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Abstract

This dissertation has two areas of interest with regard to the four dimensional Kerr
black hole; the first being its conformal nature in its near region and second it characteristic
frequencies.

With it now known that the scalar solution space of the four dimensional Kerr black hole
has a two dimensional conformal symmetry in its near region, it was the first focus of this
dissertation to see if this conformal symmetry is unique to the near region scalar solution
space or if it is also present in the spin-half solution space.

The second focus of this dissertation was to explore techniques which can be used to
calculate these quasinormal mode (characteristic) frequencies, such as the WKB(J) approx-
imation which has been improved from third order to sixth order recently and applied to
the perturbations of a Schwarzschild black hole. The additional correction terms show a
significant increase of accuracy when comparing to numerical methods. This dissertation
shall use the sixth order WKB(J) method to calculate the quasinormal mode frequencies for
both the scalar and spin-half perturbations of a four dimensional Kerr black hole.

An additional method used was the asymptotic iteration method, a relatively new tech-
nique being used to calculate the quasinormal mode frequencies of black holes that have been
perturbed. Prior to this dissertation it had only been used on a variety of Schwarzschild
black holes and their possible perturbations. For this dissertation the asymptotic itera-
tion method has been used to calculate the quasinormal frequencies for both the scalar and
spin-half perturbations of the four dimensional Kerr black hole.

The quasinormal mode frequencies calculated using both the sixth order WKB(J) method
and the asymptotic iteration method were compared to previously published values and each
other. For the most part, they both compare favourably with the numerical values, with
differences that are near negligible. The differences did become more apparent when the
mode number (or angular momentum per unit mass increased), but less so when the angular
number increased. The only factor that separates these two methods significantly, was that
the computational time for the sixth order WKB(J) method is less than than that of the
asymptotic iteration method.
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Chapter 1

Introduction

The black holes of nature are the most perfect macroscopic objects there are in the universe:
the only elements in their construction are our concepts of space and time. Since the general
theory of relativity provides only a single unique family of solutions for their descriptions,
they are the simplest objects as well.

The unique two-parameter family of solutions which describes the space-time around
black holes is the Kerr family discovered by Roy Patrick Kerr in July 1963 [1]. The two
parameters are the mass of the black hole and the angular momentum of the black hole,
where the static solution, with zero angular momentum, was discovered earlier by Karl
Schwarzschild in December 1915 [2]. A study of the black holes of nature is then a study of
these solutions.

Two areas of interest, which are focused on in this dissertation, when it comes to studying
black holes (specifically those of the Kerr variety), are their conformal nature, which is of
significance in string theory (a potential unification theory) and their characteristic prop-
erties, which can be determined from their quasinormal modes (QNMs) and corresponding
frequencies.

1.1 Hidden Conformal Symmetry

One of the deepest discoveries in modern theoretical physics is that of holographic dualities,
which relate a quantum theory of gravity to a quantum field theory without gravity in fewer
dimensions and these dualities come to prominence in the construct of string theory [3]. It is
an occasional misconception, however, that the existence of holographic dualities is exclusive
to string theory. This is not the case. For example, the demonstration that any consistent
theory of quantum gravity on three-dimensional anti-de Sitter (AdS3) space appears to be
holographically dual to a two-dimensional conformal field theory (CFT) did not invoke string
theory. When holographic duality was used to find the microscopic origin of the Berkenstein-
Hawking entropy for a class of black holes, the construction at first appeared to depend
heavily on details of string theory [4]. However, it was later convincingly extended [5]
to essentially any consistent, unitary quantum theory of gravity containing black holes as
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classical solutions.
Oddly, the rich ideas surrounding holographic dualities so far have not been success-

fully applied to the enigmatic objects which largely inspired their original discovery - the
Schwarzschild or Kerr black holes we actually observe.

1.2 Quasinormal Modes

For a number of years the QNMs of oscillation of black holes have been of great interest both
to gravitational theorists and to gravitational wave experimentalists [6]. These modes are
the resonant, non-radial perturbations of black holes. They are characterized by a spectrum
of discrete, complex frequencies, whose real parts determine the oscillation frequency, and
whose imaginary parts determine the rate at which each mode is damped as a result of the
emission of radiation. For a given kind of physical perturbation the complex frequencies
are uniquely determined by the mass and angular momentum of the black hole, the angular
harmonic indices (l,m) of the deformation, and the degree of the harmonic of the mode (n).

To the gravitational wave astronomer black hole QNMs may be an important source
of gravitational waves emitted at discrete frequencies by a deformed black hole left over
following a supernova collapse. Recent numerical calculations of rotating collapse have found
that for some collapse scenarios in which a black hole is formed, the bulk of gravitational
radiation emitted via QNM oscillations of the black hole that continue after the matter has
crossed the horizon [6]. The identification of the frequencies and damping times of such
waves could aid in estimating the parameters of the black hole. Studies of perturbations
of black holes by passing particles have also shown excitations of QNMs [7]. QNMs are
important in analyzing the stability of black holes against external perturbations. Although
the non-rotating Schwarzschild black hole is known to be rigorously stable, the situation is
not so certain in the case of the rotating Kerr black hole [8], and a systematic study of QNMs
could contribute to a resolution of this question.

Although the fundamental equations describing the perturbations of black holes reduce
to a single second-order ordinary differential equation that is similar to the one-dimensional
Schrödinger equation for a particle encountering a potential barrier on the infinite line; the
nature of the potential precludes an exact, closed-form solution in terms of known functions.
Mathematically, a QNM is a solution to the differential equation with a complex frequency,
satisfying the boundary condition of purely outgoing waves, that is, waves propagating away
from the barrier at both +∞ and −∞, the latter boundary condition corresponding to waves
traveling across the horizon to the interior of the black hole. The quantum mechanical
analogue of this is a scattering resonance with a complex energy. Because such a boundary
condition cannot actually correspond to a stationary state, the energy or squared frequency
must be complex, leading to a characteristic damping with time of wave packets constructed
from the modes.

Studying black hole QNMs numerically requires selecting a value for the complex fre-
quency, integrating the differential equation, and checking whether the boundary conditions
are satisfied. Since those conditions are not satisfied in general, the complex frequency plane
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must be surveyed for discrete values that lead to QNMs. This technique is time consuming
and therefore costly, and it makes it difficult to systematically survey the QNMs for a wide
range of parameter values. Following early work by Vishveshwara [8], Chandrasekhar and
Detweiler [9] pioneered this method for the study of QNMs.

A few semi-analytic analyses have also been attempted. In one approach, employed by
Mashoon et al. [10], the potential barrier in the effective one-dimensional Schrödinger
equation is replaced by a parameterized analytic potential barrier function for which simple
exact solutions are known. The overall shape approximates that of the true black hole barrier,
and the parameters of the barrier function are adjusted to fit the height and curvature of the
true barrier at the peak. The resulting estimates for the QNM frequencies have been applied
to the Schwarzschild, Reissner-Nordstrom and Kerr black holes, with agreement within a
few percent with the numerical results of Chandrasekhar and Detweiler in the Schwarzschild
case [9], and with Gunter [11] in the Reissner-Nordstrom case. However, as this method
relies upon a specialized barrier function, there is no systematic way to estimate the errors
or to improve the accuracy.

The method by Leaver [12], which is a hybrid of the analytic and the numerical, success-
fully generates QNM frequencies by making use of an analytic infinite-series representation
of the solutions, together with a numerical solution of an equation for the QNM frequen-
cies which involves continued fractions. This technique is known as the Continued Fraction
Method (CFM).

The third-order WKB approximation is another technique, which we shall consider in this
dissertation [13]. Even though it is based on an approximation, this approach is powerful
as: (a) the WKB approximation is known in many cases to be more accurate than one may
expect; (b) because the method can be carried to higher orders, either as a means to improve
accuracy or as a means to estimate the errors explicitly and (c) because it will allow a more
systematic study of QNMs than has been possible using outright numerical methods. The
WKB approximation was later extended to sixth-order by Konoplya [14].

Finally, we shall also use the Asymptotic Iteration Method (AIM), which was previously
used to solve eigenvalue problems [15] as a semi-analytic technique for solving second-order
homogeneous linear differential equations. It has also been successfully shown that the AIM
is an efficient and accurate technique for calculating QNMs of different types of Schwarzschild
black holes [16].

1.3 Quasinormal Modes and Conformal Field Theory

While the statistical origin of black hole entropy remains a subject of active research, one
may wonder if the celebrated analogy [17] between the laws of black hole mechanics and the
laws of thermodynamics can be generalized to non-equilibrium processes. Holographic AdS
/ CFT correspondences (reviewed by [18]) provides a suitable arena for such generalizations.
The AdS / CFT conjecture asserts that string theories on certain asymptotically anti de
Sitter space-times are dual to quantum field theories in lower dimensions. Since the low-
energy limit of string theory is described by the appropriate supergravity, problems in general
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relativity can be mapped to problems in the dual field theory. According to the duality,
asymptotically AdS background space-times with event horizons are interpreted as thermal
states in dual field theories. Correspondingly, small perturbations of a black hole or a black
brane background are interpreted as small deviations from thermodynamic equilibrium in
a dual theory. This particular entry in the holographic dictionary can be made precise by
considering quasinormal spectra of asymptotically AdS space-times.

QNMs (reviewed by [19]) are solutions to linearized equations obeyed by classical fluc-
tuations of a gravitational background subject to specific boundary conditions. The choice
of the boundary condition at the (future) horizon is dictated by the fact that classically
horizons do not emit radiation. Thus out of two local solutions near the horizon typically
representing waves incoming to the horizon and outgoing from it, one chooses the incom-
ing waves only. This choice of the boundary condition has profound consequences, making
the boundary value problem non-Hermitian, and the associated eigen-frequencies complex.
This, however, is exactly what one expects in a holographically dual theory, where small
deviations from thermal equilibrium are described by dispersion relations which correspond
to non-zero damping [20]. Mathematically, these dispersion relations appear as singularities
of the retarded Greens functions in the complex frequency plane. The connection between
quasinormal spectrum of AdS black holes and singularities of thermal correlators in dual
quantum field theories was first noted and explored for 2 + 1 dimensional BTZ black holes
in [21].

1.4 Outline for This Dissertation

The main part of this dissertation is divided into four chapters, starting with chapter 2, which
reviews the mathematics and physics necessary for the study of Kerr black holes. Chapter 3
studies the conformal nature of both the scalar and spin-half solution spaces in the near
region of the Kerr black hole. Chapter 4 reviews the background techniques involved in the
study of QNMs, whilst chapter 5 presents the QNM frequencies calculated as part of this
dissertation and compares them to accepted values in previous publications for both scalar
and spin-half particle cases using two techniques; the WKB method and the AIM.

The final chapter (6) presents the conclusions for this dissertation, along with a discussion
of the possible future research directions.

For this dissertation, c = G = 1 and additionally M = 1 for the calculated QNM
frequencies.
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Chapter 2

Mathematics and Physics Background

2.1 Kerr Space-time

The Kerr space-time was discovered in 1963 through an intellectually intensive method and
it continues to provide nontrivial mathematical and physical problems to this day [1].

The final form of Albert Einstein’s general theory of relativity was developed in 1915,
and within two months Schwarzschild had already solved the field equations that determine
the exact space-time geometry of a non-rotating point particle. It was relatively quickly
realized that the space-time geometry in the vacuum region outside any localized spherically
symmetric source is equivalent, up to a possible coordinate transformation, to a portion of
the Schwarzschild geometry - and so of direct physical interest to modeling the space-time
geometry surrounding and exterior to idealized non-rotating spherical stars and planets.

Considerably more slowly and only after intense debate was it realized that the inward
analytic extension of Schwarzschild’s exterior solution represents a non-rotating black hole,
the endpoint of stellar collapse. In the most common form, which is not always the most
useful form for understanding the physics, the Schwarzschild geometry is described by the
line element [22]

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (2.1)

where the parameter M is the physical mass of the central object.
But in connection with astrophysics we know that stars, planets, etcetera rotate, and

from the weak-field approximation to the Einstein equations we even know the approximate
form of the metric at large distance from a stationary isolated body of mass M and angular
momentum J . In suitable coordinates [22]

ds2 = −
(

1− 2M

r
+O

(
1

r2

))
dt2 −

(
4J sin2 θ

r
+O

(
1

r2

))
dφdt

+

(
1 +

2M

r
+O

(
1

r2

))
dr2 + r2

(
dθ2 +

(
1 +O

(
1

r2

))
sin2 θdφ2

)
. (2.2)
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This approximate metric is perfectly adequate for almost all solar system tests of general
relativity, but there certainly are well-known astrophysical situations for which this approx-
imation is inadequate - and so a strong field solution is physically called for. Furthermore,
if a rotating star were to undergo gravitational collapse, then the resulting black hole would
be expected to retain at least some fraction of its initial angular momentum - thus suggest-
ing, on physical grounds, that somehow there should be an extension of the Schwarzschild
geometry to the situation where the central body carries angular momentum.

Physicists and mathematicians looked for such a solution for many years, and had almost
given up hope, until the Kerr solution was discovered almost fifty years after the Einstein field
equations were first developed. From the weak-field asymptotic result we can already see that
angular momentum destroys spherical symmetry, and this lack of spherical symmetry makes
the calculations much more difficult. It is not that the basic principles are all that different,
but simply that the algebraic complexity of the computations is so high that relatively few
physicists or mathematicians have the fortitude to carry them through to completion.

The very first version of the Kerr space-time geometry to be explicitly written down in
the literature [1] had the line element given as

ds2 = −
(

1− 2Mr

r2 + a2 cos2 θ

)(
du+ a sin2 θdφ

)2

+ 2
(
du+ a sin2 θdφ

) (
dr + a sin2 θdφ

)
(2.3)

+
(
r2 + a2 cos2 θ

) (
dθ2 + sin2 θdφ2

)
,

where M and a are the mass and angular momentum per unit mass of the rotating black
hole, respectively.

2.1.1 Boyer-Lindquist Coordinates

The original coordinates that were used, see equation (2.3), are not always the best choice
to study Kerr black holes, so we change to Boyer-Lindquist coordinates.

These coordinates are best motivated in two stages: First, consider a slightly different
but completely equivalent form of the metric which follows Kerr’s original, equation (2.3),
via the coordinate substitution

u = t+ r, (2.4)

in which case

ds2 = − dt2

+ dr2 + 2a sin2 θdrdφ+
(
r2 + a2 cos2 θ

)
dθ2 +

(
r2 + a2

)
sin2 θdφ2 (2.5)

+
2Mr

r2 + a2 cos2 θ

(
dt+ dr + a sin2 θdφ

)2
.

Here the second line is again simply flat three-space in disguise. An advantage of this
coordinate system is that t can naturally be thought of as a time coordinate - at least at
large distances near spatial infinity. There are, however, still three off-diagonal terms in
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the metric, so this is not yet any great advance on the original form (2.3). One can easily
consider the limits M → 0, a→ 0, etcetera, but there are no real surprises.

Second, it is now extremely useful to perform a further M -dependent coordinate trans-
formation, which will put the line element into Boyer-Lindquist form

t = tBL + 2M

∫
r

r2 − 2Mr + a2
dr,

φ = −φBL − a
∫

1

r2 − 2Mr + a2
dr, (2.6)

r = rBL,

θ = θBL. (2.7)

Making the transformation, and dropping the BL subscript, the Kerr line element now takes
the form

ds2 = −
(

1− 2Mr

ρ2

)
dt2 −

(
4Mra sin2 θ

ρ2

)
dtdφ+

(
ρ2

∆

)
dr2

+
(
ρ2
)
dθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdφ2, (2.8)

where
ρ2 = r2 + a2 cos2 θ and ∆ = r2 + a2 − 2Mr. (2.9)

The properties apparent from expressing the Kerr space-time in Boyer-Lindquist coordi-
nates are

• These Boyer-Lindquist coordinates are particularly useful in that they minimize the
number of off-diagonal components in the metric - there is now only one off-diagonal
component. We shall subsequently see that this helps in analyzing the asymptotic
behaviour, and in trying to understand the key differences between the event horizon
and an ergosphere.

• Another particularly useful feature is that the asymptotic (r →∞) behaviour in Boyer-
Lindquist coordinates is

ds2 = −
(

1− 2M

r
+O

(
1

r2

))
dt2 −

(
4Ma sin2 θ

r
+O

(
1

r2

))
dφdt

+

(
1 +

2M

r
+O

(
1

r2

))
dr2 + r2

(
dθ2 +

(
1 +O

(
1

r2

))
sin2 θdφ2

)
.(2.10)

From this we conclude that M is indeed the mass and J = Ma is indeed the angular
momentum.

• If a → 0 the Boyer-Lindquist line element reproduces the Schwarzschild line element
in standard Schwarzschild curvature coordinates.
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• If M → 0 the Boyer-Lindquist line element reduces to

ds2 → −dt2 +

(
ρ2

r2 + a2

)
dr2 +

(
ρ2
)
dθ2 +

(
r2 + a2

)
sin2 θdφ2. (2.11)

This is flat Minkowski space in so-called oblate spheroidal coordinates.

2.1.2 Killing Vectors

The symmetries of a space-time, in a particular coordinate system, are useful for calculations
and can be summarized using quantities called Killing vectors. The general properties of a
Killing vector and the Kerr Killing vectors are given in this subsection.

A Killing vector Xµ generates an isometry of the metric, and satisfies Killing’s equa-
tion [23]

Xµ;ν +Xν;µ = 0. (2.12)

A Killing vector corresponds to a symmetry of the space-time. By Noether’s theorem,
symmetries lead to conserved quantities. If Xµ is a Killing vector then it follows that

uν∇ν(u
µXµ) = uνuµXµ:ν =

1

2
uνuµ(Xµ;ν +Xν;µ) = 0, (2.13)

by symmetry. In other words, the contraction of the tangent vector with a Killing vector,
Xµu

µ, gives a constant of motion on a geodesic. It is straightforward to see that if the metric
does not depend on a particular coordinate, x1 say, then Xµ = δµ1 is a Killing vector.

In Boyer-Lindquist coordinates, the time-translation and azimuthal (rotational) Killing
vectors are

Kµ = (1, 0, 0, 0) and Rµ = (0, 0, 0, 1). (2.14)

2.1.3 Horizons and the Ergosphere

To briefly survey the key properties of the horizons and ergospheres occurring in the Kerr
space-time, let us concentrate on using the Boyer-Lindquist coordinates. First, consider the
components of the metric in these coordinates. The metric components have singularities
when either [22]

ρ2 = 0, that is , r = 0 and θ =
π

2
, (2.15)

or
∆ = 0, that is , r = r± ≡M ±

√
M2 − a2. (2.16)

The first of these possibilities corresponds to what we have already seen is a real physical cur-
vature singularity, while the second pair of singularities is an artifact of the Boyer-Lindquist
coordinate system.

In fact the second option above (r = r±) corresponds to all orthonormal curvature com-
ponents and all curvature invariants being finite. Furthermore, as a→ 0 we have the smooth
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limit that r± → 2M , the location of the horizon in the Schwarzschild geometry. We will
tentatively identify r± as the locations of the inner and outer horizons.

Since the divergence at r = 0 occurs only for θ = π
2
, it is clear that its nature cannot

be the same as the singularity at r = 0 of the Schwarzschild and the Reissner-Nordstrom
space-times [24]. To understand the real nature of the singularity of the Kerr space-time, we
must first eliminate the inherent ambiguity in the coordinate system, (r, θ, φ), at r = 0. This
ambiguity is abolished by choosing the ‘Cartesian’ coordinate system (x, y, z), such that

(x2 + y2) = (r2 + a2) sin2 θ. (2.17)

The surfaces of constant r are confocal ellipsoids whose principal axes coincide with the
coordinate axes. These ellipsoids degenerate, for r = 0, to the disc,

x2 + y2 ≤ a2, z = 0. (2.18)

The point (r = 0, θ = π
2
) corresponds then to the ring,

x2 + y2 = a2, (2.19)

and the singularity along this ring is the only singularity of the Kerr space-time.
This is a new concept for rotating black holes, the ergosphere, that does not arise for

non-rotating black holes. Suppose we have a rocket ship and turn on its engines, and move
so as to try to remain in a fixed position in the coordinate system - that is, suppose we try
to follow the world line [22]

X(t) = (t, r(t), θ(t), φ(t)) = (t, r0, θ0, φ0) . (2.20)

Are there locations in the space-time for which it is impossible to remain fixed? Now the
tangent vector to the world line of an observer who is fixed is

T a =
dXa(t)

dt
= (1, 0, 0, 0) , (2.21)

and a necessary condition for a physical observer to be fixed is that his trajectory should be
time-like. That is, we need

g (T, T ) < 0. (2.22)

But
g (T, T ) = gabT

aT b = gtt, (2.23)

so in the specific case of the Kerr geometry

g (T, T ) = −
(

1− 2Mr

r2 + a2 cos2 θ

)
. (2.24)

However, the right hand side becomes positive once

r2 + a2 cos2 θ < 0. (2.25)
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That is, defining
r±E ≡M ±

√
M2 − a2 cos2 θ, (2.26)

the right hand side becomes positive once

r−E < r < r+
E . (2.27)

The surfaces r = r±E , between which it is impossible to stand still, are known as the stationary
limit surfaces.

Compare this with the location of the event horizons

r± ≡M ±
√
M2 − a2, (2.28)

and we see that
r−E ≤ r− ≤ r+ ≤ r+

E . (2.29)

In fact r+
E ≥ r+ with equality only at θ = 0 and θ = π, which corresponds to the axis of

rotation. Similarly r−E ≤ r− with equality only at the axis of rotation.
Restricting attention to the outer region: There is a region between the outer stationary

limit surface and the outer event horizon in which it is impossible to remain fixed, but it
is still possible to escape to infinity. This region is known as the ergosphere. Physically it
is extremely important to realize that you should trust in the existence of the ergo-surface
and event horizon, and the region immediately below the event horizon [25]. Figure 2.1
shows the key features of the Kerr geometry. However you should not physically trust in the
inner horizon or the inner ergo-surface. Although they are certainly there as mathematical
solutions of the exact vacuum Einstein equations, there are good physics reasons to suspect
that the region at and inside the inner horizon, which can be shown to be unstable and
unlikely to form in any real astrophysical collapse.

The starting point for the work of this dissertation is the equations of motion for both
the scalar and spin-half particles in the Kerr space-time. The following two sections show
the derivation of these equations of motion for both types of particles in a curved space-time
and then their specific forms in the Kerr space-time.

2.2 Scalar Particle

2.2.1 Klein-Gordon Equation

The evolution of a scalar field Ψ may be determined from an action principle [26]. Let
us assume the field is real, and implicitly take the real part of the expressions wherever
necessary. The minimally-coupled action is

S =

∫
d4xL(Ψ, ∂µ; Ψgµν), (2.30)

with

L =
1

2

√
−g(gµν∂µΨ∂νΨ), (2.31)
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Figure 2.1: Schematic location of the horizons, ergo-surfaces, and curvature singularity in
the Kerr space-time.
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where partial differentiation is denoted by ∂µΨ = ∂
∂xµ

Ψ and the summation convention is
assumed. In this expression g is the determinant of the metric tensor. We extremise the
action by employing the Euler-Lagrange equation

∂L
∂Ψ

=
∂

∂xµ

(
∂L

∂(∂µΨ)

)
. (2.32)

This leads to the massless generalized scalar wave equation, i.e.,

1√
−g

∂µ(
√
−ggµν∂νΨ) = 0. (2.33)

2.2.2 In the Kerr Space-time

Because the Kerr space-time metric is independent of t and φ, it is possible to expand (2.33)
in eigenmodes, i.e.,

Ψ(t, r, θ, φ) = e−iωt+imφψ(r, θ), (2.34)

where ω > 0 and m are the angular frequency and azimuthal quantum number respectively.
Using (2.8) with the above, equation (2.33) becomes

0 =
1

ψ

∂

∂r

(
∆
∂

∂r
ψ

)
+

1

∆
(ω2(r2 + a2)2 − 4Mamωr +m2a2)

(2.35)

+
1

ψ

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
ψ

)
+

(
ω2a2 sin2 θ − m2

sin2 θ

)
.

Equation (2.35) is in the form that allows it to be separated into individual equations for
r and θ, so by writing

ψ(r, θ) = R(r)S(θ), (2.36)

equation (2.35) separates into a angular equation

1

sin θ

d

dθ

(
sin θ

d

dθ
ψ

)
+

(
ω2a2 sin2 θ − m2

sin2 θ

)
S = −Al,mS, (2.37)

and an radial equation

d

dr

(
∆

d

dr
R

)
+

1

∆
(ω2(r2 + a2)2 − 4Mamωr +m2a2)R = Al,mR, (2.38)

where the Al,m’s are the separation constants for each combination of l and m.
In appendix A, it is shown how it is possible for a scalar particle to extract rotational

energy from a Kerr black hole and what condition is necessary for it to do so.
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2.3 Spin-Half Particle

Unlike in the case of the scalar particle, where the theory necessary for the derivation of the
equations of motion was already known, the theory behind the derivation of the spin half
particle equation of motion was learnt specifically for the work necessary in this dissertation
and therefore a review of it is given below.

2.3.1 The Tetrad Formalism

The standard practice in general relativity is to express a problem in a particular basis
(local coordinate basis), however, it has proven to be more useful for spin-half particles to
express the problem in a tetrad basis. But in recent years, it has appeared advantageous, in
some contexts, to proceed somewhat differently by choosing a suitable tetrad basis of four
linearly independent vector-fields, projecting the relevant quantities on to the chosen basis,
and considering the equations satisfied by them. This is the tetrad formalism.

In the applications of the tetrad formalism, the choice of the tetrad basis depends on
the underlying symmetries of the space-time we wish to grasp and is, to some extent, a part
of the problem. Besides, it is not always clear what the relevant equations are and what
the relations among them may be. On these accounts, we shall present the basic ideas of
the theory without any prior commitments and derive the various equations which will later
appear as the relevant ones of the formalism for the applications we have in view.

The Tetrad Representation

We set up at each point of space-time a basis of four contravariant vectors,

e j
(a) (a = 1, 2, 3, 4), (2.39)

where enclosure in parentheses distinguishes the tetrad indices from tensor indices (which
are not enclosed). Also, we shall reserve the earlier letters of the Latin alphabet (a, b, ...)
for the tetrad indices and the later letters (j, k, ...) for tensor indices. Associated with the
contravariant vectors (2.39) we have the covariant vectors,

e(a)j = gjke
k

(a) , (2.40)

where gjk denotes the metric tensor. In addition, we also define the inverse, e
(b)
j of the matrix

[e j
(a) ] (with the tetrad index labeling the rows and the tensor index labeling the columns)

so that
e j

(a) e
(b)
j = δ

(b)
(a) and e j

(a) e
(a)

k = δ
(j)

(k), (2.41)

where the summation convention with respect to the indices of the two sorts, independently,
is assumed (here and elsewhere). Further, as a part of the definitions, we shall also assume
that

e j
(a) e(b)j = η(a)(b), (2.42)
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where η(a)(b) is a constant symmetric invertible matrix.

One most often supposes that the basis vectors, e j
(a) , are orthonormal in which case

η(a)(b) represents a diagonal matrix with the diagonal elements, (+1,−1,−1,−1). We shall
not make this assumption though it should be stated that a formalism, more general than
the one we shall describe in detail, can be developed in which the η(a)(b)’s are allowed to
be functions on the manifold. In some contexts this further generalizations may commend
itself. We consider it briefly below; but, for the present, we shall proceed on the assumption
that η(a)(b)’s are constants.

Returning to equation (2.42), let η(a)(b) be the inverse of the matrix [η(a)(b)]; then

η(a)(b)η(a)(c) = δ
(a)

(c). (2.43)

As a consequence of the various definitions,

η(a)(b)e
(a)

j = e(b)j , η(a)(b)e(a)j = e
(b)
j, (2.44)

and most importantly,
e(a)je

(a)
k = gjk. (2.45)

Given any vector or tensor field, we project it onto the tetrad frame to obtain its tetrad
components. Thus,

A(a) = e(a)jA
j = e j

(a) Aj,

A(a) = η(a)(b)A(b) = e
(a)

jA
j = e(a)jAj, (2.46)

and
Aj = e j

(a) A
(a) = e(a)jA(a), (2.47)

and more generally,

T(a)(b) = e j
(a) e

k
(b) Tjk = e j

(a) Tj(a),

(2.48)

Tjk = e
(a)

je
(b)
kT(a)(b) = e

(a)
jT(a)j

It is clear from the above formulae that (a) we can pass freely from the tensor indices
to tetrad indices and vice vera; (b) raise and lower the tetrad indices with η(a)(b) and η(a)(b)

even as we can raise and lower the tensor indices with the metric tensor; (c) there is not
ambiguity in having quantities in which the indices of both sorts occur; and (d) the result of
contracting a tensor is the same whether it is carried out with respect to its tensor or tetrad
indices.
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Directional Derivatives and the Ricci Rotation-coefficients

Now that the basic properties of the quantities within the tetrad formalism have been es-
tablished, it is instructive to study these properties in order to determine the structure of
the space-time being described by the formalism.

The contravariant vectors e(a), considered as tangent vectors, define the directional deriva-
tives

e(a) = e j
(a)

∂

∂xj
, (2.49)

and we shall write

φ,(a) = e j
(a)

∂φ

∂xj
= e j

(a) φ,j, (2.50)

where φ is any scalar field. More generally, we define

A(a),(b) = e j
(b)

∂

∂xj
A(a) = e j

(b)

∂

∂xj
e k

(a) Ak

(2.51)

= e j
(b) [e k

(a) Ak;j + Ape
p

(a) ;j] = e j
(b) ∇j[Ake

k
(a) ],

where
∇j[Ake

k
(a) ] = e k

(a) Ak;j + Ape
p

(a) ;j, (2.52)

is how the covariant derivative is defined in the tetrad formalism and

Ak;j = ∂jAk − ΓpkjAp. (2.53)

We thus obtain
A(a),(b) = e k

(a) Ak;je
j

(b) + e(a)p;je
j

(b) e
p

(c) A
(c), (2.54)

making use of the various rules enunciated at the end of the preceding subsection and of
the fact that the raising and the lowering of tensor indices permutes with the operation of
covariant differentiation.

With the definition
γ(c)(a)(b) = e p

(c) e(a)p;je
j

(b) , (2.55)

we can rewrite equation (2.54) in the form

A(a),(b) = e k
(a) Ak;je

j
(b) + γ(c)(a)(b)A

(c). (2.56)

The quantities, γ(c)(a)(b), which we have defined in equation (2.55) are called the Ricci
rotation-coefficients. An equivalent definition of these coefficients is

e(a)p;j = e(c)
pγ(c)(a)(b)e

(b)
j. (2.57)

The Ricci rotation-coefficients are antisymmetric in the first pair of indices:

γ(c)(a)(b) = −γ(c)(c)(b), (2.58)
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a fact which follows from expanding the identity

0 = η(a)(b),j = [e(a)pe
p

(b) ];j. (2.59)

By virtue of this antisymmetry, equation (2.57) can also be written in the form

e p
(a) ;j = −γ p

(a) j . (2.60)

Returning to equation (2.56), we write it in the alternative form

e j
(a) Aj;ke

k
(b) = A(a),(b) − η(n)(m)γ(n)(a)(b)A(m). (2.61)

The quantity on the right-hand side of this equation is called the intrinsic derivative of A(a)

in the direction e(b) and written A(a)|(b)

A(a)|(b) = e j
(a) Aj;ke

k
(b) . (2.62)

We thus have the formula,

A(a)|(b) = A(a),(b) − η(n)(m)γ(n)(a)(b)A(m), (2.63)

relating the directional and the intrinsic derivatives.
It is clear from above that we can pass freely from intrinsic derivatives to covariant

derivatives and vice versa.
The notion of the intrinsic derivative of vector fields is readily extended to tensor fields

in an obvious fashion. Thus, the intrinsic derivative of the Riemann tensor is given by

R(a)(b)(c)(d)|(f) = Rijkl;me
i

(a) e
j

(b) e
k

(c) e
l

(d) e
m

(f) . (2.64)

Now expanding
R(a)(b)(c)(d)|(f) = [Rijkle

i
(a) e

j
(b) e

k
(c) e

l
(d) ];me

m
(f) , (2.65)

and replacing the covariant derivatives of the different basis-vectors by the respective rotation-
coefficients we find

R(a)(b)(c)(d)|(f) = R(a)(b)(c)(d),(f) − η(n)(m)[γ(n)(a)(f)R(m)(b)(c)(d) + γ(n)(b)(f)R(a)(m)(c)(d)

+ γ(n)(c)(f)R(a)(b)(m)(d) + γ(n)(d)(f)R(a)(b)(c)(m)]. (2.66)

Finally, it is important to observe that the evaluation of the rotation coefficients does
not require the evaluation of covariant derivatives. For, defining

λ(a)(b)(c) = e(b)j,k[e
j

(a) e
k

(c) − e k
(a) e

j
(c) ], (2.67)

and rewriting in the form

λ(a)(b)(c) = [e(b)i,j − e(b)j,i]e
j

(a) e
k

(c) , (2.68)
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we observe that we can replace the ordinary derivatives of e(b)j and e(b)k by the corresponding
covariant derivatives and write

λ(a)(b)(c) = γ(a)(b)(c) − γ(c)(b)(a). (2.69)

By virtue of this relation, we have

γ(a)(b)(c) =
1

2
[λ(a)(b)(c) + λ(c)(a)(b) − λ(b)(c)(a)], (2.70)

and as is manifest from above, the evaluation of λ(a)(b)(c) requires only the evaluation of
ordinary derivatives.

2.3.2 The Newman - Penrose Formalism

The Newman - Penrose formalism is a tetrad formalism with a special choice of the basis
vectors [27]. The choice that is made is a tetrad of null vectors l, n, m and m̄ of which l
and n are real and m and m̄ are complex conjugates of one another. The novelty of the
formalism, when it was first proposed by Newman and Penrose in 1962, was precisely in their
choice of a null basis: it was a departure from the choice of an orthonormal basis which was
customary till then. The underlying motivation for the choice of a null basis was Penrose’s
strong belief that the essential element of a space-time is its light-cone structure which makes
possible the introduction of a spinor basis. And it will appear that the light-cone structure
of the space-times of the black hole solutions of general relativity is exactly of the kind that
makes the Newman - Penrose formalism most effective for grasping the inherent symmetries
of these space-times and revealing their analytical richness.

The Null Basis and the Spin Coefficients

As we have already stated, underlying the Newman - Penrose formalism is the choice of a
null basis consisting of a pair of real null-vectors, l and n, and a pair of complex-conjugate
null-vectors m and m̄. They are required to satisfy the orthogonality conditions,

l ·m = l · m̄ = n ·m = n ·m = 0, (2.71)

besides the requirements,

l · l = n · n = m ·m = m̄ · m̄ = 0, (2.72)

that the vectors be null. It is customary to impose on the basis vectors the further normal-
ization conditions,

l · n = 1 and m · m̄ = −1. (2.73)

Then, the fundamental matrix represented by η(a)(b) is a constant symmetric matrix of the
form

[η(a)(b)] = [η(a)(b)] =

∣∣∣∣∣∣∣∣
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

∣∣∣∣∣∣∣∣ , (2.74)
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with the correspondence,

e1 = l , e2 = n , e3 = m and e4 = m̄. (2.75)

The corresponding covariant basis is given by

e1 = e2 = n , e2 = e1 = l , e3 = −e4 = −m̄ and e4 = −e3 = −m. (2.76)

The basis vectors, considered as directional derivatives, are designated by special symbols

e1 = e2 = D , e2 = e1 = D∗ , e3 = −e4 = δ and e4 = −e3 = δ∗. (2.77)

The various Ricci rotation-coefficients, now called the spin coefficients, are, similarly,
designated by special symbols [24]

κ = γ(3)(1)(1) , ρ = γ(3)(1)(4) , ε =
1

2
(γ(2)(1)(1) + γ(3)(4)(1)),

σ = γ(3)(1)(3) , µ = γ(2)(4)(3) , γ =
1

2
(γ(2)(1)(2) + γ(3)(4)(2)),

(2.78)

λ = γ(2)(4)(4) , τ = γ(3)(1)(2) , α =
1

2
(γ(2)(1)(4) + γ(3)(4)(4)),

ν = γ(2)(4)(2) , π = γ(2)(4)(1) , β =
1

2
(γ(2)(1)(3) + γ(3)(4)(3)),

It is clear that the complex conjugate of any quantity can be obtained by replacing the
index 3, wherever it occurs, by the index 4, and conversely. This is a general rule.

Since the most simple way of writing Dirac’s equation is in the framework of spinor
formalism, we shall begin with a review of the spinor analysis and the spinorial basis of the
Newman - Penrose formalism to the extent that we shall need them in our present context,
based on [24]. Spinors in general were discovered by Cartan in 1913, while their theory was
published in 1966 [28].

2.3.3 Spinor Analysis

The idea behind spinors came about from the observation that a four-vector in Minkowski
space can be represented equally by a Hermitian matrix and that a unimodular trans-
formation in the complex two-dimensional space induces a Lorentz transformation in the
Minkowski space.

Consider a point xj(j = 0, 1, 2, 3) in Minkowski space [29]; and let

(x0)2 − (x1)2 − (x2)2 − (x3)2 = 0. (2.79)

18



We now represent the point (xj) in terms of two complex numbers ξ0 and ξ1, and their
complex conjugates, ξ̄0′ and ξ̄1′ , in the manner

x0 = +
1√
2

(ξ0ξ̄0′ + ξ1ξ̄1′),

x1 = +
1√
2

(ξ0ξ̄1′ + ξ1ξ̄0′),

(2.80)

x2 = − i√
2

(ξ0ξ̄1′ − ξ1ξ̄0′),

x3 = +
1√
2

(ξ0ξ̄0′ − ξ1ξ̄1′),

or, inversely,

ξ0ξ̄0′ =
1√
2

(x0 + x3) , ξ0ξ̄1′ =
1√
2

(x1 + ix2),

(2.81)

ξ1ξ̄0′ =
1√
2

(x1 − ix2) , ξ1ξ̄1′ =
1√
2

(x0 − x3).

By these equations,

(x0)2 − (x1)2 − (x2)2 − (x3)2 = (x0 + x3)(x0 − x3)− (x1 + ix2)(x1 − ix2)

= 2(ξ0ξ̄0′ξ1ξ̄1′ − ξ0ξ̄1′ξ1ξ̄0′) (2.82)

= 0.

Therefore, the representation (2.80) guarantees that it is a point on a null ray in Minkowski
space, joining the origin with the point (xj); and it also guarantees that the light ray is
future directed since x0 by this representation, is necessarily positive.

Now let
ξ A
∗ = αABξ

B and ξ̄ A′

∗ = ᾱA
′

B′ξ
B′ (A,B,A′, B′ = 0, 1), (2.83)

represent linear transformations of the complex two-dimensional spaces, (ξ0, ξ1) and (ξ̄0′ , ξ̄1′),
where (αAB) and (ᾱA

′

B′) are two complex-conjugate matrices. With x j
∗ defined in terms of

ξ A
∗ and ξ̄ A′

∗ in the identical manner (2.80), the linear transformations (2.83) will induce
linear transformation,

x j
∗ = βjkx

k, (2.84)

in the Minkowskian space with the coefficients βjk given by certain bilinear combinations
of the α’s and ᾱ’s. We ask for the condition on the transformation (2.83) which will insure
that the induced transformation (2.84) in the Minkowskian space is Lorentzian.
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By the transformation (2.83), we have in particular

x 0
∗ =

1√
2

(α0
0ξ

0 + α0
1ξ

1)(ᾱ0′

0′ ξ̄
0′ + ᾱ0′

1′ξ
1′)

+
1√
2

(α1
0ξ

0 + α1
1ξ

1)(ᾱ1′

0′ ξ̄
0′ + ᾱ1′

1′ξ
1′)

=
1

2
(α0

0ᾱ
0′

0′ + α1
0ᾱ

1′

0′)(x
0 + x3) (2.85)

+
1

2
(α0

1ᾱ
0′

1′ + α1
1ᾱ

1′

1′)(x
0 − x3)

+
1

2
(α0

0ᾱ
0′

1′ + α1
0ᾱ

1′

1′)(x
1 + ix2)

+
1

2
(α0

1ᾱ
0′

0′ + α1
1ᾱ

1′

0′)(x
1 − ix2).

Therefore,

β0
0 + β0

3 = α0
0ᾱ

0′

0′ + α1
0ᾱ

1′

0′ ,

β0
0 − β0

3 = α0
1ᾱ

0′

1′ + α1
1ᾱ

1′

1′ ,

(2.86)

β0
1 − iβ0

2 = α0
0ᾱ

0′

1′ + α1
0ᾱ

1′

1′ ,

β0
1 + iβ0

2 = α0
1ᾱ

0′

0′ + α1
1ᾱ

1′

0′ .

A requirement that the transformation (2.84) is Lorentzian is that

(β0
0)2 − (β0

1)2 − (β0
2)2 − (β0

3)2 = 1. (2.87)

By equations (2.86), this condition requires

∆∆̄ = 1, (2.88)

where ∆ and ∆̄ denote the determinants of the transformations (2.83). Therefore, a necessary
condition that the transformations (2.83) represent a Lorentz transformation is that their
determinants be modulus 1, i.e., unimodular; and it is clear that it is also sufficient. In our
further considerations, we shall suppose that

∆ = ∆̄ = 1, (2.89)

i.e., we shall restrict ourselves to transformations with unit determinants. It is clear that
these transformations do not include all Lorentz transformations. But, by including transfor-
mations which are the negative of the ones we have considered, e.g., parity transformations
(t→ −t), etc., we can recover all Lorentz transformations.
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We now define spinors ξA and ηA
′

of rank 1 as complex vectors in a two-dimensional
space (A,A′ = 0, 1) subject to the transformations

ξ A
∗ = αABξ

B and η A′

∗ = ᾱA
′

B′η
B′ with (A,A′, B,B′ = 0, 1), (2.90)

where αAB and ᾱA
′

B′ are complex conjugate matrices with unit determinants.
It is important that we distinguish spinors of the two classes: those with the unprimed

and those with the primed indices, which are subject to complex-conjugate transformations.
Also, we shall restrict capital Latin alphabets for spinor indices.

If ξA and ηA are two spinors of the same class, then their determinant∣∣∣∣∣∣∣∣ ξ0 ξ1

η0 η1

∣∣∣∣∣∣∣∣ = ξ0η1 − ξ1η0, (2.91)

is invariant to unimodular transformations. Therefore, we may define a skew metric, εAB for
the space such that

εABξ
AηB, (2.92)

is invariant. By comparison with (2.91) it follows that

ε00 = ε11 = 0 and ε01 = −ε10 = 1, (2.93)

i.e., εAB is the two-dimensional Levi-Civita symbol. We may, of course, similarly define a
metric, εA′B′ for the primed spinors; it will again be the Levi-Civita symbol.

As in tensor analysis, we may use the metrics εAB and εA′B′ , to lower the spinor indices;
thus

ξA = ξCεCA, (2.94)

or, explicitly,
ξ0 = −ξ1 and ξ1 = ξ0. (2.95)

Accordingly, indices can be raised by the Levi-Civita symbol εAB in the manner

ξA = εACξC . (2.96)

In view of the antisymmetry of εAC and εAC , it is important to preserve the order of the
indices in equations (2.94) and (2.96) with respect to the index which is contracted. Since

ξA = ξCεCA = εCBξBεCA, (2.97)

it follows that
δBA = εCBεCA = ε B

A = −εBA. (2.98)

It is, of course, clear that by considering spinors with primed indices, we shall obtain the
same formulae (2.94) - (2.98) with the indices primed.
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As in tensor analysis, we can construct spinors of higher rank,

ξAB , ξAB′C , ξ D′E
ABC′ F ′G , etc., (2.99)

with their appropriate transformation properties. Thus,

ξAB
′

∗ = αAC ᾱ
B′

D′ξ
CD′ . (2.100)

It is important to observe that while the order of the indices of each kind is relevant and
must be preserved, the relative ordering of the primed and the unprimed indices is of no
consequence.

Again, as in tensor analysis, contraction of spinors with respect to a pair of primed, or
unprimed, indices can be effected with the metric εAB, or εA′B′ ; but contraction of a primed
and unprimed index is, of course, forbidden. Thus, on the other hand,

ξA
′

A′ = εA
′B′ξB′A′ . (2.101)

Therefore,
ξ A′

A′ = −ξA′A′ . (2.102)

In particular,
ξA′ξ

A′ = 0. (2.103)

The Representation of Vectors and Tensors in Terms of Spinors

Equations (2.80) and (2.81) provide a representation of the position vector, xj, in terms of
a pair of complex-conjugate spinors, ξA and ξ̄A

′
, which we can express in the manner

xj ↔
∣∣∣∣ ξ0ξ̄0′ ξ0ξ̄1′

ξ1ξ̄0′ ξ1ξ̄1′

∣∣∣∣ =
1√
2

∣∣∣∣ x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

∣∣∣∣ . (2.104)

Quite generally, we associate any four vector Xj with a spinor of the second rank ξAB
′

in
the manner

Xj ↔
∣∣∣∣ ξ00′ ξ01′

ξ10′ ξ11′

∣∣∣∣ =
1√
2

∣∣∣∣ X0 +X3 X1 + iX2

X1 − iX2 X0 −X3

∣∣∣∣ . (2.105)

Thus a four vector is associated with a Hermitian matrix.
The invariant associated with the four vector is

(X0)2 − (X1)2 − (X2)2 − (X3)2 = XAB′X
AB′ (2.106)

or, expressed in terms of the metrics gjk, εAB and εA′B′ of the Minkowskian and the spinor
spaces,

gjkX
jXk = εACεB′D′X

AB′XCD′ . (2.107)
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The relationship,
Xj ↔ XAB′ , (2.108)

is now expressed in the form
Xj = σjAB′X

AB′ , (2.109)

or, in its inverse form,
XAB′ = σAB

′

jX
j, (2.110)

where σjAB′ and σAB
′
j , for each j, are constant Hermitian matrices. Relations which are

immediate consequence of the foregoing definitions are

σAB
′

jσ
j
CD′ = δACδ

B′

D′ , (2.111)

and
σjAB′σ

AB′

k = δjk. (2.112)

And, finally, we deduce from equations (2.107) and (2.110) that

gjk = εACεB′D′σ
AB′

jσ
CD′

k , (2.113)

and
εACεB′D′ = gjkσ

j
AB′σ

k
CD′ . (2.114)

It is of interest to note that the matrices σjAB′ and σAB
′

j , defined by the representa-
tion (2.105), are

σAB
′

0 =
1√
2

∣∣∣∣ 1 0
0 1

∣∣∣∣ , σAB
′

1 =
1√
2

∣∣∣∣ 0 1
1 0

∣∣∣∣ ,
(2.115)

σAB
′

2 =
1√
2

∣∣∣∣ 0 i
−i 0

∣∣∣∣ , σAB
′

3 =
1√
2

∣∣∣∣ 1 0
0 −1

∣∣∣∣ ,
and

σ0
AB′ =

1√
2

∣∣∣∣ 1 0
0 1

∣∣∣∣ , σ1
AB′ =

1√
2

∣∣∣∣ 0 1
1 0

∣∣∣∣ ,
(2.116)

σ2
AB′ =

1√
2

∣∣∣∣ 0 −i
i 0

∣∣∣∣ , σ3
AB′ =

1√
2

∣∣∣∣ 1 0
0 −1

∣∣∣∣ .
It will be observed that, apart from the normalization factor 1√

2
, σ1

AB′ , σ
2
AB′ , and σ3

AB′ are
the Pauli spin-matrices.

In terms of the σ-matrices, we can now relate tensors of arbitrary rank with their spinor
equivalents. Thus,

Y jk
p = σjAB′σ

k
CD′σ

EF ′

p Y AB′CD′

EF ′ , (2.117)
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and
Y AB′CD′

EF ′ = σAB
′

jσ
CD′

kσ
p
EF ′Y

jk
p . (2.118)

By virtue of these relations, we have the correspondence

Y AB′CD′

EF ′ ↔ Y jk
p . (2.119)

In this sense, equation (2.114) expresses the correspondence

εACεB′D′ ↔ gjk. (2.120)

The Dyad Formalism

Since the space-time of general relativity is locally Minkowskian, we can set up, at each
point of the space-time, an orthonormal dyad basis, χ A

(F ) and χ A′

(F ′) (F, F ′, A,A′ = 0, 1),

for spinors even as we set up an orthonormal tetrad basis, ej(a)(a = 0, 1, 2, 3 and j = 0, 1, 2, 3)
for tensors in a tetrad formalism. And, as in the tetrad formalism, we shall enclose the dyad
indices - the lowercase letters of the earlier part of the Latin alphabet - in parentheses. It is,
however, convenient to have special symbols for the two basis spinors, χ A

(0) and χ A
(1) . We

shall write
χ A

(0) = oA and χ A
(1) = lA. (2.121)

And the condition of orthonormality is

εABo
AlB = o0l1 − o1l0 = oBlB = −oAlA = 1. (2.122)

Elementary consequences of these definitions are

εABχ
A

(F ) χ B
(G) = χ(G)Bχ

B
(G) = ε(F )(G), (2.123)

and

ε(F )(G)χ A
(F ) χ B

(G) = χ A
(0) χ B

(1) − χ A
(1) χ B

(0)

(2.124)

= oAlB − lAoB = εAB. (2.125)

It is also clear that we can raise and lower the dyad indices by ε(F )(G) and ε(F )(G). Thus,

χ(H)Aε(H)(F ) = χ A
F and ε(F )(H)χ A

(H) = χ(F )A. (2.126)

Further consequences are

χ(F )Aχ
(G)A = −χ A

(F ) χ
(G)

A = δ
(G)
(F ) , (2.127)
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and
χ(F )Aχ

A
(G) = −χ A

(F ) χ(G)A = ε(F )(G). (2.128)

As in the tetrad formalism, we can project any spinor ξA on to the dyad basis

ξ(F ) = ξAχ
A

(F ) , (2.129)

or, explicitly,
ξ(0) = ξAo

A and ξ(1) = ξAl
A. (2.130)

We also have
ξA = ξ(F )χ(F )A = ξ(0)oA + ξ(1)lA. (2.131)

The spinors oA and lA and their complex conjugates determine the null vectors l, n, m
and m̄ by the correspondence

lj ↔ oAōB
′

, mj ↔ oAl̄B
′
,

(2.132)

m̄j ↔ lAōB
′

, nj ↔ lAl̄B
′
.

The null vectors satisfy the orthogonality conditions,

ljnj = oAōB
′
lAl̄B′ = 1 and mjm̄j = oAl̄B

′
lAōB′ = −1, (2.133)

while all the remaining scalar products are zero. Thus, the dyad basis determines four null
vectors which can be used as a basis for a Newman - Penrose formalism.

The representation (2.132) yields the Hermitian matrices,

σjAB′ and σ j
AB′ , (2.134)

such that

lj = σjAB′χ
A

(0) χ̄ B′

(0′) = σjAB′o
AōB

′
,

mj = σjAB′χ
A

(0) χ̄ B′

(1′) = σjAB′o
Al̄B

′
,

(2.135)

m̄j = σjAB′χ
A

(1) χ̄ B′

(0′) = σjAB′ l
AōB

′
,

nj = σjAB′χ
A

(1) χ̄ B′

(1′) = σjAB′ l
Al̄B

′
.

Accordingly, we may write

σjAB′ =
1√
2

∣∣∣∣ lj mj

m̄j nj

∣∣∣∣ and σ j
AB′ =

1√
2

∣∣∣∣ nj −m̄j

−mj lj

∣∣∣∣ . (2.136)
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Comparison with equations (2.115) and (2.116) shows that the foregoing definitions provide
the natural generalizations of the Pauli spin-matrices.

And finally, associated with the directional derivatives,

D = lj∂j , D∗ = nj∂j , δ = mj∂j and δ∗ = m̄j∂j, (2.137)

of the Newman - Penrose formalism, we have the spinor equivalents

∂00′ = D , ∂11′ = D∗ , ∂01′ = δ and ∂10′ = δ∗. (2.138)

Covariant Differentiation of Spinor Fields and Spin Coefficients

We now wish to define covariant differentiation of spinor fields. Consistency requires that
the definition must be based on the correspondences

∇j ↔ ∇AB′ , (2.139)

and
∇jXk = Xk;j ↔ XCD′;AB′ . (2.140)

In accordance with equation (2.117), this last equation requires

XCD′;AB′ = σkCD′σ
j
AB′Xk;j. (2.141)

Besides, we shall require that the covariant differentiation of spinor fields satisfies the Leibnitz
rule, namely,

∇AB′(S
...
... × T ...... ) = T ......∇AB′(S

...
...) + S......∇AB′(T

...
... ), (2.142)

where S...... and T ...... are any two spinor fields. And we shall also require that the operator
∇AB′ is real, i.e.,

∇AB′ = ∇̄A′B. (2.143)

We shall show presently how the foregoing postulates suffice to define uniquely the operation
of covariant differentiation. But first, we note that, as in the tetrad formalism, we can define,
in analogous fashion, the notion of intrinsic differentiation. Thus, we define the intrinsic
derivative of the dyadic component ξ(F ), of a spinor along the direction (F )(G′) by

ξ(H)|(F )(G′) = χ C
(H) ξC;AB′χ

A
(F ) ξ B′

(G) , (2.144)

or, equivalently,
ξ(H)|AB′ = χ C

(H) ξC;AB′ . (2.145)
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The spin coefficients, Γ(a)(b)(c)(d′), are defined in the dyad formalism by

Γ(A)(B)(G)(H′) = [χ(A)F ];CD′χ
F

(B) χ C
(G) χ D′

(H′) . (2.146)

It is convenient, for the sake of brevity, to write instead the formula

Γ(A)(B)CD′ = [χ(A)F ];CD′χ
F

(B) . (2.147)

The spin coefficients, as defined, are symmetric in the first pair of its indices. This
symmetry follows from the relation

χ(A)Fχ
F

(B) = ε(A)(B). (2.148)

For, by this relation, we have

Γ(A)(B)CD′ = −[χ F
(B) ];CD′χ(A)F

= +[χ(B)F ];CD′χ
F

(A) = Γ(B)(A)CD′ . (2.149)

An alternative form of equation (2.147) follows by contraction with χ
(B)

E and making use
of the relations included in equations (2.127). Thus,

[χ(A)E];CD′ = −χ(B)
EΓ(B)(A)CD′ = χ(B)EΓ

(B)
(A)CD′ . (2.150)

We shall now show how, with the spin coefficients as defined, the intrinsic derivatives of
the dyadic components of the spinors of the first rank, ξ(F ) and ξ(F ), can be expressed; and
this, by the Leibnitz rule, will clearly suffice to obtain the covariant derivatives of spinors of
arbitrary rank. Thus,

ξ(F )|BC′ = χ A
(F ) ξA;BC′

= [ξAχ
A

(F ) ];BC′ − ξA[χ A
(F ) ];BC′ . (2.151)

The quantity in the first square brackets on the right-hand side is a scalar, namely, ξ(F ).
Therefore, by equation (2.150),

ξ(F )|BC′ = ξ(F ),BC′ − ξAΓ
(D)

(F )BC′χ
A

(D) , (2.152)

or, equivalently,
ξ(F )|BC′ = ξ(F ),BC′ + Γ(D)(F )BC′χ

(D). (2.153)

Similarly, we find
ξ

(F )
|BC′ = ξ

(F )
,BC′ + Γ

(F )
(D)BC′χ

(D), (2.154)

and
ξA;BC′ = χA(F )(ξ

(F )
,BC′ + Γ

(F )
(D) BC′ξ

(D)). (2.155)
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In view of the symmetry of the spin coefficients in the first pair of the dyadic indices, it is
clear that twelve coefficients will have to be specified. In the Newman - Penrose formalism,
these coefficients are assigned special symbols which are listed below.

Γ(0)(0)00′ = κ , Γ(0)(0)10′ = ρ , Γ(0)(0)01′ = σ , Γ(0)(0)11′ = τ,

Γ(0)(1)00′ = Γ(1)(0)00′ = ε , Γ(0)(1)10′ = Γ(1)(0)10′ = α,

(2.156)

Γ(0)(1)01′ = Γ(1)(0)01′ = β , Γ(0)(1)11′ = Γ(1)(0)11′ = γ,

Γ(1)(1)00′ = π , Γ(1)(1)10′ = λ , Γ(1)(1)01′ = µ , Γ(1)(1)11′ = ν.

This completes our account of spinor analysis and the spinorial basis of the Newman -
Penrose formalism.

2.3.4 Dirac’s Equation

As is well known, in the relativistic theory of spin half particles, the wave function is repre-
sented by a pair of spinors, PA and Q̄A′ ; and in Minkowski space, Dirac’s equations governing
them are [30]

σjAB′∂jP
A + iµ∗Q̄B′ = 0, (2.157)

and
σjAB′∂jQ

A + iµ∗P̄B′ = 0, (2.158)

where σjAB′ are the Pauli matrices and 1√
2
µ∗ is the mass of the particle. The factor

√
2

in the definition of the mass arises from the fact that the Pauli matrices as defined in
equation (2.116) differ from their customary definitions by the factor 1√

2
.

In the Newman - Penrose formalism in a curved space-time, we take over equations (2.157)
and (2.158) with the covariant derivatives replacing the ordinary derivatives and the σ-
matrices, defined in equations (2.137), replacing the Pauli matrices. The required equations
are, therefore,

σjAB′P
A

;j + iµ∗Q̄
C′εC′B′ = 0, (2.159)

and
σjAB′Q

A
;j + iµ∗P̄

C′εC′B′ = 0, (2.160)

where

σjAB′ =
1√
2

∣∣∣∣ lj mj

m̄j nj

∣∣∣∣ . (2.161)

We show now write out the explicit forms of these equations in terms of the spin coefficients
we have defined.
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Consider equation (2.159) for B′ = 0. We have

σj00′P
0
;j + σj10′P

1
;j − iµ∗Q̄1′ = 0, (2.162)

or, by virtue of equations (2.137), (2.138), (2.154), and (2.161),

(∂00′P
0 + Γ0

b00′P
b) + (∂10′P

1 + Γ1
b10′P

b)− iµ∗Q̄1′ = 0, (2.163)

or, more explicitly,

(D + Γ1000′ − Γ0010′)P
0 + (δ∗ + Γ1100′ − Γ0110′)P

1 − iµ∗Q̄1′ = 0. (2.164)

Now replacing the various spin coefficients in equation (2.164) by their named symbols listed
in (2.156), we obtain

(D + ε− ρ)P 0 + (δ∗ + π − α)P 1 − iµ∗Q̄1′ = 0. (2.165)

Similarly, equation (2.159) for B′ = 1, yields

(D∗ + µ− γ)P 1 + (δ + β − τ)P 0 + iµ∗Q̄
0′ = 0. (2.166)

Equation (2.160) provides the same equations (2.165) and (2.166) with P andQ interchanged.
It is, however, convenient to consider the complex conjugate of equation (2.160) and further
write

F1 = P 0 , F2 = P 1 , G1 = Q̄1′ and G2 = −Q̄0′ . (2.167)

The resulting equations are

(D + ε− ρ)F1 + (δ∗ + π − α)F2 = iµ∗G1,

(D∗ + µ− γ)F2 + (δ + β − τ)F1 = iµ∗G2,

(2.168)

(D + ε∗ − ρ8)G2 − (δ + π∗ − αα)G1 = iµ∗F2,

(D∗ + µ∗ − γ∗)G1 − (δ∗ + β∗ − τ ∗)G2 = iµ∗F1.

These are the Dirac equations in the Newman - Penrose formalism.

2.3.5 In the Kerr Space-time

For the Kerr space-time, the tetrad basis in the Newman - Penrose formalism is given by

lj =
1

∆

(
r2 + a2,∆, 0, a

)
,

nj =
1

2ρ2

(
r2 + a2,−∆, 0, a

)
, (2.169)

mj =
1√
2ρ̄

(ia sin θ, 0, 1, i csc θ) ,
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where
ρ2 = ρ̄ρ̄∗ = r2 + a2 cos2 θ, (2.170)

while the spin-coefficients are

κ = σ = λ = ν = ε = 0,

ρ̃ = − 1

ρ̄∗
, β =

cot θ

2
√

2ρ̄
, π =

ia sin θ√
2(ρ̄∗)2

, τ = −ia sin θ√
2ρ2

, (2.171)

(2.172)

µ = − ∆

2ρ̄∗ρ2
, γ = µ+

r −M
2ρ2

, α = π − β∗.

So in the Kerr space-time and with massless particles (µ∗ = 0), equations (2.168) reduce
to (

D0 +
1

ρ̄∗

)
F1 +

1√
2ρ̄∗
L 1

2
F2 = 0,

∆

2ρ2
D†1

2

F2 −
1√
2ρ̄

(
L†1

2

+
ia sin θ

ρ̄∗

)
F1 = 0,

(2.173)(
D0 +

1

ρ̄

)
G2 −

1√
2ρ̄
L†1

2

G1 = 0,

∆

2ρ2
D†1

2

G1 +
1√
2ρ̄∗

(
L 1

2
− ia sin θ

ρ̄

)
G1 = 0,

where

Dn = ∂r + i
K

∆
+ 2n

r −M
∆

, D†n = ∂r − i
K

∆
+ 2n

r −M
∆

,

(2.174)

Ln = ∂θ +Q+ n cot θ , L†n = ∂θ −Q+ n cot θ,

and
K = (r2 + a2)ω + am , Q = aω sin θ +m csc θ. (2.175)

The forms of equations (2.173) suggest that in place of F1 and G2 we define

f1 = ρ̄∗F1 , g2 = ρ̄G2. (2.176)
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Also writing f2 and g1 in place of F2 and G1 we find that equations (2.173) become

D0f1 +
1√
2
L 1

2
f2 = 0 , ∆D†1

2

f2 −
√

2L†1
2

f1 = 0,

(2.177)

D0g2 −
1√
2
L†1

2

g1 = 0 , ∆D†1
2

g1 +
√

2L 1
2
g2 = 0.

It is now apparent that the variables can be separated by the substitutions

f1(r, θ) = R− 1
2
(r)S− 1

2
(θ) , f2(r, θ) = R 1

2
(r)S 1

2
(θ),

(2.178)

g1(r, θ) = R 1
2
(r)S− 1

2
(θ) , g2(r, θ) = R− 1

2
(r)S 1

2
(θ),

where R± 1
2
(r) and S± 1

2
(θ) are functions, respectively, of r and θ only. With these substitu-

tions, equations (2.177) yield

D0R− 1
2

= λ1R 1
2

,
1√
2
L 1

2
S 1

2
= −λ1S− 1

2
,

∆D†1
2

R 1
2

= λ2R− 1
2

,
√

2L†1
2

S− 1
2

= λ2S 1
2
,

(2.179)

D0R− 1
2

= λ3R 1
2

,
1√
2
L†1

2

S− 1
2

= λ3S 1
2
,

∆D†1
2

R 1
2

= λ4R− 1
2

,
√

2L 1
2
S 1

2
= −λ4S− 1

2
,

where λ1, ..., λ4 are four constants of separation. However, it is manifest that the consistency
of the foregoing equations requires that

λ1 = λ3 =
1

2
λ2 =

1

2
λ4 = λ. (2.180)

We are thus left with two pairs of equations,

D0R− 1
2

= λR 1
2

, ∆D†1
2

R 1
2

= 2λR− 1
2
, (2.181)

and
L 1

2
S 1

2
= −
√

2λS− 1
2

, L†1
2

S− 1
2

=
√

2λS 1
2
. (2.182)

It is convenient at this stage to replace
√

2λ by λ and
√

2R− 1
2

by R− 1
2
. With these

replacements, equations (2.181) and (2.182) become

∆
1
2D0R− 1

2
= λ∆

1
2R 1

2
, ∆

1
2D†1

2

∆
1
2R 1

2
= λR− 1

2
, (2.183)
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and
L 1

2
S 1

2
= −λS− 1

2
, L†1

2

S− 1
2

= λS 1
2
. (2.184)

We can eliminate ∆
1
2R 1

2
from equations (2.183) to obtain an equation for R− 1

2
. Thus,[

∆D†1
2

D0 − λ2
]
R− 1

2
= 0, (2.185)

and ∆
1
2R 1

2
satisfies the complex-conjugate equation.

Similarly, we can eliminate S 1
2

from equations (2.184) to obtain an equation for S− 1
2
,

thus, [
L 1

2
L†1

2

+ λ2
]
S− 1

2
= 0, (2.186)

and S 1
2

satisfies the adjoint equation.
Now that the radial and angular equations have been derived for both the scalar and the

spin half particles in the Kerr space-time; they can be used to study the conformal nature
of the near region of a Kerr black hole in chapter 3 and for the calculation of the QNM
frequencies of a Kerr black hole in chapter 5.
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Chapter 3

Hidden Conformal Symmetry

It has been stated that an extreme Kerr black hole could be holographically described by an
two-dimensional chiral conformal field theory with non-vanishing temperature TL = 1

2π
and

the central charge cL = 12J , where J is the angular momentum of the Kerr black hole. In
this chiral representation, it was then possible to reproduce the Bekenstein-Hawking entropy
by using the Cardy formula. Such a correspondence was soon generalized to various extreme
black holes [31].

In particular, the extreme black holes with multiple U(1) symmetries are especially inter-
esting. For such cases, it turns out that for each U(1) there is a dual holographic conformal
field theory description correspondingly [32].

Every novel conformal field theory is defined with respect to a Killing symmetry of
translation along an angular variable, which could be the linear combination of original two
Killing symmetries.

The conformal field theory dual to an extreme black hole is actually not chiral. It was
pointed out that there is actually a right-moving sector with the same central charge [33].
But the excitations are suppressed in the extreme limit. When one considers the scattering
off of the extreme black hole, the black hole becomes near-extremal, the right-moving sector
is excited. In the near-horizon limit, the modes of interest are the ones near the super-radiant
boundary.

The symmetry of interest for this dissertation forms the basis of two-dimensional confor-
mal field theory, so it would be of use to first review this theory, before applying it to the
Kerr black hole, and this done in the following section.

This chapter seeks to study the conformal nature of the four dimensional Kerr black hole
in the near region, in terms of both the scalar solution space and the spin-half solution space.
But first it is necessary to briefly describe conformal field theory and then define what the
Kerr black hole near region is.

3.1 Conformal Field Theory

Conformal field theories have been at the centre of much attention during the last fifteen
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years since they are relevant for at least three different areas of modern theoretical physics,
including a central role in string theory. (At present the most promising candidate for a
unifying theory of all forces.) Conformal field theories have also had a major impact on
various aspects of modern mathematics.

From an abstract point of view, conformal field theories are Euclidean quantum field
theories that are characterized by the property that their symmetry group contains, in
addition to the Euclidean symmetries, local conformal transformations, i.e., transformations
that preserve angles but not lengths. The local conformal symmetry is of special importance
in two dimensions since the corresponding symmetry algebra is infinite-dimensional in this
case. As a consequence, two-dimensional conformal field theories have an infinite number of
conserved quantities, and are completely solvable by symmetry considerations alone [34].

3.1.1 Conformal Transformations

Consider flat space-time in d dimensions, that is, Rd endowed with a flat metric gµν (which
can be taken as either euclidean or lorentzian) and coordinates xµ, µ = 0, ..., d − 1. First
recall that Poincaré transformations are the set of transformations

xµ → x
′µ(x), (3.1)

leaving the components of the flat metric (with a lorentzian signature) unchanged

gµν → g
′

µν(x
′
(x)) = gµν(x).

This statement can also be expressed from the “active” point of view by demanding that the
squared “Minkowskian norm” ds2 of a vector with components dxµ be preserved under (3.1):

ds2 = gµνdx
µdxν → ds

′2 = gµνdx
′µdx

′ν = ds2,

that is

gµν
∂x
′µ

∂xα
∂x
′ν

∂xβ
= Λ(x)gαβ. (3.2)

For flat space the scale factor Λ(x) = 1 corresponds to the Poincaré group consisting of
translations and rotations, respectively Lorentz transformations.

Conformal transformations are defined as the set of transformations (3.1) leaving the
components of the metric tensor invariant up to a scale

gµν → g
′

µν(x
′
(x)).

Condition (3.2) expresses that the scalar product of basis vectors of the tangent space is
conserved only up to a local scale factor (possibly depending on the (point). In particular,
angles are preserved by conformal transformations. Equivalently, conformal transformations
are such that

ds2 → ds
′2 = Λ−1(x)ds2. (3.3)
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3.1.2 Two Dimensional Conformal Symmetry

We will be working with an Euclidean metric, such that the line element is (dx1)2 + (dx2)2.
We introduce complex coordinates

z = x1 + ix2 and z̄ = x1 − ix2,

in which the metric reads ds2 = dzdz̄. Notice it is only in two dimensions that the metric
in complex coordinates factorizes into dz and dz̄. Consequently, any change of coordinates

z → f(z) = z + α(z) , z̄ → f̄(z̄) = z̄ + ᾱ(z̄),

with f and f̄ depending only upon z and z̄ respectively, will satisfy (3.3), because

ds2 → ds
′2 =

(
df

dz

)(
df̄

dz̄

)
ds2.

Actually, these are the only conformal transformations in two dimensions.
The solutions of the four dimensional Laplace equation(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂ω2

)
U = 0,

are related to the ordinary hypergeometric function 2F1(a, b, c; z).
The hypergeometric function is intimately associated with the Laplace and wave equa-

tions in four dimensional space (along with their extensions into the complex). They arise
from the variable separation of these equations and the conformal symmetry groups lead to
many of the properties of these functions. In fact, hypergeometric functions can be used to
form representations of the two-dimensional conformal group.

The hypergeometric differential equation is given by

x(1− x)y
′′

+ [c− (a+ b+ 1)x]y
′ − aby = 0,

where |x| < 1, y is a function of x and c > 0. This differential equation is solved by functions
of the following form

y =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

xn

n!
.

3.2 The Near Region of the Kerr Black Hole

The full solution spaces of both the scalar and spin-half particles in the Kerr space-time do
not have any apparent symmetries, so the first step is to limit the solution space by placing
a condition on either the particles or the source of the space-time curvature, which is done
when considering the near region.
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The near region is defined by the following condition [35]

ωM � 1, (3.4)

i.e., that the wavelength of the particle excitation is large compared to the radius of curvature.
In this case the geometry can be divided into two regions

r � 1

ω
, =⇒ “NEAR” ,

(3.5)

r � M, =⇒ “FAR” ,

which have significant overlap in the matching region

M � r � 1

ω
, =⇒ “MATCHING” .

The wave equations in the near and far regions can be solved in terms of familiar special
functions, and a full solution is obtained by matching near and far solutions together along
a surface in the matching region.

We note that the region, defined by condition (3.4), is not the same as the often discussed
“near-horizon” region of the geometry defined by r− r+ �M . Indeed, for sufficiently small
ω, the value of r in the near region defined by (3.5) can be arbitrarily large. For a generic
non-extreme Kerr black hole, the near-horizon geometry is just Rindler space, while the
structure of the near region is more complicated.

We view the far region as an asymptotic region where the scattering experiments are set
up. The black hole is thought of as encompassing the whole “near” region. Waves are sent
from the far region into the matching region, which is the interface for interactions with the
black hole.

The next two sections first reduce the radial (and angular) equations of both the scalar
and spin-half particles using the near region condition, then they try to manipulate the
reduced equations to see if either of them fit the necessary form for a two-dimensional
conformal symmetry.

3.3 Scalar Solution Space

The full solution space of the scalar particle, which is governed by equations (2.37) and (2.38),
does not have an apparent two dimensional conformal symmetry. But once the solution
space is reduced using the near region condition, i.e., (3.4), the governing equations reduce
to forms that have an easily identifiable two dimensional conformal symmetry. This section,
which closely follows [35], is broken up into the reduction of the governing equations, the re-
expression of these reduced equations in conformal coordinates and then the interpretation
of the conformal nature of the reduced scalar solution space.
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3.3.1 The Near Region Equations

For the purpose of this section, it would be better to re-express equation (2.38) in the
following form

Al,mR =
d

dr

(
∆

d

dr
R

)
(3.6)

+

[
(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)
+ (r2 + 2M(r + 2M))ω2

]
R,

which becomes

d

dr

(
∆

d

dr
R

)
+

[
(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)

]
R = Al,mR, (3.7)

in the near region limit and equation (2.37) simplifies to

d

dθ

(
sin θ

d

dθ
S

)
− m2

sin2 θ
S = −AlS,

which is the standard Laplacian for the 2-sphere. The solutions eimφS(θ) are the spherical
harmonics, and the separation constants are

Al = l(l + 1).

Equation (3.7) is solved by hypergeometric functions. As hypergeometric functions transform
in representations of SL(2, R), this suggests the existence of a hidden conformal symmetry.

3.3.2 The Conformal Representation

In order to describe the SL(2, R)L × SL(2, R)R symmetry of the near region scalar field
equation, it is convenient for to us adapt conformal coordinates (ω±, y), which are defined
in terms of (t, r, φ) by

ω+ =

√
r − r+

r − r−
e2πTRφ,

ω− =

√
r − r+

r − r−
e2πTLφ− t

2M ,

y =

√
r+ − r−
r − r−

eπ(TLφ+TR)− t
4M ,

where

TR =
r+ − r−

4πa
and TR =

r+ + r−
4πa

.
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Next we define locally the vector fields

H1 = i∂+,

H0 = i(ω+∂+ +
1

2
y∂y),

H−1 = i((ω+)2∂+ + ω+y∂y − y2∂−),

and

H̄1 = i∂−,

H̄0 = i(ω−∂− +
1

2
y∂y),

H̄−1 = i((ω−)2∂− + ω−y∂y − y2∂+).

These obey the SL2(R) Lie bracket algebra,

[H0, H±] = ∓iH± , [H−1, H1] = −2iH0,

and similarly for (H̄0, H̄±1). The SL2(R) quadratic Casimir is

H2 = H̄ = = −H2
0 +

1

2
(H1H−1 +H−1H1).

=
1

4
(y2∂2

y − y∂y) + y2∂+∂−.

In terms of the (t, r, φ) coordinates, the vector fields are

H1 = ie−2πTRφ

(
∆

1
2∂r +

1

2πTR

r −M
∆

1
2

∂φ +
2TL
TR

Mr − a2

∆
1
2

∂t

)
,

H0 =
i

2πTR
∂φ + 2iM

TL
TR
∂t, (3.8)

H−1 = ie2πTRφ

(
−∆

1
2∂r +

1

2πTR

r −M
∆

1
2

∂φ +
2TL
TR

Mr − a2

∆
1
2

∂t

)
,

and

H̄1 = ie−2πTLφ+ t
2M

(
∆

1
2∂r −

a

∆
1
2

∂φ − 2M
r

∆
1
2

∂t

)
,

H̄0 = −2iM∂t, (3.9)

H̄−1 = ie2πTLφ− t
2M

(
−∆

1
2∂r −

a

∆
1
2

∂φ − 2M
r

∆
1
2

∂t

)
,

and the Casimir becomes

H2 = H̄2 =
d

dr
∆

d

dr
+

(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)
.
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The near region wave equation (3.7) can be written as

H2 = H̄2 = l(l + 1).

We see that the scalar Laplacian has reduced to the SL2(R) Casimir. The SL2(R)L×SL2(R)R
weights of the field Ψ are

(hL, hR) = (l, l).

3.3.3 The Interpretation

From this result one might think that the solutions of the Kerr scalar wave equation in the
near region form SL2(R) representations. In fact this is not the case, because the vector
fields (3.7) and (3.9), which generate the SL2(R) symmetries are not globally defined. They
are not periodic under the angular identification

φ ∼ φ+ 2π. (3.10)

Thus these symmetries can not be used to generate new global solutions from old ones.
This can be interpreted as the statement that the SL2(R)L× SL2(R)R symmetry is sponta-
neously broken by the periodic identification of the angular coordinate φ. Indeed, under the
identification (3.10) the conformal coordinates are identified as

ω+ ∼ e4π2TRω+ , ω− ∼ e4π2TLω− , y ∼ e2π2(TL+TR)y.

The identification is generated by the SL2(R)L × SL2(R)R group element

e−4iπ2TRH0−4iπ2TLH̄0 .

Hence the SL2(R)L × SL2(R)R symmetry is broken down to the U(1)L × U(1)R subgroup
generated by (H0, H̄0).

The relation between conformal and Boyer-Lindquist coordinates is reminiscent of the
relation between Minkowski and Rindler coordinates in flat space-time. The periodic iden-
tification suggest that the Kerr black hole should be dual to a finite temperature (TL, TR)
mixed state in dual CFT. This provides an effective way to determine the temperatures in
the dual CFT.

3.4 Spin-Half Solution Space

With the governing equations of the spin-half solution space, equations (2.185) and (2.186),
derived in chapter 2, it was attempted for this dissertation to follow a similar procedure as
that of the scalar solution space in order to see if the spin-half solution space also has a two
dimensional conformal symmetry in the near region. The first part of this section shows how
the spin-half equations reduce in the near region.
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3.4.1 The Near Region Equations

When the differential operators are expanded and S− 1
2

is relabeled as S, equation (2.186)
becomes

1

sin θ

d

dθ

(
sin θ

d

dθ
S

)
+

[(
1

2
− aω cos θ

)2

−
(
m− 1

2
cos θ

sin θ

)2

− 3

4
− 2aωm− a2ω2

]
S = −λ2S,

which simplifies to

1

sin θ

d

dθ

(
sin θ

d

dθ
S

)
+

[
−aω cos θ −

(
m− 1

2
cos θ

sin θ

)2

− 1

2
− 2aωm

]
S = −λ2S, (3.11)

in the near region.
When the differential operators are expanded and R− 1

2
is relabeled as R, equation (2.185)

becomes

∆
d2

dr2
R + (−iK + (r −M))

d

dr
R +

1

∆
(K2 + i(K ′∆−K∆′) + i(r −M)K)R = λ2R. (3.12)

In order to determine if the spin-half field equation has a two-dimensional conformal sym-
metry, it would be useful to re-express equation (3.12) in a similar form to the scalar field
equation. This can be done by changing the dependence of R on r, i.e.,

R→ pR,

where

ln p =
1

2
ln ∆− 1

2

∫
−iK + (r −M)

∆
dr,

which yields a new spin-half radial equation given by

d

dr

(
∆

d

dr
R

)
+

1

4

1

∆
((5K − i(r −M))(K − i(r −M)) + 2∆(1 + 6iωr))R = λ2R. (3.13)

Rewriting equation (3.13) in two parts, one of which has a hypergeometric form

d

dr

(
∆

d

dr
R

)
+ (

1

∆
4Mω(2M2ω − am)r − 1

∆
a2(4M2ω2 −m2))R,

and the other part comprises of the “additional” terms:

1

4

1

∆
((5ω2)r4 + (6iω)r3 + (1 + 10amω − 18iMω + 10a2ω2)r2

+(−6iam− 2M + 6ia2ω + 16amMω − 32M3ω2)r

+(2a2 + a2m2 + 6iamM −M2 + 10a3mω + 6ia2Mω + 5a4ω2 + 16a2M2ω2))R,
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which simplifies to

1

4

1

∆
(r2 + (−6iam− 2M)r + (2a2 + a2m2 + 6iamM −M2))R, (3.14)

in the near region.

3.4.2 Discussion

Since the terms in (3.14) are not negligible in the near region, the radial equation of the
spin-half solution space does not have the necessary hypergeometric form, which is the
condition for two dimensional conformal symmetry, at least as presented by [35]. This
does not necessarily mean that the near region spin-half solution space has no (hidden) two
dimensional conformal symmetry, just that it cannot be identified in the same way as it was
in the near region scalar solution space.

41



Chapter 4

Quasinormal Mode Theory

We are familiar with the fact that the ringing of a bell or the strum of a guitar invariably
produces a “characteristic sound”. Such systems respond to any excitation by selecting
a set of natural real frequencies, the normal frequencies, and their response is given as a
superposition of stationary modes, the normal modes. Black holes have a characteristic
sound as well. As a simple demonstration we may let a Gaussian gravitational wave-packet
evolve on the Schwarzschild geometry. The results, at the linearized level, are shown in
figures 4.1 [19].

A striking feature, first uncovered by Vishveshwara [36] and clearly apparent in fig-
ures 4.1, is that the signal is dominated, during a certain time, by damped single frequency
oscillations. The frequency and damping of these oscillations depend only on the param-
eters characterizing the black hole, which in the Schwarzschild case is its mass. They are
completely independent of the particular initial configuration that cause the excitation of
such vibrations. That such characteristic oscillations always appear and dominate the signal
at intermediate times, in any event involving black holes, has been tested time and time
again. It has been verified at the linearized level [36], in which the fields are treated as a
perturbation in the single black hole space-time, but also for example, on fully numerical
simulations of black hole-black hole collision processes [37], or stellar collapse [38]. They are
therefore characteristic of black holes. These characteristic oscillations have been termed
“quasinormal modes” and the associated frequencies “quasinormal frequencies” [39]. The
“normal” part derives from the obvious similarity between these and normal mode systems.
There are, however, important differences between these two systems, which justifies the
“quasi”: first, QNMs are not stationary modes, since they are exponentially damped. This
is merely reflecting the fact that the black hole space-time is radiating energy away to infinity,
through the form of gravitational waves (or any massless field). When describing a resonant
system, such as a bell, a guitar or a star, one often makes the convenient and sometimes
accurate assumption that there is no damping. This then leads to a complete normal mode
expansion of the field. The stationary mode expansion is just reflecting the no energy loss
assumption. As soon as one turns to the more realistic situation, by allowing a dissipation
mechanism, one expects no such naive stationary normal mode expansion to exist. Black
hole oscillations occupy a very special place here. It is impossible, even in principle, even in

42



Figure 4.1: The top figure shows the evolution of a gravitational Gaussian wave-packet in
the neighbourhood of a Schwarzschild black hole and the bottom figure shows a log plot of the
same wave-packet.
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the most idealized scenario, to turn off the dissipation mechanism. In fact, black holes are
made from the fabric of space-time, and any space-time oscillation implies the generation of
gravitational waves, carrying energy away to infinity. Indeed the very equations describing
black hole oscillations are nothing more than a description of gravitational waves. QNMs
were first discussed in the black hole context, but from the above discussion one anticipates
they will also appear in other dissipative physical systems, such as a vibrating string coupled
to a surrounding medium (and therefore transmitting energy to infinity through it), laser
cavities or a star when one does not neglect gravitational radiation. Another important
difference between normal and QNMs is the completeness issue, which is a rather subtle
one, mathematically. The response of a normal mode system can be given for all times as
a superposition of normal modes.However, QNMs seem to appear only over a limited time
interval; this is also shown in figures 4.1, where it is seen that at very late times quasinormal
ringing gives way to a power-law fall-off. A thorough account of QNMs in asymptotically
flat space-times, their properties, a thorough comparison between normal and QNM systems,
and a discussion about the incompleteness of QNMs can be found in the classical reviews by
Kokkotas and Schmidt [19] and Nollert [40], and references therein.

4.1 Definition

Most of the problems concerning wave propagation in black hole space-times can be reduced
to a second order partial differential equation of the form

∂2

∂x2
Ψ− ∂2

∂t2
Ψ− VΨ = 0. (4.1)

Here x is a spatial variable, usually but not always ranging (in special coordinate system)
from −∞ to +∞. When dealing with black hole space-times the horizon is usually at −∞,
and for the rest of this discussion we shall assume so. Also, V is an x-dependent potential.
To define in a phenomenological way what a QNM is, we shall proceed in the usual way by
assuming a time dependence

Ψ(t, x) = e−iωtφ(x). (4.2)

Inserting this into (4.1) we get an ordinary differential equation in the spatial variable x,

d2

dx2
φ+ (ω2 − V )φ = 0. (4.3)

The form (4.2) is not restrictive, because equation (4.1) is linear, so once we have a solution
for (4.3), a general time dependent solution can be given as a continuous Fourier transform
of such solutions. The form (4.3) is ideal to study QNMs in a way that parallels a normal
mode analysis. We shall now restrict ourselves to asymptotically flat space-times so that the
potential V is positive and satisfies

V → 0, x→ −∞,
(4.4)

V → 0, x→ +∞.
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Therefore, such potentials do not allow bound states, and this makes it impossible to do a
normal mode expansion. The idea that the evolution of Ψ will generally involve a superpo-
sition of these QNMs can be shown to be correct by use of Laplace transforms. We refer the
reader to [19]. Nevertheless, we saw that the signal is somehow dominated by characteristic
oscillations (Figures 4.1), so we shall blindly continue with our analysis. Having in mind
the form (4.4) of the potential, we have that near the boundaries −∞ and +∞ the solution
behaves as plane waves,

φ ∼ e±iωx, x→ ±∞.
The boundary conditions defining QNMs are that toward the boundaries the solutions should
be purely outgoing at infinity and ingoing at the horizon (x = −∞),

φ ∼ e−iωx, x→ −∞,
(4.5)

φ ∼ e+iωx, x→ +∞.

Here ingoing at the horizon means entering into the black hole, therefore leaving the domain
we are studying. These are physically motivated boundary conditions. Only a discrete set
of complex frequencies satisfy these boundary conditions, i.e., the QNM frequencies and the
associated wave-functions φ, which are the solutions of (4.3) are the QNMs. It has been
proved by Vishveshwara [8] that for the Schwarzschild geometry the QNM frequencies must
have a negative imaginary part; this has also been found true for other geometries like the
Kerr space-time. This means on the one hand that QNMs decay exponentially in time,
and the physical significance of this is that the black hole space-time is loosing energy in
the form of gravitational waves. On the other hand, this also means that the space-time is
stable. In addition, the imaginary part being negative makes the numerical calculation of
the QNM frequencies a non-trivial task: according to the boundary conditions (4.5), and to
the fact that the QNM frequencies have a negative imaginary part, one has that QNMs grow
exponentially at the boundaries. Now, in order to tell if a certain frequency is or not a QNM
frequency one must check that, for example, there is only an outgoing eiωx piece at infinity,
or in other words, one must check that near infinity the e−iωx piece is absent. However,
this last term is exponentially suppressed in relation to the other, so one must be able to
distinguish numerically an exponentially small term from an exponentially large one. This
has always been, and still is, a major obstacle when it comes down to an actual computation
of QNM frequencies. Still brute numerical force sometimes works. Chandrasekhar and
Detweiler [9] have succeeded in finding some of the Schwarzschild QNM frequencies this
way, in 1975. Since then, numerous techniques have been developed. Some of them are
analytical tools like the WKB(J) technique of Schultz and Will [41], later refined to third
order [42], and recently extended to sixth order [14], or the “potential fit” [10] one, in which
one tries to fit the Schwarzschild potential to one which enables us to find an exact result.
However, the most successful attempt has been developed by Leaver [12], using a continued
fraction form of the equations, which is rather easily implemented numerically. With the
exception of the WKB method, which will be discussed in greater detail in a later section
of this dissertation, a complete account of all these techniques, and many others are given
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in [19, 40]. While there are a few exceptions, there are no analytical solutions that exactly
satisfy the boundary conditions (4.5), so one has to resort to any numerical or approximate
method to find them.

4.2 Semi-analytic Techniques

In this dissertation we shall make use of two semi-analytical techniques to calculate QNM
frequencies, specifically:

4.2.1 WKB(J) Method

This method is named after physicists Wentzel, Kramers and Brillouin, who developed it
in 1926 [43]. In 1923, mathematician Harold Jeffreys had developed a general method of
approximating solutions to linear, second-order differential equations, which includes the
Schrödinger equation. But even though the Schrödinger equation was developed two years
later, Wentzel, Kramers and Brillouin were apparently unaware of this earlier work, so
Jeffreys is often not given credit.

Before we describe the exact situations where we can use the WKB(J) method, let’s first
consider the example

ε2
d2y

dx2
+ y = 0,

with the condition that
0 < ε� 1. (4.6)

Note that there are two solutions to this differential equation

y(x, ε) ∼ e±
ix
ε ,

since
dy

dx
∼ ± i

ε
e±

ix
ε ,

and
d2y

dx2
∼ − 1

ε2
e±

ix
ε .

It is important to notice that this solution oscillates rapidly on a scale of O(ε1). These
are the types of problems that are ideal for the WKB(J) method because we want to be able
to assume that the solution is in a specific form. We will discuss this idea further when the
ansatz is discussed later on. In general, we can use the WKB method to solve problems of
the following form

ε2
d2y

dx2
+Q(x)y = 0, (4.7)

with the condition (4.6) being true, and where Q(x) is a smooth and positive on the O(ε0)
scale.
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Again, we can use the WKB method here because the solution(s) will have rapid oscil-
lations on a scale O(ε1) with an amplitude and phase, which both vary on a scale O(ε0),
i.e., they both vary slowly. We can only use the WKB method in these situations because it
requires an ansatz, in which we assume that solutions have this specific form.

We will now solve the general differential equation (4.7) with condition (4.6) using the
WKB(J) method. As discussed previously, we will assume that the solution to this differential
equation is in the following form (our ansatz)

y(x, ε) = A(x, ε)e
iu(x)
ε ,

then
dy

dx
=

(
A′ + A

iu′

ε

)
e
iu(x)
ε ,

and
d2y

dx2
=

(
−(u′)2

ε2
+
i

ε
(Au′′ + 2A′u′) + A′′

)
e
iu(x)
ε .

So our differential equation becomes

(−(u′)2A+ iε(Au′′ + 2A′u′) + ε2A′′)e
iu
ε +Q(x)e

iu(x)
ε = 0.

Now we let

A(x, ε) = A0(x) + εA1(x) + ...,

A′(x, ε) = A′0(x) + εA′1(x) + ...,

A′′(x, ε) = A′′0(x) + εA′′1(x) + ....

Then we collect like terms in order to find A(x, ε) and u(x). First we find the terms of order
O(ε0)

−(u′)2e
iu
ε +Q(x)e

iu
ε = 0,

=⇒ Q(x) = (u′)2,

=⇒ u(x) = ±
∫ x

x0

√
Q(s)ds.

Then we find the terms of order O(ε)

(iεA0u
′′ + 2iεA′0)e

iu
ε = 0,

=⇒ A0u
′′ + 2A′0u

′ = 0,

=⇒ A0

2
√
Q(x)

+ 2A′0
√
Q(x) = 0.

If we solve this, we find that
A0 = C(Q(x))−

1
4 .
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Thus we have a one-term (first order) approximation to the solution of (4.7)

y(x, ε) ∼ (Q(x))−
1
4 e
± i
ε

∫ x
x0

√
Q(s)ds

.

It is known that the black hole perturbations can be reduced to a second-order ordinary
differential equation of the form [24]

d2

dx2
ψ(x) +Q(x, ω)ψ(x) = 0, (4.8)

which is valid for the three types of black holes: Schwarzschild, Reissner-Nordström and
Kerr. The function Q(x, ω), for the first two types of black hole, has the form ω2 − V (x)
where ω is the complex frequency of the oscillation and V (x) is the real potential. The
potential V (x) is a positive function of x, the spin weight of the the field s and the angular
harmonic index l, but it is independent of ω. For the Kerr black hole, the function Q(x, ω) is
more complicated and there is no clear separation between ω and V (x) for electromagnetic
(s = ±1) and gravitational (s = ±2) perturbations. For this reason Seidel and Iyer [13]
have transformed the standard equation and expanded Q(x, ω) in powers of aω to avoid
working, in principle, on the complex plane. What follows avoids using the transformation
or expansion and deals with the standard equation. Similar results are achieved with a
simpler method.

The boundary condition for the QNMs of a perturbed black hole is that the waves are
ingoing at the horizon and outgoing at infinity. With this condition it is possible to solve
the eigenvalue problem (4.8) either numerically or semi-analytically and to determine the
complex QNM frequencies. From the known methods like [12], only the one introduced by
Leaver can determine the frequencies of both the weakly and the strongly damped modes of
a black hole, the semi-analytical method like [42], proved to give very good results for the
QNM frequencies, though only for small damping. The attempt [44] to improve this method
for normal modes with larger imaginary parts was not that successful, since it determines
only the imaginary parts of the frequencies with a satisfactory accuracy, but it does not show
the same success for the determination of the real part of the frequency.

Equation (4.8), which describes the perturbations of a black hole, is a second-order ordi-
nary differential equation, which is equivalent to the one-dimensional Schrödinger equation
for a particle encountering a potential barrier. Thus techniques used extensively in quantum
mechanics can be used for studying equation (4.8). The Bohr-Sommerfield (BS) rule (or
connection formulae) seems to be especially useful. Using this rule, it is possible to repro-
duce not only the Schutz-Will formula, but also to give a way to extend the accuracy of
that formula, by taking higher order terms [14]. The BS formula has already been proven to
give in quantum mechanics, not only accurate but in some cases exact results. The method
improves the accuracy as the eigenvalue of the problem, i.e., the energy, increases [45]. The
corresponding eigenvalue for the black hole case is the frequency of the oscillation.

The classical form of the BS rule for equations of the type (4.8) is∫ xB

xA

(Q(x))
1
2dx =

(
n+

1

2

)
π, (4.9)
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where xA, xB are the two roots of Q(x) = 0 or else the two turning points. A more general
form can be found in [45], which is valid for complex potentials and in this form it is possible
to extend it to the complex z-plane∮

C

∞∑
k=0

S ′2k(z)dz ≈ 2i

(
n+

1

2

)
π, (4.10)

where the contour C encircles the two turning points, which are connected by a branch cut
on the the real z-axis. The even order terms of the WKB(J) expansion have the following
form [45]

S0(x) = ±
∫ x

(Q(t))
1
2 dt,

S2(x) = ±
∫ x

[
Q′′(t)

8(Q(t))
3
2 (t)
− 5(Q′(t))2

8(Q(t))
3
2 (t)

]
dt....

Although all the terms for k > 0 are infinite at the two turning points, the integral (4.10)
is finite because the contour encircles the turning points without passing through them.
The advantage of relation (4.10) is its generalization of relation (4.9) on the complex plane
and its ability to handle the Bardeen-Press [46] potential for the Schwarzschild black hole
perturbation as well as the complex Teukolsky [24] potential for the Kerr black hole.

Next the BS rule will be used in the case where the complex frequency has a small
imaginary part. In this case the two turning points are close to the peak of the potential
and not very far apart. Thus it is possible to take a Taylor expansion of the potential close
to its peaks x0 (i.e., Q(x) approximated by a parabola)

Q(x) = Q0 +
1

2
Q′′0(x− x0)2 +O((x− x0))3, (4.11)

where Q0 = Q(x0) < 0 and Q′′0 = d2Q
dx2
|x=x0 > 0. Then by substituting (4.11) into (4.10), the

problem is reduced in the solution of the integral equation∫ xB

xA

[
Q0 +

1

2
Q′′0(x− x0)2

] 1
2

dx =

(
n+

1

2

)
π, (4.12)

where xA,B = x0 ∓
[
−2Q0

Q′′0

] 1
2
. A straight integration of (4.12) gives

Q0 = ±i[2Q′′0]
1
2

(
n+

1

2

)
,

which is exactly the Schutz-Will formula [41].
Once the black hole radial perturbation equation is written in the following form

d2

dx2
ψ +Qψ = 0, (4.13)
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where Q = ω2 − V , with x being the tortoise coordinate and V being the black hole poten-
tial; the WKB(J) formula for calculating the QNM frequencies can be used. The WKB(J)
formula, up to sixth order, is

i× Q0

(−2Q′′0)
1
2

−
6∑
j=2

Λj = α,

where the Λj ’ s are the second through sixth order corrections to the WKB(J) approximation,
with the second and third corrections are given by

Λ2 =
i

(−2Q′′0)
1
2

[
1

8

(
Q

(4)
0

Q′′0

)(
1

4
+ α2

)
− 1

288

(
Q′′′0
Q′′0

)(
7 + 60α2

)]
,

−2Q′′0
α
× Λ3 =

5

6912

(
Q′′′0
Q′′0

)4 (
77 + 188α2

)
− 1

384

(
(Q′′0)2Q4

0

Q′′0

)(
51 + 100α2

)
+

1

2304

(
Q4

0

Q′′0

)2 (
67 + 68α2

)
+

1

288

(
(Q′′′0 )(Q0)5

Q′′0

)(
19 + 28α2

)
− 1

288

(
Q6

0

Q′′0

)2 (
5 + 4α2

)
.

Here

α = n+
1

2
,

where n = 0, 1, 2, ... is the mode number of the QNM frequency and

Q
(n)
0 =

d(n)

dx(n)
Q|x=xmax ,

with xmax being the point were the black hole potential is at its maximum.
The fourth through sixth order corrections to the WKB(J) method are given in ap-

pendix B.

4.2.2 Asymptotic Iteration Method

The second semi-analytical technique approach we shall use is the AIM. This technique for
solving differential equations numerically was presented by Cifti et al. in 2003 [15] and it
is described below.

Consider the homogeneous linear, second-order differential equation for the function y(x),

y′′ = λ0(x)y′ + s0(x)y, (4.14)

where λ0(x) and s0(x) are functions in C∞(a, b). In order to find a general solution to this
equation, we rely on the symmetric structure of the right-hand of (4.14) [15]. Indeed, if we
differentiate (4.14) with respect to x, we find that

y′′′ = λ1(x)y′ + s1(x)y,
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where
λ1 = λ′0 + s0 + (λ0)2 and s1 = s′0 + s0λ0.

If we write the second derivative of equation (4.14), we get

y′′′′ = λ2(x)y′ + s2(x)y,

where
λ2 = λ′1 + s1 + λ0λ1 and s1 = s′0 + s0λ0.

Thus, for the (n+ 1)th and the (n+ 2)th derivatives, n = 1, 2, ..., we have

y(n+1) = λn−1(x)y′ + sn−1(x)y, (4.15)

and
y(n+2) = λn(x)y′ + sn(x)y,

respectively, where

λn = λ′n−1 + sn−1 + λ0λn−1 and sn−1 = s′0 + s0λn−1. (4.16)

From the ratio of the (n+ 1)th and the (n+ 2)th derivatives, we have

d

dx
ln (y(n+1)) =

y(n+2)

y(n+1)
=

λn(y′ + sn
λn

)

λn−1(y′ + sn−1

λn−1
)
. (4.17)

We now introduce the ‘asymptotic’ aspect of the method. If we have, for sufficiently large
n,

sn
λn

=
sn−1

λn−1

= α,

then (4.17) reduces to
d

dx
ln (y(n+1)) =

λn
λn−1

,

which yields

y(n+1)(x) = C1e

(∫ x λn(t)
λn−1(t)

dt
)

= C1λn−1e
(
∫ x α+λ0dt), (4.18)

where C1 is the integration constant and the right-hand side equation from (4.16) and the
definition of α. Substituting (4.18) into (4.15), we obtain the first-order differential equation

y′ + α = C1λn−1e
(
∫ x α+λ0dt),

which, in turn, yields the general solution to (4.14) as

y(x) = e(−
∫ x αdt)

[
C2 + C1

∫ x

e(
∫ t (λ0(τ)+2α(τ))dτ)dt

]
.

The QNM frequencies are obtained from the quantization condition [16], by setting δn =
0, where δn is given by

δn = snλn−1 − sn−1λn, (4.19)

which is equivalent to imposing a termination to the number of iterations.
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Improved Asymptotic Iteration Method

Cho et al. [16] have presented an improved version of the AIM which circumvents the
unpleasant feature of the recursion relations in equations (4.16), that at each iteration one
must take the derivatives of λn and sn. This is where we will slow down the numerical oper-
ation and produce problems with regards to precision. Thus, we shall use their method, that
is we expand λn and sn as Taylor series around the point y0, where the AIM is implemented

λk(y) =
∞∑
j=0

cjk(y − y0)j,

and

sk(y) =
∞∑
j=0

djk(y − y0)j,

where cjk and djk are the jth Taylor coefficients of λk(y) and sk(y) respectively. Substituting
these expressions into equations (4.16) leads to

cjk = (j + 1)cj+1
k−1 + djk−1 +

j∑
p=0

cj0c
j−p
k−1,

and

djk = (j + 1)dj+1
k−1 +

j∑
p=0

dj0c
j−p
k−1.

In terms of these coefficients, the termination condition (4.19) can be written as

d0
kc

0
k−1 − d0

k−1c
0
k = 0,

and thus we have reduced the AIM into a set of recursion relations which no longer require
derivative operations.

The Boundary Conditions in the Asymptotic Iteration Method

Note that while the form of the equation used for the WKB(J) method to calculate QNM
frequencies, already incorporates the boundary conditions necessary for QNMs, it is required
to directly include them when using the AIM.

According to Leaver [12] and Jing et al. [47], the Kerr boundary conditions for QNMs
can be incorporated into the radial equation, by re-expressing the radial function in the
following form

ψ(r) =
(

1− r−
r

)−s−iσ− (
1− r+

r

)s−iσ+ (r+

r

)−ir+ω
eiωrχ(r), (4.20)

where

σ± =
1

r+ − r−
[(r2
± + a2)ω + am],
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and s is either 0 or 1
2

for scalar or spin-half perturbations, respectively.
Armed with this information, we can now proceed to calculate the QNM frequencies for

the AIM, and the WKB method presented earlier, in the next chapter.
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Chapter 5

Quasinormal Mode Frequencies

Chapter 4, which discussed the theory of QNMs, showed that the radial (perturbation)
equation of the particle of interest was what was necessary for QNM frequency calculations.
The radial (perturbation) equations for both the scalar and spin-half particles were derived in
chapter 2, however, they were not in the correct form, so first they needed to be manipulated
accordingly.

Once the radial equation was manipulated into the correct QNM forms, Mathematica 8
was used to determine the QNM frequencies. In the case of the black hole with no angular
momentum (a = 0.00), i.e., the Schwarzschild limit, the NSolve function was used to calculate
the QNM frequencies in both the WKB(J) method and the AIM. For the cases with angular
momentum (0.00 < a < 1.00), the FindRoot function was used, with the Schwarzschild limit
value used as the initial “guess”. Fifteen iterations were used for the AIM.

5.1 Scalar Perturbations

5.1.1 Equation Manipulation

The WKB(J) Method

Th scalar radial equation (2.38), is slightly altered to give

d

dr

(
∆

d

dr
R

)
− V ·R = 0, (5.1)

where

V = − 1

∆
((K − 2(r2 + a2))2 −∆λ),

with λ = Al,m + a2ω2 − 2amω.
Before the QNM frequencies can be calculated, equation (5.1) needs to be changed into

the standard form. One of the ways this is accomplished is by first choosing the radial field,
R to have the following form

R(r) = (r2 + a2)−
1
2ψ(r),
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and then changing to the Tortoise coordinate x, which is related to the original coordinate
r by

dr

dx
=

∆

r2 + a2
, (5.2)

which changes equation (5.1) to

d2

dx2
ψ + (ω2 − V )ψ = 0. (5.3)

The ‘new’ potential is

V =
2am(r2 + a2)ω − a2m2 + ∆λ

(r2 + a2)2
+G2 +

d

dx
G,

with

G =
r∆

(r2 + a2)2
.

Equation (5.3) is in the standard form for QNM frequency determination, which is also
the correct form for using the WKB(J) method to calculate them.

The Asymptotic Iteration Method

Because the AIM works better on a compact domain, we define a new variable y = 1− r+
r

,
which ranges from 0 at the event horizon (r = r+) to 1 at spatial infinity. Then it is necessary
to incorporate the boundary conditions, which expressed in the new compact domain is

ψ(y) =

(
1− r−

r+

(1− y)

)−iσ−
y−σ+(1− y)−r+ωeiω

r+
1−yχ(y).

By making the change of coordinate and the change of function, equation (5.3) takes the
form

χ(y) = λ0(y) + s0(y), (5.4)

where

λ0 = −2
1

g

dg

dy
− 1

f

df

dy
,

and

s0 = −1

g

d2g

dy2
− 1

f

df

dy
× 1

g

dg

dy
− 1

f 2

(
ω2 − V |r=r+(1−y)−1

)
,

with

f =

(
∆

r2 + a2

dy

dr

)
|r=r+(1−y)−1 ,

and

g = (1− y)−2iω

(
1− r−

r+

(1− y)

)iσ−
y−iσ+eiωr+(1−y)−1

.

Equation (5.4) is now in the correct form to use the AIM for QNM frequency calculations.
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5.1.2 Results and Discussion

As presented in tables 5.1 and 5.2 are the QNM frequencies for the scalar perturbations of
the Kerr black hole with the two “extreme” (minimum and maximum for this dissertation)
values of the angular momentum per unit mass, i.e., a = 0.00 and a = 0.80. m was set to 0,
while the angular number l was given values of 0, 1, 2 and 3 and the mode number n was
varied from 0 to l − 1.

Table 5.1: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr Black
Hole, when a = 0.00.

l n Numerical Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1105 - 0.1049i 0.1046 - 0.1152i 0.1105 - 0.1008i 0.1103 - 0.1046i
(5.34% , 9.82%) (<0.01% , 3.91%) (0.18% , 0.29%)

1 0 0.2929 - 0.0977i 0.2911 - 0.0989i 0.2929 - 0.0978i 0.2929 - 0.0977i
(0.61% , 1.23%) (<0.01% , 0.10%) (<0.01% , <0.01%)

1 0.2645 - 0.3063i 0.2622 - 0.3074i 0.2645 - 0.3065i 0.2645 - 0.3063i
(0.87% , 0.36%) (<0.01% , 0.07%) (<0.01% , <0.01%)

2 0 0.4836 - 0.0968i 0.4832 - 0.0968i 0.4836 - 0.0968i 0.4836 - 0.0968i
(0.08% , <0.01%) (<0.01% , <0.01%) (<0.01% , <0.01%)

1 0.4639 - 0.2956i 0.4632 - 0.2958i 0.4638 - 0.2956i 0.4639 - 0.2956i
(0.15% , 0.07%) (0.02% , <0.01%) (<0.01% , <0.01%)

2 0.4305 - 0.5086i 0.4317 - 0.5034i 0.4304 - 0.5087i 0.4306 - 0.5086i
(0.28% , 1.02%) (0.02% , 0.02%) (0.02% , <0.01%)

3 0 0.6752 - 0.0965i 0.6754 - 0.0965i 0.6754 - 0.0965i
(<0.01% , <0.01%)

1 0.6604 - 0.2923i 0.6607 - 0.2923i 0.6607 - 0.2923i
(<0.01% , <0.01%)

2 0.6348 - 0.4941i 0.6336 - 0.4960i 0.6336 - 0.4960i
(<0.01% , <0.01%)

3 0.6022 - 0.7011i 0.5984 - 0.7114i 0.5989 - 0.7113i
(0.08% , 0.01%)

Included in table 5.1 are the numerically determined QNM frequencies for l = 0 to l = 2
published by Leaver [12]. Even though the WKB(J) method has been used to calculate the
Schwarzschild limit QNM frequencies before, up to sixth order, and the values published by
Seidel et al. [13] and by Konoplya [14], the calculations were redone for this work. The
percentages bracketed under each QNM frequency for l = 0 to l = 2, are the percentage
differences between the calculated value and the numerical value published by Leaver, while
for l = 3 the percentages compare the AIM to sixth order WKB(J) values.

In table 5.2, all three values were calculated for this work, even though published values
are available for the third order WKB(J), at least graphically. Since the WKB(J) is a gen-
erally accepted semi-analytical technique for QNM frequency calculations, the percentages
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Table 5.2: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr Black
Hole, when a = 0.80.

l n Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1005 - 0.1007i 0.1211 - 0.0897i 0.1141 - 0.0939i
(5,78% , 4.68%)

1 0 0.3029 - 0.0891i 0.3053 - 0.0893i 0.3052 - 0.0892i
(0.03% , 0.11%)

1 0.2758 - 0.2779i 0.2821 - 0.2755i 0.2817 - 0.2756i
(0.14% , 0.04%)

2 0 0.5035 - 0.0885i 0.5041 - 0.0886i 0.5041 - 0.0886i
(<0.01% , <0.01%)

1 0.4866 - 0.2693i 0.4885 - 0.2690i 0.4885 - 0.2689i
(<0.01% , 0.04%)

2 0.4585 - 0.4570i 0.4607 - 0.4581i

3 0 0.7037 - 0.0884i 0.7040 - 0.0884i 0.7040 - 0.0884i
(<0.01% , <0.01%)

1 0.6917 - 0.2670i 0.6925 - 0.2669i 0.6925 - 0.2669i
(<0.01% , <0.01%)

2 0.6701 - 0.4498i 0.6708 - 0.4503i

3 0.6416 - 0.6369i 0.6414 - 0.6407i

below the AIM values are the differences to the sixth order WKB(J) values.
Based off tables 5.1 and 5.2, as a increases, the real part of the QNM frequency increases,

while the imaginary part of the QNM frequency decreases.
Included in appendix C are the tables, C.1 - C.3, which give the scalar perturbation Kerr

black hole QNM frequencies calculated for values of a = 0.20, a = 0.40 and a = 0.60, with
the same variations of l and n.

Figures 5.1 - 5.3 show the dependence of the QNM frequencies on n (with constant l),
i.e., that as n increases the real part of the QNM frequency decreases, while the imaginary
part of the QNM frequency increases.

Figures 5.4 - 5.6 show the dependence of the QNM frequencies on l (with constant n),
i.e., that as l increases the real part of the frequency increases, while the imaginary part of
the frequency decreases.
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Figure 5.1: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr
Black Hole, when l = 1.

5.2 Spin-Half Perturbations

5.2.1 Equation Manipulation

The WKB(J) Method

With a choice of x, which is an independent variable, defined by

dr

dx
=

∆

K̄
,

where K̄ = K
ω

, then the operators D0 and D†0 take the simple forms

D0 =
K̄

∆

(
d

dx
+ iω

)
and D†0 =

K̄

∆

(
d

dx
− iω

)
.

The radial equations then become(
d

dx
− iω

)
P 1

2
= λ

∆
1
2

K̄
P− 1

2
(5.5)

and (
d

dx
+ iω

)
P− 1

2
= λ

∆
1
2

K̄
P 1

2
(5.6)

with ∆
1
2R 1

2
= P 1

2
and R− 1

2
= P− 1

2
.

Letting
Z± = P 1

2
± P− 1

2
,
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Figure 5.2: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr
Black Hole, when l = 2.

we can combine equations (5.5) and (5.6) to give(
d

dx
− λ∆

1
2

K̄

)
Z+ = iωZ−,

and (
d

dx
+ λ

∆
1
2

K̄

)
Z− = iωZ+.

From these equations, we readily obtain the pair of one-dimensional wave-equations,(
d2

dx2
+ ω2

)
= V±Z±, (5.7)

where

V± = λ2 ∆

K̄2
± λ d

dx

(
∆

1
2

K̄

)
.

Selecting the positive part of equation (5.7) and rewriting it, with Z+ = ψ and V = V+,
yields

d2

dx2
ψ + (ω2 − V )ψ = 0, (5.8)

which is now in the standard QNMs form and the WKB(J) method can be used to calculate
the QNM frequencies.
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Figure 5.3: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr
Black Hole, when l = 3.

The Asymptotic Iteration Method

Because the AIM works better on a compact domain, we define a new variable y2 = 1− r+
r

,
which ranges from 0 at the event horizon (r = r+) to 1 at spatial infinity. Then it is necessary
to incorporate the boundary conditions, which expressed in the new compact domain is

ψ(y) =

(
1− r−

r+

(1− y2)

)− 1
2
−iσ−

(y2)
1
2
−σ+(1− y2)−r+ωe

iω
r+

1−y2χ(y).

By making the change of coordinate and the change of function, equation (5.8) takes the
form

χ(y) = λ0(y) + s0(y), (5.9)

λ0 = −2
1

g

dg

dy
− 1

f

df

dy
,

and

s0 = −1

g

d2g

dy2
− 1

f

df

dy
× 1

g

dg

dy
− 1

f 2

(
ω2 − V |r=r+(1−y2)−1

)
,

with

f =

(
∆

K

dy
1
2

dr

)
|r=r+(1−y2)−1 ,

and

g = (1− y2)−2iω

(
1− r−

r+

(1− y2)

)− 1
2
−iσ−

(y2)
1
2
−iσ+eiωr+(1−y2)−1

.

Equation (5.9) is now in the correct form to use the AIM for QNM frequency calculations.
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Figure 5.4: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr
Black Hole, when n = 0.

5.2.2 Results and Discussion

As presented in tables 5.3 and 5.4 are the QNM frequencies for the spin-half perturbations of
the Kerr black hole with the two “extreme” (minimum and maximum for this dissertation)
values of the angular momentum per unit mass, i.e., a = 0.00 and a = 0.80. m was set to 0,
while the angular number l was given values of 0, 1, 2 and 3 and the mode number n was
varied from 0 to l − 1.

Included in table 5.3 are the numerically determined QNM frequencies published by
Jing [48]. Even though the WKB(J) method has been used to calculate the Schwarzschild
limit QNM frequencies before, up to sixth order, and the values published by Cho [49] and
by Konoplya [14], the calculations were redone for this work. The AIM values are novel to
this work. The percentages bracketed under each QNM frequency for l = 0 to l = 2, is
the percentage difference between the calculated value and the numerical value published by
Jing. While for l = 3, the AIM values are compared to the sixth order WKB(J) values.

Included in table 5.4 are the numerically determined QNM frequencies published by Jing
et al. [47]. Both the third and sixth order WKB(J) values along with the AIM values are
novel to this work. The percentages bracketed under each QNM frequency, are the percentage
difference between the calculated value and the numerical value published by Jing, at least
for l = 0 and l = 1. For l = 2 and l = 3, the AIM values are compared to the sixth order
WKB(J) values.

Based off tables 5.3 and 5.4, as a increases, the real part of the QNM frequency increases,
while the imaginary part of the QNM frequency decreases.

Included in appendix C are the tables, C.4 - C.6, which give the spin-half perturbation
Kerr black hole QNM frequencies calculated for values of a = 0.20, a = 0.40 and a = 0.60,
with the same variations of l and n.

Figures 5.7 - 5.9 show the dependence of the QNM frequencies on n (with constant l),
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Figure 5.5: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr
Black Hole, when n = 1.

i.e., that as n increases the real part of the QNM frequency decreases, while the imaginary
part of the QNM frequency increases.

Figures 5.10 and 5.12 show the dependence of the QNM frequencies on l (with constant
n), i.e., that as l increases the real part of the frequency increases, while the imaginary part
of the frequency decreases.

The missing values, for the QNM frequencies calculated using the AIM, in some of the
tables are because the values returned by Mathematica 8 on the computer used, were so
far off the numerical / sixth order WKB(J) values, it was a clear indication of computation
error and were therefore left out.
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Figure 5.6: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr
Black Hole, when n = 2.

Table 5.3: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when a = 0.00.

l n Numerical Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1830 - 0.0970i 0.1765 - 0.1001i 0.1827 - 0.0949i 0.1830 - 0.0969i
(3.55% , 3.20%) (0.16% , 2.16%) (<0.01% , 0.10%)

1 0 0.3800 - 0.0964i 0.3786 - 0.0965i 0.3801 - 0.0964i 0.3800 - 0.0964i
(0.37% , 0.10%) (0.03% , <0.01%) (<0.01% , <0.01%)

1 0.3558 - 0.2975i 0.3536 - 0.2987i 0.3559 - 0.2973i 0.3568 - 0.2976i
(0.62% , 0.40%) (0.03% , 0.07%) (0.28% , 0.03%)

2 0 0.5741 - 0.0963i 0.5737 - 0.0963i 0.5741 - 0.0963i 0.5741 - 0.0963i
(0.07% , <0.01%) (<0.01% , <0.01%) (<0.01% , <0.01%)

1 0.5570 - 0.2927i 0.5562 - 0.2930i 0.5570 - 0.2927i 0.5573 - 0.2928i
(0.14% , 0.10%) (<0.01% , <0.01%) (0.05% , 0.03%)

2 0.5266 - 0.4997i 0.5273 - 0.4972i 0.5265 - 0.4997i 0.5189 - 0.5213i
(0.13% , 0.50%) (0.02% , <0.01%) (1.46% , 4.32%)

3 0 0.7672 - 0.0963i 0.7674 - 0.0963i 0.7674 - 0.0963i
(<0.01% , <0.01%)

1 0.7540 - 0.2910i 0.7543 - 0.2910i 0.7544 - 0.2910i
(0.01% , <0.01%)

2 0.7305 - 0.4909i 0.7298 - 0.4919i 0.7267 - 0.4928i
(0.42% , 0.18%)

3 0.6999 - 0.6957i 0.6967 - 0.7023i
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Table 5.4: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when a = 0.80.

l n Numerical Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1932 - 0.0891i 0.1883 - 0.0896i 0.1914 - 0.0865i 0.1920 - 0.0872i
(2.54% , 0.56%) (0.93% , 2.92%) (0.62% , 2.13%)

1 0 0.3993 - 0.0893i 0.3956 - 0.0881i 0.3967 - 0.0880i 0.3965 - 0.0880i
(0.93% , 1.34%) (0.65% , 1.46%) (0.70% , 1.46%)

1 0.3789 - 0.2728i 0.3751 - 0.2701i 0.3777 - 0.2687i
(1.00% , 0.99%) (0.32% , 1.50%)

2 0 0.5984 - 0.0881i 0.5987 - 0.0881i 0.5987 - 0.0882i
(<0.01% , 0.11%)

1 0.5844 - 0.2669i 0.5855 -0.2667i 0.5847 - 0.2644i
(0.14% , 0.86%)

2 0.5600 - 0.4512i 0.5609 - 0.4517i

3 0 0.8000 - 0.0882i 0.8001 - 0.0882i 0.8001 - 0.0882i
(<0.01% , <0.01%)

1 0.7895 - 0.2659i 0.7900 - 0.2658i 0.7900 - 0.2655i
(<0.01% , 0.11%)

2 0.7702 - 0.4471i 0.7706 - 0.4473i

3 0.7443 - 0.6320i 0.7436 - 0.6345i
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Figure 5.7: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when l = 1.
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Figure 5.8: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when l = 2.

ææ æ æ æ

à à à
à

à

ìì ì
ì

n = 0

n = 1

n = 2

0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80
ReHΩL

0.1

0.2

0.3

0.4

0.5

-ImHΩL

Figure 5.9: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when l = 3.
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Figure 5.10: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when n = 0.
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Figure 5.11: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when n = 1.
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Chapter 6

Conclusion

6.1 Hidden Conformal Symmetry

The near region condition that lead to the discovery of a two dimensional conformal symme-
try “hidden” in the Kerr scalar solution space, was not enough to reveal a similar symmetry
in the Kerr spin-half solution space. Or to be more specific, the non-hypergeometric terms
in the spin-half radial equation were not negligible in the near region limit, so it was not
apparent that the solution space had a two dimensional conformal symmetry.

6.2 Quasinormal Modes

6.2.1 Scalar Perturbations

In the case of the scalar perturbations of a Kerr black hole, there appears to be no published
numerical values for the QNM frequencies. All past tabulated calculations seem to focus on
gravitational perturbations. There are, however, diagrams of the scalar perturbations for
QNM frequencies of a Kerr black hole calculated using the third order WKB(J) method [13]
and they compare favourably, at least visually, with the third order WKB(J) method values
recalculated in this dissertation.

When Konoplya first derived the fourth through sixth order corrections to the the
WKB(J) method and published the expressions, he included a demonstration of their im-
proved accuracy over the third order WKB(J) method when compared to numerically cal-
culated values [14]. So for the purpose of this dissertation, the QNM frequencies calculated
using the sixth order WKB(J) method are what the AIM values are compared to, in order
to have an idea how accurate the AIM is. As such the accuracy of the AIM, as compared
to the numerical method or the sixth order WKB(J) method, was at its highest when a was
at its lowest, i.e., 0, n was at its lowest, i.e., 0, and l was at its highest, i.e., 3. However
Mathematica 8 did evaluate the necessary expressions, etcetera, significantly faster for the
sixth order WKB(J) method than for the AIM.

68



6.2.2 Spin-Half Perturbations

Unlike the case of the scalar perturbations, there are previously published numerical values
for the QNM frequencies that result from the spin-half perturbations of a Kerr black hole [47],
at least for the angular numbers of l = 0 and l = 1. For the QNM frequencies when l = 2
and l = 3, the AIM values were then compared to the sixth order WKB(J) method values.

The accuracy of the AIM, as compared to the numerical method or the sixth order
WKB(J) method, was at its highest when a was at its lowest, i.e., 0, n was at its lowest, i.e.,
0, and l was at its highest, i.e., 3. Once again, Mathematica 8 did evaluate the necessary
expressions, etcetera significantly faster for the sixth order WKB(J) method than for the
AIM.

6.3 Possible Future Directions

6.3.1 Hidden Conformal Symmetry

Since the start of this dissertation in 2010, there have been many articles published about
the hidden conformal symmetry of a variety of black holes, ranging from the simple extension
of the Kerr to the Kerr - Newman black hole by adding an electric charge, which was done
by Wang et al. [50], to the extremal Kaluza-Klein black hole by Huang [51]. Just like the
original work by Strominger et al. [35], these hidden conformal symmetries were found
for the scalar particle solution space in the near region of the black hole. As of the end of
this dissertation, no one has published an article about the presence / absence of a similar
hidden conformal symmetry for the spin-half particle solution space in the near region of the
Kerr or any other black holes.

It may be that the spin-half solution space in the near region has a different conformal
symmetry to the scalar solution space in the near region, so any further study would warrant
comparisons to the functions that transform under other representations.

It may be possible to follow similar procedures as in this dissertation to derive the Hawk-
ing radiation of fermions, depending on the form of the near horizon solutions [52].

6.3.2 Quasinormal Modes

As of the end of this dissertation, no one has published an article that uses either the sixth
order WKB(J) method or the AIM to calculate the QNM frequencies of anything but the
non - spin-half perturbations of a variety of Schwarzschild black holes [14,16].

This dissertation only used the sixth order WKB(J) method and AIM to calculate the
QNM frequencies for the scalar and spin-half perturbations of a four dimensional Kerr black
hole.

The possible extensions for the Kerr black hole are different types of perturbations of the
Kerr black hole, working in a space-time that is not asymptotically flat or working in higher
dimensions. The importance of these extensions are described below.
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In the context of the Einstein - Maxwell equations, the most general solution describ-
ing stationary axisymmetric black holes is the Kerr - Newman metric (with electric charge
Q) [53], but for astrophysical black holes the electric charge is likely to be negligible. So it
would be instructive to study different kinds of perturbations for Kerr black holes such as
electromagnetic and gravitational perturbations.

The study of black hole QNMs has a long history, where most of the studies are for
asymptotically flat space-times. The discovery of the AdS / CFT correspondence [21] and
the expanding universe motivated the investigation of QNMs in de Sitter [54] and anti - de
Sitter [20] space-times in the past several years.

Electromagnetic perturbations are of interest due to the AdS / CFT conjecture since
they can be seen as perturbations for some generic supergravity gauge field. In addition,
the Maxwell field is an important field with different features from scalar or gravitational
fields, which makes it worth studying. On the other hand, gravitational perturbations have
the additional interest of arising from any other type of perturbation, be it scalar, electro-
magnetic, Weyl, etc., which in turn disturb the background geometry. Therefore, questions
like the stability of space-time for scalar or other perturbations, have a direct dependence
on the stability to gravitational perturbations.

Classical general relativity in more than four space-time dimensions has been the subject
of increasing attention in recent years. Among the reasons why it should be interesting to
study this extension of Einstein’s theory, and particular its black hole solutions, we may
mention that

• String theory contains gravity and requires more than four dimensions [4].

• The AdS / CFT correspondence relates the properties of a d - dimensional black hole
with those of a quantum field theory in d− 1 dimensions [18].

• The production of higher dimensional black holes in future colliders becomes a conceiv-
able possibility in scenarios involving large extra dimensions and TeV scale gravity [55].

Just as the study of quantum field theories with a field content very different than any
conceivable extension of the Standard Model has been a very useful endeavor throwing light
on general features of quantum fields, we believe that endowing General Relativity with a
tunable parameter, namely the space-time dimensionality d, should also lead to valuable
insights into the nature of the theory, in particular of its most basic objects: the black holes.
For instance, four dimensional black holes are known to possess a number of remarkable
features, such as uniqueness, spherical topology, dynamical stability, and the laws of black
hole mechanics. One would like to know which of these are peculiar to four dimensions, and
which hold more generally. At the very least, this study will lead to a deeper understanding
of classical black holes and of what space-time can do at its most extreme.
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Appendix A

The Penrose Process

The Penrose mechanism is a process theorized by Roger Penrose [56] wherein energy can be
extracted from a rotating black hole. That extraction is made possible because the rotational
energy of the black hole is located, not inside the event horizon of the the black hole, but
on the outside of it in a region of the the Kerr space-time called the ergosphere, a region in
which a particle moves concurrently with the rotating space-time. In the process, an object
enters into the ergosphere of the black hole, and once it enters the ergosphere, it is split into
two. The momentum of the two pieces can be arranged so that one piece escapes to infinity,
whilst the other falls past the outer event horizon into the hole. The escaping piece can
possibly have greater mass-energy than the original in-falling piece of matter, whereas the
in-falling piece has negative mass-energy. In summary, the process results in a decrease in
the angular momentum of the black hole, and that reduction corresponds to a transference
of energy whereby the momentum lost is converted to energy extracted.

A mathematical description on how this mechanism is possible for a scalar particle is
given below.

In the interest of determining the overall effect a Kerr black hole has on a scalar particle,
it is convenient to change equation (2.38) to Tortoise coordinates using relationship (5.2).
The result of which is[

d2

dx2
+

2r∆

(r2 + a2)2

d

dx
+

(
ω2 − 4Mamωr −m2a2 + ∆A

(r2 + a2)2

)]
R(x) = 0. (A.1)

The overall effect can be understood by looking at the two limits of the scalar particle’s
position from the black hole:

1. Equation (A.1) can be re-written as[
d2

dx2
+

2

r
·

1 + a2

r2
− 2M

r

(1 + a2

r2
)2

d

dx
+

(
ω2 − 1

r2
·

4Mamω
r
− m2a2

r2
+ (1 + a2

r2
− 2M

r
)A

(1 + a2

r2
)2

)]
R(x) = 0.

When the particle is very far away from the black hole, i.e, r →∞, dx can be exchanged
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with dr and all the terms that are greater than O(1
r
) can be eliminated, leaving[

d2

dr2
+

2

r

d

dx
+ ω2

]
R(r) = 0.

This is the differential equation for a spherical wave and has the solution

R(r) =
1

r
(Aeiωr +Be−iωr),

where A and B are the coefficients of the outgoing and incoming waves, respectively.

2. Using the definition (2.9), equation (A.1) can be re-written as[
d2

dx2
+

2r∆

(∆ + 2Mr)2

d

dx
+

(
ω2 − 4Mamωr −m2a2 + ∆A

(∆ + 2Mr)2

)]
R(x) = 0.

When the particle is close to the outer horizon of the black hole, i.e., r → r+ or ∆→ 0,
the above equation simplifies to[

d2

dx2
+ (ω′)2

]
R(x) = 0,

where
ω′

m
=
ω

m
− a

2Mr+

.

This is the differential equation of a simple wave and has the solution

R(x) = Feiω
′x +Ge−iω

′x, (A.2)

where F and G are the coefficients of the outgoing and incoming waves, respectively.

The wave equivalent of the Penrose Process is known as superradiance. The super radiant
modes are given by ω′.

The Stress-Energy tensor is just a convenient physical quantity that describes the density
flux of energy and momentum in space-time, for a particular set of equations. In the case of
a scalar field, the components of the tensor are given by

Tµν =
1

2
Ψ ∗(,µ Ψ,ν) + gµν |Ψ ∗,σ Ψ,σ|.

The radial power increase of the rotating black hole is given by

dEr

dt
=

∫
A

Ttrg
rr
√
−gdθdφ,

where Ttr is the component of the Stress-Energy tensor that has to do with the power flux
in the radial direction and in this case is given by

Ttr =
1

2
Ψ ∗(,t Ψ,r). (A.3)
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Using equation (2.34), with equation (A.2), in equation (A.3) yields

Ttr = − 1

4π
ωω′

(
r2 + a2

∆

)
(|F |2 − |G|2)|S|2,

where |F |2, |G|2 and |S|2 are all positive definite constants. The final expression for the
radial increase of the rotating black hole is given by

dEr

dt
= − 1

4π
ωω′(r2 + a2)(|F |2 − |G|2)

∫
A

|S|2dΩ, (A.4)

where dΩ = sin θdθdφ. Since the initial parameters of the rotating black are not set by the
observer, it is only possible to obtain a spectrum of results by changing the parameters of
the initial scalar particle. So by limiting equation (A.4) to only the incoming wave, i.e.,
setting F = 0, and evaluating at the outer horizon, it simplifies to

dEr

dt
=

1

4π
ωω′(2Mr+)|G|2

∫
A

|S|2dΩ. (A.5)

For power to flow out of the black hole, it is necessary to have

dEr

dt
< 0,

and since all the constants in (A.5) are positive (definite), including the area integral of |S|2,
it is required that

ωω′ < 0.

Since ω > 0, we must have ω′ < 0 or

0 <
ω

m
<

a

2Mr+

.

Therefore, in order for a scalar particle to extract energy from a a rotating black hole, it
is necessary for its ratio of the angular frequency to it’s angular number of the scalar particle
is less than the angular frequency of the rotating black hole’s outer horizon.

According to Unruth [57], while superradiance is possible for scalar, electromagnetic and
gravitational fields, it is not possible for sermonic fields.
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Appendix B

Sixth Order WKB(J) Corrections

Here we shall follow the designations: Q0 means the value of the “potential” at its peak, i.e.,
when x, the tortoise coordinate is equal to x0. So Qk

j is the kth power of the jth derivate
with respect to x of Q.

The fourth through sixth corrections to the WKB(J) approximation are given below.

Λ4 =
1

597196800
√

2Q7
2

√
Q2

(2536975Q6
3 − 9886275Q2Q

4
3Q4 + 5319720Q2

2Q
3
3Q5

− 225Q2
2Q

2
3(−40261Q2

4 + 9688Q2Q6) + 3240Q3
2Q3(−1889Q4Q5 + 220Q2Q7)

− 729Q3
2(1425Q3

4 − 1400Q2Q4Q6 + 8Q2(−123Q2
5 + 25Q2Q8)))

+
(n+ 1

2
)2

4976640
√

2Q7
2

√
Q2

(348425Q6
3 − 1199925Q2Q

4
3Q4 + 57276Q2

2Q
3
3Q5

− 45Q2
2Q

2
3(−20671Q2

4 + 4552Q2Q6) + 1980Q3
2Q3(−489Q4Q5 + 52Q2Q7)

− 27Q3
2(2845Q3

4 − 2360Q2Q4Q6 + 56Q2(−31Q2
5 + 5Q2Q8)))

+
(n+ 1

2
)4
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√

2Q7
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Q2
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3 − 581625Q2Q

4
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2Q
3
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Appendix C

Additional Results

Included in this appendix are the tabulated QNM frequencies for both the scalar and spin-
half perturbations of the four dimensional Kerr black hole, when the angular momentum per
unit mass has values of a = 0.20, a = 0.40 and a = 0.60.

Table C.1: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr
Black Hole, when a = 0.20.

l n Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1050 - 0.1144i 0.1108 - 0.1004i 0.1106 - 0.1042i
(0.18% , 3.78%)

1 0 0.2918 - 0.0976i 0.2936 - 0.0974i 0.2936 - 0.0973i
(<0.01% , 0.10%)

1 0.2633 - 0.3060i 0.2657 - 0.3052i 0.2657 - 0.3049i
(<0.01% , 0.10%)

2 0 0.4843 - 0.0964i 0.4847 - 0.0964i 0.4847 - 0.0964i
(<0.01% , <0.01%)

1 0.4646 - 0.2946i 0.4653 - 0.2944i 0.4653 - 0.2944i
(<0.01% , <0.01%)

2 0.4335 - 0.5013i 0.4324 - 0.5064i 0.4326 - 0.5062i
(0.05% , 0.04%)

3 0 0.6767 - 0.0961i 0.6769 - 0.0961i 0.6769 - 0.0961i
(<0.01% , <0.01%)

1 0.6622 - 0.2912i 0.6624 - 0.2911i 0.6624 - 0.2911i
(<0.01% , <0.01%)

2 0.6370 - 0.4921i 0.6359 - 0.4939i 0.6359 - 0.4939i
(<0.01% , <0.01%)

3 0.6048 - 0.6981i 0.6013 - 0.7082i 0.6016 - 0.7080i
(0.05% , 0.03%)
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Table C.2: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr
Black Hole, when a = 0.40.

l n Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1055 - 0.1120i 0.1118 - 0.0994i 0.1115 - 0.1026i
(0.27% , 0.21%)

1 0 0.2939 - 0.0962i 0.2957 - 0.0962i 0.2958 - 0.0960i
(0.03% , 0.21%)

1 0.2664 - 0.3015i 0.2692 - 0.3008i 0.2691 - 0.3004i
(0.04% , 0.13%)

2 0 0.4877 - 0.0952i 0.4882 - 0.0952i 0.4882 - 0.0952i
(<0.01% , <0.01%)

1 0.4689 - 0.2907i 0.4697 - 0.2905i 0.4697 - 0.2905i
(<0.01% , <0.01%)

2 0.4391 - 0.4944i 0.4384 - 0.4990i 0.4386 - 0.4988i
(0.05% , 0.04%)

3 0 0.6815 - 0.0950i 0.6817 - 0.0950i 0.6817 - 0.0950i
(<0.01% , <0.01%)

1 0.6676 - 0.2875i 0.6679 - 0.2874i 0.6679 - 0.2874i
(<0.01% , <0.01%)

2 0.6435 - 0.4856i 0.6427 - 0.4872i 0.6427 - 0.4872i
(<0.01% , <0.01%)

3 0.6128 - 0.6887i 0.6098 - 0.6978i 0.6101 - 0.6976i
(0.05% , 0.03%)
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Table C.3: The Quasinormal Mode Frequencies for the Scalar Perturbations of the Kerr
Black Hole, when a = 0.60.

l n Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1049 - 0.1074i 0.1149 - 0.0960i 0.1129 - 0.0996i
(1.74% , 0.63%)

1 0 0.2975 - 0.0937i 0.2995 - 0.0938i 0.2995 - 0.0936i
(<0.01% , 0.21%)

1 0.2711 - 0.2929i 0.2751 - 0.2920i 0.2749 - 0.2916i
(0.07% , 0.14%)

2 0 0.4938 - 0.0929i 0.4943 - 0.0929i 0.4943 - 0.0929i
(<0.01% , <0.01%)

1 0.4762 - 0.2831i 0.4774 - 0.2830i 0.4774 - 0.2829i
(<0.01% , 0.04%)

2 0.4480 - 0.4811i 0.4485 - 0.4845i 0.4485 - 0.4843i
(0.05% , 0.04%)

3 0 0.6900 - 0.0926i 0.6902 - 0.0926i 0.6902 - 0.0926i
(<0.01% , <0.01%)

1 0.6772 - 0.2803i 0.6777 - 0.2802i 0.6777 - 0.2802i
(<0.01% , <0.01%)

2 0.6547 - 0.4730i 0.6544 - 0.4742i 0.6544 - 0.4742i
(<0.01% , <0.01%)

3 0.6258 - 0.6704i 0.6239 - 0.6776i 0.6240 - 0.6774i
(0.02% , 0.03%)
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Table C.4: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when a = 0.20.

l n Numerical Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1836 - 0.0967i 0.1773 - 0.0997i 0.1837 - 0.0942i 0.1835 - 0.0965i
(3.43% , 3.10%) (0.05% , 2.59%) (0.05% , 0.21%)

1 0 0.3811 - 0.0961i 0.3796 - 0.0962i 0.3810 - 0.0960i 0.3809 - 0.0960i
(0.39% , 0.10%) (0.03% , 0.10%) (0.05% , 0.10%)

1 0.3572 - 0.2964i 0.3550 - 0.2974i 0.3572 - 0.2969i 0.3583 - 0.2962i
(0.62% , 0.34%) (<0.01% , 0.17%) (0.31% , 0.07%)

2 0 0.5750 - 0.0960i 0.5754 - 0.0959i 0.5754 - 0.0959i
(<0.01% , <0.01%)

1 0.5578 - 0.2918i 0.5586 - 0.2915i 0.5589 - 0.2916i
(0.05% , 0.03%)

2 0.5294 - 0.4951i 0.5287 - 0.4975i

3 0 0.7689 - 0.0959i 0.7691 - 0.0950i 0.7691 - 0.0959i
(<0.01% , 0.95%)

1 0.7559 - 0.2899i 0.7563 - 0.2898i 0.7563 - 0.2899i
(<0.01% , 0.03%)

2 0.7328 - 0.4889i 0.7321 - 0.4899i 0.7289 - 0.4910i
(0.44% , 0.22%)

3 0.7028 - 0.6928i 0.6997 - 0.6993i
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Table C.5: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when a = 0.40.

l n Numerical Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1854 - 0.0956i 0.1798 - 0.0982i 0.1844 - 0.0932i 0.1851 - 0.0951i
(3.02% , 2.72%) (0.54% , 2.51%) (0.16% , 0.52%)

1 0 0.3843 - 0.0951i 0.3825 - 0.0949i 0.3838 - 0.0948i 0.3837 - 0.0948i
(0.47% , 0.21%) (0.13% , 0.32%) (0.16% , 0.32%)

1 0.3614 - 0.2930i 0.3592 - 0.2931i 0.3612 - 0.2918i 0.3630 - 0.2916i
(0.61% , 0.03%) (0.06% , 0.41%) (0.44% , 0.48%)

2 0 0.5791 - 0.0948i 0.5795 - 0.0947i 0.5795 - 0.0947i
(<0.01% , <0.01%)

1 0.5628 - 0.2880i 0.5636 - 0.2878i 0.5640 - 0.2877i
(0.07% , 0.03%)

2 0.5357 - 0.4883i 0.5352 - 0.4905i 0.5472 - 0.5204i
(2.24% , 6.10%)

3 0 0.7744 - 0.0947i 0.7745 - 0.0947i 0.7745 - 0.0947i
(<0.01% , <0.01%)

1 0.7620 - 0.2862i 0.7624 - 0.2862i 0.7625 - 0.2862i
(0.01% , <0.01%)

2 0.7400 - 0.4825i 0.7395 - 0.4834i 0.7358 - 0.4858i
(0.50% , 0.50%)

3 0.7114 - 0.6835i 0.7086 - 0.6893i
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Table C.6: The Quasinormal Mode Frequencies for the Spin-Half Perturbations of the Kerr
Black Hole, when a = 0.60.

l n Numerical Third Order WKB(J) Sixth Order WKB(J) AIM

0 0 0.1885 - 0.0934i 0.1838 - 0.0953i 0.1870 - 0.0909i 0.1879 - 0.0925i
(2.49% , 2.03%) (0.80% , 2.68%) (0.32% , 0.96%)

1 0 0.3901 - 0.0931i 0.3877 - 0.0925i 0.3888 - 0.0924i 0.3888 - 0.0924i
(0.62% , 0.64%) (0.33% , 0.75%) (0.33% , 0.75%)

1 0.3687 - 0.2861i 0.3662 - 0.2849i 0.3682 - 0.2837i 0.3714 - 0.2811i
(0.68% , 0.42%) (0.13% , 0.84%) (0.73% , 1.75%)

2 0 0.5866 - 0.0924i 0.5869 - 0.0924i 0.5869 - 0.0924i
(<0.01% , <0.01%)

1 0.5715 - 0.2806i 0.5724 - 0.2804i 0.5730 - 0.2798i
(0.10% , 0.21%)

2 0.5463 - 0.4751i 0.5462 - 0.4768i

3 0 0.7842 - 0.0924i 0.7844 - 0.0924i 0.7844 - 0.0924i
(<0.01% , <0.01%)

1 0.7728 - 0.2791i 0.7732 - 0.2790i 0.7734 - 0.2790i
(0.03% , <0.01%)

2 0.7524 - 0.4700i 0.7522 - 0.4707i 0.7493 - 0.4775i
(0.39% , 1.44%)

3 0.7257 - 0.6652i 0.7237 - 0.6700i
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