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ABSTRACT  

 

The Human Immunodeficiency Virus (HIV) epidemic is currently one of the greatest 

challenges and most important health issues in the world. South Africa has one of the 

fastest growing epidemics in the world therefore reliable estimates of prevalence and 

incidence are required for understanding the magnitude of the epidemic and 

improving the methods of prevention.  

 

This study examines the estimation of HIV incidence from a cross-section of people, 

using one of the laboratory methods that discover recent HIV infection in blood 

samples. The incidence estimate is obtained at a single point in time, thereby saving 

time and cost expended in following a cohort over a period of time.  It also examines 

incidence from pooled blood samples, and evaluates the assumptions of the different 

methods of estimating HIV incidence, comparing each of them; and checking the 

sensitivity of the estimates to the assumptions. 

 

Results from the simulation study shows that accurate estimates of incidence can be 

obtained by pooling blood samples; and these estimates are obtained at a fraction of 

the cost of individual testing. 
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CHAPTER 1 : INTRODUCTION 
 

1.1 BACKGROUND 
 

The Human Immunodeficiency Virus (HIV) epidemic is currently one of the greatest 

challenges and most important health issues in the world. The virus needs no 

introduction, as it is the one of the deadliest diseases in the world, with no known cure 

as yet. It is spread most commonly by having unprotected sex with an infected 

partner, having contact with infected blood, sharing of needles or syringes with 

someone infected with the virus and from mothers to their babies during pregnancy, 

birth or breast feeding. 

 

Over the years, knowledge of the spread and prevention of HIV infection has 

increased considerably (Pettifor, Macphail, Rees and Cohen, 2008; UNAIDS, 2008). 

However, despite this increase in knowledge, the epidemic is still spreading at an 

alarming rate in Africa, especially in Southern Africa. UNAIDS (2008) estimates that 

by the end of 2007, there were 5.7 million South Africans who were infected with the 

virus, and this figure makes this the country with the largest HIV epidemic in the 

world.  

 

1.2 THE HIV EPIDEMIC IN SOUTH AFRICA 
 

 In addition, South Africa has one of the fastest growing epidemics in the world 

(UNAIDS, 2008), thus reliable statistics are required for understanding the magnitude 

of the epidemic and improving the methods of prevention. In order to measure how 

fast the epidemic is growing, estimates of prevalence and incidence are needed to 

determine the magnitude and rate of new infections.  

 

The first cases of the epidemic are reported to have occurred around the early 80‟s, 

and were limited to homosexual men. However the pattern soon changed and by the 

late 1980‟s, the epidemic had spread to the heterosexual population, and even the 

children, through mother-to-child transmission. The main mode of transmission of 

HIV is through sexual intercourse (Gilbert and Walker, 2002).  The spread of HIV in 
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South Africa is mainly due to heterosexual contact, with subtype C being the 

predominant subtype (Abdool Karim and Abdool Karim, 1999). 

Like most African countries, South Africa is plagued with poor quality of data on HIV 

(Williams and Gouws, 2001). However, the country and its government continue to 

try to find ways to improve on this deficiency. Data on HIV is collected from 

Voluntary Counseling and Testing (VCT) centers and Sexually Transmitted Diseases 

(STD) clinics, Family Planning Clinics and hospitals.  Williams, Gouws, Wilkinson, 

and Abdool Karim (2001) acknowledge that incidence estimates are not available in 

South Africa because of the difficulties and cost associated with obtaining these 

estimates.  

 

A number of studies have been undertaken by different bodies or research 

organisations, for the purpose of collecting data on HIV. Examples of these include: 

The Nelson Mandela/HSRC study of HIV/AIDS (Shisana and Simbayi, 2002); the 

Medical Research Council (MRC) research among sex workers in KwaZulu Natal 

(Ramjee, Abdool Karim and Sturm, 1998) and the Carletonville survey carried out on 

a sample of mineworkers living in informal settlements in Johannesburg (Gilgen, 

Campbell, Williams, Taljaard and Macphail, 2000). However, these studies only focus 

on prevalence rates. 

 

 In order to plan HIV prevention and treatment efforts, the number of infections that 

are present within a population has to be determined or estimated (Kral, Lorvick, Gee, 

Bacchetti, Rawal, Busch, and Edlin, 2003) and this can be achieved through the 

estimation of prevalence (the number of HIV positive people in the population) and 

incidence (the number of new infections in the past year or other time period).  

 

1.3 HIV PREVALENCE 
 

The UNAIDS 2008 report defines HIV prevalence as the total number of people 

living with HIV irrespective of when they were infected. HIV prevalence estimates 

are usually obtained using one of two methods: 

 

1) By monitoring sentinel populations: Sentinel surveillance is a system in which 

specific sites and population groups are selected, and a predetermined number of 
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people are routinely tested in a regular and consistent way (Nelson, 2005). Examples 

of Sentinel Populations include:  

 Pregnant women in antenatal clinics 

 STD clinic attendees 

 Blood donors 

 Tuberculosis patients and  

 Commercial sex workers.  

This is the most common method of estimation, especially in the less developed 

countries. In South Africa for instance, a national survey of HIV prevalence among 

women attending public antenatal clinics has been conducted by the Department of 

Health annually since 1990 (Department of Health, 2007). The information from these 

surveys is then used to estimate prevalence in other groups through modelling. The 

limitations of the estimates obtained from the surveys are that we cannot draw 

conclusions about certain parts of the population, such as men, non pregnant women 

and the sexually inactive. They also do not give estimates of incidence, unless the 

same people are re-tested and the person identifier is known; and this is not usually 

the case. 

 

2) By population based surveys. This method uses a nationally representative sample 

of households to determine HIV prevalence. This is done by screening a 

representative sample using an antibody test such as Enzyme Linked Immunosorbent 

Assay (ELISA), and estimating the proportion of people infected with HIV from the 

known or estimated population total (Salomon and Murray, 2001). Examples of 

population–based surveys in South Africa are those carried out by the Human 

Sciences Research Council (HSRC) in conjunction with the Nelson Mandela 

Foundation and by the MRC. 

 

Salomon and Murray (2001) note that although these surveys provide information on 

trends in the epidemic, and are more representative of the population; they have been 

undertaken in only a few developing countries. They are also very expensive to 

conduct and suffer from non-response bias due to respondents‟ refusal. 

 

Although HIV prevalence estimates are useful in determining the state of the 

epidemic, they only give us a „historical‟ perspective on the rate of infection, giving 
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us information only on what occurred in the past (Gouws, Williams, Sheppard, 

Barryett and Abdool Karim, 2002). With the high increase in HIV/AIDS related 

deaths, it is not clear whether a slowing down of the prevalence rate can be related to 

a decrease in the incidence rate, a high increase in death rate or both. 

 

1.4 HIV INCIDENCE 
 

HIV incidence is defined as the number of people who became infected with the HIV 

virus over a period of 1 year (UNAIDS, 2008). 

Incidence can be expressed in two ways: 

 Incidence rate, which is the represented by the number of incident cases 

divided by the population at risk within a specific time period in the course of 

a time period. It is also known as Incidence density. 

 Incidence risk, which is the ratio of incident cases to the population at risk at 

the beginning of the observation period. Philippe (2001) notes that it is also 

known as the cumulative incidence. 

 

HIV incidence data are less straightforward and more complex to obtain; and are 

usually estimated rather than measured directly. Research has shown that the HIV 

virus can be present in an individual without any clinical symptoms for a long time 

(Parekh and McDougal, 2005). Sometime after an individual becomes exposed to the 

HIV virus, there is a window period of 130-170 days during which HIV antibodies 

cannot be detected in the blood using standard HIV antibody tests. According to 

Rosenberg (2002), this period after infection with HIV, but before the development of 

detectable antibodies is known as Acute HIV Infection or Primary HIV infection. 

During this window period, people are usually unaware of the fact that they are 

infected, because when they go for tests, the tests are negative, yet they actually have 

the virus.  

 

Thus the challenge in obtaining incidence estimates is to establish when an individual 

first contracted the virus, and this is no easy feat. Nevertheless, some indirect methods 

of obtaining incidence estimates exist, and they include the back-calculation method, 

cohort studies and cross-sectional studies. Since this study is focused more on 

incidence than prevalence, these methods will be described in detail in the literature 
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review section. It should be noted that while the different methods are outlined, not all 

of them will be used in this study, as this study focuses on the technique based on 

pooling samples and using more than one test for HIV.  This technique involves using 

portions of blood samples submitted to a laboratory, with the person identifiers 

removed, and then testing samples obtained by pooling the blood of several patients.  

 

Laboratory methods and tests to identify recent HIV infection have improved over 

time (Parekh and McDougal, 2005). However, one main issue with using these tests is 

the cost associated with the administering of the tests. The pooling of blood samples is 

one of the mechanisms used in the reduction of the costs associated with HIV testing. 

 

Estimates of HIV incidence are used to formulate treatment plans and also help to 

examine and evaluate programs aimed at reducing the spread of the virus. When new 

cases of HIV arise in any country, this shows that the public programs to eradicate the 

epidemic are not working and more ways should be devised to educate people on the 

need for prevention (Rutherford, Schwarcz, and McFarland, 2000; Kral et al., 2003). 

 

1.5 PROBLEM STATEMENT 
 

HIV incidence estimates in South Africa, and indeed the whole of Africa, are scarce 

and mostly unreliable. Most of these estimates are obtained from cohort studies, 

which are based on studies of pregnant women (Gilbert and Walker, 2002; Williams 

et al., 2001). Thus they are non-representative of the whole population since they do 

not include men and non-pregnant women. The question now is: Are there other cost 

effective methods of estimating incidence, which do not have to depend on only a 

select group of the population? Can these methods be used without having to organise 

a cohort study? Will any of these methods provide accurate estimates, be as precise or 

even more precise as the widely used cohort method? 

 

This study examines the estimation of HIV incidence from a cross-section of people, 

using one of the laboratory methods that discover recent HIV infection in blood 

samples. Thus the incidence estimate is obtained at a single point in time, thereby 

saving time and cost expended in following a cohort over a period of time.  It also 
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examines the estimation of incidence from pooled blood samples, which provide 

accurate estimates of incidence at a lower cost than the common antenatal surveys. 

 

1.6 BACKGROUND TO THE STUDY 
 

In 2004, medical researchers from the University of the Witwatersrand, Johannesburg 

carried out a cross-sectional study to assess the prevalence of Acute HIV infection 

among South African men and women attending a primary health care clinic in 

downtown Johannesburg.  

 

Consultations between the researchers and representatives of the School of Statistics 

and Actuarial Science (University of the Witwatersrand) were set up in order to assist 

with the various concerns raised during the study. One of the concerns was the 

determination of which confidence intervals to use for the research. During the course 

of these consultations, several questions were raised with regards to the effect of 

sensitivity and specificity of the tests used, and the effect of prevalence and the 

window period on estimates of incidence. 

  

1.7 OBJECTIVES 
 

The primary objective of this research is to investigate the statistical properties of 

estimates of incidence from a cross-sectional sample, using a pooling technique. The 

other objectives are to: 

1. Evaluate the assumptions in the different methods of estimating HIV incidence, 

comparing them; and checking the sensitivity of the estimates to the assumptions. 

2. Examine the strengths, weaknesses and appropriateness of the current approaches 

to estimating the incidence of HIV. 

3. Examine the accuracy of pooling blood samples for the detection of HIV infection. 

4. Compare incidence estimates derived from individual testing and pooled testing of 

different grouping strategies, discussing the different results. 

 

In addition, an estimate of HIV incidence based on a sample from the Esselen clinic 

will be provided, as well as applying the findings from this report to the dataset from 

the clinic. 
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CHAPTER 2 : LITERATURE REVIEW 
 

This chapter provides a review of the literature around the different methods of 

estimating HIV incidence, and the advantages and disadvantages associated with each 

method. Due to the importance of cost in group testing, there will also be a detailed 

discussion on the pooling method and its application.  

 
2.1 METHODS OF ESTIMATING HIV INCIDENCE 
 

HIV incidence rates help us understand the epidemiology of HIV, and also help in the 

formulation of sound heath policies, the appropriate allocation of resources, and the 

planning of programs for the primary and secondary prevention of infection. 

Cleghorn, Jack, Murphy, Edwards, Mahabir, Paul, O‟Brien, Greenberg, Weinhold, 

Bartholomew, Brookmeyer, and Blattner (1998) note that HIV incidence is the best 

measure of the current trends of the epidemic, and very important in determining 

Acquired Immune Deficiency Syndrome (AIDS) incidence.  Despite the rise of 

infection rates all over the world, HIV incidence estimates are still difficult to obtain. 

There are different types of studies which provide estimates of HIV incidence, and 

they are discussed below. 

 

2.1.1 COHORT STUDIES 
 

A cohort study is a study in which patients who presently have exposure to a certain 

risk are followed over time (in days, weeks, months, years) through periodic and 

repeated testing, and are compared with another group who are not exposed to the risk 

under investigation (Grimes and Schulz, 2002). These studies involve repeated sample 

collection and testing of individuals at set intervals. 

 

 In a typical cohort study, groups of people called cohorts are chosen because they 

have an exposure of interest. The respondents are free of the disease of interest at the 

beginning of the study and then they are followed up through time to determine who 

develops the disease. Incidence is then estimated by dividing the number of new cases 

discovered by the number of person years of exposure (Kaplan and Brookmeyer, 

1999; Satten, Janssen, Busch, and Datta, 1999). Cohort studies are also known as 

longitudinal studies or follow up studies, and they are considered to be the best 
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method for determining the incidence and
 
natural history of a condition because it 

enables calculation of true incidence rates and relative risks (Grimes and Schulz, 

2002). 

 

Cohort studies are of different types: In a closed cohort study, subjects or respondents 

are recruited into the study, and followed up for a specific period of time. During this 

time, no new subjects may be recruited into the study, even if some subjects may be 

lost through death, withdrawal or migration (Cleghorn et al., 1998). In an open cohort, 

subjects are continually enrolled into the study, thus making the study long and 

undefined. 

 

Although cohort studies are regarded as the common approach to estimating 

incidence, they have several disadvantages and limitations. The results from the study 

may be non-representative of the whole population if they involve a select group of 

such as women attending antenatal care clinics.  

 

Brookmeyer, Quinn, Shepherd, Mehendale, Rodrigues and Bollinger (1995) note that 

this type of study is often plagued by a „follow up bias‟. Bias in cohort studies occurs 

when individuals who return for follow up have different incidence rates from those 

who do not return. This is usually because during follow up, they may have received 

counselling, and have become aware of the dangers of the disease, and therefore 

engaged in lower-risk behaviour. Follow up bias may also occur when individuals 

who are at higher risk of HIV infection do not return for follow up.  In addition, they 

are time consuming because the researchers have to wait for the conditions of interest 

to develop before arriving at a conclusion (Kaplan, Kedem, and Pollack, 1998). Other 

disadvantages are the fact that cohort studies are expensive, and difficult to undertake, 

because they require assembling and following up a large number of people. 

(Brookmeyer, 1997; Gouws et al., 2002; Parekh and McDougal, 2005).  

 

An example of a cohort study is the one conducted by Beyrer, Brookmeyer, 

Natpratan, Kunawararak, Niraroot, Palapunya, Khamboonruang, Celentano and 

Nelson (1996). The cohort study, which was conducted in Thailand, involved using 2 

different populations: commercial male sex workers and commercial female sex 

workers. The study was conducted between 1989 and 1994. 
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The results show high incidence rates of 23.8 per 100 person-years among female sex 

workers, and 11.9 per 100 among the males. However, follow up among the 

respondents was incomplete because of the high migration rates and mobility of the 

sex workers. Thus the estimates obtained from this study were based only on those 

who could be followed up. 

 

Few cohort studies have been carried out in Africa because of the outlined 

disadvantages.  

 

2.1.2 BACK-CALCULATION 
 

Estimates of HIV incidence can be obtained from AIDS incidence data through the 

method of back-calculation, or back-projection. Back-calculation is a method of 

estimation that makes inferences about the HIV incidence through the use of AIDS 

prevalence, and the distribution of the incubation period over time (Kaplan and 

Brookmeyer, 1999; Brookmeyer, 1991). The concept of back-calculation is to use the 

incubation period to work backwards and reconstruct how many people must have 

been infected to give rise to the observed pattern of AIDS cases (Brookmeyer, 1996).  

 

Since most developed countries have some form of AIDS reporting, this method of 

estimation is favoured because it makes use of readily available data on AIDS. 

According to Bacchetti, Segal, and Jewell (1993) back-calculation depends on 3 major 

factors: 

1. The incubation period: this is the time between HIV infection, and AIDS diagnosis. 

2. The number of AIDS diagnoses over time (obtained from national surveillance 

systems).   

3. A model for the distribution of infections. 

The basic equation of back-calculation is given by: 

0
( ) ( ) ( | )

t

a t I s F t s s ds                           (2.1) 

where: ( )a t is the cumulative number of cases of AIDS diagnosed by the year t  

 ( )I s  is the infection rate in year s, and 

( | )F t s  is the incubation period distribution among individuals infected in    

year s.  
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Brookmeyer (1996) gives a simple explanation for this equation: an individual, who 

has been infected in a previous year s, would have an incubation period shorter than t 

– s if that individual is diagnosed with AIDS in year t. The value of ( )a t can be 

obtained from national surveillance data on AIDS and ( )F t  can be derived from 

various epidemiological studies. These can then be used to obtain information about 

the incidence of new infection ( )I s . 

 

In using this method, it is assumed that: 

1. There is sufficient data available for accurate estimation 

2.  Incubation does not vary across populations (Bacchetti et al., 1993). 

 

Earlier works using back-projection include studies done by Bacchetti et al. (1993) 

and Brookmeyer (1996). 

 

Estimates from back-calculation are not reliable, and produce large statistical 

uncertainty due to limited information on the incubation period distribution and 

because the time of HIV infection is usually unknown (Kaplan and Brookmeyer, 

1999). In most African countries, there are no accurate data and statistics on the AIDS 

epidemic due to incomplete reporting of AIDS cases. For those countries with data on 

AIDS, there are errors in AIDS incidence data due to underreporting of AIDS cases, 

reporting delays, and non-response bias.  

 

Williams et al. (2001) note that methods of back-calculation have not been applied to 

South African data as reporting of AIDS cases is voluntary and the data are too 

inconsistent and incomplete to be of use. 

 

2.1.3 CROSS-SECTIONAL STUDIES 
 

A cross-sectional study is a study which examines the presence or absence of a 

disease and its exposure at a particular point in time. The respondents who take part in 

a cross-sectional study usually do not have previous knowledge of their disease or 

exposure. Although cross-sectional studies are flexible because they can either study 

whole populations, or a representative sample; they are prone to selection bias in 

choosing the respondents. Also, the characteristics of the population surveyed may 
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change with time due to deaths from the HIV virus. Despite these disadvantages 

however, cross-sectional studies are more cost effective and time saving than the 

cohort study. Because cross-sectional studies are more flexible in terms of cost and 

ease of implementation, most researchers have resorted to using the concept to 

propose different methods of estimating incidence. 

 

2.1.4 TRENDS IN HIV PREVALENCE 
 

Various statistical models have been developed to estimate incidence from cross-

sectional surveys. These estimates can be obtained by using trends in HIV prevalence 

obtained from serial cross-sectional surveys. Incidence is indirectly estimated by the 

slope of prevalence over time assuming the population remains constant over time. 

However, some other models have been described in literature (Brookmeyer et al., 

1995; Williams et al., 2001).  

 

Cleghorn et al. (1998) used one of these models to estimate HIV incidence in patients 

attending a Sexually Transmitted Disease clinic in Trinidad and Tobago between 1987 

and 1991. The annual incidence rates were calculated as the difference in prevalence 

at two time points divided by the time period between the two surveys. Although 

estimates obtained from serial cross-sectional surveys are less expensive to obtain, 

one major disadvantage is that there are high levels of non response. Also, the 

population surveyed could be changing because of unknown selection bias. (Cleghorn 

et al., 1998).  

 

In South Africa, Williams et al. (2001) presented a method of estimating the incidence 

of HIV infection by combining data from a single cross-sectional survey with 

information on the change in the overall prevalence with time. They state that while 

most models work under the assumption that prevalence is unchanging, this is not 

applicable to the South African scenario where the epidemic is still on the increase. 

To address this issue, the authors propose a model that links the prevalence of 

infection among women of age a at time t, to the incidence with assumptions about 

the growth rate of the epidemic and AIDS mortality rate. Their model was based on 

observed age-specific sero-prevalence data on 3,163 women, aged between 15 and 49 

years, attending antenatal clinics in a rural district in Kwazulu-Natal province. 
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They presented 2 methods of obtaining age-specific incidence from age-prevalence 

curves (Williams et al., 2001).  

 

In the first method, a smoothed prevalence curve, estimates of the AIDS related 

mortality and the current epidemic growth rate were used. The authors suggest using 

the slope of the age-prevalence curve = P a t P a t( , ) ( , )  1 1 , 

where P a t( , ) = Prevalence at age a at time t and  

P a t( , ) 1 1 = The prevalence at age a 1at time t 1 . 

Therefore to obtain incidence, the prevalence at any age a 1must be reduced by the 

amount by which the prevalence has increased and by the proportion of people who 

have died due to AIDS related diseases in the last year. The incidence at age a at time 

t; I a t( , ) ) is then given as: 

( 1)
( , ) ( , ) ( 1, )

( )

P t
I a t P a t P a t e

P t


    

Where P a t( , ) is the age-specific prevalence at age a at time t, ( )P t is the average 

adult prevalence at time t, and µ is the AIDS related mortality per year.  

 

Williams et al. (2001) also note that although this model is simple and easy to use, it 

assumes that the survivorship function of those with HIV infection is exponential and 

does not take into consideration the fact that infections in those of age a will have 

been accumulated over the years. 

 

In the second method, P a t( , ) is a function of the proportion of infected people; 

c a t( , ) , and the proportion of susceptible people of age a at time t; s a t( , ) .  

i.e.  

( , )
( , )

( , ) ( , )

c a t
P a t

c a t s a t


  

 

This proportion of people at risk s a t( , )  is the probability that a person who has 

reached age a remains uninfected by the virus. This method assumes any form for the 

survivorship function, and permits changes in prevalence over time. It however 

requires that the data be detailed in order to give correct estimates. 
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Using these models, the average annual incidence per susceptible persons in the 

population aged 15-49 was 11.4%, with a confidence interval of (10.0-13.1). The 

annual incidence of infection per susceptible increased from 5.4% (3.3–8.5%) at age 

15 years to 24.5% (20.6–29.1 %) at age 22 years and declined to 1.3% (0.5–2.9%) at 

age 50 years (Williams et al., 2001). 

 

Parekh and McDougal (2005) however, pointed out that although this approach was 

useful, the assumptions about the growth rate and mortality rate would have a 

significant impact on the outcome. 

 

2.1.5 LABORATORY METHODS 

 

It is important to note that none of the preceding methods above provide information 

on exactly when an individual became infected with HIV, and this is the most 

important consideration in measuring new occurrences or incidence. It has been 

suggested that dependence on cohort studies and estimates based on statistical models 

of AIDS cases and prevalence data can be eliminated if there was a reliable means of 

distinguishing individuals with recent infection within a population. (McDougal, 

Pilcher, Parekh, Gershy-Damet, Branson, Marsh and Wiktor, 2005). 

 

Some laboratory tests have recently been developed that detect new HIV infection in 

the time between HIV infection and detection of HIV antibodies. These test methods 

differentiate recent HIV infection from established infection and estimate incidence 

from cross-sectional surveys (Parekh and McDougal, 2005; McDougal et al., 2005). 

Incidence estimates are subsequently obtained by using the relationship between 

prevalence, incidence and the duration of the window period. 

 

One of such tests is the Serologic Testing Algorithm for Recent HIV Seroconversion 

(STARHS) test, detailed by Janssen, Satten, Stramer, Rawal, O‟Brien, Weiblen, 

Hecht, Jack, Cleghorn, Kahn, Chesney and Busch (1998). This test is also known as 

the „sensitive-less sensitive‟ test and it is a testing algorithm which involves testing a 

single blood specimen from a person with HIV infection using two separate ELISA 

tests, with one of the tests being more sensitive to antibodies than the other. In the 

study by Rutherford et al. (2000) for example, patients who are positive on the 
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sensitive test, and negative on the less sensitive test were estimated to have become 

infected within 129 days, with a 95% confidence interval of 109–149 days 

(Rutherford et al., 2000). The estimate of incidence was given as: 

 
365

100
n

I x x
N T

   
    
                             (2.2) 

where I is the incidence per year, 

n is the number of persons who were positive on the sensitive test and negative on the 

less sensitive test 

N is the sum of n and those who are HIV negative on both tests, 

T is the estimated number of days between seroconversion on both tests, given as 129 

days in the above study, which was based on ELISA testing. 

 

A study carried out by Gouws et al. (2002) in South Africa estimated the incidence of 

HIV using the STARHS data for women attending antenatal clinics in Hlabisa, 

Kwazulu-Natal. Blood serum was collected from 2623 women aged 15 to 50, and this 

was done anonymously. 

 

The authors also used the mathematical model developed by Williams et al. (2001) to 

compare estimates to those obtained from the STARHS method. The results were very 

similar-except for higher estimates of incidence in women aged 40 to 44 years using 

the STARHS method. They state that more research is required to confirm the 

accuracy of these results. 

 

Brookmeyer and Quinn (1995) also propose a method of estimating HIV incidence 

rates based on a single cross-sectional survey. In this approach, a group of individuals 

are tested for HIV antibodies. Those who test negative or indeterminate for HIV are 

tested again via the p24 antigen test, which recognizes early HIV infection better than 

the standard HIV antibody test. The expected proportion of p24 antigen positive is 

given as:  

    *p I                                       (2.3) 

where „I‟ is the incidence rate and μ is the mean duration of the p24 antigen 

seroconversion period. This estimated mean duration was given as 22.5 days with a 
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95% confidence interval of 13-42 days, based on a Markov model of transitions 

between states, fitted to their data. 

 

One source of uncertainty with this method is concerned with μ, the mean duration. 

Le Vu, Pillonel, Semaille, Bernillon, Le Strat, Meyer, and Desenclos (2008) explain 

that the number of days during which the p24 antigen is detectable is too short, and 

has even become shorter because of the development of new antibody tests that are 

more effective. Due to this uncertainty in the mean duration, incidence estimates 

obtained should be cautiously recommended. Another limitation with this method is 

that large sample sizes are required, especially in low incidence areas (Brookmeyer 

and Quinn, 1995). 

 

Few of these laboratory methods have been introduced in Africa, despite frequently 

being used in the more developed countries like the United States. 

 

2.2 ISSUES IN HIV TESTING 
 

Although current HIV antibody testing methods detect infections, they do not 

distinguish between recent (incident) and long-term (prevalent) infections (Parekh and 

McDougal, 2001).  Therefore, to accurately estimate an individual‟s status, it is 

important that the type of HIV test used is one that easily makes this distinction 

between what type of infection it is.  

 

Tests to diagnose HIV infection are of different types: those that detect antibodies, 

tests that identify antigens such as the p24 antigen test, tests that detect /monitor viral 

nucleic acids and those that provide an estimate of T lymphocyte numbers 

(Constantine, 2001). 

 

When choosing a test, considerations should be given to the cost of the test, its 

sensitivity and its specificity. The sensitivity of a test is the probability that a diseased 

person will be correctly classified by a test; while the specificity of a test is the 

probability that a non-diseased person will be correctly classified by a test (Litvak, 

Tu, and Pagano, 1994).  
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A perfect test has 100% specificity and 100% sensitivity but currently, there is no 

perfect HIV test. Studies have shown that the p24 test has a specificity of 99%, and a 

sensitivity of about 79%. Conversely, the HIV RNA test has a sensitivity of 100% but 

a specificity of 97%. The ELISA test has a sensitivity of 77% and specificity of 97% 

(Hecht, Busch, Rawal, Webb, Rosenberg, Swanson, Chesney, Anderson, Levy, and 

Kahn, 2002). As new tests evolve, the costs, sensitivity and specificity of the tests are 

constantly changing. The table below summarizes the details of the three tests from 

Hecht et al. (2002) and it is important to note that these numbers have changed over 

the years.  

 

Table 2.1: Sensitivity, specificity & cost of different HIV tests 

TEST SENSITIVITY SPECIFICITY COST 

p24 Antigen 79 99 $25 

HIV RNA 100 97 $119 

ELISA 77 97 $20 

  

Litvak et al. (1994) provided an overview of the relationship between sensitivity and 

specificity. If sensitivity is improved by retesting all negative samples, specificity will 

decrease; and if the specificity is improved by retesting all positive samples, 

sensitivity will decrease. Both approaches involve an increase in cost because either 

way, testing is duplicated. According to Litvak et al. (1994), the only way of 

increasing the quality of the test kits and reducing cost simultaneously is by pooling 

the samples together. 

 

2.3 POOLED TESTING 
 

In a standard HIV screening test, patients are tested one at a time. Patients who test 

positive are retested with a confirmatory test, while those who test negative are not 

retested. When estimating incidence, standard screening is not cost efficient because 

we have to test each individual. Various strategies have been developed recently to 

overcome this inefficiency in cost. One of these developments is the grouping of 

samples together and testing them as if they were one sample. This is known as 

pooling.  

 

Pooled testing is also known as group testing and this procedure was developed by 

Dorfman (1943). The method was first used in the United States to detect syphilis in 
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U.S soldiers going off to World War II. Under this program, a sample of blood was 

first drawn from each man, and each blood sample was then tested for the presence of 

the syphilis antigen. However, Dorfman (1943) proposed that instead of testing each 

individual sample, the blood samples should be pooled into a certain number of 

groups, and these groups would now be tested instead of the individual samples. If the 

pool tests negative, it means that none of the individual samples in that pool has the 

disease, hence, it will not be necessary to test the individual samples making up that 

pool. If the pool tests positive, the individuals making up the positive pool would be 

tested one by one to determine which particular ones are positive (Dorfman, 1943; 

Brookmeyer, 1999). A diagrammatic representation of the Dorfman pooling algorithm 

is given below in Figure 2.1.  

 

Chen and Swallow (1990) outlined the goals behind pooled testing which are mainly 

two-fold:  Firstly, to detect all individuals in the population as being infected with a 

particular disease or not, while reducing the number of tests at the same time. This is 

known as the “Classification problem”. The second goal is to estimate the proportion 

of individuals who have a particular disease in a population (prevalence), without 

identifying the infected individuals. In statistical literature, this is known as the 

“Estimation problem” (Kim, Hudgens, Dreyfuss, Westreich, and Pilcher, 2007). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Diagram of dual stage pooling algorithm as proposed by Dorfman 

(1943). Individual blood sera pooled into groups of n and these groups are tested. 

The individuals making up the positive pools are retested to determine which 

particular individuals are positive. 

 

Total number (N) of individuals to be tested 

Grouped into pools of size n 

Positive Negative 
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The classification problem aims at reducing the expected number of tests involved in 

the grouping procedure, while the estimation problem aims to minimize the mean 

squared error of the proportion of positives for a fixed number of tests (Hung and 

Swallow, 2000).  

 

2.3.1 VARIANTS OF POOLING 
 

The original pooling algorithm as proposed by Dorfman (1943) is quite simple and 

has been used as a foundation for studies of infectious diseases. Kline, Brothers, 

Brookmeyer, Zeger and Quinn (1989) for instance undertook a study to determine the 

accuracy and cost effectiveness of estimating HIV sero-prevalence in a population 

survey using pooled testing. In their procedure small groups of at most 15 samples 

were created. If the test result is negative, all 15 samples are declared negative. If the 

test result is positive, then each of the 15 samples is tested individually. They 

observed a cost reduction of up to 80% as compared to individual testing of all 

samples. 

 

Some other pooling procedures have been proposed as an extension of the above 

pooling strategy. Litvak et al. (1994) discussed two different group testing methods in 

which positive groups are split into several subgroups of almost equal size, denoted as 

T2
 
and a subsequent extension as T2

+
.  For the first test (T2), if the pooled sample 

example above tests negative, then all 15 samples are declared negative. If it tests 

positive, then it is divided into 2 different subgroups of size 7 and size 8. The testing 

procedure is then repeated within each of the subgroups. For the second test (T2
+
), if 

the pooled sample tests negative, it is retested.  

Each group that produces a negative outcome is retested at most r-1 times (where r is 

the maximum number of times a group will be retested before being classified or split 

further into smaller groups). If all r-1 tests are negative, the group is classified as 

negative; otherwise, it is classified as positive. They concluded that both methods 

were better than Dorfman‟s procedure.  

 

Johnson and Gastwirth (2000) describe a two stage procedure which is similar to 

Dorfman‟s algorithm. In the first stage every individual is randomly pooled into 

groups of size k≥1. Due to the fact that some errors may occur in this stage, a second 
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stage is adopted. In the second stage, a random sample of units from the pools/groups 

that tested negative in the first stage are pooled into new pools and are retested. If a 

pool or group tests positive in the second stage, then all the individual samples that 

make up that pool are tested by a gold standard test to identify the samples with the 

specific characteristic in question. The idea behind re-pooling a portion of individuals 

from negative pools is that accurate inferences can be made about the accuracies of 

the test used; and the probability of having a false negative result pass through the 

system is limited. 

 

A simple extension of Dorfman‟s procedure is known as Hierarchical group testing or 

multistage testing.  In this method, a master pool (n) comprising all samples is first 

tested. If the result is positive, the pool is then divided into non-overlapping sub-

pools. As the name implies, the re-grouping of such samples can be divided into as 

many stages as possible, until individual samples are tested (Kim et al., 2007).  

Brookmeyer (1999: 609) describes the procedure for the single stage pooling as 

follows: 

“N randomly selected individuals are allocated to one of 1n  pools that each consist of  

1c  individuals.  Suppose 
1
r  of the n1 pools test positive (i.e., at least one of the 

individuals in each of these pools has the disease) and 1
s  of the pools test negative 

(i.e., all individuals in each of these pool (sic) do not have disease), where 
1
r + 1

s = 1n . 

The likelihood function is given as: 

 

                                    (2.4)   

 

The maximum likelihood estimator of the overall prevalence p (Thomson, 1962) is: 

                 p̂ = 1

1

11/

1

c

n

s 
 
 

  ”                                                               (2.5)    

Brookmeyer (1999: 609) further states that: 

“In a multistage pooling study, the positive pools identified at each stage are 

subdivided and tested.”  

 

   1

1

1

1
1 1 1(1 ) 1 (1 )L

rc s cn
p p

r
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“For example, in stage 2, each of the 
1
r  positive pools identified at stage 1 is divided 

into pools consisting of 2c  individuals. Suppose the jth positive pool from stage 1 

yields 2 jr  positive and 2 js  negative pools in stage 2 (j=1, …, 
1
r ). The 2 jr  positive 

pools are then subdivided and tested in stage 3.  More generally, at the ith stage, 

pools of size ic are constructed from the positive pools identified at stage i-1.  The 

numbers of positive and negative pools that originate from the jth positive pool of 

stage i-1 are called ijr  and ijs  respectively. The total number of positive pools at 

stage i is: 1
1i ij

i
j

r
rr 


  (for i≥2) and the total number of negative pools at stage i 

is 1
1 ij

i
j

r

i ss 


 .  The total number of stages is called k. 

 

The likelihood function of the general multistage pooling study can be expressed as a 

product of conditional probabilities of the pooling results from stage i given the 

results from stage i – 1.  At stage i, the conditional probability of observing ijr  

positive pools and ijs  negative pools originating from the jth positive pool at stage i-

1, conditional on the event that at least one of the ci-1 individuals from this pool has 

the disease is: 

     
ijij iij ij i

ij 

rs  cc

1

r  + s
1 1 1

   r  

1 (1 )
ij

i
c

p p

p
L




 
 
 

  

 
.                                                           (2.6)  

The likelihood function for k stages is: 

-1

1 ij

2 1

* L
irk

i j

L L
 

  ”                                                      (2.7)    

Substituting for ijL  “and simplifying, we obtain:  

L      1

1 11 k
krN c

pp                                            (2.8) 

where 
1 1 i i

k

i
N c s


  is simply the total number of individuals in negative pools, 

k
r is the final number of positive pools identified at kth stage and k

c is the number of 

individuals in each of these positive pools.” (Brookmeyer, 1999: 609). 
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“Each individual in the negative pool contributes the factor  1 p  and each positive 

pool contributes the factor   1 1 k
kc

r

p  .  The likelihood depends only on the final 

size of the positive pools, ck, and not on the pool sizes at earlier stages (ci, i<k). After 

setting log L
p




=0, we obtain  

1

1

1ˆ
kcN

N
p 

 
  

 
 .” (Brookmeyer, 1999: 609-10).                          (2.9) 

 

Brookmeyer (1999) explains that if there is an assay to detect early onset of the 

disease, we can estimate incidence from a multistage pooling study by substituting p̂  

for p   in the incidence equation: p  = *I  . Thus an estimate of incidence Î  is given 

as: 

1

11
1ˆ kcN

N
I



 
  

  
  

 

 .                                                 (2.10) 

 

A practical example of multistage pooling is outlined in the NC STAT program by 

Pilcher, McPherson, Leone, Smurzynski, Owen-O'Dowd, Peace-Brewer, Harris, 

Hicks, Eron, and Fiscus, (2002) using a three stage hierarchical algorithm as follows: 

First, disjoint master pools of 90 specimens are tested. Second, positive master pools 

are divided into sub pools of 10 specimens each and these sub pools are tested. Third, 

specimens from the positive sub pools are individually tested. 

 

Multistage testing has been used in the detection of acute HIV infection (Pilcher, 

Price, Hoffman, Galvin, Martinson, Kazembe, Eron, Miller, Fiscus, and Cohen, 2004; 

Pilcher, Fiscus, Nguyen, Foust, Wolf, Williams, Ashby, O'Dowd, McPherson, Stalzer, 

Hightow, Miller, Eron, and Cohen, 2005; Quinn, Brookmeyer, Kline, Shepherd, 

Paranjape, Mehendale, Gadkari, and Bollinger, 2000; Brookmeyer, 1999) and will be 

the focus of this research report. 

 

Johnson, Kotz, and Wu (1991) examined hierarchical algorithms in the presence of 

test errors. They derived the expected number of tests, pooling sensitivity and pooling 
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specificity for a hierarchical algorithm. They also allow sensitivity and specificity to 

be dependent on the number of pools in each stage. 

 

An alternative to Hierarchical group testing is a method called array based specimen 

pooling. Kim et al. (2007) note that this approach is frequently employed in genetics 

but remains underutilized in the infectious disease setting. To begin with, n
2 

specimens are usually arranged in an n x n matrix format, and pools of size n are 

created from all samples in the same row or in the same column. Using the 

assumption that there are no false negatives, the pools are tested, and all positive 

specimens will lie at the intersection of a positive row and a positive column pool. 

Kim et al. (2007) note that this method is not effective for estimating infectious 

diseases mainly because it requires an extremely large number of specimens, and it 

does not consider test errors i.e. false negatives and false positives. It should be noted 

that this variant is mentioned for the sake of completeness, but not used in the study. 

 

2.3.2 ASSUMPTIONS IN POOLING 
 

The feasibility of pooling blood samples have been studied by various authors such as 

Quinn et al. (2000), and Brookmeyer (1999). Sergeant and Toribio (2004) report that 

pooled testing is based on a number of assumptions: 

1. The status of an individual is independent of the status of others both 

within and outside the pool. 

2. The test used is sensitive and specific enough to detect when one of the 

pooled samples is positive or negative. 

3. The sensitivity of the test for a pool is approximately the same as it is for 

an individual sample. (Litvak et al., 1994). 

4. The dilution of individual samples into the group does not affect the 

accuracy of the tests. 

 

2.3.3 THE DILUTION EFFECT 
 

Gupta and Malina (1999) define the dilution effect as the failure of tests to detect an 

infected sample when it is diluted with a large number of negative samples. Zenios 

and Wein (1998) note that if the size of a pool is large, some of the positive sera may 

be excessively diluted by negative sera and consequently become undetectable in the 
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pool. This can compromise the sensitivity of a test thereby resulting in the 

underestimation of prevalence and may also lead to a loss of accuracy. 

 

To examine the effect of dilution, Wein and Zenios (1996) develop a hierarchical 

statistical model which links the HIV test output with the antibody concentration in 

the pool, thus capturing the effect of pooling different samples together. Their 

approach simultaneously captures the dilution effect, while estimating prevalence 

directly from optical density (the attribute that is observed and measured in an ELISA 

test) readings. They assumed that the optical density of the pool is the average of the 

optical densities of the individual samples. Their results show that although the 

dilution effect may lead to a slight loss of accuracy during pooled testing; this can be 

overcome by the choice of the pool/group size. In spite of this concept, the analysis 

has one main disadvantage- consideration is not given to the effect of the window 

period donors in the model. 

 

2.3.4 OPTIMAL POOL SIZE 
 

One advantage of pooled testing is the reduction of the number of tests used, and the 

subsequent reduction in the cost of testing. The optimal pool size is the one that 

provides accurate results whilst minimizing the loss in sensitivity and specificity of 

the tests. In dual group and multistage testing, the optimum choice of the size of pools 

depends on the prevalence of the disease in the population, and the accuracy and cost 

of the tests used (Johnson and Gastwirth, 2000). Generally, group sizes are 

predetermined by the laboratory personnel in charge of the procedure. 

 

2.3.5 CONFIDENCE INTERVALS 
 

Measures of the uncertainty due to random error are typically presented in 

epidemiologic research in the form of a confidence interval (Cole, Chu and 

Brookmeyer, 2006). Kline et al. (1989) conducted a study to evaluate the feasibility 

and accuracy of pooled samples in estimating HIV prevalence in large samples. Point 

and interval confidence estimates were obtained from the pooled sera. In their study, 

blood samples from two large population surveys were pooled separately. Prevalence 

was estimated by maximum likelihood and given as:  
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1

1 (1 [ / ])ˆ cs np                                      (2.11) 

and the asymptotic variance of  p̂  is estimated as : 

[2/ ] 1

2

{ / [1 ( / )] cs n s n
v

c n


                                    (2.12) 

where n represents the number of groups/pools, c  is the number of blood samples 

making up n  and s  is the total number of positive pools. 

 

Generally the approximate 95% confidence interval was given by Kline et al. (1989) 

as:  

     ˆ 2p v                                               (2.13) 

The confidence intervals to be used and compared in this report are based on what has 

been used in similar literature (Cowling, Gardner, and Wesley, 1999; McDougal et 

al., 2005; Hauck, 1991 and Brookmeyer et al, 1995). The confidence intervals are 

defined as:  

Normal Approximation Method of the Binomial Confidence Interval:  

1 / 2

(1 )p p
p z

n



                                      (2.14) 

where p = proportion of interest and n = sample size. 

Exact Binomial Confidence Interval:  

Upper limit: (1 )
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Lower limit: 
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              (2.16) 

where m is the number of pools and x is the number of positive samples 

detected. 

Exact Poisson Confidence Interval:  

Upper limit:  21
/ 2;2 2

2
x                (2.17) 

Lower limit:  21
1 / 2;2

2
x               (2.18) 



25 

 

where x is the observed count and  2 ;P a is the P
th

 quantile of the chi-

square distribution with a degrees of freedom. 

Another confidence interval defined in McDougal et al., 2005 is given as:  

ˆ 1.96
I

p
N

                  (2.19) 

where p̂ is the proportion of interest, „I‟ is the annualized incidence rate, and N is the 

number of infected individuals classified as positive on the assay or test used 

(McDougal et al., 2005). This will be termed the McDougal approach confidence 

interval. 

 

Cowling et al. (1999) note that in low prevalence populations, the lower confidence 

limit may be negative due to the “inappropriateness of the large-sample normal theory 

in extreme-low-prevalence situations”. To resolve this problem, Hauck (1991) 

proposed an alternative confidence interval that will not give values less than zero, 

and does not depend on the asymptotic variance ( v ). The two methods recommended 

were: 1) to obtain an asymmetric interval that uses the normal approximation with a 

continuity correction and 2) to obtain exact confidence intervals by assuming a 

binomial distribution for the number of positive pools (Hauck, 1991). Due to the high 

prevalence of HIV in South Africa, it is safe to assume that we are unlikely to obtain a 

negative confidence limit; therefore, the method of Kline et al. (1989) is used to 

obtain the confidence intervals in this report. 

 

2.3.6 OTHER AREAS OF APPLICATION 
 

Pooled testing has been successfully used to screen blood donors in less-developed 

countries for the HIV virus (Emmanuel, Bassett, Smith, and Jacobs, 1988). However, 

the validity of this has been questioned because of the possible loss in sensitivity 

during this process (Johnson and Gastwirth, 2000; Kennedy, 2004a). 

 

Pooling has been applied to the study of other infectious diseases such as Hepatitis B, 

Hepatitis C, and West Nile Virus (Westreich, Hudgens, Fiscus and Pilcher, 2008). The 

extension of this method into the study of HIV has also proved useful especially in the 

area of reducing the costs of HIV tests (Litvak et al., 1994; Saraniti, 2006; Kline et 

al., 1989). Chen and Swallow (1990) pointed out that it is used to quantify resistance 
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factors in plants. It has also been used to estimate disease prevalence in animals and 

infection rates in insect vectors (Sergeant and Toribio, 2004; Munoz-Zanzi, Johnson, 

Thurmond, and Hietala, 2000; Maherchandani, Munoz-Zanzi, Patnayak, Malik, and 

Goyal, 2004). Other applications are in the area of genetics and the demonstration of 

cost efficiency and reduction in pharmaceutical companies (Westreich et al., 2008; 

Xie, Tatsuoka, Sacks, and Young, 2001). 

 

Kennedy (2004b) notes that in populations with low prevalence rates, pooling can 

result in more accurate tests. Although it is a cost reducing method, cost savings are 

only going to be substantial where there are a large number of samples. 

 

In summary, the various methods of estimating incidence have been examined. 

Although all the methods outlined above have their disadvantages, they are still in use 

in different countries all over the world today. Pooled testing provides a way to group 

samples together, test them, and still be able to estimate prevalence and incidence 

from these samples-except of course, at a lower cost. One issue that has not been 

addressed in the literature is the sensitivity of incidence estimates to the different 

assumptions in pooling and this will be discussed in upcoming chapters. 
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CHAPTER 3 : METHODOLOGY 
 

3.1 STUDY POPULATION 
 

The sample that initiated this study was made up of consenting attendees at the 

Hillbrow Esselen Street clinic in Johannesburg. This clinic is a primary care facility, 

providing HIV testing services, Sexually Transmitted Infections (STI) services, and 

Voluntary Counselling and Testing (VCT).  The respondents were recruited into the 

study between April and October 2004. Data was collected for each individual on age, 

sex, and the arm of the clinic where the test took place: either the STI or the VCT 

arm. No physical examination or behavioural data were collected in this survey. A 

total number of 1906 individuals were anonymously tested, of which 970 (50.9%) 

were male and 936 (49.1%) were female. The study was performed on anonymous 

and unlinked samples as specified by the ethics committee of the University of the 

Witwatersrand (Stevens, Akkers, Myers, Motloung, Pilcher and Venter, 2005). 

 

3.2 THE POOLING ALGORITHM (ESSELEN CLINIC DATA) 
 

From the 1223 respondents who tested negative on the ELISA test, a portion of the 

blood samples taken from each respondent was then used to create 12 pools of 100 

samples. This was done specifically to have an equal number of specimens in each 

pool. The balance of the samples (23) was later pooled, with negative results. 

 

Applying the RNA test on these 12 pools, 3 pools were found to be positive, 

indicating that there were positive individual samples within the pools; and 9 pools 

were negative-no further testing was required on these 9 pools. Therefore 300 samples 

would have to be retested. The 3 positive pools were split into 6 pools of 50. After 

testing, 3 of the 6 pools were found positive and 3 pools were negative. Thus 150 

samples were retested, while the other 150 needed no further testing. The 150 positive 

samples were again grouped into 15 pools of 10 from which 7 pools were found 

positive, and 8 pools were found negative. The 70 samples were then tested 

individually, and 8 of these were positive. The remaining 80 samples were negative, 

and needed no further testing.  

 



28 

 

Of the 23 other samples 2 pools of 10 were created, which tested negative on the RNA 

test. The remaining 3 samples were tested individually and also tested negative on the 

RNA test. 

 

3.3 POOLING STRATEGIES 
 

Two main algorithms are considered:  The first is based on Dorfman‟s (1943) dual 

stage approach where a number of samples are combined into pools of a certain size. 

If the pooled samples produce a value equal to or greater than the lower limit of 

interest for the pool then all individual samples in the affected pools are tested in the 

second stage. If the sample values are below the lower limit of interest, they are 

considered negative and no further tests would be performed on these pools. 

 

The second algorithm follows the example of a pooling strategy set by Quinn et al. 

(2000). The strategy is a 3- stage Hierarchical pooling algorithm with the following 

general structure:  

a) Firstly, a “Master Pool” containing all blood samples is tested. 

b) If the master pool is positive, we group samples into non-overlapping sub-

pools and test these sub-pools.  

c) Individual specimens from the positive sub-pools are tested. 

 

The pooling algorithm describing the method used is found below and is a 

modification of the algorithm used by Quinn et al. (2000). 

 

3.4 OTHER MODEL ASSUMPTIONS 
 

 The outcome of both the antibody test and the HIV RNA test is either positive 

or negative: there are no indeterminate results. 

 There are no errors in testing.  

 Constant sensitivity and specificity which is independent of pool size.  
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Figure 3.1: Pooling Strategy used in HIV testing for 1200 antibody negative 

respondents attending the Esselen Clinic in Johannesburg, South Africa. The 

results for the remaining 23 samples have been omitted in this figure. 

 

3.5 OPERATING CHARACTERISTICS OF POOLING 

ALGORITHMS 
 

The operating characteristics of pooled algorithms have been defined in group testing 

literature (Kim et al, 2007 and Westreich et al, 2008).  Denoting the dual stage 

algorithm defined by Dorfman (1943) by S2 and the three stage algorithm defined by 

Quinn et al. (2000) by S3, the characteristics of the algorithms are:  

 

 

Pooling &Testing 

12 test pools of 

100 

(12 x100) = 1200 

3 pools positive 

(3x100) = 300 

7 pools positive 

(7 x 10) = 70 

3 pools positive 

(3 x 50) = 150 

6 test pools of 50 

(6 x 50) = 300 

15 test pools of 10 

(15 x 10) = 150 

70 specimens tested 

individually 

No further testing 

9 pools negative 

(9 x 100) = 900 

3 pools negative 

(3 x 50) = 150 

8 pools negative 

(8 x 10) = 80 

No further testing for 

estimating incidence 

8 specimens 

positive 

80 specimens 

negative 
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Efficiency: The efficiency of a pooling algorithm is the expected number of tests per 

specimen required to identify all positive specimens (Kim et al, 2007). The efficiency 

of individual testing is 1, and an efficiency of less than 1 indicates that the pooling 

algorithm will require fewer tests on average than individual testing. Dorfman (1943: 

438) states that “the extent of the savings attainable by the use of the group method 

depends on the group size and the prevalence rate”. 

 

The efficiencies of the above algorithms are given as: 

E (S2) = 
1

(1 )nq
n
 

                                                   (3.1) 

E (S3) = 
11

1
n

n

n

q
q

n



 

                                                                                   (3.2) 

Where n  =pool size 

 q = 1- p  

 p =Prevalence 

 

Pooling Specificity ( )pS A : This is defined as the probability that an individual is 

categorized as negative by a particular pooling algorithm (A) given that the individual 

is truly negative. 

 

Pooling Sensitivity ( )eS A : The probability that an individual is categorized as positive 

by a particular pooling algorithm (A), given that the individual is truly positive. 

 

Positive Predictive Value (PPV): The probability that an individual is truly positive 

given that s(he) is categorized as positive by A and is given as:  

PPV =
( )

(1 ){1 ( )} ( )

e

p e

pS A

p S A pS A  
                          (3.3)

 

 

Negative Predictive Value (NPV): The probability an individual is truly negative 

given that s(he) is categorized as negative by A and is given as 

NPV = 
(1 ) ( )

(1 ) ( ) {1 ( )}

p

p e

p S A

p S A p S A



  
                             (3.4) 
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3.6 SIMULATION 
 

Incidence estimation will be further investigated using a simulation study, which 

examines the effects of pooling on different algorithms. The laboratory results 

obtained from the Esselen Street data were analysed and will be integrated into a 

simulation model aimed at evaluating the efficiency of two main pooling algorithms: 

The Dorfman (1943) 2-stage procedure and the Quinn et al. (2000) 3-stage pooling 

procedure. It should be noted that one can go beyond 3 stages in multistage pooling; 

however, most of the literature on this subject is limited to three stages.  

Firstly, a dataset with N subjects is generated to mimic a scenario where the true 

prevalence is p. This is done by simulating each subject‟s initial infection probability 

using a random number from a uniform distribution U [0, 1]. If the simulated 

infection probability is less than the selected prevalence level, the data point is 

labelled as positive and if it‟s greater than or equal to the selected prevalence level, it 

is labelled as negative. This typically corresponds to the 1
st
 test in which negative 

samples have antibody values below 500copies/ml and positive samples have 

antibody values equal to and greater than  500copies/ml. 

At this stage, each observation is classified as ELISA positive or ELISA negative. For 

each ELISA negative value, the „new infection‟ status is set by generating another 

uniform [0, 1] number, and classifying the observation as an old infection if this is 

>=specified annual incidence level (incidence * 18/52), otherwise it is classified as a 

new infection. The factor 18/52 is used to annualize the incidence estimate based on 

the window period estimate given by Janssen et al. (1998): 129 days (18 weeks) 

which is the mean time of seroconversion between the sensitive and the non-sensitive 

tests divided by 365 days (52 weeks), which is the number of days in a year. The 

RNA value for the observation is then generated. 

Because the Esselen Street study employed the use of HIV RNA test as the 2
nd

 assay, 

the characteristics of the RNA test were used for detecting recent infections in the 

simulated samples. Previous studies (Le Corfec, Le Pont, Tuckwell, Rouzioux, and 

Costagliola, 1999) indicate that threshold assay value used to identify positive 

samples based on the HIV RNA test is 750,000 copies per ml, with a value less than 

or equal to 400 being classified as RNA undetectable, and all other values are 
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classified as negative. The RNA values follow a log normal distribution (Wein and 

Zeinos, 1998). In order to take viral load into account, the values are generated as a 

mixture of normal distributions as follows: 

 For new infections: exp{N (0, 1)*0.1+log (10000} i.e. exp {N (4, 0.1)} 

 For old infections, another U [0, 1] number is generated. 

o If this is less than 0.5, the RNA value is generated from exp {N (0, 

1)*0.1+log (100000} i.e. exp {N (5, 1)}.  

o Otherwise it is generated as exp {N (0, 1)*0.1+log (1000000} i.e. exp {N 

(6, 0.05)}. 

 

Viral load values were not available for the Esselen Street clinic data and very few 

South African studies report mean RNA values. A study done by Shisana, Rehle, 

Simbayi, Parker, Zuma, Bhana, Connolly, Jooste and Pillay (2005) gives the median 

HIV RNA viral load as 3.9. In order to have infected individuals with varied viral load 

values, a mixture of distributions was used and a mean HIV RNA range of 4-6 was 

considered. 

 

The simulated samples are divided into predetermined pools of size k to imitate the 

random allocation of samples to pools in an actual laboratory testing. For each group 

of negative samples, 2 pooling algorithms are examined:  

a) Dual or 2-stage pooling: This is based on the Dorfman (1943) algorithm where 

the negative samples are combined into one pool. Here, pool samples with a 

value less than the set threshold will be considered as negative for HIV and no 

further grouping or testing will be performed. Otherwise, all the samples in 

that pool would be tested individually because it shows that there is at least 

one positive sample in that pool. 

b) Multistage (3 stage pooling).: This follows the same structure as the Dorfman 

algorithm, except that we further re-pool positive samples and only test 

individually in the third and final stage. 
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PARAMETERS:  
 

To set up the simulation described above, the general parameters required are: 

-  p =Prevalence: Prevalence is set between 25%-35% following the current 

HIV prevalence rates in South Africa (Welz, Hosegood, Jaffarc, Batzing-

Feigenbaum, Herbst and Newell, 2007). 

- I = Incidence range: The results from the Hillbrow study by Stevens et al. 

(2005) suggest that incidence is 12.9% (95% CI, 11.01%-14.8%). The range 

for incidence in the model will be set between 12% -15% as recommended by 

Beyrer et al (1996). 

-  =Mean duration of the RNA test before seroconversion. Quinn et al. (2000) 

estimates the period of HIV antigen positivity before seroconversion to be 

either 22.5 days (for the p24 test) or 28 days (for the HIV RNA test). The 

values of the window period used in the simulation will vary around these two 

figures. 

- Pool sizes: Pools of size 1 (all samples), 5, 10, 25, 50, 100 and 1000 are 

selected arbitrarily for the ease of analysis. 

 

A number of combinations are possible from the parameter set above but only a 

selected number of scenarios will be evaluated in Chapter 4. Estimates of the 

incidence rate, confidence intervals and number of tests needed are obtained for each 

of generated data sets and pooling scenario. For a given prevalence range, the relative 

efficiency and accuracy of both pooling strategies are examined and compared to 

individual testing. Discussions on the findings are presented in Chapter 4. 

 

3.7 STUDY LIMITATIONS 
 

The result of the data from the Esselen Street clinic is available for the direct 

estimation of incidence. However in order to discuss other characteristics of pooling 

algorithms, a simulation study is required to examine the theoretical aspects of this 

procedure. The method of choosing the sizes of pools is one of the limitations of this 

study - pooled sizes have been chosen depending on which sizes would make sub-

pooling easier. A major assumption of the setup is that there is no error in testing at 

any of the stages. The study also does not assess the sensitivity to the assumption of 
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no dilution effect, or the cost thereof. This is because the pool size chosen by the lab 

experts is assumed to take account of this. 
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CHAPTER 4 : DATA ANALYSIS AND RESULTS 
 

This chapter evaluates and discusses the results and examines issues around the 

different pooling algorithms, size and cost. The issues of optimal pool sizes and cost 

saving are also explored. All computations were done using SAS version 9.1 (SAS® 

Institute Inc., Cary NC, USA). 

 

4.1 SUMMARY RESULTS FROM ESSELEN STREET DATA 
 

The main objective of study conducted at the Esselen street clinic was to determine 

the prevalence of acute primary HIV infection among South African men and women 

attending a primary care clinic. The study further generates an estimate of HIV 

incidence based on a multistage pooling method.  

 

Despite the laboratory testing which was carried out, data made available from the 

study only contained summary level information which included demographic 

frequencies of the respondents, and pooled results.  Individual results of the antibody 

tests were not included. The summary of the demographic and test characteristics of 

patients attending the Esselen Clinic in Hillbrow are given in Table 4.1 below:  

 

Table 4.1: Frequency table of respondents attending the Esselen Clinic. A weakly 

reactive result means that the antibody test results were equivocal or 

indeterminate and needed confirmatory testing. 

  Male Female Total 

Negative 670 553 1223 

Weakly Reactive 5 6 11 

Positive 295 377 672 

Total 970 936 1906 

 

Of the 1906 individuals tested at the Esselen Street Clinic, 672 respondents were HIV 

antibody positive using the ELISA test and 11 were antibody equivocal or 

indeterminate. A total of 4 out of the 11 antibody indeterminate respondents tested 

positive for HIV RNA.  As it was not clear whether these 11 specimens had been re-

tested using the ELISA test before they were tested using the RNA test, they were 

discarded for the purposes of the simulation study.  
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The 1,223 respondents who were antibody negative were then tested with HIV RNA 

to detect acute infections using the pooling algorithm described in Figure 3.1. The 

results show that 8 respondents tested positive for HIV RNA. The prevalence of acute 

HIV infection in the overall study population was then calculated as 
12

1223
 or 0.98%. 

This is consistent with findings from a previous study by Kamanga, Thumbi, 

Nkhoma, Manamela, Bogoshi, Latka, Martinson, Karim, Kumwenda, Rees, 

Churchyard, McCauley, Gay and Cohen (2008). In their study, 6674 people attending 

two Sexually Transmitted Diseases (STD) clinics in Malawi and one research facility 

in South Africa were screened for HIV, with an overall prevalence of 1.2%. 

 

Based on the multistage pooling method, incidence is then estimated using the 

relationship between prevalence and the test window period as described in equation 

(2.2):  

 
12 365

100
1223 28

I x x
   

    
   

 

Therefore, the estimate of acute HIV incidence of the Esselen Street data is given as: 

12.79% (95% CI, 11.01%-14.8%).   

 

The major limitation of the data provided was the lack of adequate pooling 

information. However, the data was useful for investigating the sensitivity of the final 

conclusion to the assumptions. As a result, the simulation steps introduced in Chapter 

3.6 were performed and results are discussed in the following sections. 

 

4.2 SIMULATION RESULTS 
 

The subsequent sections show and discuss the direct estimates of incidence obtained 

from the different methods discussed in preceding chapters. 

The first approach examines incidence estimates derived from a single cross-sectional 

survey using the relationship between prevalence and the estimated window period: 

*p I  . Therefore calculations of incidence=
p

I


  per day. 
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Table 4.2: Estimated incidence rates (% per year) as a function of p, the expected 

proportion of positives, and mean duration µ ranging from 15 days to 40 days 

Prevalence Window period 

(p) 15 22.5 28 30 40 

0.1          2.4           1.6           1.3           1.2           0.9  

0.12          2.9           1.9           1.6           1.5           1.1  

0.15          3.7           2.4           2.0           1.8           1.4  

0.2          4.9           3.2           2.6           2.4           1.8  

0.25          6.1           4.1           3.3           3.0           2.3  

0.3          7.3           4.9           3.9           3.7           2.7  

0.35          8.5           5.7           4.6           4.3           3.2  

0.4          9.7           6.5           5.2           4.9           3.7  

 

For a given set of values of prevalence (proportion of positives), Table 4.2 shows the 

incidence rates that would be estimated from a cross-sectional survey and shows the 

sensitivity of these rates to the different assumptions about the mean duration (  ). 

 

As indicated in equation (2.5), incidence rates are inversely proportional to the mean 

duration of the assumed test. When prevalence is given at 30% with a 40 day mean 

duration of an assumed test, incidence is estimated to be 2.7%.  A window period of 

28 days with a given prevalence of 15% results in a lower estimate of 2%. 

  

Brookmeyer and Quinn (1995) state that disadvantages of this method are that large 

sample sizes are required; and there are uncertainties associated with the estimation of 

the mean duration or window period. For the purpose of this study, a mean duration of 

28 days is used throughout the analysis as suggested in the literature (Le Corfec et al, 

1999). 

 

Measures of uncertainty in epidemiologic research are typically obtained by 

computing confidence intervals for calculated estimates (Cole et al, 2006). Table 4.3 

below presents the various confidence intervals for individual-incidence estimates 

based on the confidence intervals defined in equations (2.14) to (2.17). 
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Table 4.3: Confidence intervals of incidence estimates with varying prevalence 

and sample size and  =28 days 

  N=1000 N=2000 N=5000 

  p=25% p=30% p=35% p=25% p=30% p=35% p=25% p=30% p=35% 

Incidence 
          

19.40  

          

30.49  

          

40.48  

          

21.17  

          

26.09  

          

34.56  

         

17.60  

         

22.95  

         

31.22  

Confidence 

Intervals:  
                  

„McDougal 

Approach‟  

18.53-

20.28 

29.36-

31.63 

39.14-

41.82 

20.52-

21.81 

25.36-

26.82 

33.7-

35.43 

17.23-

17.97 

22.52-

23.38 

30.69-

31.74 

Normal 

Approximation 

8.02-

30.78 

15.73-

45.26 

23.02-

57.95 

12.77-

29.57 

16.52-

35.66 

23.27-

45.86 

12.8-

22.39 

17.34-

28.57 

24.42-

38.02 

Exact Binomial 
9.72-

34.51 

17.5-

49.16 

24.86-

61.99 

13.6-

31.37 

17.39-

37.54 

24.16-

47.82 

13.12-

23.09 

17.67-

29.29 

24.77-

38.79 

Poisson  
9.69-

34.72 

17.43-

49.52 

24.73-

62.52 

13.56-

31.5 

17.34-

37.71 

24.08-

48.07 

13.1-

23.14 

17.64-

29.37 

24.71-

38.9 

 

Using the simulation procedure described in Chapter 3.6, data points are generated 

from a uniform distribution, U (0, 1) with the parameter p ranging from 25% to 35% 

and sample size ranging from 1,000 to 5,000. When prevalence (p) is set to 25%, and 

the sample size is set to 1,000, the first simulation results indicate that 261 samples 

are ELISA positive while 739 are positive. From these negative results, 11 individual 

samples were positive for HIV RNA thus giving a direct incidence estimate of 19.4% 

(Kline et al, 1989, CI: 18.53-20.28). The normal approximation gives a wider interval 

of (CI: 8.02-30.78), however the Binomial and Poisson intervals are very similar (CI: 

9.72-34.51; 9.69-34.72). This similarity between the latter intervals is acknowledged 

and discussed by Lehmann (1999), for cases where n is large (n> 30). When 

prevalence is assumed to be 35% in N=2000 samples, the incidence is calculated to be 

34.56% (CI: 33.7%-35.43%) using the McDougal approach as given in equation 

(2.17); and a wider interval of 23.27%-45.86% using the normal approximation 

approach. Results from Table 4.3 above show that there are similarities in the results 

of the confidence intervals obtained from the Binomial and Poisson approach.  

 

Although the McDougal approach to the confidence intervals yields the shortest 

confidence interval; Cowling et al, (1999) note that these confidence intervals provide 

poor coverage of the limits and can sometimes give a misleading confidence in the 

estimate. Hauck (1991) suggests that confidence intervals should be based on exact 

binomial probability calculations instead. 
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4.3 POOLING RESULTS 
 

For the pooling section of the study, samples were generated according to the 

simulation process in Chapter 3.6. For each generated sample, incidence is calculated 

using 2 main pooling algorithms:  

1. Dual (2) stage pooling 

2. Multistage (3 stage pooling). 

Incidence estimates for groups of 1 means that all samples are tested individually, and 

this is taken to be our “single stage” pooling; results from which will be compared to 

the 2 and 3-stage algorithms. 

 

4.4 DUAL STAGE ALGORITHM (2-STAGE POOLING): 
 

A 2 stage algorithm is introduced to examine the efficiency of pooling on incidence 

estimates and to compare the confidence intervals from this scenario to the individual 

level (single stage) procedure. 

 

For each sample size generated, a 2 stage pooling scheme is applied to that set. Two 

broad set-ups are considered, with prevalence varying from 25%-35%, while setting 

the true incidence to be 15% and 12 % respectively. 

 

4.4.1 ASSUMING INCIDENCE OF 0.15 
 

Table 4.4 shows the calculated estimates of incidence, its confidence interval and the 

number of tests required for 3 different sample sizes: N=1,000; N=2,000 and 

N=5,000. 

 

Considering Table 4.4: With an assumed prevalence of 25% and a sample size of 

1,000; incidence is calculated as the number of new infections divided by the number 

of antibody negative individuals. The antibody negative samples were obtained from 

our simulation as: number of antibody positive samples (258) subtracted from total 

number of samples (1000) which gives us 742 negatives. These 742 samples are then 

grouped into 7 pools of 100, with the 8
th

 pool containing only 42 samples; as 

stipulated in the simulation procedure. The number of tests required at this stage is 8, 

since this is the number of pools available. Only one pool of 100 was found to be 

negative, thus 7 pools had to be tested individually to identify how many samples 
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were positive. 6 pools containing 100 (600) were tested individually, with 1 

incomplete pool of 42. Therefore, the total amount of tests required for this simulation 

was 8+600+42; which gives 650 tests in total. 14 individual samples were found to be 

RNA positive, given the parameters. Incidence for the 2-stage procedure is calculated 

as given in equation (2.5); with an estimate of 26.83 (CI: 24.40%-29.26%). 

 

Table 4.4: Estimated 2-stage incidence estimates when true incidence=0.15 

 =28; I =0.15   

Parameters True Prevalence Incidence (CI) 

Tests 

required 

Pool size =100 N=1000  25 26.83 (24.40-29.26) 650 

 

30 25.12 (22.78-27.46) 595 

 

35 25.12 (22.71-27.54) 607 

Pool size =100 N=2000 25 34.83 (32.41-37.25) 1396 

 

30 20.81 (19.47-22.15) 1215 

 

35 25.12 (23.44-26.81) 1214 

Pool size =100 N=5000  25 26.17 (25.13-27.22) 3338 

 

30 28.33 (27.15-29.51) 3236 

  35 31.27 (29.87-32.66) 3048 

Pool size =20 N=1000 25 27.01 (23.70-30.32) 298 

 

30 42.63 (38.05-47.21) 375 

  35 42.52 (37.81-47.24) 353 

Pool size =50 N=1000 25 28.33 (25.73-30.93) 507 

 

30 32.26 (29.25-35.26) 502 

  35 37.67 (34.11-41.24) 513 

 

It should be noted that the confidence intervals obtained for the dual stage algorithm 

has been „corrected‟ for pooling as suggested in equation 2.13. 

 

We observe that when sample size is held constant at 1,000 and pool size varied, the 

differences in incidence estimates are very similar when the true prevalence is at 25%. 

For instance, when the pool size is 100, 20 and 50 the incidence estimates are 26.83% 

(95% C.I 24.40-29.26), 27.01% (95% C.I 23.70-30.32) and 28.33% (95% C.I 25.73-

30.93) respectively. 

Whereas, given the same specification and the true prevalence of either 30% or 35 %, 

results indicate that the variation in the incident estimates become more prominent. In 

general, incidence estimates tend towards the true value with an increase in pool sizes. 
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With sample sizes varied between 1000 and 5000,  =28; I =0.15 and pool size =100, 

it can be seen from Table 4.4 that a moderate sample size of 2000 and a true 

prevalence value of 30 % gave the lowest incidence value and the highest value was 

obtained for the case where prevalence was 25% with the same sample size. 

Otherwise the incidence values are fairly consistent even with sample size varied. 

Confidence intervals tend to be relatively close to the true incidence value unlike the 

estimates in Table 4.3. 

 

4.4.2 ASSUMING INCIDENCE OF 0.12 
 

The estimates in Table 4.5 show a considerable difference when true incidence is set 

at 0.15 compared to 0.12.  

 

Table 4.5: Estimated 2-stage incidence estimates when true incidence=0.12 

 =28; I =0.12  

Parameters True Prevalence Incidence CI 

Tests 

required 

Pool size =100 N=1000  25 17.95 (16.34-19.55) 547 

 

30 25.12 (22.77-27.47) 591 

  35 25.12 (22.70-27.54) 607 

Pool size =100 N=2000  25 26.00 (24.34-27.66) 1293 

 

30 25.12 (23.48-26.76) 1213 

  35 25.12 (23.43-26.81) 1214 

Pool size =100 N=5000  25 21.87 (21.01-22.73) 3138 

 

30 25.48 (24.44-26.52) 3136 

  35 30.89 (29.51-32.26) 3033 

Pool size =20 N=1000  25 22.79 (19.79-25.80) 257 

 

30 32.87 (28.99-36.76) 315 

  35 38.91 (34.46-43.37) 333 

Pool size =50 N=1000  25 23.67 (21.41-25.93) 454 

 

30 32.26 (29.24-35.27) 498 

  35 30.37 (27.42-33.32) 463 

 

When the true incidence is set at 12%, sample size held constant at 1000, the lowest 

estimate of incidence is observed when the true prevalence is 25% and pool size is 

100. Estimates of incidence when samples were pooled in groups of 20 and 50 were 

very similar compared to when they were grouped into pools of size 100 for the same 

sample size (1000). Again we observe that the differences in incidence estimates are 

minimal when the prevalence is at 25% with varying pool sizes at a sample size of 

1000.  
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From Table 4.5, incidence estimates are the same when the true prevalence is 30% or 

35%, with a varying sample size of 1000 and 2000. However, when the sample size 

increases to 5000, there are differences between the estimates. In proportion to sample 

size, the total numbers of tests required are least for pool sizes of 20 and 50 when 

sample size is constant at 1000. The values of these estimates are lower than when the 

incidence was set at 0.15. 

 

4.5 MULTI STAGE ALGORITHM (3-STAGE POOLING) 
 

The differences in estimates for between the 1 stage (individual samples), 2 stage and 

3 stage algorithms are examined and discussed. Similarities in their confidence 

intervals are also mentioned and highlighted. 

 

Table 4.6: Estimated 3 Stage incidence estimates when pool size=100:20:5 

  

True 

Prevalence Incidence CI 

No of tests 

required 

Multi Stage 

Sample size=1000; I=0.12 25% 20.01 (8.27-31.74) 130 

 

30% 32.03 (16.52-47.54) 169 

 

35% 36.39 (19.32-53.45) 174 

Sample size=1000,I=0.13 25% 21.86 (9.59-34.13) 135 

 

30% 34.09 (18.09-50.09) 178 

 

35% 38.60 (21.02-56.18) 183 

Sample size=1000, I=0.15 25% 25.58 (12.31-38.85) 155 

 

30% 40.31 (22.90-57.72) 197 

  35% 43.12 (24.51-61.72) 197 

 

Table 4.6 displays the results of the multistage algorithm for estimating incidence.  

Taking the scenario of assumed prevalence of 25% and a sample size of 1,000; the 

number of positive samples on the simulated ELISA test was 261, while the negative 

samples were 739. The negative sample (739) samples are then grouped into 7 pools 

of 100, with the 8
th

 pool containing only 39 samples; since it was incomplete. This 

step will be regarded as stage 1 where 7 pools of 100 samples each are formed. 

Results show that 6 of the 7 pools are positive. Thus in the next stage, the 600 

samples are pooled into groups of 20, giving 20 pools of 30 samples each. It should be 

noted that the 39 extra samples from stage 1 are not included in the next stage. They 

will be retested alongside the other (if any) incomplete samples at the end of the 

procedure. Results from the 2
nd

 stage show that 10 out of the 20 pools are positive and 

it is these 200 samples that will be tested again in the 3
rd

 and final stage. In stage 3, 
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200 samples are divided into 40 groups of 5 and each of the 40 groups is tested. 11 of 

these pools are positive, thus 55 samples were each tested individually. Therefore, the 

total amount of tests required for this simulation was 8+27+40+55; which gives 130 

tests in total. Incidence is calculated as given in equation (2.10); with an estimate of 

20.01 (CI: 8.27%-31.74%). 

 

From the results, we observe that the lower the true prevalence, the lower the number 

of tests required in estimating incidence. Even though the incidence estimates 

fluctuate slightly, the lower bounds of the confidence interval for low prevalence 

(25%) captures the value of the true incidence. 

 

4.6 EFFICIENCY OF POOLING ALGORITHMS (2 STAGE AND    

3 STAGE)  
 

For given values of prevalence ( p ), the optimally efficient 2-stage and 3-stage 

procedure is determined by the value of n that minimizes equation (3.1) and (3.2) 

above. The relative efficiency and accuracy of the pooling strategies for assumed 

prevalence rates are demonstrated in Table 4.7.  The efficiency of a pooling algorithm 

is defined as the expected number of tests required per individual specimen evaluated, 

ignoring confirmatory retesting of individual positive specimens (Westreich et al, 

2008). Therefore an efficiency of less than „1‟ indicates that the pooling algorithm 

will require a lesser amount of tests on the average, than individual tests.  

 

Figure 4.1 shows the expected number of tests per individual sample at various group 

sizes ranging from 10 to 500.  A group size of „1‟ represents individual testing. The 

shapes of the relative cost curve vary for the different prevalence rates above.  For a 

prevalence rate of 0.01% and a group size of 50, we will only require 41% as many 

tests as individual testing for a 2 stage algorithm and 14% of tests for a 3 stage 

algorithm. When the prevalence is at 0.1%, the 2-stage algorithm shows a 6% 

decrease for group sizes of 20. 

  

For group sizes of 200, with the same prevalence rates of 0.01% and 0.1%, S2 shows 

19 % efficiency compared to individual testing while S3 shows 3% efficiency, 

respectively. When the prevalence is higher, at 25% for instance, both the 2-stage and 
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3-stage algorithms show 100% efficiency for groups of 10 and 20. We also note that 

as prevalence increases, efficiency between both algorithms show substantial 

differences. 

 

          

             

        

 Figure 4.1: Expected number of tests for 2 stage and 3 stage algorithms at given 

prevalence rates. S2 is a 2-stage “Dorfman Algorithm” while S3 is the 3-stage 

/Multistage Algorithm. 

 

The 3-stage algorithm consistently shows a lower efficiency across all the given 

prevalence rates showing that the more stages involved the more significant the 

results. As group sizes increase, the expected numbers of tests decrease. 
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The asymptotic relative efficiency (ARE) of p̂ after k stages relative to individual 

testing of each specimen is computed. The asymptotic efficiency is defined as the 

ratio of the variance with individual testing 
(1 )p p

N


divided by the variance with 

multistage and is given by:  

1
(1 )

(1 (1 ) )

k

k

c

k

c

c p p

p




 
                               (4.1) 

 

Table 4.7 illustrates the relative efficiency for an arbitrary range of prevalence values 

after each stage of a multistage pooling study, given a sample of N=1000 and initially 

sub divided groups of 100. 

 

Table 4.7: Asymptotic efficiency of p̂ after 3 stages relative to individual testing 

    Prevalence 

Stage Pool size 0.0005 0.01 0.02 0.04 

1 100 0.98 0.58 0.31 0.07 

2 10 1 0.96 0.91 0.83 

3 1 1 1 1 1 
 

At the end of the stage 2, if p=0.0005 p̂ is nearly as efficient as individual testing as 

shown in the table (ARE=0.98). When p =0.01 the multistage estimator is about half 

as efficient as individual testing (ARE=0.53). 

 

4.7 COST COMPARISON OF POOLING ALGORITHMS 
 

One major advantage of pooling studies over individual testing is cost savings. The 

cost of administering an RNA test to an individual is $119 (R952 at the exchange rate 

of R8 to $1). Cost is calculated directly and does not take into account other costs like 

the actual cost of pooling each blood sample, value of the cost kit, labour and cost of 

retesting the pool if positive. 
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Tables 4.8, 4.9 and 4.10 show the cost savings associated with each pooling scheme 

when compared to individual testing of all samples. The comparison is done for 

different sample sizes, holding the pool sizes constant.  

 

Table 4.8: Cost savings when sample size =1000 

N=1000,  2 stage k=100, 3 stage k=100:20:5 

Prevalence 25% 30% 35% 

Cost to test all specimens R 703,528 R 651,168 R 613,088 

Cost to test 2-stage R 520,744 R 562,632 R 577,864 

Cost to test 3-stage R 123,760 R 160,888 R 165,648 

Cost reduction-2stage vs ALL 26% 14% 6% 

Cost reduction-3stage vs ALL 82% 75% 73% 

Cost reduction-3stage vs 2 Stage 76% 71% 71% 

 

Table 4.8 shows the results of cost savings of direct estimation compared to two 

pooled scenarios, when sample size is 1000. As expected, multistage pooling shows a 

considerable amount of savings in cost compared to the 2 stage pooling, and 

compared to individual testing of all specimens. At a true prevalence of 25%, there is 

an 82% savings on cost compared to individual testing, and a 76% savings when 

comparing multistage to 2-stage pooling.  For the same parameters, there is only a 

26% reduction in cost when comparing the 2 stage pooling to individual testing of all 

specimens. 

Table 4.9: Cost savings when sample size=2000  

N=2000,  2 stage k=100, 3 stage k=100:20:5 

Prevalence 25% 30% 35% 

Cost to test all specimens R 1,407,056 R 1,331,848 R 1,256,640 

Cost to test 2-stage R 1,230,936 R 1,154,776 R 1,155,728 

Cost to test 3-stage R 277,032 R 295,120 R 317,016 

Cost reduction-2stage vs ALL 13% 13% 8% 

Cost reduction-3stage vs ALL 80% 78% 75% 

Cost reduction-3stage vs 2 Stage 77% 74% 73% 

 

Table 4.10: Cost savings when sample size =5000 

N=5000,  2 stage k=100, 3 stage k=100:20:5 

Prevalence 25% 30% 35% 

Cost to test all specimens R 3,596,656 R 3,406,256 R 3,140,648 

Cost to test 2-stage R 2,987,376 R 2,985,472 R 2,887,416 

Cost to test 3-stage R 592,144 R 295,120 R 317,016 

Cost reduction-2stage vs ALL 17% 12% 8% 

Cost reduction-3stage vs ALL 84% 91% 90% 

Cost reduction-3stage vs 2 Stage 80% 90% 89% 
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CHAPTER 5 : SUMMARY AND CONCLUSIONS 
 

5.1 SUMMARY 
 

Estimates of HIV incidence are traditionally obtained from cohort studies which are 

time consuming and cost prohibitive. This report focused on an alternative to 

estimating HIV incidence from a cross-sectional sample without the disadvantages 

associated with the cohort study.  

 

Chapter 1 gives an introduction of the epidemic in South Africa and an overview of 

the incidence and prevalence which are measures of the magnitude and rate of new 

infections of the disease. In Chapter 2, a literature review of the methods of estimating 

incidence is provided, along with an introduction to the pooling technique. Chapter 3 

discusses the operating characteristics, pooling assumptions, the simulation algorithm 

used and the parameters used in the simulation model. In Chapter 4, estimates of 

incidence are calculated by direct estimation and using varying pool sizes and sample 

sizes.  The accuracy of pooling blood samples was discussed along with the cost 

savings associated with different pooling strategies. 

 

Incidence estimates calculated using the relationship between prevalence and mean 

duration of recent infection are compared to estimates derived from group testing 

procedures.  

The results show that estimates from the pooled testing procedures are similar to, but 

more precise than the direct testing approach. In Table 4.3 for instance, with a sample 

of 1000, and a given prevalence of 25%; incidence was calculated as 19.4% (CI: 

9.72%-34.51%). Using the same criteria the 2-stage algorithm yielded a 17.95% 

estimate (CI: 16.34%-19.55%); while the 3-stage algorithm resulted in a 20.01% 

incidence estimate (CI: 8.27%-31.74%). 

 

For pooled testing, the findings suggest that for same number of samples, pooled 

testing provides a decrease in the average number of tests required per specimen, 

compared to individual testing.  This is reflected in the charts in Figure 4.1, which 

shows gains in efficiency for both 2-stage and 3-stage algorithms, compared to 

individual testing. The findings also reveal that the 3-stage algorithm consistently 
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offers a lower efficiency compared to its 2-stage counterpart; implying that as group 

sizes increase, the expected numbers of tests decreases, thereby saving time and 

money. 

To further emphasize the benefits of pooling, a cost comparison of the different 

strategies is highlighted in the results. Tables 4.7 to 4.9 show that in terms of cost, 

there is up to 80% reduction in the cost of testing going from individual testing to 

multiple stage testing; and up to 70% reduction in cost going from single stage testing 

to multiple stage testing. These results just further show that there is substantial cost 

savings involved in pooled testing, regardless of the number of stages involved. 

 

5.2 CONCLUSION 
 

Estimating HIV incidence from methods like cohort studies and back calculation is 

currently difficult to perform. The findings from this study show that laboratory 

methods like the pooled testing procedure holds great advantages over either of the 

above mentioned methods. The precision of the estimates obtained with both pooled 

testing algorithms is shown to be better than individual testing, as well as being closer 

to the true incidence. This conclusion is further reinforced by the narrow width of the 

confidence intervals in both pooling algorithms compared to individual testing. 

Findings suggest that incidence estimates derived from pooled testing are precise, cost 

saving and time saving compared to individual testing 

 

5.3 RECOMMENDATIONS 
 

In the current study, one of the assumptions applied was that the sensitivity of the test 

for a pool is approximately the same as it is for an individual sample. It would be of 

interest to introduce the implication and effect of test errors into the study like the 

modeling of sensitivity and specificity as a function of pool size. This will give an 

indication as to whether more precise estimates of incidence can be derived, and will 

examine the issue of dilution effects more closely. 

 

Further investigations or research into the application of the pooling method to 

estimate incidence should include a matrix based approach, mentioned briefly in 

Chapter 2.3.1.  The comparison of this method to other multistage pooling strategies 

can be undertaken to determine which is more efficient and optimal. 
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Data on the incidence of HIV in South Africa, and Africa in general is still limited and 

insufficient. However, with an introduction of pooled testing strategies, the 

disadvantages can be minimized significantly. The integration of pooled studies into 

the estimation of HIV incidence in South Africa will be cost effective thus allowing 

money saved to be spent in other areas of researching the HIV Virus. Pooled testing 

will also enable the monitoring of the virus to be feasible and to limit the development 

and transmission of HIV in resource constrained settings. 
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