THE EFFECT OF PREOPERATIVE APPLE JUICE ON THE PREVALENCE OF HYPOGLYCAEMIA IN PAEDIATRIC PATIENTS

CLOVER-ANN LEE

A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, in partial fulfillment of the requirements for the degree of

Master of Medicine in Anaesthesia

Johannesburg, 2012
DECLARATION

I, Clover-Ann Patricia Lee, declare that this research report is my own work. It is being submitted for the Degree of Master of Medicine at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other university.

Signature

Signed at: University of the Witwatersrand, Johannesburg

On this date: 08.05.2012
PRESENTATIONS ARISING FROM THIS PROJECT

Poster Presentations:

“Clear apple juice on the morning of surgery reduces the prevalence of hypoglycaemia in children” presented at:

1. Paediatric Anesthesia Congress of South Africa, Johannesburg, November 2010
ABSTRACT

Background: Children have historically been fasted for prolonged periods preoperatively to reduce the volume and acidity of their gastric contents and thus the risk of regurgitation and pulmonary aspiration. Evidence shows that this risk is not increased by following the current recommended fasting guidelines, and that prolonged fasting may be detrimental to children, who may present with hunger, thirst, depleted intravascular volume, metabolic acidosis and hypoglycaemia.

A recent study at Charlotte Maxeke Johannesburg Academic Hospital showed a 18.5% prevalence of biochemical hypoglycaemia, defined as a blood glucose concentration of less than 3.5 mmol/l, in children from one to five years of age presenting for elective surgery.

Aims: The aims of this study were to document the prevalence of biochemical hypoglycaemia in children from the ages of one to five years who were given apple juice to drink at least two hours preoperatively, and to compare these results to a historical control group.

Methods: A prospective, contextual comparative study design was used. Approval was obtained from the University of the Witwatersrand’s Human Ethics Committee and other relevant authorities.

The groups were matched for age and weight. Consent was obtained from the guardians of all children who met the inclusion criteria before being enrolled in the study.

A standard 200 ml carton of commercially available apple juice was offered to each participant. The volume and time of the juice consumed was documented, along with relevant demographic data. Inhalational induction of anaesthesia
proceeded a minimum of two hours later, and a venous glucose concentration was measured.

Results: The prevalence of biochemical hypoglycaemia was statistically significantly reduced in the intervention group (p = 0.0163), eliminating the effect of prolonged preoperative fasting.

Conclusion: The consumption of clear apple juice on the morning of surgery is a safe, inexpensive, effective way to reduce the prevalence of hypoglycaemia in children presenting for elective surgery.
ACKNOWLEDGEMENTS

My thanks go to the following people:

To my parents, whose sacrifices made my education possible.

To my supervisors, Juan Scribante and Helen Perrie, for their support, guidance, and patience.

To the “J’s”: to Jenny King, for being the teacher and role model who made me want to be an anaesthetist; to Jacinta Shung for her mentorship and encouragement; and to Jenny Thomas, for providing an example to strive for.

To Hennie Gerber, for his statistical input and patient explanations.

To Mike Blackburn and Des Klein, IT wizards extraordinaire.

To the paediatric surgical and nursing team, especially Andrew Grieve and Lesley Pieterse, who let me feed their patients juice and didn’t complain about any changes to their lists.
TABLE OF CONTENTS

DECLARATION ii
ABSTRACT iii

PRESENTATIONS ARISING FROM THIS PROJECT v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES x

CHAPTER ONE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Background to the study</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Problem statement</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>The aim of the study</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Objectives of the study</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>Definitions used in the study</td>
<td>4</td>
</tr>
<tr>
<td>1.7</td>
<td>Demarcation of the study field</td>
<td>5</td>
</tr>
<tr>
<td>1.8</td>
<td>Ethical considerations</td>
<td>5</td>
</tr>
<tr>
<td>1.9</td>
<td>Research methodology</td>
<td>6</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Research design</td>
<td>6</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Study population and sample size</td>
<td>6</td>
</tr>
<tr>
<td>1.9.3</td>
<td>Sample method</td>
<td>6</td>
</tr>
<tr>
<td>1.9.4</td>
<td>Criteria for the study</td>
<td>6</td>
</tr>
<tr>
<td>1.9.5</td>
<td>Methodology</td>
<td>7</td>
</tr>
<tr>
<td>1.9.6</td>
<td>Data analysis</td>
<td>8</td>
</tr>
<tr>
<td>1.10</td>
<td>Significance of the study</td>
<td>8</td>
</tr>
<tr>
<td>1.11</td>
<td>Validity and reliability</td>
<td>9</td>
</tr>
<tr>
<td>1.12</td>
<td>Potential limitations</td>
<td>9</td>
</tr>
<tr>
<td>1.13</td>
<td>Project outline</td>
<td>10</td>
</tr>
<tr>
<td>1.14</td>
<td>Summary</td>
<td>10</td>
</tr>
</tbody>
</table>

CHAPTER TWO

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>History of the “nil per os from midnight” order</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Physiology of gastric emptying</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Liquids</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Milk</td>
<td>15</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Solids</td>
<td>17</td>
</tr>
</tbody>
</table>
CHAPTER THREE RESEARCH DESIGN AND METHODS

3.1 Introduction 42
3.2 Problem statement 42
3.3 The aim of the study 42
3.4 Objectives of the study 43
3.5 Ethical considerations 43
3.6 Research design 44
3.6.1 Sample size 45
3.6.2 Sample method 45
3.6.3 Inclusion and exclusion criteria 46
3.7 Methodology 47
3.7.1 Quality assurance 47
3.8 Data analysis 49
3.9 Summary 51

CHAPTER FOUR DATA ANALYSIS AND DISCUSSION OF RESULTS

4.1 Introduction 52
4.2 Results 52
4.2.1 Demographic data 52
4.2.2 The prevalence of hypoglycaemia at induction of anaesthesia 54
4.2.3 Comparison of results with the control group 57
4.3 Discussion 63
4.4 Conclusion 65
4.5 Summary 66

CHAPTER FIVE SUMMARIES, LIMITATIONS, RECOMMENDATIONS AND CONCLUSIONS

5.1 Introduction 67
5.2 Summary of the study 67
5.2.1 Aim of the study 67
5.2.2 Objectives of the study 67
5.2.3 Summary of the methodology used in the study 68
5.3 Main findings of the study 69
5.4 Limitations of the study 70
5.5 Recommendations from the study 71
5.5.1 Clinical practice 71
5.5.2 Further research 71
5.6 Conclusion 72

REFERENCES 73

APPENDICES

Appendix A Permission from Postgraduate Committee 84
Appendix B Permission from Ethics Committee 85
Appendix C Patient information letter 86
Appendix D Consent form 87
Appendix E Data collection form 88
LIST OF FIGURES

Figure 4.1 Ages of children studied 53
Figure 4.2 Distribution of data for weight 57
Figure 4.3 Prediction profiler for the control group 62
Figure 4.4 Prediction profiler for the treatment group 62
Figure 4.5 Bivariate fit of glucose concentration by fasting duration 63

LIST OF TABLES

Table 2.1 Perioperative hypoglycaemia in children 35
Table 4.1 Demographic data of patients studied 54
Table 4.2 Blood glucose values at induction of anaesthesia 55
Table 4.3 Children with biochemical hypoglycaemia at anaesthetic induction 56
Table 4.4 Shapiro-Wilk test to test for normal distribution of data 58
Table 4.5 Table of means and standard deviations 58
Table 4.6 Contingency table to test for an association between blood glucose level and receiving apple juice on the morning of surgery 59