THE EFFECT OF CARPAL TUNNEL SYNDROME PAIN ON SLEEP ARCHITECTURE

by

Dalingcebo Christopher Mdluli

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirement for the degree of Master of Science.

Johannesburg, 2012
DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of Science in the faculty of Science at the University of the Witwatersrand, Johannesburg, South Africa. It has not been submitted before for any degree or examination in any other University.

Dalingcebo Christopher Mdluli

Signed in Johannesburg on this____ day of _______2012
ABSTRACT

Carpal tunnel syndrome (CTS) is a neuropathic condition commonly caused by the entrapment of the median nerve. The most common complaint presented by the CTS patients is pricking sensation, numbness, pins and needles, burning sensation as well as in the hand and sometimes the arm/s distribution of the affected side. The patients with CTS usually complain of nocturnal periodic sleep disruption caused by the pain discomfort. In my dissertation, I explore the extent to which the CTS pain influences sleep architecture using neurophysiological measurements like an overnight electroencephalogram (EEG), conduction tests as well as subjective questionnaires. I initially conducted a pilot research study on 33 patients with CTS using subjective questionnaires. The CTS patients reported sleep disturbance. I also demonstrated that they (patients) had a minimal mood and psychological disturbance. I was prompted therefore to investigate the influence of the CTS pain on the sleep architecture using more objective empirical instruments like the polysomnogram as well as subjective measurements such as Beck Depression Inventory, Profile of mood states, Visual analogue scales as well as the McGill pain questionnaire to further investigate changes. The patients were required to spend four nights in the sleep laboratory divided into two nights before surgery and two nights at least two to six weeks following the CTS surgery. The CTS surgery is commonly used to release the compression of the median nerve at the wrist. The changes in subjective and objective variables were compared before and after CTS surgery. The age and gender-matched control group was introduced into the research study. The control group was required to spend the same number of nights in the sleep laboratory as the CTS group. The control group was also going to have a non-painful procedure of the same magnitude as the experimental subjects. The conclusion I reached on this study was that the CTS patients reported poor sleep quality. I also demonstrated that there were not many changes in the polysomnogram and that there were minimum changes shown on the nerve conduction studies variables as might have been expected based on the severity of the carpal tunnel syndrome. Another important finding was that there was a relationship between pain and depressive mood in CTS patients. The removal of pain in CTS patients showed that there was a subsequent subjective improvement in mood and psychological status and no significant improvement in subjective measurements. There were no significant changes noted on the control subjects who were pain-free.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors, Dr. Fiona Baker and Professor Duncan Mitchell for their support, wisdom and guidance as well as their limitless motivation which helped me through this dissertation.

To my late mother, Busisiwe Gloria Mazwi, I thank you for the light that still shines brightly on my path in your absence. To Zande, Zwi, Tebo, Mark and Junior, thank you for your love, patience, support and understanding.

The Iris Ellen Hodges and the Medical Endowment Research Fund of the University of the Witwatersrand supported this study.
TABLE OF CONTENTS

DECLARATION (ii)
ABSTRACT (iii)
ACKNOWLEDGEMENTS (iv)
CONFERENCE PROCEEDINGS (vii)
LIST OF FIGURES AND TABLES (viii)
DEFINITIONS (x)

CHAPTER 1- LITERATURE REVIEW
1.1 Pain and Sleep 1
1.1.1 Clinical pain sleep 3
1.2 Sleep 4
1.3 Carpal tunnel syndrome and pain 9
1.3.1 Carpal tunnel syndrome 9
1.3.2 The median nerve compression 10
1.3.3 Electrophysiology 11
1.3.4 Treatment 13
1.4 Carpal tunnel syndrome pain and sleep 13
1.5 Thesis Aims 16

CHAPTER 2-METHODS
2.1 Patients 17
2.1.1 Carpal tunnel syndrome patients 17
2.1.2 Control patients 19
2.1.3 Screening interviews 19
2.2 Measures and procedures 20
2.2.1 Nerve conduction studies 20
 2.2.1.1 Sensory conduction 25
 2.2.1.2 Stimulation and recording 25
2.2.2 Electromyography 26
2.3 Patients surgical procedures 31
2.3.1 CTS operation 31
2.3.2 Control operation 31
2.4. Polysomnography 31
2.4.1 International 10/20 system 32
2.4.2 Sleep variable and subjective data 35
2.5 Subjective assessment 36
2.6. Data analysis 37

CHAPTER 3-RESULTS

3.1 Nerve conductions 38
3.2 Sleep 43
3.2.1 Polysomnography 43
3.2.2 Subjective sleep assessment 43
3.3 Pain 48
3.3.1 Pain intensity 48
3.3.2 Pain quality 48
3.3.2.1 McGill pain questionnaire 48
3.4. Mood 50

Profile of mood states 50
Beck depression inventory 50
Evening anxiety 50
3.5. The excluded patient 54

CHAPTER 4-DISCUSSION 56
CONCLUSION 64
CHAPTER 5-REFERENCES 67
CHAPTER 6-APPENDIX 68

Subjective sleep quality and psychological status in patients with carpal tunnel syndrome
CONFERENCE PROCEEDINGS

The following presentations were offered in support of the dissertation

LIST OF FIGURES AND TABLES

1. Figure 1: Progression of sleep stages during a complete night of sleep in a normal, healthy adult represented on a hypnogram.
2. Figure 2: Areas of sensory loss affected by a complete lesion of a median nerve.
3. Table 1: The demographics of patients and control subjects.
4. Figure 3: The orthodromic recording of the distal motor latency (DML) for the median nerve.
5. Table 2: Parameter settings for the median and sensory nerve conduction studies.
6. Table 3: Criteria to confirm a diagnosis of clinically suspected CTS, based on the guideline of the American Association of Electrophysiological Medicine, (1993).
7. Figure 4(a): The recording of orthodromic median/ulnar sensory conduction latencies.
 Figure 4(b): Palmar stimulation of the median nerve.
8. Table 4: The calculation of the combined sensory index between the radial, ulnar, and median nerves.
9. Figure 5: Position of the median and ulnar nerves and the incision of the carpal ligament to decompress the pressure of the median nerve.
10. Figure 6: The 10-20 electrode placement system for a polysomnogram recording.
11. Table 5: Recording parameter settings used for polysomnograph.
12. Figure 7: Distal motor conduction latency on 5 CTS patients recorded before and after the CTS operation was performed.
13. Table 6: Distal motor conduction amplitude on 5 CTS patients recorded before and after the CTS operation was performed.
14. Table 7: Median nerve distal sensory conduction latency and amplitude before and after carpal tunnel operation on 5 patients with carpal tunnel syndrome.
15. Table 8: Sleep variables (Mean ± SD) for six patients with carpal tunnel syndrome before and after carpal tunnel release operation compared with six
control patients before and after a minor surgical procedure for a minor non-
painful surgical dental procedure.

16. Table 9: Subjective sleep assessment and pain rating (mean ± SD) for
CTS and control subjects before and after operation.

17. Table 10: All the words chosen by the CTS patients in the McGill pain
questionnaire before the CTS operation, including the most common words.

18. Figure 8: Rating of evening and morning pain severity on a 100 mm
visual analogue scale in 6 patients with carpal tunnel syndrome before and
after carpal tunnel syndrome release operation.

19. Figure 9: Total Mood Score (mean ± SD) calculated from the POMS in
six patients with CTS and six patients with non-painful dental complaints
before and after treatment.

20. Figure 10: Beck Depression Inventory score (mean ±SD) for six patients
diagnosed with carpal tunnel syndrome and six patients with non-painful
dental complaint before and after treatment.

21. Table 11: Variables for the CTS patient that was excluded from the study.
DEFINITIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDI</td>
<td>Beck Depression Inventory</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CTS</td>
<td>carpal tunnel syndrome</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalogram</td>
</tr>
<tr>
<td>ESS</td>
<td>Epworth Sleepiness Scale</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyography</td>
</tr>
<tr>
<td>EOG</td>
<td>Electro-oculography</td>
</tr>
<tr>
<td>FMS</td>
<td>fibromyalgia syndrome</td>
</tr>
<tr>
<td>GHQ</td>
<td>General Health Questionnaire</td>
</tr>
<tr>
<td>MPQ</td>
<td>McGill Pain Questionnaire</td>
</tr>
<tr>
<td>NREM</td>
<td>non-rapid eye movement</td>
</tr>
<tr>
<td>POMS</td>
<td>Profile of mood states</td>
</tr>
<tr>
<td>PSG</td>
<td>Polysomnogram</td>
</tr>
<tr>
<td>PRI</td>
<td>Pain Rating Index</td>
</tr>
<tr>
<td>PSQI</td>
<td>Pittsburgh Sleep Quality Index</td>
</tr>
<tr>
<td>REM</td>
<td>rapid eye movement</td>
</tr>
<tr>
<td>SWS</td>
<td>slow wave sleep</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analogue Scale</td>
</tr>
</tbody>
</table>