK ΔmetE::hyg double mutant therefore phenocopies the MTB ΔmetE::hyg mutant (Warner et al., 2007). An interesting feature of the MTB ΔmetE::hyg mutant is that it cannot be supplemented with L-methionine on solid 7H10 agar (Warner, 2006). In another departure from the MTB phenotype, the MSM ΔcobK ΔmetE::hyg double mutant was able to utilize exogenous methionine for growth *in vitro* on 7H10 agar (Figure 3.1). However, the colonies of the ΔmetE::hyg and ΔcobK ΔmetE::hyg mutants appeared significantly smaller in size compared to the wild–type strain, which suggested that methionine could only partially restore growth in strains lacking *metE*.
Figure 3.1: Growth of MSM B_{12} and methionine biosynthetic mutants. A 200 µl aliquot of a 10-fold serial dilution of a log phase culture of each strain was plated on 7H10+GS, 7H10+B_{12} (10 µg/ml), and 7H10+L-methionine (40 µg/ml) and growth was scored after 72 h. Growth of ΔmetE::hyg and ΔcobK mutants was comparable to mc^{2}155 on all substrates, whereas the ΔcobK ΔmetE::hyg double mutant was unable to grow without B_{12} or L-methionine supplementation.
3.2 Can MSM and MTB synthesize alternate forms of the B₁₂ cofactor?

3.2.1 Synthesis of B₁₂ and pseudo-B₁₂ by mycobacterial B₁₂ auxotrophs

Subsequent to the initiation of this project, Anderson et al. (2008) demonstrated the ability of <i>S. enterica</i> to synthesize and utilize an alternate form of B₁₂ known as pseudo-B₁₂. The key difference between B₁₂ and pseudo-B₁₂ lies in the α-axial ligand: in canonical ("orthodox") vitamin B₁₂, this position is occupied by DMB. Substituting DMB with the purine nucleobase, adenine, generates pseudo-B₁₂. Under strict anaerobic conditions, <i>S. enterica</i> is able to synthesize either form - DMB-containing "orthodox" B₁₂ or pseudo-B₁₂. However, during aerobic growth, it must be provided with cobinamide (the corrin ring plus aminopropanol side chain) and DMB in order to synthesize B₁₂. Notably, Anderson and colleagues also showed that the synthesis of pseudo-B₁₂ requires the same set of enzymes (CobT, CobU, CobS and CobC) that are involved in the synthesis of DMB-containing B₁₂ (Anderson <i>et al.</i>, 2008). Their results raised the possibility that mycobacteria might possess a similar ability to synthesize either B₁₂ or pseudo-B₁₂, depending on whether bacilli are provided with cobinamide plus DMB (for orthodox B₁₂) or cobinamide plus adenine (pseudo-B₁₂). If so, this would imply that pseudo- B₁₂ could act as a functional equivalent of B₁₂ in B₁₂-dependent pathways, thereby enabling MTB to utilize alternate B₁₂ forms depending on prevailing environmental (host) conditions.
Figure 3.2: Schematic illustrating predicted phenotypes in assessment of pseudo-B₁₂ synthesis in mycobacteria. MSM ΔcobK ΔmetE::hyg and MTB ΔmetE::hyg both require B₁₂ for growth. Both strains are predicted to grow when supplemented with ‘orthodox’ B₁₂ precursors (cobinamide plus DMB), pseudo-B₁₂ precursors (cobinamide plus adenine) and cobinamide. However, growth on cobinamide alone is indicative of endogenous DMB synthesis. Thus, it is predicated that abrogation of DMB synthesis in MTB will result in the inability of Rv0306D₃₂N₁₆₇G ΔmetE::hyg and ΔRv0306 ΔmetE::hyg to utilize cobinamide alone. Symbols: = equivalent; ✓ growth; ✗ no growth.
3.2.2 Aerobic growth of *S. enterica* supplemented with *B*$_{12}$ and pseudo-*B*$_{12}$ precursors

Before testing the hypothesis that MTB might be able to utilize alternate *B*$_{12}$ forms, the ability to reproduce the experimental protocol developed for *S. enterica* by Anderson *et al.* (2008) was validated. To this end, the growth kinetics of *S. enterica* were assessed using a variation of Vogel and Bonner’s (1955) E media. In their study, Anderson *et al.* (2008) referred to this medium as Non-Citrate E (NCE) media, as it is a minimal medium that is deficient in citrate but contains ethanolamine as carbon source. *S. enterica* utilizes ethanolamine as the sole carbon and nitrogen source under aerobic conditions only if *B*$_{12}$ or, in this case, *B*$_{12}$ precursors are provided (Chang and Chang, 1975). After growth to log phase in LB broth, cultures were harvested and washed before inoculating into NCE medium at an OD$_{600}$ of 0.1. Growth was recorded every 2.5 h. As indicated in Figure 3.3A, *S. enterica* was able to utilize cobinamide plus DMB to synthesize *B*$_{12}$ under aerobic conditions; cobinamide alone was not sufficient for growth. Moreover, an adenine titration was performed which established that the growth of *S. enterica* improved with increasing concentrations of adenine (Figure 3.3B). These data were consistent with the results of Anderson *et al.* (2008), and confirmed that the cobinamide, DMB and adenine supplements provided were active and capable of supporting bacterial growth.
Figure 3.3: Aerobic synthesis of B\textsubscript{12} and pseudo-B\textsubscript{12} by \textit{S. enterica}. \textit{S. enterica} was grown in NCE minimal medium with ethanolamine as the sole carbon and nitrogen source (A) without any supplement (), with 20 nM cobinamide (), and with 20 nM cobinamide plus 20 nM DMB (), and (B) with a fixed concentration of 20 nM cobinamide plus increasing concentrations of 0.1 µM adenine (), 1 µM adenine (), 10 µM adenine (), 100 µM adenine () and 20 nM DMB (). Abbreviations: cbi - cobinamide, AD - adenine.
3.2.3 MSM utilizes B\textsubscript{12} and pseudo-B\textsubscript{12} precursors

In addition to assessing the ability of MSM to utilize B\textsubscript{12} and pseudo-B\textsubscript{12} precursors, this faster growing mycobacterium was used to determine the optimal concentrations of pseudo-B\textsubscript{12} (cobinamide and adenine) and B\textsubscript{12} (cobinamide and DMB) precursors for use in MTB. As noted in Figure 3.9, comparative bioinformatic analyses identified a near-complete B\textsubscript{12} biosynthetic pathway in MSM, including homologues of enzymes required for DMB - and, by inference, adenine - attachment (CobT, CobU, CobS). Rv2228c and MSMEG_4305 are the putative homologues of \textit{S. enterica} CobC in MTB and MSM, respectively. The gene annotated as \textit{cobC} in MTB is homologous to the aminotransferase encoded by \textit{cobD} in \textit{S. enterica}. As MSM synthesizes B\textsubscript{12} \textit{in vitro} (Figure 3.1), the Δ\textit{cobK} Δ\textit{metE}:\textit{hyg} double mutant containing disruptions in both B\textsubscript{12}-independent methionine synthase (\textit{metE}) and Cbl biosynthesis (\textit{cobK}) genes were used as the experimental strain. Deletion of \textit{cobK} was predicted not to impact the ability of MSM to utilize the supplied cobinamide and DMB supplements for B\textsubscript{12} (or pseudo-B\textsubscript{12}) synthesis since this strain retains all components of the late-stage B\textsubscript{12} biosynthetic pathway (Figure 3.9). This includes CobT which possesses a broad specificity (Cheong \textit{et al.}, 2001) and can phosphoribosylate a wide variety of aromatic substrates giving rise to a variety of lower B\textsubscript{12} ligands. When \textit{S. enterica} is grown under aerobic conditions, DMB occupies the β-ligand (Johnson and Escalante-Semerena, 1992) whereas, under anaerobic conditions, it is replaced by adenine (Keck and Renz, 2000). In both cases, this transfer is carried out by CobT. Therefore, CobT should facilitate the assimilation of DMB or adenine into the α-ribazole moiety of adenosyl-cobinamide-GMP (utilizing exogenous supplied cobinamide) (Taga \textit{et al.}, 2007).
As a strict auxotroph, the ∆cobK ∆metE::hyg mutant could be propagated only when grown in media supplemented with vitamin B₁₂ (Figure 3.1 & 3.4A). Therefore, for growth assays in liquid media, cells were harvested during log-phase growth in B₁₂-supplemented medium before washing them to remove any residual B₁₂. Thereafter, the cells were re-inoculated at a starting OD₆₀₀ of approximately 0.1 in fresh Sauton’s minimal medium. However, for the first generation, this proved insufficient: growth was observed in all media even in the absence of supplement (data not shown). This was presumably because cells retained sufficient quantities of residual (intracellular) B₁₂. Therefore, a modified protocol was adopted for all subsequent experiments in which all cultures were serially re-inoculated into fresh Sauton’s medium containing the identical supplement combinations; that is, a culture grown in Sauton’s plus B₁₂ was serially re-inoculated into fresh Sauton’s medium containing B₁₂, another culture grown in Sauton’s only was serially re-inoculated into fresh Sauton’s medium lacking any supplement, etc. This process was repeated every 24 h for a duration of 72 h until all residual (internal) B₁₂ was utilized, as determined by the inability of the ∆cobK ∆metE::hyg mutant to grow in supplement-free medium (Figure 3.4A). It should be noted that, in all MSM growth curves, only three time points are shown for samples grown in medium containing B₁₂ (Figures 3.4A&B and Figures 3.5A&B). This is because the B₁₂-supplemented samples were characterized by robust growth whereas those strains supplemented with other compounds grew with much slower kinetics. Therefore, for easier visualization of the data, the optical density readings for the B₁₂-supplemented samples were excluded from the growth curves after the third time point.
Figure 3.4: Growth kinetics of MSM ΔcobK ΔmetE::hyg mutant when supplemented with B12 and B12 precursors. A log phase culture of ΔcobK ΔmetE::hyg was washed before being inoculated at an OD600 of 0.1 into Sauton’s minimal medium, and then serially re-inoculated into the same medium to deplete internal B12 levels. Optical densities were measured every 3 h for approximately 5 days. A) The ΔcobK ΔmetE::hyg mutant is a B12 auxotroph that requires exogenous B12 (10 µg/ml) (■) for growth, and is unable to grow in media lacking B12 (◆). B) Growth of the ΔcobK ΔmetE::hyg mutant in medium supplemented with cobinamide only (●), with lower concentrations of cobinamide and DMB (▲), with higher concentrations of cobinamide and DMB (△), and with vitamin B12 (■) or no supplement (◆). Data are representative of a single experiment from two independent biological replicates. OD600 readings of B12 supplemented media were curtailed at 94 h. Abbreviations: cbi- cobinamide, AD- adenine.
Importantly, the ΔcobK ΔmetE::hyg mutant was able to grow when supplemented with B$_{12}$ precursors (cobinamide plus DMB), strongly suggesting the ability of MSM to assimilate these into vitamin B$_{12}$ (Figure 3.4B). Similar growth was observed when the mutant was supplemented with the pseudo-B$_{12}$ precursors, cobinamide plus adenine (Figure 3.5A). Although this hinted at the possible synthesis (and utilization) of pseudo-B$_{12}$ by MSM, this observation was not conclusive since the mutant was able to grow on cobinamide alone, perhaps indicating the endogenous production and attachment of DMB to the supplemented cobinamide to produce "orthodox" vitamin B$_{12}$. That is, because the late stage of the B$_{12}$ biosynthetic pathway is retained in the ΔcobK ΔmetE::hyg mutant, it was not possible to determine unequivocally whether cobinamide plus adenine, or cobinamide alone, was utilized as the active cofactor. To resolve that question, an adenine titration was performed utilizing increasing amounts of adenine in combination with a fixed concentration of cobinamide, as described by Anderson et al. (2008). Increasing concentrations of adenine appeared to correlate with improved growth of the ΔcobK ΔmetE::hyg double mutant (Figure 3.5B). Although suggestive of pseudo-B$_{12}$ synthesis, this result was not sufficiently conclusive since the stepwise trend was not perfect and, as observed above, cobinamide alone was associated with good growth. Moreover, the exact nature of the individual chemical species being synthesized cannot be determined utilizing our genetic approach. Instead, a more precise method like high-performance liquid chromatography (HPLC) is required to determine the specific cofactor form, and thus establish whether MSM can indeed synthesize and utilize pseudo-B$_{12}$ as a functional equivalent of B$_{12}$ in key B$_{12}$-dependent metabolic pathways.
Figure 3.5: Growth kinetics of MSM \(\Delta \text{cobK} \Delta \text{metE}::hyg \) when supplemented with \(\text{B}_{12} \) and pseudo-\(\text{B}_{12} \) precursors. A log phase culture of \(\Delta \text{cobK} \Delta \text{metE}::hyg \) was washed before being inoculated at an \(\text{OD}_{600} \) of 0.1 into Sauton’s minimal medium, and then serially re-inoculated into the same medium to deplete internal \(\text{B}_{12} \) levels. Optical densities were measured every 3 h for approximately 5 days. A) Growth with cobinamide only (●), with lower concentration cobinamide plus adenine (▲), with higher concentration cobinamide plus adenine (△), and with vitamin \(\text{B}_{12} \) (■) versus no supplement (♦). B) Differential response to increasing concentrations of adenine: 0.1 \(\mu \text{M} \) adenine (▲), 1 \(\mu \text{M} \) adenine (□), 10 \(\mu \text{M} \) adenine (△), 25 \(\mu \text{M} \) adenine (◇), 50 \(\mu \text{M} \) adenine (+), 100 \(\mu \text{M} \) adenine (◇), plus fixed concentration of cobinamide at 10 \(\mu \text{M} \) (●), no supplement (♦), and 10 \(\mu \text{g/ml} \) vitamin \(\text{B}_{12} \) (■). Data are representative of a single experiment from two independent biological replicates. \(\text{OD}_{600} \) readings of \(\text{B}_{12} \) supplemented media were curtailed at 94 h (A) and 78 h (B). Abbreviations: cbi- cobinamide, AD- adenine.

3.2.4 Synthesis of \(\text{B}_{12} \) and pseudo-\(\text{B}_{12} \) in MTB

Having established effective \(\text{B}_{12} \) precursor concentrations in MSM, these were applied to the MTB \(\Delta \text{metE}::hyg \) mutant (Warner et al., 2007). Analogous to the MSM \(\Delta \text{cobK} \Delta \text{metE}::hyg \) double knockout, MTB \(\Delta \text{metE}::hyg \) can only be propagated in media containing \(\text{B}_{12} \). Therefore, cells were first washed before inoculating at an \(\text{OD}_{600} \) of 0.1 into Sauton’s minimal medium. Cultures were grown for 8 to 14 days to allow depletion of internal \(\text{B}_{12} \), and then re-inoculated into fresh Sauton’s medium containing the same supplement(s). The \(\Delta \text{metE}::hyg \) mutant was able to grow in medium supplemented with cobinamide alone, as well as cobinamide plus DMB (Figure 3.6A). When supplemented with pseudo-\(\text{B}_{12} \) precursors (cobinamide plus adenine) the MTB \(\text{B}_{12} \) auxotroph was also able to grow, as shown in Figure 3.6B.
A) No supplement
- 10 µM cbi
- 10 µM cbi + 10 µM DMB
- Vitamin B12

B) No supplement
- 10 µM cbi
- 10 µM cbi + 10 µM AD
- Vitamin B12
Figure 3.6: Growth kinetics of MTB ΔmetE::hyg mutant when supplemented with B$_{12}$ and pseudo-B$_{12}$ precursors. A log-phase culture of MTB ΔmetE::hyg was washed then inoculated at an OD$_{600}$ of 0.1 into Sauton's medium containing the following: no supplement (♦), cobinamide only (□), 10 µM cobinamide plus 10 µM DMB (▲), 10 µM cobinamide plus 10 µM adenine (◊) and vitamin B$_{12}$ (■). Cultures were grown for 8-14 days to allow internal B$_{12}$ to be depleted before re-inoculating into fresh Sauton's containing the same supplement(s). (A) Growth with B$_{12}$ precursors, cobinamide plus DMB and (B) growth with pseudo-B$_{12}$ precursors, cobinamide plus adenine. Data are representative of a single experiment from three independent biological replicates. Abbreviations: cbi- cobinamide, AD- adenine.

The ability of B$_{12}$ and pseudo-B$_{12}$ precursors to support the function of other B$_{12}$-dependent enzymes which require different forms of the cofactor for activity was also investigated. MetH utilizes MeCbl while both MutAB and NrdZ require AdoCbl. To determine the ability of pseudo-B$_{12}$ to support AdoCbl-dependent growth, an assay was employed that was developed previously in the MMRU (Savvi et al., 2008), and involves the use of the succinate analogue, 3-NP, to inhibit ICL function. Among various alternative odd-chain fatty acids, the catabolism of the five carbon (C$_5$) compound, valerate, as an alternative carbon source generates an equimolar ratio of acetyl-CoA and propionyl-CoA subunits. Propionyl-CoA is metabolized through the methylcitrate and glyoxylate pathways, and its accumulation is toxic to MTB. Wild-type MTB H37Rv is unable to grow on valerate as a sole carbon source in the presence of 3-NP due to toxic build-up of propionyl-CoA (Figure 3.7). However, Savvi et al. (2008) demonstrated that 3-NP-mediated growth inhibition is alleviated by the addition of B$_{12}$ which allows the propionyl-CoA to be metabolized through the MutAB-containing methylmalonyl pathway. Supplementation of the medium with various B$_{12}$ precursors resulted in growth of H37Rv grown in valerate plus 3-NP (Figure 3.7). This suggested that MutAB was functional in these conditions, thereby reinforcing the conclusion that MTB can utilize
Exogenous B$_{12}$ or cobinamide to support the function of both AdoCbl-dependent (MutAB) and MeCbl-dependent (Meth) pathways.

Figure 3.7: Growth kinetics of MTB H37Rv in valerate plus the ICL inhibitor, 3-NP, and supplemented with B$_{12}$ and pseudo-B$_{12}$ precursors. H37Rv was grown in medium containing valerate as the sole carbon source in the presence of 3-NP with vitamin B$_{12}$ (■), without vitamin B$_{12}$ (◇), with 10 µM cobinamide (△), with 10 µM cobinamide plus 10 µM DMB (▲), and with 10 µM cobinamide plus 10 µM adenine (X). Data are representative of a single experiment from three independent biological replicates. Abbreviations: cbi- cobinamide, AD- adenine.
As with MSM, growth of MTB Δ*metE::hyg* with cobinamide plus adenine could not be attributed to pseudo-B$_{12}$ biosynthesis since this mutant was also able to grow in media containing cobinamide alone (Figure 3.6A). Again, this suggested the possibility of endogenous DMB biosynthesis. To assess whether increasing concentrations of adenine would influence growth, titrations with fixed concentrations of cobinamide (5 µM or 10 µM) were performed. Unlike MSM (Figure 3.5), no differential growth was seen in MTB in response to increasing concentrations of adenine with 10 µM cobinamide (Figure 3.8B). However, decreasing the cobinamide concentration to 5 µM appeared to correlate with improved growth of Δ*metE::hyg* in the presence of elevated adenine concentrations (Figure 3.8A). These data also suggest that the higher concentration of cobinamide (10 µM) might exceed the requirements for growth, and so might conceal the benefits to the bacillus of increasing adenine concentrations in this assay.
Figure 3.8: Assessment of pseudo-B$_{12}$ synthesis by MTB $\Delta metE::hyg$ by adenine titration. A log-phase culture of MTB $\Delta metE::hyg$ was washed then inoculated at an OD$_{600}$ of 0.1 into Sauton’s minimal media, grown for 8-14 days until internal B$_{12}$ was depleted, and then re-inoculated into media containing the exactly same supplement(s). Titrations were performed with fixed concentrations of either (A) 5 µM cobinamide or (B) 10 µM cobinamide, plus increasing concentrations of adenine. Data are representative of a single experiment from three independent biological replicates Abbreviations: cbi-cobinamide, AD-adenine.
3.2.5 Investigation of pseudo-B$_{12}$ synthesis in MTB by abrogation of DMB biosynthesis

To determine whether MTB was able to utilize exogenous DMB (or adenine) for the synthesis of B$_{12}$ (or pseudo-B$_{12}$), a genetic approach was adopted that entailed the abrogation of DMB biosynthesis. The rationale for this approach was that, by eliminating the ability of ΔmetE::hyg to synthesize its own DMB, the mutant could be “forced” to utilize exogenous B$_{12}$ (cobinamide plus DMB) or pseudo-B$_{12}$ (cobinamide plus adenine) precursors. To date, no biosynthetic genes have been identified in MTB for the synthesis of the lower ligand, DMB. However, recent studies have implicated BluB in the synthesis of DMB in S. meliloti (Campbell et al., 2006; Taga et al., 2007).
Rv0306 was originally predicted to be a cob(II)yrinic acid a,c-diamide reductase (“cobalt reductase”) in the B_{12} biosynthetic pathway (discussed in section 1.6.3). However, bioinformatic analyses (Rodionov et al., 2003; Campbell et al., 2006; Taga et al., 2007), identified Rv0306 as the putative MTB homologue of *S. meliloti* BluB (Figure 3.9). Further examination of the Rv0306 protein sequence confirmed the conservation of two key residues required for BluB activity: the aspartate at position 32 and the glycine at position 167 (Figure 3.10). Taga et al. (2007) showed that mutations in these residues, either individually or in combination, abrogated DMB synthesis in *S. meliloti*. Although Rv0306 is annotated as an oxidoreductase, it is noteworthy that these residues are more commonly observed in nitroreductases, and the BluB enzyme belongs to a subfamily of the nitroreductase family.
process applied to identify putative Rv0306 mutants. The screening process applied to identify putative Rv0306 mutants entailed first amplifying the 672bp Rv0306 gene together with 190bp

DMB biosynthesis in MTB was targeted by a twofold approach: (1) site-directed mutagenesis of the key residues in Rv0306 (Taga et al., 2007), and (2) targeted knockout of Rv0306. The Rv0306 allele was custom synthesized by Sigma and included the full-length Rv0306 plus substitutions of the key residues: that is, switching the aspartate at position 32 to asparagine (D32N) and glycine at position 167 to serine (S167G) (Figure 3.10). The mutant allele was synthesized with sufficient flanking sequence for homologous recombination and was utilized to construct the p2Rv0306D32NS167G suicide vector (Table 2.2), which was electroporated into the MTB ΔmetE::hyg mutant. The screening process applied to identify putative Rv0306D32NS167GΔmetE::hyg mutants.

Targeting of DMB biosynthesis in MTB by site-directed mutagenesis of key residues

Figure 3.10: Sequence alignment of S. meliloti BluB and MTB Rv0306. Protein sequences were aligned utilizing the PROMALS3D multiple sequence and structure alignment server (http://prodata.swmed.edu/promals3d/promals3d.php). Critical residues mutated by Taga et al. (2007) are indicated by black arrows.
upstream and 50 bp downstream sequence by PCR, and then digesting the resulting PCR product with \(\text{FspI} \) and \(\text{StuI} \) restriction enzymes in order to exploit the restriction sites engineered into each point mutant (Figure 3.11A & B). Positive transformants harbouring both point mutations were confirmed by the presence of 203 bp and 651 bp fragments following \(\text{FspI} \) digest; and 597 bp plus 257 bp from the \(\text{StuI} \) digest (Figure 3.11D & E). The deletion of the \(\text{metE} \) gene in the putative \(\text{Rv}0306^{D32N S167G} \Delta \text{metE}::\text{hyg} \) mutant was re-confirmed by Southern blot (Figure 3.17C).

\[
\begin{array}{c|c|c|c|c|c}
\text{Wild type} & \text{R} & \text{D} & \text{M} & \text{R} & \text{R} \\
\text{D32N} & \text{cga} & \text{aac} & \text{atg} & \text{cgc} & \text{agg} \\
\text{S167G} & \text{gga} & \text{tgg} & \text{gtg} & \text{tcg} & \text{ctg} \\
\end{array}
\]

A) \(\text{Rv0306} \) upstream, D32N, S167G, downstream

-E)

- Figure 3.11 A) D32N, S167G, upstream, downstream

- Figure 3.11 B) D32N, S167G, upstream, downstream

- Figure 3.11 C) D32N, S167G, upstream, downstream

- Figure 3.11 D) D32N, S167G, upstream, downstream

- Figure 3.11 E) D32N, S167G, upstream, downstream
Figure 3.11: Rv0306 with introduced point mutations. Protein sequences with corresponding nucleotide sequences showing that (A) the D32N mutation introduces FspI restriction site, and (B) the S167G mutation introduces StuI restriction site, along with a (C) diagrammatic representation of Rv0306 illustrating point mutations and corresponding restriction sites. Restriction digests confirming point mutations in Rv0306, Lane 1: molecular weight marker VI (Roche), Lane 2: H37Rv, Lane 3: p2Rv0306D32NS167GpG17, Lane 4: Rv0306D32NS167GΔmetE::hyg (D) FspI digest confirming Rv0306 with aspartate to asparagine point mutation. (E) StuI digest confirming Rv0306 with serine to glycine point mutation.

It was hypothesized that abrogation of DMB biosynthesis in Rv0306D32NS167GΔmetE::hyg would render the mutant unable to grow on cobinamide alone and instead dependent on a combination of cobinamide plus DMB (to yield B_{12}) or cobinamide plus adenine (pseudo-B_{12}). However, as shown in Figure 3.12, the Rv0306D32NS167G ΔmetE::hyg mutant was able to grow when supplemented with cobinamide alone. The mutated residues had been selected based on the observations of Taga *et al.* (2007); the formal possibility remained, therefore, that the point mutations introduced into MTB Rv0306 were not sufficient to abrogate BluB function and thus DMB biosynthesis.
Figure 3.12: Mutation of Asp32 and Ser167 does not affect growth of MTB $Rv0306^{D32NS167G} \Delta$metE::hyg on cobinamide. A log-phase culture of MTB $Rv0306^{D32NS167G} \Delta$metE::hyg was washed then inoculated at an OD$_{600}$ of 0.1 into Sauton's minimal medium, grown for 8-14 days until internal B$_{12}$ was depleted, and then re-inoculated into medium containing exactly the same supplement(s). Growth of $Rv0306^{D32NS167G} \Delta$metE::hyg in Sauton's medium with no supplement (●), with B$_{12}$ (10 µg/ml) (■), with 10 µM cobinamide (X), with 10 µM cobinamide plus 10 µM adenine (▲), and with 10 µM cobinamide plus 10 µM DMB (○). Data are representative of a single experiment from three independent biological replicates. Abbreviations: cbi - cobinamide, AD - adenine.

- **Targeting of DMB biosynthesis by deletion of Rv0306**

Site-directed mutagenesis of two key residues in Rv0306 did not affect growth on cobinamide (Figure 3.12). To investigate the possibility that these mutations were insufficient to eliminate Rv0306 function, a double mutant was constructed by deleting the $Rv0306$ gene in the ΔmetE::hyg background (Figure 3.13). The deletion of metE in the ΔRv0306
ΔmetE::hyg double mutant was also confirmed genotypically (Figure 3.17C).

Figure 3.13: Genotypic analysis of the ΔRv0306 ΔmetE::hyg double mutant. (A) Deletion of Rv0306 in the ΔmetE mutant background was confirmed by digesting genomic DNA isolated from H37Rv and ΔRv0306 ΔmetE::hyg with restriction enzyme StuI and probing with the Rv0306 probe described in Table 2.3. Construction of the mutant allele eliminated 313 bp of Rv0306 coding sequence, and hybridization with the Rv0306 probe identified 5370 bp and 1871 bp fragments in the parental H37Rv and 6899 bp fragment in the ΔRv0306 mutant allele. (B) Schematic representation of the parental and mutant allele plus restriction sites; the probe is represented by an open box.
The ΔRv0306 ΔmetE::hyg double mutant grew with wild-type kinetics in Sauton’s minimal medium supplemented with cobinamide alone (Figure 3.14). This result was surprising, and suggested a number of possibilities: for example, MTB might possess an alternative pathway(s) for DMB biosynthesis, or Rv0306 might not be the only enzyme capable of catalysing the flavin destructase reaction. Alternatively, it is possible that an alternate form of B₁₂ is synthesized by MTB using an endogenous α-ligand, such as adenine. This result reinforced the conclusion that detection of B₁₂ or pseudo-B₁₂ synthesis was not possible utilizing a genetic assay alone, and suggested that a more precise biochemical assay would be required to determine the nature of the active cofactor.
Figure 3.14: Phenotypic analysis of the ΔRv0306 ΔmetE::hyg double mutant. ΔRv0306 ΔmetE::hyg was phenotypically assessed by growing to log-phase then washing and inoculating the culture at an OD$_{600}$ of 0.1 into Sauton’s minimal media, with no supplement (♦), with B$_{12}$ (10 µg/ml) (■), with 10 µM cobinamide (◇), with 10 µM cobinamide plus 10 µM adenine (□), and with 10µM cobinamide plus 10 µM DMB (△). Cultures were grown for 8-14 days until internal B$_{12}$ was depleted, then re-inoculated into media containing the same supplement(s) and then OD’s were taken. Data are representative of a single experiment from three independent biological replicates. Abbreviations: cbi- cobinamide, AD- adenine.

3.3 Cobalt supplementation enables growth of a MTB B$_{12}$ auxotroph

MTB encodes a near-complete B$_{12}$ biosynthetic pathway (discussed in section 1.6.3), and appears to lack homologues of cobF and cobST. However, B$_{12}$ biosynthesis has been microbiologically demonstrated in the closely related M. bovis (Karasseva et al., 1977) which, like MTB, appears to lack CobF and CobST but, unlike MTB, also possesses a truncated CobL (Brosch et al., 2002). Therefore, the inability of the ΔmetE::hyg mutant (Warner et al., 2007) to grow without B$_{12}$ supplementation (Figure 3.15A) was intriguing.

Industrial production of B$_{12}$ by various bacterial species is influenced by a variety of conditions; for example, the addition of key precursors to the culture medium has been shown to increase B$_{12}$ yields (Halbrook et al., 1950; Kamikubo et al., 1978; Riaz et al., 2007). Some of these precursors (as seen in section 3.2) also facilitated synthesis of B$_{12}$ in MTB, but the results did not address the question of whether the bacillus is capable of corrin ring synthesis. At the heart of the corrin macrocycle lies a cobalt ion; the supplementation of growth media with cobalt is an absolute requirement in the industrial synthesis of B$_{12}$, as it enhances yields.
Therefore, it was speculated that cobalt availability might be a limiting factor for MTB B$_{12}$ biosynthesis under standard in vitro conditions. To investigate this possibility, the ΔmetE::hyg mutant was grown in Sauton’s minimal medium containing cobalt. As shown in Figure 3.15B, 5 µM cobalt can supplement growth of the MTB B$_{12}$ auxotroph. Although B$_{12}$ biosynthesis had not been demonstrated biochemically, this was a significant result since it suggested corrin ring synthesis in MTB.
Figure 3.15: Exogenous cobalt supports growth of MTB B$_{12}$ auxotroph. A log-phase culture of the ∆metE::hyg mutant was washed then inoculated at an OD$_{600}$ of 0.1 in Sauton’s minimal medium, and grown for 8 to 14 days to allow depletion of internal B$_{12}$. Cultures were reinoculated into fresh medium containing the identical supplement, and optical densities measured. Growth of ∆metE::hyg mutant in minimal medium supplemented with (A) 10 µg/ml B$_{12}$, and (B) 5 µM cobalt. Data are representative of a single experiment from three independent biological replicates.

The near-complete B$_{12}$ biosynthetic pathway in MTB exhibits characteristics of aerobic biosynthesis. As a result, the insertion of cobalt into the corrin macrocycle is predicted to occur late in the pathway. To confirm the notion that cobalt was limiting in standard growth media, and that supplementation with cobalt enabled de novo B$_{12}$ biosynthesis in MTB, a panel of mutants was constructed containing disruptions in key B$_{12}$ biosynthetic genes. An early step in the pathway that involves the conversion of precorrin-6x to precorrin-6y is catalyzed by the CobK-encoded precorrin-6x reductase (Figure 3.9). Deletion of cobK in the ∆metE::hyg background eliminated the ability of the resulting ∆cobK ∆metE::hyg double mutant (Figure 3.17A & C) to grow in minimal medium supplemented with cobalt (Figure 3.16A). In contrast, supplementation with cobinamide, a late-stage product of the pathway, enabled growth (Figure 3.16A)
A)

- No supplement
- 10 µM cbi
- 10 µM cbi + 10 µM DMB
- Cobalt 5 µM
- Vitamin B12

Days

OD₆₀₀

8 11 12 13 14 15 18 22

ΔcobK ΔmetE::hyg

B)

- No supplement
- Cobalt 5 µM
- 10 µM cbi
- 10 µM cbi + 10 µM DMB
- Vitamin B12

Days

OD₆₀₀

14 17 18 20 22 23 27

ΔcobU ΔmetE::hyg
Figure 3.16: Abrogation of predicted early- (CobK) and late-stage (CobU) vitamin B$_{12}$ biosynthetic steps in MTB $\Delta metE::hyg$ suggests the incorporation of cobalt into vitamin B$_{12}$. Log-phase cultures of ΔcobK $\Delta metE::hyg$ and ΔcobU $\Delta metE::hyg$ were washed then inoculated at an OD$_{600}$ of 0.1 into Sauton’s minimal medium, and grown for 8 to 14 days to allow internal B$_{12}$ depletion. Cultures were re-inoculated into fresh media containing the same supplement and optical densities were measured. (A) Inability of ΔcobK $\Delta metE::hyg$ to grow in unsupplemented medium (♦) and medium containing 5 µM cobalt (○) contrasts with growth of this mutant in medium supplemented with 10 µM cobinamide (●), 10 µM cobinamide plus 10 µM DMB (▲), and 10 µg/ml B$_{12}$ (■). (B) The ΔcobU $\Delta metE::hyg$ mutant is able to grow only when supplemented with 10 µg/ml B$_{12}$, but not in medium supplemented with 5 µM cobalt (○), 10 µM cobinamide (●), or 10 µM cobinamide plus 10 µM DMB (▲). Data are representative of a single experiment from three independent biological replicates. Abbreviations: cbi- cobinamide, AD- adenine.

One of the final steps in B$_{12}$ biosynthesis involves the conversion of adenosylcobinamide to adenosyl-cobinamide-GDP in a reaction catalyzed by the bifunctional enzyme, CobU (Figure 3.9). This enzyme represents a crucial step in the synthesis of B$_{12}$ because it functions as both a kinase and guanylyltransferase in AdoCbl biosynthesis. To investigate the effects of late-stage disruptions on the ability of the $\Delta metE::hyg$ mutant to utilize exogenous cobalt, a double mutant was constructed (Warner, 2006) by deleting metE in the cobU background (Figure 3.17B & C). In contrast to ΔcobK $\Delta metE::hyg$ (Figure 3.16A), the resulting ΔcobU $\Delta metE::hyg$ double mutant was unable to grow in minimal medium supplemented with either cobalt or cobinamide (alone or plus DMB) (Figure 3.16B). This strongly supports the conclusion that cobalt is incorporated into vitamin B$_{12}$, and reinforces the idea that supplementation with cobalt is necessary to enable de novo B$_{12}$ biosynthesis by MTB in vitro. In addition, it suggests that the full B$_{12}$ biosynthetic pathway is functional in MTB, despite the absence of clear homologues for every biosynthetic step (discussed in 1.6.3).
Figure 3.17: Genotypic confirmation of methionine and B₁₂ deletion mutants. Genomic DNA was isolated from H37Rv, ΔmetE::hyg, ΔcobK ΔmetE::hyg, ΔPPE2 ΔmetE::hyg, ΔcobU ΔmetE::hyg, and ΔRv0306 ΔmetE::hyg and digested with restriction enzyme BamHI before probing with specific metE, cobK and cobU probes, listed in Table 2.3. Adjacent to each Southern blot is a diagrammatic representation of parental and mutant allele plus restriction sites. The probe is represented by an open black box in each case. (A) Construction of the ΔcobK allele eliminated 214 bp of cobK coding sequence and hybridization with cobK probe identified a 5068 bp fragment in the parental H37Rv and a 3459 bp fragment in the ΔcobK mutant. (B) Construction of the ΔcobU allele eliminated 280 bp of cobU coding sequence and introduced an additional BamHI restriction site in the deletion allele. Hybridization with the cobU probe identified a 5002 bp band in the parental H37Rv and a 1835 bp band in the ΔcobU mutant. (C) Construction of the ΔmetE::hyg allele (hyg cassette represented by red triangle) eliminated 1367 bp of metE coding sequence and introduced an additional BamHI restriction site in the deletion allele. Hybridization with the metE probe identified an 8016 bp fragment in the parental strain and a 34769 bp band in the ΔmetE::hyg mutant.

3.3.1 Genetic complementation of late stage (cobU) B₁₂ auxotroph with PPE2-cobQ1-cobU

The cobU gene lies in a putative three-gene operon with PPE2 and cobQ1 (Tundup et al., 2006) and is only 525 bp in size. A construct carrying a wild-type copy of the putative operon (PPE2-cobQ1-cobU) plus 688 bp 5’ upstream sequence was integrated at the attB site of the ΔcobU ΔmetE::hyg double mutant. As shown in Figure 3.18, complementation with this construct restored the ability of the double mutant to grow in medium supplemented with either cobalt or cobinamide, strongly suggesting that abrogation of CobU function eliminates the ability of MTB to synthesize a viable cofactor.
3.3.2 Inability to supplement the ΔmetE::hyg mutant with cobalt on solid medium

To determine whether cobalt supplementation was similarly effective on solid medium, the ΔmetE::hyg mutant was plated on 7H10/OADC plates containing increasing concentrations of cobalt (Figure 3.19). Surprisingly, even the highest concentration of cobalt failed to complement growth of the ΔmetE::hyg mutant (Figure 3.15B). In contrast, cobinamide was able to support growth of the ΔmetE::hyg mutant on solid medium (data not
shown). The reason for the failure of the $\Delta\text{metE}:\text{hyg}$ mutant to utilize exogenous cobalt for growth on solid media is unclear; however, it is possible that uptake of the metal ion – or even the synthesis of B$_{12}$ - is inefficient and/or impaired under these conditions.
Increasing concentrations of cobalt

<table>
<thead>
<tr>
<th></th>
<th>7H10/OADC</th>
<th>+B₁₂</th>
<th>500nM</th>
<th>2µM</th>
<th>5µM</th>
<th>500µM</th>
<th>1mM</th>
<th>10mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₃₇Rv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔPPE2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔmetE::hyg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔPPE2 ΔmetE::hyg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.19: Inability of cobalt to complement growth of the \(\Delta \text{metE::hyg} \) mutant on solid medium. The effect of increasing concentrations of cobalt on growth of H37Rv, \(\Delta \text{PPE2} \), \(\Delta \text{metE::hyg} \) and \(\Delta \text{PPE2} \Delta \text{metE::hyg} \) was assessed by spotting 10 \(\mu \)l of a 10-fold serial dilution of log phase cultures of each strain on 7H10/OADC supplemented with 500 nM, 2 \(\mu \)M, 5 \(\mu \)M, 500 \(\mu \)M, 1 mM and 10 mM cobalt. Unsupplemented 7H10/OADC and vitamin B\(_{12}\)-supplemented 7H10/OADC plates were included as controls.

3.4 Investigation of the putative role of PPE2 in B\(_{12}\) or cobalt transport/assimilation

In addition to providing evidence of MTB’s inability to synthesize B\(_{12}\) (in the absence of cobalt supplementation), the B\(_{12}\) auxotrophy of the \(\text{metE} \) mutant (Warner et al., 2007) established that MTB is able to transport B\(_{12}\) (Figure 3.15A). This was an important finding; unlike the majority of bacteria that transport B\(_{12}\), there is a complete lack of any identifiable B\(_{12}\)-specific transporter in the MTB genome (Rodionov et al., 2003). Of the genomes analysed by Rodionov et al. (2003), only a small proportion of B\(_{12}\)-utilizing organisms lack an obvious B\(_{12}\) transport candidate, including MTB. However, the bioinformatic analysis conducted by Rodionov and colleagues (2003) did identify a putative \(\text{cbtG} \)-type B\(_{12}\)-regulated cobalt transporter in MTB. According to their results, this function was encoded by \(\text{PPE2} \).

The PE/PPE’s belong to a large family of mycobacterium-specific proteins that consume almost 10% of the coding potential of the MTB genome but whose functional characterization remains elusive (Cole et al., 1998). Of the more than sixty \(\text{PPE} \) genes in MTB, \(\text{PPE2} \) belongs to the PPW subfamily (Van Pittius et al., 2006). As noted previously, PPE2 is the first gene in a predicted operon comprising the B\(_{12}\) biosynthetic genes, \(\text{cobQ1} \) and \(\text{cobU} \). It is also unusual in that its 5’ region contains one of only two B\(_{12}\)-
riboswitches in the MTB genome. The riboswitch is located 133 bp upstream of the predicted PPE2 start codon. As noted in the Introduction (section 1.10), B\textsubscript{12}-riboswitches typically occur upstream of genes involved in transport of B\textsubscript{12} or cobalt (Richter-Dahlfors and Andersson, 1992; Cheng et al., 2011), genes required for B\textsubscript{12} biosynthesis (Lundrigan et al., 1991), or B\textsubscript{12}-independent enzymes with corresponding B\textsubscript{12}-dependent alternatives (Borovok et al., 2006; Warner et al., 2007). Therefore, the presence of a B\textsubscript{12}-riboswitch upstream of the PPE2-cobQ1-cobU locus was strongly suggestive of the involvement of PPE2 in a B\textsubscript{12}-related pathway (Figure 3.9). In light of these observations, the third major component of this study comprised an investigation of the potential ability of PPE2 to function in B\textsubscript{12} or cobalt transport/assimilation in MTB.

3.4.1 Assessment of a role for PPE2 in B\textsubscript{12} transport in MTB

- **Transcriptional analysis of metE in the ΔPPE2 mutant**

To investigate the role of PPE2 in B\textsubscript{12} transport, a targeted knockout was generated (Figure 3.22A). No difference in growth was observed between H37Rv and ΔPPE2 both in the presence and absence of B\textsubscript{12} (data not shown). This was expected since the only B\textsubscript{12}-dependent phenotype identified to date in standard laboratory medium results from impaired methionine biosynthesis (Figure 3.15A); in the ΔPPE mutant, the B\textsubscript{12}-independent methionine synthase, metE, is still intact. Therefore, it was hypothesized that if PPE2 were involved in B\textsubscript{12} transport, the B\textsubscript{12}-mediated down regulation of metE (Warner et al., 2007) would not occur in the ΔPPE2 mutant. Expression of metE was determined in vitamin B\textsubscript{12}-supplemented 7H9/OADC medium using untreated control samples for each time point and normalizing results against sigA expression. Semi-quantitative transcriptional data in Figure 3.20 indicate that metE
transcript levels were increased in the absence of B₁₂ and notably diminished in the presence of B₁₂ after 10 h, as was previously demonstrated in wild-type MTB (Warner et al., 2007). This observation suggested that vitamin B₁₂ was being accessed by the ∆PPE2 mutant and, in turn, this suggested that PPE2 might not have a role in the transport of this cofactor.

![Figure 3.20: RT-PCR analysis of metE expression in a ∆PPE2 mutant in response to B₁₂. Cells were grown for 10 h in 7H9/OADC in the presence (+B₁₂) or absence (-B₁₂) of 10 µg/ml vitamin B₁₂ before harvesting for mRNA extraction. The sigA housekeeping gene and no reverse transcriptase (-RT) controls were included.](image)

- **Assessment of the role of PPE2 in B₁₂ transport utilizing growth on valerate as a carbon source**

Subsequent to the inception of this study, a simple assay (described in section 3.2.4) for growth of MTB on odd-chain fatty acids presented the option of phenotypically differentiating the ∆PPE2 mutant from H37Rv. To investigate the possibility that PPE2 functions in B₁₂ transport, the growth of the ∆PPE2 mutant was compared with wild-type H37Rv in the presence of 3-NP where valerate constituted the sole carbon source (Savvi et al., 2008). The underlying rationale for this experiment was that, were PPE2 the MTB B₁₂ transporter, then a ∆PPE2 mutant should not be able to grow on valerate in the presence of 3-NP, even if supplemented with B₁₂.
Growth of the $\Delta PPE2$ mutant in valerate as a sole carbon source was comparable to that of H37Rv, as illustrated in Figure 3.21A. Wild-type MTB was unable to utilize valerate as sole carbon source in media containing 3-NP (Figure 3.21B) in accordance with observations made by Savvi et al. (2008). However, supplementing media with B_{12} restored growth. Notably, the $\Delta PPE2$ mutant achieved wild-type growth levels under the same B_{12}-supplemented conditions, suggesting that $PPE2$ does not function in B_{12} transport in MTB (Figure 3.21B).
A)

- H37Rv
- PPE2

B)

- H37Rv + 3-NP + B12
- H37Rv + 3-NP - B12
- PPE2 + 3-NP + B12
- PPE2 + 3-NP - B12
Figure 3.21: Growth kinetics of the ΔPPE2 mutant in valerate with 3-NP and B12. (A) H37Rv and the ΔPPE2 mutant were grown in medium containing valerate as the sole carbon source, (B) H37Rv with 3-NP and vitamin B12 (◊) or without vitamin B12 (◊), versus growth of the ΔPPE2 strain on valerate with 3-NP and vitamin B12 (▲), or without vitamin B12 (△). Data are representative of a single experiment from three independent biological replicates.

3.4.2 Assessment of the role of PPE2 in cobalt transport/assimilation

The results above demonstrated that PPE2 does not have a role in B12 transport in MTB. However, the possibility remained that PPE2 might function in cobalt transport, as predicted by Rodionov et al. (2003). Therefore, to investigate the potential role of PPE2 in cobalt transport/assimilation in MTB, an assay was developed that exploited the ability of cobalt to complement the ΔmetE::hyg mutant (Figure 3.15B). To this end, a targeted knockout of PPE2 was generated in the ΔmetE::hyg background to yield a ΔPPE2 ΔmetE::hyg double mutant (Figure 3.17C & Figure 3.22A). This strain was unable to grow in unsupplemented liquid medium (Figure 3.22B), and required the addition of exogenous vitamin B12 for replication. In contrast to the parental metE strain (Figure 3.15B), the ΔPPE2 ΔmetE::hyg double mutant was unable to grow in medium containing cobalt alone (Figure 3.22B), strongly suggesting a role for PPE2 in cobalt/transport assimilation in MTB.
A)

H37Rv ΔPPE2 ΔPPE2ΔmetE::hyg

3122bp 2043bp

B)

- No supplement
- cobalt 5 µM
- Vitamin B12

Graph showing OD600 over days with different conditions.

123
Figure 3.22: Genotypic and phenotypic characterization of PPE2 deletion in H37Rv and the ∆metE::hyg mutant. (A) Southern blot analysis of genomic DNA isolated from H37Rv, ∆PPE2 and ∆PPE2 ∆metE::hyg digested with restriction enzyme, SalI. Hybridization with PPE2 probe (Table 2.3) identified a 3122 bp fragment in the parental H37Rv and 2043 bp in deleted PPE2 gene. Adjacent to the Southern blot is the schematic representation of parental and mutant allele illustrating restriction enzyme sites with PPE2 probe represented by black box. The PPE2 deletion allele eliminated 1100 bp of internal PPE2 coding sequence. (B) Log-phase culture of ∆PPE2 ∆metE::hyg mutant was washed then inoculated at an OD₆₀₀ of 0.1 into Sauton’s minimal media, and grown for 8 to 14 days to allow depletion of internal B₁₂. Culture was re-inoculated into fresh media containing the same supplement(s) and optical densities were measured. The ∆PPE2 ∆metE::hyg double mutant was unable to grow when supplemented with cobalt (5 µM). Data are representative of a single experiment from three independent biological replicates.

As PPE2 appears to lie in a putative operon with key B₁₂ biosynthetic genes, cobQ1 and cobU, complementation of the PPE2 deletion was initially performed by integrating a wild-type copy of the putative operon (PPE2-cobQ1-cobU) plus 688 bp 5’ sequence at the attB locus. As shown in Figure 3.23A, complementation of the ∆PPE2 ∆metE::hyg double mutant with pMCPQUtomp vector containing the full-length PPE2-cobQ1-cobU, restored the ability of the mutant to grow in medium supplemented with cobalt. However, the reversal of this phenotype could not be attributed to PPE2 alone; in particular, it remained possible that deletion of PPE2 (the first gene in the operon) might have had polar effects on the two downstream genes, cobQ1 and cobU, both of which are predicted to catalyze key steps in de novo B₁₂ biosynthesis (Figure 3.9). Importantly, the PPE2 deletion was not in-frame, and this might have abrogated the function of both CobQ1 and CobU, thereby disrupting cobalt-dependent biosynthesis of B₁₂. Therefore, a second complementation strategy was employed which entailed integration of a copy of the wild-type PPE2 ORF containing 5’ sequence but terminating at the native PPE2 stop codon, thus specifically excluding the cobQ1 and cobU genes from the
complementation vector. Importantly, integration of the truncated complementation vector, pMC\textit{PPE2}\text{comp}, at the \textit{attB} site of the $\Delta PPE2$ $\Delta metE::hyg$ mutant (Figure 3.23B) restored the ability of the mutant to utilize cobalt for growth. This result established unequivocally the requirement for functional PPE2 in cobalt utilization in MTB.
Further support for the role of PPE2 in cobalt assimilation is provided by the observation that the ΔPPE2 ΔmetE::hyg mutant was able to utilize cobinamide for growth (Figure 3.24). In contrast, the ΔcobU ΔmetE::hyg mutant (Figure 3.16B) was unable to utilize cobinamide, suggesting that the late stage of the pathway – that mediated by CobU – must be unaffected by the PPE2 deletion allele. That is, there appear to be no polar effects of PPE2 deletion on the downstream B_{12} biosynthetic genes. Together, these data provide the first direct evidence of a role for a PPE protein in cation transport/assimilation; specifically, they strongly suggest a role for PPE2 in cobalt transport/assimilation in MTB.
Figure 3.24: Deletion of \textit{PPE2} does not affect growth on cobinamide in a \textit{ΔmetE::hyg} mutant. Log-phase cultures of \textit{ΔPPE2 ΔmetE::hyg} mutant was washed then inoculated at an OD\textsubscript{600} of 0.1 into Sauton’s minimal media, and grown for 8 to 14 days to allow depletion of internal B\textsubscript{12}. Cultures were re-inoculated into fresh media containing the same supplement(s) and optical densities were measured. \textit{ΔPPE2 ΔmetE::hyg} mutant was unable to grow without supplementation (♦), but was able to grow when supplemented with B\textsubscript{12} (■) and 10 µM cobinamide (▲). Data are representative of a single experiment from three independent biological replicates. Abbreviations: cbi-cobinamide.
4. Discussion

MTB possesses a near-complete B$_{12}$ biosynthetic pathway (as discussed in section 1.6.3), as well as three B$_{12}$-dependent enzymes (Dawes et al., 2003; Warner et al., 2007; Savvi et al., 2008). However, previous work in the MMRU suggested that MTB does not synthesize B$_{12}$ de novo but does appear to transport the vitamin despite the lack of a candidate B$_{12}$-specific transporter (Warner et al., 2007; Savvi et al., 2008). This study investigated the functionality of the B$_{12}$ biosynthetic pathway in MTB utilizing a genetic approach. In addition to vitamin B$_{12}$ (CNCbl), the ΔmetE::hyg mutant could be supplemented with cobinamide or cobalt, thereby providing strong evidence for de novo B$_{12}$ biosynthesis in MTB. Deletion of cobK, whose product is required in the early (CobI) phase of the B$_{12}$ biosynthetic pathway (Figure 3.9), eliminated the ability of the resulting ΔcobK ΔmetE::hyg double mutant to utilize cobalt - but not cobinamide - for growth. In contrast, deletion of the later (CobII) stage enzyme, CobU, in the ΔmetE::hyg background, was associated with the inability to utilize either cobalt or cobinamide for growth. Of particular note was the observation that MTB requires full-length PPE2 in order to assimilate cobalt for growth. PPE2 is a member of the PPW subfamily of PPE proteins; although their function remains enigmatic, the results of this study provide some insight into a role for PPE proteins in the acquisition and assimilation of trace metals in MTB pathogenesis.

This project also explored the possibility that MTB synthesizes an alternate B$_{12}$ form, pseudo-B$_{12}$. While the data suggest differential growth in the ΔmetE::hyg mutant with increasing adenine concentrations, these assays did not allow the synthesis of pseudo-B$_{12}$ to be established unequivocally. This is likely to be the case because the MTB mutants applied in these experiments all retain the ability to generate the α-axial ligand, DMB.
Moreover, the ability of the $\Delta Rv0306 \Delta metE::hyg$ double mutant to replicate in media supplemented with cobinamide alone again highlighted the need to determine pseudo-B_{12} levels in MTB directly utilizing alternative, biochemical techniques.

4.1 MTB does not synthesize B_{12} under standard *in vitro* conditions

MTB does not possess homologues of all genes required for vitamin B_{12} biosynthesis (discussed in section 1.6.3). Despite similar gaps in their respective B_{12} biosynthetic pathways (discussed in section 1.6.2), earlier studies utilizing microbiological assays have reported *de novo* B_{12} biosynthesis in several other mycobacterial species including *M. bovis*, *M. phlei*, MSM and *M. fortuitum*, even when grown in Sauton’s minimal medium (Hendlin and Ruger, 1950; Karasseva *et al.*, 1977; Kamikubo *et al.*, 1978). An earlier study detected trace amounts of B_{12} in the culture filtrate of H37Rv (Aithal and Sirsi, 1964), however this does not necessarily indicate *de novo* B_{12} biosynthesis. In addition, previous studies in the MMRU laboratory were unable to demonstrate *de novo* B_{12} synthesis in MTB under standard *in vitro* conditions (Warner *et al.*, 2007; Savvi *et al.*, 2008). In particular, the inability of the MTB metE knockout to grow without exogenous B_{12} supplementation (Warner *et al.*, 2007) confirmed the *in vitro* essentiality of this gene inferred from genome-wide transposon mutagenesis (Sassetti *et al.*, 2003). Similarly, chemical inhibition of the methylcitrate cycle renders MTB unable to grow in propionate-containing media, thereby indicating that the B_{12} requirements of the methylmalonyl-CoA mutase are not met under standard *in vitro* conditions (Savvi *et al.*, 2008). These results suggest that insufficient (or no) B_{12} is produced by MTB to satisfy the cofactor requirements of these B_{12}-dependent pathways. Quantitative assays of non-industrial bacterial
B$_{12}$ production indicate yields of between 0.2-0.8 µM (Saunders et al., 1952; Musílková, 1961; Kamikubo et al., 1978), which is similar to the levels of intracellular B$_{12}$ assayed in M. bovis and M. phlei grown in Sauton’s medium (Karasseva et al., 1977). In turn, the failure to detect B$_{12}$ production by MTB in vitro suggested that additional factors(s) might be required to stimulate (or increase) B$_{12}$ production under standard laboratory conditions.

4.1.1 Cobalt is a limiting factor in B$_{12}$ biosynthesis in MTB

The amount of B$_{12}$ produced by a bacterium can be influenced by a number of factors, including the nature and quantity of the available carbon and nitrogen sources, pH, aeration, and temperature (Halbrook et al., 1950; Kamikubo et al., 1978; Riaz et al., 2007). In this study, it was demonstrated that the MTB ΔmetE::hyg mutant - which is a strict B$_{12}$ auxotroph - can grow aerobically in liquid medium supplemented with cobalt (Figure 3.15B). This suggests that MTB has retained the ability to synthesize B$_{12}$ provided that cobalt is not limiting. Hendlin and Ruger (1950) first reported that the availability of cobalt is among the factors that increase B$_{12}$ production in microorganisms. In fact, in some enteric bacteria, biosynthesis is enabled (Lawrence and Roth, 1995) and even enhanced by the addition of this metal ion (Cauthen et al., 1966). Interestingly, B$_{12}$ synthesizing mycobacteria including M. bovis and M. phlei also show increased production of B$_{12}$ upon the addition of cobalt (Karasseva et al., 1977). However, the addition of cobalt can be inhibitory to growth at certain concentrations; for example, in the case of M. bovis which requires a lower concentration of cobalt compared to M. phlei. Similarly, the MTB ΔmetE::hyg mutant was able to grow well in the presence of 5 µM cobalt (Figure 3.15B) whereas 10 µM cobalt was inhibitory (data not shown). It has been shown previously that the
provision of lower concentrations of cobalt to B$_{12}$ synthesizing organisms results in as much as 75% of the metal being incorporated into the B$_{12}$ cofactor; however, as the cobalt concentration is increased, utilization of exogenous cobalt decreases sharply (Smith et al., 1952; Perlman and O'Brien, 1954). This is consistent with the fact that, while cobalt is necessary for the synthesis of B$_{12}$ in bacteria, it is extremely toxic in excess.

It was notable that the ability of the ΔmetE::hyg mutant to utilize exogenous cobalt appeared to be specific to experiments carried out in liquid media. When this mutant was grown on 7H10/OADC plates supplemented with 5 µM cobalt, it was unable to grow (Figure 3.19). A range of serially-increasing cobalt concentrations between 5 µM and 500 µM also yielded no growth (data not shown). Even when plates were supplemented with very high concentrations of cobalt – up to 10 mM - no growth was observed. The inability of cobalt to complement growth of the ΔmetE::hyg mutant on solid medium is surprising, yet analogous to the ability of methionine to supplement growth of the same mutant in liquid but not on solid medium (Warner, 2006). These observations might point to an alternate bacillary physiological state that prevails in the different growth media. Alternatively, this result might indicate that PPE2-dependent assimilation of cobalt is inhibited on solid substrates.

4.1.2 Precursor-mediated growth of MTB B$_{12}$ auxotrophs – is the B$_{12}$ biosynthetic pathway functional?

Cobalt insertion is predicted to occur during late-stage B$_{12}$ biosynthesis in MTB (Figure 3.9), which is consistent with aerobic pathways. Evidence supporting the ability of MTB to use exogenously supplied cobalt to synthesize B$_{12}$ was provided in experiments utilizing specific deletion
mutants containing disruptions at certain stages of the B₁₂ biosynthetic pathway, either before \((cobK)\) or after \((cobU)\) the predicted cobalt insertion step (Figure 3.16). The early stage enzyme, CobK, is predicted to occur in \(CobI\) of the pathway, and catalyzes the NADPH-dependent reduction of precorrin-6x to precorrin-6y (Blanche et al., 1992b; Raux et al., 1996). The \(CobI\) part of the B₁₂ biosynthetic pathway – which involves the synthesis of the corrin macromolecule (Figure 3.9) – is absent in \(E. coli\); therefore, this bacterium is unable to synthesize the corrin ring but, if provided with cobinamide, is able to synthesize and attach the α-ligand to form AdoCbl (Raux et al., 1996). Similarly, deletion of \(cobK\) in MTB \(\Delta metE::hyg\) eliminated the ability of the double mutant to grow in liquid medium supplemented with cobalt (Figure 3.16A). This is presumably because of incomplete synthesis of the corrin ring and, therefore, the inability to produce adenosylcobinamide, the precursor to AdoCbl. However, the \(\Delta cobK \Delta metE::hyg\) double mutant could still be supplemented with B₁₂, as well as the late stage precursor, cobinamide (Figure 3.16A). Since the late stage of the pathway was intact in this mutant, this result suggested that MTB has retained the ability to convert exogenously supplied cobinamide to AdoCbl, first through adenosylation to adenosylcobinamide and then by attachment of endogenously produced DMB.

Orthologues of CobK appear to fall into two distinct groups based on whether the enzymes are part of an aerobic or anaerobic B₁₂ biosynthetic pathway; sequence alignments have identified several key residues that are conserved within these groups (Shearer et al., 1999). It has been hypothesized (Scott, 1994) that the sequence differences might reflect the need to bind to different substrates: anaerobic CobK enzymes act on cobalt-containing intermediates whereas, in the aerobic pathway, cobalt is inserted later. An example of this selectivity was provided by the demonstration that \(P. denitrificans\) CobI – which methylates precorrin-2 to
precorrin-3 - was unable to replace the *S. typhimurium* equivalent (*cbiL*), owing to the fact that the true substrate of CbiL is cobalt-precorrin-2 which is not recognised by CobI (Raux *et al.*, 1996). MTB CobK possesses key residues that are conserved in precorrin-6x reductases from aerobic or facultatively aerobic bacteria, including *P. denitrificans* and *Rhodobacter capsulatus* (Shearer *et al.*, 1999). Given the inferred specificity of these enzymes, the ability of the \(\Delta \text{cobK} \Delta \text{metE}::\text{hyg} \) double mutant to be supplemented with precorrin-6y versus cobalt-precorrin-6y would confirm whether cobalt was being inserted at early or late stage in the pathway in MTB. However, this question could not be pursued as neither intermediate is commercially available.

The late stage of the pathway was disrupted by deletion of *cobU*, a gene encoding a multifunctional enzyme of only 174 amino acids which facilitates two distinct transformations. CobU possesses kinase activity to phosphorylate adenosylcobinamide to adenosylcobinamide-phosphate, and then guanylylates adenosylcobinamide-phosphate to from adenosylcobinamide-GDP, which is in turn converted to AdoCbl by CobS (Thompson *et al.*, 1998; Thompson *et al.*, 1999). In *S. enterica*, *cobU* mutants were unable to utilize cobinamide but were able to convert cyanocobinamide-GDP to AdoCbl (O’Toole *et al.*, 1993). Consistent with this proposed function, deletion of *cobU* in the MTB \(\Delta \text{metE}::\text{hyg} \) background resulted in the inability of the \(\Delta \text{cobU} \Delta \text{metE}::\text{hyg} \) double mutant to grow when supplemented with either cobalt or cobinamide (Figure 3.16B). CobS utilizes adenosylcobinamide-GDP and \(\alpha \)-ribazole to form AdoCbl and, in *S. enterica* mutants of *cobS* were shown to be rescued with B\(_{12}\) only (O’Toole *et al.*, 1993). The MTB \(\Delta \text{cobU} \Delta \text{metE}::\text{hyg} \) double mutant was similarly able to utilize CNCbl only, strongly suggesting that disruption of the dual function CobU results in the accumulation of adenosylcobinamide, which is not the cognate substrate of CobS, and so terminates B\(_{12}\) biosynthesis prematurely.
The experiments reported here also confirmed that the active form of the cofactor synthesized from cobinamide supplementation can be utilized to support functionality of another B\textsubscript{12}-dependent enzyme, the methylmalonyl-CoA mutase encoded by \textit{mutAB}. That is, 3-NP-dependent growth inhibition of MTB on fatty acids can be alleviated when supplemented with cobinamide (Figure 3.7), owing to the enabling of MutAB function. It is also important to note that, while cobalt supplementation rescued growth of the \textit{metE} mutant on minimal medium (Figure 3.15B) — a reaction that depends on MeCbl - this metal ion was not able to support the function of MutAB (data not shown), an AdoCbl-dependent enzyme. The reason for this discrepancy is unclear. However, Karasseva \textit{et al.} (1977) noted that, in \textit{M. phlei}, B\textsubscript{12} production was the highest on the 30th day and intracellular cobalt levels were highest on the 23rd day of growth post inoculation, an observation which led the authors to suggest that sufficient cobalt must be accumulated first for optimal yields of B\textsubscript{12} to be produced. The results reported here suggest the possibility that the simultaneous requirement for \textit{de novo} B\textsubscript{12} production against a background of accumulating propionate toxicity might exceed bacillary capacity for B\textsubscript{12} biosynthesis. This interpretation is speculative, however, and will require further investigation utilizing a Δ\textit{prpDC} mutant in order to minimize the potentially confounding effects associated with chemical inhibition of the methylcitrate cycle by 3-NP.

The ability of MTB to utilize cobalt (MetE) and cobinamide (MetE and MutAB) to support the B\textsubscript{12}-dependent enzymes suggests that the active cofactor form is synthesized \textit{de novo}. This in turn implies that the \textit{Cobi}, \textit{CobII}, and \textit{CobIII} stages of the B\textsubscript{12} biosynthetic pathway are functional. That is, MTB is able to synthesize DMB (α-ligand) from a flavin precursor (Campbell \textit{et al.}, 2006; Taga \textit{et al.}, 2007) and then covalently link DMB to either endogenous (if cobalt is supplied) or exogenous cobinamide, plus a phosphoribosyl group, to produce B\textsubscript{12} (Figure 3.9). Together, the results
generated here suggest that the previous inability to detect vitamin \(B_{12} \) biosynthesis in the \(\text{metH} \)-dependent phenotypic assay could have resulted from cobalt limitation in standard laboratory media. However, it is important to reiterate that the \textit{de novo} \(B_{12} \) biosynthetic ability is inferred from genetic analyses: owing to the technical complexities associated with \(B_{12} \) extraction and detection, direct (biochemical) evidence of the active cofactor has yet to be obtained.

4.1.3 Why does MSM not require cobalt supplementation to synthesize \(B_{12} \)?

The ability of the \(\Delta \text{metE}::\text{hyg} \) mutant of MSM to grow without any supplementation suggests that MSM is able to synthesize \(B_{12} \) \textit{in vitro} (Figure 3.1). In contrast, growth of the corresponding MTB \(\Delta \text{metE}::\text{hyg} \) requires that the same medium must be supplemented with 5 \(\mu \text{M} \) cobalt (Figure 3.15B). In a previous study, an elemental analysis of Sauton’s minimal medium by plasma mass spectrometry revealed a cobalt concentration of 5 nM (Campbell \textit{et al.}, 2007). It is likely, therefore, that traces of the metal ion were present in the medium utilized in this study. Analysis of the MSM genome indicates the presence of at least five putative cobalt transport systems (K. Gopinath, personal communication), three of which are homologues of well-defined cobalt transporters including CbiMQO, CbtAB and CorA (Nelson and Kennedy, 1971; Roth \textit{et al.}, 1993; Rodionov \textit{et al.}, 2003). By comparison, MTB appears to possess a homologue of CorA only (Agranoff and Krishna, 2004), as well as two other predicted cobalt transporters, Rv2325c-Rv2326c and PPE2 (Rodionov \textit{et al.}, 2003; Campbell \textit{et al.}, 2007; Rodionov \textit{et al.}, 2009). This suggests that the different lifestyles of the non-pathogenic environmental saprophyte and the obligate human pathogen might require different cobalt scavenging capacity. In turn, the abundance of cobalt transporters
in MSM compared to MTB might ensure that MSM is better able to acquire cobalt *in vitro* and, therefore, does not require supplementation.
Table 4.1: Growth characteristics in liquid media of MTB mutants utilized in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Liquid medium</th>
<th>No supplement</th>
<th>B_{12}</th>
<th>Co</th>
<th>cbi</th>
<th>cbi plus DMB</th>
<th>cbi plus AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>H37Rv</td>
<td>S</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>H37Rv</td>
<td>VL+3-NP</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔPPE2</td>
<td>S</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔPPE2</td>
<td>VL+3-NP</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔmetE::hyg</td>
<td>S</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔcobK ΔmetE::hyg</td>
<td>S</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔPPE2 ΔmetE::hyg</td>
<td>S</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔcobU ΔmetE::hyg</td>
<td>S</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔmetE::hyg ΔPPE2attB::PPE2</td>
<td>S</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔmetE::hyg ΔPPE2 attB::PPE2-cobQ1-cobU</td>
<td>S</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔmetE::hyg ΔcobU attB::PPE2-cobQ1-cobU</td>
<td>S</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ΔRv0306</td>
<td>S</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Rv0306^{32NS167G} ΔmetE::hyg</td>
<td>S</td>
<td>×</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Key:
- **S** – Sauton’s minimal medium
- **VL** – valerate
- **Co** – 5µM cobalt
- **cbi** – cobinamide

(✔️) – indicates growth
(×) – indicates no growth
AD - adenine
3-NP – 3-nitropropionate
DMB – 5, 6- dimethylbenzamidazole
4.2 PPE2 is required for cobalt transport/assimilation in MTB

Riboswitches are mRNA elements (Vitreschak et al., 2003) that serve as ligand-responsive genetic controls to modulate the expression of specific genes in response to changing concentrations of metabolites (Nahvi et al., 2004). These metabolites include amino acids such as lysine and S-adenosylmethionine (Rodionov et al., 2003; Winkler et al., 2003), and metal ions such as magnesium (Dann III et al., 2007) and molybdenum cofactor (Regulski et al., 2008b). In general, B$_{12}$-riboswitches occur upstream of genes falling into three broad categories: those involved in transport of B$_{12}$ or cobalt (Richter-Dahlfors and Andersson, 1992; Cheng et al., 2011), those required for B$_{12}$ biosynthesis (Lundrigan et al., 1991) and, finally, those encoding B$_{12}$-dependent enzymes which possess corresponding B$_{12}$-independent alternatives (Borovok et al., 2006). In all cases, these riboswitches regulate expression of the associated downstream gene(s) in response to B$_{12}$ (Borovok et al., 2006; Warner et al., 2007). In prior work from the MMRU, Warner et al. (2007) identified a riboswitch upstream of MTB metE, and demonstrated its functionality. This was the first riboswitch confirmed in MTB and is one of only two B$_{12}$-riboswitches that have been identified the genome of this organism. The second B$_{12}$-riboswitch is located immediately upstream of PPE2, which is the first gene in a putative three-gene operon comprising two B$_{12}$ biosynthetic genes, cobQ1 and cobU. Based on its association with a B$_{12}$-riboswitch, its genomic context, and the prediction that the PPE2 protein possesses seven trans-membrane segments, Rodionov et al. (2003) predicted that PPE2 encodes a putative cobalt transporter. In S. meliloti, the smb20056 gene – which is similarly associated with an upstream B$_{12}$-riboswitch – was predicted to encode a btuFCD-type B$_{12}$ transporter together with the downstream genes smb20057 and smb20058 (Vitreschak et al., 2003). However, it was recently shown that these genes in fact encode a cobalt transporter (Cheng et al., 2011). In the present
study, the paucity of information available regarding the function of PPE genes, as well as the absence of a clear B_{12} transport candidate in the MTB genome (Rodionov et al., 2003; Warner et al., 2007), motivated our investigation of both possibilities: that is, that PPE2 might function in B_{12} and/or cobalt transport.

A genetic approach was used to confirm that PPE2 is not involved in B_{12} transport in MTB. Firstly, transcriptional analysis demonstrated classic down-regulation of $metE$ expression in a $\Delta PPE2$ mutant in response to B_{12} treatment (Figure 3.20), thereby suggesting the intracellular accumulation of exogenously supplied vitamin B_{12} even in a strain lacking functional PPE2. Secondly, the transport of B_{12} in vitro remained unaffected in a $\Delta PPE2 \Delta metE::hyg$ double mutant, as inferred from the ability of the mutant to grow in B_{12}-supplemented media (Figure 3.24). Finally, in an assay that utilized chemical inhibition of ICL when MTB was grown on fatty acids, growth inhibition of the $\Delta PPE2$ mutant was shown to be alleviated upon B_{12} addition in a manner that was identical to that observed for wild-type H37Rv (Figure 3.21A & B). Together, these data eliminated a role for PPE2 in B_{12} transport. Additionally, PPE2 shares no homology with experimentally characterized B_{12}-specific transporters such as the $E. coli$ BtuBFCD transporter. Furthermore, recent investigations in the MMRU (K. Gopinath et al., manuscript in preparation) have identified a candidate protein which, at least in vitro, appears to function as the sole B_{12} transporter in MTB.

In contrast to the parental $\Delta metE::hyg$ strain (Figure 3.15B), the $\Delta PPE2 \Delta metE::hyg$ double mutant was unable to grow in minimal medium supplemented with cobalt (Figure 3.22B). Bioinformatic analyses predict the existence of three putative cobalt transporters in the MTB genome, encoded by $corA$, $Rv2325c-RV2326c$ and $PPE2$. For this reason, deletion of $PPE2$ in the $\Delta metE::hyg$ mutant might not be expected to affect the ability
of the auxotroph to assimilate cobalt for B_{12} synthesis, as there are two possible alternate transporters available. Moreover, a diversity of non-specific metal uptake systems are present in MTB, four of which are predicted to transport cobalt ions in addition to other metals (Agranoff and Krishna, 2004). In *S. meliloti*, deletion of the cobalt transport system encoded by *cblJKL* resulted in decreased accumulation of cobalt relative to the wild-type strain (Cheng *et al.*, 2011). This result suggested that non-specific transporters - for example CorA, which is predicted to transport magnesium, cobalt and iron (Niegowski and Eshaghi, 2007; Zhang and Gladyshev, 2009) - are able to take up cobalt but are probably not physiologically relevant as they possess a lower affinity for the metal ion.

Cobalt uptake proteins in microorganisms usually exhibit shared architecture (Rodionov *et al.*, 2003; Siche *et al.*, 2010), which facilitates their identification in the genome. For example, Rv2325c, which is proposed to be an energy-coupling transporter (ECF) (Rodionov *et al.*, 2009), has been shown to possess a CbiQ domain. Furthermore, Rv2325c appears to be in an operon with Rv2326c, which itself has a CbiO domain (K. Gopinath; personal communication), and so is suggestive of a potential role in cobalt or even B_{12} transport. However, a similar analysis of PPE2 does not reveal the presence of conserved structural domains characteristic of known or predicted cobalt transporters.

Despite the lack of any conserved structural architecture for PPE2 as a predicted cobalt transporter, the inability of cobalt to restore growth of the $\Delta\text{PPE2}\Delta\text{metE::hyg}$ double mutant was demonstrated in this study (Figure 3.15B & 3.22B). In addition, the phenotypes associated with deletion of *cobK* or *cobU* in the $\Delta\text{metE::hyg}$ mutant background (Figure 3.16), strongly suggest that MTB incorporates exogenous cobalt into B_{12}. The genetic data presented in this study also indicate that PPE2 is critical to this process. Therefore, one might speculate that PPE2 plays an integral
role in regulating the amount of cobalt in the bacterial cell or that it is required to scavenge cobalt and facilitate its delivery to cobalt uptake systems. In the latter option, proteins that facilitate transfer or transport of metal ions to the required site usually possess N-terminal or C-terminal metal binding motifs (Okamoto and Eltis, 2011) which have a high affinity for the metal ion and, in this case, would act as a cobalt store or cobalt trap (Raux et al., 2003). Binding of cobalt is predicted to occur by a histidine-rich motif (Rodionov et al., 2003) which, in the cobaltochelatase encoded by CbiK in Bacillus megaterium, is present in the C-terminal region; deletion of this region results in decreased affinity for the metal ion (Raux et al., 2003). However, in the PPE2 protein sequence, no histidine-rich N-terminal or C-terminal motif could be identified. Additional signatures for cobalt binding sites have been identified (Thilakaraj et al., 2007), yet none of these appears to be present in PPE2. Interestingly, sequence-based analysis of PPE2 utilizing the Support Vector Machine server (Lin et al., 2006) indicates the highest probability of binding zinc, despite the absence in PPE2 of cysteine residues that are typical of zinc binding proteins (A. Zawaira; personal communication).

The arrangement of a PPE2 gene together with an upstream B$_{12}$ riboswitch is conserved among the slow-growing mycobacterial species (MTB, M. ulcerans, M. marinum M. avium, M. paratuberculosis and M. leprae), irrespective of genomic context, but is absent in the fast-growing MSM. PPE2 has been identified in the cell membrane fraction of MTB (Mawuenyega et al., 2005), although the gene does not appear to be differentially expressed in macrophages or in mice infected with MTB (Schnappinger et al., 2003; Talaat et al., 2004; Tailleux et al., 2008). Microarray studies have indicated that PPE2 is down-regulated after 24 h of starvation and induced after 30 minutes in standing cultures of MTB (Betts et al., 2002; Kendall et al., 2004). It is notable, however, that global responses of MTB to other metals such as copper, zinc, and iron do
not indicate any significant up- or down-regulation of PPE2 in the presence of toxic or physiological concentrations of these metals (Rodriguez et al., 2002; Maciag et al., 2007; Ward et al., 2008). Therefore, aside from the prediction of Rodionov et al. (2003) and the data described in this study, there appears to be no other evidence to support a role for PPE2 in cobalt transport/assimilation.

4.2.1 What is the function of the PE/PPE protein family?

The size of the PE/PPE family suggests the possibility of functional redundancy, although this has not been formally demonstrated. It is unclear, therefore, why PPE2 should be specifically required for cobalt/transport assimilation in MTB. That is, why is the phenotype of the PPE2 knockout so profound? An analysis by van Pittius et al. (2006) indicates that PPE3 (Rv0280) of the PPW subfamily is very closely related to PPE2 and, interestingly, PPE3 has been shown to be up-regulated in response to zinc (Maciag et al., 2007). Another member of the PPW subfamily, PPE37, was up-regulated under iron-deficient conditions and was suggested to be a siderophore-type protein involved in iron uptake (Rodriguez et al., 1999; Rodriguez et al., 2002). More recently, this protein has also been implicated in host immune evasion by interfering with proinflammatory cytokines (Daim et al., 2011). Other members of the PPW family include PPE46, whose inactivation was shown to attenuate TB in mice (Camacho et al., 1999) and was shown to be essential in vitro (Sassetti et al., 2003); PPE47, which was up-regulated at least eightfold in human brain microvascular endothelial-cells and has been suggested to be crucial for intracellular survival and endothelial-cell invasion (Jain et al., 2006); and PPE4 and PPE20 which are down-regulated during nutrient starvation (Betts et al., 2002). Thus far, however, studies of proteins belonging to this subfamily do not allude to any specific function in MTB.
Although the exact function(s) of the PE/PPEs is not known, several members of this family have been proposed to be virulence factors (Ramakrishnan et al., 2000; Brennan et al., 2001; Li et al., 2005), and some have even been shown to elicit strong immune responses in animals and humans (Dillon et al., 1999; Skeiky et al., 2000; Okkels et al., 2003; Singh et al., 2005). In a recent study, the SVP subfamily member, PPE17, was shown to augment transcription of HIV-1 by interacting with TLR2 receptors which activated signalling pathways favourable to HIV-1 replication (Bhat et al., 2012). It is interesting, however, that another SVP subfamily protein - PPE18, whose interaction with TLR2 receptors was demonstrated to inhibit host immune responses and thus promote replication of MTB (Nair et al., 2009) - was unable to augment HIV-1 replication by this pathway (Bhat et al., 2012). These studies add to the accumulating evidence which suggests specific, non-redundant roles for the PPE proteins in modulating or altering the immune response by interacting with host immune components. As such, some PE/PPEs appear to be ideally positioned to interact with the host immune system as they have been shown to be cell-wall-associated (Banu et al., 2002; Okkels et al., 2003; Le Moigne et al., 2005) or even partially exposed on the cell surface (Brennan et al., 2001; Sampson, 2011). In turn, this suggests the possibility that they might be secreted by the bacterium into the host cell. Secretion of selected PE/PPE proteins occurs in an ESX-5 dependent manner in M. marinum (Abdallah et al., 2006; Abdallah et al., 2008; Abdallah et al., 2009) and, more recently, this system was shown to be important for cell wall integrity and virulence in MTB (Bottai et al., 2012). Notably, the ESX-3 cluster appears to be regulated by iron and zinc in MTB (Maciag et al., 2007), suggesting involvement of this system in maintaining homeostasis of these metal ions. Although the PE/PPEs have largely been implicated in antigenic variation and disease pathogenesis (Sampson, 2011), some members of this family were demonstrated to have fibronectin-binding properties (Espitia et al., 1999). There are even
reports of enzymatic functions, such as the phosphoglycerate mutase activity associated with PE_PGRS11 (Chaturvedi et al., 2010).

It is tempting to speculate that the various subfamilies might be separated according to a broad function – that is, can a role in metabolite/metal ion homeostasis be generally ascribed to members of the PPW subfamily, whereas SVP subfamily members might be broadly involved in immune modulation? This might be too simplistic, and further analysis is required. In summary, therefore, it appears that proteins belonging to this intriguing family appear to have diverse functions which are not readily predicted by bioinformatic analyses of intrinsic properties including sequence or structural features, or more global characteristics such as genomic context or transcriptional regulation.

4.3 A role for B$_{12}$ or cobalt in MTB pathogenesis?

In humans, only two enzymes require B$_{12}$ for activity: methylmalonyl-CoA mutase and methionine synthase (Martens et al., 2002). Vitamin B$_{12}$ deficiency owing to low intake or malabsorption has been shown to cause pernicious anaemia and neurological dysfunction, and has also been linked with cardiovascular disease (McCaddon et al., 1994; Pancharuniti et al., 1994; Clarke et al., 1998; Choi and Mason, 2002). The daily required intake of vitamin B$_{12}$ in humans is estimated at 0.9-2.4 µg. Since this essential micronutrient is synthesized by selected microorganisms only, it is acquired through the consumption of foods like milk, eggs, fish and meat (Watanabe, 2007). As a result, elaborate and complex mechanisms of absorption, transport, and cellular uptake of B$_{12}$ exist in humans to ensure that the cofactor is available in the sub-cellular locations in which the B$_{12}$-dependent enzymes operate.
Following ingestion, food-bound B_{12} is released in the stomach by the action of hydrochloric acid, and then immediately bound by haptocorrin (HC), the chaperone which protects it from chemical denaturation in the harsh acidic environment (Banerjee, 2006). Bound B_{12} is transported to the duodenum where the B_{12} is liberated from HC by pancreatic protease, and immediately captured by another chaperone, intrinsic factor (IF), in an IF-Cbl complex (Banerjee et al., 2009). The IF-Cbl complex is subsequently transported from the duodenum and, after degradation of IF, B_{12} is taken up in the bloodstream, where it can attach to either HC or transcobalamin II (TCII) (Morkbak et al., 2006). Although the bulk of B_{12} is bound to HC (~80%), TC bound B_{12} (TCII-Cbl) facilitates uptake into cells (Hall, 1977; Morkbak et al., 2006). From the bloodstream, the TCII-B_{12} complex is taken up into the cell via receptor-mediated endocytosis into the lysosome (Youngdahl-Turner et al., 1978). The acidic environment within the endocytic lysosome digests the TCII-Cbl complex, and releases the B_{12} into the cytoplasm where it becomes available for the B_{12}-dependent methionine synthase and mitochondrial methylmalonyl-CoA mutase (Youngdahl-Turner et al., 1978; Youngdahl-Turner et al., 1979; Padovani et al., 2008).

As described above, the passage of B_{12} through the body via multiple chaperones terminates with lysosome-mediated delivery of the cofactor to target cells. It is tempting, therefore, to speculate that B_{12} might effectively be “delivered to the doorstep” (R. Banerjee, personal communication) of MTB in the context of intracellular infection. In this regard, it is instructive to recall that the methylcitrate pathway is dispensable in vivo in the mouse model of TB infection, an observation which suggests the functioning of the B_{12}-dependent methylmalonyl pathway as an alternative route for propionyl-CoA detoxification (Muñoz Elías et al., 2006; Savvi et al., 2008). In turn, this points to the potential availability of vitamin B_{12} during infection – at least in mice – whether
synthesized endogenously or acquired from the host. The amount of B$_{12}$ available *in vivo* varies with diet; for this reason, no specific intracellular B$_{12}$ concentration has been determined, although the total amount of stored B$_{12}$ is estimated at 2-4 mg in adults, of which 30-60% is stored in the liver (McLaren, 1981). It remains uncertain how much of this is available at the site of infection (if any) and whether MTB is able to access intracellular vitamin B$_{12}$. Interestingly, in certain vegetarian populations, low B$_{12}$ levels have been associated with increased risk of TB (Chanarin and Stephenson, 1988; Strachan *et al.*, 1995; Yajnik *et al.*, 2006). Conversely, enhanced growth of MTB is observed *in vitro* upon addition of B$_{12}$ (Savvi, 2009). While these observations might be interpreted as having conflicting implications for the role of B$_{12}$ in pathogenesis, it must be borne in mind that B$_{12}$ deficiency is likely to have multiple effects on host immune function. Therefore, extrapolating a result from a population with a very specific dietary bias, as well as a hallmark B$_{12}$ deficiency, is complicated. In this regard, it would be interesting to investigate the potential association with TB susceptibility of any of the eight vitamin B$_{12}$ complementation groups (Banerjee *et al.*, 2009) which define inherited disorders in B$_{12}$ metabolism.

The demonstration in this study that cobalt can complement growth of a MTB B$_{12}$ auxotroph (Figure 3.15B) similarly raises an important question pertaining to the availability of cobalt during infection. Studies on the elemental analysis of phagosomes have identified other metals (Wagner *et al.*, 2005; Wagner *et al.*, 2006), but cobalt is a trace nutrient and as such is mainly available in B$_{12}$. It appears, therefore, that further work is required to determine the exact availability of this metal ion to MTB *in vivo*.
4.4 Can MTB synthesize and utilize pseudo-B\textsubscript{12}?

The inferred ability of MTB to adapt to multiple environments \textit{in vivo} suggested that the bacillus might be able to utilize alternate B\textsubscript{12} cofactors, including pseudo-B\textsubscript{12}, in which adenine substitutes for DMB as \(\alpha\)-axial ligand (Figure 1.1). Titrations performed with adenine and 10 \(\mu\)M cobinamide showed no differential growth in the MTB \textit{metE} mutant (Figure 3.8B). However, it was noted that supplementing the medium with 5 \(\mu\)M cobinamide resulted in reduced growth in combination with concentrations of 0.01 \(\mu\)M and 0.1 \(\mu\)M adenine — in contrast to 5 \(\mu\)M cobinamide alone (Figure 3.8A). Thereafter, a slight differentiation in growth of MTB in response to 5 \(\mu\)M cobinamide and increasing concentrations of adenine was observed (Figure 3.8A). A similar trend was observed in the MSM adenine titrations (Figure 3.5B), where 10 \(\mu\)M and 25 \(\mu\)M adenine (plus 10 \(\mu\)M cobinamide) resulted in decreased growth compared to 10 \(\mu\)M cobinamide alone. Again, improved growth was associated with increasing concentrations of adenine and 10 \(\mu\)M cobinamide (Figure 3.5B). Adenine toxicity has been demonstrated in \textit{E. coli} (Levine and Taylor, 1982), but it is unlikely that the decreased growth observed with low-dose adenine can be attributed to this effect: both MSM and MTB were able to tolerate much higher concentrations (100 \(\mu\)M) of adenine which resulted in improved growth of the B\textsubscript{12} auxotrophs when provided in combination with cobinamide. It is possible that lowering the concentration of cobinamide further will allow better de-convolution of this phenotype, which is suggestive of a regulatory switch.

Based on the results presented here, it is only possible to conclude that supplementation with adenine and cobinamide in either MSM (\(\Delta\text{cobK} \Delta\text{metE::hyg}\)) or MTB (\(\Delta\text{metE::hyg}\)) was only slightly suggestive of pseudo-B\textsubscript{12} synthesis. Instead, it appears that an alternative biochemical approach will be required to differentiate the specific chemical species; for example,
direct detection by HPLC (Anderson et al., 2008). This approach was not pursued in this project owing to the technical complexities (and associated health and safety risks) of B_{12} extraction and detection, which involves the use of cyanide. Furthermore, pseudo-B_{12} is not commercially available and extraction would therefore require isolation of the alternate cofactor from an organism that synthesizes pseudo-B_{12}. A recent study by Szterk and colleagues (2012) described an alternative technique of extracting B_{12} which, although not as sensitive, does offer the possibility of qualitative assessment of the various B_{12} forms in MTB.

4.4.1. Deletion of Rv0306 in MTB

The genetic approach utilized in this study to elucidate whether MTB has the capacity to synthesize pseudo-B_{12} was based on the assumption that abrogation of BluB function would eliminate the ability of the $metE$ mutant to utilize cobinamide for growth in minimal medium. This approach relied heavily on the prediction that $Rv0306$ encodes the MTB $bluB$ homologue (Campbell et al., 2006; Taga et al., 2007) and, further, that MTB does not possess an alternative pathway for DMB biosynthesis. The BluB enzyme was demonstrated both experimentally (Pollich and Klug, 1995; Campbell et al., 2006) and biochemically (Taga et al., 2007) to be responsible for the aerobic conversion of flavin mononucleotide to DMB in other organisms. In addition to bioinformatic searches carried out in this study, multiple other studies (Rodionov et al., 2003; Campbell et al., 2007; Taga et al., 2007) identified Rv0306 as the candidate BluB in MTB. It was notable that deletion of $Rv0306$ in the $\Delta metE::hyg$ mutant background did not inhibit the ability of MTB to utilize cobalt (data not shown), thereby invalidating the previous prediction of Rv0306 as a putative cobalt reductase (Figure 3.9). It was surprising, however, that the $\Delta Rv0306 \Delta metE::hyg$ double mutant was able to grow when supplemented with
cobinamide alone (Figure 3.14), since this implied an alternative mechanism for DMB biosynthesis, or that MTB was able to counter the loss of this enzyme by producing a pseudo-B\textsubscript{12} form (or forms) using an alternative, endogenous \(\alpha\)-ligand.

This observation was, however, consistent with predictions made by Anderson and colleagues: in their paper describing the elucidation of pseudo-B\textsubscript{12} biosynthesis in \textit{S. enterica}, the authors postulated that the phenotypic identification of the effects of disrupted DMB synthesis was expected to be difficult owing to the fact that, in the absence of DMB, corrinoid synthesis would shift to pseudo-B\textsubscript{12} production, without any impairment of growth (Anderson \textit{et al.}, 2008).

\textit{S. enterica} synthesizes pseudo-B\textsubscript{12} under anaerobic conditions (Keck and Renz, 2000), and “orthodox” B\textsubscript{12} under aerobic or microaerophillic conditions when provided with cobinamide (Johnson and Escalante-Semerena, 1992). \textit{S. enterica} appears not to possess a \textit{bluB} homologue (Keck \textit{et al.}, 1998; Anderson \textit{et al.}, 2008), raising the possibility that another enzyme might carry out this function, which might be present in MTB as well. \textit{M. leprae} has undergone extensive genome reduction (Cole \textit{et al.}, 2001) but is in possession of the late stage B\textsubscript{12} biosynthetic enzymes, including CobS and CobT, excluding a putative \textit{bluB} homologue. \textit{M. leprae} is also thought to be an excellent adenine scavenger (Wheeler, 1987), which suggests that pseudo-B\textsubscript{12} might be a relevant cofactor in different mycobacteria. As noted above, a more precise method such as the use of HPLC (Anderson \textit{et al.}, 2008) or equivalent (Szterk \textit{et al.}, 2012) to detect the exact chemical species utilized by different mycobacteria will be required to confirm this prediction.
4.5 Concluding remarks

Utilizing a purely genetic approach, this study has established that cobalt supplements growth of the MTB \textit{metE} mutant, a B\textsubscript{12} auxotroph. However, fundamental questions remain, most of which relate to the role of vitamin B\textsubscript{12} biosynthesis in MTB pathogenesis. These include: does MTB synthesize B\textsubscript{12} \textit{in vivo}? If so, how much of cobalt is available and can MTB access this metal ion from the host? Does MTB utilize host transporters or chaperones? Alternatively, if B\textsubscript{12} is acquired from the host – how much is available and under what conditions is this cofactor accessed?

Although the phenotypes associated with deletions of genes predicted to occur in early and late stages of the B\textsubscript{12} biosynthetic pathway implied that cobalt was being utilized for \textit{de novo} vitamin B\textsubscript{12} synthesis, the use of radiolabelled cobalt would better aid in confirming accumulation and transport of this metal ion in MTB. This would be especially useful in the presence and absence of functional PPE2, to confirm the role of this gene in cobalt transport/assimilation. Furthermore, transcriptional analyses by microarray of MTB in response to cobalt could possibly elucidate regulation of PPE2 to this metal ion, although this is less certain based on similar transcriptional profiling of PPE genes (described in section 1.11.1). Given the inferred role of PPE2 in cobalt transport/assimilation, a recombinant form PPE2 might better elucidate cellular localization, and would offer the possibility of gaining structural insight into this unexpected function. Also, the predicted cobaltochelatase function of CysG could be explored by deleting \textit{cysG} in the \textit{ΔmetE::hyg} background; this might be predicted to phenocopy the \textit{ΔcobK ΔmetE::hyg} and \textit{ΔPPE2 ΔmetE::hyg} mutants if \textit{cysG} is required for cobalt insertion in MTB. Lastly, chemical differentiation of the exact species of B\textsubscript{12} synthesized when \textit{ΔmetE::hyg} is supplemented with cobalt, and when \textit{ΔRv0306 ΔmetE::hyg} is supplement
with cobinamide alone or in combination with adenine or DMB, will better resolve the exact nature of the cofactor synthesized by MTB.
5. Appendices

Appendix A: List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2TY</td>
<td>Tryptone Yeast broth</td>
</tr>
<tr>
<td>3-NP</td>
<td>3-nitropropionate</td>
</tr>
<tr>
<td>AD</td>
<td>Adenine</td>
</tr>
<tr>
<td>AdoCbl</td>
<td>Adenosylcobalamin</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>aph</td>
<td>Aminoglycoside phosphotransferase, confers resistance to kanamycin</td>
</tr>
<tr>
<td>BCG</td>
<td>bacille Calmette-Guérin</td>
</tr>
<tr>
<td>bla</td>
<td>Gene conferring resistance to ampicillin</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>cbi</td>
<td>Cobinamide</td>
</tr>
<tr>
<td>Cbl</td>
<td>Cobalamin</td>
</tr>
<tr>
<td>CNCbl</td>
<td>Cyanocobalamin (vitamin B<sub>12</sub>)</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium bromide</td>
</tr>
<tr>
<td>d</td>
<td>Day(s)</td>
</tr>
<tr>
<td>DMB</td>
<td>5,6-dimethylbenzamidazole</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DOTS</td>
<td>Directly Observed Therapy – Short Course</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminotetraacetic acid</td>
</tr>
</tbody>
</table>
fM femtomolar
\(g\) Gravitational force
\(g\) grams
GS Glucose salt
h Hour(s)
HC Haptocorrin
HCl Hydrochloric acid
HIV Human Immunodeficiency Virus
HPLC High-performance liquid chromatography
\(hyg\) Gene conferring resistance to hygromycin B
Hyg Hygromycin B
ICL Isocitrate lyase
IF Intrinsic factor
IRIS Immune Reconstitution Inflammatory Syndrome
Km Kanamycin
LA Luria-Bertani agar
\(lacZ\) Gene encoding β-galactosidase
LB Luria-Bertani broth
LTBI Latent tuberculosis infection
MDR Multidrug Resistant
MeCbl Methylcobalamin
min Minutes
ml Mililitre
MTB Mycobacterium tuberculosis
NaCl Sodium chloride
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaNO₂</td>
<td>Sodium nitrite</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NCE</td>
<td>Non-citrate ethanolamine</td>
</tr>
<tr>
<td>nt</td>
<td>Nucleotide</td>
</tr>
<tr>
<td>OAA</td>
<td>Oxaloacetate</td>
</tr>
<tr>
<td>OADC</td>
<td>Oleic acid-albumin-dextrose-catalase</td>
</tr>
<tr>
<td>OD₆₀₀</td>
<td>Optical density at 600 nanometre wavelength</td>
</tr>
<tr>
<td>OHCbl</td>
<td>Hydroxycobalamin</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PDIM</td>
<td>Phthiocerol dimycocerosate</td>
</tr>
<tr>
<td>PEP</td>
<td>Phosphoenolpyruvate</td>
</tr>
<tr>
<td>PEPCK</td>
<td>Phosphoenolpyruvate carboxykinase</td>
</tr>
<tr>
<td>RD1</td>
<td>Region of difference-1</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcription/transcriptase</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>sacB</td>
<td>Gene encoding levansucrase</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosyl-L-methionine</td>
</tr>
<tr>
<td>sdH₂O</td>
<td>Sterile distilled water</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecylsulphate</td>
</tr>
<tr>
<td>SL</td>
<td>Sulfolipid</td>
</tr>
<tr>
<td>Suc</td>
<td>Sucrose</td>
</tr>
<tr>
<td>TAG</td>
<td>Triacylglycerol</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricaprylglycerol</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TCII</td>
<td>Transcobalamin II</td>
</tr>
<tr>
<td>TDR</td>
<td>Totally Drug Resistant</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>Tween</td>
<td>Polyoxyethylene sorbitan monooleate</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>v/w</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XDR</td>
<td>Extensively Drug Resistant</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-D-thiogalactopyranoside</td>
</tr>
</tbody>
</table>
Appendix B: Culture media

All media are made up to a final volume of 1 litre with deionised water, and sterilised by autoclaving at 121°C for 20 minutes, unless otherwise stated.

Luria-Bertani Broth (LB)
5g yeast, 10g tryptone, 10g sodium chloride

Luria-Bertani Agar (LA)
5g yeast, 10g tryptone, 10g sodium chloride, 15g agar

2TY
5g sodium chloride, 10g yeast extract, 16g tryptone

Middlebrook 7H9
2ml glycerol, 4.7g Difco™ Middlebrook 7H9 broth

Middlebrook 7H10
5ml glycerol, 19g Difco™ Middlebrook 7H10 agar

Sauton’s minimal medium (pH 7.2)
4 g asparagine, 0.5 g magnesium sulphate, 2 g citric acid, 0.5 g potassium dihydrogen orthophosphate, 0.05 g ammonium ferric citrate, 48ml glycerol. Sterilised by filtration.

Valerate
4.7g DifcoTM Middlebrook 7H9 broth, 0.85g NaCl, 5g BSA, 1ml valeic acid. pH 6.8; sterilise by filtration.
NCE medium

0.2g magnesium sulphate, 10g dipotassium phosphate, 3.5g 0.2g magnesium sulphate, 10g dipotassium phosphate, 3.5g Ammonium sodium phosphate dibasic tetrahydrate, 3.9g ethanolamine hydrochloride. pH7.0; sterilise by filtration
6. References

protein secretion, reduction of cell wall integrity and strong attenuation. Molecular microbiology.

macrophages with divergent effects on naive T cell polarization. The Journal of Immunology 168: 4636.

Mycobacterium avium subsp hominissuis MAV_2928 gene is associated with vacuole remodeling in macrophages. BMC microbiology 10: 100.

nitric oxide synthase recruitment to phagosomes during macrophage infection. Infection and Immunity 72: 2872.

PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. The Journal of Immunology 183: 6269.

2000. T cell expression cloning of a Mycobacterium tuberculosis gene encoding a protective antigen associated with the early control of infection. The Journal of Immunology 165: 7140.

Tundup, S., Y. Akhter, D. Thiagarajan and S. E. Hasnain. 2006. Clusters of PE and PPE genes of Mycobacterium tuberculosis are organized in operons: Evidence that PE Rv2431c is co-transcribed with PPE Rv2430c and their gene products interact with each other. FEBS letters 580: 1285-1293.

Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. The Journal of Immunology 174: 1491-1500.

