TRANSIENT SEPARATION OF COMPRESSIBLE FLOWS OVER CONVEX WALLS

ADAM Olatunji Muritala

A thesis submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy.

Johannesburg, March 2011
Declaration

I hereby declare that the entire report in this thesis is my unaided original work, unless where clearly stated with proper acknowledgement. It is being submitted as a requirement for the award of the Doctor of Philosophy to the University of the Witwatersrand, Johannesburg, South Africa.

Signed this 11th day of March 2011

__
Adam Olatunji Muritala
Acknowledgement

I give special thank to Almighty Allah for His mercy on me and my family. I would like to thank my supervisors: Prof. B.W Skews and Dr C. Law for their good supervision, financial assistance and scholarly advice throughout the period of this research. Special thanks to my mentor Dr J.O Pedro and Dr (Mrs) Pedro for their support during the trying period.

I also acknowledge the assistance of Mr John Cooper and other member of staffs in the Mechanical Engineering workshop for their advice during the design and fabrication of my models. I thank Mr. Randall Paton for his assistance during experimentation, and my good colleague Mr A. Cochucho who assisted me also in experiments.

I thank my friend Br Abdujamiu Odusote (A& J Network South Africa), I also thank other muslim brothers (Dr Abduwaheed Ajibola and Br. Oniyide Abdgafar) and everybody who has contributed in one way or the other to my success.

Finally I thank my wife (Hajia Toyyibat Muritadha) for her understanding, as well as my parents and my children (Abdulazeem, Mujeebah and Roodiyah) for their patience during my absence.
PUBLICATIONS

Aspects of this work have appeared in the following publications:

ABSTRACT

This study investigated the shock induced transient separation of compressible flows over convex walls using both numerical and experimental analysis. The numerical simulations solved the Reynolds Averaged form of the Navier–Stokes equations, using unstructured quadrilateral cells. Some results are presented in numerical schlieren images for analysis. Experiments were conducted in a purpose built shock tube that allows for a large scale testing an order of magnitude greater than previously examined. The images of the interactions were captured with schlieren arrangement and later compared to the pictures from numerical schlieren analysis.

Three flow situations were examined: 30° corner in which the presence of the wall influences the flow; a 90° corner in which the internal flow features were not affected by the wall downstream; and a convex circular wall with flow influenced by the wall radius. The development of instabilities and the break-up of shear layer into vortices are evident in both experimental and numerical images especially on a 90° corner wall. The flow over the 30° corner wall developed instability at very low incident shock Mach numbers. At incident shock Mach 1.5 series of lambda shocks formed above the shear layer with strong instability under it. The instability developed into a homogenous turbulent flow after long times of the diffraction process.

The flow behind the diffracting shock Mach number of 1.5 on curved walls did not separate at small times but separated after long time of diffraction process. A three-shock configuration was observed in the perturbed region from incident Mach number 1.5 while two were observed at higher Mach numbers but the upper triple point faded away with time when the Mach number is approaching 3.0. Both the secondary and recompression
shocks exist for the range of incident shock Mach numbers between 1.5 and 2.0. However, the secondary shock could not be sustained at higher Mach numbers and the recompression shock was fading away as the diffraction process progresses downstream before finally disappearing at a later time.

The movement of separation point increases with time for high incident shock Mach numbers but decreases with time for low incident shock Mach numbers. Separation and shear angle are independent of the wall radius for high Mach number incident shocks. A kink that is formed at the lower extremity of the contact surface is proposed to be due to sudden change in radial velocity as a result of near wall effects which enhanced an increase in tangential momentum.

For high Mach number incident shocks the flow features are similar for the three geometries except that two triple points are formed on curved walls. Many flow features that only appeared at high incident shock Mach numbers in the conventionally sized shock tubes were observed at low Mach numbers in the present large scale tests.

The final analysis showed that the global flow behaviour behind a diffracted shock wave is well captured in large scale experimentations and the detailed flow behaviour is predicted better using SST k-ω turbulent model.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1.0 INTRODUCTION

1.1 Background and Motivation | 1 |
1.2 Review of Applicable Theories | 5 |
1.2.1 Properties of gas | 6 |
1.2.2 Normal shock wave | 6 |
1.2.3 Shock wave reflection | 10 |
1.2.4 Shock wave diffraction | 12 |
1.2.5 Theory of shock tube | 13 |
1.4 Thesis structure | 16 |

2.0 LITERATURE REVIEW

2.1 Introduction | 18 |
2.2 The perturbed region behind the diffracting shock wave | 19 |
2.3 Objectives of the present research | 28 |
3.0 MATERIALS AND METHOD

3.1 Research Methodology 29
3.2 Numerical Method 29
 3.2.1 Pre-processing 30
 3.2.2 The solution technique 35
3.3 Experimental Analysis 37
 3.3.1 Experimental facility 38
 3.3.2 Instrumentation 43
 3.3.3 Flow Visualization Techniques 44
 3.3.4 Model Design and Fabrications 47
 3.3.5 Experimental Procedure 51

4.0 ANALYSIS OF LOW MACH NUMBER INCIDENT SHOCKS

4.1 Introduction 53
4.2 Verification and validation of results 53
4.3 Low Mach numbers Incident Shock Wave on Plane Walls 59
 4.3.1 90° corner wall 59
 4.3.2 30° corner wall 65
4.4 Low Mach numbers Incident Shock Wave on Curved Walls 69
4.5 Pressure Trace from Experimental and Numerical Analysis 81

5.0 HIGH MACH NUMBERS INCIDENT SHOCK WAVE

5.1 Introduction 88

6.0 DISCUSSION OF RESULTS

6.1 Introduction 101
6.2 The Global Flow Behaviour behind the Diffracting Shock Wave 107
 6.2.1 Low Mach number incident shocks 107
 6.2.2 High Mach number incident shocks 110

7.0 CONCLUSION AND RECOMMENDATIONS

7.1 Introduction 115
7.2 Conclusions 115
7.3 Recommendations 117

REFERENCES 118

APPENDICES 124
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The characteristics of the flow behind the diffracting shock wave</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>The flow features behind the diffracted shock wave on curved wall</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Flow around a normal (moving and stationary) shock wave</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Prandtl - Meyer expansion wave</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Regular reflection from a rigid surface</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Irregular reflection from a rigid surface</td>
<td>11</td>
</tr>
<tr>
<td>1.7</td>
<td>Schematic diagram of a shock tube</td>
<td>14</td>
</tr>
<tr>
<td>1.8</td>
<td>Propagation of shock wave and expansion fan in the shock tube</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>A schematic diagram of a complex flow structure on 30° wall</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>The flow behaviour downstream of the corner</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>The complex flow region behind a diffracted shock wave on 90° wall</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>The complex flow region behind a diffracted shock wave on curved wall</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>The flow domain for the numerical simulations</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Location of points at which pressure histories were recorded</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram of the large scale experimental shock tube</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>The shock tube facility of the University of the Witwatersrand, South Africa</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Z - configuration schlieren arrangement</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>The curved model with the transducer ports</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>The assembly of 200mm diameter model</td>
<td>48</td>
</tr>
<tr>
<td>3.8</td>
<td>The assembly of 30° corner model</td>
<td>49</td>
</tr>
<tr>
<td>3.9</td>
<td>Location of the transducer ports on the 30° model</td>
<td>50</td>
</tr>
</tbody>
</table>
4.1 Comparison of complex flow region to the computational domain at incident shock M_s 3.0 on 30° corner wall

4.2 The behaviour of separation point for different number of elements at M_s 2.0 on a 200mm diameter wall

4.3 The diffraction of incident shock M_s 1.5 on 90° wall using experimental (a, b & c), laminar Navier –Stokes (d, e & f) and SST k - ω turbulent model (g, h &i)

4.4 Experimental images of the flow features at incident shock Mach number 1.4 on 90° convex corner

4.5 The vortices behind an incident shock Mach number 1.4 on a 90°corner using laminar Navier-Stokes solver

4.6 The horizontal orientation of the vortex with time

4.7 The displacement of the vortex with time

4.8 The change in size of the vortex with time

4.9 The evolution of the shear layer at M_s 1.5 incident shock on 30°corner

4.10 Development of homogenous turbulent flow at M_s 1.5 shock on 30°wall

4.11 Turbulent break-up of shear layer at incident shock M_s 1.34

4.12 Increase in boundary layer thickness at incident shock Mach 1.5

4.13 Diffraction of incident shock M_s 1.5 on a 200mm diameter wall

4.14 The flow features at M1.60 on 200mm diameter wall

4.15 Comparison of the flow features behind an incident shock M_s 1.6 on 200mm diameter wall

4.16 The pressure flood plot showing the secondary and main vortex (SST $K-\omega$ turbulent model at M_s 1.6)

4.17 Transient development of a three-shock configuration at incidence shock
Mach number 1.5 on a 400mm diameter wall

4.18 The pressure traces for incident shock M_s 1.33, 1.57, 1.51 and 1.40 over 200mm diameter wall.

4.19 Pressure history for incident shock M_s 1.57 on 200mm diameter wall

4.20 Experimental and numerical pressure history for incident shock M_s 1.56 on 200mm diameter wall

4.21 Experimental pressure history at incident shock M_s (1.50 & 1.52) on 200mm diameter wall

4.22 Behaviour of wall shock with change in incident shock Mach number

5.1 Flow features behind M_s 3.0 incident shock on convex walls (SST k-\omega turbulent model) (A) 200mm diameter wall (B) 30° (C) 90°

5.2 The change in position of the separation point with time on 400mm diameter wall

5.3 Effect of wall curvature on the movement of separation point at incident shock Mach number 3.0

5.4 Effect of incident shock Mach number on the shear layer for the 400mm diameter wall

5.5 Effect of curvature on the shear layer for incident shock M_s = 3.0

5.6 The flow structure behind an incident shock M_s = 2.0 on a 200mm diameter wall

5.7 Three-shock configurations at incident shock M_s 2.0 on a 200mm diameter wall

5.8 Transient development of recompression shock at incident shock M_s 3.0 on 400mm diameter wall.

6.1 Separation behind an incident shock M_s 1.5 on a 200mm diameter wall

6.2 Comparison of the flow features behind the low and high incident shock Mach numbers on different walls

6.3 Lambda shock propagation at incident shock Mach number 1.5 on 30°, 90° and 200mm diameter walls
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>The velocity (a & b) and Pressure (c & d) contour of a separating flow at Ms 1.5 on 200mm diameter wall</td>
</tr>
<tr>
<td>6.5</td>
<td>The velocity contour plot of the complex flow region for incident shock Ms 3.0 on 200mm diameter wall</td>
</tr>
<tr>
<td>6.6</td>
<td>A secondary shear layer from three-shock configuration</td>
</tr>
<tr>
<td>6.7</td>
<td>Density contour plot showing a kink at the lower portion of the contact surface</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Simulation data</td>
<td>36</td>
</tr>
<tr>
<td>3.2 Determination of natural bursting of mylar sheeting combinations</td>
<td>40</td>
</tr>
<tr>
<td>3.3 Transducer calibration constants</td>
<td>43</td>
</tr>
<tr>
<td>4.1 Data obtain from Pressure traces</td>
<td>86</td>
</tr>
</tbody>
</table>