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CHAPTER   ONE 

INTRODUCTION 

1.1 Background  

   Hair is a defining feature of mammals (Bower and Curry, 1983; Inagaki, 1986; 

Amman et al., 2002), the biological structure of which is well known (Montagna 

and Ellis, 1957; Lyne and Short, 1965; Montagna and Dobson, 1967; Hardy, 

1992; Robbins, 1994; Schweitzer, 2011). Numerous coats of mammals, except for 

humans and sheep, consist of several types of hair, the main components being the 

guard hair and under fur (Kondo, 2000; Teerink, 2003). Guard hair is that long 

and stiff hair with a thickening in the distal part, called the shield and a thinner 

proximal part, the shaft (Teerink, 2003). The differing hair characteristics among 

mammals are recognized by the differences in guard hair, based on the colour and 

morphological characteristics of the cuticle and medulla (Kondo, 2000). 

Underhair is thinner, less stiff and has an undulating appearance (Teerink, 2003). 

 

   By combining the main features of cuticular scales, medulla, and transverse 

sections of hair, researchers have managed to develop keys to identify hairs to 

taxon (Keller, 1978, 1980, 1981a, 1981b; Keogh, 1979, 1983, 1985; Taylor, 1985; 

Thompson et al., 1987; Oli, 1993; Wallis, 1993; Teerink, 2003). Hair morphology 

has been used to identify mammals to order, family, or genus level since the 

beginning of the last century (Hausman, 1920; Cole, 1924), and even though 

much is known about European mammalian hair, relatively little research has 



2 

 

been conducted on the morphology of modern and fossil southern African 

animals. 

 

   Hair identification provides a wealth of information in criminology, 

epidemiology, archaeology, ecology and forensic investigations. Many chemicals 

and biological substances that accumulate in hair can be detected and measured 

and this makes hair samples good resource biomaterials in forensic science and 

physical anthropology (Chang et al., 2005). Furthermore, the basic chemical 

composition of hair is not affected by changes in blood chemistry or by exposure 

to chemicals after hair formation (Pichini et al., 1996; Palmeri et al., 2000; Daniel 

et al., 2004). Because of this, hair samples are often used for autopsy toxicology, 

including the detection of drug abuse, personal identification and the forensic 

genetic identification of relatives (Miller et al., 1997; Zaiats and Ivanov, 1997; 

Lebedeva et al., 2000). According to Wilson et al. (2007), the hair shaft does not 

undergo any post-keratinization biogenic change in contrast to bone and teeth, 

which are commonly analysed human tissues in bioarchaeology.  

 

    In addition to the benefits of studying modern hair, the scientific study of 

ancient hairs can contribute evidence important for addressing questions about the 

past (Bonnichsen et al., 2001). Hairs found in archaeological burials are a unique 

resource for capturing a snapshot of life (Chang et al., 2005), and the morphology 

of hair such as scale pattern, medulla, cross-section and colour patterns has 

provided significant information on species present at these sites (Appleyard, 
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1978; Budworth et al., 1986; Brothwell and Grime, 2003). Ancient mammalian 

hairs also provide insight into a site‟s function, the nature of the environment, 

species evolution, and the relation between people and animals in the past (Davis 

et al., 2007). Ancient human and animal hair can be an important data source for 

understanding palaeobiology, palaeoecology and palaeoanthropology (Bonnichsen 

et al., 2001), but unfortunately it is rarely preserved in the fossil record and 

researchers seldom attempt to find it. 

 

1.2 Hair development 

The hair follicle initially produces cells which give rise to hair growth. The cells 

gradually ascend to the neck of the hair bulb where they begin to elongate and 

change in cellular structure (Brothwell, 1993). The cells increase in size into the 

the keratogeneous zone, and beyond that become more and more elongated and 

compressed (Matoltsy, 1958). In the mature cortex above the skin surface, the 

elongated cells are tightly packed and the hair appears as a horny mass 

(Brothwell, 1993) .Over the surface is the unpigmented cuticle, appearing as a 

series of overlapping scales towards the hair tip (Wildman, 1954; Brothwell, 

1993; Kondo; 2000; Teerink, 2003). The mature hair mainly consists of a water 

insoluble component, which is largely in the form of keratin, built up of amino 

acids in different sequences and groupings (Brothwell, 1993).  
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1.3 Preservation of hair 

   Hair is mostly made up of the fibrous protein keratin, which is extremely 

resistant to decomposition (Chang et al., 2005) and enzymatic digestion (Lubec et 

al., 1986, 1994; Yu et al., 1993; Macho et al., 1999), owing mainly to the 

presence of disulphide cross linkages of the amino acid cystine (Brothwell and 

Spearman, 1963; Taylor, 1994; Taylor et al., 1995). Such an intensely cross-

linked system is extremely resistant to decay (Brothwell, 1993), leading to the 

preservation of hair. Hair proteins are hydrophobic in nature (Fraser et al., 1972) 

and this renders them insoluble in water, dilute acids and alkali, and various 

organic solvents at ambient temperatures (Barnett and Sognnaes, 1962; Taylor et 

al., 1995). Because of this, hair is relatively durable in the natural environment, 

and unlike bone, does not fragment during digestion (Keogh, 1979). Although hair 

can survive for millennia, it may also degrade within a few weeks (Wilson, 2005; 

Wilson and Gilbert 2007). Soil conditions and fungal attack can cause various 

forms of hair decay (Brothwell, 1993). 

 

    A review of the scientific literature reveals that relatively few examples of 

prehistoric animal hair exist (e.g. Benfer et al., 1978; Massa and Fuhrman, 1978; 

Bryan, 1979; Bonnichsen and Bolen, 1985; Lubec et al., 1986; Poinar, 1988; 

Schaal and Ziegler, 1992; Brothwell, 1993; Lubec et al., 1994; Bonnichsen et al., 

1994; Wilson et al., 1995; Chrisman et al., 1996; Meng and Wyss, 1997; Allen et 

al., 1998; Loy and Dixon, 1998; O‟Connell and Hedges, 1999; O‟Rourke et al., 

2000; Baker et al., 2001; Wilson et al., 2001; Ji et al., 2002; Gilbert et al., 2007; 

Backwell et al., 2009), mostly because of a lack of suitable preservation 
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conditions (Bonnichsen et al., 2001). Fossil hairs reported in the Early Cretaceous 

mammals of the Yixian formation of China are preserved as carbonized filaments 

and impressions around the torso of the holotype, and the pelage appears to have 

both guard hairs and denser underhairs close to the body surface (Luo et al., 

2003). Certainly, this presents an exceptionally different preservational 

mechanism to that of Gladysavale fossil hairs which are preserved as high 

resolution casts (Backwell et al. 2009) of external and not internal morphology.  

 

    Other examples of fossilized mammalian hairs are from carnivore faeces from 

Late Palaeocene (~59 - 56 My) beds in China (Meng and Wyss, 1997). Other 

early examples come from Late Pleistocene (~50,000 - 17,000 BP) permafrost 

deposits in Siberia (Gilbert et al., 2007), and Miocene (~20 - 15 My) amber from 

the Dominican Republic (Poinar, 1988). Schweitzer (2011) reports that hair has 

been identified morphologically in exceptionally preserved mammal fossils (~50 

million years in age) from the Messel Shale (Schaal and Ziegler, 1992), and in 

fossils contained in Eocene amber (Poinar 1988), illustrating its relatively high 

preservation potential.  

 

   Medullar and scale patterns of hair are well known for a variety of mammal 

species, but the effects of long term burial or exposure to hazardous conditions on 

the internal and external morphology of hair may be marked, and therefore 

misleading when it comes to making unequivocal identifications (Quadros and 

Monteiro-Filho, 1998). Morphological changes that occur in hair during long term 
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burial can be understood by considering changes in histological morphology of 

the hair caused by various factors (Chang et al., 2005).  

 

   In Kangneung, Korea, Chang et al. (2005) made ultramicroscopic observations 

on morphological changes in human hair shafts during 25 years of weathering and 

concluded that long term burial can cause significant morphological and 

histological changes in hair, which undoubtedly impacts on the results of forensic 

and archaeological investigations. Besides the destructive taphonomic agents 

associated with subterranean conditions, aerial environmental factors such as 

sunlight, air pollution and wind, have also been found to induce histological 

changes in the hair cuticle and cortex, ultimately leading to the destruction of the 

hair shaft (Dawber and Comaish, 1970; Venning et al., 1986; Tobin et al., 1990; 

Georgalas and Dowbrands, 1993). 

 

1.4 Previous mammal hair research 

   Ancient mammalian hair has been of interest to scientists since the 19
th

 century 

when human mummy hair from South America was examined (Browne, 1860: in 

Brothwell and Spearman, 1963). Thereafter, Pruner-Bey (1877) analysed 

pigmentary and structural variation between Egyptian and Peruvian mummy hair 

specimens. Scientific publications on mammalian hair are available from the end 

of the 19
th

 century when De-Meijere (1894) first studied hair morphology (Keogh, 

1979). The identification of modern European mammal hair has been extensively 

studied, with the first important contribution coming from Hausman (1920, 1924, 
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1930). A detailed description of 73 species of west European mammals is now 

published by Teerink (2003). There is also great interest in the use of hair from 

archaeological contexts in key research (Wilson et al., 2001). 

 

   A considerable number of researchers from different disciplines, including 

veterinary anatomy (Feder, 1987; Meyer et al., 1997), wildlife biology (Wolfe and 

Long, 1997; Bahuguna and  Mukherjee, 2000; Phan et al., 2000; Teerink, 2003; 

Sahajpal et al., 2008, 2009), the textile industry (Wildman, 1954; Appleyard, 

1960; Anderson and Lipson, 1970; Haly et al., 1970; Langley and Kennedy, 1981; 

Wortmann et al., 1986; Phan and Wortmann, 1987; Kadikis, 1987; Wortmann et 

al., 1989; Cheng and Huang, 1992; Hall et al., 1992; Rollins and Hall, 1999) and 

forensic medicine (Stoves, 1942; Hausman, 1944; De Boom and Dreyer, 1953; 

Meyer et al., 2000), have investigated the micromorphological characteristics of 

various hair types of mammals to identify hair samples. Many scientific 

investigations published by Hausman (1920, 1920a, b, 1924, 1930) paved the way 

for a vast array of research on the attributes of mammalian hair. Scientists have 

also examined the commercial aspects of hair produced by domestic breeding of 

mammals (Appleyard, 1978) and focused on hair identification of stomach or scat 

contents (Day, 1966; Cypher et al., 1994).  

    

   Van den Broeck et al. (2001) researched the micro architecture of cover hairs, 

wool hairs and tactile (sinus) hairs of feral New Zealand White and Angora 

rabbits. Their research confirms species-specific characteristics, individual and 
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breed-dependent variations of the structural hair components in rabbits. Other 

scientists have concerned themselves with hair evolution, for example Korhonen 

et al. (1991) who studied the insulation of raccoon dog (Nyctereutes procyonids) 

coats in Finland, and that of raccoon dogs in Japan, where the climate is milder. 

The investigation revealed that the coat of the Japanese raccoon dog has very 

limited insulating ability compared to that of the Finnish raccoon dog which has 

adapted to the cold climate. The Finnish racoon dog has a thick fur coat with high 

insulation. It has a good ability to alter its body energy reserves seasonally.  

 

   Hess et al. (1985) was one of the first to use scanning electron microscopy to 

examine surface scale patterns, cross and longitudinal sections and sanded hairs 

from selected species and subspecies of the families Tayassuidae and Suidae. 

From this research as well as investigations by other scientists (Adorjan and 

Kolenosky, 1969; Riggot and Wyatt, 1980, 1981), it was concluded that there are 

significant differences in hair morphology between hairs taken from different sites 

on the body of the animal. 

 

    Brazej et al. (1989) used scanning electron microscopy to observe the hair of 50 

kinds of fur animals and contributed important data for the identification of fur 

skins. Kondo et al. (2000) focused on the morphological structure of mink pelage 

in the telogen (resting) phase using scanning electron microscopy.   Bahuguna and 

Mukherjee (2000) also used scanning electron microscopy to recognize Tibetan 
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antelope hair and blending in wool products. Tibetian antelope are a threatened 

species known for their fine wool, and their trade is illegal. 

 

    In Brazil, both scanning and light microscopy were used to test the occurrence  

of structural alteration in white-eared opossum (Didelphis albiventris) hair 

morphology due to taxidermy, digestion, and putrefaction processes (Quadros and 

Monteiro-Filho, 1998). Brunner and Coman (1974) focused on the morphology of 

hair on 77 species of mammals including 36 species of marsupialia. 

 

   Hair morphology has been extensively studied under a light microscope 

(Blomstedt, 1989, 1992, 1995). Maurel et al. (1986) looked at the differences in 

hair bundles among three fur bearing mammals: European badger (Meles meles), 

red fox (Vulpes vulpes), and mink (Mustela vison). Both light and scanning 

electron microscopy were used to study hair morphology of 36 species of the 

family Heteromyidae including the genera Dipodomys, Perognathus, 

Microdipodops and Liomys (Homan and Genoways, 1978). Furthermore, Rollins 

and Hall (1999) used both light and scanning electron microscopic methods to 

differentiate Ibex goat and Tibetian antelope fibers. 

 

   In France, hairs from  Caucasian and sub-Saharan descendants were analyzed 

for their elemental composition of melanin granules and other components of 

human hair shaft using multi-isotope imaging mass spectrometry (Hallegot et al., 
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2004). The recovery and analysis of mitochondrial DNA from ancient hairs now 

enables researchers to genetically confirm taxonomic identifications based on 

scale morphology (Bonnichsen et al., 2001; Gilbert et al., 2004).  

 

   Although numerous researchers in South Africa have focused on investigating 

the pelt and hair of modern mammals in relation to thermoregulation 

(Riemerschimid and Elder, 1945; Bonsma, 1949; Bonsma and Louw, 1963), very 

few studies on hair identification have been undertaken. The microstructure of 

hair of modern southern African carnivores is well documented by Keogh (1979), 

however, limited examples have been drawn from a wider field. The other animal 

taxa that Keogh studied using scanning electron microscopy include some bovids 

such as the bontebok, cattle and clun forst sheep, as well as diurnal rodents, bats, 

and elephants. Recently, Backwell et al. (2009) used scanning electron 

microscopy to document modern indigenous primate hairs from southern Africa. 

There is a notable gap when it comes to comparative hair samples for 

perrisodactyls, lagomorphs, hyracoidea, tubulidentata and many artiodactyls.  

 

   This research follows the recent discovery of possible human hair in a single 

Parahyaena brunnea (brown hyaena) coprolite from Gladysvale cave, South 

Africa (Backwell et al., 2009). The coprolite is part of a brown hyaena latrine 

preserved in calcified cave sediment dated to the Middle Pleistocene (195 000 to 

257 000 years ago) (Berger et al., 2009). This aroused my interest in identifying 

the mammal species represented by fossil hairs in an enlarged sample of 
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coprolites from the same deposit. Because of the general shape of the latrine, its 

confined nature, the shape and size of the coprolites, and the fact that they contain 

bone fragments and microscopic traces of hair, Berger et al. (2009) confidently 

ascribes it to Parahyaena brunnea. The correct identification of hair in the 

coprolites is relevant to interpreting Middle Pleistocene hyaena ecology and 

palaeoenvironment in the Sterkfontein Valley, as well as ancient hyaena 

behaviour and that of its prey. Furthermore, the research is an expansion of 

Keogh‟s modern comparative hair samples of southern African mammals. 

 

1.5 Objectives 

The aims of the study are to: 

1. Identify fossil hairs in a sample of Parahyaena brunnea coprolites from 

Gladysvale cave using scanning electron microscopy.  

2. Discuss the implications for Middle Pleistocene hyaena ecology and 

palaeoenvironment in the Sterkfontein Valley based on the identified fossil hairs.  

 

1.6 Hypotheses 

1. Fossil hairs in the coprolites are identifiable to genus and possibly species. 

2. Fossil hairs in the coprolites provide data on a range of Middle Pleistocene 

fauna in the Sterkfontein Valley. 
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3.  Fossil hairs in the coprolites provide data on Middle Pleistocene 

Parahyaena brunnea palaeoenvironment, behaviour, diet and ecology in 

the Sterkfontein Valley. 

 

1.7 Study site 

   Gladysvale cave is located approximately 13 km north-northeast of Sterkfontein 

on the John Nash Nature Reserve (Fig 1.1). The site is well known for yielding a 

rich Plio-Pleistocene fauna, including specimens attributed to Australopithecus 

africanus (Berger, 1993; Berger et al., 1993). A wealth of large vertebrate fossils 

(Berger, 1992; Lacruz et al., 2002) and micro-faunal remains (Avery, 1995), 

including diverse avian fauna (Stidham, 2004) have been reported from 

Gladysvale cave. Currently, Gladysvale cave is on the edge of mixed savanna 

(Scholes, 1997) and grassland (O‟Connor and Bredenkamp, 1997) biomes. The 

cave is surrounded by trees, shrubs, and grass, while higher ground above the cave 

is grass-dominated (Pickering et al., 2007). It is a complex cave system made up 

of several underground chambers reaching a depth of about 65 metres (Martini 

and Keyser, 1989; Schmid, 2002).  

 

   The cave complex is made up of a roofed system of large underground caves 

referred to as the Gladysvale Internal Deposits (Pickering, 2005; Pickering et al., 

2007), and an outer de-roofed area known as the Gladysvale External Deposits 

(Lacruz, 2002; Lacruz et al., 2002). The internal deposits are clearly exposed, well 

preserved and stratified (Fig 1.2) and this makes them unusual for caves in the 
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region. 

 

Fig 1.1: Map showing the location of Gladysvale cave (modified after Berger et al., 2009).  

 

Fig 1.2: Clearly exposed, well preserved and stratified clastic sediments from the Western Face 1 

(A) and the Peabody Chamber (B) in Gladysvale cave. Both scale bars are 30 cm (after Pickering 

et al., 2007). 
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   Flowstones that act as chronostratigraphic markers are interbedded within the 

strata and are used to divide the sediments into flowstone bounded units (FBUs) 

(Pickering et al., 2007). The fossil hyaena latrine is preserved in FBU 14 (Fig 

1.3), which has well developed lower flowstones and a small stalagmite at the 

base of the unit, constraining the age of the latrine to between 195,000 and 

257,000 years old (Pickering et al., 2007). 

    

   The position of the latrine is directly under the major palaeo-drip source of the 

cave (Fig 1.4), providing calcium carbonate-rich water, which aided in the 

fossilization and preservation of the latrine and surrounding sediment (Berger et 

al., 2009). The remains of stalactites on the cave roof is an indication of the close 

proximity of the palaeo-drip source. 
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Fig 1.3: (A) Geological section of Gladysvale deposits showing the position of the latrine within     

flowstone bounded unit 14. (B) Photograph of the area showing details of the section containing 

coprolites and the dated flowstone layers. Both scale bars = 30 cm (after Backwell et al., 2009). 

    

 

Fig 1.4: Map indicating the position of the latrine in the cave system (after Berger et al., 2009). 
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1.8 Coprolites  

    The term coprolite was first introduced by Buckland (1829). It refers to 

preserved faeces and mummy intestinal contents (Callen and Cameron, 1960; 

Callen, 1965; Heizer and Napton, 1969; Fry, 1977, 1980, 1985; Turpin et al., 

1986). It includes faecal material preserved either by mineralization or 

desiccation, from both palaeontological and archaeological contexts (Reinhard 

and Bryant, 1992).  

 

   Coprolites often contain a wide range of macroscopic and microscopic remains 

that form interrelated data sets that are relevant in reconstruction of diet (Reinhard 

and Bryant, 1992). Researchers analyse carnivore coprolites because they contain 

skeletal inclusions (Chin, 2002). Significant information on animal diet (Siegfried, 

1984) and past animal-human relationships (Horwitz and Goldberg, 1989) can be 

obtained from contents of hyaena coprolites. Analysis of faecal material aids in 

the determination of diet choice (Day, 1966; Stuart, 1976; Putman, 1984), and has 

been used in several different habitats to establish feeding ecology of several 

carnivore species (Hoppe-Dominik, 1984; Henschel and Skinner, 1990; 

Mukherjee et al., 1994; Karanth and Sunquist, 1995; Hart et al., 1996; Kruger et 

al., 1999). 

 

   Many investigators have analysed hyaena coprolites focusing particularly on 

pollen spectra analysis (Girard, 1987; Scott, 1987; Mills, 1989; Vivent, 1989; 

Carrion et al., 2001; Gonzalez-Samperiz et al., 2003; Scott et al., 2003). At least 
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ten hyaena sites in South Africa and four in Spain have been subjected to 

palynological examination of coprolites (Scott et al., 2003). Pollen in hyaena 

coprolites has also been investigated in other regions such as Israel, Sicily, France 

and Britain (Sutcliffe, 1969, 1970; Horwitz and Goldberg, 1989; Larkin et al., 

2000). Pollen analysis of hyaena coprolites has yielded valuable 

palaeoenvironmental data (Scott and Klein, 1981; Scott, 1987; Gonzalez-

Samperiz et al., 2003).  

  

   In addition to the determination of diet from pollen, some researchers have 

critically analyzed coprolites for palaeophamacological purposes (Dean, 1993; 

Chaves and Reinhard, 2006). Other studies have focused on the chemistry, 

mineralogy and texture of coprolites to infer their biological source and 

taphonomy (Hollocher et al., 2005). Much more recently, researchers in Brazil 

have taken a new dimension and embarked on archaeoparasitological analysis of 

human coprolites (Araujo et al., 2000). Analysis of hair in the coprolites revealed 

a variety of diseases, including head louse infestation. Louse eggs were found on 

isolated hair shafts dating to over 10,000 years ago (Araujo et al., 2000).  

Numerous scientists have focused on macroscopic and microscopic remains from 

European human coprolites. In Tehuacan, Mexico, Callen (1967) identified a 

large number of animals that were consumed basing upon the hairs present in 

human coprolites. Similar data from southwest Texas coprolites has been 

documented (Williams-Dean, 1978; Sobolik, 1988). Deer and antelope hairs in 

human coprolites from Danger cave in Utah were also reported by Jennings 

(1957).  
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   The existence of hairs from several extinct mammals has been reported from a 

rich accumulation of fossil excrement from the Late Palaeocene beds of Inner 

Mongolia, China (Meng and Wyss, 1997). Hundreds of mammalian carnivore 

coprolites have been reported from this highly unusual depositional occurrence 

(Hunt, 1992) and fossil hairs from at least four mammalian taxa have been 

identified with the most notable being the multituberculate Lambdopsalis bulla 

(Chow and Qi, 1978). Fossil hairs in hyaena coprolites were reported in Dabie 

cave, Jordan, but were not identified (Kempe et al., 2006).  

   

   It is unfortunate that fossilized mammalian faeces are rarely recorded, and 

isolated occurrences are reported in the pre-Pleistocene palaeontological record 

(Hunt et al., 1994). Studying fossil faecal deposits has recently gained popularity 

as a palaeoecological tool (Poinar et al., 1998; Pearson and Betancourt, 2002; 

Davis, 2005). The analysis of coprolites gives useful indications on palaeoclimate, 

palaeovegetation and even palaeoethnology (Bryant and Holloway, 1983; Davis, 

1990; Scott and Cooremans, 1992; Carrion et al., 2000).  
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1.8.1 Parahyaena brunnea scats  

      Hair is a common feature observed in modern Parahyaena brunnea scats 

(Skinner and van Aarde, 1981). Details of the contents of extant Parahyaena 

brunnea scats are reported by Skinner and van Aarde (1981). They argue that the 

scats of Parahyaena brunnea contain a higher percentage of hair than those of 

Crocuta crocuta, and other researchers suggest that this may be behaviourally 

linked (Berger et al., 2009). Unlike Parahyaena brunnea, Crocuta crocuta are 

efficient hunters and scavengers (Kruuk, 1972; Tilson et al., 1980; Henschel and 

Skinner, 1990; Mills, 1990). Parahyaena brunnea scats contain much more hair 

(Berger et al., 2009) because they do not regularly regurgitate indigestible 

residues of prey. Larkin et al. (2000) recognised that the high inorganic content 

(calcium phosphate) of Crocuta crocuta droppings leads to their frequent 

preservation in the fossil record. 

 

 

   Information on coprolites of Crocuta crocuta is abundant in scientific literature.  

 Faeces of modern Crocuta crocuta are widely reported, and detailed studies of 

their content have been made (Skinner, 1976; Mills, 1978; Skinner and van Aarde, 

1981; Mills, 1990; Larkin et al., 2000). Analysis of hair in modern spotted hyaena 

scats for the purpose of identifying prey species was first undertaken by Kruuk 

(1972), who reported human hair scavenged from recently buried corpses. 

Thereafter, analysis of hair in modern brown hyaena scats was conducted by 

Skinner (1976), and further investigated and developed by Keogh (1979) in an 

atlas of hair from southern African carnivores. Unfortunately, hair from scats 
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contains no information on age, sex or size of the species, hence no further 

classification is possible (Skinner et al., 1992). Furthermore, faecal analysis is not 

conclusive on whether the animal was hunted or scavenged. 

 

1.9 Parahyaena brunnea  

1.9.1 Physical description of extant Parahyaena brunnea 

   The brown hyaena is medium in size, with adults weighing around 40kg (Mills, 

1982b). It has long legs with well developed fore-quarters, weak hindquarters and 

a sloping back (Mills, 1982; Watts and Holekamp, 2007). It is widely regarded as 

a carnivore (Kuhn, 2011), though it includes some unusual food items in its diet, 

as discussed later on. Although it is sympatric with the spotted hyaena (Crocuta 

crocuta), it is surprisingly not with its closest relative, the striped hyaena (Hyaena 

hyaena) (Eaton, 1981; Mills, 1982).   Brown hyaenas usually have large pointed 

ears, with their bodies often covered with coarse, brown hair (Skinner, 1976). 

Length of individual hairs varies. Their legs are striped and the mane around the 

neck is lighter in colour (Fig 1.5). They live in clans of up to 10 adult animals 

(Mills, 1990). Their cubs are raised in dens to which they remain partially 

attached until they are 15 months old (Mills, 1981). The dens are considered to be 

a social meeting point of the clan members (Wiesel, 2006). Other than at their 

dens, brown hyaenas are mostly not seen in groups (Wiesel, 2006). 
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Fig 1.5: An adult male brown hyaena (after Wiesel, 2006). 

 

   Fossil remnants of brown hyaenas are reportedly confined to southern Africa 

(Turner, 1990; Skinner and Chimimba, 2005). The hyaenidae family is 

remarkable for its ecological and social diversity (Watts and Holekamp, 2007). 

The distribution, diet, ecology and behaviour of extant Parahyaena brunnea have 

received considerable attention in the scientific literature. The species ecology and 

its coexistence with Crocuta crocuta in the southern Kalahari has been well 

studied (Mills and Mills, 1978; Mills et al., 1980; Mills, 1982a, 1982b, 1983, 

1984, 1989, 1990). In the agricultural areas of the Transvaal in South Africa, a 

detailed account of the species ecology is given (Skinner, 1976; Skinner and Ilani, 

1979; Skinner and van Aarde, 1987), while its feeding habits in the central Karoo 

is reported (Maddock ,1993). Parahyaena brunnea ecology has been researched 

in central Kalahari (Botswana) with particular focus on feeding habits and aspects 

of its behaviour (Owens and Owens, 1978). This research explores the diet, 
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behaviour and ecology of Middle Pleistocene Parahyaena brunnea in the 

Sterkfontein Valley between 257 - 195 ka. 

 

1.9.2 Reproduction of extant Parahyaena brunnea  

   Brown hyaenas are born with their eyes closed, their ears bent sharply forward 

and with the same body colour as an adult, but with shorter hair (Schultz, 1966). 

Sexual maturity is reached after about 3 years (Mills, 1990). The mean litter size 

is usually three cubs and all clan members supplement the cub‟s diet by carrying 

food back to the den (Mills, 1983). Female brown hyaenas cooperate in raising the 

cubs by occasionally suckling (Fig 1.6) each other‟s cubs (Owens and Owens 

1979; Mills, 1981) although they give priority to their own offspring (Watts and 

Holekamp, 2007). Young females usually start breeding at a later stage (Wiesel, 

2006) and it is common practice for only one female per clan to have litter at a 

time. Male brown hyaenas normally remain in the clan or become nomadic, 

although they are still believed to reproduce with clan females (Mills, 1990). The 

brown hyaena‟s lifespan in the wild has not been reported, but can reach over 20 

years in captivity (Crandall, 1964, in Mills 1982b). 
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Fig 1.6: Female hyaena suckling its cubs (after Mills and Hofer, 1998). 

 

1.9.3 Parahyaena brunnea territory 

   Brown hyaenas define their territories with paste marks (Watts and Holekamp, 

2007) that are often deposited on grass stalks, bushes or rocks and through 

defecating in latrines (Fig 1.7). Mills et al. (1980) reported that the paste marks 

are of two types, a white paste, with a long lasting odour, and a black paste with a 

less long lasting odour. Paste marks and latrines are distributed throughout the 

brown hyaena‟s territory and are often used to communicate with other clan 

members and to warn off intruders (Mills et al., 1980; Mills, 1990). 
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Fig 1.7: Brown hyaena paste mark showing the black and white paste (left) and a brown hyaena 

latrine on the right (after Wiesel, 2006). 

 

1.9.4 Modern Parahyaena brunnea diet 

   Brown hyaenas are solitary nocturnal foragers that feed on a vast array of food 

items (Mills and Mills, 1978; Owens and Owens, 1978). They eat almost anything 

(Sutcliffe, 1970; Kruuk, 1972), although their diet is almost exclusively mammals 

when these are in abundance (Kruuk, 1972; Mills, 1989). Brown hyaenas are 

effective scavengers in most ecosystems (Mills and Mills, 1978; Owens and 

Owens, 1978; Skinner and Smithers, 1990; Lacruz and Maude, 2005; Kuhn, 2006; 

Kuhn et al., 2009, 2010; Kuhn, 2011), where food is patchily distributed and 

where other large carnivores occur (Wiesel, 2006). They are keen hunters of 

baboons and other large mammals when rearing cubs (Brain, 1981). Despite this, 

they are not habitual hunters and their diet usually consists of fruit, insects, 

reptiles, birds and scavenged mammals (Skinner, 1976; Mills and Mills, 1977; 

Skinner and van Aarde, 1981; Mills, 1990; Lacruz and Maude, 2005; Maude, 
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2005; Maude and Mills, 2005), though ostrich eggs (Fig 1.8) are also reported to 

form part of the brown hyaena diet (Mills and Mills, 1977; Skinner and van 

Aarde, 1991; Skinner et al., 1995).  

 

Fig 1.8: Brown hyaena scavenging an egg from an ostrich nest (photo by Gus Mills in Watts and 

Holekamp, 2007). 

   

   Cape fur seals (Arctocephalus pusillus pusillus) were found to be the most 

important food item for brown hyaenas in the coastal areas of the Namib Desert 

(Stuart and Shaughnessy, 1984; Skinner and van Aarde, 1991; Skinner et al., 

1995; Wiesel, 2006). Brown hyaenas on the Namibian coast sometimes kill seal 

pups (Kuhn et al., 2008; Kuhn, 2011) in the seal colonies (Fig 1.9a and b). They 

usually kill seals up to a size of a yearling with only one bite to the head (Skinner 

et al., 1995; Wiesel, 1998). Kruuk (1976) has recognised that hunting is often 

poorly developed and a rather “primitive chase and grab affair” for brown 

hyaenas. 
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Fig 1.9: (a) Brown hyaena hunting a seal pup (after Kolar, 2004). 

 

      (b) Brown hyaena lifting a hunted seal pup away from a seal colony (after Wiesel, 2006).  

    

   Although they depend heavily on seals as a primary food source, both as carrion 

and by killing seal pups (Skinner et al., 1995; Wiesel, 2006), brown hyaenas 
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sometimes supplement their diet with other food items washed up along the 

beaches. Their diet can also consist of any food items found in the inland areas of 

their home range, especially outside the seal pupping season. Brown hyaenas 

along the west coast of southern Africa are reported to feed on marine animals 

such as crabs, fish, birds and any other mammals which have been cast up on the 

seashore (Roberts, 1954; Shortridge, 1934). 

 

   In the Makgadikgadi National Park (Botswana), carcasses of zebra, wildebeest 

and springbok were found to be their most important food source (Maude, 2005). 

Common ungulates (gemsbok, wildebeest, hartebeest, springbok and steenbok), 

spring hare, bat eared fox, and black-backed jackal are predominantly eaten by 

brown hyaenas in the southern Kalahari (Mills and Mills, 1978). The diet of 

brown hyaenas in the central Kalahari is similar to that in the southern Kalahari, 

except that giraffe occurs there and is often scavenged (Owens and Owens, 1978). 

In the Transvaal agricultural areas of South Africa, cattle in the form of carrion 

and small indigenous mammals are highly consumed by brown hyaenas (Skinner, 

1976).  

 

1.10 Summary 

   Hair identification provides a wealth of information in many fields of research, 

with scale patterns and hair cross sectional shapes being important defining 

features in the identification of taxa. Ancient mammalian hairs can be an 

important data source for understanding palaeobiology, palaeoecology and 
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palaeoanthropology, but fossil hair identification is complex and involves many 

ambiguities, mostly caused by destructive taphonomic processes that may alter or 

obliterate diagnostic features. Nevertheless, in light of the fact that numerous 

researchers have successfully identified the taxonomic origin of ancient hair from 

different preservation contexts, this research seeks to identify fossil hairs 

extracted from well-preserved Parahyaena brunnea coprolites, from Middle 

Pleistocene deposits in Gladysvale cave, South Africa.  

 

   Coprolites are the most notable dietary remains recoverable from archaeological 

contexts. They are of critical importance because they contain remains that were 

actually consumed and defecated, hence significant information on past animal-

human relationships and animal diet can be obtained from their contents.  
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CHAPTER TWO 

MATERIALS AND METHOD 

 

2.1 Background to hair morphology and identification 

   The hair scale patterns formed by the cuticle, and hair cross sectional shapes 

formed by the cortex and medulla, are important characteristics that are utilized by 

researchers in the identification of mammalian species. Longitudinal section has 

also been shown to be an important distinguishing feature (Hess et al., 1985), but 

cannot be applied to most fossil hairs as these are preserved as high resolution 

casts of external structure only. 

 

    The correct identification of hair is done using determination keys that are 

based on macroscopic features such as size, shape, profile and colour of the hair, 

as well as microscopic characteristics of the cuticle, cortex and medullar (Teerink, 

2003). The identification is however difficult because of the presence of 

considerable variation caused by differences in species, breed and gender of the 

animals, environmental conditions (climate, habitat, nutrition) and possibly by the 

body region from which the hairs derive (Wildman, 1954; Appleyard, 1960; 

Herrmann et al., 1996a; Herrmann et al., 1996b; Meyer et al., 2000). Hair 

identification is further complicated because of the variety of hair types produced 

by a single animal. There are also structural variations along a single hair and 

dissimilar animals may have hairs with a similar structure (Marshall et al., 1977).  
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   Most hair types consist of three layers of keratinized cells (Day, 1966; Homan 

and Genoways, 1978). These are the cuticle which is the outer layer, the cortex 

forming the middle layer, and the medulla resulting in the inner layer (Ryder and 

Stephenson, 1968; Teerink, 2003). These morphological regions form the hair 

structure patterns and cross sectional shapes that are of taxonomic significance in 

hair identification of mammals. The basic structure of hair is shown schematically 

in Fig 2.1 

 

Fig 2.1: Basic structure of hair (after Deedrick and Koch, 2004). 

 

   The hair cuticle consists of an overlapping single layer, although it may appear 

to have multiple layers in cross or oblique section (Morioka, 2009). Furthermore, 

keratinization of the hair cuticle proceeds with the accumulation of highly 
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electron-dense granules at the distal side of the cytoplasm (Morioka, 2009). The 

hair cuticle appears to have a “stone-wall” construction and is sometimes called 

the exocuticle (Powell and Rodgers, 1997). The primary function of the cuticle is 

protection of the hair (Rudall, 1941). The medulla occurs in most mammals 

(Bradbury and Leeder, 1970) but is absent in some types of hair (Inagaki, 1986) 

such as vellus (fine body) hair from humans (Bisbing, 2002), fine wool fibres 

from sheep (Bacha and Wood, 1990) and pig hair (Fawcett, 1986). The medulla is 

the central portion of the hair shaft and is made up of cells of various shapes, 

which are often interspaced with air pockets (Homan and Genoways, 1978). The 

presence and patterns of these cells have been used to distinguish various kinds of 

hair (Hausman, 1920, 1944; Day, 1966; Mayer, 1952). The cortex is the main 

body and middle layer of the hair shaft composed of elongated and fusiform 

(spindle-shaped) cells (Hausmann, 1932; Homan and Genoways, 1978). The 

fusiform or spindle-shaped cells interdigitate with each other along the long axis 

of the hair shaft (Homan and Genoways, 1978).  

 

2.2 Cuticular scale features 

   The cuticular scale features of mammalian hair have been widely studied 

(Hausman, 1930). Hair cuticular scales can vary greatly between taxa in many 

ways, and can be of taxonomic significance, thus aiding identification (Backwell 

et al., 2009). Brunner and Coman (1974) reviewed the subject of hair scale 

patterns and described in detail their own replica methods in a large number of 

indigenous Australian mammals.  
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   Hair scale patterns provide most of the diagnostic characteristics for identifying 

hair samples (Bower and Curry, 1983) but Short (1978) argues that these cuticular 

scale patterns are only important as an accessory to other characters he considered 

of greater diagnostic importance. Among these characters are cross sectional form 

and medullar form. Short (1978) also reports that identification to species level 

cannot be achieved using scale form alone, but only if a variety of characters are 

used. Hence in this study, I employ both scale patterns and details from the cross 

sections when these were available.  

 

   Teerink (2003) recognizes that the scale position in relation to the longitudinal 

direction of the hair may be transversal, longitudinal or intermediate, whilst the 

scale patterns can be varyingly petal-shaped, wavy, mosaic or transitional (Fig 

2.2). Keogh (1983) reports that the most common hair scale patterns of southern 

African mammals are mosaic, chevron, coronal and petal-shaped. The scale 

margins are described as  smooth, rippled or frilled, and relative to hair width, the 

scales could  be large and few, or many and closely packed. The texture of these 

patterns varies greatly between species of mammals and may also vary along a 

single hair (Perrin and Campbell, 1980). 
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Fig 2.2: Cuticular scale features used in identifying hair (modified after Teerink, 2003). 

 

2.3 Cross-sectional shapes 

   The most common cross sectional shapes are circular, oval, oblong and 

concavo-convex (Fig 2.3). These different shapes, together with scale patterns are 

used to identify fossil hairs from Parahyaena brunnea coprolites in this research.  
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Fig 2.3: Common hair cross sectional shapes (modified after Keogh, 1983). 

    

   The recovery of mitochondrial DNA from single ancient hairs has recently 

enabled the genetic identification of specimens (Bonnichsen et al., 2001; Gilbert 

et al., 2004). Despite this, a significant number of researchers have continued to 

rely on hair scale patterns, among them are Van den Broeck et al. (2001), Dove 

and Peurach (2002), Chang et al. (2005), Backwell et al.(2009) and Sahajpal et al. 

(2008, 2009).  

 

   Definitive taxonomic identification is usually difficult because of variations in 

hair structure along the length of individual hairs (Keogh, 1979), as well as 

different hair types on an individual animal (long stiff guard/overhair, versus 

thinner undulating underhair). Nevertheless, correct identification of hair is 

possible by studying hair morphological features, which are quite distinct and 
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characteristic in several species (Feder, 1987; Langley and Kennedy, 1981; 

Wortmann et al., 1989; Teerink, 2003). 

 

2.4 Techniques for studying hair morphology 

   The examination of scale patterns of the cuticle and medullary shapes of hairs 

usually involve conventional histological sectioning and specific techniques such 

as cuticular casting and medullary impregnation (Wildman, 1954; Teerink, 2003). 

Most studies on mammalian hair identification were done using plastic 

impressions of cuticular scales and direct observation of whole mounts using light 

microscopy (Mayer, 1952; Benedict, 1957; Dweyer, 1962; McFadden, 1968; 

Brunner and Coman, 1974; Homan and Genoways, 1978; Valente, 1983; Oli, 

1993; Wallis, 1993) whilst others have used transmission electron microscopy 

(TEM) (Birbeck and Mercer, 1957a, 1957b; Nakai, 1964; Hayat, 1985; Morioka, 

2009). 

 

   The use of optical light microscopy (OLM) gives poor topographic resolution of 

hair features. TEM provides better resolution (Verhoeven, 1972) which is 

however sometimes affected by spherical aberrations resulting in imperfection of 

images. It requires constant upkeep by maintaining voltage, current to the 

electromagnetic coils and cooling water. However, many previous investigators 

have successfully used the scanning electron microscope (SEM) to observe the 

surface structure and scale patterns of the cuticle (Dziurdzik, 1978; Short, 1978; 
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Vogel and Kopchen, 1978; Homan and Genoways, 1978; Riggot and Wyatt, 1983; 

Hess et al., 1985; Quadros and Monteiro-Filho, 1998; Kondo, 2000; Kondo et al., 

2000; Dove and Peurach, 2001; Van den Broeck et al., 2001; Amman et al., 2002; 

Chang et al., 2005; Sahajpal et al., 2008; Backwell et al., 2009; Sahajpal et al., 

2009). The scanning electron microscope allows direct observation at high 

magnification permitting imaging specimens with high level of detail (Teerink, 

2003). This technique is also relatively simple and fast, and shows unique three-

dimensional information (Van den Broeck et al., 2001).  

 

   Recently, attempts have been made in using pattern recognition computer 

programmes to aid in the identification of species from hair scale patterns. While 

methods relevant to this application are found in other fields such as aquaculture 

(Yang and Chou, 2000), medicine (Forero et al., 2004) and biometrics (Sanchez-

Avila and Sanchez-Reillo, 2005), current hair pattern recognition programmes 

lack the necessary comparative hair data, so at this stage cannot be used as a hair 

identification technique.    

 

   DNA extraction is one of the most reliable techniques used to identify hair 

samples. However, compared to other tissues, the DNA content of hair (Higuchi 

et al., 1984; Allen et al., 1998) is typically low because hair cells undergo 

dehydration and catabolic breakdown of nucleic acids during keratinisation 

(Forslind and Swanbeck, 1966). In addition, levels of amplifiable mitochondrial 

DNA decrease as the hair degrades (Gilbert et al., 2004). Because of this, ancient 
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hair specimens have not been widely used as a source of ancient DNA. 

Furthermore, ancient DNA studies have been plagued by problems and limitations 

that have made gaining insights into the past rare and sometimes very 

controversial (Gill et al., 1994; Krings et al., 1997; Greenwood et al., 2001; 

Orlando et al., 2003; Mohandesan et al., 2008). After decades of research using 

biomolecules, authentic ancient sequences could not be produced because of 

many reasons including low DNA concentrations in the samples, problems of 

contamination and DNA damage (Greenwood, 2009). 

 

   Despite this, researchers have successfully extracted mitochondrial DNA from 

degraded and ancient hair samples from century old native American Indian 

populations (Baker, 2001), including burnt specimens (Baker et al., 2001), wool 

from a 9,400 year old Bighorn sheep (Bonnichsen et al., 2001) and permafrost-

preserved bison (Bison bison) dating to over 64,800 years old (Gilbert et al., 

2004). Because of this, hair is a promising source of DNA for both forensic and 

ancient DNA studies (Thomas et al., 2006). 

 

2.5 Analytical protocol used in this study 

 2.5.1 Scanning electron microscopy 

   In accordance with previous studies, scanning electron microscopy (SEM) was 

used in this research to document modern hair samples and facilitate taxonomic 

identification of fossil hair specimens (Reinhard and Bryant, 1992). The use of 
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scanning electron microscopy for mammalian hair studies has numerous 

advantages which far surpass other techniques. It provides the best topographical 

resolution of hair features. It is also renowned for its ability to elucidate any 

peculiarities of the surface structure of hair (Homan and Genoways, 1978), and is 

efficient to the extent of determining variation of scale patterns along the length of 

a single hair (Meng and Wyss, 1997). For these reasons, the FEI Quanta 400 E 

SEM in the Microscopy and Microanalysis Unit at the University of the 

Witwatersrand was used in this research to observe the scale patterns of the cuticle 

and the cross sectional shapes of the medulla and cortex. 

 

2.5.2 Operation principle of the scanning electron microscope 

The scanning electron microscope uses a focused beam of high-energy electrons 

to generate signals at the surface of the specimen (Goldstein, 2003). The signals 

that derive from electron-sample interactions reveal information about the sample, 

in this case the external morphology of hair. Accelerated electrons in the scanning 

electron microscope carry significant amounts of kinetic energy which is 

dissipated as signals produced by electron-sample interactions when the incident 

electrons are decelerated in the solid sample (Voutou and Stefanaki, 2008). These 

signals include secondary electrons which produce images and backscattered 

electrons which escape from the surface of the sample having energy of 50 eV 

(Voutou and Stefanaki, 2008). 

 

 

http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
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   It should be noted, however, that scanning electron microscopy has its own 

share of problems that lie in the mechanism of contrast production. The contrast 

effects in the scanning electron microscope are due to differences in secondary 

electron emission or to contour effects on the surface of the specimen (Carr, 

1970).  Back scattered electrons cause background radiation and thus a smaller 

degree of contrast. However, the contrast can be slightly increased electronically. 

 

2.5.3 Fossil hair analysis 

   In this research, a 75 x 30 x 15 cm block of the calcified latrine was taken from 

Gladysvale cave for laboratory analysis. From this block, 12 coprolites were 

studied (Table 2.1). The coprolites varied in size, with larger scats approximately 

32 mm in diameter (Fig 2.4). The number of coprolites analysed in this study is 

sufficient to determine the diet of Parahyaena brunnea because previous diet 

descriptions were successfully attained with as few as 10 scats (Bartoszewicz and 

Zalewski, 2003; Olesiuk et al., 1990; Patterson et al., 1998; Pontier et al., 2002; 

Sinclair and Zeppelin, 2002; Zabala and Zuberogoitia, 2003). 
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Table 2.1:   Coprolites from Gladysvale cave analysed in this study. 

Coprolite specimen number  Diameter (mm) Shape  Number of fossil 

hairs extracted 

C1 21 ovoid 4 

C2 19 ovoid 5 

C3 8 ovoid 2 

C4 11 spherical 4 

C5 10 spherical 3 

C6 15 spherical 5 

C7 20 spherical 4 

C8 32 spherical 7 

C9 19 spherical 4 

C10 18 spherical 4 

C11 10 ovoid 3 

C12 8 spherical 3 

Key: C1 - C12 refers to coprolite specimen number 1-12. 

 

 

Fig 2.4: Block of calcified cave sediment containing part of the hyaena latrine, showing the largest 

coprolite analysed in this study (C8). Scale bar = 10 cm.   
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   Forty-eight fossil hairs were extracted from the coprolites using fine tweezers 

and a low magnification binocular microscope. Thereafter, they were 

ultrasonically cleaned in analar ethanol and placed directly onto double-sided 

sticky stubs. The fossil hairs were sputter-coated with gold and examined using an 

FEI Quanta 400 E scanning electron microscope. Gold is an electrically 

conductive coating which is most effective for high resolution electron imaging 

applications. Carbon coating was not done because it is most desirable during 

elemental analysis of samples. Fossil hair cross sections, where permitting, were 

obtained from naturally occurring breaks in the sample and could not be obtained 

by cutting perpendicularly using a sharp surgical blade because the hairs were 

preserved as casts of external and not internal morphology and could easily break. 

The coprolitic residues were kept safely for possible further analysis. Table 2.2 

gives a summary of coprolites analysed in this research as well as the fossil hairs 

that were extracted from these coprolites and whose scanning electron 

micrographs are shown in the Results Chapter. Because previous investigations 

detected no protein in fossil hairs from Parahyaena brunnea coprolites from 

Gladysvale cave (Backwell et al., 2009), DNA analysis was not attempted as part 

of this research.  
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Table 2.2: Coprolites from which fossil hairs were collected. 

Coprolite specimen number  Fossil hair specimen number  

 

C1 F1     

C2 F2  and F3 

C3 F4 

C4 F5 and F6 

C5 F7 

C6 F8 

C7 F9 

C8 F10, F11 and F12 

C9 F13 

C10 F14 

C11 F15 and F16 

C12 F17 

 

Key: C1 - C12 refers to coprolite specimen number 1-12, and F1 – F17 refers to fossil hair specimen 

number 1-17.  

 

    Previous researchers have extracted hairs from long dried faecal samples using 

a softening agent (Sodium hydroxide and disodium EDTA) (Samuels, 1965), 

while others soaked coprolites in a 0.5% aqueous solution of trisodium phosphate 

(Callen and Cameron, 1955). Soaking for a week or more frequently allows the 

coprolite to fall apart naturally (Callen, 1963). However, softening agents have the 

potential to further degrade the cuticula scale pattern, thereby presenting 

difficulties in identification. For this reason, I deliberately excluded softening 
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agents in extracting fossil hairs from Parahyaena brunnea coprolites from 

Gladysvale cave.    

  

2.6 Modern hair analysis 

 2.6.1 Modern comparative collection 

    Guard hair samples occurring on the animal‟s back were collected from 15 

modern mammals housed at the Ditsong National Museum of Natural History 

(formerly Transvaal Museum) in Pretoria, and from the Johannesburg Zoo. The 

selection of these 15 animals (Table 2.3) was based on known Middle Pleistocene 

riverine forest-fringe and open grassland fauna of the Florisian Land Mammal 

Age (Klein, 1980, 1984) reported for the Sterkfontein Valley (Lacruz et al., 2002; 

Lacruz et al., 2003), which may have been preyed upon by hyaenas and which are 

not represented in hair identification literature. Reference keys are limited to fully 

grown guard hairs (Bonnichsen et al., 2001; Teerink, 2003), so these were 

sampled from the various pelts, and stored in labelled sealed containers.  
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Table 2.3: Modern comparative mammals from which guard hair samples were collected.      

 

 Order                      Genus                               Species                  Common Name           

Perrisodactyla Diceros 

Equus   

 

  bicornis 

  quagga 

(formerly 

burchelli)         

Black rhinoceros 

Burchell‟s zebra 

Artiodactyla    Antidorcas 

Aepyceros 

Tragelaphus 

Connochaetes 

Connochaetes 

Syncerus 

Taurotragus 

Phacochoerus 

Raphicerus 

 

marsupialis 

melampus 

strepsiceros 

gnou 

taurinus 

caffer 

oryx 

aethiopicus 

campestris 

Springbok  

Impala 

Greater kudu                                     

Black wildebeest  

Blue wildebeest   

Cape buffalo          

Eland     

Warthog    

Steenbok                                 

Lagomorpha       Lepus 

Pronolagus 

saxatilis 

crassicaudatus 

 

Scrub hare  

Red rock hare            

Hyracoidea    Procavia capensis Rock dassie 

 

Tubulidentata Orycteropus afer Aardvark  

 

 

 

 2.6.2 Cleaning of modern hair samples 

   A variety of techniques have been employed for cleaning, drying and mounting 

modern hair samples for the purpose of examining the cuticular scale patterns, and 



45 

 

this varies from one researcher to another ( Keogh, 1979). Trevor-Deutch (1970) 

as reported by Keogh (1979), washed hairs in carbon tetrachloride. Brunner and 

Coman (1974) used an alcohol-ether mixture to clean hairs and dried them 

between absorbent paper. Some researchers have used acetone (Homan and 

Genoways, 1978; Hess et al., 1985; Takizawa et al., 1998; Bahuguna and 

Mukherjee, 2000), whilst others have used graded ethanol series and isoamyl 

acetate (Chang et al., 2005) to clean modern hair samples. Wilson et al (2007)   

obtained hair samples from both field and laboratory „burials‟ and simply rinsed 

them in 70% alcohol before examining them using scanning electron microscopy. 

 

 

   According to Keogh (1979), the most satisfactory method of cleaning hairs is by 

washing them in a mixture of absolute alcohol and sulphuric ether in equal 

proportions. Following Keogh, a mixture of absolute alcohol and sulphuric ether 

in equal proportions was used for cleaning the modern comparative samples in 

this research. The hairs were washed in distilled water for about three minutes and 

then air dried on a clean watch glass. Finally, the hairs were mounted on stubs, 

sputter-coated with gold, and examined using an FEI Quanta 400 E scanning 

electron microscope at magnifications between 400 and 4,050 times. This range 

falls comfortably within that used by previous authors ( e.g. Keogh, 1979 ; Perrin 

and Campbell, 1980; Keogh, 1983, Backwell et al., 2009), so comparison is to 

scale. To obtain cross sections, the modern hair samples were put on a clean 

watch glass and cut from a perpendicular position using a sharp surgical blade. All 



46 

 

samples were clearly labelled, details recorded and stored in sealed dust-proof 

containers for future use and reference. 

 

2.7 Hair identification features and definitions 

   Hair identification was based on consultation of standard guides to hair 

identification by Appleyard (1978), Keogh (1979) and Teerink (2003), as well as 

the work by Backwell et al. (2009) on southern African primates and my own 

collection of 15 taxa of modern mammal hairs (Table 2.3). Descriptions of scale 

and cross-sectional morphology of hair follow those of Hausman (1930), Lyne 

and MacMahon (1951), Appleyard (1978), Keogh (1983; Figure 2.3) and Teerink 

(2003; Figure 2.2). Table 2.4 provides definitions of the most common scale 

patterns used in the literature.  

Table 2.4: Descriptions of scale patterns used in the text. Adapted and modified from Keogh                  

(1979) and Teerink (2003).  

Scale pattern  Description 

Coronal Scale pattern is often composed of a single scale but can 

occasionally be two or more across hair width. The scales are 

usually evenly spaced.  

Mosaic This is a pattern made up of a number of scales which can be 

regular or irregular. In a regular mosaic, the scales are nearly the 

same size. In an irregular pattern, the scales are randomly 

distributed and are of different size. 

Elongate petal 

(also known as Lanceolate- 

pectinate) 

This is a comb like pattern in which the scales are long and narrow, 

and the  pattern is in between the broad and diamond petal pattern 
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   It is important to mention that the majority of scale patterns are generally waved 

but to different extents. The waved patterns are described as regular or irregular 

waved. Keogh (1975) defines a regular waved pattern as one in which the waves 

nearly have the same amplitude and wavelength, and an irregular wave pattern as 

the one in which the amplitude and wavelength are different and there is an abrupt 

change on the wave sequence. Although the distance between scale margins is a 

distinguishing feature, it is difficult to quantify and is only a qualitative measure 

(Keogh, 1979). Brunner and Coman (1974) define scale margin form as the free 

distal edge of an individual scale. The form of scale margin can be  smooth in 

which the scales show no indentations and appear as a smooth line or rippled in 

which there are small indentations along the margins, usually close together 

(Teerink, 2003). 
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CHAPTER 3 

RESULTS 

3.1 Introduction 

   This chapter presents the scanning electron micrographs and descriptions of 15 

previously undocumented modern southern African mammal hair taxa (Fig 3.1 to 

Fig 3.15), as well as those of fossil hairs from coprolites in Gladysvale cave (Fig 

3.16 to Fig 3.33). For comparative purposes, all the images shown have scales 

ranging from 10 µm to 100 µm. Using exactly the same scale for each hair 

specimen did not always result in clear images of the scale patterns. During 

scanning electron microscopy analysis of the hair samples, I learnt that this range 

of scale (10 µm to 100 µm) allows for fair independent assessment of various hair 

samples. Taxonomic identification of fossil hairs is mainly based on scale pattern 

and where available, cross sectional data, following the terms used to describe 

modern hairs (see Table 3.1).  
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3.1.1 Scanning electron micrographs of modern comparative hair samples 

                 

 Fig 3.1: Impala hair cross section (left, scale = 30 µm) and scale pattern (right, scale = 50 µm).  

Unlike the common shapes used in identification, the cross section is a diagnostic triangle with 

blunted corners. The cortex is thick and the medulla has numerous small perforations. The scales 

are transverse relative to the longitudinal axis of the hair. Scale pattern is irregular waved mosaic. 

The structure of scale margins is generally smooth and the distance between scale margins is near 

to distant.  

 

    

  Fig 3.2: Blue wildebeest hair cross section (left, scale = 50 µm) and scale pattern (right, scale = 

50 µm). The cross section is concavo-convex. The cortex is thick and the medulla is small to 
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medium in size. Scale position is transversal and scale pattern is irregular waved mosaic. The scale 

margins are generally smooth to moderately rippled and the distance between scales is near. 

                                                                                

Fig 3.3: Black wildebeest hair cross section (left, scale = 50 µm) and scale pattern (right, scale = 

50 µm). The cross section is circular and the cortex is thick with no distinct medulla. The scale 

position is transversal and the pattern is irregular waved. Scale margins are moderately rippled and 

the distance between scales is near. 

 

    

Fig 3.4: Buffalo hair cross section (left, scale = 50 µm) and scale pattern (right, scale = 100 µm). 

The cross section is circular and there is a relatively small medulla. The scales have a highly 

irregular waved pattern and the scale margins are rippled. The distance between scales is close. 



51 

 

                

Fig 3.5: Eland hair cross section (left, scale = 50 µm) and scale pattern (right, scale = 50 µm). The 

cross section is generally circular tending to oval. The cortex is very thick and the medulla is small 

to medium in size. The scale pattern is irregular waved mosaic and the scale margins are 

moderately rippled. The distance between scales is near. 

                                                     

            

Fig 3.6: Steenbok hair cross section (left, scale = 50 µm) and scale pattern (right, scale = 100 µm). 

The cross section is generally reniform tending to concavo-convex. The medulla is very large and 

spongy. The scales are transversal and the scale pattern is regular waved mosaic. Scale margins are 

smooth and the distance between scales is near to distant.  
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Fig 3.7: Springbok hair cross section (left, scale = 10 µm) and scale pattern (right, scale = 10 µm). 

The cross section is concavo-convex and the medulla is large. Scale pattern is regular waved 

mosaic and the scale margins are smooth. The distance between scale margins is near. 

 

                                                                                  

 Fig 3.8: Kudu hair cross section (left, scale = 40 µm) and scale pattern (right, scale = 50 µm). The 

cross section is generally biconvex. The medulla is large but not distinct. The cortex is thin. Scale 

pattern is irregular waved mosaic and scale margins are generally smooth. The distance between 

scales is near to distant.  
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Fig 3.9: Warthog hair cross section (left, scale = 100 µm) and scale pattern (right, scale = 100 

µm). The cross section is oval. Scale pattern is highly irregular waved mosaic. The scale margins 

are rippled and the distance between scales is close.                                                                  

                    

                                                                                              

 Fig 3.10: Scrub-hare hair cross section (left, scale = 30 µm) and scale pattern (right, scale = 50 

µm). The cross section is generally biconvex to oval. The medulla usually contains a few large 

cavities. The scales form a comb-like pattern called lanceolate pectinate. The distance between 

scales is distant and scale margins are moderately rippled. 
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Fig 3.11a: Red rock hare hair cross section (left, scale = 50 µm) and scale pattern (right, scale = 50 

µm). The cross section is dumb-bell shaped. The medulla usually contains ten large cavities and 

occasionally more (see Fig 3.11b). There is a broad, deep groove along the length of the hair. Both 

sides of the groove show a coronal scale pattern. The distance between scales is near and the scale 

margins are smooth. 

 

 

Fig 3.11b: Red rock hare hair cross section containing more than ten perforations (scale = 50 µm). 
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Fig 3.12: Burchell‟s zebra hair cross section (left, scale = 50 µm) and scale pattern (right, scale = 

50 µm). The cross section is oblong. Scale pattern is irregular waved mosaic and the scale margins 

are rippled. The distance between scale margins is near to close.                                         

 

    

Fig 3.13: Black rhino hair cross section (left, scale = 50 µm) and scale pattern (right, scale = 50 

µm). The cross section is approximately oval. The medulla is not well defined. Scales are very 

coarse and the pattern is irregular waved. The scale margins are moderately smooth to rippled and 

the distance between scales is near. 
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Fig 3.14a: Rock dassie hair cross section (left, scale = 50 µm) and scale pattern (right, scale = 50 

µm). The cross section is approximately oval although it tends to oblong. Scale pattern is not 

defined although the marks on the cuticular surface show an approximate coronal shape. The 

cuticular surface of the same piece of hair at two different positions along the length of the hair 

also shows no defined scale pattern (see Fig 3.14b).  

 

     

Fig 3.14b: Rock dassie hair scale pattern at two positions along the length of the hair (left, scale = 

50 µm) and (right, scale = 50 µm). The cuticular surface of this piece of hair at two different 
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positions along the length of the hair shows no defined scales except for the cut marks that depict 

an almost coronal pattern. 

 

                                    

Fig 3.15: Aardvark hair cross section shape (left, scale = 50 µm) and scale pattern (right, scale = 

50 µm). The cross section is clearly biconvex. The scale pattern shows overlapping petals and is 

described as broad diamond petal. Scale margins are generally smooth and the distance between 

scale margins is near to distant. 

  

3.1.2 Summary of modern hair morphological characteristics 

   The table below shows a summary of the major morphological characteristics of 

15 modern hairs analysed by scanning electron microscopy (Table 3.1). 
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Table 3.1: Morphological characteristics of 15 modern hairs analysed by scanning electron  

                  microscopy. 

Mammal Scale pattern Cross section Distance 

between 

scale 

margins 

Structure of scale 

margins 

Impala Irregular waved mosaic Triangle with 

blunted corners 

Near to 

distant 

Smooth 

Blue 

wildebeest 

Irregular waved mosaic Concavo-

convex 

Near Smooth to rippled 

Black 

wildebeest  

Irregular waved  Circular Near  Moderately rippled  

Buffalo Highly irregular waved  Circular Close Rippled  

Eland Irregular waved mosaic Circular to oval Near Rippled 

Steenbok Regular waved mosaic Reniform to 

concavo-convex 

Near to 

distant 

Smooth 

Springbok Regular waved mosaic Concavo-

convex 

Near Smooth 

Kudu Irregular waved mosaic Biconvex  Near to 

distant 

Smooth  

Warthog Irregular waved mosaic Oval Close Rippled  

Scrub-hare Lanceolate-pectinate Biconvex to 

oval 

distant Rippled  

Red rock hare Grooved with coronal 

pattern on both sides of 

the groove 

Dumb-bell 

 

Near 

 

Smooth 

Burchell‟s 
zebra 

Irregular waved Oblong Near to 
close 

Rippled  

Black rhino Irregular waved Oval Near Moderately smooth 

to rippled 

Rock dassie Coronal Oval to oblong Near to 

close 

Smooth 

Aardvark Broad diamond petal Biconvex Near to 

distant 

Smooth 
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3.1.3 Scanning electron micrographs and descriptions of fossil hairs  

   A selection of scanning electron micrographs of fossil hairs is shown in figure 

3.16 to 3.33. From these, it was possible to tentatively identify 10 of the fossil 

hairs, although seven could not be identified. Some fossil hairs preserved both the 

cuticular scale pattern and cross sectional shapes, whilst others showed severe 

degradation of both, as shown in Fig 3.16 below. Others showed several cracks 

and no scale pattern at all, rendering hair identification impossible.  

 

     

Fig 3.16: Distorted cross section of an unidentified fossil hair (left, scale = 50 µm) and severely 

degraded cuticular scales (right, scale = 50 µm). Although the cross section is highly degraded, it 

clearly shows that the cortex is medium to large in size. There is also evidence of a large lumen 

present. The cuticular surface shows no interpretable pattern.   
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Fig 3.17: Fossil hair specimen 1 cross section (left, scale = 30 µm) and scale pattern (right, scale = 

50 µm). The cross section is oval. There is no lumen in the medulla. The medulla shows no clear 

shape or form (armophous). The scales show an imbricate pattern. The scales lie transverse to the 

longitudinal direction of the hair and the scale margins are generally smooth to moderately rippled. 

 

   

Fig 3.18: Fossil hair specimen 2 cross section (left, scale = 50 µm) and scale pattern (right, scale = 

50 µm). The cross section is approximately circular. The scale pattern is poorly preserved, but in 

places is irregular waved, with scale margins being smooth to rippled. The distance between scales 

is near. 
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Fig 3.19: Fossil hair specimen 3 scale pattern (scale = 100 µm). The cross section is not available. 

The scale pattern is poorly preserved, although it shows an irregular waved pattern in places. The 

distance between scales is near to close. 

 

 

Fig 3.20: Fossil hair specimen 4 scale pattern (scale = 100 µm). The scale pattern is irregular 

waved mosaic and the scale margins are smooth. The distance between scales is near to distant. 

The cross section of this fossil hair specimen is not available. 
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Fig 3.21: Fossil hair specimen 5 scale pattern (scale =100 µm).The scale pattern is poorly 

preserved, although it shows an irregular waved mosaic pattern and smooth scale margins which 

are near to distant. The cross section is not available. 

         

   

Fig 3.22: Fossil hair specimen 6 scale pattern (scale = 50 µm). The scale pattern is irregular waved 

mosaic and the scale margins are moderately rippled. The distance between scale margins is near 

to close. The cross section is not available. 
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Fig 3.23: Fossil hair specimen 7 scale pattern (scale = 50 µm). The scale pattern is poorly 

preserved, but there is some evidence of an irregular waved pattern in places. Scale margins are 

smooth to rippled (on the top part of the hair). The cross section is not available.  

 

    

Fig 3.24: Fossil hair specimen 8 cross section (left, scale = 50 µm) and scale pattern (right, scale = 

50 µm). The cross section is biconvex. Although not well defined, there is a medium to large 

medulla with lumen. The cortex appears to be small to medium in size. The cuticular surface is 

highly degraded and there are no visible scales. 
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Fig 3.25: Fossil hair specimen 9 cross section (left, scale = 50 µm) and scale pattern (right, scale = 

100 µm). Although the cross section is severely distorted, it may have been circular judging from 

the one side. It has a thin cortex. The scale pattern is highly irregular waved and the distance 

between scales is close. 

 

                                     

Fig 3.26: Fossil hair specimen 10 cross section (left, scale = 50 µm) and scale pattern (right, scale 

= 50 µm). The scale pattern is poorly preserved but shows an irregular waved pattern. The scale 

margins are smooth to rippled and the distance between scales is near. The cross section is 

distorted but appears to be concavo-convex or reniform. The cortex is thin and the medulla appears 

to have small cavities. 
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Fig 3.27: Fossil hair specimen 11 scale pattern (scale = 50 µm). The scale pattern is slightly waved 

and the scale margins are smooth. The distance between scales is distant. The cross section is not 

available. 

 

 

Fig 3.28: Fossil hair specimen 12 scale pattern (scale = 100 µm). The scale pattern is irregular 

waved mosaic. The distance between scale margins is close. The scale margins are rippled. The 

cross section is not available. 
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Fig 3.29: Fossil hair specimen 13 scale pattern (scale = 100 µm). The scale pattern is irregular 

waved mosaic. The distance between scale margins is close. Scale margins are rippled. The cross 

section is not available. 

 

 

  

Fig 3.30: Fossil hair specimen 14 scale pattern (scale = 50 µm). The scale morphology is highly 

degraded and obscured. Nonetheless, the scale pattern appears to be irregular waved on the top left 

part of the hair. The cross section is not available.  
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Fig 3.31: Fossil hair specimen 15 scale pattern (scale = 100 µm). Scale pattern is irregular waved 

mosaic and the scale margins are moderately rippled. The distance between scale margins is near 

to close. The cross section is not available.  

 

                          

Fig 3.32: Fossil hair specimen 16 scale pattern (scale = 40 µm). Although the scale pattern is not 

well defined, it appears to be wavy and the scale margins are near to close. The cross section is not 

available.   
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Fig 3.33: Fossil hair specimen 17 cross section (left, scale = 50 µm) and scale pattern (right, scale 

= 100 µm). The cross section is a triangle with blunted corners, and even though ill-defined, it 

appears to have a large medulla and no lumen. The scale pattern is irregular waved mosaic and the 

scale margins are smooth. The distance between scales is near to distant. 

 

3.2 Possible fossil hair identifications 

Fossil hair specimen 1 (Fig 3.17) 

   In cross section, fossil hair specimen 1 (Fig 3.17) is generally oval and shows no 

lumen. The medulla is amorphous (lacks a definite shape) in appearance and this is 

characteristic of human hair. The scale pattern is imbricate i.e. the cuticular scales 

overlap. The scales lie transverse to the longitudinal direction of the hair and the 

scale margins are generally smooth to moderately rippled. This combination of 

features closely resembles those observed on modern African and European hair, 

and fossil human hairs reported by Backwell et al., 2009. Furthermore, the cross 

section of primates is generally oval (Backwell et al., 2009) which is the case in 

fossil hair specimen number 1 (Fig 3.17). Because of this, fossil hair specimen 1 

is considered as most probably human in origin. This human fossil hair specimen 
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(Fig 3.17) is terminal in nature (long and stiff) and not vellus (fine body) hair that 

does not usually contain medulla. 

 

Fossil hair specimen 2 (Fig 3.18)  

   Fossil hair specimen 2 (Fig 3.18) shows a distinctly circular cross section which 

resembles that of modern black wildebeest (Fig 3.3) and modern buffalo (Fig 3.4). 

Although the scale pattern of this fossil hair specimen (Fig 3.18) is not very 

visible, a closer examination reveals an irregular waved pattern with rippled scale 

margins, just like in modern black wildebeest (Fig 3.3). However, the distance 

between scales in modern buffalo (Fig 3.4) is close and for modern black 

wildebeest (Fig 3.3), it is near. Because of this, fossil hair specimen 2 (Fig 3.18) 

most likely originated from black wildebeest rather than buffalo. 

 

Fossil hair specimen 3 (Fig. 3.19)  

   Fossil hair specimen 3 (Fig. 3.19) is a highly degraded and extremely fragile 

piece. Nonetheless, scales show an irregular waved pattern and the distance 

between scales is near to close. Because the cross section of fossil hair specimen 3 

is not available, the degraded scale pattern is not good enough to make a tentative 

identification of the mammal species represented by the fossil hair specimen. 

 

Fossil hair specimen 4 (Fig. 3.20)  

   Scale morphology of fossil hair specimen 4 (Fig 3.20) is slightly obscured, but a 

closer examination shows an irregular waved mosaic pattern and smooth scale 

margins which are near to distant. A combination of these features resembles 
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those found in modern impala (Fig 3.1). Even though the cross section of fossil 

hair specimen 4 could not be obtained, the fossil hair specimen can be tentatively 

attributed to modern impala because the scale morphologies resemble each other 

closely.    

 

Fossil hair specimen 5 (Fig 3.21)  

   The scale pattern of fossil hair specimen 5 (Fig 3.21) is poorly preserved, 

although it shows an irregular waved mosaic pattern. Scale margins are smooth 

and the distance between scales is near to distant. A combination of features in 

fossil hair specimen 5 matches those of modern impala (Fig 3.1). Hence it likely 

originated from an impala. The cross section is not available. 

 

Fossil hair specimen 6 (Fig 3.22)  

   The cross section of fossil hair specimen 6 (Fig 3.22) is not available. However, 

scale morphology of this specimen is irregular waved mosaic and the scale 

margins are moderately rippled. The distance between fossil hair scale margins is 

near to close. Scale morphology of fossil hair specimen 6 (Fig 3.22) is comparable 

to that of modern Burchell‟s zebra (Fig 3.12).  

 

Fossil hair specimen 7 (Fig 3.23) 

   The cross section of fossil hair specimen 7 is not available. Scale patterns are 

poorly preserved, but nonetheless show an irregular waved pattern. Scale margins 

are smooth to rippled (on the top part of the hair). However, this detail is 
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insufficient to identify the mammal species represented by fossil hair specimen 7 

(Fig 3.23).  

 

Fossil hair specimen 8 (Fig 3.24)  

   In cross section, fossil hair specimen 8 (Fig 3.24) is generally biconvex to oval, 

a feature shared with modern kudu (Fig 3.8). However, fossil hair scale 

morphology of this specimen (Fig 3.24) is not preserved at all and therefore 

cannot be used as a distinguishing feature. Based on cross section only, fossil hair 

specimen 8 (Fig 3.24) closely matches that of modern kudu (Fig 3.8). 

 

Fossil hair specimen 9 (Fig 3.25)  

   The cross section of fossil hair specimen 9 (Fig 3.25) is severely distorted. 

Nonetheless, it appears to be circular and the cortex looks thin. The scale pattern 

is highly irregular waved at the top part of the fossil hair and the distance between 

scales is close. The scale margins are generally smooth. This detail is however 

insufficient to make an identification of the mammal species represented by fossil 

hair specimen 9 (Fig 3.25). 

 

Fossil hair specimen 10 (Fig 3.26)                                   

   Although the cross section of fossil hair specimen 10 (Fig 3.26) is distorted, it is 

reniform or concavo-convex. Cross sectional shape of fossil hair specimen 10 (Fig 

3.26) is very similar to that of modern steenbok (Fig 3.6) and modern springbok 

(Fig 3.7). The scale pattern of fossil hair specimen 10 is poorly preserved but 

shows an irregular waved pattern. The fossil hair scale margins are moderately 
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rippled, which is not the case in modern steenbok (Fig 3.6) and modern springbok 

(Fig 3.7) where the scale margins are very smooth. Scale morphology of fossil 

hair specimen 10 (Fig 3.26) could not be conclusively matched in the comparative 

collections hence an identification could not be made. 

 

Fossil hair specimen 11 (Fig 3.27)  

   The scale pattern of fossil hair specimen 11 (Fig 3.27) is not well preserved, 

although it shows a regular waved pattern. Scale margins are smooth and the 

distance between scales is distant. Although scale morphology of fossil hair 

specimen 11 (Fig 3.27) is well defined, it cannot be conclusively matched in the 

comparative collections. The cross section of this fossil hair specimen is not 

available to facilitate taxonomic identification hence an identification could not be 

made. 

 

Fossil hair specimen 12 (Fig 3.28)  

   Scale morphology of fossil hair specimen 12 (Fig 3.28) is irregular waved 

mosaic and the distance between scale margins is close. Scale margins are rippled. 

Although the cross section of this fossil hair specimen is not available, its scale 

morphology closely resembles that of modern warthog (Fig 3.9). 
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Fossil hair specimen 13 (Fig 3.29)  

   The scale morphology of fossil hair specimen 13 (Fig 3.29) is irregular waved 

mosaic. The distance between scale margins is close. Scale margins are rippled. 

Although the cross section is not available, scale morphology of fossil hair 

specimen 13 (Fig 3.29) closely matches that of modern warthog (Fig 3.9). Fossil 

hair specimen 13 (Fig 3.29) is also similar to fossil hair specimen 12 (Fig 3.28) 

which closely resemble that of modern warthog in Fig 3.9. 

 

Fossil hair specimen 14 (Fig 3.30)  

 The scale morphology of fossil hair specimen 14 (Fig 3.30) is not well preserved 

even though the scale pattern appears to be irregular waved on the top left part of 

the hair. The cross section is not available and the available detail is insufficient to 

make an identification.  

 

Fossil hair specimen 15 (Fig 3.31)  

   The cross section of fossil hair specimen 15 (Fig 3.31) is not available. The 

scale morphology of this specimen is irregular waved mosaic. Scale margins are 

moderately rippled and the distance between fossil hair scale margins is near to 

close. The scale morphology of fossil hair specimen 15 is comparable to that of 

modern Burchell‟s zebra (Fig 3.12). Hence fossil hair specimen 15 most probably 

originated from Burchell‟s zebra. 
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Fossil hair specimen 16 (Fig 3.32)  

   Although the scale pattern of fossil hair specimen 16 (Fig 3.32) is ill- defined, it 

appears to be wavy, and the distance between scale margins is close to near. The 

cross section of fossil hair specimen 16 (Fig 3.32) is not available and an 

identification of the mammal species represented by the fossil hair specimen is 

impossible.  

 

Fossil hair specimen 17 (Fig 3.33) 

   In cross section, fossil hair specimen 17 (Fig 3.33) is a triangle with blunted 

corners, a feature shared with modern impala (Fig 3.1). However, there are no 

clear small perforations on the fossil medulla, probably due to degradation. 

Although ill-defined, scale pattern of fossil hair specimen 17 (Fig 3.33) is 

irregular waved mosaic and the scale margins are smooth, just like in modern 

impala (Fig 3.1). The distance between scales of fossil hair specimen 17 is distant. 

Fossil hair specimen 17 most likely originated from an impala as the fossil (Fig 

3.33) and modern impala (Fig 3.1) hair scale morphologies closely resemble each 

other. 

 

3.3 Summary of results 

   Of the 48 fossil hairs extracted from 12 coprolites, 31 were extremely degraded 

and the scale patterns were faintly perceptible and not clearly seen (e.g. Fig 3.16), 
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whilst 10 could be identified to species level, and 7 could not be identified (see 

Table 3.2) using the available comparative hair collection. 

Table 3.2: Possible fossil hair identifications 

Fossil hair  

specimen 

number       

State of 

preservation 

Scale pattern Cross section Possible fossil hair 

identity 

1 Good Imbricate Oval Human 

2 Average Irregular waved Circular Black wildebeest 

3 Good Irregular waved Not available Unknown 

4 Good Irregular waved 
mosaic 

Not available Impala 

5 Average Irregular waved 

mosaic 

Not available Impala 

6 Good Irregular waved Not available Burchell‟s zebra 

7 Very poor Not very clear 

although 

irregular waved 

Not available Unknown 

8 Poor Not visible Biconvex Kudu 

9 Average Highly irregular 

waved 

Not clear but 

appears circular 

Unknown 

10 Average Irregular waved Concavo-

convex or 

reniform 

Unknown 

11 Poor regular waved  Not available Unknown 

12 Average Irregular waved Not available Warthog 

13 Poor Irregular waved Not available Warthog 

14 Poor Irregular waved Not available Unknown 

15 Average Irregular waved 

mosaic 

Not available Burchell‟s zebra 

16 Very poor Not visible 

enough but 

somehow 

irregular waved 

Not available Unknown 

17 Good Irregular waved 

mosaic 

Triangle with 

blunted corners 

Impala 
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  Mammals identified include black wildebeest, impala, Burchell‟s zebra, kudu, 

warthog and human. Those that could not be identified had severely degraded and 

obscured scale patterns. In some cases, cross sections could not be obtained to 

facilitate taxonomic identification of hairs because the fossil hair fragments were 

extremely small and preserved as high resolution casts of external and not internal 

morphology. Interestingly, some fossil hairs showed reasonably clear scale 

morphologies but could not be conclusively matched in the comparative 

collections (e.g. specimen number 11, Fig 3.27).  

 

   Scanning electron micrographs of fossil hairs obtained revealed that the extent 

of fossil hair degradation significantly varied amongst the fossil hairs. This is 

most likely due to microbial activity and variable diagenetic processes, but could 

be attributed to the position from which the fossil hairs originated on the animal. 

This is because some hairs e.g. those from the animal‟s back and tail are generally 

more robust than those from the neck and stomach which are usually very fine, 

and possibly not strong enough to resist severe degradation. Alternatively, the hair 

was degraded before consumption, having been exposed to the elements for some 

days or weeks. Soft tissues preservation occurs in several localities (Martill, 

1987a, b, c, 1988, 1991, 1993, 1995), and the exceptional preservation may be a 

result of in situ preservation of degraded organic matter (Martill, 1995). 

Taphonomic and diagenetic alterations give few clues on soft tissue preservation 

styles (Martill et al., 2000). According to Schweitzer (2011), the molecular 

composition of hair gives it relatively high preservation potential. Nevertheless, 

variable degradation between the hairs warrants further investigation. The 
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importance of understanding hair sample condition in archaeological and forensic 

investigation shows the need for a detailed knowledge of the sequence of 

degradation in samples that have been buried (Wilson et al., 1999, 2003, 2007; 

Wilson, 2008). A comprehensive knowledge of the selective progress of 

degradation in hair derived from archaeological or forensic contexts enables us to 

establish a means of quantifying the extent of change through the development of 

a histological index for assessing sample condition that will have widespread 

application to archaeology and forensic investigation (Wilson et al., 2004). 
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CHAPTER FOUR 

DISCUSSION  

4.1 Hair identification difficulties 

    Fossil hairs were extremely difficult to identify compared to modern hairs, 

which record clear scale patterns and margins for the entire length of the 

specimen. Most of the fossil hairs were very small shaft fragments (≤ 1mm), 

meaning that only a few features were present and available for use in 

identification. Furthermore, extracting fossil hairs using fine tweezers and a low 

magnification binocular microscope is a very challenging procedure. 

 

   Ancient hair assemblages are known to contain a wide range of hair types such 

as guard hairs, under hairs, and whiskers from a variety of species (Bonnichsen et 

al., 2001). Hair identification reference keys are limited to guard hairs because of 

their characteristic features, but this makes hair identification of less distinct or 

developed features challenging, especially when previous researchers have shown 

that there are significant differences in hair morphology between hairs taken from 

different sites on the animal (Adorjan and Kolenosky, 1969; Riggot and Wyatt, 

1980, 1981). Seasonality, age and sex differences (De Boom and Dreyer, 1953; 

Randall and Ebling, 1991; Brothwell, 1993) can also complicate the taxonomic 

identification of hair, as demonstrated by Keogh (1975), who investigated the 

effect of age on individual scale patterns of rodent hair, and found significant 

variation in the hairs of young and old animals. 
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   All the modern hair samples used in this study were obtained from the 

Johannesburg Zoo and the Ditsong National Museum of Natural History. The 

effects of taxidermy, preparation and storage on cuticular scale pattern are not 

known and the extent to which these factors have influenced my research findings 

is not known. This warrants further investigation, given that rock dassie hair 

shows no scale pattern at all (Fig 3.14a and b).  

 

   Many other factors complicate morphological analysis, including protein 

degradation, abrasion, fungal and bacterial attack, all of which can obscure or alter 

scale and medullary features (Bonnichsen et al., 2001). This is quite evident in the 

fossil hairs from this study, many of which had abraded scales and obscured 

medullary features (e.g. Fig 3.16, Fig 3.23 and Fig 3.25). DNA analysis could 

have easily resolved the taxonomic identity of the fossil hairs, but unfortunately, 

as casts, they did not preserve any protein (Backwell et al., 2009). Despite this, 

some fossil hairs showed remarkably well preserved casts of the original hair 

scales, even though with some loss of surface form, and there was sufficient detail 

to make tentative identifications of the mammal taxa represented. 

 

4.2 Hair comparison and identification 

   Some fossil hairs had well preserved cuticular surface and cross sectional 

morphology which is rarely observed in ancient hair (e.g. Fig 3.17). The well 

preserved cuticular surfaces allowed for visual comparison with modern hair 
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samples. Scanning electron microscope analysis was used for all the hair samples 

and resulted in relatively clear micrographs. In addition, it was able to elucidate 

any characteristic features of cuticular surface pattern or cross sectional 

morphology, elements on which this study was based.   

 

   Visual comparison of hair can be subjective and is open to interpretation by 

individual scientists (Steck-Flynn, 2009), but despite this, hair comparison was 

done as objectively as possible, drawing on my extensive personal experience and 

a wide reference collection. As with most forensic evidence, the information 

obtained from hair is expressed in terms of probabilities of a match rather than an 

absolute match (Crocker, 1999). In a study conducted by the Federal Bureau of 

Investigation (FBI), 11% of hairs deemed to be matches upon visual inspection 

were subsequently found to be non- matches after DNA testing (Saferstein, 2004). 

Nonetheless, I was able to identify 10 fossil hairs to species level in six cases.  

 

   The cuticular scale surface detail of fossil hairs in this research is sufficiently 

intact to be of use in species identification, and on this evidence a tentative 

identification has been made. Based on my collection of modern large mammals 

from southern Africa, this study has established that impala, Burchell‟s zebra and 

warthog hair predominated in the coprolites from Gladysvale cave (see Table 3.2). 

The fact that these animals represent three of the 15 new mammal hair taxa 

documented as part of this project, demonstrates the importance of expanding the 

taxonomic representation of modern southern African mammal hair samples. In 
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accordance with Kruuk (1972), who found one taxon represented in most spotted 

hyaena faeces, this research showed the same pattern for brown hyaena coprolites. 

The only exception is in coprolite specimen 4, which showed different animals 

(impala and Burchells‟s zebra) represented in the same coprolite.    

 

   Skinner and van Aarde (1981) analysed hairs from scats from hyaena latrines 

from Wolfsbaai and found that seal and jackal hair predominated. Kuhn et al. 

(2008) analysed brown hyaena scats and examined faunal remains at nine dens 

and concluded that brown hyaenas along the Namibian Coast predominantly feed 

on seals. These are only a few examples of the available evidence of brown 

hyaenas consuming locally available animals, which evidences hyaenas as good 

environmental indicators. The Burchell‟s zebra, impala and warthog represented 

in the coprolites are commonly found in savannas. Plains zebra live in open 

savannas and partial to open woodlands.  They are a daily and seasonal migratory 

mammal that moves in search of better grazing areas and water supplies, but are 

highly dependent upon water and are never more than 10 to 12 km from a source 

(Skinner and Smithers, 1990). This species is predominantly a grazer preferring 

short grasses, but will also browse and feed on herbs. Warthogs are found in open 

grasslands, floodplains, open woodlands and open scrub. They are selective 

feeders, preferring short grasses growing in freshly burnt and damp areas. They 

also root for underground rhizomes and will consume sedges, herbs, shrubs and 

wild fruit. Warthogs are not dependent upon water, but are usually found close to 

it. Impala are associated with woodland, preferring light open associations. In 

southern Africa they are associated particularly with Acacia and Mopane 
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woodland, occurring on the ecotone of open grassland and woodland. Cover is an 

essential habitat requirement, but impala occasionally graze on open grassland 

when it is fresh and green (Skinner and Smithers, 1990).  

 

   On the evidence of scale morphology, rodents and other carnivores in general, 

and cats in particular, can reasonably be excluded. Rodent hair is typically 

grooved along the entire length of the hair and is usually coronal in scale 

morphology (Keogh, 1985). Carnivore hair scale pattern consist of closely packed 

scales forming an irregular pattern (Keogh, 1979; Backwell et al., 2009), unlike 

that on the fossil hairs analysed in this research. In this regard, the possibility that 

the hyaena ingested its own hair during grooming can be eliminated. Cats, like 

other carnivores, have irregular waved patterns, but the scale margins are typically 

frilly, and none of the fossil hairs record this feature.  

 

   My results indicate that previously undocumented scub-hare (Lepus saxatilis) 

scale pattern (Fig 3.10) closely resembles that of vlei rat (Otomys irroratus) 

studied by Keogh (1975). Similarities in scale pattern were also observed between 

red rock hare (Fig 3.11a) and four-striped mouse (Rhabdomys pumilio) 

documented by Keogh (1975). The only difference lies in the fact that the scale 

pattern on either side of the groove is coronal in red rock hare (Fig 3.11a) and 

petal mosaic in four-striped mouse. This is not surprising because of possible 

overlaps between mammal hair features, as discussed by Hess et al. (1985). These 

similarities are noteworthy because of the problem of misidentification, and thus 

misinterpretation of the fossil record and palaeoenvironment. 
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   Rock dassie hair shows no scales at all, with some cracks (Fig 3.14). A lack of 

hair scales has been documented in human hair subject to pathology (Brown and 

Crounse, 1980), a condition observed when studying our diabetic colleague‟s hair 

as part of the human sample. In the case of the rock dassie, a lack of scales could 

possibly be due to abrasion of the scales as the animal predominantly inhabits 

rocky places, or more likely due to taxidermy preparation of the pelt. 

Interestingly, Perrin and Campbell (1980) report that rock dassie is a 

species that bears litt le phylogenet ic affinity to most similarly sized 

mammals and has a hair cut icular scale pattern unlike the majority of 

small mammals in that it  is flattened mosaic in the proximal region and 

changes to a waved pattern distally.  

 

   Scanning electron microscope analysis revealed that modern black wildebeest 

hair cross section is entirely circular. My finding is not in agreement with De 

Boom and Dreyer (1953), who found concavo-convex cross sections for black 

wildebeest. This could be due to differences in area of sampling or variability 

within species (age, diet, disease or season). Furthermore, my comparative 

collection shows that kudu hair scale pattern is irregular waved mosaic, and the 

scale margins are smooth to rippled-crenate. However, Dreyer (1966) observed 

coronal scale patterns in kudu hair and this difference in scale morphology 

remains unexplained, even when one considers that hair morphology can be 

extremely variable in a species. Marked variability within a species is evident in 

the differences between the number of perforations on the cross sections of red 

rock hare in Fig 3.11a and b. While Backwell et al. (2009) note the similarities 
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between modern African and European human hair in scale pattern and cross-

sectional shape and dimensions, they also point out differences.  

 

   What is quite evident on one fossil hair is an imbricate cuticular scale pattern, 

with a regular waved morphology (Fig 3.17), with scales lying transversely in a 

more or less banded manner. These features are typical of modern primates 

(Backwell et al., 2009), and human hair is the closest match. Another clearly 

identified pattern observed on two fossil hairs (Fig 3.22, Fig 3.31) is one that 

matches Burchell‟s zebra. This pattern is characterised by scales that are irregular 

waved mosaic, and the scale margins are generally rippled to moderately crenate. 

Two fossil hairs (Fig 3.28, Fig 3.29) showed a highly irregular waved scale 

pattern whose scale margins are closely spaced relative to hair width, features that 

characterise suids. These fossil hair specimens have scale margins that are rippled 

crenate, and these features are common to modern warthog. Three fossil hairs (Fig 

3.20, Fig 3.21, Fig 3.33) exhibit an irregular waved mosaic pattern and triangular 

cross sections with blunted corners, features typical of modern impala. These 

characteristics form the basis of some criteria that future researchers may look for 

when analysing hair samples using scanning electron microscopy. 

 

4.3 Implications for Middle Pleistocene hyaena ecology and 

palaeoenvironment 

   Based on the fossil hairs identified here, this research has established that 

between 257 and 195 ka, brown hyaenas shared the Sterkfontein Valley with 
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warthog, impala, zebra, kudu, black wildebeest and humans. These animals are 

associated with savanna grasslands, much like the Highveld environment of today.  

 

   These findings provide a new source of information on the local Middle 

Pleistocene fossil mammal community, and insight into the environment in which 

archaic and modern humans in the interior of the African subcontinent lived. The 

fact that Middle Pleistocene hyaena fed on the above-mentioned mammals is 

consistent with previous researchers who reported that hyaenas accumulate a wide 

range of faunal remains to varying degrees and that their foraging behaviour is 

variable (Henschel et al., 1979; Scott and Klein, 1981; Leaky et al., 1999; 

Skinner, 2006; Faith, 2007; Kuhn et al., 2010). Amid a scarce fossil and 

archaeological record for this time period, these results contribute data to the 

ongoing debate about the role of environment in the evolution of Homo sapiens 

and complex technology. 

 

   Climate records for sub-Saharan Africa are limited. In addition to this, there are 

difficulties in correlating southern hemisphere climate data with those from 

northern latitudes, which experience significantly different temperature regimes 

(Gasse et al., 2008; Chase et al., 2010). Only a few Middle Stone Age (MSA) 

sites are documented for the interior of southern Africa. This is largely attributed 

to sampling bias (Mitchell, 2008), poor preservation conditions (Schiegl and 

Conard, 2006), and a lack of human habitation at this climatically unfavourable 

period (Deacon and Deacon, 1999; Wadley, 2006). Arid climates are widely 
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believed to have pushed people to the coast, where they exploited an array of 

resources (Deacon and Deacon, 1999; Marean et al., 2007; Clark and Plug, 2008; 

Marean, 2010a, 2010b). At the same time they produced engraved artefacts 

(Henshilwood et al., 2009; Texier et al., 2010), ornamental shell beads (d‟Errico 

et al., 2005) and evidence of complex hafting and hunting activities (Lombard, 

2007; Pargeter, 2007; Backwell et al., 2008; Wadley and Mohapi, 2008; Lombard 

and Phillipson, 2010; Wadley, 2010). Attributes characteristic of modern human 

behaviour including symbolic and abstract thought, planning and technological 

innovation, undoubtedly developed in Africa in MSA contexts (McBrearty and 

Brooks, 2000), but the timing and geographic distribution of the emergence of 

modern human cognition, the mode and tempo of its evolution, and whether it is 

specific to modern humans is the subject of ongoing debate (Mellars, 1991; Klein, 

1995, 1998, 1999, 2000, 2001; McBrearty and Brooks, 2000; Wadley, 2001; 

Stringer, 2002; d‟Errico and Henshilwood, 2007; d‟Errico and Stringer, 2011). 

This is partly because knowledge of African Middle and Late Pleistocene fossil 

hominins is limited by a small sample size, rendering the extent of their diversity, 

distribution and associations with lithic industries and each other, unknown 

(Mitchell, 2008). 

 

   It is therefore difficult to assess the impact of climate change on modern human 

evolution and dispersal when it is not clear if there was an accretional emergence 

of modern humans from an archaic ancestor with a pan-African distribution 

(Brauer, 2008; Pearson, 2008), or a more punctuated speciation event from a 

geographically-restricted population of archaic humans (Stringer, 2002). Further 
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complicating the situation is the fact that the fossil record is biased in favour of 

sampling a disproportionate number of sites near water, for example lake margins, 

springs, streams and deltas (Shipman and Harris, 1988). In South Africa, most 

fossils are preserved in cave contexts. It is widely thought that by 60 ka, people in 

southern Africa were anatomically modern (Marean and Assefa, 2005; McBrearty 

and Brooks, 2000; Wadley, 2006; Brooks et al., 2006; Lombard, 2007). This is, 

however, largely based on a small fossil record of human remains from a few 

sites, namely Klasies River (Rightmire, 1984; Rightmire and Deacon, 1991; 

Brauer et al., 1992), Border Cave (Beaumont et al., 1978; Rightmire, 1984; 

Beaumont, 1980), and Die Kelders Cave 1 in South Africa (Grine, 2000), and to 

some extent on the identification of modern features in human remains from 

Ethiopia, such as Herto (White et al., 2003) and Omo Kibish I (McDougall et al., 

2005). The fossil hairs from Gladysvale cave thus contribute to the scant early 

human fossil record. 

  

   Even though we cannot attribute to which hominin species the hairs belong, we 

know that they lived in a grassland environment. Modern African savannas pose 

many challenges for humans. Besides natural hazards like drought and fire, the 

grasslands are home to many predators. Africa is home to the highest percentage 

of poisonous snakes and life-threatening animals in the world. Furthermore, birds 

of prey are known to have killed the Taung child, and led to Lee Berger‟s bird of 

prey hypothesis (Berger and Clarke, 1995, 1996; Berger, 2006). These factors 

would have played a major role in the behavioural evolution of early humans. 
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Predator avoidance would have stimulated complex social behaviour of early 

humans living in the African interior. 

 

   The existence of fossil hairs in Middle Pleistocene hyaena coprolites from 

Gladysvale cave can be explained in three ways. First, according to Berger et al. 

(2009), the coprolites are from a brown hyaena, based on the contents and 

position of the latrine in the cave, which suggests that it was used as a den for 

rearing pups. The coprolites are most likely from a brown hyaena because spotted 

hyaenas do not defacate in one place while striped hyaenas mark a large territory 

around the entrance (Watts and Holekamp, 2007). In accordance with Brain 

(1981), brown hyaenas are keen hunters of large mammals only when rearing 

pups, hence the possibility that the Middle Pleistocene hyaena(s) responsible for 

the coprolites hunted the large mammals as part of their pup-rearing behaviour. 

 

   

      Second, the Parahyaena brunnea responsible for the coprolites scavenged the 

identified mammals, in accordance with the most common foraging behaviour 

reported for modern brown hyaena (Skinner, 1976; Skinner and Ilani, 1979; 

Skinner et al., 1980; Owens and Owens, 1978; Mills, 1990; Skinner and Smithers, 

1990; Yom-Tov and Medelssohn, 2002; Maude, 2005; Maude and Mills, 2005; 

Kuhn, 2001, 2005, 2006; Kuhn et al., 2009, 2010; Kuhn, 2011). Brown hyaenas 

are reportedly inefficient predators, and their food is rarely obtained by hunting 

(Maude, 2005). Researchers have observed that if hunting occurs, it is targeted 

towards smaller mammals only (Skinner, 1976; Mills, 1978), as evidenced by 
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brown hyaenas killing seal pups on the Namibian Coast (Wiesel, 2006; Kuhn et 

al., 2008). Some brown hyaenas show specialization of hunting techniques 

towards certain prey species (Wiesel, 2006), such as southern Kalahari brown 

hyaenas hunting springbok lambs (Antidorcas marsupialis) and korhaans 

(Eupodotis spp) as reported by Mills (1978, 1990), and brown hyaenas killing 

small livestock (Skinner, 1976, Kuhn, 2011). They are said to be poorly equipped 

for running and hunting, especially of large mammals, such as the zebra, kudu and 

black wildebeest represented in the coprolites. If this behaviour is true of extant 

Parahyaena brunnea, it should hold that Middle Pleistocene hyaena scavenged on 

the large mammals represented in the coprolites, which were killed by other 

carnivores, most likely large cats. 

  

   Third, it may be possible that Middle Pleistocene Parahyaena brunnea had a 

different foraging behaviour from their modern counterparts, namely the habitual 

hunting of large mammals, as practiced by the extinct long legged hunting hyaena 

(Chasmaporthetes nitidula), which is recorded at Sterkfontein, and which ran 

down its prey (Berger et al., 2002; Clark, 2002; Berger, 2005). This scenario is, 

however, unlikely given the anatomical differences between the taxa, but we 

cannot rule out the chance that they employed a different hunting strategy.  

    

   In accordance with their regional distribution, brown hyaenas have a wide- 

ranging and variable diet (Owens and Owens, 1978; Maude, 2005). Nonetheless, 

apart from the six animals identified in this study, my research findings show that 
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brown hyaenas fed on mammals that could not be matched in the comparative 

collections, suggesting either that some extinct mammal species that also shared 

the landscape are represented in the hair samples, or more likely, that the modern 

comparative collection is insufficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 

 

CHAPTER FIVE 

 CONCLUSION 

   Of the 48 fossil hairs extracted from 12 coprolites, 31 were extremely abraded 

in scale and cross-sectional morphology, whilst 10 were identifiable to six 

possible species. Seven could not be identified. Scanning electron microscope 

analysis of modern hair samples of known taxa revealed fine details of scale and 

cross sectional morphology of hair, and showed that cuticular scale pattern and 

cross section shape can be used as definitive criteria in species identification, and 

the pertinence of this technique to fossil research. Based on scale pattern and cross 

section shape and features, when available, small mammals and other carnivores, 

specifically cats, are not represented by any of the fossil hairs analyzed in this 

research. 

 

   The identified fossil hairs show that between 257 and 195 ka, Parahyaena 

brunnea shared the Sterkfontein Valley with warthog, impala, zebra, kudu, black 

wildebeest and humans. These animals are associated with savanna biomes much 

like the Highveld region of today, where grasslands are broken by woodlands, 

especially in valleys near water. Whether the hyaena(s) responsible for the 

coprolites hunted or scavenged from these animals is unclear. Brown hyaenas are 

reported to hunt when rearing pups, but most evidence shows them to be habitual 

scavengers. Based on the principle of uniformitarianism, and the large body of 

research conducted on the various hyaena taxa foraging behaviours, it is likely 

that the fossil hairs represent scavenging by hyaenas of animals hunted by large 

cats in the area.  
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   The identified hairs show that coprolites provide significant data on a range of 

Middle Pleistocene fauna in the Sterkfontein Valley as well as information on 

Middle Pleistocene Parahyaena brunnea palaeoenvironment and ecology. Based 

on an expanded modern comparative collection of hairs of known mammalian 

taxa, these findings provide a new source of information on the local Middle 

Pleistocene fossil mammal community, and rare insight into the environment in 

which archaic and modern humans in the interior lived. Amid a scarce fossil and 

archaeological record for this time period, these results contribute data to the 

ongoing debate about the role of environment in the evolution of Homo sapiens 

sapiens, and show that predator avoidance and defence were no doubt important 

factors in the social and cultural adaptations of early humans living in the African 

interior. 

 

   This study highlights the importance of researching all aspects of the fossil 

record and the contribution of microscopy to palaeontology. Future research 

should focus on expanding the taxonomic representation of modern southern 

African mammal hair samples, documenting the effects of preparation and storage 

of hair on cuticular scale pattern preservation, and attempting to provide examples 

of different types of hairs from different sites on the body, as well as from young 

and old individuals.  
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APPENDICES 

Appendix A: Modern steenbok hair scale pattern at different scales (left, scale = 50 µm) and right 

(scale =100 µm). There is no significant difference on the scale patterns at different scales. 

   

 

Appendix B: Unidentified fossil hair scale pattern at different scales (left, scale = 50 µm) and 

(right, scale = 100 µm). Although not clearly visible, the scale pattern shows a waved morphology. 
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Appendix C: Unidentified fossil hair cross section (left, scale = 100 µm) and  scale pattern (right, 

scale =100 µm). Cross section appears like a distorted triangle. The cuticular scale is however 

abraded but nonethelesss shows an irregular waved morphology with moderately rippled  margins.  

      

 

Appendix D: Modern Burchell‟s zebra hair cross section at different magnifications (left, scale 

= 50 µm, magnification = 1550x) and right (scale = 50 µm, magnification = 2391x). 
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Appendix E: Unidentified fossil hair scale pattern at different magnifications (left, scale =40 µm 

and magnification = 2940x) and (right, scale =50 µm and magnification = 810x). There is no 

significant difference in scale morphology.  

   


