THE EFFECT OF PREOPERATIVE APPLE JUICE ON THE PREVALENCE OF HYPOGLYCAEMIA IN PAEDIATRIC PATIENTS

CLOVER-ANN LEE

A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, in partial fulfillment of the requirements for the degree

of

Master of Medicine in Anaesthesia

Johannesburg, 2012

DECLARATION

I, Clover-Ann Patricia Lee, declare that this research report is my own work. It is being submitted for the Degree of Master of Medicine at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other university.

Signature

Signed at: University of the Witwatersrand, Johannesburg

On this date: 08.05.2012

PRESENTATIONS ARISING FROM THIS PROJECT

Poster Presentations:

"Clear apple juice on the morning of surgery reduces the prevalence of hypoglycaemia in children" presented at:

- Paediatric Anesthesia Congress of South Africa, Johannesburg, November 2010
- Society of Pediatric Anesthesia Annual Meeting, San Diego, USA, March 2011.

ABSTRACT

Background: Children have historically been fasted for prolonged periods preoperatively to reduce the volume and acidity of their gastric contents and thus the risk of regurgitation and pulmonary aspiration. Evidence shows that this risk is not increased by following the current recommended fasting guidelines, and that prolonged fasting may be detrimental to children, who may present with hunger, thirst, depleted intravascular volume, metabolic acidosis and hypoglycaemia.

A recent study at Charlotte Maxeke Johannesburg Academic Hospital showed a 18.5% prevalence of biochemical hypoglycaemia, defined as a blood glucose concentration of less than 3.5 mmol/l, in children from one to five years of age presenting for elective surgery.

Aims: The aims of this study were to document the prevalence of biochemical hypoglycaemia in children from the ages of one to five years who were given apple juice to drink at least two hours preoperatively, and to compare these results to a historical control group.

Methods: A prospective, contextual comparative study design was used. Approval was obtained from the University of the Witwatersrand's Human Ethics Committee and other relevant authorities.

The groups were matched for age and weight. Consent was obtained from the guardians of all children who met the inclusion criteria before being enrolled in the study.

A standard 200 ml carton of commercially available apple juice was offered to each participant. The volume and time of the juice consumed was documented, along with relevant demographic data. Inhalational induction of anaesthesia

iv

proceeded a minimum of two hours later, and a venous glucose concentration was measured.

Results: The prevalence of biochemical hypoglycaemia was statistically significantly reduced in the intervention group (p = 0.0163), eliminating the effect of prolonged preoperative fasting.

Conclusion: The consumption of clear apple juice on the morning of surgery is a safe, inexpensive, effective way to reduce the prevalence of hypoglycaemia in children presenting for elective surgery.

ACKNOWLEDGEMENTS

My thanks go to the following people:

To my parents, whose sacrifices made my education possible.

To my supervisors, Juan Scribante and Helen Perrie, for their support, guidance, and patience.

To the "J's": to Jenny King, for being the teacher and role model who made me want to be an anaesthetist; to Jacinta Shung for her mentorship and encouragement; and to Jenny Thomas, for providing an example to strive for.

To Hennie Gerber, for his statistical input and patient explanations.

To Mike Blackburn and Des Klein, IT wizards extraordinaire.

To the paediatric surgical and nursing team, especially Andrew Grieve and Lesley Pieterse, who let me feed their patients juice and didn't complain about any changes to their lists.

TABLE OF CONTENTS

v vi vii x
х
1 3 4 4 5 5 6 6 6 6 7 8 8 9 9 10 10

CHAPTER TWO LITERATURE REVIEW AND BACKGROUND

2.1	Introduction	12
2.2	History of the "nil per os from midnight" order	12
2.3	Physiology of gastric emptying	13
2.3.1	Liquids	15
2.3.2	Milk	15
2.3.3	Solids	17

2.4	Pathophysiology of regurgitation	18
2.5	Pulmonary aspiration and pneumonitis	20
2.6	The incidence of pulmonary aspiration in children	20
2.7	Physiology of fasting and glucose control	21
2.8	Fasting outcomes	23
2.8.1	Thirst	23
2.8.2	Hunger	23
2.8.3	Hypotension	24
2.8.4	Metabolic acidosis	24
2.8.5	Cognitive function	24
2.9	Hypoglycaemia	24
2.9.1	Definition	24
2.9.2	Pathophysiology	26
2.9.3	Signs and symptoms	27
2.9.4	The brain and hypoglycaemia	28
2.9.5	Perioperative hypoglycaemia in children	30
2.10	Summary	41

CHAPTER THREE RESEARCH DESIGN AND METHODS

3.1	Introduction	42
3.2	Problem statement	42
3.3	The aim of the study	42
3.4	Objectives of the study	43
3.5	Ethical considerations	43
3.6	Research design	44
3.6.1	Sample size	45
3.6.2	Sample method	45
3.6.3	Inclusion and exclusion criteria	46
3.7	Methodology	47
3.7.1	Quality assurance	47
3.8	Data analysis	49
3.9	Summary	51

CHAPTER FOUR DATA ANALYSIS AND DISCUSSION OF RESULTS

4.1	Introduction	52
4.2	Results	52
4.2.1	Demographic data	52
4.2.2	The prevalence of hypoglycaemia at induction of anaesthesia	54

4.2.3 4.3 4.4 4.5	Comparison of results with the control group Discussion Conclusion Summary	57 63 65 66
CHAPTER FIVE	SUMMARY, LIMITATIONS, RECOMMENDATIONS AND CONCLUSIONS	
5.1	Introduction	67
5.2	Summary of the study	67
5.2.1	Aim of the study	67
5.2.2	Objectives of the study	67
5.2.3	Summary of the methodology used in the study	68
5.3	Main findings of the study	69
5.4	Limitations of the study	70
5.5	Recommendations from the study	71
5.5.1	Clinical practice	71
5.5.2	Further research	71
5.6	Conclusion	72

REFERENCES

73

APPENDICES

Appendix A	Permission from Postgraduate Committee	84
Appendix B	Permission from Ethics Committee	85
Appendix C	Patient information letter	86
Appendix D	Consent form	87
Appendix E	Data collection form	88

LIST OF FIGURES

Figure 4.1	Ages of children studied	53
Figure 4.2	Distribution of data for weight	57
Figure 4.3	Prediction profiler for the control group	62
Figure 4.4	Prediction profiler for the treatment group	62
Figure 4.5	Bivariate fit of glucose concentration by fasting duration	63

LIST OF TABLES

Table 2.1	Perioperative hypoglycaemia in children	35
Table 4.1	Demographic data of patients studied	54
Table 4.2	Blood glucose values at induction of anaesthesia	55
Table 4.3	Children with biochemical hypoglycaemia at anaesthetic induction	56
Table 4.4	Shapiro-Wilk test to test for normal distribution of data	58
Table 4.5	Table of means and standard deviations	58
Table 4.6	Contingency table to test for an association between blood glucose level and receiving apple juice on the morning of surgery	59