

BW79.1 Berchowitz D M and Wyatt-Mair G F. Closed-Form Solutions for a Coupled Ideal Analysis of Free-Piston Machines of the Harwell Type, Johannesburg: Univ of the Witwatersrand, 1979. (Research Report 78, School of Mechanical Engineering).

CM85 Corey J and Meacher J. Advancements in automotive Stirling engine development,

Co67 Cooke-Yarborough E. H. The Thermo-Mechanical Generator: A Proposal for a
(Memorandum AERE-M881).

Co74 Cooke-Yarborough E. H. Simplified Expressions for the Power Output of a

Co77 Cooke-Yarborough E. H. A data buoy powered by a Thermo-Mechanical Generator,

Co79 Collie M. J (Editor). Stirling Engine Design and Feasibility for Automotive

Cr65 Creswick F. A. Thermal design of Stirling cycle machines. SAE Trans, Int Auto Eng
Congr, Detroit, 1965, paper 650079.

CR85 Cooke-Yarborough E. H and Ryden D. J. Mechanical power losses caused by imperfect
heat transfer in a nearly-isothermal Stirling engine. Proc 20th IECEC, Miami

CT78 Catrell J. E, Thieme L G and Walter R. J. Initial Test Results with a
Single-Cylinder Rhombic-Drive Stirling Engine, Cleveland: NASA-Lewis,

De53 Denham F. R. A Study of the Reciprocating Hot Air Engine, PhD Thesis,

Eg52 Ergun S. Fluid flow through packed columns. Chem Eng Prog, vol 48, no 2, Feb 1952, pp 89-94.

Ki65 Kirkley D W. A thermodynamic analysis of the Stirling cycle and a comparison with experiment. SAE Trans, 1965, paper 650078.

KS53 Kline S J and Shapiro A H. NACA TN 3048, 1953. (Quoted in [KK58]).

La42 Langhaar H L. Trans ASME, vol 64, A55, 1942. (Quoted in [KK58]).

