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Abstract 

Mining activities are well known for their negative effects on the environment and 

animals, due to the deposition of large volume of wastes in the form of tailings on 

the soil. These wastes or tailings contain high levels of heavy metals, sulphides 

and cyanide. Heavy metals are one of the most persistent pollutants in the 

environment and have been shown to bioaccumulate in animals. The purpose of 

this investigation was to evaluate the impact of mine tailings on the snouted 

harvester termite, Trinervitermes trinervoides, inhabiting the Vaal River region. 

These termites play a significant role in the food chain as they provide a protein- 

and energy-rich food source to numerous predators therefore any bioaccumulation 

of heavy metals may adversely impact the food chain. Three aspects of the termite 

biology was studied, namely, the density and distribution of the termite mounds, 

the temperature profile of the mounds and the heavy metal content of the termites, 

mounds and surrounding soil. Three sites were chosen in accordance to their 

position relative to a tailings dam with the furthest site being the Control site. The 

most contaminated site and site closest to the tailings dam (AEL site) had the 

highest termite mound density, followed by the least contaminated site (Control 

site) and then the intermediately contaminated site (West Complex). The AEL site 

had many incipient mounds but few large mounds indicating that although there 

was a high turnover of new mounds, the longevity of these mounds was low. 

Higher densities at the AEL site may be explained by the water table being closer 

to the surface as a result of the tailings dam, allowing the termites easier access to 

water and hence a more favourable environment within the mound. The centre 

temperatures of the mounds at all three sites were kept constant on a monthly 

basis but fluctuated on a seasonal basis. The West Complex site had the highest 

and most variable centre mound temperatures. The average heavy metal content of 

the surface layer did not differ significantly from the average heavy metal content 

of the mounds at the AEL and West Complex site, indicating that the termites are 

not making heavy metals more bioavailable to the environment. The termites at 

the AEL site had the highest levels of Cu and Zn out of all the sites and 
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accumulated these metals to levels toxic to mammals. Alates (a major food source 

for many animals) however, did not accumulate any heavy metals therefore it is 

unlikely the food chain is being negatively impacted by the termites. From this 

study there is no indication that the snouted harvester termite density or behaviour 

are being impacted by the tailings dams. 
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CHAPTER 1 – GENERAL INTRODUCTION 

 

1.1.  Introduction 

 

South Africa is considered a treasure trove because the country boasts an 

abundance of mineral resources, producing and owning a significant proportion of 

the world’s minerals (Winde and van der Walt, 2004). Among minerals such as 

platinum, manganese and chrome; gold is one of South Africa’s most 

economically important minerals and has played a significant role in the economic 

development of the country over the past 120 years (Richardson and van Helten, 

1984). Almost 50 % of the world’s gold reserves are found in South Africa, 

rendering it the largest gold producer of the world (Rosner and van Schalkwyk, 

2000). The most prominent and largest gold mining company in South Africa is 

the Anglogold Ashanti Mining Company. It is the third largest gold mining 

company in the world boasting 21 operations that produce some 6 million ounces 

of gold combined each year (AngloGold Ashanti, 2006a). Headquartered in 

Johannesburg, the South African operations are comprised of seven underground 

mines along the Witwatersrand Basin, four of which are located in the Vaal River 

and three in the West Wits region (AngloGold Ashanti, 2006a).   

 

AngloGold Ashanti South Africa owes its prolific and efficient gold production to 

the gold cyanidation process. This process involves the crushing of the ore into a 

fine powder and subsequently a dilute cyanide solution is percolated through it, 

leaching out the gold from the slurry. The gold is completely extracted using the 

“carbon-in-pulp” process (Naicker et al., 2003). Gold is not the only element 

extracted from the slurry and sold commercially; three of the four Vaal river 

mines extract large amounts of uranium as a by-product of gold mining operations 

owing to the much higher ratio of uranium to gold in the ore. Uranium is leached 

with sulphuric acid, instead of cyanide (AngloGold Ashanti, 2005). 
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Each mine in the AngloGold Ashanti Vaal river region is equipped with a tailing 

storage facility (TSF) to store all the waste generated by the mining and 

processing operations. All the wastes (tailings) are transported via tailing pipes 

that stretch over several kilometres to designated TSF’s situated in specific 

locations (Figures 1.1 & 1.2). Once the tailings have been stored in the TSF, it is 

common practise to add water, creating a tailings dam that allows for 

sedimentation of the solid particles from the refuse material (Figure 1.3, Van 

Niekerk and Viljoen, 2005). One of the largest tailings dams of the region is 32 

metres in height, currently holding 22 million tonnes of tailings and is expected to 

increase to 60 metres over its remaining lifespan of 12 years (AngloGold Ashanti, 

2007a). All the tailings dams are unlined, uncovered and almost all are 

unvegetated as most plants cannot withstand the tailing substrate. Tailings consist 

mainly of waste rock of the mined ore that contains large quantities of heavy 

metals such as cadmium, arsenic, copper, manganese, lead and zinc and 

unprocessed uranium. Other substances present include sulphides and cyanide, 

from the gold cyanidation process (Wonga et al., 1999).  
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Figure 1.1. The Tailing Storage Facilities (yellow blocks) and associated tailing 

pipes (red lines) found in the AngloGold Ashanti Vaal river region (AngloGold 

Ashanti, 2007a). 
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Figure 1.2. Photograph of a typical tailings storage facility (or tailings dam) 

(AngloGold Ashanti, 2007a). 

 

 

 

Figure 1.3. A diagrammatic representation of a typical gold-tailings dam (not to 

scale) taken from Van Niekerk and Viljoen (2005). 
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Most of the substances present in tailings are extremely toxic and pose a major 

threat to the environment. Sulphides found in tailings weather and dissolve to 

form an acid discharge also known as acid mine drainage, which is a major 

environmental issue in South Africa (Naicker et al., 2003). This acid discharge 

reacts with the tailings to solubilise heavy metals and ultimately produce more 

contaminants. There are numerous reported cases in which acid mine drainage has 

caused serious environmental problems in South Africa, particularly when ground 

and surface waters are involved. For instance, in 2003, acid mine drainage from 

an active gold mine in the Witwatersrand region, heavily contaminated and 

acidified the surrounding ground and surface waters of the mining district which 

in turn contaminated water 10 km beyond the source of pollution (Naicker et al., 

2003).  

 

The production of millions of tonnes of tailings as a result of gold mining is 

unavoidable. For every tonne of gold produced 200 000 tonnes of waste is 

generated and deposited into a tailing storage facility (Rosner and van Schalkwyk, 

2000). This is a colossal amount when one considers that the Vaal river operations 

produce approximately 35 tonnes of gold per annum (AngloGold Ashanti, 2007a). 

In 2007, 14 tailing spillages occurred in the Vaal river region, causing consequent 

environmental damage, soil degradation and water pollution that is still, in some 

cases, evident some two years later (AngloGold Ashanti 2007b). It is therefore of 

outmost importance that these tailings are monitored, contained and managed 

properly to ensure that these damaging tailing spillages occur as infrequently as 

possible.  

 

Cyanide is hypertoxic to humans and many other living creatures. It is quickly 

absorbed and distributed throughout the body of vertebrates where it acts rapidly 

as an asphyxiant, causing hypoxia of cells (Bhattacharya and Flora, 2009). 

Although cyanide reacts readily in the environment and degrades or forms 

complexes and salts of varying stabilities, it is still toxic to many living organisms 

at low concentrations, making it a hazardous contaminant (Way et al., 1988; 

Wonga, 1999; Macklin et al., 2003; Ritcey, 2005; Donato et al., 2007). Numerous 
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studies have illustrated the devastating effects cyanide on the environment. For 

example, in 1995, a goldmine tailings dam collapsed in the Yining County of 

XinJiang Region of China and the surrounding farmlands and rivers were 

seriously polluted by cyanide (Shehong et al., 2005). Shehong et al. (2005) 

showed that some four years after the collapse, the polluted farmland soils were 

still highly enriched with cyanide and in some cases, showed a concentration 

higher than that of the fresh tailing products. 

 

When dealing with the environmental impact of uranium, two important 

properties of the element need to be taken into consideration; it is both a 

radioactive and a chemical toxin. Uranium as a toxic metal, along with other 

metals such as cadmium and zinc, negatively impacts the quality of the 

environment, affecting mainly soils and surface and ground waters while 

simultaneously polluting great areas of lands and endangering the catchments of 

available drinking water (Keith et al., 2000). The radioactive properties of 

uranium dramatically increase its potential to negatively impact the environment 

as it produces decay products that, in themselves, are highly toxic (Gavrilescu et 

al., 2009).  

 

A central concern when dealing with the environmental impact of tailing dams is 

the introduction of heavy metals, sulphides, cyanide and uranium into the food 

chain. According to Solomon et al. (2005), the degrees of impact of these 

contaminants are the result of three characteristics; their persistence, 

bioaccumulation and biomagnification. Contaminants that are classified as 

persistent are extremely stable and may take many years to be broken down into 

simpler forms by natural processes. Bioaccumulation and biomagnification are 

sometimes used interchangeably however, an important distinction is drawn 

between the two. Bioaccumulation refers to the accumulation of or increase in 

concentration of a persistent substance (i.e. contaminants) in an organism within a 

trophic level; whereas biomagnification pertains to the accumulation of the 

substance as it passes through successive levels of the food chain (Solomon et al., 

2005). Therefore, organisms at higher trophic levels in the food chain tend to store 



 

7 

 

greater concentrations of bioaccumulated contaminants in their bodies than do 

those at lower levels. If the contaminants released from the Vaal River tailing 

dams are persistent and tend to bioaccumulate (hence biomagnify), the resultant 

scenario could, on a smaller scale, resemble the DDT calamity that began in the 

1940’s (Turusov et al., 2002). 

 

It is well known that mine contaminants, particularly heavy metals, can 

accumulate in both invertebrates such as snails and insects and a variety of plants 

(O’Shea et al., 2001; Yanqun et al., 2004; Liu et al., 2006; Ping et al., 2009; Li et 

al., 2010). Ping et al. (2009) found that plant-eating insects provided important 

links in transferring pollutants to their predators resulting in biomagnification as 

pollutant levels were highest in the predators. Due to the potential for hazardous 

and persistent mine wastes to bioaccumulate and biomagnify in the environment 

surrounding the tailings, it is considerably important to engage in methods that 

allow for the monitoring of such wastes. Such methods could involve an in-depth 

analysis and sampling of prominent organism/s found in the food chain inhabiting 

the environment surrounding the tailings.  

  

AngloGold Ashanti acknowledges the need to work in an environmentally 

responsible way by incorporating sound environmental management practises in 

its everyday operations (AngloGold Ashanti, 2006b). In fact, the company 

conducted an enormous environmental impact assessment of all its mining 

operations in South Africa. This involved the determination of soil types and plant 

and animal biodiversity at applicable regions as well as a rating system that 

accorded to activities that may detrimentally affect biodiversity and the 

environmental profile at “demarcated biodiversity management units” 

(AngloGold Ashanti, 2006b). In order to implement these tasks, the company has 

to examine how the contaminants, released during their operations, impact and 

interact with the natural environment.  
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Of all the animals inhabiting the Vaal river region, the most obvious are the 

termites. One cannot travel more than 5 km without seeing a landscape speckled 

with dome-shaped termite mounds. These mounds are part of the nests of the 

snouted harvester termite, Trinervitermes trinervoides, a ubiquitous grass 

harvesting termite found throughout southern Africa (Uys, 2002). These termites 

play a significant role in the food chain as they provide a protein- and energy-rich 

food source to numerous predators. These include small rodents, mongooses, 

aardwolves, aardvarks, reptiles, birds and various invertebrates (Dean and 

Siegfried, 1991; Richardson and Levitan, 1994; Haddad and Dippenaar-

Schoeman, 2002).  The predators that are adapted to feed exclusively on termites 

(i.e. aardvarks and aardwolves) are at a particular risk due to the large volumes of 

termites they consume each day. An aardwolf has been known to eat more than 

300 000 termites in a day (Richardson and Levitan, 1994). Snouted harvester 

termite alates (flying termites) offer an easily obtainable food source to many 

flying animals as well as ground dwelling animals after the shedding of their 

wings (Abe et al., 2000).  

 

Although there are no published data regarding the impacts of mine tailings on 

termites and in turn their impact on the food chain, it has been shown that 

bioaccumulation of mining contaminants such as uranium and heavy metals (i.e. 

Pb, Cd, Cu and Zn) does take place in various insect species (Hull Sieg et al., 

1987; O’Shea et al., 2001; Gongalsky, 2006; Ping et al., 2009). O’Shea et al. 

(2001) concluded that numerous bat predators died as a direct result of feeding on 

insects that accumulated toxic elements in streams with mine drainages. One may 

surmise that if the soil were contaminated with persistent substances, the snouted 

harvester termite may be absorbing the substances from the soil and may play an 

indirect role in negatively impacting those animals that consume them. 

Trinervitermes trinervoides is a grass harvester termite therefore the may also 

bioaccumulate contaminants via the intake contaminated plant material. However 

this is unlikely as according to Weiersbye (personal communication), grasses do 

not bioaccumulate contaminants. Provided the type and level of contaminants are 

sufficient, consuming toxic termites may even lead to the animal’s death. There 
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are no published data on the accumulation of harmful chemicals in termites. 

However, Gongalsky (2006) has showed that other soil-dwelling invertebrates 

such as saprophagous tenebrionid beetles accumulated concentrations of uranium 

that were 12 times higher than those found in the control site.  

 

Snouted harvester termites form a vital part of the ecology of certain arthropod 

families, as they not only provide a source of nutrition but also shelter in the form 

of their abandoned mounds. Haddad and Dippenaar-Schoeman (2002) collected a 

total of 771 spiders represented by 21 families and 82 species from 30 abandoned  

T. trinervoides mounds and concluded that the symbiotic association between 

spider and termite is essential as part of the spiders ecology. Reptilian species 

have also been known to inhabit T. trinervoides mounds (B. Maritz, personal 

communication). Thus animals using termitaria as a refuge could be susceptible to 

contamination as the mound interior may be laden with contaminated faeces. 

 

Trinervitermes trinervoides has an intimate association with their surrounding soil 

environment as the termites spend most of their lives in mounds built from the 

surrounding soil. They are considered as an epigeous mound building species, 

meaning they build mounds that subtend subterranean nests that extend up to half 

a metre into the soil (Adam, 1993). With such a strong association coupled with 

high population densities, the mound building termites (unlike most other soil 

animals), exert a significant influence on soil properties and processes. The 

influence the termites have on soil physico-chemistry, has in some instances, 

dramatically altered both plant and animal communities and their interactions. It is 

therefore apt that they have been named “the engineers of ecosystems” 

(Dangerfield et al., 1998).  

 

The fact that mound building termite activities alter soil profiles and properties 

would have important implications regarding the dispersion of potential 

contaminants found in the soil. Firstly, there is the consideration that they may be 

bringing up contaminated subsoil (subsoil is contaminated by leaching from rain) 

to the surface, exposing flora and fauna that would have otherwise been shielded 
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by top layers of uncontaminated soil. This phenomenon has been exploited by 

various central African communities as termites act as “nature’s little miners”, 

bringing valuable minerals such as gold and diamonds to the surface (Prasad et 

al., 1987).  Secondly, the repacking and cementing of soil particles during mound 

and nest building usually results in a higher bulk density and reduced porosity of 

the soil (Dangerfield et al., 1998). This in turn may affect the solubility of the 

contaminants; making them potentially more hazardous and bioavailable to the 

environment. 

 

Mound building species such as T. trinervoides need to be studied to establish 

possible presence of contaminants in their mounds. Assessing the potential 

contaminant-related impacts on T. trinervoides biology, will not only provide 

insight as to how the termites respond to a contaminated environment and impact 

the food chain but the responses of the termites will also provide information on 

their effectiveness as bioindicators or biomonitors of contamination in the 

environment. A bioindicator is defined as an organism whose function, population 

or status can be used to monitor the health of an environment (Markert, 2007). 

Using the termite colonies as potential bioindicators will be especially useful 

during minesite rehabilitation as they provide a way to test the effectiveness of 

restoration treatments (Alexandra and de Bruyn, 1997; Andres and Mateos, 2006). 

All mining operations eventually cease therefore the occupation of the tailing 

dams in the Vaal river region is temporary. The company is charged with the 

responsibility of rehabilitating any land disturbed or occupied by its operations in 

accordance with appropriate post-mining land uses (AngloGold Ashanti, 2008). 

Although there is limited literature available on the use of termites as 

bioindicators, other soil macrofauna such as ants and earthworms have been used 

successfully (Majer, 1983; Alexandra and de Bruyn, 1997; Veiga et al., 1999; 

Andres and Mateos, 2006). 
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1.2. Aim and objectives 

 

The aim of the project was to investigate the impact of a mine tailings dam 

(produced by AngloGold Ashanti Vaal River mining operations) on the snouted 

harvester termite, T. trinervoides, biology. These termites occurred on land that is 

known to be contaminated by plumes radiating from tailing storage facilities 

(tailing dams).  

 

This study compared the physical, chemical and physiological aspects of the 

snouted harvester termites and their environment between two contaminated sites 

and one less contaminated site. The following aspects were investigated: 

 

• the distribution and density of the mounds 

•  “mound status” i.e. are the mounds uninhabited or inhabited by termites 

• the dimensions of the mounds to assess age 

• the temperature profiles of the mounds 

•  the chemical constituents of the mound; the termites and the soil 

surrounding the mounds 

• using T.  trinervoides as a potential bioindicator of contamination 

 

The distribution, density, dimension, “mound status” and temperature of the 

mounds allowed me to determine the impacts (if any) of nearby tailing storage 

facilities on the termite colonies. Dimension of the mounds gave a rough estimate 

of their age, a technique adopted by Korb and Linsenmair (1999) during their 

study of Macrotermes michaelseni. Determining age of the mounds at each site 

indicated population turnover, i.e. whether the older mounds were successful in 

producing alates that are responsible for starting new colonies (hence new 

mounds) as well as the survivability of the new mounds formed. Knowing the 

chemical constituents of the termites allowed me to ascertain whether 

bioaccumulation is taking place.  
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The temperatures found within the mounds may also provide clues into possible 

impact of contaminated soils. The mounds of the T. trinervoides have been shown 

to keep temperatures within narrow limits of known temperatures at particular 

times of the year; therefore obtaining a nest temperature profile might provide 

insight into any disturbances caused by contamination (Field, 2008). For instance, 

if the temperatures within the nest are hotter or fluctuate more than usual, this will 

indicate the environment (once other explanatory factors have been ruled out) is 

causing abnormalities within the thermoregulatory mechanisms of the colony 

studied. In addition, a change in temperatures could lead to problems regarding 

the colony’s survival as reproduction is highly dependent on temperature and 

hence temperature regulation (Jones and Oldroyd, 2007). 

 

The investigation of the impact of mine tailings on the density and distribution of 

the termite mounds at the three sites are addressed in Chapter 2. The impact of 

mine tailings on the temperature profiles of the mounds are dealt with in Chapter 

3.  Chapter 4 describes an investigation into the chemical constituents of the 

mounds, the termites and soil surrounding the mounds. Chapter 5 is a general 

discussion of the entire dissertation and addresses whether T. trinervoides can be 

used as an effective bioindicator.     

 

It is expected that the control site will have the highest termite density due to a 

more favourable environment when compared to the other sites. The control site is 

also expected to have the most constant temperatures in the centre of the mounds. 

 

1.3. Study area 

 

The study was conducted at three study sites located near the town of Orkney 

(26°58’50.92” S, 26°40’27.91”E) in the North-West province, South Africa. Two 

of the sites called West Complex and AEL were situated in the AngloGold 

Ashanti Vaal River complex. This Vaal River complex is comprised of four gold 

plants, one uranium plant and one sulphuric acid plant, each equipped with tailing 
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storage facilities (or tailings dams). These experimental sites were selected based 

on their proximity to the tailings dams and the contamination plumes emitted by 

them (Figures 1.4 & 1.5). The West Complex site was situated on the border of a 

contamination plume and 1 200 m away from the nearest tailing storage facility 

while the AEL site was immersed in the plume and situated a mere 220 m from 

the nearest tailing storage facility. The control site was situated outside the 

complex on a field next to the town and was the furthest away from the 

contamination plume and tailing storage facilities. This was considered a site of 

low contamination. The control site could not be further from the mining activity 

as the soil type, vegetation and elevation needed to be the same at all three sites.  

 

All sites were on Hutton and Mispah soils characterised by low clay content, well 

drained and aerated profiles (Viljoen, 2006). The vegetation of each site was 

characterised as grassland and sparse woodland and all the mounds in the sites 

were located in open grassland away from trees (Mucina et al., 2005) (Figure 1.6). 

The underlying bedrock geology of the sites is comprised of sediments of 

dolomite which were close to the soil surface (AngloGold Ashanti, 2007a). 

Annual rainfall of the area is 300 – 500 mm and all sites resided on a flat area at 

approximately 1320 m above sea level (AngloGold Ashanti, 2007a). 

 

At each site, an area where there were termite mounds present was chosen and 

marked out. A 200 by 200 m area was plotted onto a Garmin GPS 60 device using 

MapSource version 6.10.2 (Garmin Ltd.). Using the GPS, the 200 by 200 m was 

paced out and steel droppers wrapped in danger tape were used to demarcate each 

corner. 
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Figure 1.4. The locations of the three study sites (white blocks) and the associated 

contamination plumes (blue lines) (GCS, 2007).   

 

Figure 1.5. The proximity of the tailing storage facilities (highlighted in yellow) to 

each study site (white blocks) (GCS, 2007). 

 

Control 

West Complex 

AEL 

Control 

West Complex 

AEL 



 

15 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. A termite mound at the AEL site. Note the cream-coloured tailings in 

the background. 

 

1.4. Study species  

 

The species Trinervitermes trinervoides (Sjostedt), a grass harvester termite that 

belongs to the subfamily Nasutitermitinae, were studied. Nasutitermitinae are 

characterised by the snout-like noses of the soldiers which allow for the secretion 

of a sticky odorous substance used in defence (Figure 1.7). Trinervitermes 

trinervoides is a widely distributed southern African species and is noted by its 

characteristic dome shaped mounds (Uys, 2002; Adam, 1993). In a typical 

snouted harvester termite colony there are different castes which perform different 

functions in the colony and reside in different parts of the nest (Abe et al., 2000). 

The soldier caste is charged with the defence of the colony whereas the workers 

build and maintain the mound as well as forage for grass. The worker termites 

emerge during the night from foraging ports and gather dry grass (mainly litter) 

which are carried back and stored in special compartments along the periphery of 

the mound. Adam et al. (2008) found that a foraging party emerging from a single 

hole harvested over an area of approximately 0.78 m2. In their study, foraging 
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ceased during June, July and August. The reproductive caste consists of the king 

and queen and the alates. Each colony has a single king and queen which reside in 

the nest usually found in the centre at the base of the mound. The alates are the 

flying termites that swarm each year and go on to found new colonies.         

 

 

 

 

 

 

 

 

 

Figure 1.7. Trinervitermes trinervoides soldiers 

 

The mounds built by T. trinervoides have a hard outer crust consisting of soil and 

a softer, moist interior that is made up of multiple tunnels (Figure 1.8; Uys, 2002). 

The interior consists of carton, a combination of termite faeces and soil. These 

structures are kept together by the cement-like properties of the worker termites’ 

saliva. Previous studies have found that most of the mound is subterranean where 

only a portion of it resides above the soil surface (Figure 1.8; Adam 1993; Abe et 

al., 2000; Uys, 2002). However, this was not the case with the T. trinervoides 

mounds found at the Melville Koppies Nature Reserve in Johannesburg. These 

mounds were surface mounds and did not extend into the soil (Field, 2008).  
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Figure 1.8. a profile of the mound (right) and nest (left) of the grass-harvester 

termite, T. trinervoides (Uys, 2002) 

   

It has been shown that the mounds of fungus cultivating termites are used to 

maintain a constant temperature of 30 °C throughout the year (Korb and 

Linsenmair 1999, 2000a). These thermoregulatory properties of termite mounds 

were shown to a lesser extent in T. trinervoides mounds where particular 

temperatures were kept within narrow limits at different times of the year rather 

than a particular temperature throughout the year (Field, 2008).  
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CHAPTER 2 – THE IMPACT OF MINE TAILINGS ON 

THE DENSITY AND DISTRIBUTION OF THE 

TERMITE MOUNDS 

 

2.1. Introduction  

 

Termite mounds often form a conspicuous part of a landscape therefore their 

abundance and ubiquity has been noted by many authors (Sands, 1965). Due to 

the fact that termite mounds can be easily seen and are sessile, their distribution 

and density can be easily determined. Although there have been many studies on 

the density and distribution of mounds there has been no agreement on which 

factors affect mound distribution and density. According to Lee and Wood (1971) 

the main factors involved are climate, vegetation and soil which interact in their 

effects on the distribution and density of termites so that it is difficult to determine 

which variable is the most important. Pomeroy (1977) found that density and 

distribution of large termite mounds in Uganda were not obviously correlated with 

soil, climate or vegetation as these were similar throughout his study sites. He did 

however agree that it is difficult to single out particular environmental factor/s 

that influences termite distribution and density. Ferrar (1982) looked at the termite 

densities of Cubitermes of two savanna areas at Nylsvley. He found that small 

patches of land had greater densities but there were also substantial areas of 

apparently similar savanna in which no Cubitermes mounds could be found. He 

stated that there were obviously localised differences that were critical to 

Cubitermes distribution in African savanna but the “nature of these differences 

has so far eluded the human observer” (Ferrar, 1982). 

  

Out of biotic factors such as food quality and quantity and intra- and interspecific 

competition for food, Korb and Linsenmair (2001) found that the most important 

determining factor of termite density and distribution was environmental 

temperature. Macrotermes bellicosus mounds occurred at markedly different 

densities in two thermally different habitats – the shrub savanna and the gallery 
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forest. Termite mound densities were much higher in the warmer shrub savanna 

than in the cooler gallery forest and mounds only occurred in the open stands of 

the forests and never in dense forest. These termites are well known for keeping 

their nest temperatures at 30 °C which is the optimal temperature for both fungus 

cultivating and growth and development of the termites therefore they restricted 

mound construction only to those areas that were thermally suitable.  San Jose et 

al. (1989) stressed the importance of moisture and humidity as a limiting factor of 

density and distribution. This was due to the fact that certain sites were not 

suitable for high termite numbers due to the temporary excess of water after heavy 

rains. To ensure the mounds avoided drowning, the mounds mainly occurred on 

ant hills and raised portions of large grass clumps. Picker et al. (2007) found that 

as the mean annual precipitation increased, the termite mound density increased. 

He suggested that this was because rainfall was positively correlated to vegetation 

cover, where more food can support higher densities of termites. Benzie (1986) 

determined termite mound densities of Trinervitermes geminatus and T. 

oeconomus in two habitats of the Guinea savanna. Although the analysis provided 

no evidence for a dominant role for any one environmental factor measured, grass 

composition did account for 12 % of the variation of densities of T. geminatus. 

This was confirmed by food preference tests where they found that T. geminatus 

preferred smaller finer grasses to tough resistant grasses. The habitat with the 

coarse resistant grass had lower densities of this termite when compared to 

habitats with finer grass. 

 

To date no studies have been conducted on the impact of mine tailings on termite 

mound density and distribution. The aim of this study was to quantify the density 

and distribution of T. trinervoides in the three study sites (Section 1.3) and 

ascertain if soil contamination affects mound distribution and density. The study 

also looked at the proportion of dead mounds to live mounds at the three sites, the 

density and distribution of four mound size classes and the density of mounds in 

relation to soil depth.  

 

 



 

20 

 

2.2. Methods and Materials 

 

2.2.1. Recording positions of mounds and calculating density 

Within each study site, the number of mounds was counted and the position of the 

mounds was recorded using a Garmin GPS 60 device. The study sites were 

divided into small sections which were incrementally increased, the first section 

was 50 m by 50 m then it was expanded to 100 by 100 m then to 150 m by 150 m 

and lastly 200 m by 200 m. Each of these sections was cordoned off using string 

attached to steel droppers. This technique ensured that all mounds were counted. 

The coordinates of each mound were downloaded into ArcMap 9.3.1 (ESRI Inc.) 

and a distribution map of every mound at each site was drawn. Density was 

calculated by dividing the number of mounds by the area of each site.  

 

2.2.2. Dead and live mounds 

The status of the mounds, i.e. whether a mound was dead or alive was noted. A 

hole was drilled into each mound using a masonry drill. If no termite activity was 

observed after 2 minutes, the mound was presumed dead.  

 

2.2.3. Dimensions of the mounds 

The circumference and height of each counted mound was measured using a 

fabric and steel measuring tape respectively. The mounds were divided into four 

different size categories, based on mound height namely: incipient (< 10 cm), 

small (10 cm – 29 cm), medium (30 cm – 49 cm) and large (> 5). Using Adam’s 

(1993) observation that it takes a termite colony 3 years to establish a mound 8 cm 

high, a rough estimate of the age of the termite mounds was determined.  

 

2.2.4. Soil depth 

Soil depth was determined by using an 8 cm diameter auger to drill to the bedrock 

layer at five points in each site (four points at each corner and one point in the 

middle of the sites). The depth of the hole was then measured using steel 

measuring tape and the average depth was calculated. 
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2.2.5. Data analysis 

To determine the distribution of the mounds, a nearest neighbour analysis was 

conducted using Microsoft® Office Excel® 2007 and MapSource version 6.10.2 

(Garmin Ltd.). This gives a numerical value (Rn) as a measure of a particular 

distribution pattern. The distribution patterns can have a tendency towards 

clustering (Rn < 0.75), random (Rn = 0.75 – 1.25) or a tendency toward a regular 

distribution (Rn > 1.25). The minimum of 30 mounds was used in the analysis to 

obtain statistically relevant results. 

  

Pearson’s chi-square test was conducted to determine whether there were 

significant differences among the different densities of the mounds. T-tests were 

used to compare the soil depths at each site.  

 

2.3. Results 

 

2.3.1. Density of the mounds 

Comparison of all sites showed a greater total mound density in the AEL site than 

in the West Complex and Control site (Figure 2.1). There were significant 

differences in the density of mounds among the three sites ( = 222.354; p < 

0.001).  Due to the high density of mounds at the AEL site, an area of only 150 x 

100 m was surveyed. 
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Figure 2.1. Density of all the T. trinervoides mounds at the three sites. 

 

2.3.2. Size classes of all the mounds 

The density of the different size classes was different in all three study sites 

(Table 2.1). The AEL site had the most mounds in all the size categories except 

for large mounds, in fact, the smallest number of large mounds was found in the 

AEL site when compared to the other sites. The West Complex site had the 

greatest number of large mounds. A markedly higher number of small mounds 

were found at the AEL with some 99.4 and 114.8 more mounds per ha than the 

Control site and the West Complex site respectively (Table 2.1). The AEL site 

also exhibited the most incipient mounds of 52 mounds per ha when compared to 

the other two sites which both have less than 2 incipient mounds per ha. Figures 

2.2 – 2.4 illustrate an aerial view of the different size classes at each site. 
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Table 2.1. Mound densities (mounds per ha) of each size class at each of the sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Distribution of the different sized mounds in the AEL site. “+” = 

incipient mounds, “x” = small mounds, “   ” = medium mounds and “   ” = large 

mounds. 

 

 

 

  AEL  West complex Control 

Incipient (< 10 cm) 52 0.5 1.8 

Small (10 cm - 30 cm) 117.3 2.5 17.9 

Medium (31 cm - 50 cm) 14.7 10.8 7.9 

Large (> 50 cm) 1.3 4.5 2.8 

Total 185.3 18.3 30.4 
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Figure 2.3. Distribution of the different sized mounds in the West Complex site. 

“+” = incipient mounds, “x” = small mounds, “   ” = medium mounds and “    ” = 

large mounds. 
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Figure 2.4. Distribution of the different sized mounds in the Control site. “+” = 

incipient mounds, “x” = small mounds, “   ” = medium mounds and “    ” = large 

mounds. 

 

Out of all the size classes, the small mounds constituted the largest percentage of 

the mounds in the AEL and Control site whereas the medium mounds 

predominated in the West Complex site (Figure 2.5). The incipient mounds 

comprised the lowest percentage of mounds in the Control and West Complex 

site. Large mounds were the least prevalent in the AEL site.  
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Figure 2.5. Percentage of mounds of each size class within each site. 

 

2.3.3. Dead and live mounds 

When the density of dead mounds was compared among the sites, the AEL site 

showed the greatest density of dead mounds (56.7 mounds per ha) whereas the 

control site had the least amount of dead mounds at 7.9 mounds per ha. The West 

Complex sites had 9 mounds per ha (Figure 2.6). The AEL site also had the 

greatest density of live mounds (128.7 mounds per ha) followed by the Control 

site (22.5 mounds per ha) and lastly, the West Complex site (9.3 mounds per ha) 

(Figure 2.6).  

 

Taking proportion of dead and live mounds into account, the West Complex site 

had the greatest percentage of dead mounds (Figure 2.7). Almost 50 % of the 

mounds in the West Complex site were dead. The dead mounds at the AEL 

constituted 30% of the mound population whereas 26 % of the mounds at the 

Control site were dead. The live to dead mound ratios for each site were 

calculated as 1: 0.44 for the AEL site, 1: 0.97 for the West Complex site and 1: 

0.35 for the Control site. 
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Figure 2.6. Mound densities of the live and dead mounds at the three sites. 

 

 

 

Figure 2.7. Percentage of the dead and live mounds at each site. 
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2.3.4. Size classes of dead and live mounds 

In the Control and AEL site, the greatest density of dead mounds was comprised 

of the small mounds while most of the dead mounds in the West Complex site 

were medium mounds (Table 2.2). No incipient mounds were found dead at West 

Complex site and no large mounds were dead at the AEL site.  

     

Table 2.2. Mound densities (mounds per ha) of the different size classes of the 

dead mounds. 

 

 

 

 

 

 

 

When comparing the live mound classes in each site, the AEL site had the greatest 

number of small mounds per ha and the smallest number of large mounds per ha 

(Table 2.3). The small mounds at the Control site had the greatest density when 

compared to the other size classes whereas the medium mounds predominated in 

the West Complex site. West Complex site also had the least amount of live 

incipient mounds when compared to the other size classes as well as the other 

sites.  

 

Table 2.3. The mound densities (mounds per ha) of the different size classes of the 

live mounds. 

  AEL West Complex Control 

Incipient (< 10 cm) 36.0 0.5 1.3 

Small (10 cm - 30 cm) 80.7 1.0 12.5 

Medium (30 cm - 50 cm) 10.7 4.3 6.4 

Large (> 50 cm) 1.3 3.3 2.3 

 

 

  AEL West Complex Control 

Incipient (< 10 cm) 16.0 0.0 0.5 

Small (10 cm - 30 cm) 36.7 1.5 5.4 

Medium (30 cm - 50 cm) 4.0 6.5 1.5 

Large (> 50 cm) 0.0 1.3 0.5 



 

29 

 

2.3.5. Soil Depth 

The Control site had the deepest soil depth (0.78 ± 0.31 m) and was significantly 

different to the AEL (0.16 ± 0.10 m) and West complex site (0.16 ± 0.15 m) (t = 

4.33 and t = 4.08 respectively, p < 0.01). The AEL and West complex site had 

similar depths and were not significantly different (t = 0.037, p < 0.01). The 

highest and lowest numbers of mounds were both found in shallow soil (Figure 

2.8). 

 

 

Figure 2.8. Average soil depth in relation to the density of T. trinervoides mounds 

at the three sites. 

 

2.3.6. Distribution of the mounds 

A nearest neighbour analysis was conducted to characterise the type of 

distribution of the mounds at the three sites. An analysis of the distribution of the 

mounds showed that the Control and the AEL site had a clustered mound 

distribution whereas the West Complex site had randomly spaced mounds (Table 

2.4). This can be clearly seen in Figure 2.9. Table 2.5 shows the type of 

distribution of mounds depending on whether the mounds were dead or live. All 

the live mounds in the sites had a tendency towards clustering. The dead mounds 

represented the three different spatial patterns in each site as shown in Table 2.5.  
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Table 2.4. The nearest neighbour values and the type of distribution pattern of the 

mounds for each study site. 

Site Nearest neighbour value Type of pattern 

AEL 0.73 tendency towards clustering (n = 278) 

West Complex 1.13 random (n = 73) 

Control 0.81 tendency towards clustering (n = 119) 

 

 

Figure 2.9. An aerial view of the distribution of the mounds at the AEL, the West 

Complex and Control site (left to right).  
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Table 2.5. The nearest neighbour values and the type of distribution pattern of the 

dead and live mounds for each study site. 

  Dead Live 

  

Nearest 

neighbour 

value Type of pattern 

Nearest 

neighbour 

value Type of pattern 

AEL 0.84 

tendency toward 

clustering spacing 

(n = 85) 

0.67 
tendency towards 

clustering (n = 193) 

West Complex 1.23 
tendency toward regular 

spacing (n = 36) 
0.87 

tendency towards 

clustering (n = 37) 

Control 1.04 Random (n = 31) 0.76 
tendency towards 

clustering (n = 88) 

 

 

2.4. Discussion 

 

Spatial distribution is an important aspect in the study of animal communities as 

this knowledge may help to understand important attributes of the community 

structure such as its carrying capacity and interactions with other organisms. It 

can be used as an indicator of the underlying mechanisms that regulate the 

organism’s population dynamics. For the termite M. bellicosus, the apparent 

regular distribution of colonies has been interpreted as a consequence of 

intraspecific competition (Korb and Linsenmair, 2001). The distribution of the 

termite mounds over the West Complex study area is random, suggesting that 

intraspecific competition is not controlling their abundance. Other studies on 

Macrotermes species also found the mounds to be randomly distributed (Collins, 

1981; Lepage, 1984; Schuurman and Dangerfield, 1997; Korb and Linsenmair, 

2001). The AEL site and Control site both had a clustered distribution. This was 

also the case with Trinervitermes ebenerianus mounds in Northern Nigeria 

(Ohiagu, 1979). 
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The mound density results of this study were surprising as the purportedly most 

contaminated site, AEL, was expected to have the lowest mound density due to 

possible negative impacts of tailings on the environment (see Chapter 4). Yet the 

AEL site had the highest mound density when compared to the other less 

contaminated sites. The density of mounds at the AEL site (185.3 mounds per ha) 

is comparatively higher than most other studies on T. trinervoides mound 

densities. The densities of T. trinervoides recorded by Adam (1993) at four sites 

in Bulfontein were 66, 59, 25 and 20 mounds per ha. Coaton (1948) studied T. 

trinervoides at Koffiefontein and recorded a density of 100 mounds per ha which 

is considerably higher than Adam’s (1993) results but still not as high as the AEL 

site. Nel and Malan (1974) recorded a mound density of 31 mounds per ha south 

of Bloemfontein. Only one other study conducted by Murray (1938) near 

Frankenwald, Gauteng, recorded a mound density higher than AEL site mound 

density, at 535 mounds per ha. The West Complex site (18.3 mounds per ha) and 

the Control site (30.4 mounds per ha) had densities which resembled Nel and 

Malan’s (1974) and Adam’s (1993) findings more closely. Table 2.6 summarises 

the data available on the densities of epigeal mounds of various other termite 

species that occur in savanna habitats. The variability of mound density is 

noticeable. 
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Termite Species Density Habitat/ location Author 

Amitermes laurensis Range: 28 - 210 Savanna woodland northern Australia Lee and Wood (1971) 

Amitermes vitiosus Mean: 240 
Savanna woodland in semi-arid northeastern 
Australia 

Holt and Easey (1985) 

Cubitermes curtatus Mean: 72 Open grassland in northern Guinea Benzie (1986) 

Cubitermes pretorianus Mean: 385 and 496 Nylsvley reserve, Limpopo Province Ferrar (1982) 

Cubitermes sp. Mean: 0.33 Northern Kruger National Park Meyer et al. (2000) 

Macrotermes sp. Range: 1 – 4 Subtropical savanna in Uganda Pomeroy (1977) 

Macrotermes sp. Range: 3 – 10 Tropical Ethiopean savanna Bouillon (1970) 

Macrotermes bellicosus Mean: 50 Subtropical savanna in Uganda Pomeroy (1978) 

Macrotermes bellicosus Mean: 4 Northeast of Ivory Coast Lepage (1984) 

Macrotermes bellicosus Range: 11.2 - 83.3 West guinea savanna Korb and Linsenmair (2001) 

Macrotermes michaelseni Mean: 2.98 Moremi game reserve in the Okavango Delta Schuurman and Dangerfield 
(1997) 

Microhodotermes viator Mean: 2.9 ± 1.2 Western and Northern Cape province of South 
Africa 

Picker et al. (2007) 

Table 2.6. The densities of mounds (mounds per ha) of various termite species in Savanna habitats. 
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Nasutitermes sp. Mean: 36 ± 50 Trachypogon savanna of Venezuele San Jose et al. (1989) 

Nasutitermes triodiae Range: 3 – 7  Tree savanna, northern Australia Lee and Wood (1971) 

Trinervitermes geminatus Mean: 501.41 Northern Guinea savanna Sands (1965)  

Trinervitermes geminatus Mean: 22 ± 8 Open grassland in northern Guinea Benzie (1986) 

Trinervitermes geminatus Range: 187 - 273 Southern Guinea savanna Ohiagu (1979) 

Trinervitermes oeconomus Mean: 6 ± 3 Open grassland in northern Guinea Benzie (1986) 

Trinervitermes oesonomus Mean: 7.41 Open grassland in Zaria, northern Nigeria Sands (1965) 

Trinervitermes togoensis Mean: 2 ± 1 Open grassland in northern Guinea Benzie (1986) 

Trinervitermes togoensis Mean: 9.88 Open grassland in Zaria, northern Nigeria Sands (1965) 

Trinervitermes trinervius Mean: 12.35 Open grassland in Zaria, northern Nigeria Sands (1965) 

Velocitermes paucipilus Mean: 202 ± 61 Trachypogon savanna of Venezuele San Jose et al. (1989) 
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Adam (1993) attributed the differences in T. trinervoides termite mound densities 

among his sites to the influence of soil depth. In his sites the soil depth was 

limited by an underlying calcrete layer. He found a positive correlation between 

the total number of termite mounds and the average soil depth at the four sites. 

Mounds were not found on shallow soils and he hypothesised that the lack of 

building on shallow soils is a result of the termites avoiding possible water stress 

as shallow soils have poor drainage of water. The highest and lowest numbers of 

mounds were both found in shallow soil. 

 

Trinervitermes trinervoides is a grass feeding termite therefore vegetation may be 

an important factor in determining its density. Adam (1993) showed that two of 

his study sites that supported the lowest termite mound density had vegetation that 

was considered at a pioneer stage of growth whereas the other sites had more 

climax stage grass species. He concluded that the grasses at the pioneer stage 

cannot support high termite numbers because of insufficient suitable grass for 

foraging and in turn supporting the potential colonies. Murray (1938) showed that 

the abundance of T. trinervoides mounds increased as secondary plant succession 

advanced from a two-year-old fallow to undisturbed veld. The constitution of soil 

is another important aspect when considering mound building termites as the 

correct proportions of sand, silt and clay are required to cement particles together 

during mound construction. Pomeroy (1978) showed that mound density in 

Macrotermitinae was directly proportional to the percentage clay content of the 

soil. Both vegetation and soil type could not account for the difference in mound 

density found in this study as these variables were the same at each study site. The 

sites were chosen for their similarities in grass species and soil types. 

 

Termites are generally very susceptible to water loss and it is important for them 

to maintain a high humidity in the nest. If the humidity of the nest is too low, 

termites may tunnel down or outward to the water table, a perched water table or 

surface water to reach moist soil which they then carry back in their crops (Abe et 

al., 2000). On several occasions when excavating a T. trinervoides mound, Adam 

(1993) discovered vertical shafts extending down below the sub-surface section of 
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the mound. Although he was unable to follow these shafts to the water table he 

surmised that this is where the shafts terminated. The water table tends to follow 

surface topography therefore the tailings dam at the AEL site most likely 

decreases the depth of the water table, allowing termites to access water more 

easily than the termites at the other sites (Toth, 1962). This could account for a 

higher density of termite mounds at the AEL site.   

 

The preponderance of small mounds at the Control site was similar to the size 

distributions found by Nel and Malan (1974) and Adam (1993). The AEL site had 

a very high density of incipient mounds (52 mounds per ha) which indicates that 

there is a high turnover of new mounds. This density was far higher than other 

recorded densities of incipient colonies of T.  trinervoides - 12.3 and 0.5 mounds 

per ha for Nel and Malan (1974) and 10 mounds per ha for Adam (1993. The 

West Complex site had the largest percentage of medium mounds and a very low 

percentage of small and incipient mounds. This was consistent with other species 

of termites such as Macrotermes jeanneli where the survival rate of large nest was 

very high (93 % per year) while the survival rate for incipient colonies was low 

(Darlington et al., 1992). In contrast, the AEL site had very few large mounds (1.3 

mounds per ha) which indicates that although it has a high turnover of new 

mounds, the longevity of these mounds was low.  

  

The high density of small and incipient mounds at the AEL site could also 

indicate that there is a relatively high output of alates from the few mature 

mounds on the site. The high rate of survival of these alates that go on to found 

new colonies could also be linked with reduced predation as a result of the impact 

of the tailings. Birds are a major predator of T. trinervoides alates as they are easy 

prey when undertaking their nuptial flight (Abe et al., 2000). Birds that have died 

as a direct result of tailings have been documented particularly in the USA and 

Australia (Eisler, 1991; Henny et al., 1994; Eisler and Weimeyer, 2004; Donato et 

al., 2007). It is therefore possible that due to reduced predation, an increase in 

population density will result. However, there was no empirical evidence 

supporting the death of bird predators, i.e. no carcasses were found on the sites 
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and for that reason an increase in mound density resulting from bird mortality is 

considered unlikely. 

 

The three sites all had a high proportion of dead mounds, the highest being the 

West Complex site where almost half the population of mounds were dead. Once 

again this result was surprising as the AEL site was expected to have the highest 

proportion of dead mounds due to the possible impacts of the tailing storage 

facility. As expected, the Control site had the lowest mortality when compared to 

the other sites. At the West Complex site, the size class that had the highest 

mortality was the medium mounds. This is contrary to Adam’s (1993) study 

where he found only 5 % of the medium mounds dead at his sites in Benfontein. 

The small mounds constituted the highest percentage of mounds dead (30 %) at 

his sites which is consistent with what was found at the AEL and Control site. 

Collins (1981) also had a similar finding when studying survivorship of M. 

bellicosus mounds and stated that it is generally accepted that mortality is high in 

the young stages of termite colonies. The results disagree however, with those of 

Nel and Malan (1974) who found that mortality in T. trinervoides occurred 

throughout the size class distribution of mounds and that small and large colonies 

generally had an equal chance of dying. 

 

 The reasons for the mound mortality are not clear and difficult to quantify. Adam 

(1993) suggested that small mounds have high mortality due to the inability of 

these colonies to forage and store enough grass for the winter months. Predation is 

another factor that could lead to the death of a mound (Adam, 1993). The small 

colonies could be especially susceptible as they have fewer soldier termites 

(essential for the defence of the colony) when compared to larger colonies. 

According to Collins (1981) a large colony of M. bellicosus withstood attacks by 

predatory ants but an attack on a small colony led to the death of the entire nest. 

Other factors such as overgrazing and unsuitable food sources could lead to the 

mortality of T. trinervoides colonies (Adam, 1993). In the study conducted by 

Adam (1993), there were indications of overgrazing at his fourth site (the site with 

the highest mortality) as the vegetation was in a pioneer stage, typical of 
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overgrazing. The most common grass was a grass that was least preferred by T. 

trinervoides, suggesting that the mortality of the mounds at the fourth site was due 

to a scarcity of suitable grass and subsequent starvation. The high percentage of 

dead mounds at the West Complex site could be due to the potential 

contamination of the environment. However, the AEL site was expected to have 

the highest mound mortality as this site is the closest to the tailings dam and 

purportedly more contaminated therefore this hypothesis was not supported.  

 

This study presented the first investigation into the possible impacts of tailing 

storage facilities on the density and distribution of termite mounds. It appears that 

the tailing storage facility did not have a negative impact on the density of the 

termite mounds as these were the highest at the AEL site. Variables such as 

climate, vegetation and soil type that could potentially explain the differences 

found at each site were eliminated as these were the same throughout the sites. 

Soil depth also did not have an effect on the density of the mounds as there was 

no correlation with the depth and the density of mounds. The tailing storage 

facility most likely decreases the depth of the water table therefore termites at the 

AEL site could possibly access water more easily than the termites at the other 

sites. This may account for the higher density of mounds at the AEL site. The size 

class distributions indicated that there was preponderance of small mounds at the 

Control site which was similar to those distributions found by Adam (1993) and 

Nel and Malan (1974). The AEL site had a very high density of incipient mounds 

but very few large mounds indicating that although it has a high turnover of new 

mounds, the longevity of these mounds was low. The West Complex site had the 

largest percentage of medium mounds and a very low percentage of small and 

incipient mounds which may indicate that although it is difficult for termites to 

start mounds, once they reach a certain size they persist for many years. The West 

Complex site had the highest percentage of dead mounds supporting the idea that 

the tailings dam affected termite density however this was not supported by the 

results from the AEL site.  
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CHAPTER 3 – THE IMPACT OF MINE TAILINGS ON 

THE TEMPERATURE PROFILES OF TERMITE 

MOUNDS  

 

3.1. Introduction 

 

Almost all insects are at the mercy of their environment, without any capability of 

regulating their internal temperature (Gullan and Cranston, 1994), however social 

insects have an advantage in that they live together in nests which provide an 

enclosed environment. Social insect ecology presents a novel way of illustrating 

homeostasis of a microclimatic system as social insects are able to regulate their 

nest environment at relatively constant temperatures with limited fluctuation. 

They achieve what Emerson (1956) called “social homeostasis”. Mound building 

termites achieve social homeostasis by using their mounds, together with other 

behavioural and physiological mechanisms, for temperature control. The mounds 

termites build provide a means for termites to passively and actively regulate the 

internal nest temperatures (Jones and Oldroyd, 2007). Those remarkable, 

seemingly random piles of soil they build are like thermostats, regulating the 

temperature so that the internal nest temperature is maintained near a desired 

setpoint temperature.  Keeping within this setpoint range as well as maintaining a 

humid nest environment is important as termites are soft bodied insects with a 

thin, delicate integument and are therefore compelled to live in a controlled 

environment without which they would shrivel and dry out (Uys, 2002). 

Unfavourable temperatures can also lead to other problems for the colony such as 

abnormalities in the brood and the denaturing of eggs which in turn leads to the 

lack of emergence of adults (Jones and Oldroyd, 2007). 

 

Mound site selection, mound orientation and mound architecture are passive 

mechanisms that bring about the long-term control of the internal nest 

temperatures during a wide variety of environmental change (Jones and Oldroyd, 

2007; Wilson, 1971). Active mechanisms are typically behavioural in nature and 
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provide short-term control that serves to either heat or cool current nest 

temperature in response to ephemeral environmental perturbations (i.e. temporary 

heat fluxes). These mechanisms include brood reallocation to more favourable 

regions within the nest and the bringing in of water to promote evaporative 

cooling (Wilson, 1971; Jones and Oldroyd, 2007). 

 

Termites live in a diverse array of nests ranging from simple galleries in wood to 

elaborate and sophisticated structures (Uys, 2002). These nests are either 

subterranean (completely below the ground level), epigeal (part of the nest 

protrudes in the form of a mound above the ground) or arboreal (above ground 

level usually in trees) (Uys, 2002). The mounds of epigeal nests consist of 

elaborate systems of tunnels. These tunnels are built using soil and are lined with 

faecal deposits containing large quantities of lignin and special salivary secretions 

that act as glue (Abe et al., 2000). The complex architecture of the mound implies 

some physiological function, leading to the prevailing opinion that the mound 

functions to regulate the nest environment (Turner, 2001). 

 

Mound architecture has been shown to influence internal nest temperatures of 

termite colonies (Wilson, 1971). Variations in wall thickness, mound surface 

design and general size of the mound serve to either increase or decrease heat 

exchange with the environment thus assisting in stabilizing nest temperatures 

(Jones and Oldroyd, 2007). Korb and Linsenmair (2000a; 2000b) showed that 

fungus growing termites, Macrotermes bellicosus, build complex mounds that 

help to maintain a central nest temperature of about 30 °C for optimum fungal 

growth all year round. Remarkably, the mounds of M. bellicosus differed greatly 

between two neighbouring habitats. Termites that lived in the shrub savanna built 

mounds that were cathedral shaped, thin walled and highly structured with many 

turrets and ridges (Figure 3.1A). In contrast, the mounds in the gallery forest 

habitat were dome shaped with thick walls and had few projecting structures 

(Figure 3.1B). Korb and Linsenmair (1999) showed that the differences in 

architecture of the mounds were due to the differences in ambient temperatures of 

the two habitats. The savanna habitat had higher ambient temperatures while the 



 

41 

 

gallery forest had low sub optimal ambient temperatures. Heat that is produced in 

the nest by the metabolism of the termites and fungi, needs to either be expelled or 

contained depending on the thermal habitat the mounds inhabit. The high surface 

complexity and cathedral shape of the mounds in the savanna habitat appeared to 

be suited for the promotion of heat loss to the environment; conversely, the thick 

walls and dome shape of the mounds in the gallery forest habitat were suited to 

reduce loss of heat to the environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The mounds made by M. bellicosus in the A) savanna habitat and B) 

forest gallery habitat. (Korb, 2003). 

 

Metabolic heat produced by termite colonies has important implications in the 

regulation of temperature and gases within the nest (Bristow and Holt, 1987). The 

heat generated by termite metabolism also allows for raised temperatures which is 

especially helpful during winter. During summer however, this metabolic heat 

may raise the temperatures above that of ambient temperatures and risk 

overheating the mound. Therefore active mechanisms in conjunction with the 

alteration of mound architecture are employed to expel this excess heat. By 

bringing in water to appropriate sites in the mound, evaporative cooling is 

A) B) 
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permitted which results in the decrease of nest temperatures (Bristow and Holt, 

1987; Abe et al., 2000). Another active mechanism which allows termites to cope 

with excess heat includes the reallocation of brood (usually the most vulnerable 

individuals) to those regions in the nest or mound where the temperatures are at 

the optimum for brood development and growth (Jones and Oldroyd, 2007). 

 

The termite, Trinervitermes trinervoides, builds dome-shaped mounds that have 

been shown to keep their temperatures within narrow limits of particular 

temperatures throughout the course of a year (Field, 2008). Their mound structure 

is similar to that of the well documented M. bellicosus mounds in having a closed 

ventilation system, meaning there are no external openings to the environment 

(Korb and Linsenmair 1999). However, an important difference between the two 

species is that T. trinervoides lack fungus gardens which are a major perturber of 

the nest atmosphere in M. bellicosus nests. The aim of this portion of the study 

was to obtain a monthly and seasonal profile of the temperatures in T. trinervoides 

mounds in the three sites (Section 1.3) to determine the thermoregulatory 

capabilities of the mounds with emphasis on the temperatures found in the centre 

of the mound where the queen, king and brood reside. This investigation will also 

clarify the possible influence contaminated soil has on nest temperature 

regulation.  

 

3.2. Methods and Materials 

 

The temperature profiles of 2 mounds as well as air temperatures at each site were 

obtained using iButtons (Maxim integrated products ©) which are small data 

loggers that allow for continuous and simultaneous measurement. The iButtons 

were programmed to record temperatures every hour and were left in allocated 

positions for 3 months. After 3 months, iButtons were then extracted and the 

temperature data were downloaded onto a computer. iButtons were then 

reprogrammed and reinserted back into the mounds where they were left for a 

further 2 months. The second week of each month was used in the analysis, giving 

a total of 5 weeks of temperature data. 
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3.2.1. Placement of the iButtons 

Six iButtons were placed in each mound at various locations (Figure 3.2); two 

“Surface” iButtons 2 cm into the mound just below the hard outer crust, two 

“Internal” iButtons 15 cm into the mound, a “Top-Centre” iButton at the surface 

of the soil at the bottom of the mound and a “Bottom-Centre” iButton in the 

centre of the subterranean nest 20 cm below the soil surface. The mounds were 

found to be non-epigeous therefore the iButtons could not reach the “Bottom-

Centre” so only “Top-Centre” was measured and was labelled “Centre” for the 

analysis. iButtons were mounted on a plastic holder to which wire was attached. 

This allowed the iButtons to be pulled out from the mound when the recording 

was completed. A masonry drill was used to drill a hole on either side of the 

mound that allowed for the insertion of the “Internal” and “Surface” iButton pairs. 

An 8 cm orga was used to make the hole for the insertion of the “Top-Centre” 

iButton. Ambient temperature was recorded over the same period using an iButton 

inside a canister bolted to a nearby tree in the shade.  
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Figure 3.2. Schematic diagram of the T. trinervoides mound indicating relative 

positions of the iButtons. 

 

3.2.2. Data analysis 

The data analysis was conducted using Statistica version 6 (StatSoft, Inc.) and 

Microsoft® Office Excel® 2007. Repeated measures analysis of variance graphs 

(ANOVA) were used to compare daily temperatures of the mounds and ambient 

temperatures. Monthly averages of coefficients of variation (standard deviation/ 

mean) were calculated and used to compare the degree of variation of the 

temperatures in the centre regions of the mounds at the three sites.  A regression 

analysis was used to investigate the correlation of ambient temperature with 

mound temperatures. 
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3.3. Results 

 

3.3.1. Daily temperature profile 

Figures 3.3, 3.4 and 3.5 show the mean daily temperatures of the centre, internal, 

surface and ambient temperature for one week each month in the mounds at the 

AEL, West Complex and Control site respectively. In all the mounds measured, 

the inside temperatures were greater than the ambient temperatures. The daily 

average ambient temperature fluctuated markedly throughout the weeks and 

during July it plummeted to 6.5 °C and got steadily warmer during August and 

September.  

 

In most months, the centre temperatures were lower than either the surface 

temperatures or the internal temperatures but higher than the ambient 

temperatures. The centre temperatures were relatively constant each week 

however there was a significant drop from May to July and then increase from 

August to September. Average daily internal temperatures in the mounds gave the 

highest recorded temperatures for most months at all three sites and were 

considerably higher than ambient temperatures. Surface temperatures were higher 

than the ambient temperature and generally tracked it.    
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Figure 3.3. Mean ± S.D. daily temperatures of the three positions in the two 

mounds at the AEL site. Ambient temperature recorded at the site is also shown. 
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Figure 3.4. Mean ± S.D. daily temperatures of the three positions in the two 

mounds at the West Complex site. Ambient temperature recorded at the site is 

also shown. 
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Figure 3.5. Mean ± S.D. daily temperatures of the three positions in the two 

mounds at the Control site. Ambient temperature recorded at the site is also 

shown. 

 

Figures 3.6, 3.7 and 3.8 show the daily fluctuation of ambient and mound 

temperatures during the three hottest and coldest days in the middle of September 

and July respectively.  Ambient temperatures during the day fluctuated with 

maxima in the afternoon (13:00 – 15:00) and minima in the morning (5:00 – 

7:00). Despite these ambient temperature fluctuations, centre mound temperatures 

in the mounds were kept relatively constant in all three sites. These centre mound 

temperatures however varied according to the seasons. For instance, in the 

Control site, during summer the centre mound temperatures were kept at 20.39 ± 

0.53 °C (Figure 3.8A) whereas during winter when ambient temperatures were 

colder, the centre mound temperatures dropped to 13.05 ± 0.85 °C (Figure 3.8B). 
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The other two sites, the AEL and West Complex, showed a similar trend although 

at both sites centre mound temperatures were not as consistent as the centre 

mound temperatures measured at the Control site (Figures 3.6 and 3.7). Surface 

mound temperatures of all three sites tracked the ambient temperature during both 

seasons and were generally higher than the ambient temperature. Internal mound 

temperatures fluctuated less than the surface mound temperatures but also 

appeared to track the ambient temperatures with a slight lag. 
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Figure 3.6. Ambient temperatures and mound temperatures over a period of three 

days during summer (A) and winter (B) at the AEL site. 

0

5

10

15

20

25

30

35

40

45

50

0
0

:0
0

0
3

:0
0

0
6

:0
0

0
9

:0
0

1
2

:0
0

1
5

:0
0

1
8

:0
0

2
1

:0
0

0
0

:0
0

0
3

:0
0

0
6

:0
0

0
9

:0
0

1
2

:0
0

1
5

:0
0

1
8

:0
0

2
1

:0
0

0
0

:0
0

0
3

:0
0

0
6

:0
0

0
9

:0
0

1
2

:0
0

1
5

:0
0

1
8

:0
0

2
1

:0
0

T
e

m
p

e
ra

tu
re

 (
°C

)

Time (Hrs)

Ambient

Centre

Internal

Surface

-10

-5

0

5

10

15

20

25

30

0
0

:0
0

0
3

:0
0

0
6

:0
0

0
9

:0
0

1
2

:0
0

1
5

:0
0

1
8

:0
0

2
1

:0
0

0
0

:0
0

0
3

:0
0

0
6

:0
0

0
9

:0
0

1
2

:0
0

1
5

:0
0

1
8

:0
0

2
1

:0
0

0
0

:0
0

0
3

:0
0

0
6

:0
0

0
9

:0
0

1
2

:0
0

1
5

:0
0

1
8

:0
0

2
1

:0
0

T
e

m
p

e
ra

tu
re

 (
°C

)

Time (Hrs)

Ambient

Centre

Internal

Surface

B) 

A) 



 

51 

 

 
 

 

 
 
Figure 3.7. Ambient temperatures and mound temperatures over a period of three 

days during summer (A) and winter (B) at the West Complex site. 
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Figure 3.8. Ambient temperatures and mound temperatures over a period of three 

days during summer (A) and winter (B) at the Control site. 
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3.3.2. Variation of mound temperatures 

The centre mound temperatures at the Control site showed greater temperature 

control than mounds at the other sites (Table 3.1). The internal mound 

temperatures varied more than the centre mound temperatures but not as much as 

the ambient and surface mound temperature. The surface mound temperatures had 

greater ranges than that of the ambient temperature with the highest ranges 

measured at the AEL site. 

 

Table 3.1. Ranges of the ambient temperature and temperatures in the various 

positions of the mounds at the three sites. 

  April May July  August September 
Air temperature         

15.5 23 27 29.5 24.5 

Centre mound temperature       
AEL 3.5 5 5 4.5 3 
West Complex 3.5 5.5 5.5 5 3.5 
Control 1 1 3 1.5 1.5 

Internal mound temperature         
AEL 13 16 12.5 17.5 11.5 
West Complex 15.5 16 9 10 12.5 
Control 12.5 10.5 13 16 12.5 

 
Surface mound temperature         
AEL 35 41.5 31.5 35 30 
West Complex 29 37 22 26 26 
Control 26.5 25.5 26 33.5 28.5 

 

 

Coefficients of variation (CV) of the centre mound temperatures at each of the 

sites were calculated for each of the 7 days and averaged for each month (Figure 

3.9). The centre mound temperatures at the Control site had the least amount of 

variation. The West Complex and AEL site centre mound temperatures were not 

significantly different to each other and had a much larger degree of variation 

when compared to the Control site.  
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Figure 3.9. Average coefficient of variation (CV) of the centre mound 

temperatures at the Control, West Complex and AEL site per month. Vertical bars 

denote 0.95 confidence intervals. 

 

3.3.3. Monthly profile of the centre mound temperatures 

On a monthly basis, the average centre mound temperatures at each site varied in 

accordance to the ambient temperature i.e. when the average monthly ambient 

temperature dropped from 15.71 °C in May to 6.51 °C in July, the average 

monthly centre temperatures dropped from 7.34 °C, 6.82 °C and 6.18 °C at the 

AEL, West Complex and Control site respectively (Table 3.2). The West 

Complex site had the highest average centre mound temperatures reaching highs 

of 25.63 °C. All average monthly centre mound temperatures were kept within 

narrow limits, for example, during September the AEL site had a range of 3 °C, 

the West Complex site a range of 3.5 °C and the Control site a range of 1.5 °C 

(Table 3.2).
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  April May July  August September 

Ambient temperature           

Mean  19.87 ± 3.99 15.71 ± 5.29 6.51 ± 7.12 11.476 ± 9.06 20.82 ± 7.28 
Maximum 29 27.5 21.5 27.5 32 
Minimum 13.5 4.5 -5.5 -2 7.5 

Centre mound 
temperature           

AEL           

Mean 24.52 ± 0.85 20.52 ± 1.13 13.18 ± 1.02 15.929 ± 1.02 22.37 ± 0.83 
Maximum 26.25 23.5 16 18.5 23.5 
Minimum 22.5 18.5 11 14 20.5 

West Complex           

Mean 25.50 ± 0.93 23.23 ± 1.22 16.41 ± 1.07 19.463 ± 1.27 25.63 ± 0.94 
Maximum 27 26.25 19.5 21.75 27.25 
Minimum 23.75 20.75 14.25 17 23.75 

Control           

Mean 23.10 ± 0.34 19.23 ± 0.29 13.05 ± 0.85 14.131 ± 0.30 20.39 ± 0.53 
Maximum 23.5 19.5 15 15 21 
Minimum 22.5 18.5 12 13.5 19.5 

Table 3.2. Ambient temperature and centre temperatures of the three sites each month (mean ± SD, maxima and minima). 
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3.3.4. Daily profile of the centre mound temperatures 

A comparison of the daily average centre temperatures of the mounds at each site 

are shown in Figure 3.10. The centre temperatures at the West Complex site were 

the highest when compared to the AEL and Control sites. The Control site 

presented the lowest average daily temperatures followed by the AEL site. All the 

centre temperatures were warmer than the ambient temperatures each day and had 

little variation during each month as opposed to ambient temperatures that had 

marked fluctuation.     

 

 

Figure 3.10. Mean ± S.D. daily temperatures of the centre mound temperatures for 

2 mounds at the three sites. The ambient temperature is also shown. 

 

 



 

57 

 

3.3.5 Influence of ambient temperatures on centre mound temperature 

A plot of the mean daily centre mound temperatures in relation to mean daily 

ambient temperature showed that centre temperature remained constant for each 

specific month and changed depending on the season (Figures 3.11 – 3.13). The 

Control site temperatures showed no tracking of the ambient temperature (Table 

3.3). In two months at the AEL and West Complex sites there was a significant 

weak correlation between the ambient and centre mound temperature.  

  

 

 

Figure 3.11. Average daily centre mound temperatures in relation to average daily 

ambient temperatures at the AEL site. 
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Figure 3.12. Average daily centre mound temperatures in relation to average daily 

ambient temperatures at the West Complex site. 

 

 

 

 

Figure 3.13. Average daily centre mound temperatures in relation to average daily 

ambient temperatures at the Control site. 
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Table 3.3. Regression analysis of the centre mound temperatures in relation to 

ambient temperature at the three sites. 

AEL r2 Slope p 
April 0.336 0.051 0.00001 
May 0.182 0.287 0.00001 
July 0.005 -0.027 0.325 
August 0.004 0.022 0.384 
September 0.041 0.091 0.007 

 
West 
Complex 
April 0.051 0.029 0.106 
May 0.029 0.364 0.00001 
July 0.003 0.024 0.471 
August 0.001 0.014 0.655 
September 0.156 0.233 0.00001 
 
Control 
April 0.00003 0.006 0.934 
May 0.001 -0.009 0.671 
July 0.003        -0.023 0.42 
August 0.00003        -0.001 0.94 
September 0.0001        -0.006 0.877 

 

 

3.4. Discussion 

 

The mounds created by termites vary enormously among species in their ability to 

regulate temperature. Amitermes evuncifer, Thoracotemres macrothorax and 

Microcerotermes edentatus build dome shaped nests of simple structure that have 

thin walls and no thermoregulatory ability (Lüscher, 1961). The mushroom 

mounds built by the termites belonging to the large African genus, Cubitermes, 

have internal temperatures which follow, with a slight dampening, the fluctuations 

of the surrounding environment (Krishna and Weesner, 1970). Conversely, the 

large thick-walled mounds constructed by Cephalotermes rectangularis serve to 

keep nest temperatures within 2 °C of 30 °C (Krishna and Weesner, 1970). The 

most well-known and extensively studied example of thermoregulatory ability of 

termite mounds lies in the great mounds built by the Macrotermes genus which 
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keep an extremely constant nest temperature of 30 °C (Korb and Linsenmair, 

1999; 2000a; 2000b; 2003).  

 

Studies on the thermoregulatory capabilities of mounds have been limited to wood 

or soil feeding termites; resulting in very little information on the 

thermoregulation in the mounds of grass eating (harvester) termites (Adam, 1993). 

Field (2008) presented the first detailed investigation of the thermoregulatory 

importance of the dome-shaped mounds built by the snouted harvester termite, T. 

trinervoides in Melville Koppies, Gauteng. The only other study was by Adam 

(1993) as part of his PhD in which he measured temperatures in one epigeous 

mound for 24 hours each month for a year. 

  

The centre mound temperatures of the T. trinervoides mounds at the three study 

sites were kept relatively constant on a monthly basis despite fluctuations in the 

ambient temperature. Centre mound temperatures also had little daily fluctuation 

and did not vary more than 5 °C while the ambient temperature varied 

dramatically (up to 30 °C).  A similar result was found by Field (2008) where 

centre mound temperatures also did not fluctuate by more than 5 °C despite 

ambient temperature fluctuations of 35°C. The constant temperatures were of 

significance since the brood, queen and king occupy this portion of the mound and 

a less variable temperature would be to their advantage (Adam, 1993; Jones and 

Oldroyd, 2007). Adam (1993) presented contrary findings: the centre mound 

temperatures in the mound he studied tended to track the ambient temperature and 

exhibited a large degree of variation (daily fluctuation of 13 °C as opposed to 5°C 

at these study sites). The centre mound temperatures in his study reached a high of 

40 °C in July which was some 20 °C higher than recorded centre mound 

temperatures in this study. The average temperature in the centre of the mound 

was also always higher than the average temperatures in the rest of the mound 

which disagreed with results from this study where the internal temperatures were 

found to be the highest recorded temperatures. The centre mound temperatures in 

Adam’s (1993) did present a 4 to 6 hour lag of temperature change, deeming them 

the most consistent temperatures throughout the mound as was also the case in 
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this investigation. Adam’s (1993) results may be different to the results in this 

study as the mound he studied was epigeous. Internal temperatures varied more 

than the centre temperatures as the iButtons were closer to external environment. 

Surface temperatures varied the most and to the same extent as ambient 

temperature (in some cases, more than ambient temperature) which was expected 

as the iButtons were closest to the external environment. 

 

Several studies have shown that the presence of termites tends to raise mound 

temperature due to the heat produced by termite metabolism (Krishna and 

Weesner, 1970; Bristow and Holt, 1987; Adam, 1993; Abe et al., 2000; Turner, 

2001). This could explain the high temperatures recorded within the centre of the 

T. trinervoides mounds which were up to 10 °C higher than the ambient 

temperatures. This result agrees with Field (2008) where centre temperatures were 

on average 4 °C to 10 °C higher than the ambient temperatures. Internal 

temperatures presented the highest recorded temperatures compared to the 

ambient, surface and centre temperatures. The high internal temperatures of the 

mound could be due to the combined effect of the heat absorbed by the mound 

from solar radiation and the heat generated by the termite metabolism. Soldiers 

and workers were always seen in the internal region of the mounds when inserting 

the iButtons. Solar radiation and the insulating properties of the mound probably 

accounts for the fact that surface temperatures are warmer than ambient 

temperatures. 

 

Although centre temperatures were kept within narrow limits of particular 

temperatures each month, the centre temperatures were not kept constant 

throughout the study. This was highlighted by the distinct drop of temperature 

from May to July then an increase of temperatures from August to September. 

This change in centre mound temperatures throughout the months could be related 

to T. trinervoides ecology. Adam et al. (2008) showed that it was crucial for T. 

trinervoides workers to forage and store as much grass as possible during autumn 

so that the grass reserves subsist during the low winter temperatures, when 

foraging activity is restricted. The decrease of centre mound temperatures in this 



 

62 

 

study could be a result of the colony decreasing in size to ensure the grass 

reserves within the mound are not depleted. Field (2008) also found an increase of 

centre mound temperatures from July to August of some 10 °C, reaching 

temperatures of 28 °C in September. In this study, temperatures only increased 3 

°C from July to August and the highest recorded September temperature was 25 

°C. This increase in temperature could be due to the commencement of foraging 

and thus the colony increasing in size. This resultant increase in nest temperatures 

could also be important for the development of the alates and ensured that they 

reach maturity in time for the first rains of spring (Abe et al., 2000). Greaves 

(1964) noted that the presence of alates in Coptotermes aninaciformis colonies 

were accompanied by an elevation of nest temperatures. This was also noted by 

Holdaway and Gay (1948) in Nasutitermes exitiosus (as cited by Krishna and 

Weesner, 1970).  

 

The centre mound temperatures were different at each site. West Complex centre 

mound temperatures were the highest followed by the AEL site and lastly, the 

Control site. Higher temperatures could be explained by higher numbers of 

termites which release metabolic heat and raise mound temperatures however this 

is unlikely as the mounds studied were the same size throughout the study sites. It 

has been shown that chronic exposure to toxic elements can lead to increases in 

metabolic rate in invertebrates therefore it is possible that the termites in the 

contaminated sites may be generating more heat than the termites in the Control 

site (see Chapter 4; Hopkin, 1989 as cited by Lagisz et al., 2005).  

 

At the Control site there was evidence of temperature regulation in the centre of 

the mound as no correlation between the ambient temperature and the centre 

temperature was found. Korb and Linsenmair (2000a) found that ambient 

temperature influenced the mean nest temperatures in small colonies of the 

fungus-cultivating, mound building termite M. beliicosus while in mounds that 

have reached a certain height, mean nest temperature did not correlate with 

ambient temperature. Large mounds kept their temperature at 30°C regardless of 

ambient temperature. A similar trend was found in this study as the mound 
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temperatures during most months at the three sites were kept at particular 

temperatures regardless of the ambient temperatures. The mounds at the Control 

site appeared to be the most efficient at regulating temperatures as the mounds at 

the other two sites showed an internal weak correlation with the ambient 

temperature during some months. The fact that the mounds at the AEL and West 

Complex site did not appear to regulate temperature as efficiently as the mounds 

at the Control site may be due to the possible contamination of the sites.  

 

Jones and Oldroyd (2007) hypothesised that the less fluctuation there is in the 

centre of a mound the more favourable it is to the colony. This is due to the fact 

that the queen, king and brood reside in this region and are particularly sensitive 

to changes in temperature, thus a more constant thermal environment would be to 

their benefit. The coefficient of variation of temperatures at each site showed that 

the contaminated sites presented more fluctuation of temperature when compared 

to the Control site. Korb and Linsenmair (2000a) showed that the structure of the 

mound is responsible for levelling out temperatures within the mound therefore it 

could be possible that the structure of the mounds at the West Complex and AEL 

site have been compromised due to possible contamination. The contamination 

may be affecting the workers ability to construct mounds with full 

thermoregulatory function.  

 

This study demonstrated that the centre temperatures of the mounds of the snouted 

harvester termite, T. trinervoides, were kept constant on a monthly basis but 

fluctuated on a seasonal basis. This change in centre mound temperatures 

throughout the months could be related to T. trinervoides ecology. For example, 

the decrease of centre mound temperatures could be a result of the colony 

decreasing in size to ensure the grass reserves within the mound are not depleted. 

The centre mound temperatures at the West Complex site were hotter and more 

variable than at the AEL and Control site which may be a result of the impact of 

the mine tailings however this is considered unlikely as this is not supported by 

the results given by the mound at the AEL site.  
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CHAPTER 4 - HEAVY METAL ANALYSIS OF 

TERMITES, TERMITE MOUNDS AND SOILS FROM 

SITES OF DIFFERENT PROXIMITIES TO A 

TAILINGS DAM 

 

4.1. Introduction 

 

Mining activities are well known for their negative effects on the environment, 

due to the deposition of large volumes of wastes in the form of tailings on the soil. 

These tailings pose a significant risk to the environment as most mine tailings are 

not managed properly and as a result heavy metals migrate into the surrounding 

environment. This contributes to the contamination of soil substrates, destruction 

of soil texture, shortage of nutrients, destruction of ecological landscape, 

groundwater pollution and decrease in biological diversity (Rashed, 2010). Due to 

the fact that mine tailings are finely divided into small particles, there is a 

potential risk that such materials may find their way through the environment and 

food chain to animals (Conesa et al., 2006). The negative impacts of gold mine 

tailings on various animal populations have been documented in many countries 

around the world, particularly the USA. Accidental spills of tailings into the local 

environment in the USA resulted in a decrease of wildlife especially that of 

waterfowl and bat populations (O’Shea et al., 2001). Another study conducted in 

Arizona and California recorded 519 tailing related deaths of rodents and bats 

(Clark and Hothem, 1991). Between 1986 and 1991, cyanide in heap leach 

solutions and mill tailings ponds at gold mines in Nevada alone killed at least 

9500 birds, mammals, reptiles, and amphibians (Henny et al., 1994). Gold mine 

tailings in the Portovelo-Zaruma district in southern Ecuador have reduced 

biodiversity considerably as a result of a direct lethal effect on the biota close to 

the source (Tarras-Wahlberga et al., 2001). In one case, mine effluents from a 

Canadian tailings pond released into a nearby creek killed more than 20 000 

steelhead (Oncorhynchus mykis; Leduc, 1978). In 1995, the Australian 
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Northparkes Mine operated a carbon-in-pulp processing circuit that produced 

tailings high in soluble copper-cyanide complexes and resulted in the death of 

2700 birds over four month period (Donato et al., 2007)  

 

To evaluate environmental concerns, scientists have measured the metal 

concentrations in the ecosystem around the mines (Rashed, 2010). Studies 

conducted by Rosner and van Schalkwyk (2000), Lee et al. (2001), Aucamp and 

van Schalkwyk (2003), Boularbah et al. (2006), Guo-li et al. (2008) and Antwi-

Agyei et al. (2009) have shown that the soil at sites near mine tailings dams had 

higher levels of heavy metals when compared to control sites and all of the 

authors concluded that the tailings are a source of heavy metal contamination. 

Heavy metals are one of the most persistent pollutants in the environment (Khalil 

et al., 2008). Unlike organic pollutants, they cannot be degraded but accumulate 

throughout the food chain, producing potential ecological disturbances. 

Bioaccumulation of heavy metals has been demonstrated in a wide variety of 

animals. For example, Bruce et al. (2003) showed that cattle grazing on grass 

growing on a tailings dam accumulated more than ten times the Zn and As 

concentration in their liver when compared to those grazing at a non-polluted site. 

Benthic invertebrates that inhabited a stream impacted by mining operations 

showed elevated concentrations of Cd, Cu and Zn in their tissue (Kiffney and 

Clements, 1993). Heikens et al. (2001) found that internal Pb, Cd and Cu 

concentrations in terrestrial invertebrates increased as Pb, Cd and Cu 

concentrations increased in their surrounding soil environment.  

 

Some heavy metals such as Zn and Cu are essential for health, survival and 

production as they are part of vital physiological, structural, catalytic and 

regulatory processes in mammals (Reis et al., 2010). However, if these heavy 

metals are ingested in excessive doses they may cause acute or chronic poisoning. 

Acute poisoning occurs soon after ingestion while chronic poisoning occurs when 

an animal constantly ingests toxic doses which are at lower concentrations than 

those that cause acute poisoning. Both types of poisoning can lead to the death of 

the organism (Reis et al., 2010). Obviously the ingestion of toxic amounts of non-
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essential metals such as Pb and Cd can have serious deleterious effects too. These 

effects include subacute, acute or chronic poisoning which cause severe damage 

to various organs such as the liver and morphological and functional changes to 

the kidney, lung, nervous system and intestine in mammals (Reis et al., 2010).   

 

Heavy metals have been shown to adversely affect different aspects of the biology 

of insects. Augustyniak et al. (2009) showed that individuals of Chorithippus 

brunneus in heavy metal polluted sites laid significantly fewer eggs than insects 

from the control site. Xu et al. (2009a) studied the effects of CaCl2 CuCl2 ZnCl2 

and PbCl2 on the development and hatching success of eggs of Folsomia candida 

and found that egg hatching success significantly decreased when concentrations 

of Cu, Pb and Zn reached 400, 1600 and 800 mg/kg dry soil respectively. When 

individuals of the ectoparasitic wasp Nasonia vitripennis were exposed to copper 

there were negative effects on parasitoid growth and development as well as 

fecundity. Copper exposure also inhibited vitellogenesis, a vital process involving 

yolk formation in the oocyte. This phenomenon was also found in Oncopeltus 

fasciatus females exposed to Cd (Cervera et al., 2005). Xu et al. (2009b) showed 

that there was a reduction in adult survival and reproductive failure in the 

Collembolan, Sinella curviseta when exposed to soils contaminated with Cu and 

Zn. The adults that did survive exhibited a decrease in growth rate when 

compared to the control adults suggesting that metals affect S. curviseta 

metabolism. Due to the close interaction of termites with the soil, the likelihood of 

heavy metal accumulation from soils contaminated by mine tailings could be high. 

Termites are an important food source for many animals and contaminated 

termites could potentially impact the food chain.  

 

The aim of this study was to evaluate the heavy metal content of the termites, 

termite mounds and soil profile at the two study sites (Section 1.3) near the tailing 

dams. A comparison of the metal content of termites in the surrounding area gave 

an indication as to whether bioaccumulation was taking place in the tissues of the 

termites. Snouted harvester termites form a vital part of the ecology of certain 

animals such as lizards and spiders, as they not only provide a source of nutrition 
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but also shelter in the form of their abandoned mounds (Haddad and Dippenaar-

Schoeman, 2002). Spiders and reptiles alike could be susceptible to contamination 

as the mound interior may be laden with contaminated faeces. Knowing the heavy 

metal levels of the mounds could also indicate whether the termites were bringing 

up heavy metals from the soil, hence making the contaminants more bioavailable 

to the environment. This phenomenon has been demonstrated in the Macrotermes 

spp. in northern and north-eastern Namibia where the authors suggested that the 

termites may be mining key micro-nutrients such as Mn, Co, Cu, Zn, Se and I for 

their fungus cultures (Mills et al., 2009). This study presents the first investigation 

of the heavy metal content in the species T. trinervoides and their mounds near 

tailing storage facilities. 

 

4.2. Methods and Materials 

 

4.2.1. Collection of the mound, soil and termite samples 

A medium mound was chosen at the AEL and West Complex sites for sampling. 

The soil profile next to the mound was sampled by using a Tractor-Loader-

Backhoe (TLB) to dig a 2 m trench next to the chosen mound (Figure 4.1). The 

surface litter and soil samples were collected at 0 – 2 cm, 2 – 5 cm, 5 – 10 cm 

intervals then at 10 cm intervals until 120 cm below the surface. The mounds at 

each site were then lifted off the ground using the TLB, wrapped in plastic (to 

contain the termites) and transported to the University of the Witwatersrand. It 

was not possible to sample the Control site as this site resided on private land 

which had a fenced perimeter. The mounds taken from AEL and West Complex 

sites were then placed in plastic troughs where samples were taken using a plastic 

spade. Samples were taken from the hard outer crust then at 10 cm intervals to the 

bottom of the mound where the queen and brood reside. All soil and mound 

samples were double bagged and placed in a cold room. Once the samples of the 

mounds had been collected, the termites from each respective mound were 

collected using entomological forceps and placed in plastic containers. A week 

later a small mound was lifted by hand from the Control site, placed in a container 

and brought back to the University of the Witwatersrand where the termites were 
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then collected as described above. Approximately 2 g of termites from each caste 

(workers, soldiers, nymphs and alates) were collected. 

 

 

Figure 4.1. Photograph of the trench dug just next to the mound at the AEL site. 

 

4.2.2. pH and conductivity 

The pH and conductivity of each sample of the mound and soil profile was 

measured using a pH meter (WTW 330i) and conductivity meter (WTW Cond 

3110). Before this was possible the meters had to be calibrated with standard 

solutions of known pH (pH 4 and 7) and conductivity (±100, ± 1500 and ± 5000 

µs). The soil and mound samples were also placed in a pestle and mortar to ensure 

clumps of particles were removed. Ten grams of each sample were weighed out, 

added to 20 mls of water and mixed together. The electrodes of the meters were 

then placed in the solutions and once the meters had equilibrated, the pH and 

conductivity recorded.  
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4.2.3. Moisture content 

To find out the moisture content of the soil and mound samples, a subsample was 

taken and placed in glass Petri dishes. These were labelled, weighed and placed in 

an oven at 50 ° C for 24 hours. Samples were taken out and weighed again. The 

difference between the samples before and after being oven dried was calculated. 

 

4.2.4. Testing the samples for heavy metals and cyanide  

Soil, mound and termite samples were prepared for the chemical analysis. The soil 

and mound samples were sieved and ground using an agate pestle and mortar and 

subsequently freeze dried. The termite samples were placed in a stirrer to remove 

any soil particles, freeze dried and ground in agate pestle and mortar. The 

concentration of heavy metals Mg, Fe, P, Li, Ti, V, Rb, Sr, Mo, Ba, La, W, Bi, 

Cd, As, Cu, Mn, Pb, Zn, U, Co, Cr and Ni for each sample were analysed. 

Cyanide content of the samples was unable to be analysed due to lack of time and 

available facilities that could conduct the analysis.  Soil certified reference 

materials were analysed to ensure the accuracy of the results of the analysis of the 

soil and Plant certified reference materials were used for the termites. Samples 

were analysed by the Agricultural Research Council (ARC) using a nitric acid 

digestion and the ICP-MS method was used for most of the metals. The ICP-OES 

method was used to analyse Zn, Cu, Mg, Fe, P and Mn,  

 

4.3. Results 

 

4.3.1. Conductivity, pH and moisture content 

The conductivity of the West Complex site showed a distinct trend of a steady 

decrease with increasing depth and then increased gradually from 40 cm. With a 

few exceptions (60 – 80 cm and 100 – 120 cm), the AEL site showed the same 

trend (Figure 4.2). The average conductivity of the soil between the two sites were 

not significantly different (t = 1.07, p = 0.29). When comparing the conductivity 

of the mounds between the two sites, the AEL mound had a higher average 

conductivity than the West Complex mound (t = -2.35, p < 0.05). The AEL 

mound also had a higher average conductivity than the AEL soil profile (t = 2.33, 
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p < 0.05) while the average conductivity of the West Complex mound did not 

differ significantly to the soil profile (t = 0.017, p = 0.98). 

Figure 4.2. Conductivity of the soil and mound profile at the West Complex and 

AEL site. 

 

The pH of the soil profile at both sites generally increased with increasing depth 

therefore the soils appear to be more alkaline at lower depths (Table 4.1). No 

patterns emerged when considering the distribution of pH throughout the mounds 

at the two sites (Table 4.2). The average pH content of the soils of the two sites 

did not differ significantly (t = - 0.70, p = 0.49). The mounds however, were 

significantly different in that the AEL mound had a significantly higher average 

pH content than the West Complex mound (t = - 2.97, p < 0.05). The pH content 

of the mounds at the AEL site did not differ significantly from the soil however 

the mounds at the West Complex site did have a significantly lower pH than the 

soil profile (t = 4.01, p < 0.05).  
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Table 4.1. pH values for the soil profiles at the two sites.  

 

  AEL West Complex 
Litter 6.09 5.5 
0 - 2 6.13 5.92 
2 - 5 6.1 5.94 
5 - 10 5.96 5.74 
10 - 20 6.08 5.96 
20 - 30 5.68 6.15 
30 - 40 5.76 6.4 
40 - 50 6.66 6.45 
50 - 60 6.38 6.38 
60 - 70 6.2 6.41 
70 - 80 6.28 6.23 
80 - 90 6.26 6.68 
90 - 100 6.33 6.96 
100 - 110 6.53 7.26 
110 - 120 7.21 7.48 

   
Mean ± SD 6.24 ± 0.37 6.36 ± 0.55 

   
 

Table 4.2. pH values for the mound profiles at the two sites.  

AEL West Complex 
Crust 6.64 5.28 
0 - 10 5.85 5.68 
10 - 20 5.97 5.54 
20 - 30 5.78 5.49 
30 - 40 5.45 5.37 
40 - 50 (bottom) 6 5.22 

Mean ± SD 5.95 ± 0.39 5.43 ± 0.17 

  

  
 
   

Generally, the soil profile appears to get moister as the depth increases evident by 

the small amount of water in the litter, then a gradual increase (with a few 

exceptions) and finally a large amount of water at the 80 cm depth (Figure 4.3). 
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The same can be said for the mounds. As expected the crust is much drier than the 

rest of the mound. Statistically, the moisture content of the soil and mound profile 

at the two sites did not differ (AEL: t = 0.36, p = 0.72; West Complex: t = 0.09, p 

= 0.93) however when the moisture content of the surface layer (litter – 20 cm) 

was compared to the mounds at the sites, the mounds had statistically more 

moisture content (AEL: t = - 4.13; West Complex: t = - 3.02, p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Moisture content of the soil and mound profile at the West Complex 

and AEL site. 

 

4.3.2. Heavy metal analysis 

The elements chosen to be presented in this study are Cu, Mn, Zn, Pb, U, As, Cd, 

Co, Cr and Ni as according to several studies (e.g. Rosner and van Schalkwyk, 

2000; Kim and Jung, 2004; Guo-li et al., 2008), these appear to be the most 

important heavy metals when considering contamination of soil and organisms. 

Due to the interference of Cl during the analysis of As, the accuracy of the results 
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were substantially reduced and therefore excluded. All samples had less than 0.2 

mg/kg of Cd. The concentrations of the other heavy metals are presented in the 

Appendix. The distribution of each heavy metal throughout the soil and mound 

profile at the two sites is presented to be able to compare the heavy metal 

concentrations between the soil and mound at the same site as well as between 

sites. Average heavy metal content in the mounds was compared to the surface 

layer (litter – 5cm) at both sites. Heavy metals in the termites were also compared 

with the heavy metals found in the soil and mound at the two sites.  

 

4.3.2.1. Copper (Cu) 

The soil profile at the West Complex site showed that Cu concentration was high 

at the surface, decreased with increasing depth and then increased again at 90 cm 

(Figure 4.4). The mounds at the West Complex site had significantly more 

average Cu content than the soil profile at the West Complex site (12.9 ± 1.8 and 

9.6 ± 3.2 mg/kg respectively; t = -2.31, p < 0.05) however when the average 

mound content was compared to the surface (litter to 5 cm, 13.7 ± 1 mg/kg)  there 

was no significant difference. The AEL site showed similar results (Figure 4.4). 

The Cu content of the soil profile at the AEL followed no specific pattern as the 

highest amount of Cu was found at 20 – 30 cm into the ground. The Cu content of 

the mounds at the AEL site however, increased with increasing depth. On 

average, the soil profile at the AEL site contained the statistically more Cu than 

the soil at the West Complex site (15.2 ± 2 and 9.6 ± 3.2 mg/kg respectively; t = - 

2.22, p < 0.05).  This was also the case with the mounds at the AEL and West 

Complex site (16.1 ± 1.8 and 12.9 ± 1.9 mg/kg respectively; t = - 1.36, p < 0.05).  
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Figure 4.4. Copper (Cu) content of the soil and mound profile at the West 

Complex and AEL site. The Cu content of the worker and soldier termites 

collected at both sites shown for comparison. 

 

4.3.2.2. Manganese (Mn) 

There was a relatively large quantity of Mn at the 90 – 120 cm depth of the West 

Complex site (Figure 4.5).  This large concentration did not occur in the mound. 

The average concentration of Mn in the soil (2575 ± 2249.7 mg/kg) did not differ 

significantly to the average concentration of Mn in the mound (2735 ± 644.3 

mg/kg). This was not the case at the AEL site as the mound had on average more 

Mn than the soil (2454 ± 373 and 1838.2 ± 447.3 mg/kg respectively; t = -2.82, p 

< 0.05). At both sites the average Mn content of the mounds was the same to that 

of the surface layer (West Complex site: t = -1.61, p = 0.15; AEL site: t = -0.68, p 

= 51). The Mn content in both mounds did not show stratification and are more or 

less homogenous.  
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Figure 4.5. Manganese (Mn) content of the soil and mound profile at the West 

Complex and AEL site. The Mn content of the worker and soldier termites 

collected at both sites shown for comparison. 

 

4.3.2.3. Zinc (Zn) 

At both sites, Zn appears to be present in relatively high concentrations from the 

litter to 5 cm into the ground (Figure 4.6). The mound at the AEL site had 

statistically more Zn content than the whole soil profile at the site (37.1 ± 9.9 and 

21.4 ± 9.8 respectively; t = - 3.29, p < 0.05) however when it was compared to the 

surface (litter – 5 cm, 39.7 ± 1.3 mg/kg) it was found to not be statistically 

different (t = 0.44, p = 0.67). The average Zn content of the mound at the West 

Complex site (25.4 ± 2.6 mg/kg) was statistically the same to that of the soil 

profile (22.7 ± 12.5 mg/kg) but different to the surface layer (45.2 ± 10.6 mg/kg; t 

= -2.03, p < 0.05). The AEL mound had statistically more Zn than the West 

Complex mound (37.1 ± 9.9 and 25.4 ± 2.6 mg/kg respectively; t = 2.77, p < 

0.05). The worker and soldier termites had an extremely high concentration of Zn. 

The concentration was so high that it had to be presented on a separate graph 

(Figure 4.7). 
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Figure 4.6. Zinc (Zn) content of the soil and mound profile at the West Complex 

and AEL site.  

 

 

Figure 4.7. Zn content of the worker and soldier termites at the AEL and West 

Complex site. 
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4.3.2.4. Lead (Pb) 

As with Zn, Pb appears to be present in relatively high concentrations from the 

litter to 5 cm into the ground at both the AEL and West Complex (Figure 4.8).  

The mound at the AEL site had statistically more Pb content than the soil profile 

at the site (20.5 ± 2.4 and 8.5 ± 5.7 mg/kg respectively; t = - 4.92, p < 0.05) as 

well as statistically more Pb than the West Complex mound (11 ± 4.4 mg/kg; t = - 

3.02, p < 0.05). The average Pb content of the mound at both the AEL and West 

Complex site was not statistically different than the surface layer  (AEL: t = 0.90, 

p = 0.39; West Complex: t = 0.93, p = 0.38). No patterns emerged when 

considering the Pb levels of the mounds.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Lead (Pb) content of the soil and mound profile at the West Complex 

and AEL site. The Pb content of the worker and soldier termites collected at both 

sites shown for comparison. 
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4.3.2.5. Uranium (U) 

Once again the trend of higher concentrations at the surface is also seen with the 

U content of the soil profile at both the sites (Figure 4.9). The U content of the 

mound at the AEL did not differ significantly from surface (3.08 ± 0.82 and 3.28 

± 0.46 respectively; t = 0.36, p = 0.72). The West Complex mound also had the 

same U content to that of the surface layer (1.91 ± 0.65 and 3.41 ± 1.67 

respectively; t = 2.01, p = 0.07).  Due to unforeseen problems with the ICP-MS, U 

content of the termites was unable to be analysed. 

 

Figure 4.9. Uranium (U) content of the soil and mound profile at the West 

Complex and AEL site. Definite values were not given for the U content of the 

rest of the soil profile and these values were all < 1. 

 

4.3.2.6. Cobalt (Co), Chromium (Cr) and Nickel (Ni) 

 The Co content of the soil profile at the West Complex site resembled that of the 

Cu content of the soil profile at the same site where Co content was high at the 

surface, decreased with increasing depth and then increased again at 90 cm 

(Figure 4.10). The Cr content of the soil profile at the West Complex site 
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generally increased with increasing depth (Figure 4.11). As for the Co, Cr and Ni 

content of the soil profile of the AEL site and the Ni content of the West Complex 

site, no trends or patterns emerged (Figures 4.10 – 4.12). The same can be said for 

Co, Cr and Ni content of the mounds at the two sites. The soil profile at the AEL 

site had on average significantly more Co, Cr and Ni content than the soil profile 

at the West Complex site (Co: t = 2.46; Cr: t = 2.07 and Ni: t = 2.41, p< 0.05). 

The mound profile at the AEL had significantly more Co than the mound at the 

West Complex site (10.2 ± 1.1 and 7.5 ± 1.8 mg/kg respectively; t = 3.24, p < 

0.05). The mounds at both sites had the same Co, Cr and Ni content to that of the 

surface.  

 

 

Figure 4.10. Cobalt (Co) content of the soil and mound profile at the West 

Complex and AEL site. The Co content of the worker and soldier termites 

collected at both sites shown for comparison. 
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Figure 4.11. Chromium (Cr) content of the soil and mound profile at the West 

Complex and AEL site. The Cr content of the worker and soldier termites 

collected at both sites shown for comparison. 
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Figure 4.12. Nickel (Ni) content of the soil and mound profile at the West 

Complex and AEL site. The Ni content of the worker and soldier termites 

collected at both sites shown for comparison. 

 

4.3.2.7. Termites 

The termites had extremely high Zn concentrations when compared to the soil and 

mound Zn concentrations (Figures 4.6 and 4.7). Termites also had a higher Cu 

content than that of the soil and mounds (Figure 4.4). The rest of the heavy metals 

were present in low concentrations in the termites and on all occasions, were 

lower than the soil and the mound concentrations (Figures 4.5, 4.8, 4.10 – 4.12).  
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amount found in the nymphs. When comparing the sites, the workers at the AEL 
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Control site. Surprisingly, the soldier and workers collected at the Control site had 

the highest Mn content. 

 
Table 4.3. Heavy metal content of the different termite castes collected at the 

AEL, West Complex and Control site. 

 

Element Workers 
 

Soldiers 
 

Alates 
 

Nymphs 

AEL 

West 

Complex Control AEL 

West 

Complex Control AEL AEL 

Cu 23.7 19.4 17.2 20.0 19.0 16.1 11.7 10.7 

Mn  240.9 308.8 788.3 129.0 127.3 560.0 32 25 

Zn 779.3 458.7 380.9 303.4 301.1 244.5 221.0 202.0 

Pb 5.15 4.12 2.15 2.80 2.31 3.18 0.73 0.71 

Co 1.503 1.651 1.125 1.893 1.206 1.030 0.309 0.166 

Cr 3.5 5.6 3.8 2.2 3.4 4.3 1.4 1.1 

Ni 3.5 7.6 3.3 3.8 3.5 3.5 1.3 0.9 

                          

 

4.4. Discussion 

 

As expected, the site closest to the tailings (AEL site) had higher levels of certain 

heavy metals in the soil and mound profile when compared to the soil and mound 

profile at the West Complex site. In general, the distribution of the heavy metals 

throughout the soil profile did not follow a specific distribution pattern however 

Zn, U and Pb tended to be concentrated in the top layer of the soil. The average 

heavy metal content of the surface layer did not differ significantly from the 

average heavy metal content of the mounds therefore indicating that termites are 

not making heavy metals more bioavailable to the environment. However, the 

termites themselves appeared to be accumulating Zn and Cu as these elements 

were much higher in the termites than that found in the soil and the mounds. An 

interesting trend appeared where the termite workers tended to accumulate the 

highest levels of heavy metals followed by the soldiers, the alates and the nymphs. 
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As was the case in a study conducted by Mills et al. (2009) entailing an 

investigation of pH content and conductivity in T. trinervoides mounds, the 

termite mounds in the West Complex site had a lower pH content and a similar 

conductivity when compared to the soil. This was not the case in the AEL mound 

as it had a similar pH and higher conductivity when compared to the soil, a result 

which was similar to what Brossard et al. (2007) found when studying 

Trinervitermes geminates and T. trinervius. The AEL mound also had a higher 

conductivity than the West Complex mound indicating that there is a higher 

concentration of ions and therefore a higher soil salt content. Due to the fact that 

AEL mound had a higher conductivity than the soil, this could signify that the 

termites are bringing up salts to the surface and incorporating them into the 

mound. The electrical conductivity measures total solutes and does not 

differentiate among various elements therefore one cannot say whether these salts 

are harmful to the environment or not.  According to Lee (2006), pH of soils 

generally increased with distance from mine tailings. This result was different to 

that found in this study as the pH was the same for the two sites even though the 

AEL site is closer to the tailings dams. The moisture content of both the mound 

and the soil at the two sites appeared to increase with increasing depth which can 

be expected due to the influence of gravity on water. The mounds had a higher 

moisture content than the surface layer indicating that water could be brought into 

the mound from deeper levels. Adam (1993), when excavating the mounds of T. 

trinervoides in the Free State, found vertical shafts extending 89 cm down into the 

soil where the soil was moister. Although no shafts were discovered in this study, 

it is possible that they were missed as according to Adam (1993) these shafts are 

very small (3 to 5 mm) and difficult to see. 

 

Guo-li et al. (2008) showed a distinct relationship between heavy metal content 

and distance from tailings, where the closer the site was to the tailings the higher 

the heavy metal content of the soil. This same relationship was found in this study 

where the mounds at the AEL site had more Cu, Zn, Pb, U and Co and the soil at 

the AEL site had more Cu, Zn, Co, Cr and Ni than the mounds and the soil at the 
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West Complex site. The levels of heavy metals found in the soil at the AEL site 

however, were much lower than those reported in other studies (Table 4.4). They 

are also all lower than the Dutch B threshold concentration (DBTC) values which 

are used to establish whether total concentrations of certain heavy metals in soil 

samples exceed guideline concentrations (Table 4.4, Moen et al., 1986 as cited by 

Aucamp and van Schalkwyk, 2003). 

 

The metals of Zn, Pb and U levels were at their highest concentrations in the top 

layer of the soil (litter – 5 cm) at both the AEL and West Complex site. This 

particular distribution where metals tend to be concentrated in the uppermost soil 

layers was also found with Zn and Pb in a site located near a lead/ zinc smelter in 

Arnoldstein, Austria (Rabitsch, 1995) as well as with Cu and Cd in a site 

contaminated by a metal refinery in Merseyside, England (Hunter et al., 1987). 

Rosner and van Schalkwyk (2000) showed that Zn levels in the soil profile near a 

gold mine tailings dam were the highest at the surface and sharply decreased with 

increasing depth. As for the other metals in this study, no particular distribution 

pattern according to depth was found. This lack of distinctive trend was also 

found by Kim and Jung (2004) who studied the Cu, Pb, Cr, Cu, Cd, Mn, As and 

Zn content of the soil profile in a paddy field 5 km from gold mine tailings located 

in Bongwha, Korea. 
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Table 4.4. The average heavy metal levels (mg/kg) found in the soil at sites near various mine tailings. The Dutch B threshold 

concentration (DBTC) values and depth at which the soil was sampled is also given. 

 

Reference Area Type of mine Depth (cm) Zn Pb Cr Cu Co Ni Cd 

Current Study Orkney, South Africa Gold 0 - 120 21.4 8.5 79.2 15.2 7.4 25.8 < 0.2 

DBTC values 500 150 250 100 50 100 - 

Rosner and van 

Schalkwyk, 2000 

Johannesburg, South 

Africa 

Gold  0 – 240 93.8 13.5 351 131.3 33 158 - 

Antwi-Agyei et al. 2009 Obuasi, Ghana Gold 0 - 12 72.64 24.22 - 39.64 - - - 

Guo-li et al. 2008 Hunan province, 

China 

Zinc-Lead 0 – 100  508.6 348.3 - 356 - - 7.53 

Boularbah et al. 2006 Southern Morocco Polymetallic  0 – 15 8361 5756 - 554 - - 31.5 

Boularbah et al. 2006 Southern Morocco Manganese 0 - 15 99 286 - - - 27.2 0.5 

Kim and Jung, 2004 Bongwka, Korea Gold 0 – 220 206 37 21.3 2 - - 0.21 
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The results showed that the termites are not making the heavy metals found in the 

soil more bioavailable to the environment as the average mound content at both 

sites was not statistically different to the heavy metal content found in the surface 

layer of the soil. The termites are most likely getting the soil used for mound 

construction from the surface as none of the heavy metal concentrations of the 

deeper regions of the soil profile matched the heavy metal concentrations in the 

mound. This means that animals that inhabit abandoned termite mounds are not 

more of risk of contamination than if they burrowed into the soil in this area. This 

is contrary to what was found by Sako et al. (2009) in Namibia where the levels 

of the heavy metal Mn, Ni, Cu, Zn and Cd in the mound of a Macrotermes spp 

were greater than in the soil. They suggested that there was a possible external 

supply of enriched materials or accumulation of in situ weathering products of the 

underlying bedrock. Another study also conducted in Namibia showed a marked 

enrichment of Mn, Co and Cu in the mounds of Macrotermes spp when compared 

to the top soil (Mills et al., 2009). They concluded that the termites are most likely 

mining these particular nutrients from the deeper soil profile.  

 

In this study, it was found that there is a potential risk to termite predators as the 

termites themselves appear to be accumulating Cu and Zn. The average amount of 

Cu in the termites at the AEL site was 21.9 mg/kg which, according to Lopez-

Alonso et al. (2006), is within the range 20 to 110 mg/kg where acute poisoning 

in mammals occurs. The levels of Zn were extremely high in the termites. The 

termite workers at the AEL site contained 779.3 mg/ kg, a value far higher than 

that of the soil. The likelihood of Zn poisoning occurring in a mammal predator is 

good as levels exceeding 700 mg of Zn/kg causes poisoning (Jenkins and 

Hidiroglou, 1991). However this poisoning would occur if the mammal was 

exclusively consuming worker termites only. A study conducted by Taylor et al. 

(2002) showed that the aardvark (one of the main predators of T. trinervoides) 

consumed more termite soldiers than termite workers (64 % soldiers and 36 % 

workers). Therefore due to the lower levels of heavy metals in the soldiers (303 

mg of Zn/kg), these predators may not be at risk. As for the other metals, it is 

unlikely that Mn, Pb, Co, Cd, Cr and Cd poisoning would occur in predators as a 
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result of termite consumption as these values were much lower than the heavy 

metal content found in the soil and are much lower than in the levels found in 

other invertebrates occupying areas contaminated by mining operations. For 

example, benthic invertebrates found in a stream impacted by discharged from 

mining operations accumulated approximately 3 mg/kg of Cd whereas in this case 

termites accumulated < 0.2 mg of Cd/kg (Kiffney and Clements, 1993). 

Earthworms found in soil contaminated by an abandoned mine in Spain had 190 

mg of Pb/ kg (Ruiz et al., 2009), much higher than the 4 mg/kg in the termites in 

this study. The termite alates are well known as a food source to bird predators as 

well as ground dwelling animals after the shedding of their wings (Abe et al., 

2000). These predators are not at risk as there were minute quantities of heavy 

metals in the alates, much lower than that found on the soil surface as well as that 

found in the other castes.  

 

Out of the different castes of termites, the workers had the highest levels of heavy 

metals followed by the soldiers, the alates and the least amount of heavy metals 

was found in the nymphs. The same trend was found in a Macrotermes spp. 

studied by Mills et al. (2009) where the workers had more heavy metals than the 

soldiers. The differences concentrations between the castes may be a result of 

differences of feeding as according to Mills et al. (2009), worker termites ingest 

soil particles during mound construction. A reason why the nymphs have less 

heavy metal content than the alates could be a result of metal accumulation with 

increasing age, a conclusion which was drawn by Grzes (2010) when studying the 

metal concentrations of red wood ant workers and larvae.  

 

To conclude, the termite mounds have the same levels of heavy metals as that in 

the surface layer of the soil therefore any contaminants at this soil level will enter 

the mounds. This shows that that termites are not making heavy metals more 

accessible to surface or shallow burrowing animals. Worker termites did 

accumulate high levels of Cu and Zn which could pose a potential risk to those 

predators that prey on them. However, the alates which are heavily predated upon 

by a broad spectrum of predators did not accumulate any heavy metals.   
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CHAPTER 5 – GENERAL DISCUSSION 

 

5.1. Discussion 

 

This study presented the first investigation of the impact of gold mine tailings on a 

termite species. The negative impacts of gold mine tailings on various animal 

populations have been documented in many countries around the world, 

particularly the USA. These studies have been mainly concerned with the 

detrimental effect of tailings on rodents (Clark and Hothem, 1991), birds (Henny 

et al., 1994) and bats (O’Shea et al., 2001). There have been only a few studies 

conducted on invertebrates (Besser and Rabeni, 1987; Ma et al., 2002; Medina et 

al., 2005) and no studies have been conducted on termites.  

 

After an extensive investigation into certain aspects of the biology of the snouted 

harvester termites inhabiting the three sites, the results were unexpected.  The 

West Complex site was presumed to be the most contaminated site as the mounds 

at the West Complex site had the hottest and most variable centre mound 

temperatures, a higher dead mound to live mound ratio and the lowest density of 

mounds. However, the soil chemical analysis confirmed that the AEL site was the 

more contaminated of the two sites due to higher levels of heavy metals. The AEL 

site was not a graveyard of dead termite mounds, in fact the termites appeared to 

be thriving in the most contaminated site. This could have been as a result of 

reduced predation as illustrated in another study on ants (Grzes, 2010) however 

this was unlikely due to the lack of evidence. This begs the question as to whether 

the tailings are having an impact on the termites or are these findings a result of 

other factors. Certain factors can be ruled out, for instance the lower density is not 

a result of soil type, texture or depth, vegetation composition, climate or rainfall 

as these were the same throughout the different study sites. Higher densities at the 

AEL site could be explained by the water table being closer to the surface, 

allowing the termites easier access to water and hence a more favourable 

environment within the mound. Termites are organisms with a thin integument 
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and are prone to desiccation therefore it is of great importance that a moist 

microclimate is maintained (Nel, 1968; Adam, 1993). As for the differences in 

temperatures of the mounds, results from previous studies have shown that these 

temperatures do not adhere to a set point temperature as is the case in the fungus 

cultivating termites which keep their temperatures to 30 °C (Adam, 1993; Korb 

and Linsenmair, 2000a; Field, 2008). If T. trinervoides did keep their 

temperatures to a set point temperature, it would have been easier to pin point any 

physiological abnormalities were the temperatures to deviate from the set point. 

The variability of temperatures at the three sites could be due to basic biological 

variability and that this species can tolerate a range of temperatures provided the 

humidity of the nest is high (Nel, 1968). 

 

One of the pertinent questions asked in this study was whether the termites were 

having an impact on the food chain through bioaccumulation of heavy metals 

and/or making the heavy metals more bioavailable to the environment by bringing 

heavy metals from the soil into their mounds. Snouted harvester termites play a 

significant role in the food chain as they provide a protein- and energy-rich food 

source to numerous predators. These predators include small rodents, mongooses, 

aardwolves, aardvarks, reptiles, birds and various invertebrates (Dean and 

Siegfried, 1991; Richardson and Levitan, 1994; Haddad and Dippenaar-

Schoeman, 2002).  This study found that the termite workers and to a lesser 

extent, soldiers, accumulated Cu and Zn. The concentrations of these elements 

within the termites were higher than that found in the surrounding soil and were 

also within the range that is known to cause acute poisoning in mammals (20 – 

110 mg/kg for Cu and 700 – 1000 mg/kg for Zn; Jenkins and Hidiroglou, 1991, 

Lopez-Alonso et al., 2006). The predators that are obligatory termite feeders (i.e. 

aardvarks and aardwolves) are at a particular risk due to the large volumes of 

termites they consume each day - an aardwolf has been known to eat more than 

300 000 termites in a day (Richardson and Levitan, 1994). Termite alates are a 

good source of food for several animal species including birds, rodents and small 

mammals. Yet these animals are not at risk of heavy metal poisoning as this study 

has shown that alates do not accumulate any heavy metals. The snouted harvester 
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termites may not only impact the food chain through bioaccumulation, their 

termite mounds also provide a shelter to other animals. These mounds may have 

been laden with heavy metals that have been brought up to the surface. This was 

not the case as the mounds had the same levels of heavy metals to that found in 

the top surface layer of the soil. It is unlikely that animals using the termitaria as a 

refuge are at any greater risk than burrowing into the soil.    

 

Another consideration is the use of this termite species as a bioindicator. A 

bioindicator is a species or group of species that respond predictably, in ways that 

are readily observed and quantified, to environmental disturbance or a change in 

environmental state (McGeoch, 1998). Using this definition, this study found that 

on a population level the termites did not respond predictably as no trends 

appeared i.e. they did not increase or decrease in population size along a 

contaminant gradient as was the case in other studies conducted on insects that 

were used as bioindicators (Nahmani and Lavelle, 2002; Hobbelen et al., 2006; 

Nummelin et al., 2007). On a physiological level, the temperatures of the mounds 

were more variable at the contaminated sites. However as discussed above, it is 

difficult to say that this was a direct impact of contamination.  

 

There were several limitations when conducting this study, the most prominent 

being the lack of contamination data for the Control site. Other limitations 

included the lack of particular site data that could account for the density and 

distribution of the termites such as vegetation cover which has been shown to 

influence termite density. From a statistical point of view, it would have been 

better to use at least 10 mounds when collecting temperature data however this 

would have been a very costly endeavour as the data loggers used to measure 

temperature (iButtons) are expensive. 

 

5.2. Conclusion 

Based on the density and distribution of the termite mounds as well as the 

temperature fluctuations within the mounds, the snouted harvester termites do not 

appear to be impacted by the tailings dams. Thus population status and 
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temperature profile of the mound cannot be used as an indication of 

contamination. It is unlikely the termites are impacting the food chain in its 

entirety due to the fact that one of the main food sources to the predators (the 

alates) are not accumulating heavy metals. Obligator termite feeders may be at 

risk due to the fact that they ingest large quantities of worker and soldier termites 

which have been shown to accumulate Zn and Cu.   
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APPENDIX 

Table A1. Heavy metal content (mg/ kg) of the soil profile at the AEL site. 
 
 Depth (cm) Mg Fe (%) P Li Be Ti V Mn (%) Rb Sr Mo Cs Ba La Bi 
litter 405 1.310 216 8.36 0.35 59 26 0.192 9.0 2.7 0.3 0.45 179 6.4 0.12 
0 - 2 403 1.430 225 9.36 0.36 62 28 0.232 9.4 3.2 0.3 0.47 258 7.7 0.12 
2 - 5 427 1.45 234 8.10 0.41 66 29 0.197 12.1 3.1 0.3 0.72 248 10.8 0.15 
5 - 10 347 1.62 207 9.55 0.45 63 30 0.266 12.6 3.1 0.2 0.54 289 9.9 0.10 
10 - 20 306 1.62 192 10.70 0.48 63 32 0.252 11.8 2.6 0.2 0.55 212 8.2 0.09 
20 - 30 273 1.63 183 8.88 0.50 62 35 0.187 11.1 2.6 0.2 0.61 165 8.4 0.13 
30 - 40 276 1.57 186 8.04 0.45 51 30 0.160 9.9 1.9 0.2 0.54 135 7.6 0.09 
40 - 50 306 1.75 210 9.74 0.59 59 34 0.166 9.9 2.0 0.1 0.87 198 8.1 0.10 
50 - 60 319 1.93 207 9.03 0.59 62 38 0.178 8.9 3.9 0.1 0.71 466 8.5 0.11 
60 - 70 355 1.97 198 8.07 0.61 69 37 0.229 8.5 4.3 0.2 0.71 633 8.3 0.11 
70 - 80 333 1.72 153 5.18 0.45 48 33 0.086 5.8 2.1 0.1 0.49 203 4.6 0.10 
80 - 90 396 1.49 146 5.66 0.47 48 31 0.141 6.6 3.1 0.1 0.52 331 5.3 0.11 
90 - 100 417 1.70 149 5.26 0.51 46 32 0.172 6.5 3.5 0.1 0.59 346 5.8 0.12 
100 - 110 435 1.89 145 3.68 0.37 35 26 0.126 5.0 2.6 0.1 0.55 124 4.7 0.10 
110 - 120 476 2.21 166 7.10 0.85 72 61 0.174 10.6 4.9 0.2 1.13 233 12.4 0.21 
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Table A2. Heavy metal content (mg/ kg) of the soil profile at the West Complex site. 
 
 Depth (cm) Mg Fe (%) P Li Be Ti V Mn (%) Rb Sr Mo Cs Ba La Bi 
litter 578 1.30 368 6.55 0.33 71 34 0.275 9.9 7.4 0.4 0.52 148 8.5 0.13 
0 - 2 434 1.36 252 7.16 0.34 45 33 0.283 9.2 5.6 0.3 0.46 123 7.8 0.13 
2 - 5 400 1.14 233 5.14 0.33 38 28 0.169 9.7 2.6 0.2 0.45 45 6.9 0.10 
5 - 10 318 1.16 222 5.07 0.35 34 28 0.205 9.9 3.1 0.3 0.47 76 6.9 0.07 
10 - 20 310 1.18 195 5.75 0.29 29 24 0.174 8.1 3.7 0.1 0.40 55 5.7 0.06 
20 - 30 298 1.15 196 4.55 0.34 28 25 0.130 8.2 4.2 0.1 0.47 39 6.0 0.06 
30 - 40 315 1.24 163 6.45 0.36 26 28 0.177 7.4 4.3 0.2 0.50 72 6.7 0.11 
40 - 50 356 1.09 154 5.35 0.39 24 25 0.109 7.3 2.7 0.2 0.59 43 6.4 0.07 
50 - 60 378 1.10 163 5.13 0.39 26 26 0.087 6.7 2.0 0.1 0.60 43 5.9 0.07 
60 - 70 364 1.33 150 4.47 0.44 30 32 0.120 6.1 1.8 0.1 0.61 35 6.1 0.09 
70 - 80 347 1.45 146 3.55 0.44 39 34 0.149 5.4 2.3 0.1 0.55 64 6.4 0.08 
80 - 90 379 1.50 144 3.58 0.47 44 38 0.150 6.4 2.5 0.1 0.66 53 6.9 0.08 
90 - 100 517 1.96 151 5.35 0.48 55 43 0.384 6.0 3.4 0.1 0.61 65 9.3 0.08 
100 - 110 669 1.83 149 4.22 0.44 56 41 0.478 6.2 3.8 0.1 0.62 46 8.5 0.08 
110 - 120 3841 2.18 195 7.58 0.56 76 38 0.971 5.6 8.6 0.1 0.56 54 10.7 0.08 
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Table A3. Heavy metal content (mg/ kg) of the mound profile at the AEL site. 
 
 Depth (cm) Mg Fe (%) P Li Be Ti V Mn (%) Rb Sr Mo Cs Ba La Bi 
Crust 325 1.46 165 7.88 0.48 49 39 0.254 9.8 3.4 0.3 0.59 146 8.6 0.12 
0 - 10 368 1.45 191 9.09 0.46 53 39 0.260 10.7 4.2 0.3 0.64 131 9.0 0.13 
10 - 20 449 1.51 223 8.97 0.45 47 37 0.309 9.9 4.8 0.3 0.57 155 8.5 0.12 
20 - 30 612 1.23 280 5.80 0.34 41 30 0.220 8.7 5.1 0.2 0.46 86 6.8 0.10 
30 - 40 634 1.19 303 8.91 0.38 53 35 0.225 10.7 7.6 0.7 0.57 119 8.0 0.13 
40 - 50 Bottom 746 1.18 392 7.30 0.37 60 33 0.205 11.6 8.3 0.3 0.63 108 8.1 0.13 
  

 
 
 
Table A4. Heavy metal content (mg/ kg) of the mound profile at the West Complex site. 
 
 Depth (cm) Mg Fe (%) P Li Be Ti V Mn (%) Rb Sr Mo Cs Ba La Bi 
Crust 377 1.18 209 10.05 0.50 59 34 0.306 9.8 5.1 0.3 0.47 151 8.4 0.10 
0 - 10 515 1.19 229 8.08 0.46 68 33 0.271 11.2 4.8 0.3 0.58 130 8.7 0.11 
10 - 20 630 1.18 242 9.55 0.40 70 32 0.275 11.2 5.6 0.2 0.56 114 10.0 0.10 
20 - 30 500 1.24 234 8.68 0.41 76 35 0.296 11.6 6.4 0.3 0.57 212 11.9 0.16 
30 - 40 562 1.21 242 7.23 0.44 58 34 0.340 10.6 5.5 0.3 0.51 141 8.6 0.09 
40 - 50 Bottom 375 0.99 199 5.58 0.33 49 29 0.152 10.5 4.6 0.2 0.51 69 6.7 0.07 
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Table A5. Heavy metal content (mg/ kg) of the termites at AEL, West complex and Control site. 

Site Caste Mg Fe P (%) Li Ti V Rb Sr Mo Ba La W Bi 

AEL                             

Workers 850 1110 0.506 0.730 16.3 1.6 1.6 3.4 0.58 9.1 0.74 0.19 < 0.1 

Soldiers 640 422 0.310 0.500 10.4 1.1 0.7 2.1 0.47 3.7 0.31 0.12 < 0.1 

Alates 565 124 0.379 0.105 11.6 0.5 0.9 0.9 0.32 0.76 < 0.2 0.06 < 0.1 

Nymphs 573 106 0.345 0.099 9.1 0.3 0.9 0.9 0.30 0.69 < 0.2 0.06 < 0.1 
West 
Complex 

Workers 839 1735 0.448 1.016 22.9 2.3 2.3 3.0 0.56 9.5 1.35 0.47 < 0.2 

Soldiers 671 695 0.342 0.407 13.1 1.1 1.0 2.0 0.43 3.83 0.51 0.27 < 0.1 

Control 

Workers 1069 1754 0.545 0.872 17.1 2.0 1.9 4.6 0.45 7.8 1.23 0.18 < 2 

Soldiers 1173 1469 0.613 0.567 17.2 1.9 1.5 4.0 0.40 6.8 1.04 0.32 < 2 
                              

 


